WorldWideScience

Sample records for sea ice thickness

  1. Autonomous Sea-Ice Thickness Survey

    Science.gov (United States)

    2016-06-01

    the conductivity of an infinitely thick slab of sea ice. Ice thickness, Hice, is then obtained by subtracting the height of the ...Thickness Survey of Sea Ice Runway” ERDC/CRREL SR-16-4 ii Abstract We conducted an autonomous survey of sea -ice thickness using the Polar rover Yeti...efficiency relative to manual surveys routinely con- ducted to assess the safety of roads and runways constructed on the sea ice. Yeti executed the

  2. Arctic Sea Ice Freeboard and Thickness

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides measurements of sea ice freeboard and sea ice thickness for the Arctic region. The data were derived from measurements made by from the Ice,...

  3. Smoluchowski coagulation models of sea ice thickness distribution dynamics

    Science.gov (United States)

    Godlovitch, D.; Illner, R.; Monahan, A.

    2011-12-01

    Sea ice thickness distributions display a ubiquitous exponential decrease with thickness. This tail characterizes the range of ice thickness produced by mechanical redistribution of ice through the process of ridging, rafting, and shearing. We investigate how well the thickness distribution can be simulated by representing mechanical redistribution as a generalized stacking process. Such processes are naturally described by a well-studied class of models known as Smoluchowski Coagulation Models (SCMs), which describe the dynamics of a population of fixed-mass "particles" which combine in pairs to form a "particle" with the combined mass of the constituent pair at a rate which depends on the mass of the interacting particles. Like observed sea ice thickness distributions, the mass distribution of the populations generated by SCMs has an exponential or quasi-exponential form. We use SCMs to model sea ice, identifying mass-increasing particle combinations with thickness-increasing ice redistribution processes. Our model couples an SCM component with a thermodynamic component and generates qualitatively accurate thickness distributions with a variety of rate kernels. Our results suggest that the exponential tail of the sea ice thickness distribution arises from the nature of the ridging process, rather than specific physical properties of sea ice or the spatial arrangement of floes, and that the relative strengths of the dynamic and thermodynamic processes are key in accurately simulating the rate at which the sea ice thickness tail drops off with thickness.

  4. Sea-ice thickness from field measurements in the northwestern Barents Sea

    Science.gov (United States)

    King, Jennifer; Spreen, Gunnar; Gerland, Sebastian; Haas, Christian; Hendricks, Stefan; Kaleschke, Lars; Wang, Caixin

    2017-02-01

    The Barents Sea is one of the fastest changing regions of the Arctic, and has experienced the strongest decline in winter-time sea-ice area in the Arctic, at -23±4% decade-1. Sea-ice thickness in the Barents Sea is not well studied. We present two previously unpublished helicopter-borne electromagnetic (HEM) ice thickness measurements from the northwestern Barents Sea acquired in March 2003 and 2014. The HEM data are compared to ice thickness calculated from ice draft measured by ULS deployed between 1994 and 1996. These data show that ice thickness varies greatly from year to year; influenced by the thermodynamic and dynamic processes that govern local formation vs long-range advection. In a year with a large inflow of sea-ice from the Arctic Basin, the Barents Sea ice cover is dominated by thick multiyear ice; as was the case in 2003 and 1995. In a year with an ice cover that was mainly grown in situ, the ice will be thin and mechanically unstable; as was the case in 2014. The HEM data allow us to explore the spatial and temporal variability in ice thickness. In 2003 the dominant ice class was more than 2 years old; and modal sea-ice thickness varied regionally from 0.6 to 1.4 m, with the thinner ice being either first-year ice, or multiyear ice which had come into contact with warm Atlantic water. In 2014 the ice cover was predominantly locally grown ice less than 1 month old (regional modes of 0.5-0.8 m). These two situations represent two extremes of a range of possible ice thickness distributions that can present very different conditions for shipping traffic; or have a different impact on heat transport from ocean to atmosphere.

  5. The NRL 2011 Airborne Sea-Ice Thickness Campaign

    Science.gov (United States)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.

    2011-12-01

    In March of 2011, the US Naval Research Laboratory (NRL) performed a study focused on the estimation of sea-ice thickness from airborne radar, laser and photogrammetric sensors. The study was funded by ONR to take advantage of the Navy's ICEX2011 ice-camp /submarine exercise, and to serve as a lead-in year for NRL's five year basic research program on the measurement and modeling of sea-ice scheduled to take place from 2012-2017. Researchers from the Army Cold Regions Research and Engineering Laboratory (CRREL) and NRL worked with the Navy Arctic Submarine Lab (ASL) to emplace a 9 km-long ground-truth line near the ice-camp (see Richter-Menge et al., this session) along which ice and snow thickness were directly measured. Additionally, US Navy submarines collected ice draft measurements under the groundtruth line. Repeat passes directly over the ground-truth line were flown and a grid surrounding the line was also flown to collect altimeter, LiDAR and Photogrammetry data. Five CRYOSAT-2 satellite tracks were underflown, as well, coincident with satellite passage. Estimates of sea ice thickness are calculated assuming local hydrostatic balance, and require the densities of water, ice and snow, snow depth, and freeboard (defined as the elevation of sea ice, plus accumulated snow, above local sea level). Snow thickness is estimated from the difference between LiDAR and radar altimeter profiles, the latter of which is assumed to penetrate any snow cover. The concepts we used to estimate ice thickness are similar to those employed in NASA ICEBRIDGE sea-ice thickness estimation. Airborne sensors used for our experiment were a Reigl Q-560 scanning topographic LiDAR, a pulse-limited (2 nS), 10 GHz radar altimeter and an Applanix DSS-439 digital photogrammetric camera (for lead identification). Flights were conducted on a Twin Otter aircraft from Pt. Barrow, AK, and averaged ~ 5 hours in duration. It is challenging to directly compare results from the swath LiDAR with the

  6. Sea-Ice Thickness Monitoring from Sensor Equipped Inuit Sleds

    Science.gov (United States)

    Rodwell, Shane; Jones, Bryn; Wilkinson, Jeremy

    2013-04-01

    A novel instrumentation package capable of measuring sea-ice thickness autonomously has been designed for long-term deployment upon the dog drawn sleds of the indigenous peoples of the Arctic. The device features a range of sensors that have been integrated with an electromagnetic induction device. These include a global positioning system, temperature sensor, tilt meter and accelerometer. Taken together, this system is able to provide accurate (+/-5cm) measurements of ice thickness with spatio-temporal resolution ranging from 1m to 5m every second. Autonomous data transmission capability is provided via GSM, inspired by the fact that many of the coastal communities in Greenland possess modern cell-phone infrastructure, enabling an inexpensive means of data-retrieval. Such data is essential in quantifying the sea-ice mass balance; given that existing satellite based systems are unable to measure ice-thickness directly. Field-campaign results from a prototype device, deployed in the North West of Greenland during three consecutive seasons, have demonstrated successful proof-of-concept when compared to data provided by ice mass balance (IMB) stations provided at fixed positions along the route of the sled. This project highlights not only the use of novel polar technology, but how opportunistic deployment using an existing roving platform (Inuit sledges) can provide economical, yet highly valuable, data for instrumentation development.

  7. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  8. Linking Regional Winter Sea Ice Thickness and Surface Roughness to Spring Melt Pond Fraction on Landfast Arctic Sea Ice

    Directory of Open Access Journals (Sweden)

    Sasha Nasonova

    2017-12-01

    Full Text Available The Arctic sea ice cover has decreased strongly in extent, thickness, volume and age in recent decades. The melt season presents a significant challenge for sea ice forecasting due to uncertainty associated with the role of surface melt ponds in ice decay at regional scales. This study quantifies the relationships of spring melt pond fraction (fp with both winter sea ice roughness and thickness, for landfast first-year sea ice (FYI and multiyear sea ice (MYI. In 2015, airborne measurements of winter sea ice thickness and roughness, as well as high-resolution optical data of melt pond covered sea ice, were collected along two ~5.2 km long profiles over FYI- and MYI-dominated regions in the Canadian Arctic. Statistics of winter sea ice thickness and roughness were compared to spring fp using three data aggregation approaches, termed object and hybrid-object (based on image segments, and regularly spaced grid-cells. The hybrid-based aggregation approach showed strongest associations because it considers the morphology of the ice as well as footprints of the sensors used to measure winter sea ice thickness and roughness. Using the hybrid-based data aggregation approach it was found that winter sea ice thickness and roughness are related to spring fp. A stronger negative correlation was observed between FYI thickness and fp (Spearman rs = −0.85 compared to FYI roughness and fp (rs = −0.52. The association between MYI thickness and fp was also negative (rs = −0.56, whereas there was no association between MYI roughness and fp. 47% of spring fp variation for FYI and MYI can be explained by mean thickness. Thin sea ice is characterized by low surface roughness allowing for widespread ponding in the spring (high fp whereas thick sea ice has undergone dynamic thickening and roughening with topographic features constraining melt water into deeper channels (low fp. This work provides an important contribution towards the parameterizations of fp in

  9. Unified Sea Ice Thickness Climate Data Record Collection Spanning 1947-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Unified Sea Ice Thickness Climate Data Record is the result of a concerted effort to collect as many observations as possible of Arctic sea-ice draft, freeboard,...

  10. Measurement of sea ice thickness using electromagnetic sounding; Denji tansaho wo mochiita kaihyoatsu no keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Kawauchi, K; Suzuki, I; Goto, N [Muroran Institute of Technology, Hokkaido (Japan); Hoshiyama, K

    1997-10-22

    Thickness of sea ice is measured by an electromagnetic method making use of the peculiarities of sea ice. Sea ice floats on the seawater (saline water), and the result is two horizontal layers greatly different from each other in conductivity, with seawater being highly conductive and ice being non-conductive. A study is conducted on Lake Kumatori, a saline lake in Abashiri City, in which effort a board of naturally frozen sea ice and a board of sea ice allowed to form on the sea surface at a spot from which ice has been removed are examined. A portable electromagnetic probe EM38 of GEONICS Company is employed to perform measurement in a horizontal dipole mode. To determine the relationship between the obtained conductivity measurements and sea ice thickness, holes are bored in the sea ice boards for the measurement of their thickness for the formulation of an experimental regression equation. Measurements along the traverse line 1 and traverse line 3 are converted into sea ice thickness by use of the experimental regression equation, and the result is that ice thickness is the greatest near the quay growing thinner away from the shore. The study shows that sea ice thickness may be measured accurately by electromagnetic probing. 3 refs., 10 figs.

  11. Sea-ice Thickness and Draft Statistics from Submarine ULS, Moored ULS, and a Coupled Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of estimates of mean values of sea-ice thickness and sea-ice draft in meters computed from three different input data sets: sea ice draft from...

  12. Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean

    Science.gov (United States)

    Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.

    2017-12-01

    While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform

  13. Retrieval of sea ice thickness during Arctic summer using melt pond color

    Science.gov (United States)

    Istomina, L.; Nicolaus, M.; Heygster, G.

    2016-12-01

    The thickness of sea ice is an important climatic variable. Together with the ice concentration, it defines the total sea ice volume, is linked within the climatic feedback mechanisms and affects the Arctic energy balance greatly. During Arctic summer, the sea ice cover changes rapidly, which includes the presence of melt ponds, as well as reduction of ice albedo and ice thickness. Currently available remote sensing retrievals of sea ice thickness utilize data from altimeter, microwave, thermal infrared sensors and their combinations. All of these methods are compromised in summer in the presence of melt. This only leaves in situ and airborne sea ice thickness data available in summer. At the same time, data of greater coverage is needed for assimilation in global circulation models and correct estimation of ice mass balance.This study presents a new approach to estimate sea ice thickness in summer in the presence of melt ponds. Analysis of field data obtained during the RV "Polarstern" cruise ARK27/3 (August - October 2012) has shown a clear connection of ice thickness under melt ponds to their measured spectral albedo and to melt pond color in the hue-saturation-luminance color space from field photographs. An empirical function is derived from the HSL values and applied to aerial imagery obtained during various airborne campaigns. Comparison to in situ ice thickness shows a good correspondence to the ice thickness value retrieved in the melt ponds. A similar retrieval is developed for satellite spectral bands using the connection of the measured pond spectral albedo to the ice thickness within the melt ponds. Correction of the retrieved ice thickness in ponds to derive total thickness of sea ice is discussed. Case studies and application to very high resolution optical data are presented, as well as a concept to transfer the method to satellite data of lower spatial resolution where melt ponds become subpixel features.

  14. Arctic Sea Ice: Using Airborne Topographic Mapper Measurements (ATM) to Determine Sea Ice Thickness

    Science.gov (United States)

    2011-05-10

    Track Distance (Km) E le v a ti o n ( m ) ATM Elevation Profile Elevation 18 Figure 13: Geoid shape of earth’s equipotential surface , which is...inferred for the region between successive leads. Therefore, flying over a lead in the ice is very important for determining the exact sea surface elevation...inferred for the region between successive leads. Therefore, flying over a lead in the ice is very important for determining the exact sea surface

  15. Sea-ice thickness from airborne laser altimetry over the Arctic Ocean north of Greenland

    DEFF Research Database (Denmark)

    Hvidegaard, Sine Munk; Forsberg, René

    2002-01-01

    We present a new method to measure ice thickness of polar sea-ice freeboard heights, using airborne laser altimetry combined with a precise geoid model, giving estimates of thickness of ice through isostatic equilibrium assumptions. In the paper we analyze a number of flights from the Polar Sea off...... Northern Greenland, and estimate accuracies of the estimated freeboard values to be at a 13 cm level, corresponding to about 1 m in absolute thickness....

  16. The relation between sea ice thickness and freeboard in the Arctic

    Directory of Open Access Journals (Sweden)

    V. Alexandrov

    2010-09-01

    Full Text Available Retrieval of Arctic sea ice thickness from CryoSat-2 radar altimeter freeboard data requires observational data to verify the relation between these two variables. In this study in-situ ice and snow data from 689 observation sites, obtained during the Sever expeditions in the 1980s, have been used to establish an empirical relation between thickness and freeboard of FY ice in late winter. Estimates of mean and variability of snow depth, snow density and ice density were produced on the basis of many field observations. These estimates have been used in the hydrostatic equilibrium equation to retrieve ice thickness as a function of ice freeboard, snow depth and snow/ice density. The accuracy of the ice thickness retrieval has been calculated from the estimated variability in ice and snow parameters and error of ice freeboard measurements. It is found that uncertainties of ice density and freeboard are the major sources of error in ice thickness calculation. For FY ice, retrieval of ≈ 1.0 m (2.0 m thickness has an uncertainty of 46% (37%, and for MY ice, retrieval of 2.4 m (3.0 m thickness has an uncertainty of 20% (18%, assuming that the freeboard error is ± 0.03 m for both ice types. For MY ice the main uncertainty is ice density error, since the freeboard error is relatively smaller than that for FY ice. If the freeboard error can be reduced to 0.01 m by averaging measurements from CryoSat-2, the error in thickness retrieval is reduced to about 32% for a 1.0 m thick FY floe and to about 18% for a 2.4 m thick MY floe. The remaining error is dominated by uncertainty in ice density. Provision of improved ice density data is therefore important for accurate retrieval of ice thickness from CryoSat-2 data.

  17. Comparison of sea-ice freeboard and thickness distributions from aircraft data and cryosat-2

    DEFF Research Database (Denmark)

    accurate range measurements. During the CryoSat Validation Experiment (CryoVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electromagnetic induction device for direct sea-ice thickness retrieval. Both...... aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness distribution of airborne validation and CryoSat-2 measurements within the multi-year sea-ice region of the Lincoln Sea in spring, with respect...

  18. High interannual variability of sea ice thickness in the Arctic region.

    Science.gov (United States)

    Laxon, Seymour; Peacock, Neil; Smith, Doug

    2003-10-30

    Possible future changes in Arctic sea ice cover and thickness, and consequent changes in the ice-albedo feedback, represent one of the largest uncertainties in the prediction of future temperature rise. Knowledge of the natural variability of sea ice thickness is therefore critical for its representation in global climate models. Numerical simulations suggest that Arctic ice thickness varies primarily on decadal timescales owing to changes in wind and ocean stresses on the ice, but observations have been unable to provide a synoptic view of sea ice thickness, which is required to validate the model results. Here we use an eight-year time-series of Arctic ice thickness, derived from satellite altimeter measurements of ice freeboard, to determine the mean thickness field and its variability from 65 degrees N to 81.5 degrees N. Our data reveal a high-frequency interannual variability in mean Arctic ice thickness that is dominated by changes in the amount of summer melt, rather than by changes in circulation. Our results suggest that a continued increase in melt season length would lead to further thinning of Arctic sea ice.

  19. Sea ice thickness measurements collected during the LOMROG 2007 and 2009 expeditions

    DEFF Research Database (Denmark)

    Skourup, Henriette; Forsberg, René; Hanson, Susanne

    and 2009 we have collected a unique data set of late summer sea ice thickness, freeboard height and snow depth from the high Arctic Ocean during the time of the annual minimum sea ice extent. The data were collected by on-the-ground drilling and EM measurements. Here we give a brief overview of the data......According to scientific measurements, the Arctic sea ice extent has declined dramatically over the past thirty years, with the most extreme decline seen in the summer melt season. Other observations indicate that the sea ice has become thinner and perennial ice less widely distributed...... collection, as well as the results including the freeboard-to-sea-ice thickness conversion factor, which is used when interpreting freeboard heights measured by remote sensing....

  20. Impact of prescribed Arctic sea ice thickness in simulations of the present and future climate

    Energy Technology Data Exchange (ETDEWEB)

    Krinner, Gerhard [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); INSU-CNRS and UJF Grenoble, Laboratoire de Glaciologie et Geophysique de l' Environnement (LGGE), 54 rue Moliere, BP 96, Saint Martin d' Heres Cedex (France); Rinke, Annette; Dethloff, Klaus [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); Gorodetskaya, Irina V. [INSU-CNRS and UJF Grenoble, Laboratoire de Glaciologie et Geophysique de l' Environnement (LGGE), 54 rue Moliere, BP 96, Saint Martin d' Heres Cedex (France)

    2010-09-15

    This paper describes atmospheric general circulation model climate change experiments in which the Arctic sea-ice thickness is either fixed to 3 m or somewhat more realistically parameterized in order to take into account essentially the spatial variability of Arctic sea-ice thickness, which is, to a first approximation, a function of ice type (perennial or seasonal). It is shown that, both at present and at the end of the twenty-first century (under the SRES-A1B greenhouse gas scenario), the impact of a variable sea-ice thickness compared to a uniform value is essentially limited to the cold seasons and the lower troposphere. However, because first-year ice is scarce in the Central Arctic today, but not under SRES-A1B conditions at the end of the twenty-first century, and because the impact of a sea-ice thickness reduction can be masked by changes of the open water fraction, the spatial and temporal patterns of the effect of sea-ice thinning on the atmosphere differ between the two periods considered. As a consequence, not only the climate simulated at a given period, but also the simulated Arctic climate change over the twenty-first century is affected by the way sea-ice thickness is prescribed. (orig.)

  1. Sea Ice

    Science.gov (United States)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  2. SEA ICE THICKNESS MEASUREMENT BY GROUND PENETRATING RADAR FOR GROUND TRUTH OF MICROWAVE REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    M. Matsumoto

    2018-04-01

    Full Text Available Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  3. Sea Ice Thickness Measurement by Ground Penetrating Radar for Ground Truth of Microwave Remote Sensing Data

    Science.gov (United States)

    Matsumoto, M.; Yoshimura, M.; Naoki, K.; Cho, K.; Wakabayashi, H.

    2018-04-01

    Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR) can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately) aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  4. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multifrequency EM

    Science.gov (United States)

    Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger

    2016-04-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this

  5. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    Science.gov (United States)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  6. Two new ways of mapping sea ice thickness using ocean waves

    Science.gov (United States)

    Wadhams, P.

    2010-12-01

    TWO NEW METHODS OF MAPPING SEA ICE THICKNESS USING OCEAN WAVES. P. Wadhams (1,2), Martin Doble (1,2) and F. Parmiggiani (3) (1) Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. (2) Laboratoire d’Océanographie de Villefranche, Université Pierre et Marie Curie, 06234 Villefranche-sur-Mer, France (2) ISAC-CNR, Bologna, Italy Two new methods of mapping ice thickness have been recently developed and tested, both making use of the dispersion relation of ocean waves in ice of radically different types. In frazil-pancake ice, a young ice type in which cakes less than 5 m across float in a suspension of individual ice crystals, the propagation of waves has been successfully modelled by treating the ice layer as a highly viscous fluid. The model predicts a shortening of wavelengths within the ice. Two-dimensional Fourier analysis of successive SAR subscenes to track the directional spectrum of a wave field as it enters an ice edge shows that waves do indeed shorten within the ice, and the change has been successfully used to predict the thickness of the frazil-pancake layer. Concurrent shipborne sampling in the Antarctic has shown that the method is accurate, and we now propose its use throughout the important frazil-pancake regimes in the world ocean (Antarctic circumpolar ice edge zone, Greenland Sea, Bering Sea and others). A radically different type of dispersion occurs when ocean waves enter the continuous icefields of the central Arctic, when they couple with the elastic ice cover to propagate as a flexural-gravity wave. A two-axis tiltmeter array has been used to measure the resulting change in the dispersion relation for long ocean swell (15-30 s) originating from storms in the Greenland Sea. The dispersion relation is slightly different from swell in the open ocean, so if two such arrays are placed a substantial distance (100s of km) apart and used to observe the changing wave period of arrivals from a given

  7. Thin Sea Ice, Thick Snow, and Widespread Negative Freeboard Observed During N-ICE2015 North of Svalbard

    Science.gov (United States)

    Rösel, Anja; Itkin, Polona; King, Jennifer; Divine, Dmitry; Wang, Caixin; Granskog, Mats A.; Krumpen, Thomas; Gerland, Sebastian

    2018-02-01

    In recent years, sea-ice conditions in the Arctic Ocean changed substantially toward a younger and thinner sea-ice cover. To capture the scope of these changes and identify the differences between individual regions, in situ observations from expeditions are a valuable data source. We present a continuous time series of in situ measurements from the N-ICE2015 expedition from January to June 2015 in the Arctic Basin north of Svalbard, comprising snow buoy and ice mass balance buoy data and local and regional data gained from electromagnetic induction (EM) surveys and snow probe measurements from four distinct drifts. The observed mean snow depth of 0.53 m for April to early June is 73% above the average value of 0.30 m from historical and recent observations in this region, covering the years 1955-2017. The modal total ice and snow thicknesses, of 1.6 and 1.7 m measured with ground-based EM and airborne EM measurements in April, May, and June 2015, respectively, lie below the values ranging from 1.8 to 2.7 m, reported in historical observations from the same region and time of year. The thick snow cover slows thermodynamic growth of the underlying sea ice. In combination with a thin sea-ice cover this leads to an imbalance between snow and ice thickness, which causes widespread negative freeboard with subsequent flooding and a potential for snow-ice formation. With certainty, 29% of randomly located drill holes on level ice had negative freeboard.

  8. About uncertainties in sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise

    Science.gov (United States)

    Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z. S.; Djepa, V.; Wadhams, P.; Sandven, S.

    2014-03-01

    One goal of the European Space Agency Climate Change Initiative sea ice Essential Climate Variable project is to provide a quality controlled 20 year long data set of Arctic Ocean winter-time sea ice thickness distribution. An important step to achieve this goal is to assess the accuracy of sea ice thickness retrieval based on satellite radar altimetry. For this purpose a data base is created comprising sea ice freeboard derived from satellite radar altimetry between 1993 and 2012 and collocated observations of snow and sea ice freeboard from Operation Ice Bridge (OIB) and CryoSat Validation Experiment (CryoVEx) air-borne campaigns, of sea ice draft from moored and submarine Upward Looking Sonar (ULS), and of snow depth from OIB campaigns, Advanced Microwave Scanning Radiometer aboard EOS (AMSR-E) and the Warren Climatology (Warren et al., 1999). An inter-comparison of the snow depth data sets stresses the limited usefulness of Warren climatology snow depth for freeboard-to-thickness conversion under current Arctic Ocean conditions reported in other studies. This is confirmed by a comparison of snow freeboard measured during OIB and CryoVEx and snow freeboard computed from radar altimetry. For first-year ice the agreement between OIB and AMSR-E snow depth within 0.02 m suggests AMSR-E snow depth as an appropriate alternative. Different freeboard-to-thickness and freeboard-to-draft conversion approaches are realized. The mean observed ULS sea ice draft agrees with the mean sea ice draft computed from radar altimetry within the uncertainty bounds of the data sets involved. However, none of the realized approaches is able to reproduce the seasonal cycle in sea ice draft observed by moored ULS satisfactorily. A sensitivity analysis of the freeboard-to-thickness conversion suggests: in order to obtain sea ice thickness as accurate as 0.5 m from radar altimetry, besides a freeboard estimate with centimetre accuracy, an ice-type dependent sea ice density is as mandatory

  9. ICESat Observations of Seasonal and Interannual Variations of Sea-Ice Freeboard and Estimated Thickness in the Weddell Sea, Antarctica (2003-2009)

    Science.gov (United States)

    Yi, Donghui; Robbins, John W.

    2010-01-01

    Sea-ice freeboard heights for 17 ICESat campaign periods from 2003 to 2009 are derived from ICESat data. Freeboard is combined with snow depth from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) data and nominal densities of snow, water and sea ice, to estimate sea-ice thickness. Sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of growth and decay of the Weddell Sea (Antarctica) pack ice. During October-November, sea ice grows to its seasonal maximum both in area and thickness; the mean freeboards are 0.33-0.41 m and the mean thicknesses are 2.10-2.59 m. During February-March, thinner sea ice melts away and the sea-ice pack is mainly distributed in the west Weddell Sea; the mean freeboards are 0.35-0.46 m and the mean thicknesses are 1.48-1.94 m. During May-June, the mean freeboards and thicknesses are 0.26-0.29 m and 1.32-1.37 m, respectively. The 6 year trends in sea-ice extent and volume are (0.023+/-0.051) x 10(exp 6)sq km/a (0.45%/a) and (0.007+/-1.0.092) x 10(exp 3)cu km/a (0.08%/a); however, the large standard deviations indicate that these positive trends are not statistically significant.

  10. Exploring the utility of quantitative network design in evaluating Arctic sea ice thickness sampling strategies

    OpenAIRE

    Kaminski, T.; Kauker, F.; Eicken, H.; Karcher, M.

    2015-01-01

    We present a quantitative network design (QND) study of the Arctic sea ice-ocean system using a software tool that can evaluate hypothetical observational networks in a variational data assimilation system. For a demonstration, we evaluate two idealised flight transects derived from NASA's Operation IceBridge airborne ice surveys in terms of their potential to improve ten-day to five-month sea-ice forecasts. As target regions for the forecasts we select the Chukchi Sea, a...

  11. A glimpse beneath Antarctic sea ice: observation of platelet-layer thickness and ice-volume fraction with multi-frequency EM

    Science.gov (United States)

    Hendricks, S.; Hoppmann, M.; Hunkeler, P. A.; Kalscheuer, T.; Gerdes, R.

    2015-12-01

    In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise and accumulate beneath nearby sea ice to form a several meter thick sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator for ice - ocean interactions. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and sub-ice platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions from platelet-layer conductivities using Archie's Law. The thickness results agreed well with drill-hole validation datasets within the uncertainty range, and the ice-volume fraction also yielded plausible results. Our findings imply that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties. However, we emphasize that the successful application of this technique requires a break with traditional EM sensor calibration strategies due to the need of absolute calibration with respect to a physical forward model.

  12. Modeling and analysis of Off-beam lidar returns from thick clouds, snow, and sea ice

    International Nuclear Information System (INIS)

    Varnai, T.; Cahalan, R. F.

    2009-01-01

    A group of recently developed lidar (laser ranging and detection) systems can detect signals returning from several wide field-of-views, allowing them to observe the way laser pulses spread in thick media. The new capability enabled accurate measurements of cloud geometrical thickness and promises improved measurements of internal cloud structure as well as snow and sea ice thickness. This paper presents a brief overview of radiation transport simulation techniques and data analysis methods that were developed for multi-view lidar applications and for and considering multiple scattering effects in single-view lidar data. In discussing methods for simulating the three-dimensional spread of lidar pulses, we present initial results from Phase 3 of the Intercomparison of 3-D Radiation Codes (I3RC) project. The results reveal some differences in the capabilities of participating models, while good agreement among several models provides consensus results suitable for testing future models. Detailed numerical results are available at the I3RC web site at http://i3rc.gsfc.nasa. gov. In considering data analysis methods, we focus on the Thickness from Off-beam Returns (THOR) lidar. THOR proved successful in measuring the geometrical thickness of optically thick clouds; here we focus on its potential for retrieving the vertical profile of scattering coefficient in clouds and for measuring snow thickness. Initial observations suggest considerable promise but also reveal some limitations, for example that the maximum retrievable snow thickness drops from about 0.5 m in pristine areas to about 0.15 m in polluted regions. (authors)

  13. The impact of the snow cover on sea-ice thickness products retrieved by Ku-band radar altimeters

    Science.gov (United States)

    Ricker, R.; Hendricks, S.; Helm, V.; Perovich, D. K.

    2015-12-01

    Snow on sea ice is a relevant polar climate parameter related to ocean-atmospheric interactions and surface albedo. It also remains an important factor for sea-ice thickness products retrieved from Ku-band satellite radar altimeters like Envisat or CryoSat-2, which is currently on its mission and the subject of many recent studies. Such satellites sense the height of the sea-ice surface above the sea level, which is called sea-ice freeboard. By assuming hydrostatic equilibrium and that the main scattering horizon is given by the snow-ice interface, the freeboard can be transformed into sea-ice thickness. Therefore, information about the snow load on hemispherical scale is crucial. Due to the lack of sufficient satellite products, only climatological values are used in current studies. Since such values do not represent the high variability of snow distribution in the Arctic, they can be a substantial contributor to the total sea-ice thickness uncertainty budget. Secondly, recent studies suggest that the snow layer cannot be considered as homogenous, but possibly rather featuring a complex stratigraphy due to wind compaction and/or ice lenses. Therefore, the Ku-band radar signal can be scattered at internal layers, causing a shift of the main scattering horizon towards the snow surface. This alters the freeboard and thickness retrieval as the assumption that the main scattering horizon is given by the snow-ice interface is no longer valid and introduces a bias. Here, we present estimates for the impact of snow depth uncertainties and snow properties on CryoSat-2 sea-ice thickness retrievals. We therefore compare CryoSat-2 freeboard measurements with field data from ice mass-balance buoys and aircraft campaigns from the CryoSat Validation Experiment. This unique validation dataset includes airborne laser scanner and radar altimeter measurements in spring coincident to CryoSat-2 overflights, and allows us to evaluate how the main scattering horizon is altered by the

  14. Arctic Sea Ice Thickness Estimation from CryoSat-2 Satellite Data Using Machine Learning-Based Lead Detection

    Directory of Open Access Journals (Sweden)

    Sanggyun Lee

    2016-08-01

    Full Text Available Satellite altimeters have been used to monitor Arctic sea ice thickness since the early 2000s. In order to estimate sea ice thickness from satellite altimeter data, leads (i.e., cracks between ice floes should first be identified for the calculation of sea ice freeboard. In this study, we proposed novel approaches for lead detection using two machine learning algorithms: decision trees and random forest. CryoSat-2 satellite data collected in March and April of 2011–2014 over the Arctic region were used to extract waveform parameters that show the characteristics of leads, ice floes and ocean, including stack standard deviation, stack skewness, stack kurtosis, pulse peakiness and backscatter sigma-0. The parameters were used to identify leads in the machine learning models. Results show that the proposed approaches, with overall accuracy >90%, produced much better performance than existing lead detection methods based on simple thresholding approaches. Sea ice thickness estimated based on the machine learning-detected leads was compared to the averaged Airborne Electromagnetic (AEM-bird data collected over two days during the CryoSat Validation experiment (CryoVex field campaign in April 2011. This comparison showed that the proposed machine learning methods had better performance (up to r = 0.83 and Root Mean Square Error (RMSE = 0.29 m compared to thickness estimation based on existing lead detection methods (RMSE = 0.86–0.93 m. Sea ice thickness based on the machine learning approaches showed a consistent decline from 2011–2013 and rebounded in 2014.

  15. Estimation of Antarctic Land-Fast Sea Ice Algal Biomass and Snow Thickness From Under-Ice Radiance Spectra in Two Contrasting Areas

    Science.gov (United States)

    Wongpan, P.; Meiners, K. M.; Langhorne, P. J.; Heil, P.; Smith, I. J.; Leonard, G. H.; Massom, R. A.; Clementson, L. A.; Haskell, T. G.

    2018-03-01

    Fast ice is an important component of Antarctic coastal marine ecosystems, providing a prolific habitat for ice algal communities. This work examines the relationships between normalized difference indices (NDI) calculated from under-ice radiance measurements and sea ice algal biomass and snow thickness for Antarctic fast ice. While this technique has been calibrated to assess biomass in Arctic fast ice and pack ice, as well as Antarctic pack ice, relationships are currently lacking for Antarctic fast ice characterized by bottom ice algae communities with high algal biomass. We analyze measurements along transects at two contrasting Antarctic fast ice sites in terms of platelet ice presence: near and distant from an ice shelf, i.e., in McMurdo Sound and off Davis Station, respectively. Snow and ice thickness, and ice salinity and temperature measurements support our paired in situ optical and biological measurements. Analyses show that NDI wavelength pairs near the first chlorophyll a (chl a) absorption peak (≈440 nm) explain up to 70% of the total variability in algal biomass. Eighty-eight percent of snow thickness variability is explained using an NDI with a wavelength pair of 648 and 567 nm. Accounting for pigment packaging effects by including the ratio of chl a-specific absorption coefficients improved the NDI-based algal biomass estimation only slightly. Our new observation-based algorithms can be used to estimate Antarctic fast ice algal biomass and snow thickness noninvasively, for example, by using moored sensors (time series) or mapping their spatial distributions using underwater vehicles.

  16. Sea ice - Multiyear cycles and white ice

    Science.gov (United States)

    Ledley, T. S.

    1985-01-01

    The multiyear thickness cycles represent one of the interesting features of the sea ice studies performed by Semtner (1976) and Washington et al. (1976) with simple thermodynamic models of sea ice. In the present article, a description is given of results which show that the insulating effect of snow on the surface of the sea ice is important in producing these multiyear cycles given the physics included in the model. However, when the formation of white ice is included, the cycles almost disappear. White ice is the ice which forms at the snow-ice interface when the snow layer becomes thick enough to depress the ice below the water level. Water infiltrates the snow by coming through the ice at leads and generally freezes there, forming white ice.

  17. County-Level Climate Uncertainty for Risk Assessments: Volume 23 Appendix V - Forecast Sea Ice Thickness

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-04-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  18. County-Level Climate Uncertainty for Risk Assessments: Volume 22 Appendix U - Historical Sea Ice Thickness

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  19. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    Science.gov (United States)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  20. MIZMAS: Modeling the Evolution of Ice Thickness and Floe Size Distributions in the Marginal Ice Zone of the Chukchi and Beaufort Seas

    Science.gov (United States)

    2015-09-30

    ITD theory of Thorndike et al. (1975) in order to explicitly simulate the evolution of FSD and ITD jointly. The FSD theory includes a FSD function and...et al., 2015). 4 RESULTS Modeling: A FSD theory is developed and coupled to the ITD theory of Thorndike et al. (1975) in order to... Thorndike , A.S., D.A. Rothrock, G.A. Maykut, and R. Colony (1975), The thickness distribution of sea ice. J. Geophys. Res., 80, 4501–4513. Zhang

  1. Simultaneous retrieval of sea ice thickness and snow depth using concurrent active altimetry and passive L-band remote sensing data

    Science.gov (United States)

    Zhou, L.; Xu, S.; Liu, J.

    2017-12-01

    The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.

  2. Ultra-Wideband Radiometry Remote Sensing of Polar Ice Sheet Temperature Profile, Sea Ice and Terrestrial Snow Thickness: Forward Modeling and Data Analysis

    Science.gov (United States)

    Tsang, L.; Tan, S.; Sanamzadeh, M.; Johnson, J. T.; Jezek, K. C.; Durand, M. T.

    2017-12-01

    The recent development of an ultra-wideband software defined radiometer (UWBRAD) operating over the unprotected spectrum of 0.5 2.0 GHz using radio-frequency interference suppression techniques offers new methodologies for remote sensing of the polar ice sheets, sea ice, and terrestrial snow. The instrument was initially designed for remote sensing of the intragalcial temperature profile of the ice sheet, where a frequency dependent penetration depth yields a frequency dependent brightness temperature (Tb) spectrum that can be linked back to the temperature profile of the ice sheet. The instrument was tested during a short flight over Northwest Greenland in September, 2016. Measurements were successfully made over the different snow facies characteristic of Greenland including the ablation, wet snow and percolation facies, and ended just west of Camp Century during the approach to the dry snow zone. Wide-band emission spectra collected during the flight have been processed and analyzed. Results show that the spectra are highly sensitive to the facies type with scattering from ice lenses being the dominant reason for low Tbs in the percolation zone. Inversion of Tb to physical temperature at depth was conducted on the measurements near Camp Century, achieving a -1.7K ten-meter error compared to borehole measurements. However, there is a relatively large uncertainty in the lower part possibly due to the large scattering near the surface. Wideband radiometry may also be applicable to sea ice and terrestrial snow thickness retrieval. Modeling studies suggest that the UWBRAD spectra reduce ambiguities inherent in other sea ice thickness retrievals by utilizing coherent wave interferences that appear in the Tb spectrum. When applied to a lossless medium such as terrestrial snow, this coherent oscillation turns out to be the single key signature that can be used to link back to snow thickness. In this paper, we report our forward modeling findings in support of instrument

  3. On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data

    Science.gov (United States)

    Zhou, Lu; Xu, Shiming; Liu, Jiping; Wang, Bin

    2018-03-01

    The accurate knowledge of sea ice parameters, including sea ice thickness and snow depth over the sea ice cover, is key to both climate studies and data assimilation in operational forecasts. Large-scale active and passive remote sensing is the basis for the estimation of these parameters. In traditional altimetry or the retrieval of snow depth with passive microwave remote sensing, although the sea ice thickness and the snow depth are closely related, the retrieval of one parameter is usually carried out under assumptions over the other. For example, climatological snow depth data or as derived from reanalyses contain large or unconstrained uncertainty, which result in large uncertainty in the derived sea ice thickness and volume. In this study, we explore the potential of combined retrieval of both sea ice thickness and snow depth using the concurrent active altimetry and passive microwave remote sensing of the sea ice cover. Specifically, laser altimetry and L-band passive remote sensing data are combined using two forward models: the L-band radiation model and the isostatic relationship based on buoyancy model. Since the laser altimetry usually features much higher spatial resolution than L-band data from the Soil Moisture Ocean Salinity (SMOS) satellite, there is potentially covariability between the observed snow freeboard by altimetry and the retrieval target of snow depth on the spatial scale of altimetry samples. Statistically significant correlation is discovered based on high-resolution observations from Operation IceBridge (OIB), and with a nonlinear fitting the covariability is incorporated in the retrieval algorithm. By using fitting parameters derived from large-scale surveys, the retrievability is greatly improved compared with the retrieval that assumes flat snow cover (i.e., no covariability). Verifications with OIB data show good match between the observed and the retrieved parameters, including both sea ice thickness and snow depth. With

  4. ASSESSMENT OF SEA ICE FREEBOARD AND THICKNESS IN MCMURDO SOUND, ANTARCTICA, DERIVED BY GROUND VALIDATED SATELLITE ALTIMETER DATA

    Directory of Open Access Journals (Sweden)

    D. Price

    2012-07-01

    Full Text Available This investigation employs the use of ICESat to derive freeboard measurements in McMurdo Sound in the western Ross Sea, Antarctica, for the time period 2003-2009. Methods closely follow those previously presented in the literature but are complemented by a good understanding of general sea ice characteristics in the study region from extensive temporal ground investigations but with limited spatial coverage. The aim of remote sensing applications in this area is to expand the good knowledge of sea ice characteristics within these limited areas to the wider McMurdo Sound and western Ross Sea region. The seven year Austral Spring (September, October, and November investigation is presented for sea ice freeboard alone. An interannual comparison of mean freeboard indicates an increase in multiyear sea ice freeboard from 1.08 m in 2003 to 1.15 m in 2009 with positive and negative variation in between. No significant trend was detected for first year sea ice freeboard. Further, an Envisat imagery investigation complements the freeboard assessment. The multiyear sea ice was observed to increase by 254 % of its original 2003 area, as firstyear sea ice persisted through the 2004 melt season into 2005. This maximum coverage then gradually diminished by 2009 to 20 % above the original 2003 value. The mid study period increase is likely attributed to the passage of iceberg B-15A minimising oceanic pressures and preventing sea ice breakout in the region.

  5. Sea ice-albedo climate feedback mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J.L.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States); Ebert, E.E. [Bureau of Meterology Research Center, Melbourne (Australia)

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  6. Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover and fast ice decay

    Directory of Open Access Journals (Sweden)

    P. Itkin

    2017-10-01

    Full Text Available Ice retreat in the eastern Eurasian Arctic is a consequence of atmospheric and oceanic processes and regional feedback mechanisms acting on the ice cover, both in winter and summer. A correct representation of these processes in numerical models is important, since it will improve predictions of sea ice anomalies along the Northeast Passage and beyond. In this study, we highlight the importance of winter ice dynamics for local summer sea ice anomalies in thickness, volume and extent. By means of airborne sea ice thickness surveys made over pack ice areas in the south-eastern Laptev Sea, we show that years of offshore-directed sea ice transport have a thinning effect on the late-winter sea ice cover. To confirm the preconditioning effect of enhanced offshore advection in late winter on the summer sea ice cover, we perform a sensitivity study using a numerical model. Results verify that the preconditioning effect plays a bigger role for the regional ice extent. Furthermore, they indicate an increase in volume export from the Laptev Sea as a consequence of enhanced offshore advection, which has far-reaching consequences for the entire Arctic sea ice mass balance. Moreover we show that ice dynamics in winter not only preconditions local summer ice extent, but also accelerate fast-ice decay.

  7. Investigating Arctic Sea Ice Survivability in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Matthew Tooth

    2018-02-01

    Full Text Available Arctic sea ice extent has continued to decline in recent years, and the fractional coverage of multi-year sea ice has decreased significantly during this period. The Beaufort Sea region has been the site of much of the loss of multi-year sea ice, and it continues to play a large role in the extinction of ice during the melt season. We present an analysis of the influence of satellite-derived ice surface temperature, ice thickness, albedo, and downwelling longwave/shortwave radiation as well as latitude and airborne snow depth estimates on the change in sea ice concentration in the Beaufort Sea from 2009 to 2016 using a Lagrangian tracking database. Results from this analysis indicate that parcels that melt during summer in the Beaufort Sea reside at lower latitudes and have lower ice thickness at the beginning of the melt season in most cases. The influence of sea ice thickness and snow depth observed by IceBridge offers less conclusive results, with some years exhibiting higher thicknesses/depths for melted parcels. Parcels that melted along IceBridge tracks do exhibit lower latitudes and ice thicknesses, however, which indicates that earlier melt and breakup of ice may contribute to a greater likelihood of extinction of parcels in the summer.

  8. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation

    DEFF Research Database (Denmark)

    Ricker, R.; Hendricks, S.; Helm, V.

    2014-01-01

    In the context of quantifying Arctic ice-volume decrease at global scale, the CryoSat-2 satellite was launched in 2010 and is equipped with the K-u band synthetic aperture radar altimeter SIRAL (Synthetic Aperture Interferometric Radar Altimeter), which we use to derive sea-ice freeboard defined...... knowledge of ice and snow properties, the composition of radar backscatter and therefore the interpretation of radar echoes is crucial. This has consequences in the selection of retracker algorithms which are used to track the main scattering horizon and assign a range estimate to each CryoSat-2 measurement...... of sea-ice freeboard and higher-level products that arise from the choice of the retracker threshold only, independent of the uncertainties related to snow and ice properties. Our study shows that the choice of retracker thresholds does have a significant impact on magnitudes of estimates of sea...

  9. Sea Ice Ecosystems

    Science.gov (United States)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  10. Loss of sea ice in the Arctic.

    Science.gov (United States)

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  11. Propagation of Uncertainties in Sea Ice Thickness Calculations From Basin-Scale Operational Observations: A Report Prepared for the International Ice Charting Working Group and the National/Naval Ice Center

    National Research Council Canada - National Science Library

    Geiger, Cathleen A

    2006-01-01

    Sea ice serves as a natural flux monitor of the global heat balance. This capability is attributed to the unique location of sea ice at the interface of the world's two largest circulation systems the air and ocean...

  12. Arctic landfast sea ice

    Science.gov (United States)

    Konig, Christof S.

    Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as

  13. On the Predictability of Sea Ice

    Science.gov (United States)

    Blanchard-Wrigglesworth, Edward

    We investigate the persistence and predictability of sea ice in numerical models and observations. We first use the 3rd generation Community Climate System Model (CCSM3) General Circulation Model (GCM) to investigate the inherent persistence of sea-ice area and thickness. We find that sea-ice area anomalies have a seasonal decay timescale, exhibiting an initial decorrelation similar to a first order auto-regressive (AR1, or red noise) process. Beyond this initial loss of memory, there is a re-emergence of memory at certain times of the year. There are two distinct modes of re-emergence in the model, one driven by the seasonal coupling of area and thickness anomalies in the summer, the other by the persistence of upper ocean temperature anomalies that originate from ice anomalies in the melt season and then influence ice anomalies in the growth season. Comparison with satellite observations where available indicate these processes appear in nature. We then use the 4th generation CCSM (CCSM4) to investigate the partition of Arctic sea-ice predictability into its initial-value and boundary forced components under present day forcing conditions. We find that initial-value predictability lasts for 1-2 years for sea-ice area, and 3-4 years for sea-ice volume. Forced predictability arises after just 4-5 years for both area and volume. Initial-value predictability of sea-ice area during the summer hinges on the coupling between thickness and area anomalies during that season. We find that the loss of initial-value predictability with time is not uniform --- there is a rapid loss of predictability of sea-ice volume during the late spring early summer associated with snow melt and albedo feedbacks. At the same time, loss of predictability is not uniform across different regions. Given the usefulness of ice thickness as a predictor of summer sea-ice area, we obtain a hindcast of September sea-ice area initializing the GCM on May 1with an estimate of observed sea-ice thickness

  14. Variability and Trends in Sea Ice Extent and Ice Production in the Ross Sea

    Science.gov (United States)

    Comiso, Josefino; Kwok, Ronald; Martin, Seelye; Gordon, Arnold L.

    2011-01-01

    Salt release during sea ice formation in the Ross Sea coastal regions is regarded as a primary forcing for the regional generation of Antarctic Bottom Water. Passive microwave data from November 1978 through 2008 are used to examine the detailed seasonal and interannual characteristics of the sea ice cover of the Ross Sea and the adjacent Bellingshausen and Amundsen seas. For this period the sea ice extent in the Ross Sea shows the greatest increase of all the Antarctic seas. Variability in the ice cover in these regions is linked to changes in the Southern Annular Mode and secondarily to the Antarctic Circumpolar Wave. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate of increase in the net ice export of about 30,000 sq km/yr. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 cu km/yr, which is almost identical, within error bars, to our estimate of the trend in ice production. The increase in brine rejection in the Ross Shelf Polynya associated with the estimated increase with the ice production, however, is not consistent with the reported Ross Sea salinity decrease. The locally generated sea ice enhancement of Ross Sea salinity may be offset by an increase of relatively low salinity of the water advected into the region from the Amundsen Sea, a consequence of increased precipitation and regional glacial ice melt.

  15. Coordinated Mapping of Sea Ice Deformation Features with Autonomous Vehicles

    Science.gov (United States)

    Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.

    2016-12-01

    Decreases in summer sea ice extent in the Beaufort and Chukchi Seas has lead to a transition from a largely perennial ice cover, to a seasonal ice cover. This drives shifts in sea ice production, dynamics, ice types, and thickness distribution. To examine how the processes driving ice advance might also impact the morphology of the ice cover, a coordinated ice mapping effort was undertaken during a field campaign in the Beaufort Sea in October, 2015. Here, we present observations of sea ice draft topography from six missions of an Autonomous Underwater Vehicle run under different ice types and deformation features observed during autumn freeze-up. Ice surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between sea ice surface topography and ice underside morphology for a range of sample ice types, including hummocked multiyear ice, rubble fields, young ice ridges and rafts, and consolidated pancake ice. These data are compared to prior observations of ice morphological features from deformed Antarctic sea ice. Such data will be useful for improving parameterizations of sea ice redistribution during deformation, and for better constraining estimates of airborne or satellite sea ice thickness.

  16. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories

    Science.gov (United States)

    Argus, Donald F.; Peltier, W. R.; Drummond, R.; Moore, Angelyn W.

    2014-07-01

    A new model of the deglaciation history of Antarctica over the past 25 kyr has been developed, which we refer to herein as ICE-6G_C (VM5a). This revision of its predecessor ICE-5G (VM2) has been constrained to fit all available geological and geodetic observations, consisting of: (1) the present day uplift rates at 42 sites estimated from GPS measurements, (2) ice thickness change at 62 locations estimated from exposure-age dating, (3) Holocene relative sea level histories from 12 locations estimated on the basis of radiocarbon dating and (4) age of the onset of marine sedimentation at nine locations along the Antarctic shelf also estimated on the basis of 14C dating. Our new model fits the totality of these data well. An additional nine GPS-determined site velocities are also estimated for locations known to be influenced by modern ice loss from the Pine Island Bay and Northern Antarctic Peninsula regions. At the 42 locations not influenced by modern ice loss, the quality of the fit of postglacial rebound model ICE-6G_C (VM5A) is characterized by a weighted root mean square residual of 0.9 mm yr-1. The Southern Antarctic Peninsula is inferred to be rising at 2 mm yr-1, requiring there to be less Holocene ice loss there than in the prior model ICE-5G (VM2). The East Antarctica coast is rising at approximately 1 mm yr-1, requiring ice loss from this region to have been small since Last Glacial Maximum. The Ellsworth Mountains, at the base of the Antarctic Peninsula, are inferred to be rising at 5-8 mm yr-1, indicating large ice loss from this area during deglaciation that is poorly sampled by geological data. Horizontal deformation of the Antarctic Plate is minor with two exceptions. First, O'Higgins, at the tip of the Antarctic Peninsula, is moving southeast at a significant 2 mm yr-1 relative to the Antarctic Plate. Secondly, the margins of the Ronne and Ross Ice Shelves are moving horizontally away from the shelf centres at an approximate rate of 0.8 mm yr-1, in

  17. Under Sea Ice phytoplankton bloom detection and contamination in Antarctica

    Science.gov (United States)

    Zeng, C.; Zeng, T.; Xu, H.

    2017-12-01

    Previous researches reported compelling sea ice phytoplankton bloom in Arctic, while seldom reports studied about Antarctic. Here, lab experiment showed sea ice increased the visible light albedo of the water leaving radiance. Even a new formed sea ice of 10cm thickness increased water leaving radiance up to 4 times of its original bare water. Given that phytoplankton preferred growing and accumulating under the sea ice with thickness of 10cm-1m, our results showed that the changing rate of OC4 estimated [Chl-a] varied from 0.01-0.5mg/m3 to 0.2-0.3mg/m3, if the water covered by 10cm sea ice. Going further, varying thickness of sea ice modulated the changing rate of estimating [Chl-a] non-linearly, thus current routine OC4 model cannot estimate under sea ice [Chl-a] appropriately. Besides, marginal sea ice zone has a large amount of mixture regions containing sea ice, water and snow, where is favorable for phytoplankton. We applied 6S model to estimate the sea ice/snow contamination on sub-pixel water leaving radiance of 4.25km spatial resolution ocean color products. Results showed that sea ice/snow scale effectiveness overestimated [Chl-a] concentration based on routine band ratio OC4 model, which contamination increased with the rising fraction of sea ice/snow within one pixel. Finally, we analyzed the under sea ice bloom in Antarctica based on the [Chl-a] concentration trends during 21 days after sea ice retreating. Regardless of those overestimation caused by sea ice/snow sub scale contamination, we still did not see significant under sea ice blooms in Antarctica in 2012-2017 compared with Arctic. This research found that Southern Ocean is not favorable for under sea ice blooms and the phytoplankton bloom preferred to occur in at least 3 weeks after sea ice retreating.

  18. A sea ice model for the marginal ice zone with an application to the Greenland Sea

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Coon, Max D.

    2004-01-01

    A model is presented that describes the formation, transport, and desalinization of frazil and pancake ice as it is formed in marginal seas. This model uses as input the total ice concentration evaluated from Special Sensor Microwave Imager and wind speed and direction. The model calculates...... the areal concentration, thickness, volume concentration, and salinity of frazil ice as well as the areal concentration, thickness, and salinity of pancakes. A simple parameterization for the Odden region of the Greenland Sea is presented. The model is run for the winter of 1996-1997. There are direct...... observations of the thickness and salinity of pancakes and the volume concentration of frazil ice to compare with the model. The model results compare very well with the measured data. This new ice model can be tuned to work in marginal seas elsewhere to calculate ice thickness, motion, and brine rejection...

  19. A network model for electrical transport in sea ice

    International Nuclear Information System (INIS)

    Zhu, J.; Golden, K.M.; Gully, A.; Sampson, C.

    2010-01-01

    Monitoring the thickness of sea ice is an important tool in assessing the impact of global warming on Earth's polar regions, and most methods of measuring ice thickness depend on detailed knowledge of its electrical properties. We develop a network model for the electrical conductivity of sea ice, which incorporates statistical measurements of the brine microstructure. The numerical simulations are in close agreement with direct measurements we made in Antarctica on the vertical conductivity of first year sea ice.

  20. Seeking an optimal algorithm for a new satellite-based Sea Ice Drift Climate Data Record : Motivations, plans and initial results from the ESA CCI Sea Ice project

    DEFF Research Database (Denmark)

    Lavergne, T.; Dybkjær, Gorm; Girard-Ardhuin, Fanny

    The Sea Ice Essential Climate Variable (ECV) as defined by GCOS pertains of both sea ice concentration, thickness, and drift. Now in its second phase, the ESA CCI Sea Ice project is conducting the necessary research efforts to address sea ice drift.Accurate estimates of sea ice drift direction an...... in the final product. This contribution reviews the motivation for the work, the plans for sea ice drift algorithms intercomparison and selection, and early results from our activity....

  1. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition

    Science.gov (United States)

    Zheng, J.; Yackel, J.

    2015-12-01

    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness

  2. Multi-decadal Arctic sea ice roughness.

    Science.gov (United States)

    Tsamados, M.; Stroeve, J.; Kharbouche, S.; Muller, J. P., , Prof; Nolin, A. W.; Petty, A.; Haas, C.; Girard-Ardhuin, F.; Landy, J.

    2017-12-01

    The transformation of Arctic sea ice from mainly perennial, multi-year ice to a seasonal, first-year ice is believed to have been accompanied by a reduction of the roughness of the ice cover surface. This smoothening effect has been shown to (i) modify the momentum and heat transfer between the atmosphere and ocean, (ii) to alter the ice thickness distribution which in turn controls the snow and melt pond repartition over the ice cover, and (iii) to bias airborne and satellite remote sensing measurements that depend on the scattering and reflective characteristics over the sea ice surface topography. We will review existing and novel remote sensing methodologies proposed to estimate sea ice roughness, ranging from airborne LIDAR measurement (ie Operation IceBridge), to backscatter coefficients from scatterometers (ASCAT, QUICKSCAT), to multi angle maging spectroradiometer (MISR), and to laser (Icesat) and radar altimeters (Envisat, Cryosat, Altika, Sentinel-3). We will show that by comparing and cross-calibrating these different products we can offer a consistent multi-mission, multi-decadal view of the declining sea ice roughness. Implications for sea ice physics, climate and remote sensing will also be discussed.

  3. CICE, The Los Alamos Sea Ice Model

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-12

    The Los Alamos sea ice model (CICE) is the result of an effort to develop a computationally efficient sea ice component for a fully coupled atmosphere–land–ocean–ice global climate model. It was originally designed to be compatible with the Parallel Ocean Program (POP), an ocean circulation model developed at Los Alamos National Laboratory for use on massively parallel computers. CICE has several interacting components: a vertical thermodynamic model that computes local growth rates of snow and ice due to vertical conductive, radiative and turbulent fluxes, along with snowfall; an elastic-viscous-plastic model of ice dynamics, which predicts the velocity field of the ice pack based on a model of the material strength of the ice; an incremental remapping transport model that describes horizontal advection of the areal concentration, ice and snow volume and other state variables; and a ridging parameterization that transfers ice among thickness categories based on energetic balances and rates of strain. It also includes a biogeochemical model that describes evolution of the ice ecosystem. The CICE sea ice model is used for climate research as one component of complex global earth system models that include atmosphere, land, ocean and biogeochemistry components. It is also used for operational sea ice forecasting in the polar regions and in numerical weather prediction models.

  4. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice.

    Science.gov (United States)

    Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni

    2015-02-01

    Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Open-Source Python Modules to Estimate Level Ice Thickness from Ice Charts

    Science.gov (United States)

    Geiger, C. A.; Deliberty, T. L.; Bernstein, E. R.; Helfrich, S.

    2012-12-01

    A collaborative research effort between the University of Delaware (UD) and National Ice Center (NIC) addresses the task of providing open-source translations of sea ice stage-of-development into level ice thickness estimates on a 4km grid for the Interactive Multisensor Snow and Ice Mapping System (IMS). The characteristics for stage-of-development are quantified from remote sensing imagery with estimates of level ice thickness categories originating from World Meteorological Organization (WMO) egg coded ice charts codified since the 1970s. Conversions utilize Python scripting modules which transform electronic ice charts with WMO egg code characteristics into five level ice thickness categories, in centimeters, (0-10, 10-30, 30-70, 70-120, >120cm) and five ice types (open water, first year pack ice, fast ice, multiyear ice, and glacial ice with a reserve slot for deformed ice fractions). Both level ice thickness categories and ice concentration fractions are reported with uncertainties propagated based on WMO ice stage ranges which serve as proxy estimates for standard deviation. These products are in preparation for use by NCEP, CMC, and NAVO by 2014 based on their modeling requirements for daily products in near-real time. In addition to development, continuing research tests the value of these estimated products against in situ observations to improve both value and uncertainty estimates.

  6. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    Science.gov (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind l -1, median 40 ind l -1), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind m -2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of

  7. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    Science.gov (United States)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  8. Greenland Radar Ice Sheet Thickness Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Two 150-MHz coherent radar depth sounders were developed and flown over the Greenland ice sheet to obtain ice thickness measurements in support of PARCA...

  9. Retrieval of ice thickness from polarimetric SAR data

    Science.gov (United States)

    Kwok, R.; Yueh, S. H.; Nghiem, S. V.; Huynh, D. D.

    1993-01-01

    We describe a potential procedure for retrieving ice thickness from multi-frequency polarimetric SAR data for thin ice. This procedure includes first masking out the thicker ice types with a simple classifier and then deriving the thickness of the remaining pixels using a model-inversion technique. The technique used to derive ice thickness from polarimetric observations is provided by a numerical estimator or neural network. A three-layer perceptron implemented with the backpropagation algorithm is used in this investigation with several improved aspects for a faster convergence rate and a better accuracy of the neural network. These improvements include weight initialization, normalization of the output range, the selection of offset constant, and a heuristic learning algorithm. The performance of the neural network is demonstrated by using training data generated by a theoretical scattering model for sea ice matched to the database of interest. The training data are comprised of the polarimetric backscattering coefficients of thin ice and the corresponding input ice parameters to the scattering model. The retrieved ice thickness from the theoretical backscattering coefficients is compare with the input ice thickness to the scattering model to illustrate the accuracy of the inversion method. Results indicate that the network convergence rate and accuracy are higher when multi-frequency training sets are presented. In addition, the dominant backscattering coefficients in retrieving ice thickness are found by comparing the behavior of the network trained backscattering data at various incidence angels. After the neural network is trained with the theoretical backscattering data at various incidence anges, the interconnection weights between nodes are saved and applied to the experimental data to be investigated. In this paper, we illustrate the effectiveness of this technique using polarimetric SAR data collected by the JPL DC-8 radar over a sea ice scene.

  10. Analysis of Sea Ice Cover Sensitivity in Global Climate Model

    Directory of Open Access Journals (Sweden)

    V. P. Parhomenko

    2014-01-01

    Full Text Available The paper presents joint calculations using a 3D atmospheric general circulation model, an ocean model, and a sea ice evolution model. The purpose of the work is to analyze a seasonal and annual evolution of sea ice, long-term variability of a model ice cover, and its sensitivity to some parameters of model as well to define atmosphere-ice-ocean interaction.Results of 100 years simulations of Arctic basin sea ice evolution are analyzed. There are significant (about 0.5 m inter-annual fluctuations of an ice cover.The ice - atmosphere sensible heat flux reduced by 10% leads to the growth of average sea ice thickness within the limits of 0.05 m – 0.1 m. However in separate spatial points the thickness decreases up to 0.5 m. An analysis of the seasonably changing average ice thickness with decreasing, as compared to the basic variant by 0.05 of clear sea ice albedo and that of snow shows the ice thickness reduction in a range from 0.2 m up to 0.6 m, and the change maximum falls for the summer season of intensive melting. The spatial distribution of ice thickness changes shows, that on the large part of the Arctic Ocean there was a reduction of ice thickness down to 1 m. However, there is also an area of some increase of the ice layer basically in a range up to 0.2 m (Beaufort Sea. The 0.05 decrease of sea ice snow albedo leads to reduction of average ice thickness approximately by 0.2 m, and this value slightly depends on a season. In the following experiment the ocean – ice thermal interaction influence on the ice cover is estimated. It is carried out by increase of a heat flux from ocean to the bottom surface of sea ice by 2 W/sq. m in comparison with base variant. The analysis demonstrates, that the average ice thickness reduces in a range from 0.2 m to 0.35 m. There are small seasonal changes of this value.The numerical experiments results have shown, that an ice cover and its seasonal evolution rather strongly depend on varied parameters

  11. Improving Arctic Sea Ice Observations and Data Access to Support Advances in Sea Ice Forecasting

    Science.gov (United States)

    Farrell, S. L.

    2017-12-01

    The economic and strategic importance of the Arctic region is becoming apparent. One of the most striking and widely publicized changes underway is the declining sea ice cover. Since sea ice is a key component of the climate system, its ongoing loss has serious, and wide-ranging, socio-economic implications. Increasing year-to-year variability in the geographic location, concentration, and thickness of the Arctic ice cover will pose both challenges and opportunities. The sea ice research community must be engaged in sustained Arctic Observing Network (AON) initiatives so as to deliver fit-for-purpose remote sensing data products to a variety of stakeholders including Arctic communities, the weather forecasting and climate modeling communities, industry, local, regional and national governments, and policy makers. An example of engagement is the work currently underway to improve research collaborations between scientists engaged in obtaining and assessing sea ice observational data and those conducting numerical modeling studies and forecasting ice conditions. As part of the US AON, in collaboration with the Interagency Arctic Research Policy Committee (IARPC), we are developing a strategic framework within which observers and modelers can work towards the common goal of improved sea ice forecasting. Here, we focus on sea ice thickness, a key varaible of the Arctic ice cover. We describe multi-sensor, and blended, sea ice thickness data products under development that can be leveraged to improve model initialization and validation, as well as support data assimilation exercises. We will also present the new PolarWatch initiative (polarwatch.noaa.gov) and discuss efforts to advance access to remote sensing satellite observations and improve communication with Arctic stakeholders, so as to deliver data products that best address societal needs.

  12. Understanding the Importance of Oceanic Forcing on Sea Ice Variability

    Science.gov (United States)

    2010-12-01

    problem, which includes ice thickness. Thorndike et al. (1975) recognized that many of the physical properties of sea ice depend upon its thickness...IMB2005B are presented below. In agreement with previous studies (e.g., Thorndike and Colony 1982), they show that during the winter months (December...During the Past 100 Years, 33, 2, 143– 154. 148 Thorndike , A.S., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. Journal of

  13. Sea Ice Summer Camp: Bringing Together Arctic Sea Ice Modelers and Observers

    Science.gov (United States)

    Perovich, D. K.; Holland, M. M.

    2016-12-01

    The Arctic sea ice has undergone dramatic change and numerical models project this to continue for the foreseeable future. Understanding the mechanisms behind sea ice loss and its consequences for the larger Arctic and global systems is of critical importance if we are to anticipate and plan for the future. One impediment to progress is a disconnect between the observational and modeling communities. A sea ice summer camp was held in Barrow Alaska from 26 May to 1 June 2016 to overcome this impediment and better integrate the sea ice community. The 25 participants were a mix of modelers and observers from 13 different institutions at career stages from graduate student to senior scientist. The summer camp provided an accelerated program on sea ice observations and models and also fostered future collaborative interdisciplinary activities. Each morning was spent in the classroom with a daily lecture on an aspect of modeling or remote sensing followed by practical exercises. Topics included using models to assess sensitivity, to test hypotheses and to explore sources of uncertainty in future Arctic sea ice loss. The afternoons were spent on the ice making observations. There were four observational activities; albedo observations, ice thickness measurements, ice coring and physical properties, and ice morphology surveys. The last field day consisted of a grand challenge where the group formulated a hypothesis, developed an observational and modeling strategy to test the hypothesis, and then integrated the observations and model results. The impacts of changing sea ice are being felt today in Barrow Alaska. We opened a dialog with Barrow community members to further understand these changes. This included an evening discussion with two Barrow sea ice experts and a community presentation of our work in a public lecture at the Inupiat Heritage Center.

  14. Knowledge-based sea ice classification by polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Dierking, Wolfgang

    2004-01-01

    Polarimetric SAR images acquired at C- and L-band over sea ice in the Greenland Sea, Baltic Sea, and Beaufort Sea have been analysed with respect to their potential for ice type classification. The polarimetric data were gathered by the Danish EMISAR and the US AIRSAR which both are airborne...... systems. A hierarchical classification scheme was chosen for sea ice because our knowledge about magnitudes, variations, and dependences of sea ice signatures can be directly considered. The optimal sequence of classification rules and the rules themselves depend on the ice conditions/regimes. The use...... of the polarimetric phase information improves the classification only in the case of thin ice types but is not necessary for thicker ice (above about 30 cm thickness)...

  15. Distributed ice thickness and glacier volume in southern South America

    Science.gov (United States)

    Carrivick, Jonathan L.; Davies, Bethan J.; James, William H. M.; Quincey, Duncan J.; Glasser, Neil F.

    2016-11-01

    South American glaciers, including those in Patagonia, presently contribute the largest amount of meltwater to sea level rise per unit glacier area in the world. Yet understanding of the mechanisms behind the associated glacier mass balance changes remains unquantified partly because models are hindered by a lack of knowledge of subglacial topography. This study applied a perfect-plasticity model along glacier centre-lines to derive a first-order estimate of ice thickness and then interpolated these thickness estimates across glacier areas. This produced the first complete coverage of distributed ice thickness, bed topography and volume for 617 glaciers between 41°S and 55°S and in 24 major glacier regions. Maximum modelled ice thicknesses reach 1631 m ± 179 m in the South Patagonian Icefield (SPI), 1315 m ± 145 m in the North Patagonian Icefield (NPI) and 936 m ± 103 m in Cordillera Darwin. The total modelled volume of ice is 1234.6 km3 ± 246.8 km3 for the NPI, 4326.6 km3 ± 865.2 km3 for the SPI and 151.9 km3 ± 30.38 km3 for Cordillera Darwin. The total volume was modelled to be 5955 km3 ± 1191 km3, which equates to 5458.3 Gt ± 1091.6 Gt ice and to 15.08 mm ± 3.01 mm sea level equivalent (SLE). However, a total area of 655 km2 contains ice below sea level and there are 282 individual overdeepenings with a mean depth of 38 m and a total volume if filled with water to the brim of 102 km3. Adjusting the potential SLE for the ice volume below sea level and for the maximum potential storage of meltwater in these overdeepenings produces a maximum potential sea level rise (SLR) of 14.71 mm ± 2.94 mm. We provide a calculation of the present ice volume per major river catchment and we discuss likely changes to southern South America glaciers in the future. The ice thickness and subglacial topography modelled by this study will facilitate future studies of ice dynamics and glacier isostatic adjustment, and will be important for projecting water resources and

  16. The Sea-Ice Floe Size Distribution

    Science.gov (United States)

    Stern, H. L., III; Schweiger, A. J. B.; Zhang, J.; Steele, M.

    2017-12-01

    The size distribution of ice floes in the polar seas affects the dynamics and thermodynamics of the ice cover and its interaction with the ocean and atmosphere. Ice-ocean models are now beginning to include the floe size distribution (FSD) in their simulations. In order to characterize seasonal changes of the FSD and provide validation data for our ice-ocean model, we calculated the FSD in the Beaufort and Chukchi seas over two spring-summer-fall seasons (2013 and 2014) using more than 250 cloud-free visible-band scenes from the MODIS sensors on NASA's Terra and Aqua satellites, identifying nearly 250,000 ice floes between 2 and 30 km in diameter. We found that the FSD follows a power-law distribution at all locations, with a seasonally varying exponent that reflects floe break-up in spring, loss of smaller floes in summer, and the return of larger floes after fall freeze-up. We extended the results to floe sizes from 10 m to 2 km at selected time/space locations using more than 50 high-resolution radar and visible-band satellite images. Our analysis used more data and applied greater statistical rigor than any previous study of the FSD. The incorporation of the FSD into our ice-ocean model resulted in reduced sea-ice thickness, mainly in the marginal ice zone, which improved the simulation of sea-ice extent and yielded an earlier ice retreat. We also examined results from 17 previous studies of the FSD, most of which report power-law FSDs but with widely varying exponents. It is difficult to reconcile the range of results due to different study areas, seasons, and methods of analysis. We review the power-law representation of the FSD in these studies and discuss some mathematical details that are important to consider in any future analysis.

  17. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    Science.gov (United States)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  18. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    Science.gov (United States)

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  19. Russian River Ice Thickness and Duration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of river ice thickness measurements, and beginning and ending dates for river freeze-up events from fifty stations in northern Russia. The...

  20. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    Science.gov (United States)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  1. Optical properties of melting first-year Arctic sea ice

    Science.gov (United States)

    Light, Bonnie; Perovich, Donald K.; Webster, Melinda A.; Polashenski, Christopher; Dadic, Ruzica

    2015-11-01

    The albedo and transmittance of melting, first-year Arctic sea ice were measured during two cruises of the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) project during the summers of 2010 and 2011. Spectral measurements were made for both bare and ponded ice types at a total of 19 ice stations in the Chukchi and Beaufort Seas. These data, along with irradiance profiles taken within boreholes, laboratory measurements of the optical properties of core samples, ice physical property observations, and radiative transfer model simulations are employed to describe representative optical properties for melting first-year Arctic sea ice. Ponded ice was found to transmit roughly 4.4 times more total energy into the ocean, relative to nearby bare ice. The ubiquitous surface-scattering layer and drained layer present on bare, melting sea ice are responsible for its relatively high albedo and relatively low transmittance. Light transmittance through ponded ice depends on the physical thickness of the ice and the magnitude of the scattering coefficient in the ice interior. Bare ice reflects nearly three-quarters of the incident sunlight, enhancing its resiliency to absorption by solar insolation. In contrast, ponded ice absorbs or transmits to the ocean more than three-quarters of the incident sunlight. Characterization of the heat balance of a summertime ice cover is largely dictated by its pond coverage, and light transmittance through ponded ice shows strong contrast between first-year and multiyear Arctic ice covers.

  2. Thick or Thin Ice Shell on Europa?

    Science.gov (United States)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  3. Level-Ice Melt Ponds in the Los Alamos Sea Ice Model, CICE

    Science.gov (United States)

    2012-12-06

    terms obtained using the Bitz and Lips- comb (1999) thermodynamic model. The thickness distribution ( Thorndike et al., 1975) employs 5 ice thickness...D.L., 2004. A model of melt pond evolution on sea ice. J. Geophys. Res. 109, C12007. http://dx.doi.org/10.1029/2004JC002361. Thorndike , A.S., Rothrock

  4. Influence of winter sea-ice motion on summer ice cover in the Arctic

    Directory of Open Access Journals (Sweden)

    Noriaki Kimura

    2013-11-01

    Full Text Available Summer sea-ice cover in the Arctic varies largely from year to year owing to several factors. This study examines one such factor, the relationship between interannual difference in winter ice motion and ice area in the following summer. A daily-ice velocity product on a 37.5-km resolution grid is prepared using the satellite passive microwave sensor Advanced Microwave Scanning Radiometer—Earth Observing System data for the nine years of 2003–2011. Derived daily-ice motion reveals the dynamic modification of the winter ice cover. The winter ice divergence/convergence is strongly related to the summer ice cover in some regions; the correlation coefficient between the winter ice convergence and summer ice area ranges between 0.5 and 0.9 in areas with high interannual variability. This relation implies that the winter ice redistribution controls the spring ice thickness and the summer ice cover.

  5. Early Winter Sea Ice Dynamics in the Ross Sea from In Situ and Satellite Observations

    Science.gov (United States)

    Maksym, T.; Ackley, S. F.; Stammerjohn, S. E.; Tison, J. L.; Hoeppner, K.

    2017-12-01

    The Ross Sea sea ice cover is one of the few regions of the cryosphere that have been expanding in recent decades. However, 2017 saw a significantly delayed autumn ice advance and record low early winter sea ice extent. Understanding the causes and impacts of this variability has been hampered by a lack of in situ observations. A winter cruise into the Ross Sea in April-June 2017 provided some of the only in situ winter observations of sea ice processes in this region in almost 20 years. We present a first look at data from arrays of drifting buoys deployed in the ice pack and outflow from these polynyas, supplemented by a suite of high-resolution synthetic aperture radar (SAR) data. Additional observations included high-resolution sonar imagery of ice deformation features from an autonomous underwater vehicle, shipboard visual observations of sea ice properties, and in situ measurements of snow and thickness and structural properties. These data show that the delay in ice advance led to a thin, highly dynamic sea ice pack, with substantial ice production and export from the Ross Ice Shelf and Terra Nova Bay polynyas. Despite these high rates of ice production, the pack ice remained thin due to rapid export and northward drift. Compared to the only prior winter observations made in 1995 and 1998, the ice was thinner, with less ridging and snow cover, reflecting a younger ice cover. Granular ice was less prevalent than in these prior cruises, particularly in the outer pack, likely due to less snow ice formation and less pancake ice formation at the advancing ice edge. Despite rapid basal ice growth, the buoy data suggest that deformation may be the dominant mechanism for sea ice thickening in the pack once an initial ice cover forms.

  6. Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter

    Science.gov (United States)

    Massonnet, F.; Goosse, H.; Fichefet, T.; Counillon, F.

    2014-07-01

    The choice of parameter values is crucial in the course of sea ice model development, since parameters largely affect the modeled mean sea ice state. Manual tuning of parameters will soon become impractical, as sea ice models will likely include more parameters to calibrate, leading to an exponential increase of the number of possible combinations to test. Objective and automatic methods for parameter calibration are thus progressively called on to replace the traditional heuristic, "trial-and-error" recipes. Here a method for calibration of parameters based on the ensemble Kalman filter is implemented, tested and validated in the ocean-sea ice model NEMO-LIM3. Three dynamic parameters are calibrated: the ice strength parameter P*, the ocean-sea ice drag parameter Cw, and the atmosphere-sea ice drag parameter Ca. In twin, perfect-model experiments, the default parameter values are retrieved within 1 year of simulation. Using 2007-2012 real sea ice drift data, the calibration of the ice strength parameter P* and the oceanic drag parameter Cw improves clearly the Arctic sea ice drift properties. It is found that the estimation of the atmospheric drag Ca is not necessary if P* and Cw are already estimated. The large reduction in the sea ice speed bias with calibrated parameters comes with a slight overestimation of the winter sea ice areal export through Fram Strait and a slight improvement in the sea ice thickness distribution. Overall, the estimation of parameters with the ensemble Kalman filter represents an encouraging alternative to manual tuning for ocean-sea ice models.

  7. Arctic Sea Ice Trafficability - New Strategies for a Changing Icescape

    Science.gov (United States)

    Dammann, Dyre Oliver

    Sea ice is an important part of the Arctic social-environmental system, in part because it provides a platform for human transportation and for marine flora and fauna that use the ice as a habitat. Sea ice loss projected for coming decades is expected to change ice conditions throughout the Arctic, but little is known about the nature and extent of anticipated changes and in particular potential implications for over-ice travel and ice use as a platform. This question has been addressed here through an extensive effort to link sea ice use and key geophysical properties of sea ice, drawing upon extensive field surveys around on-ice operations and local and Indigenous knowledge for the widely different ice uses and ice regimes of Utqiagvik, Kotzebue, and Nome, Alaska.. A set of nine parameters that constrain landfast sea ice use has been derived, including spatial extent, stability, and timing and persistence of landfast ice. This work lays the foundation for a framework to assess and monitor key ice-parameters relevant in the context of ice-use feasibility, safety, and efficiency, drawing on different remote-sensing techniques. The framework outlines the steps necessary to further evaluate relevant parameters in the context of user objectives and key stakeholder needs for a given ice regime and ice use scenario. I have utilized this framework in case studies for three different ice regimes, where I find uses to be constrained by ice thickness, roughness, and fracture potential and develop assessment strategies with accuracy at the relevant spatial scales. In response to the widely reported importance of high-confidence ice thickness measurements, I have developed a new strategy to estimate appropriate thickness compensation factors. Compensation factors have the potential to reduce risk of misrepresenting areas of thin ice when using point-based in-situ assessment methods along a particular route. This approach was tested on an ice road near Kotzebue, Alaska, where

  8. On the estimation of ice thickness from scattering observations

    Science.gov (United States)

    Williams, T. D.; Squire, V. A.

    2010-04-01

    This paper is inspired by the proposition that it may be possible to extract descriptive physical parameters - in particular the ice thickness, of a sea-ice field from ocean wave information. The motivation is that mathematical theory describing wave propagation in such media has reached a point where the inherent heterogeneity, expressed as pressure ridge keels and sails, leads, thickness variations and changes of material property and draught, can be fully assimilated exactly or through approximations whose limitations are understood. On the basis that leads have the major wave scattering effect for most sea-ice [Williams, T.D., Squire, V.A., 2004. Oblique scattering of plane flexural-gravity waves by heterogeneities in sea ice. Proc. R. Soc. Lon. Ser.-A 460 (2052), 3469-3497], a model two dimensional sea-ice sheet composed of a large number of such features, randomly dispersed, is constructed. The wide spacing approximation is used to predict how wave trains of different period will be affected, after first establishing that this produces results that are very close to the exact solution. Like Kohout and Meylan [Kohout, A.L., Meylan, M.H., 2008. An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone. J. Geophys. Res. 113, C09016, doi:10.1029/2007JC004434], we find that on average the magnitude of a wave transmitted by a field of leads decays exponentially with the number of leads. Then, by fitting a curve based on this assumption to the data, the thickness of the ice sheet is obtained. The attenuation coefficient can always be calculated numerically by ensemble averaging but in some cases more rapidly computed approximations work extremely well. Moreover, it is found that the underlying thickness can be determined to good accuracy by the method as long as Archimedean draught is correctly provided for, suggesting that waves can indeed be effective as a remote sensing agent to measure ice thickness in areas where pressure ridges

  9. Ice shelf thickness change from 2010 to 2017

    Science.gov (United States)

    Hogg, A.; Shepherd, A.; Gilbert, L.; Muir, A. S.

    2017-12-01

    Floating ice shelves fringe 74 % of Antarctica's coastline, providing a direct link between the ice sheet and the surrounding oceans. Over the last 25 years, ice shelves have retreated, thinned, and collapsed catastrophically. While change in the mass of floating ice shelves has only a modest steric impact on the rate of sea-level rise, their loss can affect the mass balance of the grounded ice-sheet by influencing the rate of ice flow inland, due to the buttressing effect. Here we use CryoSat-2 altimetry data to map the detailed pattern of ice shelf thickness change in Antarctica. We exploit the dense spatial sampling and repeat coverage provided by the CryoSat-2 synthetic aperture radar interferometric mode (SARIn) to investigate data acquired between 2010 to the present day. We find that ice shelf thinning rates can exhibit large fluctuations over short time periods, and that the improved spatial resolution of CryoSat-2 enables us to resolve the spatial pattern of thinning with ever greater detail in Antarctica. In the Amundsen Sea, ice shelves at the terminus of the Pine Island and Thwaites glaciers have thinned at rates in excess of 5 meters per year for more than two decades. We observe the highest rates of basal melting near to the ice sheet grounding line, reinforcing the importance of high resolution datasets. On the Antarctic Peninsula, in contrast to the 3.8 m per decade of thinning observed since 1992, we measure an increase in the surface elevation of the Larsen-C Ice-Shelf during the CryoSat-2 period.

  10. Ross Sea Polynyas: Response of Ice Concentration Retrievals to Large Areas of Thin Ice

    Science.gov (United States)

    Kwok, R.; Comiso, J. C.; Martin, S.; Drucker, R.

    2007-01-01

    For a 3-month period between May and July of 2005, we examine the response of the Advanced Microwave Scanning Radiometer (AMSR-E) Enhanced NASA Team 2 (NT2) and AMSR-E Bootstrap (ABA) ice concentration algorithms to large areas of thin ice of the Ross Sea polynyas. Coincident Envisat Synthetic Aperture Radar (SAR) coverage of the region during this period offers a detailed look at the development of the polynyas within several hundred kilometers of the ice front. The high-resolution imagery and derived ice motion fields show bands of polynya ice, covering up to approximately 105 km(sup 2) of the Ross Sea, that are associated with wind-forced advection. In this study, ice thickness from AMSR-E 36 GHz polarization information serves as the basis for examination of the response. The quality of the thickness of newly formed sea ice (<10 cm) from AMSR-E is first assessed with thickness estimates derived from ice surface temperatures from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The effect of large areas of thin ice in lowering the ice concentration estimates from both NT2/ABA approaches is clearly demonstrated. Results show relatively robust relationships between retrieved ice concentrations and thin ice thickness estimates that differ between the two algorithms. These relationships define the approximate spatial coincidence of ice concentration and thickness isopleths. Using the 83% (ABA) and 91% (NT2) isopleths as polynya boundaries, we show that the computed coverage compares well with that using the estimated 10-cm thickness contour. The thin ice response characterized here suggests that in regions with polynyas, the retrieval results could be used to provide useful geophysical information, namely thickness and coverage.

  11. Reducing uncertainty in high-resolution sea ice models.

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2013-07-01

    Arctic sea ice is an important component of the global climate system, reflecting a significant amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean circulation by modifying the salinity of the upper ocean. The thickness and extent of Arctic sea ice have shown a significant decline in recent decades with implications for global climate as well as regional geopolitics. Increasing interest in exploration as well as climate feedback effects make predictive mathematical modeling of sea ice a task of tremendous practical import. Satellite data obtained over the last few decades have provided a wealth of information on sea ice motion and deformation. The data clearly show that ice deformation is focused along narrow linear features and this type of deformation is not well-represented in existing models. To improve sea ice dynamics we have incorporated an anisotropic rheology into the Los Alamos National Laboratory global sea ice model, CICE. Sensitivity analyses were performed using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) to determine the impact of material parameters on sea ice response functions. Two material strength parameters that exhibited the most significant impact on responses were further analyzed to evaluate their influence on quantitative comparisons between model output and data. The sensitivity analysis along with ten year model runs indicate that while the anisotropic rheology provides some benefit in velocity predictions, additional improvements are required to make this material model a viable alternative for global sea ice simulations.

  12. Multiscale Models of Melting Arctic Sea Ice

    Science.gov (United States)

    2014-09-30

    Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond and ice floe configurations. Ice - albedo ...determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a...bifurcation points. Ising model for melt ponds on Arctic sea ice Y. Ma, I. Sudakov, and K. M. Golden Abstract: The albedo of melting

  13. Extreme Low Light Requirement for Algae Growth Underneath Sea Ice

    DEFF Research Database (Denmark)

    Hancke, Kasper; Lund-Hansen, Lars C.; Lamare, Maxim L.

    2018-01-01

    Microalgae colonizing the underside of sea ice in spring are a key component of the Arctic foodweb as they drive early primary production and transport of carbon from the atmosphere to the ocean interior. Onset of the spring bloom of ice algae is typically limited by the availability of light......, and the current consensus is that a few tens-of-centimeters of snow is enough to prevent sufficient solar radiation to reach underneath the sea ice. We challenge this consensus, and investigated the onset and the light requirement of an ice algae spring bloom, and the importance of snow optical properties...... for light penetration. Colonization by ice algae began in May under >1 m of first-year sea ice with approximate to 1 m thick snow cover on top, in NE Greenland. The initial growth of ice algae began at extremely low irradiance (...

  14. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO-LIM3.6-based ocean-sea-ice model setup for the North Sea and Baltic Sea

    Science.gov (United States)

    Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari

    2017-08-01

    The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO-LIM3.6-based ocean-sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.

  15. Polynyas in a dynamic-thermodynamic sea-ice model

    Directory of Open Access Journals (Sweden)

    E. Ö. Ólason

    2010-04-01

    Full Text Available The representation of polynyas in viscous-plastic dynamic-thermodynamic sea-ice models is studied in a simplified test domain, in order to give recommendations about parametrisation choices. Bjornsson et al. (2001 validated their dynamic-thermodynamic model against a polynya flux model in a similar setup and we expand on that work here, testing more sea-ice rheologies and new-ice thickness formulations. The two additional rheologies tested give nearly identical results whereas the two new-ice thickness parametrisations tested give widely different results. Based on our results we argue for using the new-ice thickness parametrisation of Hibler (1979. We also implement a new parametrisation for the parameter h0 from Hibler's scheme, based on ideas from a collection depth parametrisation for flux polynya models.

  16. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment

    DEFF Research Database (Denmark)

    Farinotti, Daniel; Brinkerhoff, Douglas J.; Clarke, Garry K. C.

    2017-01-01

    Knowledge of the ice thickness distribution of glaciers and ice caps is an important prerequisite for many glaciological and hydrological investigations. A wealth of approaches has recently been presented for inferring ice thickness from characteristics of the surface. With the Ice Thickness Models...

  17. The role of feedbacks in Antarctic sea ice change

    Science.gov (United States)

    Feltham, D. L.; Frew, R. C.; Holland, P.

    2017-12-01

    The changes in Antarctic sea ice over the last thirty years have a strong seasonal dependence, and the way these changes grow in spring and decay in autumn suggests that feedbacks are strongly involved. The changes may ultimately be caused by atmospheric warming, the winds, snowfall changes, etc., but we cannot understand these forcings without first untangling the feedbacks. A highly simplified coupled sea ice -mixed layer model has been developed to investigate the importance of feedbacks on the evolution of sea ice in two contrasting regions in the Southern Ocean; the Amundsen Sea where sea ice extent has been decreasing, and the Weddell Sea where it has been expanding. The change in mixed layer depth in response to changes in the atmosphere to ocean energy flux is implicit in a strong negative feedback on ice cover changes in the Amundsen Sea, with atmospheric cooling leading to a deeper mixed layer resulting in greater entrainment of warm Circumpolar Deep Water, causing increased basal melting of sea ice. This strong negative feedback produces counter intuitive responses to changes in forcings in the Amundsen Sea. This feedback is absent in the Weddell due to the complete destratification and strong water column cooling that occurs each winter in simulations. The impact of other feedbacks, including the albedo feedback, changes in insulation due to ice thickness and changes in the freezing temperature of the mixed layer, were found to be of secondary importance compared to changes in the mixed layer depth.

  18. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    OpenAIRE

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice ...

  19. ICESat Observations of Arctic Sea Ice: A First Look

    Science.gov (United States)

    Kwok, Ron; Zwally, H. Jay; Yi, Donghui

    2004-01-01

    Analysis of near-coincident ICESat and RADARSAT imagery shows that the retrieved elevations from the laser altimeter are sensitive to new openings (containing thin ice or open water) in the sea ice cover as well as to surface relief of old and first-year ice. The precision of the elevation estimates, measured over relatively flat sea ice, is approx. 2 cm. Using the thickness of thin-ice in recent openings to estimate sea level references, we obtain the sea-ice freeboard along the altimeter tracks. This step is necessitated by the large uncertainties in the sea surface topography compared to that required for accurate determination of freeboard. Unknown snow depth introduces the largest uncertainty in the conversion of freeboard to ice thickness. Surface roughness is also derived, for the first time, from the variability of successive elevation estimates along the altimeter track. Overall, these ICESat measurements provide an unprecedented view of the Arctic Ocean ice cover at length scales at and above the spatial dimension of the altimeter footprint of approx. 70 m.

  20. A modified discrete element model for sea ice dynamics

    Institute of Scientific and Technical Information of China (English)

    LI Baohui; LI Hai; LIU Yu; WANG Anliang; JI Shunying

    2014-01-01

    Considering the discontinuous characteristics of sea ice on various scales, a modified discrete element mod-el (DEM) for sea ice dynamics is developed based on the granular material rheology. In this modified DEM, a soft sea ice particle element is introduced as a self-adjustive particle size function. Each ice particle can be treated as an assembly of ice floes, with its concentration and thickness changing to variable sizes un-der the conservation of mass. In this model, the contact forces among ice particles are calculated using a viscous-elastic-plastic model, while the maximum shear forces are described with the Mohr-Coulomb fric-tion law. With this modified DEM, the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths. The thicknesses, concentrations and velocities of ice particles are obtained, and then reasonable dynamic process is analyzed. The sea ice dynamic process is also simulated in a vortex wind field. Taking the influence of thermodynamics into account, this modified DEM will be improved in the future work.

  1. History of sea ice in the Arctic

    DEFF Research Database (Denmark)

    Polyak, Leonid; Alley, Richard B.; Andrews, John T.

    2010-01-01

    Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past. This inf......Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past...... Optimum, and consistently covered at least part of the Arctic Ocean for no less than the last 13–14 million years. Ice was apparently most widespread during the last 2–3 million years, in accordance with Earth’s overall cooler climate. Nevertheless, episodes of considerably reduced sea ice or even...

  2. Remote sensing of sea ice: advances during the DAMOCLES project

    Directory of Open Access Journals (Sweden)

    G. Heygster

    2012-12-01

    ASCAT (62.5 km grid spacing, with visible AVHRR observations (20 km, with the synthetic aperture radar sensor ASAR (10 km, and a multi-sensor product (62.5 km with improved angular resolution (Continuous Maximum Cross Correlation, CMCC method is presented. CMCC is also used to derive the sea ice deformation, important for formation of sea ice leads (diverging deformation and pressure ridges (converging. The indirect determination of sea ice thickness from altimeter freeboard data requires knowledge of the ice density and snow load on sea ice. The relation between freeboard and ice thickness is investigated based on the airborne Sever expeditions conducted between 1928 and 1993.

  3. On the nature of the sea ice albedo feedback in simple models

    OpenAIRE

    Moon, Woosok; Wettlaufer, John S.

    2013-01-01

    We examine the nature of the ice-albedo feedback in a long standing approach used in the dynamic-thermodynamic modeling of sea ice. The central issue examined is how the evolution of the ice area is treated when modeling a partial ice cover using a two-category-thickness scheme; thin sea ice and open water in one category and "thick" sea ice in the second. The problem with the scheme is that the area-evolution is handled in a manner that violates the basic rules of calculus, which leads to a ...

  4. SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone

    DEFF Research Database (Denmark)

    Kaleschke, Lars; Tian-Kunze, Xiangshan; Maaß, Nina

    2016-01-01

    system for ship route optimisation has been developed and was tested during this field campaign with the ice-strengthened research vessel RV Lance. The ship cruise was complemented with coordinated measurements from a helicopter and the research aircraft Polar 5. Sea ice thickness was measured using...... an electromagnetic induction (EM) system from the bow of RV Lance and another EM-system towed below the helicopter. Polar 5 was equipped among others with the L-band radiometer EMIRAD-2. The experiment yielded a comprehensive data set allowing the evaluation of the operational forecast and route optimisation system...

  5. Regional Changes in the Sea Ice Cover and Ice Production in the Antarctic

    Science.gov (United States)

    Comiso, Josefino C.

    2011-01-01

    Coastal polynyas around the Antarctic continent have been regarded as sea ice factories because of high ice production rates in these regions. The observation of a positive trend in the extent of Antarctic sea ice during the satellite era has been intriguing in light of the observed rapid decline of the ice extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal ice zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea ice cover could be caused primarily by enhanced ice production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate-of-increase in the net ice export of about 30,000 km2 per year. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in ice production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-ice shelf.

  6. Sea ice inertial oscillations in the Arctic Basin

    Directory of Open Access Journals (Sweden)

    F. Gimbert

    2012-10-01

    Full Text Available An original method to quantify the amplitude of inertial motion of oceanic and ice drifters, through the introduction of a non-dimensional parameter M defined from a spectral analysis, is presented. A strong seasonal dependence of the magnitude of sea ice inertial oscillations is revealed, in agreement with the corresponding annual cycles of sea ice extent, concentration, thickness, advection velocity, and deformation rates. The spatial pattern of the magnitude of the sea ice inertial oscillations over the Arctic Basin is also in agreement with the sea ice thickness and concentration patterns. This argues for a strong interaction between the magnitude of inertial motion on one hand, the dissipation of energy through mechanical processes, and the cohesiveness of the cover on the other hand. Finally, a significant multi-annual evolution towards greater magnitudes of inertial oscillations in recent years, in both summer and winter, is reported, thus concomitant with reduced sea ice thickness, concentration and spatial extent.

  7. Simulation and Domain Identification of Sea Ice Thermodynamic System

    Directory of Open Access Journals (Sweden)

    Bing Tan

    2012-01-01

    Full Text Available Based on the measured data and characteristics of sea ice temperature distribution in space and time, this study is intended to consider a parabolic partial differential equation of the thermodynamic field of sea ice (coupled by snow, ice, and sea water layers with a time-dependent domain and its parameter identification problem. An optimal model with state constraints is presented with the thicknesses of snow and sea ice as parametric variables and the deviation between the calculated and measured sea ice temperatures as the performance criterion. The unique existence of the weak solution of the thermodynamic system is proved. The properties of the identification problem and the existence of the optimal parameter are discussed, and the one-order necessary condition is derived. Finally, based on the nonoverlapping domain decomposition method and semi-implicit difference scheme, an optimization algorithm is proposed for the numerical simulation. Results show that the simulated temperature of sea ice fit well with the measured data, and the better fit is corresponding to the deeper sea ice.

  8. On the Arctic Ocean ice thickness response to changes in the external forcing

    Energy Technology Data Exchange (ETDEWEB)

    Stranne, Christian; Bjoerk, Goeran [University of Gothenburg, Department of Earth Sciences, Box 460, Goeteborg (Sweden)

    2012-12-15

    Submarine and satellite observations show that the Arctic Ocean ice cover has undergone a large thickness reduction and a decrease in the areal extent during the last decades. Here the response of the Arctic Ocean ice cover to changes in the poleward atmospheric energy transport, F{sub wall}, is investigated using coupled atmosphere-ice-ocean column models. Two models with highly different complexity are used in order to illustrate the importance of different internal processes and the results highlight the dramatic effects of the negative ice thickness - ice volume export feedback and the positive surface albedo feedback. The steady state ice thickness as a function of F{sub wall} is determined for various model setups and defines what we call ice thickness response curves. When a variable surface albedo and snow precipitation is included, a complex response curve appears with two distinct regimes: a perennial ice cover regime with a fairly linear response and a less responsive seasonal ice cover regime. The two regimes are separated by a steep transition associated with surface albedo feedback. The associated hysteresis is however small, indicating that the Arctic climate system does not have an irreversible tipping point behaviour related to the surface albedo feedback. The results are discussed in the context of the recent reduction of the Arctic sea ice cover. A new mechanism related to regional and temporal variations of the ice divergence within the Arctic Ocean is presented as an explanation for the observed regional variation of the ice thickness reduction. Our results further suggest that the recent reduction in areal ice extent and loss of multiyear ice is related to the albedo dependent transition between seasonal and perennial ice i.e. large areas of the Arctic Ocean that has previously been dominated by multiyear ice might have been pushed below a critical mean ice thickness, corresponding to the above mentioned transition, and into a state dominated

  9. Arctic Landfast Sea Ice 1953-1998

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The files in this data set contain landfast sea ice data (monthly means) gathered from both Russian Arctic and Antarctic Research Institute (AARI) and Canadian Ice...

  10. Sea-ice monitoring by ship-based visual observation during JARE ―Simplification of observation method based on the ASPeCt protocol―

    OpenAIRE

    Kay I. Ohshima; Shuki Ushio; Akihisa S. Otsuki

    2006-01-01

    A protocol for ship-based visual observation of sea ice is proposed for the Japanese Antarctic Research Expedition (JARE). The protocol is a simplified version of the ASPeCt protocol, used for extracting quantitative information on sea ice. The ship-based visual observations started from JARE-46. In the pack ice region, ice thickness, ratio of deformed ice, and total ice volume increased toward the coast. Continuous monitoring of sea ice, particularly its thickness, by ship-based observation ...

  11. Climate change and ice hazards in the Beaufort Sea

    DEFF Research Database (Denmark)

    Barber, D. G.; McCullough, G.; Babb, D.

    2014-01-01

    Recent reductions in the summer extent of sea ice have focused the world’s attention on the effects of climate change. Increased CO2-derived global warming is rapidly shrinking the Arctic multi-year ice pack. This shift in ice regimes allows for increasing development opportunities for large oil...... will be a much more complex task than modeling average ice circulation. Given the observed reduction in sea ice extent and thickness this rather counterintuitive situation, associated with a warming climate, poses significant hazards to Arctic marine oil and gas development and marine transportation. Accurate...... forecasting of hazardous ice motion will require improved real-time surface wind and ocean current forecast models capable of ingesting local satellite-derived wind data and/or local, closely-spaced networks of anemometers and improved methods of determining high-frequency components of surface ocean current...

  12. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    Science.gov (United States)

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-20

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  13. Sea Ice, Climate and Fram Strait

    Science.gov (United States)

    Hunkins, K.

    1984-01-01

    When sea ice is formed the albedo of the ocean surface increases from its open water value of about 0.1 to a value as high as 0.8. This albedo change effects the radiation balance and thus has the potential to alter climate. Sea ice also partially seals off the ocean from the atmosphere, reducing the exchange of gases such as carbon dioxide. This is another possible mechanism by which climate might be affected. The Marginal Ice Zone Experiment (MIZEX 83 to 84) is an international, multidisciplinary study of processes controlling the edge of the ice pack in that area including the interactions between sea, air and ice.

  14. The color of melt ponds on Arctic sea ice

    Science.gov (United States)

    Lu, Peng; Leppäranta, Matti; Cheng, Bin; Li, Zhijun; Istomina, Larysa; Heygster, Georg

    2018-04-01

    Pond color, which creates the visual appearance of melt ponds on Arctic sea ice in summer, is quantitatively investigated using a two-stream radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface is determined and then its spectrum is transformed into RGB (red, green, blue) color space using a colorimetric method. The dependence of pond color on various factors such as water and ice properties and incident solar radiation is investigated. The results reveal that increasing underlying ice thickness Hi enhances both the green and blue intensities of pond color, whereas the red intensity is mostly sensitive to Hi for thin ice (Hi 1.5 m), similar to the behavior of melt-pond albedo. The distribution of the incident solar spectrum F0 with wavelength affects the pond color rather than its intensity. The pond color changes from dark blue to brighter blue with increasing scattering in ice, and the influence of absorption in ice on pond color is limited. The pond color reproduced by the model agrees with field observations for Arctic sea ice in summer, which supports the validity of this study. More importantly, the pond color has been confirmed to contain information about meltwater and underlying ice, and therefore it can be used as an index to retrieve Hi and Hp. Retrievals of Hi for thin ice (Hi measurements than retrievals for thick ice, but those of Hp are not good. The analysis of pond color is a new potential method to obtain thin ice thickness in summer, although more validation data and improvements to the radiative transfer model will be needed in future.

  15. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2013-07-01

    Full Text Available The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section over the visible wavelengths suggests black carbon is the dominating light-absorbing impurity. The response of first-year and multi-year sea ice albedo to increasing black carbon, from 1 to 1024 ng g−1, in a top 5 cm layer of a 155 cm-thick sea ice was calculated using a radiative-transfer model. The albedo of the first-year sea ice is more sensitive to additional loadings of black carbon than the multi-year sea ice. An addition of 8 ng g−1 of black carbon causes a decrease to 98.7% of the original albedo for first-year sea ice compared to a decrease to 99.7% for the albedo of multi-year sea ice, at a wavelength of 500 nm. The albedo of sea ice is surprisingly unresponsive to additional black carbon up to 100 ng g−1 . Snow layers on sea ice may mitigate the effects of black carbon in sea ice. Wet and dry snow layers of 0.5, 1, 2, 5 and 10 cm depth were added onto the sea ice surface. The albedo of the snow surface was calculated whilst the black carbon in the underlying sea ice was increased. A layer of snow 0.5 cm thick greatly diminishes the effect of black carbon in sea ice on the surface albedo. The albedo of a 2–5 cm snow layer (less than the e-folding depth of snow is still influenced by the underlying sea ice, but the effect of additional black carbon in the sea ice is masked.

  16. The Role of Sea Ice in 2 x CO2 Climate Model Sensitivity. Part 2; Hemispheric Dependencies

    Science.gov (United States)

    Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.

    1997-01-01

    How sensitive are doubled CO2 simulations to GCM control-run sea ice thickness and extent? This issue is examined in a series of 10 control-run simulations with different sea ice and corresponding doubled CO2 simulations. Results show that with increased control-run sea ice coverage in the Southern Hemisphere, temperature sensitivity with climate change is enhanced, while there is little effect on temperature sensitivity of (reasonable) variations in control-run sea ice thickness. In the Northern Hemisphere the situation is reversed: sea ice thickness is the key parameter, while (reasonable) variations in control-run sea ice coverage are of less importance. In both cases, the quantity of sea ice that can be removed in the warmer climate is the determining factor. Overall, the Southern Hemisphere sea ice coverage change had a larger impact on global temperature, because Northern Hemisphere sea ice was sufficiently thick to limit its response to doubled CO2, and sea ice changes generally occurred at higher latitudes, reducing the sea ice-albedo feedback. In both these experiments and earlier ones in which sea ice was not allowed to change, the model displayed a sensitivity of -0.02 C global warming per percent change in Southern Hemisphere sea ice coverage.

  17. [Reflectance of sea ice in Liaodong Bay].

    Science.gov (United States)

    Xu, Zhan-tang; Yang, Yue-zhong; Wang, Gui-fen; Cao, Wen-xi; Kong, Xiang-peng

    2010-07-01

    In the present study, the relationships between sea ice albedo and the bidirectional reflectance distribution in Liaodong Bay were investigated. The results indicate that: (1) sea ice albedo alpha(lambda) is closely related to the components of sea ice, the higher the particulate concentration in sea ice surface is, the lower the sea ice albedo alpha(lambda) is. On the contrary, the higher the bubble concentration in sea ice is, the higher sea ice albedo alpha(lambda) is. (2) Sea ice albedo alpha(lambda) is similar to the bidirectional reflectance factor R(f) when the probe locates at nadir. The R(f) would increase with the increase in detector zenith theta, and the correlation between R(f) and the detector azimuth would gradually increase. When the theta is located at solar zenith 63 degrees, the R(f) would reach the maximum, and the strongest correlation is also shown between the R(f) and the detector azimuth. (3) Different types of sea ice would have the different anisotropic reflectance factors.

  18. SPH Modelling of Sea-ice Pack Dynamics

    Science.gov (United States)

    Staroszczyk, Ryszard

    2017-12-01

    The paper is concerned with the problem of sea-ice pack motion and deformation under the action of wind and water currents. Differential equations describing the dynamics of ice, with its very distinct mateFfigrial responses in converging and diverging flows, express the mass and linear momentum balances on the horizontal plane (the free surface of the ocean). These equations are solved by the fully Lagrangian method of smoothed particle hydrodynamics (SPH). Assuming that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model has been used to simulate the evolution of a sea-ice pack driven by wind drag stresses. The results of numerical simulations illustrate the evolution of an ice pack, including variations in ice thickness and ice area fraction in space and time. The effects of different initial ice pack configurations and of different conditions assumed at the coast-ice interface are examined. In particular, the SPH model is applied to a pack flow driven by a vortex wind to demonstrate how well the Lagrangian formulation can capture large deformations and displacements of sea ice.

  19. Thermodynamic and dynamic ice thickness contributions in the Canadian Arctic Archipelago in NEMO-LIM2 numerical simulations

    Science.gov (United States)

    Hu, Xianmin; Sun, Jingfan; Chan, Ting On; Myers, Paul G.

    2018-04-01

    Sea ice thickness evolution within the Canadian Arctic Archipelago (CAA) is of great interest to science, as well as local communities and their economy. In this study, based on the NEMO numerical framework including the LIM2 sea ice module, simulations at both 1/4 and 1/12° horizontal resolution were conducted from 2002 to 2016. The model captures well the general spatial distribution of ice thickness in the CAA region, with very thick sea ice (˜ 4 m and thicker) in the northern CAA, thick sea ice (2.5 to 3 m) in the west-central Parry Channel and M'Clintock Channel, and thin ( Program data at first-year landfast ice sites except at the northern sites with high concentration of old ice. At 1/4 to 1/12° scale, model resolution does not play a significant role in the sea ice simulation except to improve local dynamics because of better coastline representation. Sea ice growth is decomposed into thermodynamic and dynamic (including all non-thermodynamic processes in the model) contributions to study the ice thickness evolution. Relatively smaller thermodynamic contribution to ice growth between December and the following April is found in the thick and very thick ice regions, with larger contributions in the thin ice-covered region. No significant trend in winter maximum ice volume is found in the northern CAA and Baffin Bay while a decline (r2 ≈ 0.6, p < 0.01) is simulated in Parry Channel region. The two main contributors (thermodynamic growth and lateral transport) have high interannual variabilities which largely balance each other, so that maximum ice volume can vary interannually by ±12 % in the northern CAA, ±15 % in Parry Channel, and ±9 % in Baffin Bay. Further quantitative evaluation is required.

  20. Canadian snow and sea ice: historical trends and projections

    Science.gov (United States)

    Mudryk, Lawrence R.; Derksen, Chris; Howell, Stephen; Laliberté, Fred; Thackeray, Chad; Sospedra-Alfonso, Reinel; Vionnet, Vincent; Kushner, Paul J.; Brown, Ross

    2018-04-01

    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020-2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5-10 % per decade (or 15-30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.

  1. Multiphase Reactive Transport and Platelet Ice Accretion in the Sea Ice of McMurdo Sound, Antarctica

    Science.gov (United States)

    Buffo, J. J.; Schmidt, B. E.; Huber, C.

    2018-01-01

    Sea ice seasonally to interannually forms a thermal, chemical, and physical boundary between the atmosphere and hydrosphere over tens of millions of square kilometers of ocean. Its presence affects both local and global climate and ocean dynamics, ice shelf processes, and biological communities. Accurate incorporation of sea ice growth and decay, and its associated thermal and physiochemical processes, is underrepresented in large-scale models due to the complex physics that dictate oceanic ice formation and evolution. Two phenomena complicate sea ice simulation, particularly in the Antarctic: the multiphase physics of reactive transport brought about by the inhomogeneous solidification of seawater, and the buoyancy driven accretion of platelet ice formed by supercooled ice shelf water onto the basal surface of the overlying ice. Here a one-dimensional finite difference model capable of simulating both processes is developed and tested against ice core data. Temperature, salinity, liquid fraction, fluid velocity, total salt content, and ice structure are computed during model runs. The model results agree well with empirical observations and simulations highlight the effect platelet ice accretion has on overall ice thickness and characteristics. Results from sensitivity studies emphasize the need to further constrain sea ice microstructure and the associated physics, particularly permeability-porosity relationships, if a complete model of sea ice evolution is to be obtained. Additionally, implications for terrestrial ice shelves and icy moons in the solar system are discussed.

  2. Multisensor Analyzed Sea Ice Extent - Northern Hemisphere (MASIE-NH)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multisensor Analyzed Sea Ice Extent Northern Hemisphere (MASIE-NH) products provide measurements of daily sea ice extent and sea ice edge boundary for the...

  3. L-band radiometry for sea ice applications

    Science.gov (United States)

    Heygster, G.; Hedricks, S.; Mills, P.; Kaleschke, L.; Stammer, D.; Tonboe, R.

    2009-04-01

    Although sea ice remote sensing has reached the level of operational exploitation with well established retrieval methods, several important tasks are still unsolved. In particular during freezing and melting periods with mixed ice and water surfaces, estimates of ice concentration with passive and active microwave sensors remain challenging. Newly formed thin ice is also hard to distinguish from open water with radiometers for frequencies above 8 GHz. The SMOS configuration (planned launch 2009) with a radiometer at 1.4 GHz is a promising technique to complement observations at higher microwave frequencies. ESA has initiated a project to investigate the possibilities for an additional Level-2 sea ice data product based on SMOS. In detail, the project objectives are (1) to model the L band emission of sea ice, and to assess the potential (2) to retrieve sea ice parameters, especially concentration and thickness, and (3) to use cold water regions for an external calibration of SMOS. Modelling of L band emission: Several models have are investigated. All of them work on the same basic principles and have a vertically-layered, plane-parallel geometry. They are comprised of three basic components: (1) effective permittivities are calculated for each layer based on ice bulk and micro-structural properties; (2) these are integrated across the total depth to derive emitted brightness temperature; (3) scattering terms can also be added because of the granular structure of ice and snow. MEMLS (Microwave Emission Model of Layered Snowpacks (Wiesmann and Matzler 1999)) is one such model that contains all three elements in a single Matlab program. In the absence of knowledge about the internal structure of the sea ice, three-layer (air, ice and water) dielectric slab models which take as input a single effective permittivity for the ice layer are appropriate. By ignoring scattering effects one can derive a simple analytic expression for a dielectric slab as shown by Apinis and

  4. State of Arctic Sea Ice North of Svalbard during N-ICE2015

    Science.gov (United States)

    Rösel, Anja; King, Jennifer; Gerland, Sebastian

    2016-04-01

    The N-ICE2015 cruise, led by the Norwegian Polar Institute, was a drift experiment with the research vessel R/V Lance from January to June 2015, where the ship started the drift North of Svalbard at 83°14.45' N, 21°31.41' E. The drift was repeated as soon as the vessel drifted free. Altogether, 4 ice stations where installed and the complex ocean-sea ice-atmosphere system was studied with an interdisciplinary Approach. During the N-ICE2015 cruise, extensive ice thickness and snow depth measurements were performed during both, winter and summer conditions. Total ice and snow thickness was measured with ground-based and airborne electromagnetic instruments; snow depth was measured with a GPS snow depth probe. Additionally, ice mass balance and snow buoys were deployed. Snow and ice thickness measurements were performed on repeated transects to quantify the ice growth or loss as well as the snow accumulation and melt rate. Additionally, we collected independent values on surveys to determine the general ice thickness distribution. Average snow depths of 32 cm on first year ice, and 52 cm on multi-year ice were measured in January, the mean snow depth on all ice types even increased until end of March to 49 cm. The average total ice and snow thickness in winter conditions was 1.92 m. During winter we found a small growth rate on multi-year ice of about 15 cm in 2 months, due to above-average snow depths and some extraordinary storm events that came along with mild temperatures. In contrast thereto, we also were able to study new ice formation and thin ice on newly formed leads. In summer conditions an enormous melt rate, mainly driven by a warm Atlantic water inflow in the marginal ice zone, was observed during two ice stations with melt rates of up to 20 cm per 24 hours. To reinforce the local measurements around the ship and to confirm their significance on a larger scale, we compare them to airborne thickness measurements and classified SAR-satellite scenes. The

  5. Large sea ice outflow into the Nares Strait in 2007

    DEFF Research Database (Denmark)

    Kwok, R.; Pedersen, L.T.; Gudmandsen, Preben

    2010-01-01

    Sea ice flux through the Nares Strait is most active during the fall and early winter, ceases in mid- to late winter after the formation of ice arches along the strait, and re-commences after breakup in summer. In 2007, ice arches failed to form. This resulted in the highest outflow of Arctic sea...... at Fram Strait. Clearly, the ice arches control Arctic sea ice outflow. The duration of unobstructed flow explains more than 84% of the variance in the annual area flux. In our record, seasonal stoppages are always associated with the formation of an arch near the same location in the southern Kane Basin...... ice in the 13-year record between 1997 and 2009. The 2007 area and volume outflows of 87 x 10(3) km(2) and 254 km(3) are more than twice their 13-year means. This contributes to the recent loss of the thick, multiyear Arctic sea ice and represents similar to 10% of our estimates of the mean ice export...

  6. GPR capabilities for ice thickness sampling of low salinity ice and for detecting oil in ice

    Energy Technology Data Exchange (ETDEWEB)

    Lalumiere, Louis [Sensors by Design Ltd. (Canada)

    2011-07-01

    This report discusses the performance and capabilities test of two airborne ground-penetrating radar (GPR) systems of the Bedford Institute of Oceanography (BIO), Noggin 1000 and Noggin 500, for monitoring low salinity snow and ice properties which was used to measure the thickness of brackish ice on Lake Melville in Labrador and on a tidal river in Prince Edward Island. The work of other researchers is documented and the measurement techniques proposed are compared to the actual GPR approach. Different plots of GPR data taken over snow and freshwater ice and over ice with changing salinity are discussed. An interpretation of brackish ice GPR plots done by the Noggin 1000 and Noggin 500 systems is given based on resolution criterion. Additionally, the capability of the BIO helicopter-borne GPR to detect oil-in-ice has been also investigated, and an opinion on the likelihood of the success of GPR as an oil-in-ice detector is given.

  7. MODIS Snow and Sea Ice Products

    Science.gov (United States)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  8. Winter Arctic sea ice growth: current variability and projections for the coming decades

    Science.gov (United States)

    Petty, A.; Boisvert, L.; Webster, M.; Holland, M. M.; Bailey, D. A.; Kurtz, N. T.; Markus, T.

    2017-12-01

    Arctic sea ice increases in both extent and thickness during the cold winter months ( October to May). Winter sea ice growth is an important factor controlling ocean ventilation and winter water/deep water formation, as well as determining the state and vulnerability of the sea ice pack before the melt season begins. Key questions for the Arctic community thus include: (i) what is the current magnitude and variability of winter Arctic sea ice growth and (ii) how might this change in a warming Arctic climate? To address (i), our current best guess of pan-Arctic sea ice thickness, and thus volume, comes from satellite altimetry observations, e.g. from ESA's CryoSat-2 satellite. A significant source of uncertainty in these data come from poor knowledge of the overlying snow depth. Here we present new estimates of winter sea ice thickness from CryoSat-2 using snow depths from a simple snow model forced by reanalyses and satellite-derived ice drift estimates, combined with snow depth estimates from NASA's Operation IceBridge. To address (ii), we use data from the Community Earth System Model's Large Ensemble Project, to explore sea ice volume and growth variability, and how this variability might change over the coming decades. We compare and contrast the model simulations to observations and the PIOMAS ice-ocean model (over recent years/decades). The combination of model and observational analysis provide novel insight into Arctic sea ice volume variability.

  9. Arctic tides from GPS on sea ice

    OpenAIRE

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2012-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing of Global Positioning System (GPS) buoys placed on sea-ice at five different sites north of Greenland for the study of sea level height and tidal analysis to improve tidal models in the Central Arctic....

  10. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    OpenAIRE

    A. A. Marks; M. D. King

    2013-01-01

    Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-y...

  11. Sea ice biogeochemistry: a guide for modellers.

    Directory of Open Access Journals (Sweden)

    Letizia Tedesco

    Full Text Available Sea ice is a fundamental component of the climate system and plays a key role in polar trophic food webs. Nonetheless sea ice biogeochemical dynamics at large temporal and spatial scales are still rarely described. Numerical models may potentially contribute integrating among sparse observations, but available models of sea ice biogeochemistry are still scarce, whether their relevance for properly describing the current and future state of the polar oceans has been recently addressed. A general methodology to develop a sea ice biogeochemical model is presented, deriving it from an existing validated model application by extension of generic pelagic biogeochemistry model parameterizations. The described methodology is flexible and considers different levels of ecosystem complexity and vertical representation, while adopting a strategy of coupling that ensures mass conservation. We show how to apply this methodology step by step by building an intermediate complexity model from a published realistic application and applying it to analyze theoretically a typical season of first-year sea ice in the Arctic, the one currently needing the most urgent understanding. The aim is to (1 introduce sea ice biogeochemistry and address its relevance to ocean modelers of polar regions, supporting them in adding a new sea ice component to their modelling framework for a more adequate representation of the sea ice-covered ocean ecosystem as a whole, and (2 extend our knowledge on the relevant controlling factors of sea ice algal production, showing that beyond the light and nutrient availability, the duration of the sea ice season may play a key-role shaping the algal production during the on going and upcoming projected changes.

  12. Contrasts in Sea Ice Formation and Production in the Arctic Seasonal and Perennial Ice Zones

    Science.gov (United States)

    Kwok, R.

    2006-01-01

    Four years (1997-2000) of RADARSAT Geophysical Processor System (RGPS) data are used to contrast the sea ice deformation and production regionally, and in the seasonal (SIZ) and perennial (PIZ) ice zones. Ice production is of seasonal ice in openings during the winter. 3-day estimates of these quantities are provided within Lagrangian elements initially 10 km on a side. A distinct seasonal cycle is seen in both zones with these estimates highest in the late fall and with seasonal minimums in the mid-winter. Regional divergence over the winter could be up to 30%. Spatially, the highest deformation is in the SIZ north of coastal Alaska. Both ice deformation and production are higher in the SIZ: deformation-related ice production in the SIZ (approx.0.5 m) is 1.5-2.3 times that of the PIZ (approx.0.3 m) - this is connected to ice strength and thickness. Atmospheric forcing and boundary layer structure contribute to only the seasonal and interannual variability. Seasonal ice growth in ice fractures accounts for approx.25-40% of the total ice production of the Arctic Ocean. By itself, this deformation-ice production relationship could be considered a negative feedback when thickness is perturbed. However, the overall effect on ice production in the face of increasing seasonal and thinner/weaker ice coverage could be modified by: local destabilization of the water column promoting overturning of warmer water due to increased brine rejection; and, the upwelling of the pynocline associated with increased occurrence of large shear motion in sea ice.

  13. Integration of airborne altimetry and in situ radar measurements to estimate marine ice thickness beneath the Larsen C ice shelf, Antarctic Peninsula

    Science.gov (United States)

    McGrath, D.; Steffen, K.; Rodriguez Lagos, J.

    2010-12-01

    Observed atmospheric and oceanic warming is driving significant retreat and / or collapse of ice shelves along the Antarctic Peninsula totaling over 25,000 km2 in the past five decades. Basal melting of meteoric ice can occur near the grounding line of deep glacier inflows if the ocean water is above the pressure melting point. Buoyant meltwater will develop thermohaline circulation, rising beneath the ice shelf, where it may become supercooled and subsequently refreeze in ice draft minima. Marine ice, due to its warm and thus relatively viscous nature, is hypothesized to suture parallel flow bands, increasing ice shelf stability by arresting fracture propagation and controlling iceberg calving dimensions. Thus efforts to model ice shelf stability require accurate estimates of marine ice location and thickness. Ice thickness of a floating ice shelf can be determined in two manners: (1) from measurements of ice elevation above sea level and the calculation of ice thickness from assumptions of hydrostatic equilibrium, and (2) from radar echo measurements of the ice-water interface. Marine ice can confound the latter because its high dielectric constant and strong absorptive properties attenuate the radar energy, often preventing a return signal from the bottom of the ice shelf. These two methods are complementary for determining the marine ice component though because positive anomalies in (1) relative to (2) suggest regions of marine ice accretion. Nearly 350 km of ice penetrating radar (25 MHz) surveys were collected on the Larsen C ice shelf, in conjunction with kinematic GPS measurements and collocated with surface elevation data from the NASA Airborne Topographic Mapper (ATM) as part of the ICE Bridge mission in 2009. Basal ice topography and total ice thickness is accurately mapped along the survey lines and compared with calculated ice thickness from both the kinematic GPS and ATM elevation data. Positive anomalies are discussed in light of visible imagery and

  14. An Evaluation of Sea Ice Deformation and Its Spatial Characteristics from the Regional Arctic System Model

    Science.gov (United States)

    2012-12-01

    Ice Thickness and Age It has long been recognized that many physical properties of sea ice depend upon the thickness ( Thorndike et al. 1975). Three...within the ice (Kovacs 1996). Thorndike et al. (1975) showed that the approximation, used in many ice models even today, for the compressive stress...in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300. Thorndike , A.S., D.A. Rothrock, G.A. Maykut, and

  15. Airborne geophysics for mesoscale observations of polar sea ice in a changing climate

    Science.gov (United States)

    Hendricks, S.; Haas, C.; Krumpen, T.; Eicken, H.; Mahoney, A. R.

    2016-12-01

    Sea ice thickness is an important geophysical parameter with a significant impact on various processes of the polar energy balance. It is classified as Essential Climate Variable (ECV), however the direct observations of the large ice-covered oceans are limited due to the harsh environmental conditions and logistical constraints. Sea-ice thickness retrieval by the means of satellite remote sensing is an active field of research, but current observational capabilities are not able to capture the small scale variability of sea ice thickness and its evolution in the presence of surface melt. We present an airborne observation system based on a towed electromagnetic induction sensor that delivers long range measurements of sea ice thickness for a wide range of sea ice conditions. The purpose-built sensor equipment can be utilized from helicopters and polar research aircraft in multi-role science missions. While airborne EM induction sounding is used in sea ice research for decades, the future challenge is the development of unmanned aerial vehicle (UAV) platform that meet the requirements for low-level EM sea ice surveys in terms of range and altitude of operations. The use of UAV's could enable repeated sea ice surveys during the the polar night, when manned operations are too dangerous and the observational data base is presently very sparse.

  16. Winter snow conditions on Arctic sea ice north of Svalbard during the Norwegian young sea ICE (N-ICE2015) expedition

    Science.gov (United States)

    Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.

  17. Do pelagic grazers benefit from sea ice? Insights from the Antarctic sea ice proxy IPSO25

    Science.gov (United States)

    Schmidt, Katrin; Brown, Thomas A.; Belt, Simon T.; Ireland, Louise C.; Taylor, Kyle W. R.; Thorpe, Sally E.; Ward, Peter; Atkinson, Angus

    2018-04-01

    Sea ice affects primary production in polar regions in multiple ways. It can dampen water column productivity by reducing light or nutrient supply, provide a habitat for ice algae and condition the marginal ice zone (MIZ) for phytoplankton blooms on its seasonal retreat. The relative importance of three different carbon sources (sea ice derived, sea ice conditioned, non-sea-ice associated) for the polar food web is not well understood, partly due to the lack of methods that enable their unambiguous distinction. Here we analysed two highly branched isoprenoid (HBI) biomarkers to trace sea-ice-derived and sea-ice-conditioned carbon in Antarctic krill (Euphausia superba) and relate their concentrations to the grazers' body reserves, growth and recruitment. During our sampling in January-February 2003, the proxy for sea ice diatoms (a di-unsaturated HBI termed IPSO25, δ13C = -12.5 ± 3.3 ‰) occurred in open waters of the western Scotia Sea, where seasonal ice retreat was slow. In suspended matter from surface waters, IPSO25 was present at a few stations close to the ice edge, but in krill the marker was widespread. Even at stations that had been ice-free for several weeks, IPSO25 was found in krill stomachs, suggesting that they gathered the ice-derived algae from below the upper mixed layer. Peak abundances of the proxy for MIZ diatoms (a tri-unsaturated HBI termed HBI III, δ13C = -42.2 ± 2.4 ‰) occurred in regions of fast sea ice retreat and persistent salinity-driven stratification in the eastern Scotia Sea. Krill sampled in the area defined by the ice edge bloom likewise contained high amounts of HBI III. As indicators for the grazer's performance we used the mass-length ratio, size of digestive gland and growth rate for krill, and recruitment for the biomass-dominant calanoid copepods Calanoides acutus and Calanus propinquus. These indices consistently point to blooms in the MIZ as an important feeding ground for pelagic grazers. Even though ice

  18. There goes the sea ice: following Arctic sea ice parcels and their properties.

    Science.gov (United States)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  19. Evidence for radionuclide transport by sea ice

    International Nuclear Information System (INIS)

    Meese, D.A.; Tucker, W.B.; Gow, A.J.; Reimnitz, E.; Bischof, J.; Darby, D.

    1997-01-01

    Ice and ice-borne sediments were collected across the Arctic Basin during the Arctic Ocean Section, 1994 (AOS-94), a recent US/Canada trans-Arctic expedition. Sediments were analysed for 137 Cs, clay mineralogy and carbon. Concentrations of 137 Cs ranged from 5 to 73 Bq kg -1 in the ice-borne sediments. Concentrations of ice samples without sediment were all less than 1 Bq m -3 . The sediment sample with the highest 137 Cs concentration (73 Bq kg -1 ) was collected in the Beaufort Sea. This concentration was significantly higher than in bottom sediments collected in the same area, indicating an ice transport mechanism from an area with correspondingly higher concentrations. Recent results from the application of ice transport models and sediment analyses indicate that it is very likely that sediments are transported by ice, from the Siberian shelf areas to the Beaufort Sea

  20. Albedo of the ice-covered Weddell and Bellingshausen Sea

    OpenAIRE

    A. I. Weiss; J. C. King; T. A. Lachlan-Cope; R. S. Ladkin

    2011-01-01

    This study investigates the surface albedo of the sea ice areas adjacent to the Antarctic Peninsula during the austral summer. Aircraft measurements of the surface albedo which were conducted in the sea ice areas of the Weddell and Bellingshausen Sea show significant differences between these two regions. The averaged surface albedo varied between 0.13 and 0.81. The ice cover of the Bellingshausen Sea consisted mainly of first year ice and the sea surface showed an averaged sea ice albed...

  1. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Caixin Wang

    2015-08-01

    Full Text Available Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period, accounting for about 15% of the total ice mass and 35% of the total ice growth. Introducing a time-dependent snow density improved the modelled results, and a time-dependent oceanic heat flux parameterization yielded reasonable ice growth at the ice bottom. Model results suggest that weather conditions, in particular air temperature and precipitation, as well as snow thermal properties and surface albedo are the most critical factors for the development of snow ice and superimposed ice in Kongsfjorden. While both warming air and higher precipitation led to increased snow ice and superimposed ice forming in Kongsfjorden in the model runs, the processes were more sensitive to precipitation than to air temperature.

  2. Polar bears and sea ice habitat change

    Science.gov (United States)

    Durner, George M.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea ice and as such can be affected by climate warming-induced changes in the extent and composition of pack ice and its impacts on their seal prey. Sea ice declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater ice drift, ice fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea ice that has been typical in that region is being replaced by thinner annual ice. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea ice will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.

  3. Variational Ridging in Sea Ice Models

    Science.gov (United States)

    Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.

    2017-12-01

    This work presents the results of a new development to make basin-scale sea ice models aware of the shape, porosity and extent of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale sea ice field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating sea ice as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale sea ice models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community sea ice code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of sea ice ridges, and points to the need for improved measurements of the evolution of porosity of deformed ice in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of sea ice volume derived from altimetric measurements of sea ice freeboard.

  4. New Tools for Sea Ice Data Analysis and Visualization: NSIDC's Arctic Sea Ice News and Analysis

    Science.gov (United States)

    Vizcarra, N.; Stroeve, J.; Beam, K.; Beitler, J.; Brandt, M.; Kovarik, J.; Savoie, M. H.; Skaug, M.; Stafford, T.

    2017-12-01

    Arctic sea ice has long been recognized as a sensitive climate indicator and has undergone a dramatic decline over the past thirty years. Antarctic sea ice continues to be an intriguing and active field of research. The National Snow and Ice Data Center's Arctic Sea Ice News & Analysis (ASINA) offers researchers and the public a transparent view of sea ice data and analysis. We have released a new set of tools for sea ice analysis and visualization. In addition to Charctic, our interactive sea ice extent graph, the new Sea Ice Data and Analysis Tools page provides access to Arctic and Antarctic sea ice data organized in seven different data workbooks, updated daily or monthly. An interactive tool lets scientists, or the public, quickly compare changes in ice extent and location. Another tool allows users to map trends, anomalies, and means for user-defined time periods. Animations of September Arctic and Antarctic monthly average sea ice extent and concentration may also be accessed from this page. Our tools help the NSIDC scientists monitor and understand sea ice conditions in near real time. They also allow the public to easily interact with and explore sea ice data. Technical innovations in our data center helped NSIDC quickly build these tools and more easily maintain them. The tools were made publicly accessible to meet the desire from the public and members of the media to access the numbers and calculations that power our visualizations and analysis. This poster explores these tools and how other researchers, the media, and the general public are using them.

  5. Multiscale Observation System for Sea Ice Drift and Deformation

    Science.gov (United States)

    Lensu, M.; Haapala, J. J.; Heiler, I.; Karvonen, J.; Suominen, M.

    2011-12-01

    The drift and deformation of sea ice cover is most commonly followed from successive SAR images. The time interval between the images is seldom less than one day which provides rather crude approximation of the motion fields as ice can move tens of kilometers per day. This is particulary so from the viewpoint of operative services, seeking to provide real time information for ice navigating ships and other end users, as leads are closed and opened or ridge fields created in time scales of one hour or less. The ice forecast models are in a need of better temporal resolution for ice motion data as well. We present experiences from a multiscale monitoring system set up to the Bay of Bothnia, the northernmost basin of the Baltic Sea. The basin generates difficult ice conditions every winter while the ports are kept open with the help of an icebreaker fleet. The key addition to SAR imagery is the use of coastal radars for the monitoring of coastal ice fields. An independent server is used to tap the radar signal and process it to suit ice monitoring purposes. This is done without interfering the basic use of the radars, the ship traffic monitoring. About 20 images per minute are captured and sent to the headquarters for motion field extraction, website animation and distribution. This provides very detailed real time picture of the ice movement and deformation within 20 km range. The real time movements are followed in addition with ice drifter arrays, and using AIS ship identification data, from which the translation of ship cannels due to ice drift can be found out. To the operative setup is associated an extensive research effort that uses the data for ice drift model enhancement. The Baltic ice models seek to forecast conditions relevant to ship traffic, especilly hazardous ones like severe ice compression. The main missing link here is downscaling, or the relation of local scale ice dynamics and kinematics to the ice model scale behaviour. The data flow when

  6. Atmospheric forcing of sea ice leads in the Beaufort Sea

    Science.gov (United States)

    Lewis, B. J.; Hutchings, J.; Mahoney, A. R.; Shapiro, L. H.

    2016-12-01

    Leads in sea ice play an important role in the polar marine environment where they allow heat and moisture transfer between the oceans and atmosphere and act as travel pathways for both marine mammals and ships. Examining AVHRR thermal imagery of the Beaufort Sea, collected between 1994 and 2010, sea ice leads appear in repeating patterns and locations (Eicken et al 2005). The leads, resolved by AVHRR, are at least 250m wide (Mahoney et al 2012), thus the patterns described are for lead systems that extend up to hundreds of kilometers across the Beaufort Sea. We describe how these patterns are associated with the location of weather systems relative to the coastline. Mean sea level pressure and 10m wind fields from ECMWF ERA-Interim reanalysis are used to identify if particular lead patterns can be uniquely forecast based on the location of weather systems. Ice drift data from the NSIDC's Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors indicates the role shear along leads has on the motion of ice in the Beaufort Gyre. Lead formation is driven by 4 main factors: (i) coastal features such as promontories and islands influence the origin of leads by concentrating stresses within the ice pack; (ii) direction of the wind forcing on the ice pack determines the type of fracture, (iii) the location of the anticyclone (or cyclone) center determines the length of the fracture for certain patterns; and (iv) duration of weather conditions affects the width of the ice fracture zones. Movement of the ice pack on the leeward side of leads originating at promontories and islands increases, creating shear zones that control ice transport along the Alaska coast in winter. . Understanding how atmospheric conditions influence the large-scale motion of the ice pack is needed to design models that predict variability of the gyre and export of multi-year ice to lower latitudes.

  7. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    Science.gov (United States)

    2015-09-30

    fraction product and the remotely sensed albedo product in the context of understanding the surface radiation budget. Particular attention is paid to...Stamnes, Chapter 2 The Polar Environment: Sun, Clouds, and Ice, in Ocean Colour Remote Sensing in Polar Seas, p 5-25, in press. Istomina, L, G

  8. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover

    Science.gov (United States)

    2015-11-30

    the remotely sensed albedo product in the context of understanding the surface radiation budget. Particular attention is paid to the infrequent...Chapter 2 The Polar Environment: Sun, Clouds, and Ice, in Ocean Colour Remote Sensing in Polar Seas, p 5-25, in press. Istomina, L, G. Heygster, M

  9. Arctic and Southern Ocean Sea Ice Concentrations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly sea ice concentration for Arctic (1901 to 1995) and Southern oceans (1973 to 1990) were digitized on a standard 1-degree grid (cylindrical projection) to...

  10. Arctic sea ice trends, variability and implications for seasonal ice forecasting.

    Science.gov (United States)

    Serreze, Mark C; Stroeve, Julienne

    2015-07-13

    September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. SENTINEL-1 RESULTS: SEA ICE OPERATIONAL MONITORING

    DEFF Research Database (Denmark)

    Toudal Pedersen, Leif; Saldo, Roberto; Fenger-Nielsen, Rasmus

    2015-01-01

    In the present paper we demonstrate the capabilities of the Sentinel-1 SAR data for operational sea-ice and iceberg monitoring. Most of the examples are drawn from the Copernicus Marine Environmental Monitoring Service (CMEMS) production.......In the present paper we demonstrate the capabilities of the Sentinel-1 SAR data for operational sea-ice and iceberg monitoring. Most of the examples are drawn from the Copernicus Marine Environmental Monitoring Service (CMEMS) production....

  12. Arctic tides from GPS on sea ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing o......-gauges and altimetry data. Furthermore, we prove that the geodetic reference ellipsoid WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  13. Record low sea-ice concentration in the central Arctic during summer 2010

    Science.gov (United States)

    Zhao, Jinping; Barber, David; Zhang, Shugang; Yang, Qinghua; Wang, Xiaoyu; Xie, Hongjie

    2018-01-01

    The Arctic sea-ice extent has shown a declining trend over the past 30 years. Ice coverage reached historic minima in 2007 and again in 2012. This trend has recently been assessed to be unique over at least the last 1450 years. In the summer of 2010, a very low sea-ice concentration (SIC) appeared at high Arctic latitudes—even lower than that of surrounding pack ice at lower latitudes. This striking low ice concentration—referred to here as a record low ice concentration in the central Arctic (CARLIC)—is unique in our analysis period of 2003-15, and has not been previously reported in the literature. The CARLIC was not the result of ice melt, because sea ice was still quite thick based on in-situ ice thickness measurements. Instead, divergent ice drift appears to have been responsible for the CARLIC. A high correlation between SIC and wind stress curl suggests that the sea ice drift during the summer of 2010 responded strongly to the regional wind forcing. The drift trajectories of ice buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector, which appeared to benefit the CARLIC in 2010. Under these conditions, more solar energy can penetrate into the open water, increasing melt through increased heat flux to the ocean. We speculate that this divergence of sea ice could occur more often in the coming decades, and impact on hemispheric SIC and feed back to the climate.

  14. Tracing Atlantic Water Signature in the Arctic Sea Ice Cover East of Svalbard

    Directory of Open Access Journals (Sweden)

    Vladimir V. Ivanov

    2012-01-01

    Full Text Available We focus on the Arctic Ocean between Svalbard and Franz Joseph Land in order to elucidate the possible role of Atlantic water (AW inflow in shaping ice conditions. Ice conditions substantially affect the temperature regime of the Spitsbergen archipelago, particularly in winter. We test the hypothesis that intensive vertical mixing at the upper AW boundary releases substantial heat upwards that eventually reaches the under-ice water layer, thinning the ice cover. We examine spatial and temporal variation of ice concentration against time series of wind, air temperature, and AW temperature. Analysis of 1979–2011 ice properties revealed a general tendency of decreasing ice concentration that commenced after the mid-1990s. AW temperature time series in Fram Strait feature a monotonic increase after the mid-1990s, consistent with shrinking ice cover. Ice thins due to increased sensible heat flux from AW; ice erosion from below allows wind and local currents to more effectively break ice. The winter spatial pattern of sea ice concentration is collocated with patterns of surface heat flux anomalies. Winter minimum sea ice thickness occurs in the ice pack interior above the AW path, clearly indicating AW influence on ice thickness. Our study indicates that in the AW inflow region heat flux from the ocean reduces the ice thickness.

  15. The Hamburg sea-ice model

    International Nuclear Information System (INIS)

    Stoessel, A.; Owens, W.B.

    1992-10-01

    The general purpose of the model is to simulate sea ice dynamically as well as thermodynamically. Pure sea-ice models are generally highly dependent on the specified atmospheric and oceanic forcing, especially on the winds and the vertical oceanic heat flux. In order to reduce these dependencies, the sea-ice [SI] model was extended to optionally include a prognostic oceanic mixed layer [OML], a diagnostic atmospheric surface layer [ASL] and/or a diagnostic atmospheric boundary layer [ABL], thus shifting the forcing levels further away from the surface (i.e. from the sea ice) and simultaneously providing a modification of the forcing considering boundary-layer adjustments to the instantaneous sea-ice conditions given by the SI model. A further major extension of the model is the (optional) employment of a prognostic snow layer. The special application characterising the present code was sea-ice simulation in the Southern Ocean, employing a spherical, circumpolar grid with a resolution of 2.5 in latitude and 5 in longitude, extending from 50 S to 80 S and using a daily time step. (orig.)

  16. How reversible is sea ice loss?

    Directory of Open Access Journals (Sweden)

    J. K. Ridley

    2012-02-01

    Full Text Available It is well accepted that increasing atmospheric CO2 results in global warming, leading to a decline in polar sea ice area. Here, the specific question of whether there is a tipping point in the sea ice cover is investigated. The global climate model HadCM3 is used to map the trajectory of sea ice area under idealised scenarios. The atmospheric CO2 is first ramped up to four times pre-industrial levels (4 × CO2, then ramped down to pre-industrial levels. We also examine the impact of stabilising climate at 4 × CO2 prior to ramping CO2 down to pre-industrial levels. Against global mean temperature, Arctic sea ice area is reversible, while the Antarctic sea ice shows some asymmetric behaviour – its rate of change slower, with falling temperatures, than its rate of change with rising temperatures. However, we show that the asymmetric behaviour is driven by hemispherical differences in temperature change between transient and stabilisation periods. We find no irreversible behaviour in the sea ice cover.

  17. IceBridge Radar L3 Tomographic Ice Thickness V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Level-3 tomographic ice thickness measurements derived from data captured by the Center for Remote Sensing of Ice Sheets (CReSIS) Multichannel...

  18. Tropospheric characteristics over sea ice during N-ICE2015

    Science.gov (United States)

    Kayser, Markus; Maturilli, Marion; Graham, Robert; Hudson, Stephen; Cohen, Lana; Rinke, Annette; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats

    2017-04-01

    Over recent years, the Arctic Ocean region has shifted towards a younger and thinner sea-ice regime. The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in this new ice regime north of Svalbard. Here we analyze upper-air measurements made by radiosondes launched twice daily together with surface meteorology observations during N-ICE2015 from January to June 2015. We study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, sudden increases in moisture content and temperature, temperature inversions and boundary layer dynamics. The influence of synoptic cyclones is strongest under polar night conditions, when radiative cooling is most effective and the moisture content is low. We find that transitions between the radiatively clear and opaque state are the largest drivers of changes to temperature inversion and stability characteristics in the boundary layer during winter. In spring radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. The unique N-ICE2015 dataset is used for case studies investigating changes in the vertical structure of the atmosphere under varying synoptic conditions. The goal is to deepen our understanding of synoptic interactions within the Arctic climate system, to improve model performance, as well as to identify gaps in instrumentation, which precludes further investigations.

  19. Canadian Ice Service Arctic Regional Sea Ice Charts in SIGRID-3 Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Canadian Ice Service (CIS) produces digital Arctic regional sea ice charts for marine navigation, climate research, and input to the Global Digital Sea Ice Data...

  20. Influence of sea ice on Arctic coasts

    Science.gov (United States)

    Barnhart, K. R.; Kay, J. E.; Overeem, I.; Anderson, R. S.

    2017-12-01

    Coasts form the dynamic interface between the terrestrial and oceanic systems. In the Arctic, and in much of the world, the coast is a focal point for population, infrastructure, biodiversity, and ecosystem services. A key difference between Arctic and temperate coasts is the presence of sea ice. Changes in sea ice cover can influence the coast because (1) the length of the sea ice-free season controls the time over which nearshore water can interact with the land, and (2) the location of the sea ice edge controls the fetch over which storm winds can interact with open ocean water, which in turn governs nearshore water level and wave field. We first focus on the interaction of sea ice and ice-rich coasts. We combine satellite records of sea ice with a model for wind-driven storm surge and waves to estimate how changes in the sea ice-free season have impacted the nearshore hydrodynamic environment along Alaska's Beaufort Sea Coast for the period 1979-2012. This region has experienced some of the greatest changes in both sea ice cover and coastal erosion rates in the Arctic: the median length of the open-water season has expanded by 90 percent, while coastal erosion rates have more than doubled from 8.7 to 19 m yr-1. At Drew Point, NW winds increase shoreline water levels that control the incision of a submarine notch, the rate-limiting step of coastal retreat. The maximum water-level setup at Drew Point has increased consistently with increasing fetch. We extend our analysis to the entire Arctic using both satellite-based observations and global coupled climate model output from the Community Earth System Model Large Ensemble (CESM-LE) project. This 30-member ensemble employs a 1-degree version of the CESM-CAM5 historical forcing for the period 1920-2005, and RCP 8.5 forcing from 2005-2100. A control model run with constant pre-industrial (1850) forcing characterizes internal variability in a constant climate. Finally, we compare observations and model results to

  1. A one stop website for sharing sea ice, ocean and ice sheet data over the polar regions

    Science.gov (United States)

    Chen, Z.; Cheng, X.; Liu, J.; Hui, F.; Ding, Y.

    2017-12-01

    The polar regions, including the Arctic and Antarctic, are changing rapidly. Our capabilities to remotely monitor the state of the polar regions are increasing greatly. Satellite and airborne technologies have been deployed and further improvements are underway. Meanwhile, various algorithms have been developed to retrieve important parameters to maximize the effectiveness of available remote sensing data. These technologies and algorithms promise to greatly increase our understanding of variations in sea ice, ocean and ice sheet. However, so much information is scattered out there. It is challenging to find exactly what you are looking for by just searching it through the network. Therefore, we try to establish a common platform to sharing some key parameters for the polar regions. A group of scientists from Beijing Normal University and University at Albany developed a website as a "one-stop shop" for the current state of the polar regions. The website provides real-time (or near real-time) key parameters derived from a variety of operational satellites in an understandable, accessible and credible way. Three types of parameter, which are sea ice, ocean and ice sheet respectively, are shown and available to be downloaded in the website. Several individual parameters are contained in a specific type of parameter. The parameters of sea ice include sea ice concentration, sea ice thickness, melt pond, sea ice leads and sea ice drift. The ocean parameters contain sea surface temperature and sea surface wind. Ice sheet balance, ice velocity and some other parameters are classified into the type of ice sheet parameter. Some parameters are well-calibrated and available to be obtained from other websites, such as sea ice concentration, sea ice thickness sea surface temperature. Since these parameters are retrieved from different sensors, such as SSMI, AMSR2 etc., data format, spatial resolution of the parameters are not unified. We collected and reprocessed these

  2. On the influence of model physics on simulations of Arctic and Antarctic sea ice

    Directory of Open Access Journals (Sweden)

    F. Massonnet

    2011-09-01

    Full Text Available Two hindcast (1983–2007 simulations are performed with the global, ocean-sea ice models NEMO-LIM2 and NEMO-LIM3 driven by atmospheric reanalyses and climatologies. The two simulations differ only in their sea ice component, while all other elements of experimental design (resolution, initial conditions, atmospheric forcing are kept identical. The main differences in the sea ice models lie in the formulation of the subgrid-scale ice thickness distribution, of the thermodynamic processes, of the sea ice salinity and of the sea ice rheology. To assess the differences in model skill over the period of investigation, we develop a set of metrics for both hemispheres, comparing the main sea ice variables (concentration, thickness and drift to available observations and focusing on both mean state and seasonal to interannual variability. Based upon these metrics, we discuss the physical processes potentially responsible for the differences in model skill. In particular, we suggest that (i a detailed representation of the ice thickness distribution increases the seasonal to interannual variability of ice extent, with spectacular improvement for the simulation of the recent observed summer Arctic sea ice retreats, (ii the elastic-viscous-plastic rheology enhances the response of ice to wind stress, compared to the classical viscous-plastic approach, (iii the grid formulation and the air-sea ice drag coefficient affect the simulated ice export through Fram Strait and the ice accumulation along the Canadian Archipelago, and (iv both models show less skill in the Southern Ocean, probably due to the low quality of the reanalyses in this region and to the absence of important small-scale oceanic processes at the models' resolution (~1°.

  3. Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    DEFF Research Database (Denmark)

    Ricker, Robert; Hendricks, Stefan; Helm, Veit

    2012-01-01

    highly accurate range measurements. During the CryoSat Validation Experiment (CryoVEx) 2011 in the Lincoln Sea Cryosat-2 underpasses were accomplished with two aircraft which carried an airborne laser scanner, a radar altimeter and an electromagnetic induction device for direct sea ice thickness...... retrieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard distribution of laser scanner and radar altimeter measurements with the CryoSat-2 product within the multi-year sea ice region of the Lincoln Sea in spring...

  4. Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: Mean seasonal cycle

    Science.gov (United States)

    Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.

    2014-12-01

    The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic

  5. Structural Uncertainty in Antarctic sea ice simulations

    Science.gov (United States)

    Schneider, D. P.

    2016-12-01

    The inability of the vast majority of historical climate model simulations to reproduce the observed increase in Antarctic sea ice has motivated many studies about the quality of the observational record, the role of natural variability versus forced changes, and the possibility of missing or inadequate forcings in the models (such as freshwater discharge from thinning ice shelves or an inadequate magnitude of stratospheric ozone depletion). In this presentation I will highlight another source of uncertainty that has received comparatively little attention: Structural uncertainty, that is, the systematic uncertainty in simulated sea ice trends that arises from model physics and mean-state biases. Using two large ensembles of experiments from the Community Earth System Model (CESM), I will show that the model is predisposed towards producing negative Antarctic sea ice trends during 1979-present, and that this outcome is not simply because the model's decadal variability is out-of-synch with that in nature. In the "Tropical Pacific Pacemaker" ensemble, in which observed tropical Pacific SST anomalies are prescribed, the model produces very realistic atmospheric circulation trends over the Southern Ocean, yet the sea ice trend is negative in every ensemble member. However, if the ensemble-mean trend (commonly interpreted as the forced response) is removed, some ensemble members show a sea ice increase that is very similar to the observed. While this results does confirm the important role of natural variability, it also suggests a strong bias in the forced response. I will discuss the reasons for this systematic bias and explore possible remedies. This an important problem to solve because projections of 21st -Century changes in the Antarctic climate system (including ice sheet surface mass balance changes and related changes in the sea level budget) have a strong dependence on the mean state of and changes in the Antarctic sea ice cover. This problem is not unique to

  6. Amundsen Sea simulation with optimized ocean, sea ice, and thermodynamic ice shelf model parameters

    Science.gov (United States)

    Nakayama, Y.; Menemenlis, D.; Schodlok, M.; Heimbach, P.; Nguyen, A. T.; Rignot, E. J.

    2016-12-01

    Ice shelves and glaciers of the West Antarctic Ice Sheet are thinning and melting rapidly in the Amundsen Sea (AS). This is thought to be caused by warm Circumpolar Deep Water (CDW) that intrudes via submarine glacial troughs located at the continental shelf break. Recent studies, however, point out that the depth of thermocline, or thickness of Winter Water (WW, potential temperature below -1 °C located above CDW) is critical in determining the melt rate, especially for the Pine Island Glacier (PIG). For example, the basal melt rate of PIG, which decreased by 50% during summer 2012, has been attributed to thickening of WW. Despite the possible importance of WW thickness on ice shelf melting, previous modeling studies in this region have focused primarily on CDW intrusion and have evaluated numerical simulations based on bottom or deep CDW properties. As a result, none of these models have shown a good representation of WW for the AS. In this study, we adjust a small number of model parameters in a regional Amundsen and Bellingshausen Seas configuration of the Massachusetts Institute of Technology general circulation model (MITgcm) to better fit the available observations during the 2007-2010 period. We choose this time period because summer observations during these years show small interannual variability in the eastern AS. As a result of adjustments, our model shows significantly better match with observations than previous modeling studies, especially for WW. Since density of sea water depends largely on salinity at low temperature, this is crucial for assessing the impact of WW on PIG melt rate. In addition, we conduct several sensitivity studies, showing the impact of surface heat loss on the thickness and properties of WW. We also discuss some preliminary results pertaining to further optimization using the adjoint method. Our work is a first step toward improved representation of ice-shelf ocean interactions in the ECCO (Estimating the Circulation and

  7. On the nature of the sea ice albedo feedback in simple models.

    Science.gov (United States)

    Moon, W; Wettlaufer, J S

    2014-08-01

    We examine the nature of the ice-albedo feedback in a long-standing approach used in the dynamic-thermodynamic modeling of sea ice. The central issue examined is how the evolution of the ice area is treated when modeling a partial ice cover using a two-category-thickness scheme; thin sea ice and open water in one category and "thick" sea ice in the second. The problem with the scheme is that the area evolution is handled in a manner that violates the basic rules of calculus, which leads to a neglected area evolution term that is equivalent to neglecting a leading-order latent heat flux. We demonstrate the consequences by constructing energy balance models with a fractional ice cover and studying them under the influence of increased radiative forcing. It is shown that the neglected flux is particularly important in a decaying ice cover approaching the transitions to seasonal or ice-free conditions. Clearly, a mishandling of the evolution of the ice area has leading-order effects on the ice-albedo feedback. Accordingly, it may be of considerable importance to reexamine the relevant climate model schemes and to begin the process of converting them to fully resolve the sea ice thickness distribution in a manner such as remapping, which does not in principle suffer from the pathology we describe.

  8. Carbon Dioxide Transfer Through Sea Ice: Modelling Flux in Brine Channels

    Science.gov (United States)

    Edwards, L.; Mitchelson-Jacob, G.; Hardman-Mountford, N.

    2010-12-01

    For many years sea ice was thought to act as a barrier to the flux of CO2 between the ocean and atmosphere. However, laboratory-based and in-situ observations suggest that while sea ice may in some circumstances reduce or prevent transfer (e.g. in regions of thick, superimposed multi-year ice), it may also be highly permeable (e.g. thin, first year ice) with some studies observing significant fluxes of CO2. Sea ice covered regions have been observed to act both as a sink and a source of atmospheric CO2 with the permeability of sea ice and direction of flux related to sea ice temperature and the presence of brine channels in the ice, as well as seasonal processes such as whether the ice is freezing or thawing. Brine channels concentrate dissolved inorganic carbon (DIC) as well as salinity and as these dense waters descend through both the sea ice and the surface ocean waters, they create a sink for CO2. Calcium carbonate (ikaite) precipitation in the sea ice is thought to enhance this process. Micro-organisms present within the sea ice will also contribute to the CO2 flux dynamics. Recent evidence of decreasing sea ice extent and the associated change from a multi-year ice to first-year ice dominated system suggest the potential for increased CO2 flux through regions of thinner, more porous sea ice. A full understanding of the processes and feedbacks controlling the flux in these regions is needed to determine their possible contribution to global CO2 levels in a future warming climate scenario. Despite the significance of these regions, the air-sea CO2 flux in sea ice covered regions is not currently included in global climate models. Incorporating this carbon flux system into Earth System models requires the development of a well-parameterised sea ice-air flux model. In our work we use the Los Alamos sea ice model, CICE, with a modification to incorporate the movement of CO2 through brine channels including the addition of DIC processes and ice algae production to

  9. Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins

    Directory of Open Access Journals (Sweden)

    A. Voigt

    2012-12-01

    Full Text Available The Snowball Earth bifurcation, or runaway ice-albedo feedback, is defined for particular boundary conditions by a critical CO2 and a critical sea-ice cover (SI, both of which are essential for evaluating hypotheses related to Neoproterozoic glaciations. Previous work has shown that the Snowball Earth bifurcation, denoted as (CO2, SI*, differs greatly among climate models. Here, we study the effect of bare sea-ice albedo, sea-ice dynamics and ocean heat transport on (CO2, SI* in the atmosphere–ocean general circulation model ECHAM5/MPI-OM with Marinoan (~ 635 Ma continents and solar insolation (94% of modern. In its standard setup, ECHAM5/MPI-OM initiates a~Snowball Earth much more easily than other climate models at (CO2, SI* ≈ (500 ppm, 55%. Replacing the model's standard bare sea-ice albedo of 0.75 by a much lower value of 0.45, we find (CO2, SI* ≈ (204 ppm, 70%. This is consistent with previous work and results from net evaporation and local melting near the sea-ice margin. When we additionally disable sea-ice dynamics, we find that the Snowball Earth bifurcation can be pushed even closer to the equator and occurs at a hundred times lower CO2: (CO2, SI* ≈ (2 ppm, 85%. Therefore, the simulation of sea-ice dynamics in ECHAM5/MPI-OM is a dominant determinant of its high critical CO2 for Snowball initiation relative to other models. Ocean heat transport has no effect on the critical sea-ice cover and only slightly decreases the critical CO2. For disabled sea-ice dynamics, the state with 85% sea-ice cover is stabilized by the Jormungand mechanism and shares characteristics with the Jormungand climate states. However, there is no indication of the Jormungand bifurcation and hysteresis in ECHAM5/MPI-OM. The state with 85% sea-ice cover therefore is a soft Snowball state rather than a true

  10. Ice thickness measurements and volume estimates for glaciers in Norway

    Science.gov (United States)

    Andreassen, Liss M.; Huss, Matthias; Melvold, Kjetil; Elvehøy, Hallgeir; Winsvold, Solveig H.

    2014-05-01

    Whereas glacier areas in many mountain regions around the world now are well surveyed using optical satellite sensors and available in digital inventories, measurements of ice thickness are sparse in comparison and a global dataset does not exist. Since the 1980s ice thickness measurements have been carried out by ground penetrating radar on many glaciers in Norway, often as part of contract work for hydropower companies with the aim to calculate hydrological divides of ice caps. Measurements have been conducted on numerous glaciers, covering the largest ice caps as well as a few smaller mountain glaciers. However, so far no ice volume estimate for Norway has been derived from these measurements. Here, we give an overview of ice thickness measurements in Norway, and use a distributed model to interpolate and extrapolate the data to provide an ice volume estimate of all glaciers in Norway. We also compare the results to various volume-area/thickness-scaling approaches using values from the literature as well as scaling constants we obtained from ice thickness measurements in Norway. Glacier outlines from a Landsat-derived inventory from 1999-2006 together with a national digital elevation model were used as input data for the ice volume calculations. The inventory covers all glaciers in mainland Norway and consists of 2534 glaciers (3143 glacier units) covering an area of 2692 km2 ± 81 km2. To calculate the ice thickness distribution of glaciers in Norway we used a distributed model which estimates surface mass balance distribution, calculates the volumetric balance flux and converts it into thickness using the flow law for ice. We calibrated this model with ice thickness data for Norway, mainly by adjusting the mass balance gradient. Model results generally agree well with the measured values, however, larger deviations were found for some glaciers. The total ice volume of Norway was estimated to be 275 km3 ± 30 km3. From the ice thickness data set we selected

  11. Quantifying Seasonal Skill In Coupled Sea Ice Models Using Freeboard Measurements From Spaceborne Laser Altimeters

    Science.gov (United States)

    2016-06-01

    Data collection periods during the ICESat mission were influenced by the presence of atmospheric clouds and aerosols, and also LASER malfunctions. Upon...measurements after that satellite is launched next year. 14. subject terms Arctic, climate change, Regional Arctic System Model, altimetry...measurements, sea ice, sea ice thickness, freeboard, ICESat, ICESat-2, climate model, coupled model, Operation IceBridge 15. NUMBER OF PAGES 147 16

  12. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    Science.gov (United States)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2012-12-01

    The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.

  13. Ice Draft and Ice Velocity Data in the Beaufort Sea, 1990-2003, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides measurement of sea ice draft (m) and the movement of sea ice (cm/s) over the continental shelf of the Eastern Beaufort Sea. The data set spans...

  14. Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.

    Science.gov (United States)

    Detlef, H; Belt, S T; Sosdian, S M; Smik, L; Lear, C H; Hall, I R; Cabedo-Sanz, P; Husum, K; Kender, S

    2018-03-05

    Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP 25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage.

  15. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model

    OpenAIRE

    Flocco, Daniela; Feltham, Danny; Turner, Adrian K.

    2010-01-01

    The extent and thickness of the Arctic sea ice cover has decreased dramatically in the past few decades with minima in sea ice extent in September 2005 and 2007. These minima have not been predicted in the IPCC AR4 report, suggesting that the sea ice component of climate models should more realistically represent the processes controlling the sea ice mass balance. One of the processes poorly represented in sea ice models is the formation and evolution of melt ponds. Melt ponds accumulate on t...

  16. Acquisition of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program

    Science.gov (United States)

    2014-09-30

    OBJECTIVES • What is the volume of sea ice in the Beaufort Sea Seasonal Ice Zone (SIZ) and how does this evolve during summer as the ice edge...retreats? Recent observations suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest...surrounding ice . Recent analyses have indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer

  17. Seasonal sea ice predictions for the Arctic based on assimilation of remotely sensed observations

    Science.gov (United States)

    Kauker, F.; Kaminski, T.; Ricker, R.; Toudal-Pedersen, L.; Dybkjaer, G.; Melsheimer, C.; Eastwood, S.; Sumata, H.; Karcher, M.; Gerdes, R.

    2015-10-01

    The recent thinning and shrinking of the Arctic sea ice cover has increased the interest in seasonal sea ice forecasts. Typical tools for such forecasts are numerical models of the coupled ocean sea ice system such as the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM). The model uses as input the initial state of the system and the atmospheric boundary condition over the forecasting period. This study investigates the potential of remotely sensed ice thickness observations in constraining the initial model state. For this purpose it employs a variational assimilation system around NAOSIM and the Alfred Wegener Institute's CryoSat-2 ice thickness product in conjunction with the University of Bremen's snow depth product and the OSI SAF ice concentration and sea surface temperature products. We investigate the skill of predictions of the summer ice conditions starting in March for three different years. Straightforward assimilation of the above combination of data streams results in slight improvements over some regions (especially in the Beaufort Sea) but degrades the over-all fit to independent observations. A considerable enhancement of forecast skill is demonstrated for a bias correction scheme for the CryoSat-2 ice thickness product that uses a spatially varying scaling factor.

  18. Modelling the future of the arctic sea ice cover

    OpenAIRE

    Myklebust, Erik Bryhn

    2017-01-01

    Record lows in sea ice cover have recently sparked new interest in the small ice cap instability. The change in albedo when sea ice becomes open water introduces a nonlinearity called the ice-albedo feedback. Forcing a joint energy- balance and sea ice model can lead to unstable ice caps in certain parameter regimes. When the ice caps are unstable, a small perturbation will initiate a tipping point in the sea ice cover. For tipping points in general, a number of studies have pointed out that ...

  19. The Secret of the Svalbard Sea Ice Barrier

    Science.gov (United States)

    Nghiem, Son V.; Van Woert, Michael L.; Neumann, Gregory

    2004-01-01

    An elongated sea ice feature called the Svalbard sea ice barrier rapidly formed over an area in the Barents Sea to the east of Svalbard posing navigation hazards. The secret of its formation lies in the bottom bathymetry that governs the distribution of cold Arctic waters masses, which impacts sea ice growth on the water surface.

  20. Polarimetric signatures of sea ice in the Greenland Sea

    DEFF Research Database (Denmark)

    Skriver, Henning; Pedersen, Leif Toudal

    1995-01-01

    Polarimetric SAR data of sea ice have been acquired by the Danish polarimetric SAR (EMISAR) during a mission at the Greenland Sea in August 1994. Video recordings from a low-altitude acquisition have been used for interpretation of the SAR data. Also, ERS-1 SAR data and NOAA AVHRR-data have been...

  1. Variability and Anomalous Trends in the Global Sea Ice Cover

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The advent of satellite data came fortuitously at a time when the global sea ice cover has been changing rapidly and new techniques are needed to accurately assess the true state and characteristics of the global sea ice cover. The extent of the sea ice in the Northern Hemisphere has been declining by about -4% per decade for the period 1979 to 2011 but for the period from 1996 to 2010, the rate of decline became even more negative at -8% per decade, indicating an acceleration in the decline. More intriguing is the drastically declining perennial sea ice area, which is the ice that survives the summer melt and observed to be retreating at the rate of -14% per decade during the 1979 to 2012 period. Although a slight recovery occurred in the last three years from an abrupt decline in 2007, the perennial ice extent was almost as low as in 2007 in 2011. The multiyear ice, which is the thick component of the perennial ice and regarded as the mainstay of the Arctic sea ice cover is declining at an even higher rate of -19% per decade. The more rapid decline of the extent of this thicker ice type means that the volume of the ice is also declining making the survival of the Arctic ice in summer highly questionable. The slight recovery in 2008, 2009 and 2010 for the perennial ice in summer was likely associated with an apparent cycle in the time series with a period of about 8 years. Results of analysis of concurrent MODIS and AMSR-E data in summer also provide some evidence of more extensive summer melt and meltponding in 2007 and 2011 than in other years. Meanwhile, the Antarctic sea ice cover, as observed by the same set of satellite data, is showing an unexpected and counter intuitive increase of about 1 % per decade over the same period. Although a strong decline in ice extent is apparent in the Bellingshausen/ Amundsen Seas region, such decline is more than compensated by increases in the extent of the sea ice cover in the Ross Sea region. The results of analysis of

  2. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    Directory of Open Access Journals (Sweden)

    F. Richter

    2018-03-01

    Full Text Available Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  3. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    Science.gov (United States)

    Richter, Friedrich; Drusch, Matthias; Kaleschke, Lars; Maaß, Nina; Tian-Kunze, Xiangshan; Mecklenburg, Susanne

    2018-03-01

    Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity) have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  4. Polynyas and Ice Production Evolution in the Ross Sea (PIPERS)

    Science.gov (United States)

    Ackley, S. F.

    2017-12-01

    One focus of the PIPERS cruise into the Ross Sea ice cover during April-June 2017 was the Terra Nova Bay (TNB) polynya where joint measurements of air-ice-ocean wave interaction were conducted over twelve days. In Terra Nova Bay, measurements were made in three katabatic wind events each with sustained winds over 35 ms-1 and air temperatures below -15C. Near shore, intense wave fields with wave amplitudes of over 2m and 7-9 sec periods built and large amounts of frazil ice crystals grew. The frazil ice gathered initially into short and narrow plumes that eventually were added laterally to create longer and wider streaks or bands. Breaking waves within these wider streaks were dampened which appeared to enhance the development of pancake ice. Eventually, the open water areas between the streaks sealed off, developing a complete ice cover of 100 percent concentration (80-90 percent pancakes, 20-10 percent frazil) over a wide front (30km). The pancakes continued to grow in diameter and thickness as waves alternately contracted and expanded the ice cover, with the thicker larger floes further diminishing the wave field and lateral motion between pancakes until the initial pancake ice growth ceased. The equilibrium thickness of the ice was 20-30cm in the pancake ice. While the waves had died off however, katabatic wind velocities were sustained and resulted in a wide area of concentrated, rafted, pancake ice that was rapidly advected downstream until the end of the katabatic event. High resolution TerraSar-X radar satellite imagery showed the length of the ice area produced in one single event extended over 300km or ten times the length of the open water area during one polynya event. The TNB polynya is therefore an "ice factory" where frazil ice is manufactured into pancake ice floes that are then pushed out of the assembly area and advected, rafted (and occasionally piled up into "dragon skin" ice), until the katabatic wind dies off at the coastal source.

  5. Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results

    Science.gov (United States)

    Duarte, Pedro; Meyer, Amelie; Olsen, Lasse M.; Kauko, Hanna M.; Assmy, Philipp; Rösel, Anja; Itkin, Polona; Hudson, Stephen R.; Granskog, Mats A.; Gerland, Sebastian; Sundfjord, Arild; Steen, Harald; Hop, Haakon; Cohen, Lana; Peterson, Algot K.; Jeffery, Nicole; Elliott, Scott M.; Hunke, Elizabeth C.; Turner, Adrian K.

    2017-07-01

    Large changes in the sea ice regime of the Arctic Ocean have occurred over the last decades justifying the development of models to forecast sea ice physics and biogeochemistry. The main goal of this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and biogeochemical properties at time scales of a few weeks and to use the model to analyze ice algal bloom dynamics in different types of ice. Ocean and atmospheric forcing data and observations of the evolution of the sea ice properties collected from 18 April to 4 June 2015, during the Norwegian young sea ICE expedition, were used to test the CICE model. Our results show the following: (i) model performance is reasonable for sea ice thickness and bulk salinity; good for vertically resolved temperature, vertically averaged Chl a concentrations, and standing stocks; and poor for vertically resolved Chl a concentrations. (ii) Improving current knowledge about nutrient exchanges, ice algal recruitment, and motion is critical to improve sea ice biogeochemical modeling. (iii) Ice algae may bloom despite some degree of basal melting. (iv) Ice algal motility driven by gradients in limiting factors is a plausible mechanism to explain their vertical distribution. (v) Different ice algal bloom and net primary production (NPP) patterns were identified in the ice types studied, suggesting that ice algal maximal growth rates will increase, while sea ice vertically integrated NPP and biomass will decrease as a result of the predictable increase in the area covered by refrozen leads in the Arctic Ocean.

  6. Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea Ice in the Weddell Sea, Antarctica.

    Science.gov (United States)

    Grossmann, S; Dieckmann, G S

    1994-08-01

    Bacterial response to formation and growth of sea ice was investigated during autumn in the northeastern Weddell Sea. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of ice development. During initial ice formation, concentrations of bacterial cells, in the order of 1 x 10 to 3 x 10 liter, were not enhanced within the ice matrix. This suggests that physical enrichment of bacteria by ice crystals is not effective. Due to low concentrations of phytoplankton in the water column during freezing, incorporation of bacteria into newly formed ice via attachment to algal cells or aggregates was not recorded in this study. As soon as the ice had formed, the general metabolic activity of bacterial populations was strongly suppressed. Furthermore, the ratio of [H]leucine incorporation into proteins to [H]thymidine incorporation into DNA changed during ice growth. In thick pack ice, bacterial activity recovered and growth rates up to 0.6 day indicated actively dividing populations. However, biomass-specific utilization of organic compounds remained lower than in open water. Bacterial concentrations of up to 2.8 x 10 cells liter along with considerably enlarged cell volumes accumulated within thick pack ice, suggesting reduced mortality rates of bacteria within the small brine pores. In the course of ice development, bacterial carbon production increased from about 0.01 to 0.4 mug of C liter h. In thick ice, bacterial secondary production exceeded primary production of microalgae.

  7. GLERL Great Lakes Ice Thickness Data Base, 1966-1979

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the winters of 1965/66 through 1976/77, NOAA/Great Lakes Environmental Research Laboratory (GLERL) collected weekly ice thickness and stratigraphy data at up...

  8. Greenland 5 km DEM, Ice Thickness, and Bedrock Elevation Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — A Digital Elevation Model (DEM), ice thickness grid, and bedrock elevation grid of Greenland acquired as part of the PARCA program are available in ASCII text format...

  9. A combined approach of remote sensing and airborne electromagnetics to determine the volume of polynya sea ice in the Laptev Sea

    Directory of Open Access Journals (Sweden)

    L. Rabenstein

    2013-06-01

    Full Text Available A combined interpretation of synthetic aperture radar (SAR satellite images and helicopter electromagnetic (HEM sea-ice thickness data has provided an estimate of sea-ice volume formed in Laptev Sea polynyas during the winter of 2007/08. The evolution of the surveyed sea-ice areas, which were formed between late December 2007 and middle April 2008, was tracked using a series of SAR images with a sampling interval of 2–3 days. Approximately 160 km of HEM data recorded in April 2008 provided sea-ice thicknesses along profiles that transected sea ice varying in age from 1 to 116 days. For the volume estimates, thickness information along the HEM profiles was extrapolated to zones of the same age. The error of areal mean thickness information was estimated to be between 0.2 m for younger ice and up to 1.55 m for older ice, with the primary error source being the spatially limited HEM coverage. Our results have demonstrated that the modal thicknesses and mean thicknesses of level ice correlated with the sea-ice age, but that varying dynamic and thermodynamic sea-ice growth conditions resulted in a rather heterogeneous sea-ice thickness distribution on scales of tens of kilometers. Taking all uncertainties into account, total sea-ice area and volume produced within the entire surveyed area were 52 650 km2 and 93.6 ± 26.6 km3. The surveyed polynya contributed 2.0 ± 0.5% of the sea-ice produced throughout the Arctic during the 2007/08 winter. The SAR-HEM volume estimate compares well with the 112 km3 ice production calculated with a~high-resolution ocean sea-ice model. Measured modal and mean-level ice thicknesses correlate with calculated freezing-degree-day thicknesses with a factor of 0.87–0.89, which was too low to justify the assumption of homogeneous thermodynamic growth conditions in the area, or indicates a strong dynamic thickening of level ice by rafting of even thicker ice.

  10. On Sea Ice Characterisation By Multi-Frequency SAR

    Science.gov (United States)

    Grahn, Jakob; Brekke, Camilla; Eltoft, Torbjorn; Holt, Benjamin

    2013-12-01

    By means of polarimetric target decomposition, quad-pol SAR data of sea ice is analysed at two frequency bands. In particular, the non negative eigenvalue decomposition (NNED) is applied on L- and C-band NASA/JPL AIR- SAR data acquired over the Beaufort sea in 2004. The de- composition separates the scattered radar signal into three types, dominated by double, volume and single bounce scattering respectively. Using ground truth derived from RADARSAT-1 and meteorological data, we investigate how the different frequency bands compare in terms of these scattering types. The ground truth contains multi year ice and three types of first year ice of different age and thickness. We find that C-band yields a higher scattered intensity in most ice and scattering types, as well as a more homogeneous intensity. L-band on the other hand yields more pronounced deformation features, such as ridges. The mean intensity contrast between the two thinnest ice types is highest in the double scattering component of C- band, although the contrast of the total signal is greater in L-band. This may indicate that the choice of polarimetric parameters is important for discriminating thin ice types.

  11. Do pelagic grazers benefit from sea ice? Insights from the Antarctic sea ice proxy IPSO25

    Directory of Open Access Journals (Sweden)

    K. Schmidt

    2018-04-01

    Full Text Available Sea ice affects primary production in polar regions in multiple ways. It can dampen water column productivity by reducing light or nutrient supply, provide a habitat for ice algae and condition the marginal ice zone (MIZ for phytoplankton blooms on its seasonal retreat. The relative importance of three different carbon sources (sea ice derived, sea ice conditioned, non-sea-ice associated for the polar food web is not well understood, partly due to the lack of methods that enable their unambiguous distinction. Here we analysed two highly branched isoprenoid (HBI biomarkers to trace sea-ice-derived and sea-ice-conditioned carbon in Antarctic krill (Euphausia superba and relate their concentrations to the grazers' body reserves, growth and recruitment. During our sampling in January–February 2003, the proxy for sea ice diatoms (a di-unsaturated HBI termed IPSO25, δ13C  =  −12.5 ± 3.3 ‰ occurred in open waters of the western Scotia Sea, where seasonal ice retreat was slow. In suspended matter from surface waters, IPSO25 was present at a few stations close to the ice edge, but in krill the marker was widespread. Even at stations that had been ice-free for several weeks, IPSO25 was found in krill stomachs, suggesting that they gathered the ice-derived algae from below the upper mixed layer. Peak abundances of the proxy for MIZ diatoms (a tri-unsaturated HBI termed HBI III, δ13C  =  −42.2 ± 2.4 ‰ occurred in regions of fast sea ice retreat and persistent salinity-driven stratification in the eastern Scotia Sea. Krill sampled in the area defined by the ice edge bloom likewise contained high amounts of HBI III. As indicators for the grazer's performance we used the mass–length ratio, size of digestive gland and growth rate for krill, and recruitment for the biomass-dominant calanoid copepods Calanoides acutus and Calanus propinquus. These indices consistently point to blooms in the MIZ as an important feeding

  12. Atmospheric Icing on Sea Structures,

    Science.gov (United States)

    1984-04-01

    results. ESTIMATION OF ICING INTENSITY Freezing process When supercooled water drops fall or move with wind, hit a structure, and freeze, the...a collision with another drop- let, with the ground, or with a structure. When a supercooled droplet hits a solid obstacle, it spreads and turns to...accretion is likely. The meteorological conditions that prevail during ship icing have been studied widely (Shektman 1968, Tabata 1968, Borisenkov and

  13. Sea ice draft in the Weddell Sea, measured by upward looking sonars

    Directory of Open Access Journals (Sweden)

    A. Behrendt

    2013-06-01

    Full Text Available The presented database contains time-referenced sea ice draft values from upward looking sonar (ULS measurements in the Weddell Sea, Antarctica. The sea ice draft data can be used to infer the thickness of the ice. They were collected during the period 1990–2008. In total, the database includes measurements from 13 locations in the Weddell Sea and was generated from more than 3.7 million measurements of sea ice draft. The files contain uncorrected raw drafts, corrected drafts and the basic parameters measured by the ULS. The measurement principle, the data processing procedure and the quality control are described in detail. To account for the unknown speed of sound in the water column above the ULS, two correction methods were applied to the draft data. The first method is based on defining a reference level from the identification of open water leads. The second method uses a model of sound speed in the oceanic mixed layer and is applied to ice draft in austral winter. Both methods are discussed and their accuracy is estimated. Finally, selected results of the processing are presented. The data can be downloaded from doi:10.1594/PANGAEA.785565.

  14. A Model of Icebergs and Sea Ice in a Joint Continuum Framework

    Science.gov (United States)

    VaÅková, Irena; Holland, David M.

    2017-11-01

    The ice mélange, a mixture of sea ice and icebergs, often present in front of outlet glaciers in Greenland or ice shelves in Antarctica, can have a profound effect on the dynamics of the ice-ocean system. The current inability to numerically model the ice mélange motivates a new modeling approach proposed here. A continuum sea-ice model is taken as a starting point and icebergs are represented as thick and compact pieces of sea ice held together by large tensile and shear strength, selectively introduced into the sea-ice rheology. In order to modify the rheology correctly, an iceberg tracking procedure is implemented within a semi-Lagrangian time-stepping scheme, designed to exactly preserve iceberg shape through time. With the proposed treatment, sea ice and icebergs are considered a single fluid with spatially varying rheological properties. Mutual interactions are thus automatically included without the need for further parametrization. An important advantage of the presented framework for an ice mélange model is its potential to be easily included within sea-ice components of existing climate models.

  15. Measurement of spectral sea ice albedo at Qaanaaq fjord in northwest Greenland

    Science.gov (United States)

    Tanikawa, T.

    2017-12-01

    The spectral albedos of sea ice were measured at Qaanaaq fjord in northwest Greenland. Spectral measurements were conducted for sea ice covered with snow and sea ice without snow where snow was artificially removed around measurement point. Thickness of the sea ice was approximately 1.3 m with 5 cm of snow over the sea ice. The measurements show that the spectral albedos of the sea ice with snow were lower than those of natural pure snow especially in the visible regions though the spectral shapes were similar to each other. This is because the spectral albedos in the visible region have information of not only the snow but also the sea ice under the snow. The spectral albedos of the sea ice without the snow were approximately 0.4 - 0.5 in the visible region, 0.05-0.25 in the near-infrared region and almost constant of approximately 0.05 in the region of 1500 - 2500 nm. In the visible region, it would be due to multiple scattering by an air bubble within the sea ice. In contrast, in the near-infrared and shortwave infrared wavelengths, surface reflection at the sea ice surface would be dominant. Since a light absorption by the ice in these regions is relatively strong comparing to the visible region, the light could not be penetrated deeply within the sea ice, resulting that surface reflection based on Fresnel reflection would be dominant. In this presentation we also show the results of comparison between the radiative transfer calculation and spectral measurement data.

  16. Airborne Surveys of Snow Depth over Arctic Sea Ice

    Science.gov (United States)

    Kwok, R.; Panzer, B.; Leuschen, C.; Pang, S.; Markus, T.; Holt, B.; Gogineni, S.

    2011-01-01

    During the spring of 2009, an ultrawideband microwave radar was deployed as part of Operation IceBridge to provide the first cross-basin surveys of snow thickness over Arctic sea ice. In this paper, we analyze data from three approx 2000 km transects to examine detection issues, the limitations of the current instrument, and the regional variability of the retrieved snow depth. Snow depth is the vertical distance between the air \\snow and snow-ice interfaces detected in the radar echograms. Under ideal conditions, the per echogram uncertainty in snow depth retrieval is approx 4 - 5 cm. The finite range resolution of the radar (approx 5 cm) and the relative amplitude of backscatter from the two interfaces limit the direct retrieval of snow depths much below approx 8 cm. Well-defined interfaces are observed over only relatively smooth surfaces within the radar footprint of approx 6.5 m. Sampling is thus restricted to undeformed, level ice. In early April, mean snow depths are 28.5 +/- 16.6 cm and 41.0 +/- 22.2 cm over first-year and multiyear sea ice (MYI), respectively. Regionally, snow thickness is thinner and quite uniform over the large expanse of seasonal ice in the Beaufort Sea, and gets progressively thicker toward the MYI cover north of Ellesmere Island, Greenland, and the Fram Strait. Snow depth over MYI is comparable to that reported in the climatology by Warren et al. Ongoing improvements to the radar system and the utility of these snow depth measurements are discussed.

  17. Dynamic and thermodynamic impacts of the winter Arctic Oscillation on summer sea ice extent.

    Science.gov (United States)

    Park, H. S.; Stewart, A.

    2017-12-01

    Arctic summer sea ice extent exhibits substantial interannual variability, as is highlighted by the remarkable recovery in sea ice extent in 2013 following the record minimum in the summer of 2012. Here, we explore the mechanism via which Arctic Oscillation (AO)-induced ice thickness changes impact summer sea ice, using observations and reanalysis data. A positive AO weakens the basin-scale anticyclonic sea ice drift and decreases the winter ice thickness by 15cm and 10cm in the Eurasian and the Pacific sectors of the Arctic respectively. Three reanalysis datasets show that the (upward) surface heat fluxes are reduced over wide areas of the Arctic, suppressing the ice growth during the positive AO winters. The winter dynamic and thermodynamic thinning preconditions the ice for enhanced radiative forcing via the ice-albedo feedback in late spring-summer, leading to an additional 8-10 cm of thinning over the Pacific sector of the Arctic. Because of these winter AO-induced dynamic and thermodynamics effects, the winter AO explains about 22% (r = -0.48) of the interannual variance of September sea ice extent from year 1980 to 2015.

  18. The sea ice in Young Sound: Implications for carbon cycling

    DEFF Research Database (Denmark)

    Glud, Ronnie Nøhr; Rysgaard, Søren; Kühl, Michael

    2007-01-01

    on the available nutrients. The sea-ice algal community adapts effi ciently to the local light environment, and in areas with natural (or man-made) holes and cracks sea-ice algae bloom. However, despite ample nutrients, the overall phototrophic biomass in Young Sound remains very low, with maximum values of c. 15......–30 μg Chl a l-1 sea ice at the underside of the ice and with maximum area integrated values of c. 3 mg Chl a m-2. We speculate that the extreme dynamics in sea-ice appearance, structure and brine percolation, which is driven primarily by large but variable freshwater inputs during snow melt...... the sea-ice matrix were extremely dynamic and strongly regulated by physical processes related to freezing and thawing of sea water rather than biological activity. Enclosure experiments on sea-ice samples performed in June 2002 revealed a high heterotrophic potential causing the sea-ice environment...

  19. The effect of sea ice on the solar energy budget in the astmosphere-sea ice-ocean system: A model study

    Science.gov (United States)

    Jin, Z.; Stamnes, Knut; Weeks, W. F.; Tsay, Si-Chee

    1994-01-01

    A coupled one-dimensional multilayer and multistream radiative transfer model has been developed and applied to the study of radiative interactions in the atmosphere, sea ice, and ocean system. The consistent solution of the radiative transfer equation in this coupled system automatically takes into account the refraction and reflection at the air-ice interface and allows flexibility in choice of stream numbers. The solar radiation spectrum (0.25 micron-4.0 micron) is divided into 24 spectral bands to account adequately for gaseous absorption in the atmosphere. The effects of ice property changes, including salinity and density variations, as well as of melt ponds and snow cover variations over the ice on the solar energy distribution in the entire system have been studied quantitatively. The results show that for bare ice it is the scattering, determined by air bubbles and brine pockets, in just a few centimeters of the top layer of ice that plays the most important role in the solar energy absorption and partitioning in the entire system. Ice thickness is important to the energy distribution only when the ice is thin, while the absorption in the atmosphere is not sensitive to ice thickness exceeds about 70 cm. The presence of clouds moderates all the sensitivities of the absorptive amounts in each layer to the variations in the ice properties and ice thickness. Comparisons with observational spectral albedo values for two simple ice types are also presented.

  20. Spring snow conditions on Arctic sea ice north of Svalbard, during the Norwegian Young Sea ICE (N-ICE2015) expedition

    Science.gov (United States)

    Gallet, Jean-Charles; Merkouriadi, Ioanna; Liston, Glen E.; Polashenski, Chris; Hudson, Stephen; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is crucial over sea ice due to its conflicting role in reflecting the incoming solar energy and reducing the heat transfer so that its temporal and spatial variability are important to estimate. During the Norwegian Young Sea ICE (N-ICE2015) campaign, snow physical properties and variability were examined, and results from April until mid-June 2015 are presented here. Overall, the snow thickness was about 20 cm higher than the climatology for second-year ice, with an average of 55 ± 27 cm and 32 ± 20 cm on first-year ice. The average density was 350-400 kg m-3 in spring, with higher values in June due to melting. Due to flooding in March, larger variability in snow water equivalent was observed. However, the snow structure was quite homogeneous in spring due to warmer weather and lower amount of storms passing over the field camp. The snow was mostly consisted of wind slab, faceted, and depth hoar type crystals with occasional fresh snow. These observations highlight the more dynamic character of evolution of snow properties over sea ice compared to previous observations, due to more variable sea ice and weather conditions in this area. The snowpack was isothermal as early as 10 June with the first onset of melt clearly identified in early June. Based on our observations, we estimate than snow could be accurately represented by a three to four layers modeling approach, in order to better consider the high variability of snow thickness and density together with the rapid metamorphose of the snow in springtime.

  1. On retrieving sea ice freeboard from ICESat laser altimeter

    Directory of Open Access Journals (Sweden)

    K. Khvorostovsky

    2016-10-01

    Full Text Available Sea ice freeboard derived from satellite altimetry is the basis for the estimation of sea ice thickness using the assumption of hydrostatic equilibrium. High accuracy of altimeter measurements and freeboard retrieval procedure are, therefore, required. As of today, two approaches for estimating the freeboard using laser altimeter measurements from Ice, Cloud, and land Elevation Satellite (ICESat, referred to as tie points (TP and lowest-level elevation (LLE methods, have been developed and applied in different studies. We reproduced these methods for the ICESat observation periods (2003–2008 in order to assess and analyse the sources of differences found in the retrieved freeboard and corresponding thickness estimates of the Arctic sea ice as produced by the Jet Propulsion Laboratory (JPL and Goddard Space Flight Center (GSFC. Three main factors are found to affect the freeboard differences when applying these methods: (a the approach used for calculation of the local sea surface references in leads (TP or LLE methods, (b the along-track averaging scales used for this calculation, and (c the corrections for lead width relative to the ICESat footprint and for snow depth accumulated in refrozen leads. The LLE method with 100 km averaging scale, as used to produce the GSFC data set, and the LLE method with a shorter averaging scale of 25 km both give larger freeboard estimates comparing to those derived by applying the TP method with 25 km averaging scale as used for the JPL product. Two factors, (a and (b, contribute to the freeboard differences in approximately equal proportions, and their combined effect is, on average, about 6–7 cm. The effect of using different methods varies spatially: the LLE method tends to give lower freeboards (by up to 15 cm over the thick multiyear ice and higher freeboards (by up to 10 cm over first-year ice and the thin part of multiyear ice; the higher freeboards dominate. We show that the

  2. Albedo of the ice covered Weddell and Bellingshausen Seas

    OpenAIRE

    A. I. Weiss; J. C. King; T. A. Lachlan-Cope; R. S. Ladkin

    2012-01-01

    This study investigates the surface albedo of the sea ice areas adjacent to the Antarctic Peninsula during the austral summer. Aircraft measurements of the surface albedo, which were conducted in the sea ice areas of the Weddell and Bellingshausen Seas show significant differences between these two regions. The averaged surface albedo varied between 0.13 and 0.81. The ice cover of the Bellingshausen Sea consisted mainly of first year ice and the sea surface showed an averaged sea ice albedo o...

  3. Some New Lidar Equations for Laser Pulses Scattered Back from Optically Thick Media Such as Clouds, Dense Aerosol Plumes, Sea Ice, Snow, and Turbid Coastal Waters

    Science.gov (United States)

    Davis, Anthony B.

    2013-01-01

    I survey the theoretical foundations of the slowly-but-surely emerging field of multiple scattering lidar, which has already found applications in atmospheric and cryospheric optics that I also discuss. In multiple scattering lidar, returned pulses are stretched far beyond recognition, and there is no longer a one-to-one connection between range and return-trip timing. Moreover, one can exploit the radial profile of the diffuse radiance field excited by the laser source that, by its very nature, is highly concentrated in space and collimated in direction. One needs, however, a new class of lidar equations to explore this new phenomenology. A very useful set is derived from radiative diffusion theory, which is found at the opposite asymptotic limit of radiative transfer theory than the conventional (single-scattering) limit used to derive the standard lidar equation. In particular, one can use it to show that, even if the simple time-of-flight-to-range connection is irretrievably lost, multiply-scattered lidar light can be used to restore a unique profiling capability with coarser resolution but much deeper penetration into a wide variety of optical thick media in nature. Several new applications are proposed, including a laser bathymetry technique that should work for highly turbid coastal waters.

  4. High resolution modelling of the decreasing Arctic sea ice

    DEFF Research Database (Denmark)

    Madsen, K. S.; Rasmussen, T. A. S.; Blüthgen, Jonas

    2012-01-01

    The Arctic sea ice cover has been rapidly decreasing and thinning over the last decade, with minimum ice extent in 2007 and almost as low extent in 2011. This study investigates two aspects of the decreasing ice cover; first the large scale thinning and changing dynamics of the polar sea ice, and...

  5. Wave inhibition by sea ice enables trans-Atlantic ice rafting of debris during Heinrich Events

    Science.gov (United States)

    Wagner, T. J. W.; Dell, R.; Eisenman, I.; Keeling, R. F.; Padman, L.; Severinghaus, J. P.

    2017-12-01

    The thickness of the ice-rafted debris (IRD) layers that signal Heinrich Events declines far more gradually with distance from the iceberg sources than would be expected based on present-day iceberg trajectories. Here we model icebergs as passive Lagrangian tracers driven by ocean currents, winds, and sea surface temperatures. The icebergs are released in a comprehensive climate model simulation of the last glacial maximum (LGM), as well as a simulation of the modern climate. The two simulated climates result in qualitatively similar distributions of iceberg meltwater and hence debris, with the colder temperatures of the LGM having only a relatively small effect on meltwater spread. In both scenarios, meltwater flux falls off rapidly with zonal distance from the source, in contrast with the more uniform spread of IRD in sediment cores. In order to address this discrepancy, we propose a physical mechanism that could have prolonged the lifetime of icebergs during Heinrich events. The mechanism involves a surface layer of cold and fresh meltwater formed from, and retained around, densely packed armadas of icebergs. This leads to wintertime sea ice formation even in relatively low latitudes. The sea ice in turn shields the icebergs from wave erosion, which is the main source of iceberg ablation. We find that allowing sea ice to form around all icebergs during four months each winter causes the model to approximately agree with the distribution of IRD in sediment cores.

  6. Correlated declines in Pacific arctic snow and sea ice cover

    Science.gov (United States)

    Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon

    2005-01-01

    Simulations of future climate suggest that global warming will reduce Arctic snow and ice cover, resulting in decreased surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow cover has decreased, and sea ice has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea ice, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea ice also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the extent of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea ice cover may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and ice

  7. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice

    DEFF Research Database (Denmark)

    andersen, susanne; Tonboe, R.; Kaleschke, L.

    2007-01-01

    [1] Measurements of sea ice concentration from the Special Sensor Microwave Imager (SSM/I) using seven different algorithms are compared to ship observations, sea ice divergence estimates from the Radarsat Geophysical Processor System, and ice and water surface type classification of 59 wide...... with sensor noise between 1.3 and 1.8%. This is in accord with variability estimated from analysis of SSM/I time series. Algorithms, which primarily use 85 GHz information, consistently give the best agreement with both SAR ice concentrations and ship observations. Although the 85 GHz information is more...... sensitive to atmospheric influences, it was found that the atmospheric contribution is secondary to the influence of the surface emissivity variability. Analysis of the entire SSM/I time series shows that there are significant differences in trend between sea ice extent and area, using different algorithms...

  8. Polar Sea Ice Monitoring Using HY-2A Scatterometer Measurements

    Directory of Open Access Journals (Sweden)

    Mingming Li

    2016-08-01

    Full Text Available A sea ice detection algorithm based on Fisher’s linear discriminant analysis is developed to segment sea ice and open water for the Ku-band scatterometer onboard the China’s Hai Yang 2A Satellite (HY-2A/SCAT. Residual classification errors are reduced through image erosion/dilation techniques and sea ice growth/retreat constraint methods. The arctic sea-ice-type classification is estimated via a time-dependent threshold derived from the annual backscatter trends based on previous HY-2A/SCAT derived sea ice extent. The extent and edge of the sea ice obtained in this study is compared with the Special Sensor Microwave Imager/Sounder (SSMIS sea ice concentration data and the Sentinel-1 SAR imagery for verification, respectively. Meanwhile, the classified sea ice type is compared with a multi-sensor sea ice type product based on data from the Advanced Scatterometer (ASCAT and SSMIS. Results show that HY-2A/SCAT is powerful in providing sea ice extent and type information, while differences in the sensitivities of active/passive products are found. In addition, HY-2A/SCAT derived sea ice products are also proved to be valuable complements for existing polar sea ice data products.

  9. Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy

    Science.gov (United States)

    Cronin, T. M.; Gemery, L.; Briggs, W.M.; Jakobsson, M.; Polyak, L.; Brouwers, E.M.

    2010-01-01

    Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon. ?? 2010.

  10. Inferring Ice Thickness from a Glacier Dynamics Model and Multiple Surface Datasets.

    Science.gov (United States)

    Guan, Y.; Haran, M.; Pollard, D.

    2017-12-01

    The future behavior of the West Antarctic Ice Sheet (WAIS) may have a major impact on future climate. For instance, ice sheet melt may contribute significantly to global sea level rise. Understanding the current state of WAIS is therefore of great interest. WAIS is drained by fast-flowing glaciers which are major contributors to ice loss. Hence, understanding the stability and dynamics of glaciers is critical for predicting the future of the ice sheet. Glacier dynamics are driven by the interplay between the topography, temperature and basal conditions beneath the ice. A glacier dynamics model describes the interactions between these processes. We develop a hierarchical Bayesian model that integrates multiple ice sheet surface data sets with a glacier dynamics model. Our approach allows us to (1) infer important parameters describing the glacier dynamics, (2) learn about ice sheet thickness, and (3) account for errors in the observations and the model. Because we have relatively dense and accurate ice thickness data from the Thwaites Glacier in West Antarctica, we use these data to validate the proposed approach. The long-term goal of this work is to have a general model that may be used to study multiple glaciers in the Antarctic.

  11. Characteristics and processing of seismic data collected on thick, floating ice: Results from the Ross Ice Shelf, Antarctica

    Science.gov (United States)

    Beaudoin, Bruce C.; ten Brink, Uri S.; Stern, Tim A.

    1992-01-01

    Coincident reflection and refraction data, collected in the austral summer of 1988/89 by Stanford University and the Geophysical Division of the Department of Scientific and Industrial Research, New Zealand, imaged the crust beneath the Ross Ice Shelf, Antarctica. The Ross Ice Shelf is a unique acquisition environment for seismic reflection profiling because of its thick, floating ice cover. The ice shelf velocity structure is multilayered with a high velocity‐gradient firn layer constituting the upper 50 to 100 m. This near surface firn layer influences the data character by amplifying and frequency modulating the incoming wavefield. In addition, the ice‐water column introduces pervasive, high energy seafloor, intra‐ice, and intra‐water multiples that have moveout velocities similar to the expected subseafloor primary velocities. Successful removal of these high energy multiples relies on predictive deconvolution, inverse velocity stack filtering, and frequency filtering. Removal of the multiples reveals a faulted, sedimentary wedge which is truncated at or near the seafloor. Beneath this wedge the reflection character is diffractive to a two‐way traveltime of ∼7.2 s. At this time, a prominent reflection is evident on the southeast end of the reflection profile. This reflection is interpreted as Moho indicating that the crust is ∼21-km thick beneath the profile. These results provide seismic evidence that the extensional features observed in the Ross Sea region of the Ross Embayment extend beneath the Ross Ice Shelf.

  12. Global warming: Sea ice and snow cover

    International Nuclear Information System (INIS)

    Walsh, J.E.

    1993-01-01

    In spite of differences among global climate simulations under scenarios where atmospheric CO 2 is doubled, all models indicate at least some amplification of greenouse warming at the polar regions. Several decades of recent data on air temperature, sea ice, and snow cover of the high latitudes of the Northern Hemisphere are summarized to illustrate the general compatibility of recent variations in those parameters. Despite a data void over the Arctic Ocean, some noteworthy patterns emerge. Warming dominates in winter and spring, as projected by global climate models, with the warming strongest over subpolar land areas of Alaska, northwestern Canada, and northern Eurasia. A time-longitude summary of Arctic sea ice variations indicates that timescales of most anomalies range from several months to several years. Wintertime maxima of total sea ice extent contain no apparent secular trends. The statistical significance of trends in recent sea ice variations was evaluated by a Monte Carlo procedure, showing a statistically significant negative trend in the summer. Snow cover data over the 20-y period of record show a noticeable decrease of Arctic snow cover in the late 1980s. This is of potential climatic significance since the accompanying decrease of surface albedo leads to a rapid increase of solar heating. 21 refs., 3 figs., 1 tab

  13. Late Holocene sea ice conditions in Herald Canyon, Chukchi Sea

    Science.gov (United States)

    Pearce, C.; O'Regan, M.; Rattray, J. E.; Hutchinson, D. K.; Cronin, T. M.; Gemery, L.; Barrientos, N.; Coxall, H.; Smittenberg, R.; Semiletov, I. P.; Jakobsson, M.

    2017-12-01

    Sea ice in the Arctic Ocean has been in steady decline in recent decades and, based on satellite data, the retreat is most pronounced in the Chukchi and Beaufort seas. Historical observations suggest that the recent changes were unprecedented during the last 150 years, but for a longer time perspective, we rely on the geological record. For this study, we analyzed sediment samples from two piston cores from Herald Canyon in the Chukchi Sea, collected during the 2014 SWERUS-C3 Arctic Ocean Expedition. The Herald Canyon is a local depression across the Chukchi Shelf, and acts as one of the main pathways for Pacific Water to the Arctic Ocean after entering through the narrow and shallow Bering Strait. The study site lies at the modern-day seasonal sea ice minimum edge, and is thus an ideal location for the reconstruction of past sea ice variability. Both sediment cores contain late Holocene deposits characterized by high sediment accumulation rates (100-300 cm/kyr). Core 2-PC1 from the shallow canyon flank (57 m water depth) is 8 meter long and extends back to 4200 cal yrs BP, while the upper 3 meters of Core 4-PC1 from the central canyon (120 mwd) cover the last 3000 years. The chronologies of the cores are based on radiocarbon dates and the 3.6 ka Aniakchak CFE II tephra, which is used as an absolute age marker to calculate the marine radiocarbon reservoir age. Analysis of biomarkers for sea ice and surface water productivity indicate stable sea ice conditions throughout the entire late Holocene, ending with an abrupt increase of phytoplankton sterols in the very top of both sediment sequences. The shift is accompanied by a sudden increase in coarse sediments (> 125 µm) and a minor change in δ13Corg. We interpret this transition in the top sediments as a community turnover in primary producers from sea ice to open water biota. Most importantly, our results indicate that the ongoing rapid ice retreat in the Chukchi Sea of recent decades was unprecedented during the

  14. The refreezing of melt ponds on Arctic sea ice

    Science.gov (United States)

    Flocco, Daniela; Feltham, Daniel L.; Bailey, Eleanor; Schroeder, David

    2015-02-01

    The presence of melt ponds on the surface of Arctic sea ice significantly reduces its albedo, inducing a positive feedback leading to sea ice thinning. While the role of melt ponds in enhancing the summer melt of sea ice is well known, their impact on suppressing winter freezing of sea ice has, hitherto, received less attention. Melt ponds freeze by forming an ice lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying sea ice and the ice lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal ice growth at the base of the underlying sea ice. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the ice lid, trapped pond, and underlying sea ice. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal sea ice growth. We estimate that for a typical sea ice pond coverage in autumn, excluding the impact of trapped ponds in models overestimates ice growth by up to 265 million km3, an overestimate of 26%.

  15. Arctic sea ice concentration observed with SMOS during summer

    Science.gov (United States)

    Gabarro, Carolina; Martinez, Justino; Turiel, Antonio

    2017-04-01

    The Arctic Ocean is under profound transformation. Observations and model predictions show dramatic decline in sea ice extent and volume [1]. A retreating Arctic ice cover has a marked impact on regional and global climate, and vice versa, through a large number of feedback mechanisms and interactions with the climate system [2]. The launch of the Soil Moisture and Ocean Salinity (SMOS) mission, in 2009, marked the dawn of a new type of space-based microwave observations. Although the mission was originally conceived for hydrological and oceanographic studies [3,4], SMOS is also making inroads in the cryospheric sciences by measuring the thin ice thickness [5,6]. SMOS carries an L-band (1.4 GHz), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution, continuous multi-angle viewing, large wide swath (1200-km), and with a 3-day revisit time at the equator, but more frequently at the poles. A novel radiometric method to determine sea ice concentration (SIC) from SMOS is presented. The method uses the Bayesian-based Maximum Likelihood Estimation (MLE) approach to retrieve SIC. The advantage of this approach with respect to the classical linear inversion is that the former takes into account the uncertainty of the tie-point measured data in addition to the mean value, while the latter only uses a mean value of the tie-point data. When thin ice is present, the SMOS algorithm underestimates the SIC due to the low opacity of the ice at this frequency. However, using a synergistic approach with data from other satellite sensors, it is possible to obtain accurate thin ice thickness estimations with the Bayesian-based method. Despite its lower spatial resolution relative to SSMI or AMSR-E, SMOS-derived SIC products are little affected by the atmosphere and the snow (almost transparent at L-band). Moreover L-band measurements are more robust in front of the

  16. The implementation of sea ice model on a regional high-resolution scale

    Science.gov (United States)

    Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter

    2015-09-01

    The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.

  17. Multiple climate and sea ice states on a coupled Aquaplanet

    Science.gov (United States)

    Rose, B.; Ferreira, D.; Marshall, J.

    2010-12-01

    A fully coupled atmosphere-ocean-sea ice GCM is used to explore the climates of Earth-like planets with no continents and idealized ocean basin geometries. We find three qualitatively different stable equilibria under identical external forcing: an equable ice-free climate, a cold climate with ice caps extending into mid-latitudes, and a completely ice-covered "Snowball" state. These multiple states persist for millennia with no drift despite a full seasonal cycle and vigorous internal variability of the system on all time scales. The behavior of the coupled system is rationalized through an extension of the Budyko-Sellers model to include explicit ocean heat transport (OHT), and the insulation of the ice-covered sea surface. Sensitivity tests are also conducted with a slab ocean GCM with prescribed OHT. From these we conclude that albedo feedback and ocean circulation both play essential roles in the maintenance of the multiple states. OHT in the coupled system is dominated by a wind-driven subtropical cell carrying between 2 and 3 PW of thermal energy out of the deep tropics, most of which converges in the subtropics to lower mid-latitudes. This convergence pattern (similar to modern Earth) is robust to changes in the ocean basin geometry, and is directly responsible for the stabilization of the large ice cap. OHT also plays an essential but indirect role in the maintenance of the ice-free pole in the warm states, by driving an enhanced poleward atmospheric latent heat flux. The hysteresis loop for transitions between the warm and large ice cap states spans a much smaller range of parameter space (e.g. ±1.8% variations in solar constant) than the transitions in and out of the Snowball. Three qualitatively different climate states for the same external forcing in a coupled GCM: ice-free, large ice cap, and Snowball. SST and sea ice thickness are plotted. Similar results are found in a pure Aquaplanet (lower) and a "RidgeWorld" with a global-scale ocean basin

  18. Inuit and Scientific Perspectives on the Relationship Between Sea Ice and Climate Change. The Ideal Complement?

    Energy Technology Data Exchange (ETDEWEB)

    Laidler, G.J. [Department of Geography, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, L5L 1C6 (Canada)

    2006-10-15

    Sea ice is influential in regulating energy exchanges between the ocean and the atmosphere, and has figured prominently in scientific studies of climate change and climate feedbacks. However, sea ice is also a vital component of everyday life in Inuit communities of the circumpolar Arctic. Therefore, it is important to understand the links between the potential impacts of climate change on Arctic sea ice extent, distribution, and thickness as well as the related consequences for northern coastal populations. This paper explores the relationship between sea ice and climate change from both scientific and Inuit perspectives. Based on an overview of diverse literature the experiences, methods, and goals which differentiate local and scientific sea ice knowledge are examined. These efforts are considered essential background upon which to develop more accurate assessments of community vulnerability to climate, and resulting sea ice, change. Inuit and scientific perspectives may indeed be the ideal complement when investigating the links between sea ice and climate change, but effective and appropriate conceptual bridges need to be built between the two types of expertise. The complementary nature of these knowledge systems may only be realized, in a practical sense, if significant effort is expended to: (1) understand sea ice from both Inuit and scientific perspectives, along with their underlying differences; (2) investigate common interests or concerns; (3) establish meaningful and reciprocal research partnerships with Inuit communities; (4) engage in, and improve, collaborative research methods; and, (5) maintain ongoing dialogue.

  19. Formation of brine channels in sea ice.

    Science.gov (United States)

    Morawetz, Klaus; Thoms, Silke; Kutschan, Bernd

    2017-03-01

    Liquid salty micro-channels (brine) between growing ice platelets in sea ice are an important habitat for CO 2 -binding microalgaea with great impact on polar ecosystems. The structure formation of ice platelets is microscopically described and a phase field model is developed. The pattern formation during solidification of the two-dimensional interstitial liquid is considered by two coupled order parameters, the tetrahedricity as structure of ice and the salinity. The coupling and time evolution of these order parameters are described by a consistent set of three model parameters. They determine the velocity of the freezing process and the structure formation, the phase diagram, the super-cooling and super-heating region, and the specific heat. The model is used to calculate the short-time frozen micro-structures. The obtained morphological structure is compared with the vertical brine pore space obtained from X-ray computed tomography.

  20. Pan-Arctic sea ice-algal chl a biomass and suitable habitat are largely underestimated for multiyear ice.

    Science.gov (United States)

    Lange, Benjamin A; Flores, Hauke; Michel, Christine; Beckers, Justin F; Bublitz, Anne; Casey, John Alec; Castellani, Giulia; Hatam, Ido; Reppchen, Anke; Rudolph, Svenja A; Haas, Christian

    2017-11-01

    There is mounting evidence that multiyear ice (MYI) is a unique component of the Arctic Ocean and may play a more important ecological role than previously assumed. This study improves our understanding of the potential of MYI as a suitable habitat for sea ice algae on a pan-Arctic scale. We sampled sea ice cores from MYI and first-year sea ice (FYI) within the Lincoln Sea during four consecutive spring seasons. This included four MYI hummocks with a mean chl a biomass of 2.0 mg/m 2 , a value significantly higher than FYI and MYI refrozen ponds. Our results support the hypothesis that MYI hummocks can host substantial ice-algal biomass and represent a reliable ice-algal habitat due to the (quasi-) permanent low-snow surface of these features. We identified an ice-algal habitat threshold value for calculated light transmittance of 0.014%. Ice classes and coverage of suitable ice-algal habitat were determined from snow and ice surveys. These ice classes and associated coverage of suitable habitat were applied to pan-Arctic CryoSat-2 snow and ice thickness data products. This habitat classification accounted for the variability of the snow and ice properties and showed an areal coverage of suitable ice-algal habitat within the MYI-covered region of 0.54 million km 2 (8.5% of total ice area). This is 27 times greater than the areal coverage of 0.02 million km 2 (0.3% of total ice area) determined using the conventional block-model classification, which assigns single-parameter values to each grid cell and does not account for subgrid cell variability. This emphasizes the importance of accounting for variable snow and ice conditions in all sea ice studies. Furthermore, our results indicate the loss of MYI will also mean the loss of reliable ice-algal habitat during spring when food is sparse and many organisms depend on ice-algae. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  1. Middle Range Sea Ice Prediction System of Voyage Environmental Information System in Arctic Sea Route

    Science.gov (United States)

    Lim, H. S.

    2017-12-01

    Due to global warming, the sea ice in the Arctic Ocean is melting dramatically in summer, which is providing a new opportunity to exploit the Northern Sea Route (NSR) connecting Asia and Europe ship route. Recent increases in logistics transportation through NSR and resource development reveal the possible threats of marine pollution and marine transportation accidents without real-time navigation system. To develop a safe Voyage Environmental Information System (VEIS) for vessels operating, the Korea Institute of Ocean Science and Technology (KIOST) which is supported by the Ministry of Oceans and Fisheries, Korea has initiated the development of short-term and middle range prediction system for the sea ice concentration (SIC) and sea ice thickness (SIT) in NSR since 2014. The sea ice prediction system of VEIS consists of AMSR2 satellite composite images (a day), short-term (a week) prediction system, and middle range (a month) prediction system using a statistical method with re-analysis data (TOPAZ) and short-term predicted model data. In this study, the middle range prediction system for the SIC and SIT in NSR is calibrated with another middle range predicted atmospheric and oceanic data (NOAA CFSv2). The system predicts one month SIC and SIT on a daily basis, as validated with dynamic composite SIC data extracted from AMSR2 L2 satellite images.

  2. The impact of atmospheric mineral aerosol deposition on the albedo of snow & sea ice: are snow and sea ice optical properties more important than mineral aerosol optical properties?

    Directory of Open Access Journals (Sweden)

    M. L. Lamare

    2016-01-01

    Full Text Available Knowledge of the albedo of polar regions is crucial for understanding a range of climatic processes that have an impact on a global scale. Light-absorbing impurities in atmospheric aerosols deposited on snow and sea ice by aeolian transport absorb solar radiation, reducing albedo. Here, the effects of five mineral aerosol deposits reducing the albedo of polar snow and sea ice are considered. Calculations employing a coupled atmospheric and snow/sea ice radiative-transfer model (TUV-snow show that the effects of mineral aerosol deposits are strongly dependent on the snow or sea ice type rather than the differences between the aerosol optical characteristics. The change in albedo between five different mineral aerosol deposits with refractive indices varying by a factor of 2 reaches a maximum of 0.0788, whereas the difference between cold polar snow and melting sea ice is 0.8893 for the same mineral loading. Surprisingly, the thickness of a surface layer of snow or sea ice loaded with the same mass ratio of mineral dust has little effect on albedo. On the contrary, the surface albedo of two snowpacks of equal depth, containing the same mineral aerosol mass ratio, is similar, whether the loading is uniformly distributed or concentrated in multiple layers, regardless of their position or spacing. The impact of mineral aerosol deposits is much larger on melting sea ice than on other types of snow and sea ice. Therefore, the higher input of shortwave radiation during the summer melt cycle associated with melting sea ice accelerates the melt process.

  3. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics

    Science.gov (United States)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2013-04-01

    The precipitation of ikaite (CaCO3 ⋅ 6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few μm to 700 μm, were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surface-ice values of 700-900 μmol kg-1 ice (~25 × 106 crystals kg-1) to values of 100-200 μmol kg-1 ice (1-7 × 106 crystals kg-1) near the sea ice-water interface, all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration, whereas TA concentrations in the lower half of the sea ice were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolve in layers below. Melting of sea ice and dissolution of observed concentrations of ikaite would result in meltwater with a pCO2 of <15 μatm. This value is far below atmospheric values of 390 μatm and surface water concentrations of 315 μatm. Hence, the meltwater increases the potential for seawater uptake of CO2.

  4. Observations of sea-ice conditions in the Antarctic coastal region using ship-board video cameras

    Directory of Open Access Journals (Sweden)

    Haruhito Shimoda

    1997-03-01

    Full Text Available During the 30th, 31st, and 32nd Japanese Antarctic Research Expeditions (JARE-30,JARE-31,and JARE-32, sea-ice conditions were recorded by video camera on board the SHIRASE. Then, the sea-ice images were used to estimate compactness and thickness quantitatively. Analyzed legs are those toward Breid Bay and from Breid Bay to Syowa Station during JARE-30 and JARE-31,and those toward the Prince Olav Coast, from the Prince Olav Coast to Breid Bay, and from Breid Bay to Syowa Station during JARE-32. The results show yearly variations of ice compactness and thickness, latitudinal variations of thickness, and differences in thickness histograms between JARE-30 and JARE-32 in Lutzow-Holm Bay. Albedo values were measured simultaneously by a shortwave radiometer. These values are proportional to those of ice compactness. Finally, we examined the relationship between ice compactness and vertical gradient of air temperature above sea ice.

  5. Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice

    Science.gov (United States)

    Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.

    2017-12-01

    Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and

  6. Sea ice classification using dual polarization SAR data

    International Nuclear Information System (INIS)

    Huiying, Liu; Huadong, Guo; Lu, Zhang

    2014-01-01

    Sea ice is an indicator of climate change and also a threat to the navigation security of ships. Polarimetric SAR images are useful in the sea ice detection and classification. In this paper, backscattering coefficients and texture features derived from dual polarization SAR images are used for sea ice classification. Firstly, the HH image is recalculated based on the angular dependences of sea ice types. Then the effective gray level co-occurrence matrix (GLCM) texture features are selected for the support vector machine (SVM) classification. In the end, because sea ice concentration can provide a better separation of pancake ice from old ice, it is used to improve the SVM result. This method provides a good classification result, compared with the sea ice chart from CIS

  7. Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    U. Löptien

    2014-12-01

    Full Text Available The Baltic Sea is a seasonally ice-covered marginal sea located in a densely populated area in northern Europe. Severe sea ice conditions have the potential to hinder the intense ship traffic considerably. Thus, sea ice fore- and nowcasts are regularly provided by the national weather services. Typically, the forecast comprises several ice properties that are distributed as prognostic variables, but their actual usefulness is difficult to measure, and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the automatic identification system (AIS, with the respective forecasted ice conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62–67% of ship speed variations can be explained by the forecasted ice properties when fitting a mixed-effect model. This statistical fit is based on a test region in the Bothnian Sea during the severe winter 2011 and employs 15 to 25 min averages of ship speed.

  8. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris.

    Science.gov (United States)

    Stickley, Catherine E; St John, Kristen; Koç, Nalân; Jordan, Richard W; Passchier, Sandra; Pearce, Richard B; Kearns, Lance E

    2009-07-16

    Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.

  9. In-situ calibration and validation of Cryosat-2 observations over arctic sea ice north of Svalbard

    DEFF Research Database (Denmark)

    Gerland, Sebastian; Renner, Angelika H. H.; Spreen, Gunnar

    CryoSat-2's radar altimeter allows to observe the panArctic sea ice thickness up to 88°N on a monthly basis. However, calibration and validation are crucial to assess limitations and accuracy of the altimeter, and to better quantify the uncertainties involved in converting sea ice freeboard to th...

  10. A comparative analysis of the sea ice freeboard from CryoSat. CryoVEx and IceBridge

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Connor, Laurence N.; Farrell, Sinead L.

    The CryoSat Validation Experiment (CryoVEx) has been conducted by ESA, to examine the uncertainties in the satellite measurement of e.g. sea ice thickness. In this study, we aim to estimate the sea ice freeboard from CryoSat-2, and compare it with the high-resolution Airborne Laser Scanner (ALS......) measurements collected along CryoSat-2 ground tracks from the CryoVEx 2012 campaign, together with NASA’s Operation IceBridge data. We will use the CryoSat SAR data level 1b (L1b) to discriminate the leads and from this, estimate the sea ice freeboard. Furthermore, we are looking at the CryoSat level 2 (L2...

  11. Parameterisation of sea and lake ice in numerical weather prediction models of the German Weather Service

    Directory of Open Access Journals (Sweden)

    Dmitrii Mironov

    2012-04-01

    Full Text Available A bulk thermodynamic (no rheology sea-ice parameterisation scheme for use in numerical weather prediction (NWP is presented. The scheme is based on a self-similar parametric representation (assumed shape of the evolving temperature profile within the ice and on the integral heat budget of the ice slab. The scheme carries ordinary differential equations (in time for the ice surface temperature and the ice thickness. The proposed sea-ice scheme is implemented into the NWP models GME (global and COSMO (limited-area of the German Weather Service. In the present operational configuration, the horizontal distribution of the sea ice is governed by the data assimilation scheme, no fractional ice cover within the GME/COSMO grid box is considered, and the effect of snow above the ice is accounted for through an empirical temperature dependence of the ice surface albedo with respect to solar radiation. The lake ice is treated similarly to the sea ice, except that freeze-up and break-up of lakes occurs freely, independent of the data assimilation. The sea and lake ice schemes (the latter is a part of the fresh-water lake parameterisation scheme FLake show a satisfactory performance in GME and COSMO. The ice characteristics are not overly sensitive to the details of the treatment of heat transfer through the ice layer. This justifies the use of a simplified but computationally efficient bulk approach to model the ice thermodynamics in NWP, where the ice surface temperature is a major concern whereas details of the temperature distribution within the ice are of secondary importance. In contrast to the details of the heat transfer through the ice, the cloud cover is of decisive importance for the ice temperature as it controls the radiation energy budget at the ice surface. This is particularly true for winter, when the long-wave radiation dominates the surface energy budget. During summer, the surface energy budget is also sensitive to the grid-box mean ice

  12. Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice.

    Science.gov (United States)

    Underwood, Graham J C; Aslam, Shazia N; Michel, Christine; Niemi, Andrea; Norman, Louiza; Meiners, Klaus M; Laybourn-Parry, Johanna; Paterson, Harriet; Thomas, David N

    2013-09-24

    Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions.

  13. Observation and modeling of snow melt and superimposed ice formation on sea ice

    OpenAIRE

    Nicolaus, Marcel; Haas, Christian

    2004-01-01

    Sea ice plays a key role within the global climate system. It covers some 7% of earths surface and processes a strong seasonal cycle. Snow on sea ice even amplifies the importance of sea ice in the coupled atmosphere-ice-ocean system, because it dominates surface properties and energy balance (incl. albedo).Several quantitative observations of summer sea ice and its snow cover show the formation of superimposed ice and a gap layer underneath, which was found to be associated to high standing ...

  14. Trends in Arctic Sea Ice Volume 2010-2013 from CryoSat-2

    Science.gov (United States)

    Tilling, R.; Ridout, A.; Wingham, D.; Shepherd, A.; Haas, C.; Farrell, S. L.; Schweiger, A. J.; Zhang, J.; Giles, K.; Laxon, S.

    2013-12-01

    Satellite records show a decline in Arctic sea ice extent over the past three decades with a record minimum in September 2012, and results from the Pan-Arctic Ice-Ocean Modelling and Assimilation System (PIOMAS) suggest that this has been accompanied by a reduction in volume. We use three years of measurements recorded by the European Space Agency CryoSat-2 (CS-2) mission, validated with in situ data, to generate estimates of seasonal variations and inter-annual trends in Arctic sea ice volume between 2010 and 2013. The CS-2 estimates of sea ice thickness agree with in situ estimates derived from upward looking sonar measurements of ice draught and airborne measurements of ice thickness and freeboard to within 0.1 metres. Prior to the record minimum in summer 2012, autumn and winter Arctic sea ice volume had fallen by ~1300 km3 relative to the previous year. Using the full 3-year period of CS-2 observations, we estimate that winter Arctic sea ice volume has decreased by ~700 km3/yr since 2010, approximately twice the average rate since 1980 as predicted by the PIOMAS.

  15. Evaluation of the limit ice thickness for the hull of various Finnish-Swedish ice class vessels navigating in the Russian Arctic

    Directory of Open Access Journals (Sweden)

    Pentti Kujala

    2018-05-01

    Full Text Available Selection of suitable ice class for ships operation is an important but not simple task. The increased exploitation of the Polar waters, both seasonal periods and geographical areas, as well as the introduction of new international design standards such as Polar Code, reduces the relevancy of using existing experience as basis for the selection, and new methods and knowledge have to be developed. This paper will analyse what can be the limiting ice thickness for ships navigating in the Russian Arctic and designed according to the Finnish-Swedish ice class rules. The permanent deformations of ice-strengthened shell structures for various ice classes is determined using MT Uikku as the typical size of a vessel navigating in ice. The ice load in various conditions is determined using the ARCDEV data from the winter 1998 as the basic database. By comparing the measured load in various ice conditions with the serviceability limit state of the structures, the limiting ice thickness for various ice classes is determined. The database for maximum loads includes 3-weeks ice load measurements during April 1998 on the Kara Sea mainly by icebreaker assistance. Gumbel 1 distribution is fitted on the measured 20 min maximum values and the data is divided into various classes using ship speed, ice thickness and ice concentration as the main parameters. Results encouragingly show that present designs are safer than assumed in the Polar Code suggesting that assisted operation in Arctic conditions is feasible in rougher conditions than indicated in the Polar Code. Keywords: Loads, Serviceability, Limit ice thickness, Polar code

  16. Record Low Sea-Ice Concentration in the Central Arctic during Summer 2010

    Institute of Scientific and Technical Information of China (English)

    Jinping ZHAO; David BARBER; Shugang ZHANG; Qinghua YANG; Xiaoyu WANG; Hongjie XIE

    2018-01-01

    The Arctic sea-ice extent has shown a declining trend over the past 30 years.Ice coverage reached historic minima in 2007 and again in 2012.This trend has recently been assessed to be unique over at least the last 1450 years.In the summer of 2010,a very low sea-ice concentration (SIC) appeared at high Arctic latitudes—even lower than that of surrounding pack ice at lower latitudes.This striking low ice concentration—referred to here as a record low ice concentration in the central Arctic (CARLIC)—is unique in our analysis period of 2003-15,and has not been previously reported in the literature.The CARLIC was not the result of ice melt,because sea ice was still quite thick based on in-situ ice thickness measurements.Instead,divergent ice drift appears to have been responsible for the CARLIC.A high correlation between SIC and wind stress curl suggests that the sea ice drift during the summer of 2010 responded strongly to the regional wind forcing.The drift trajectories of ice buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector,which appeared to benefit the CARLIC in 2010.Under these conditions,more solar energy can penetrate into the open water,increasing melt through increased heat flux to the ocean.We speculate that this divergence of sea ice could occur more often in the coming decades,and impact on hemispheric SIC and feed back to the climate.

  17. A Decade of High-Resolution Arctic Sea Ice Measurements from Airborne Altimetry

    Science.gov (United States)

    Duncan, K.; Farrell, S. L.; Connor, L. N.; Jackson, C.; Richter-Menge, J.

    2017-12-01

    Satellite altimeters carried on board ERS-1,-2, EnviSat, ICESat, CryoSat-2, AltiKa and Sentinel-3 have transformed our ability to map the thickness and volume of the polar sea ice cover, on seasonal and decadal time-scales. The era of polar satellite altimetry has coincided with a rapid decline of the Arctic ice cover, which has thinned, and transitioned from a predominantly multi-year to first-year ice cover. In conjunction with basin-scale satellite altimeter observations, airborne surveys of the Arctic Ocean at the end of winter are now routine. These surveys have been targeted to monitor regions of rapid change, and are designed to obtain the full snow and ice thickness distribution, across a range of ice types. Sensors routinely deployed as part of NASA's Operation IceBridge (OIB) campaigns include the Airborne Topographic Mapper (ATM) laser altimeter, the frequency-modulated continuous-wave snow radar, and the Digital Mapping System (DMS). Airborne measurements yield high-resolution data products and thus present a unique opportunity to assess the quality and characteristics of the satellite observations. We present a suite of sea ice data products that describe the snow depth and thickness of the Arctic ice cover during the last decade. Fields were derived from OIB measurements collected between 2009-2017, and from reprocessed data collected during ad-hoc sea ice campaigns prior to OIB. Our bespoke algorithms are designed to accommodate the heterogeneous sea ice surface topography, that varies at short spatial scales. We assess regional and inter-annual variability in the sea ice thickness distribution. Results are compared to satellite-derived ice thickness fields to highlight the sensitivities of satellite footprints to the tails of the thickness distribution. We also show changes in the dynamic forcing shaping the ice pack over the last eight years through an analysis of pressure-ridge sail-height distributions and surface roughness conditions

  18. Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: A microautoradiographic study.

    Science.gov (United States)

    Grossmann, S

    1994-07-01

    Metabolic activity of bacteria was investigated in open water, newly forming sea ice, and successive stages of pack ice in the Weddell Sea. Microautoradiography, using [(3)H]leucine as substrate, was compared with incorporation rates of [(3)H]leucine into proteins. Relation of [(3)H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an ice-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 10(5) ml(-1), but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3-0.4 days(-1). Total cell concentration of bacteria in 400 m depth was 6.6 × 10(4) ml(-1). Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea ice was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed ice was 49.1 ng C ml(-1), exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new ice, since specific bacterial activity was reduced during ice formation, and enrichment of bacteria was not observed when ice formed at low algal concentration. During growth of pack ice, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of ice development, and percentages of active cells were as low as 3-5%. In old, thick pack ice, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the ice and were dominated by bacteria with lower average metabolic activity than those of ice-free water.

  19. Sea Ice Microorganisms: Environmental Constraints and Extracellular Responses

    Directory of Open Access Journals (Sweden)

    Jody W. Deming

    2013-03-01

    Full Text Available Inherent to sea ice, like other high latitude environments, is the strong seasonality driven by changes in insolation throughout the year. Sea-ice organisms are exposed to shifting, sometimes limiting, conditions of temperature and salinity. An array of adaptations to survive these and other challenges has been acquired by those organisms that inhabit the ice. One key adaptive response is the production of extracellular polymeric substances (EPS, which play multiple roles in the entrapment, retention and survival of microorganisms in sea ice. In this concept paper we consider two main areas of sea-ice microbiology: the physico-chemical properties that define sea ice as a microbial habitat, imparting particular advantages and limits; and extracellular responses elicited in microbial inhabitants as they exploit or survive these conditions. Emphasis is placed on protective strategies used in the face of fluctuating and extreme environmental conditions in sea ice. Gaps in knowledge and testable hypotheses are identified for future research.

  20. Ice Thickness, Melting Rates and Styles of Activity in Ice-Volcano Interaction

    Science.gov (United States)

    Gudmundsson, M. T.

    2005-12-01

    In most cases when eruptions occur within glaciers they lead to rapid ice melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include ice thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick ice on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin ice, and (3) volcanism where effects are limitied to confinement of lava flows or melting of ice by pyroclastic flows or surges. This last category (ice-contact volcanism) need not cause much ice melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of ice cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the ice surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large ice sheet than in a smaller glacier or ice cap, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with ice thickness and glacier size.

  1. Arctic sea ice decline: Projected changes in timing and extent of sea ice in the Bering and Chukchi Seas

    Science.gov (United States)

    Douglas, David C.

    2010-01-01

    The Arctic region is warming faster than most regions of the world due in part to increasing greenhouse gases and positive feedbacks associated with the loss of snow and ice cover. One consequence has been a rapid decline in Arctic sea ice over the past 3 decades?a decline that is projected to continue by state-of-the-art models. Many stakeholders are therefore interested in how global warming may change the timing and extent of sea ice Arctic-wide, and for specific regions. To inform the public and decision makers of anticipated environmental changes, scientists are striving to better understand how sea ice influences ecosystem structure, local weather, and global climate. Here, projected changes in the Bering and Chukchi Seas are examined because sea ice influences the presence of, or accessibility to, a variety of local resources of commercial and cultural value. In this study, 21st century sea ice conditions in the Bering and Chukchi Seas are based on projections by 18 general circulation models (GCMs) prepared for the fourth reporting period by the Intergovernmental Panel on Climate Change (IPCC) in 2007. Sea ice projections are analyzed for each of two IPCC greenhouse gas forcing scenarios: the A1B `business as usual? scenario and the A2 scenario that is somewhat more aggressive in its CO2 emissions during the second half of the century. A large spread of uncertainty among projections by all 18 models was constrained by creating model subsets that excluded GCMs that poorly simulated the 1979-2008 satellite record of ice extent and seasonality. At the end of the 21st century (2090-2099), median sea ice projections among all combinations of model ensemble and forcing scenario were qualitatively similar. June is projected to experience the least amount of sea ice loss among all months. For the Chukchi Sea, projections show extensive ice melt during July and ice-free conditions during August, September, and October by the end of the century, with high agreement

  2. Changes in the seasonality of Arctic sea ice and temperature

    Science.gov (United States)

    Bintanja, R.

    2012-04-01

    Observations show that the Arctic sea ice cover is currently declining as a result of climate warming. According to climate models, this retreat will continue and possibly accelerate in the near-future. However, the magnitude of this decline is not the same throughout the year. With temperatures near or above the freezing point, summertime Arctic sea ice will quickly diminish. However, at temperatures well below freezing, the sea ice cover during winter will exhibit a much weaker decline. In the future, the sea ice seasonal cycle will be no ice in summer, and thin one-year ice in winter. Hence, the seasonal cycle in sea ice cover will increase with ongoing climate warming. This in itself leads to an increased summer-winter contrast in surface air temperature, because changes in sea ice have a dominant influence on Arctic temperature and its seasonality. Currently, the annual amplitude in air temperature is decreasing, however, because winters warm faster than summer. With ongoing summer sea ice reductions there will come a time when the annual temperature amplitude will increase again because of the large seasonal changes in sea ice. This suggests that changes in the seasonal cycle in Arctic sea ice and temperature are closely, and intricately, connected. Future changes in Arctic seasonality (will) have an profound effect on flora, fauna, humans and economic activities.

  3. Seasonal and interannual variability of fast ice extent in the southeastern Laptev Sea between 1999 and 2013

    Science.gov (United States)

    Selyuzhenok, V.; Krumpen, T.; Mahoney, A.; Janout, M.; Gerdes, R.

    2015-12-01

    Along with changes in sea ice extent, thickness, and drift speed, Arctic sea ice regime is characterized by a decrease of fast ice season and reduction of fast ice extent. The most extensive fast ice cover in the Arctic develops in the southeastern Laptev Sea. Using weekly operational sea ice charts produced by Arctic and Antarctic Research Institute (AARI, Russia) from 1999 to 2013, we identified five main key events that characterize the annual evolution of fast ice in the southeastern Laptev Sea. Linking the occurrence of the key events with the atmospheric forcing, bathymetry, freezeup, and melt onset, we examined the processes driving annual fast ice cycle. The analysis revealed that fast ice in the region is sensitive to thermodynamic processes throughout a season, while the wind has a strong influence only on the first stages of fast ice development. The maximal fast ice extent is closely linked to the bathymetry and local topography and is primarily defined by the location of shoals, where fast ice is likely grounded. The annual fast ice cycle shows significant changes over the period of investigation, with tendencies toward later fast ice formation and earlier breakup. These tendencies result in an overall decrease of the fast ice season by 2.8 d/yr, which is significantly higher than previously reported trends.

  4. Temporal dynamics of ikaite in experimental sea ice

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Wang, F.; Galley, R.J.

    2014-01-01

    Ikaite (CaCO3·6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air–sea CO2 exchange in ice......-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an outdoor pool of the Sea-ice Environmental Research Facility (SERF) in Manitoba, Canada. During...... the experiment, ikaite precipitated in sea ice when temperatures were below −4 C, creating three distinct zones of ikaite concentrations: (1) a millimeter-to-centimeter-thin surface layer containing frost flowers and brine skim with bulk ikaite concentrations of > 2000 μmol kg−1, (2) an internal layer...

  5. Gypsum crystals observed in experimental and natural sea ice

    Science.gov (United States)

    Geilfus, N.-X.; Galley, R. J.; Cooper, M.; Halden, N.; Hare, A.; Wang, F.; Søgaard, D. H.; Rysgaard, S.

    2013-12-01

    gypsum has been predicted to precipitate in sea ice, it has never been observed. Here we provide the first report on gypsum precipitation in both experimental and natural sea ice. Crystals were identified by X-ray diffraction analysis. Based on their apparent distinguishing characteristics, the gypsum crystals were identified as being authigenic. The FREeZing CHEMistry (FREZCHEM) model results support our observations of both gypsum and ikaite precipitation at typical in situ sea ice temperatures and confirms the "Gitterman pathway" where gypsum is predicted to precipitate. The occurrence of authigenic gypsum in sea ice during its formation represents a new observation of precipitate formation and potential marine deposition in polar seas.

  6. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    Science.gov (United States)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  7. Summer sea ice characteristics and morphology in the Pacific Arctic sector as observed during the CHINARE 2010 cruise

    Directory of Open Access Journals (Sweden)

    H. Xie

    2013-07-01

    Full Text Available In the summer of 2010, atmosphere–ice–ocean interaction was studied aboard the icebreaker R/V Xuelong during the Chinese National Arctic Research Expedition (CHINARE, in the sea ice zone of the Pacific Arctic sector between 150° W and 180° W up to 88.5° N. The expedition lasted from 21 July to 28 August and comprised of ice observations and measurements along the cruise track, 8 short-term stations and one 12-day drift station. Ship-based observations of ice thickness and concentration are compared with ice thickness measured by an electromagnetic induction device (EM31 mounted off the ship's side and ice concentrations obtained from AMSR-E. It is found that the modal thickness from ship-based visual observations matches well with the modal thickness from the mounted EM31. A grid of 8 profiles of ice thickness measurements (four repeats was conducted at the 12-day drift station in the central Arctic (~ 86°50´ N–87°20´ N and an average melt rate of 2 cm day−1, primarily bottom melt, was found. As compared with the 2005 data from the Healy/Oden Trans-Arctic Expedition (HOTRAX for the same sector but ~ 20 days later (9 August to 10 September, the summer 2010 was first-year ice dominant (vs. the multi-year ice dominant in 2005, 70% or less in mean ice concentration (vs. 90% in 2005, and 94–114 cm in mean ice thickness (vs. 150 cm in 2005. Those changes suggest the continuation of ice thinning, less concentration, and younger ice for the summer sea ice in the sector since 2007 when a record minimum sea ice extent was observed. Overall, the measurements provide a valuable dataset of sea ice morphological properties over the Arctic Pacific Sector in summer 2010 and can be used as a benchmark for measurements of future changes.

  8. Estimates of ikaite export from sea ice to the underlying seawater in a sea ice-seawater mesocosm

    Science.gov (United States)

    Geilfus, Nicolas-Xavier; Galley, Ryan J.; Else, Brent G. T.; Campbell, Karley; Papakyriakou, Tim; Crabeck, Odile; Lemes, Marcos; Delille, Bruno; Rysgaard, Søren

    2016-09-01

    The precipitation of ikaite and its fate within sea ice is still poorly understood. We quantify temporal inorganic carbon dynamics in sea ice from initial formation to its melt in a sea ice-seawater mesocosm pool from 11 to 29 January 2013. Based on measurements of total alkalinity (TA) and total dissolved inorganic carbon (TCO2), the main processes affecting inorganic carbon dynamics within sea ice were ikaite precipitation and CO2 exchange with the atmosphere. In the underlying seawater, the dissolution of ikaite was the main process affecting inorganic carbon dynamics. Sea ice acted as an active layer, releasing CO2 to the atmosphere during the growth phase, taking up CO2 as it melted and exporting both ikaite and TCO2 into the underlying seawater during the whole experiment. Ikaite precipitation of up to 167 µmol kg-1 within sea ice was estimated, while its export and dissolution into the underlying seawater was responsible for a TA increase of 64-66 µmol kg-1 in the water column. The export of TCO2 from sea ice to the water column increased the underlying seawater TCO2 by 43.5 µmol kg-1, suggesting that almost all of the TCO2 that left the sea ice was exported to the underlying seawater. The export of ikaite from the ice to the underlying seawater was associated with brine rejection during sea ice growth, increased vertical connectivity in sea ice due to the upward percolation of seawater and meltwater flushing during sea ice melt. Based on the change in TA in the water column around the onset of sea ice melt, more than half of the total ikaite precipitated in the ice during sea ice growth was still contained in the ice when the sea ice began to melt. Ikaite crystal dissolution in the water column kept the seawater pCO2 undersaturated with respect to the atmosphere in spite of increased salinity, TA and TCO2 associated with sea ice growth. Results indicate that ikaite export from sea ice and its dissolution in the underlying seawater can potentially hamper

  9. Sea ice roughness: the key for predicting Arctic summer ice albedo

    Science.gov (United States)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  10. ICESat-2, its retrievals of ice sheet elevation change and sea ice freeboard, and potential synergies with CryoSat-2

    Science.gov (United States)

    Neumann, Thomas; Markus, Thorsten; Smith, Benjamin; Kwok, Ron

    2017-04-01

    Understanding the causes and magnitudes of changes in the cryosphere remains a priority for Earth science research. Over the past decade, NASA's and ESA's Earth-observing satellites have documented a decrease in both the areal extent and thickness of Arctic sea ice, and an ongoing loss of grounded ice from the Greenland and Antarctic ice sheets. Understanding the pace and mechanisms of these changes requires long-term observations of ice-sheet mass, sea-ice thickness, and sea-ice extent. NASA's ICESat-2 mission is the next-generation space-borne laser altimeter mission and will use three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. The spot size is 17 m with an along-track sampling interval of 0.7 m. This measurement concept is a result of the lessons learned from the original ICESat mission. The multi-beam approach is critical for removing the effects of ice sheet surface slope from the elevation change measurements of most interest. For sea ice, the dense spatial sampling (eliminating along-track gaps) and the small footprint size are especially useful for sea surface height measurements in the, often narrow, leads needed for sea ice freeboard and ice thickness retrievals. Currently, algorithms are being developed to calculate ice sheet elevation change and sea ice freeboard from ICESat-2 data. The orbits of ICESat-2 and Cryosat-2 both converge at 88 degrees of latitude, though the orbit altitude differences result in different ground track patterns between the two missions. This presentation will present an overview of algorithm approaches and how ICESat-2 and Cryosat-2 data may augment each other.

  11. Mapping Arctic Bottomfast Sea Ice Using SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Dyre O. Dammann

    2018-05-01

    Full Text Available Bottomfast sea ice is an integral part of many near-coastal Arctic ecosystems with implications for subsea permafrost, coastal stability and morphology. Bottomfast sea ice is also of great relevance to over-ice travel by coastal communities, industrial ice roads, and marine habitats. There are currently large uncertainties around where and how much bottomfast ice is present in the Arctic due to the lack of effective approaches for detecting bottomfast sea ice on large spatial scales. Here, we suggest a robust method capable of detecting bottomfast sea ice using spaceborne synthetic aperture radar interferometry. This approach is used to discriminate between slowly deforming floating ice and completely stationary bottomfast ice based on the interferometric phase. We validate the approach over freshwater ice in the Mackenzie Delta, Canada, and over sea ice in the Colville Delta and Elson Lagoon, Alaska. For these areas, bottomfast ice, as interpreted from the interferometric phase, shows high correlation with local bathymetry and in-situ ice auger and ground penetrating radar measurements. The technique is further used to track the seasonal evolution of bottomfast ice in the Kasegaluk Lagoon, Alaska, by identifying freeze-up progression and areas of liquid water throughout winter.

  12. Arctic Landfast Sea Ice 1953-1998, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The files in this data set contain landfast sea ice data (monthly means) gathered from both Russian Arctic and Antarctic Research Institute (AARI) and Canadian Ice...

  13. A network model for characterizing brine channels in sea ice

    Science.gov (United States)

    Lieblappen, Ross M.; Kumar, Deip D.; Pauls, Scott D.; Obbard, Rachel W.

    2018-03-01

    The brine pore space in sea ice can form complex connected structures whose geometry is critical in the governance of important physical transport processes between the ocean, sea ice, and surface. Recent advances in three-dimensional imaging using X-ray micro-computed tomography have enabled the visualization and quantification of the brine network morphology and variability. Using imaging of first-year sea ice samples at in situ temperatures, we create a new mathematical network model to characterize the topology and connectivity of the brine channels. This model provides a statistical framework where we can characterize the pore networks via two parameters, depth and temperature, for use in dynamical sea ice models. Our approach advances the quantification of brine connectivity in sea ice, which can help investigations of bulk physical properties, such as fluid permeability, that are key in both global and regional sea ice models.

  14. Collaborations for Arctic Sea Ice Information and Tools

    Science.gov (United States)

    Sheffield Guy, L.; Wiggins, H. V.; Turner-Bogren, E. J.; Rich, R. H.

    2017-12-01

    The dramatic and rapid changes in Arctic sea ice require collaboration across boundaries, including between disciplines, sectors, institutions, and between scientists and decision-makers. This poster will highlight several projects that provide knowledge to advance the development and use of sea ice knowledge. Sea Ice for Walrus Outlook (SIWO: https://www.arcus.org/search-program/siwo) - SIWO is a resource for Alaskan Native subsistence hunters and other interested stakeholders. SIWO provides weekly reports, during April-June, of sea ice conditions relevant to walrus in the northern Bering and southern Chukchi seas. Collaboration among scientists, Alaskan Native sea-ice experts, and the Eskimo Walrus Commission is fundamental to this project's success. Sea Ice Prediction Network (SIPN: https://www.arcus.org/sipn) - A collaborative, multi-agency-funded project focused on seasonal Arctic sea ice predictions. The goals of SIPN include: coordinate and evaluate Arctic sea ice predictions; integrate, assess, and guide observations; synthesize predictions and observations; and disseminate predictions and engage key stakeholders. The Sea Ice Outlook—a key activity of SIPN—is an open process to share and synthesize predictions of the September minimum Arctic sea ice extent and other variables. Other SIPN activities include workshops, webinars, and communications across the network. Directory of Sea Ice Experts (https://www.arcus.org/researchers) - ARCUS has undertaken a pilot project to develop a web-based directory of sea ice experts across institutions, countries, and sectors. The goal of the project is to catalyze networking between individual investigators, institutions, funding agencies, and other stakeholders interested in Arctic sea ice. Study of Environmental Arctic Change (SEARCH: https://www.arcus.org/search-program) - SEARCH is a collaborative program that advances research, synthesizes research findings, and broadly communicates the results to support

  15. Impact of melt ponds on Arctic sea ice in past and future climates as simulated by MPI-ESM

    Directory of Open Access Journals (Sweden)

    Erich Roeckner

    2012-09-01

    Full Text Available The impact of melt ponds on Arctic sea ice is estimated from model simulations of the historical and future climate. The simulations were performed with and without the effect of melt ponds on sea ice melt, respectively. In the last thirty years of the historical simulations, melt ponds develop predominantly in the continental shelf regions and in the Canadian archipelago. Accordingly, the ice albedo in these regions is systematically smaller than in the no-pond simulations, the sea ice melt is enhanced, and both the ice concentration and ice thickness during the September minimum are reduced. Open ponds decrease the ice albedo, resulting in enhanced ice melt, less sea ice and further pond growth. This positive feedback entails a more realistic representation of the seasonal cycle of Northern Hemisphere sea ice area. Under the premise that the observed decline of Arctic sea ice over the period of modern satellite observations is mainly externally driven and, therefore, potentially predictable, both model versions underestimate the decline in Arctic sea ice. This presupposition, however, is challenged by our model simulations which show a distinct modulation of the downward Arctic sea ice trends by multidecadal variability. At longer time scales, an impact of pond activation on Arctic sea ice trends is more evident: In the Representative Concentration Pathway scenario RCP45, the September sea ice is projected to vanish by the end of the 21st century. In the active-pond simulation, this happens up to two decades earlier than in the no-pond simulations.

  16. Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data

    Science.gov (United States)

    Gegiuc, Alexandru; Similä, Markku; Karvonen, Juha; Lensu, Mikko; Mäkynen, Marko; Vainio, Jouni

    2018-01-01

    For ship navigation in the Baltic Sea ice, parameters such as ice edge, ice concentration, ice thickness and degree of ridging are usually reported daily in manually prepared ice charts. These charts provide icebreakers with essential information for route optimization and fuel calculations. However, manual ice charting requires long analysis times, and detailed analysis of large areas (e.g. Arctic Ocean) is not feasible. Here, we propose a method for automatic estimation of the degree of ice ridging in the Baltic Sea region, based on RADARSAT-2 C-band dual-polarized (HH/HV channels) SAR texture features and sea ice concentration information extracted from Finnish ice charts. The SAR images were first segmented and then several texture features were extracted for each segment. Using the random forest method, we classified them into four classes of ridging intensity and compared them to the reference data extracted from the digitized ice charts. The overall agreement between the ice-chart-based degree of ice ridging and the automated results varied monthly, being 83, 63 and 81 % in January, February and March 2013, respectively. The correspondence between the degree of ice ridging reported in the ice charts and the actual ridge density was validated with data collected during a field campaign in March 2011. In principle the method can be applied to the seasonal sea ice regime in the Arctic Ocean.

  17. Sea-ice indicators of polar bear habitat

    Directory of Open Access Journals (Sweden)

    H. L. Stern

    2016-09-01

    Full Text Available Nineteen subpopulations of polar bears (Ursus maritimus are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology – the cycle of biological events – is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat on its way to the summer minimum or rises above the threshold (advance on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979–2014 mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from −3 to −9 days decade−1 in spring and from +3 to +9 days decade−1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of −7 to −19 days decade−1, with larger trends in the Barents Sea and central Arctic Basin. The June–October sea-ice concentration is declining in all regions at rates ranging from −1 to −9 percent decade−1. These sea-ice metrics (or indicators of habitat change were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in

  18. Sea-ice indicators of polar bear habitat

    Science.gov (United States)

    Stern, Harry L.; Laidre, Kristin L.

    2016-09-01

    Nineteen subpopulations of polar bears (Ursus maritimus) are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology - the cycle of biological events - is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat) on its way to the summer minimum or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979-2014) mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from -3 to -9 days decade-1 in spring and from +3 to +9 days decade-1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days) and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of -7 to -19 days decade-1, with larger trends in the Barents Sea and central Arctic Basin. The June-October sea-ice concentration is declining in all regions at rates ranging from -1 to -9 percent decade-1. These sea-ice metrics (or indicators of habitat change) were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in future reports.

  19. Synthesis of User Needs for Arctic Sea Ice Predictions

    Science.gov (United States)

    Wiggins, H. V.; Turner-Bogren, E. J.; Sheffield Guy, L.

    2017-12-01

    Forecasting Arctic sea ice on sub-seasonal to seasonal scales in a changing Arctic is of interest to a diverse range of stakeholders. However, sea ice forecasting is still challenging due to high variability in weather and ocean conditions and limits to prediction capabilities; the science needs for observations and modeling are extensive. At a time of challenged science funding, one way to prioritize sea ice prediction efforts is to examine the information needs of various stakeholder groups. This poster will present a summary and synthesis of existing surveys, reports, and other literature that examines user needs for sea ice predictions. The synthesis will include lessons learned from the Sea Ice Prediction Network (a collaborative, multi-agency-funded project focused on seasonal Arctic sea ice predictions), the Sea Ice for Walrus Outlook (a resource for Alaska Native subsistence hunters and coastal communities, that provides reports on weather and sea ice conditions), and other efforts. The poster will specifically compare the scales and variables of sea ice forecasts currently available, as compared to what information is requested by various user groups.

  20. Ice Draft and Ice Velocity Data in the Beaufort Sea, 1990-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set provides measurement of sea ice draft (m) and the movement of sea ice (cm/s) over the continental shelf of the Eastern Beaufort Sea. The data set spans...

  1. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    Science.gov (United States)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  2. Nonlinear threshold behavior during the loss of Arctic sea ice.

    Science.gov (United States)

    Eisenman, I; Wettlaufer, J S

    2009-01-06

    In light of the rapid recent retreat of Arctic sea ice, a number of studies have discussed the possibility of a critical threshold (or "tipping point") beyond which the ice-albedo feedback causes the ice cover to melt away in an irreversible process. The focus has typically been centered on the annual minimum (September) ice cover, which is often seen as particularly susceptible to destabilization by the ice-albedo feedback. Here, we examine the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. We show that although the ice-albedo feedback promotes the existence of multiple ice-cover states, the stabilizing thermodynamic effects of sea ice mitigate this when the Arctic Ocean is ice covered during a sufficiently large fraction of the year. These results suggest that critical threshold behavior is unlikely during the approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, we find that a critical threshold associated with the sudden loss of the remaining wintertime-only sea ice cover may be likely.

  3. National Ice Center Arctic Sea Ice Charts and Climatologies in Gridded Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Ice Center (NIC) is an inter-agency sea ice analysis and forecasting center comprised of the Department of Commerce/NOAA, the Department of...

  4. Biologically-Oriented Processes in the Coastal Sea Ice Zone of the White Sea

    Science.gov (United States)

    Melnikov, I. A.

    2002-12-01

    The annual advance and retreat of sea ice is a major physical determinant of spatial and temporal changes in the structure and function of marine coastal biological communities. Sea ice biological data obtained in the tidal zone of Kandalaksha Gulf (White Sea) during 1996-2001 period will be presented. Previous observations in this area were mainly conducted during the ice-free summer season. However, there is little information on the ice-covered winter season (6-7 months duration), and, especially, on the sea-ice biology in the coastal zone within tidal regimes. During the January-May period time-series observations were conducted on transects along shorelines with coastal and fast ice. Trends in the annual extent of sea ice showed significant impacts on ice-associated biological communities. Three types of sea ice impact on kelps, balanoides, littorinas and amphipods are distinguished: (i) positive, when sea ice protects these populations from grinding (ii) negative, when ice grinds both fauna and flora, and (iii) a combined effect, when fast ice protects, but anchored ice grinds plant and animals. To understand the full spectrum of ecological problems caused by pollution on the coastal zone, as well as the problems of sea ice melting caused by global warming, an integrated, long-term study of the physical, chemical, and biological processes is needed.

  5. SEDNA: Sea ice Experiment - Dynamic Nature of the Arctic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Ice Experiment - Dynamic Nature of the Arctic (SEDNA) is an international collaborative effort to improve the understanding of the interaction between sea...

  6. Controls on Arctic sea ice from first-year and multi-year ice survival rates

    Science.gov (United States)

    Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.

    2009-12-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi-year (MY) ice. The transition to an Arctic that is populated by thinner first-year (FY) sea ice has important implications for future trends in area and volume. We develop a reduced model for Arctic sea ice with which we investigate how the survivability of FY and MY ice control various aspects of the sea-ice system. We demonstrate that Arctic sea-ice area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-ice in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY ice. This model, used in concert with a sea-ice simulation that traces FY and MY ice areas to estimate the survival rates, reveals that small trends in the ice survival rates explain the decline in total Arctic ice area, and the relatively larger loss of MY ice area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for ice area (~ 1 year) implies that Arctic ice area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for ice volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in ice volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of ice area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September ice area and volume will be

  7. Constraining the parameters of the EAP sea ice rheology from satellite observations and discrete element model

    Science.gov (United States)

    Tsamados, Michel; Heorton, Harry; Feltham, Daniel; Muir, Alan; Baker, Steven

    2016-04-01

    The new elastic-plastic anisotropic (EAP) rheology that explicitly accounts for the sub-continuum anisotropy of the sea ice cover has been implemented into the latest version of the Los Alamos sea ice model CICE. The EAP rheology is widely used in the climate modeling scientific community (i.e. CPOM stand alone, RASM high resolution regional ice-ocean model, MetOffice fully coupled model). Early results from sensitivity studies (Tsamados et al, 2013) have shown the potential for an improved representation of the observed main sea ice characteristics with a substantial change of the spatial distribution of ice thickness and ice drift relative to model runs with the reference visco-plastic (VP) rheology. The model contains one new prognostic variable, the local structure tensor, which quantifies the degree of anisotropy of the sea ice, and two parameters that set the time scale of the evolution of this tensor. Observations from high resolution satellite SAR imagery as well as numerical simulation results from a discrete element model (DEM, see Wilchinsky, 2010) have shown that these individual floes can organize under external wind and thermal forcing to form an emergent isotropic sea ice state (via thermodynamic healing, thermal cracking) or an anisotropic sea ice state (via Coulombic failure lines due to shear rupture). In this work we use for the first time in the context of sea ice research a mathematical metric, the Tensorial Minkowski functionals (Schroeder-Turk, 2010), to measure quantitatively the degree of anisotropy and alignment of the sea ice at different scales. We apply the methodology on the GlobICE Envisat satellite deformation product (www.globice.info), on a prototype modified version of GlobICE applied on Sentinel-1 Synthetic Aperture Radar (SAR) imagery and on the DEM ice floe aggregates. By comparing these independent measurements of the sea ice anisotropy as well as its temporal evolution against the EAP model we are able to constrain the

  8. Optical properties of sea ice doped with black carbon – an experimental and radiative-transfer modelling comparison

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2017-12-01

    Full Text Available Radiative-transfer calculations of the light reflectivity and extinction coefficient in laboratory-generated sea ice doped with and without black carbon demonstrate that the radiative-transfer model TUV-snow can be used to predict the light reflectance and extinction coefficient as a function of wavelength. The sea ice is representative of first-year sea ice containing typical amounts of black carbon and other light-absorbing impurities. The experiments give confidence in the application of the model to predict albedo of other sea ice fabrics. Sea ices,  ∼  30 cm thick, were generated in the Royal Holloway Sea Ice Simulator ( ∼  2000 L tanks with scattering cross sections measured between 0.012 and 0.032 m2 kg−1 for four ices. Sea ices were generated with and without  ∼  5 cm upper layers containing particulate black carbon. Nadir reflectances between 0.60 and 0.78 were measured along with extinction coefficients of 0.1 to 0.03 cm−1 (e-folding depths of 10–30 cm at a wavelength of 500 nm. Values were measured between light wavelengths of 350 and 650 nm. The sea ices generated in the Royal Holloway Sea Ice Simulator were found to be representative of natural sea ices. Particulate black carbon at mass ratios of  ∼  75,  ∼  150 and  ∼  300 ng g−1 in a 5 cm ice layer lowers the albedo to 97, 90 and 79 % of the reflectivity of an undoped clean sea ice (at a wavelength of 500 nm.

  9. Optical properties of sea ice doped with black carbon - an experimental and radiative-transfer modelling comparison

    Science.gov (United States)

    Marks, Amelia A.; Lamare, Maxim L.; King, Martin D.

    2017-12-01

    Radiative-transfer calculations of the light reflectivity and extinction coefficient in laboratory-generated sea ice doped with and without black carbon demonstrate that the radiative-transfer model TUV-snow can be used to predict the light reflectance and extinction coefficient as a function of wavelength. The sea ice is representative of first-year sea ice containing typical amounts of black carbon and other light-absorbing impurities. The experiments give confidence in the application of the model to predict albedo of other sea ice fabrics. Sea ices, ˜ 30 cm thick, were generated in the Royal Holloway Sea Ice Simulator ( ˜ 2000 L tanks) with scattering cross sections measured between 0.012 and 0.032 m2 kg-1 for four ices. Sea ices were generated with and without ˜ 5 cm upper layers containing particulate black carbon. Nadir reflectances between 0.60 and 0.78 were measured along with extinction coefficients of 0.1 to 0.03 cm-1 (e-folding depths of 10-30 cm) at a wavelength of 500 nm. Values were measured between light wavelengths of 350 and 650 nm. The sea ices generated in the Royal Holloway Sea Ice Simulator were found to be representative of natural sea ices. Particulate black carbon at mass ratios of ˜ 75, ˜ 150 and ˜ 300 ng g-1 in a 5 cm ice layer lowers the albedo to 97, 90 and 79 % of the reflectivity of an undoped clean sea ice (at a wavelength of 500 nm).

  10. Calcium carbonate as ikaite crystals in Antarctic sea ice

    Science.gov (United States)

    Dieckmann, Gerhard S.; Nehrke, Gernot; Papadimitriou, Stathys; Göttlicher, Jörg; Steininger, Ralph; Kennedy, Hilary; Wolf-Gladrow, Dieter; Thomas, David N.

    2008-04-01

    We report on the discovery of the mineral ikaite (CaCO3.6H2O) in sea-ice from the Southern Ocean. The precipitation of CaCO3 during the freezing of seawater has previously been predicted from thermodynamic modelling, indirect measurements, and has been documented in artificial sea ice during laboratory experiments but has not been reported for natural sea-ice. It is assumed that CaCO3 formation in sea ice may be important for a sea ice-driven carbon pump in ice-covered oceanic waters. Without direct evidence of CaCO3 precipitation in sea ice, its role in this and other processes has remained speculative. The discovery of CaCO3.6H2O crystals in natural sea ice provides the necessary evidence for the evaluation of previous assumptions and lays the foundation for further studies to help elucidate the role of ikaite in the carbon cycle of the seasonally sea ice-covered regions

  11. Complex bounds and microstructural recovery from measurements of sea ice permittivity

    International Nuclear Information System (INIS)

    Gully, A.; Backstrom, L.G.E.; Eicken, H.; Golden, K.M.

    2007-01-01

    Sea ice is a porous composite of pure ice with brine, air, and salt inclusions. The polar sea ice packs play a key role in the earth's ocean-climate system, and they host robust algal and bacterial communities that support the Arctic and Antarctic ecosystems. Monitoring the sea ice packs on global or regional scales is an increasingly important problem, typically involving the interaction of an electromagnetic wave with sea ice. In the quasistatic regime where the wavelength is much longer than the composite microstructural scale, the electromagnetic behavior is characterized by the effective complex permittivity tensor ε*. In assessing the impact of climate change on the polar sea ice covers, current satellites and algorithms can predict ice extent, but the thickness distribution remains an elusive, yet most important feature. In recent years, electromagnetic induction devices using low frequency waves have been deployed on ships, helicopters and planes to obtain thickness data. Here we compare two sets of theoretical bounds to extensive outdoor tank and in situ field data on ε* at 50MHz taken in the Arctic and Antarctic. The sea ice is assumed to be a two phase composite of ice and brine with known constituent permittivities. The first set of bounds assumes only knowledge of the brine volume fraction or porosity, and the second set further assumes statistical isotropy of the microstructure. We obtain excellent agreement between theory and experiment, and are able to observe the apparent violation of the isotropic bounds as the vertically oriented microstructure becomes increasingly connected for higher porosities. Moreover, these bounds are inverted to obtain estimates of the porosity from the measurements of ε*. We find that the temporal variations of the reconstructed porosity, which is directly related to temperature, closely follow the actual behavior

  12. Arctic sea ice melt pond fractal dimension - explained

    Science.gov (United States)

    Popovic, Predrag

    As Arctic sea ice starts to melt in the summer, pools of melt water quickly form on its surface, significantly changing its albedo, and impacting its subsequent evolution. These melt ponds often form complex geometric shapes. One characteristic of their shape, the fractal dimension of the pond boundaries, D, when plotted as a function of pond size, has been shown to transition between the two fundamental limits of D = 1 and D = 2 at some critical pond size. Here, we provide an explanation for this behavior. First, using aerial photographs, we show how this fractal transition curve changes with time, and show that there is a qualitative difference in the pond shape as ice transitions from impermeable to permeable. Namely, while ice is impermeable, maximum fractal dimension is less than 2, whereas after it becomes permeable, maximum fractal dimension becomes very close to 2. We then show how the fractal dimension of a collection of overlapping circles placed randomly on a plane also transitions from D = 1 to D = 2 at a size equal to the average size of a single circle. We, therefore, conclude that this transition is a simple geometric consequence of regular shapes connecting. The one physical parameter that can be extracted from the fractal transition curve is the length scale at which transition occurs. We provide a possible explanation for this length scale by noting that the flexural wavelength of the ice poses a fundamental limit on the size of melt ponds on permeable ice. If this is true, melt ponds could be used as a proxy for ice thickness.

  13. Sea ice dynamics influence halogen deposition to Svalbard

    Directory of Open Access Journals (Sweden)

    A. Spolaor

    2013-10-01

    Full Text Available Sea ice is an important parameter in the climate system and its changes impact upon the polar albedo and atmospheric and oceanic circulation. Iodine (I and bromine (Br have been measured in a shallow firn core drilled at the summit of the Holtedahlfonna glacier (Northwest Spitsbergen, Svalbard. Changing I concentrations can be linked to the March–May maximum sea ice extension. Bromine enrichment, indexed to the Br / Na sea water mass ratio, appears to be influenced by changes in the seasonal sea ice area. I is emitted from marine biota and so the retreat of March–May sea ice coincides with enlargement of the open-ocean surface which enhances marine primary production and consequent I emission. The observed Br enrichment could be explained by greater Br emissions during the Br explosions that have been observed to occur mainly above first year sea ice during the early springtime. In this work we present the first comparison between halogens in surface snow and Arctic sea ice extension. Although further investigation is required to characterize potential depositional and post-depositional processes, these preliminary findings suggest that I and Br can be linked to variability in the spring maximum sea ice extension and seasonal sea ice surface area.

  14. Nudging the Arctic Ocean to quantify Arctic sea ice feedbacks

    Science.gov (United States)

    Dekker, Evelien; Severijns, Camiel; Bintanja, Richard

    2017-04-01

    It is well-established that the Arctic is warming 2 to 3 time faster than rest of the planet. One of the great uncertainties in climate research is related to what extent sea ice feedbacks amplify this (seasonally varying) Arctic warming. Earlier studies have analyzed existing climate model output using correlations and energy budget considerations in order to quantify sea ice feedbacks through indirect methods. From these analyses it is regularly inferred that sea ice likely plays an important role, but details remain obscure. Here we will take a different and a more direct approach: we will keep the sea ice constant in a sensitivity simulation, using a state-of -the-art climate model (EC-Earth), applying a technique that has never been attempted before. This experimental technique involves nudging the temperature and salinity of the ocean surface (and possibly some layers below to maintain the vertical structure and mixing) to a predefined prescribed state. When strongly nudged to existing (seasonally-varying) sea surface temperatures, ocean salinity and temperature, we force the sea ice to remain in regions/seasons where it is located in the prescribed state, despite the changing climate. Once we obtain fixed' sea ice, we will run a future scenario, for instance 2 x CO2 with and without prescribed sea ice, with the difference between these runs providing a measure as to what extent sea ice contributes to Arctic warming, including the seasonal and geographical imprint of the effects.

  15. Caisson structures in the Beaufort Sea 1982-1990 : characteristics, instrumentation and ice loads

    Energy Technology Data Exchange (ETDEWEB)

    Timco, G.W.; Johnston, M.E. [National Research Council of Canada, Ottawa, ON (Canada). Canadian Hydraulics Centre

    2002-11-01

    This report presents a comprehensive overview of the instrumentation, characteristics and measured ice loads on the caisson structures used for exploratory drilling in the Canadian Beaufort Sea during the 1970s and 1980s. The focus was placed on the Tarsiut Caissons, the Single Steel Drilling Caisson (SSDC), the Caisson Retained Island (CRI), and the Molikpaq. Details on the ice-load measuring instrumentation were provided for each of the drill sites featuring an ice-load measurement program. The results of global loads on the structures were presented as a Line Load (global load per width of the structure) and the Global Pressure (line load per ice thickness). The authors showed that global loads were a function of the ice macrostructure (level first-year sea ice, multi-year ice, first-year ridges, hummock fields, isolated floes). A general increase in the Line Load with increasing ice thickness was revealed through analysis. There was considerable scatter in the data, and the authors explained it by examining the failure mode of the ice during the interaction process. 36 refs., 4 tabs., 57 figs.

  16. Sea-level and solid-Earth deformation feedbacks in ice sheet modelling

    Science.gov (United States)

    Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk

    2014-05-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  17. Aircraft Surveys of the Beaufort Sea Seasonal Ice Zone

    Science.gov (United States)

    Morison, J.

    2016-02-01

    The Seasonal Ice Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. The increasing size and changing air-ice-ocean properties of the SIZ are central to recent reductions in Arctic sea ice extent. The changes in the interplay among the atmosphere, ice, and ocean require a systematic SIZ observational effort of coordinated atmosphere, ice, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort Sea SIZ aboard Coast Guard C-130H aircraft from USCG Air Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the sea surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, ice character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the ice edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.

  18. Rapid formation of a sea ice barrier east of Svalbard

    Science.gov (United States)

    Nghiem, S. V.; van Woert, M. L.; Neumann, G.

    2005-11-01

    Daily SeaWinds scatterometer images acquired by the QuikSCAT satellite show an elongated sea ice feature that formed very rapidly (˜1-2 days) in November 2001 east of Svalbard over the Barents Sea. This sea ice structure, called "the Svalbard sea ice barrier," spanning approximately 10° in longitude and 2° in latitude, restricts the sea route and poses a significant navigation hazard. The secret of its formation appears to lie in the bottom of the sea: A comparison between bathymetry from the International Bathymetric Chart of the Arctic Ocean data and the pattern of sea ice formation from scatterometer data reveals that the sea ice barrier conforms well with and stretches above a deep elongated channel connecting the Franz Josef-Victoria Trough to the Hinlopen Basin between Svalbard and Franz Josef Land. Historic hydrographic data from this area indicate that this sea channel contains cold Arctic water less than 50 m below the surface. Strong and persistent cold northerly winds force strong heat loss from this shallow surface layer, leading to the rapid formation of the sea ice barrier. Heat transfer rates estimated from European Centre for Medium-Range Weather Forecasts temperature and wind data over this region suggest that the surface water along the deep channel can be rapidly cooled to the freezing point. Scatterometer results in 1999-2003 show that sea ice forms in this area between October and December. Understanding the ice formation mechanisms helps to select appropriate locations for deployment of buoys measuring wind and air-sea temperature profile and to facilitate ice monitoring, modeling, and forecasting.

  19. Complex yet translucent: the optical properties of sea ice

    International Nuclear Information System (INIS)

    Perovich, Donald K.

    2003-01-01

    Sea ice is a naturally occurring material with an intricate and highly variable structure consisting of ice platelets, brine pockets, air bubbles, and precipitated salt crystals. The optical properties of sea ice are directly dependent on this ice structure. Because sea ice is a material that exists at its salinity determined freezing point, its structure and optical properties are significantly affected by small changes in temperature. Understanding the interaction of sunlight with sea ice is important to a diverse array of scientific problems, including those in polar climatology. A key optical parameter for climatological studies is the albedo, the fraction of the incident sunlight that is reflected. The albedo of sea ice is quite sensitive to surface conditions. The presence of a snow cover enhances the albedo, while surface meltwater reduces the albedo. Radiative transfer in sea ice is a combination of absorption and scattering. Differences in the magnitude of sea ice optical properties are ascribable primarily to differences in scattering, while spectral variations are mainly a result of absorption. Physical changes that enhance scattering, such as the formation of air bubbles due to brine drainage, result in more light reflection and less transmission

  20. Radiative transfer in atmosphere-sea ice-ocean system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  1. Quantifying uncertainty and sensitivity in sea ice models

    Energy Technology Data Exchange (ETDEWEB)

    Urrego Blanco, Jorge Rolando [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hunke, Elizabeth Clare [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urban, Nathan Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-15

    The Los Alamos Sea Ice model has a number of input parameters for which accurate values are not always well established. We conduct a variance-based sensitivity analysis of hemispheric sea ice properties to 39 input parameters. The method accounts for non-linear and non-additive effects in the model.

  2. Assessing, understanding, and conveying the state of the Arctic sea ice cover

    Science.gov (United States)

    Perovich, D. K.; Richter-Menge, J. A.; Rigor, I.; Parkinson, C. L.; Weatherly, J. W.; Nghiem, S. V.; Proshutinsky, A.; Overland, J. E.

    2003-12-01

    Recent studies indicate that the Arctic sea ice cover is undergoing significant climate-induced changes, affecting both its extent and thickness. Satellite-derived estimates of Arctic sea ice extent suggest a reduction of about 3% per decade since 1978. Ice thickness data from submarines suggest a net thinning of the sea ice cover since 1958. Changes (including oscillatory changes) in atmospheric circulation and the thermohaline properties of the upper ocean have also been observed. These changes impact not only the Arctic, but the global climate system and are likely accelerated by such processes as the ice-albedo feedback. It is important to continue and expand long-term observations of these changes to (a) improve the fundamental understanding of the role of the sea ice cover in the global climate system and (b) use the changes in the sea ice cover as an early indicator of climate change. This is a formidable task that spans a range of temporal and spatial scales. Fortunately, there are numerous tools that can be brought to bear on this task, including satellite remote sensing, autonomous buoys, ocean moorings, field campaigns and numerical models. We suggest the integrated and coordinated use of these tools during the International Polar Year to monitor the state of the Arctic sea ice cover and investigate its governing processes. For example, satellite remote sensing provides the large-scale snapshots of such basic parameters as ice distribution, melt zone, and cloud fraction at intervals of half a day to a week. Buoys and moorings can contribute high temporal resolution and can measure parameters currently unavailable from space including ice thickness, internal ice temperature, and ocean temperature and salinity. Field campaigns can be used to explore, in detail, the processes that govern the ice cover. Numerical models can be used to assess the character of the changes in the ice cover and predict their impacts on the rest of the climate system. This work

  3. Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets

    Science.gov (United States)

    Deconto, R. M.; Pollard, D.

    2017-12-01

    New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100

  4. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    Science.gov (United States)

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  5. Extreme Low Light Requirement for Algae Growth Underneath Sea Ice: A Case Study From Station Nord, NE Greenland

    Science.gov (United States)

    Hancke, Kasper; Lund-Hansen, Lars C.; Lamare, Maxim L.; Højlund Pedersen, Stine; King, Martin D.; Andersen, Per; Sorrell, Brian K.

    2018-02-01

    Microalgae colonizing the underside of sea ice in spring are a key component of the Arctic foodweb as they drive early primary production and transport of carbon from the atmosphere to the ocean interior. Onset of the spring bloom of ice algae is typically limited by the availability of light, and the current consensus is that a few tens-of-centimeters of snow is enough to prevent sufficient solar radiation to reach underneath the sea ice. We challenge this consensus, and investigated the onset and the light requirement of an ice algae spring bloom, and the importance of snow optical properties for light penetration. Colonization by ice algae began in May under >1 m of first-year sea ice with ˜1 m thick snow cover on top, in NE Greenland. The initial growth of ice algae began at extremely low irradiance (automated high-frequency temperature profiles. We propose that changes in snow optical properties, caused by temperature-driven snow metamorphosis, was the primary driver for allowing sufficient light to penetrate through the thick snow and initiate algae growth below the sea ice. This was supported by radiative-transfer modeling of light attenuation. Implications are an earlier productivity by ice algae in Arctic sea ice than recognized previously.

  6. Statistical Analyses of High-Resolution Aircraft and Satellite Observations of Sea Ice: Applications for Improving Model Simulations

    Science.gov (United States)

    Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.

    2012-12-01

    Satellite-derived estimates of ice thickness and observations of ice extent over the last decade point to a downward trend in the basin-scale ice volume of the Arctic Ocean. This loss has broad-ranging impacts on the regional climate and ecosystems, as well as implications for regional infrastructure, marine navigation, national security, and resource exploration. New observational datasets at small spatial and temporal scales are now required to improve our understanding of physical processes occurring within the ice pack and advance parameterizations in the next generation of numerical sea-ice models. High-resolution airborne and satellite observations of the sea ice are now available at meter-scale resolution or better that provide new details on the properties and morphology of the ice pack across basin scales. For example the NASA IceBridge airborne campaign routinely surveys the sea ice of the Arctic and Southern Oceans with an advanced sensor suite including laser and radar altimeters and digital cameras that together provide high-resolution measurements of sea ice freeboard, thickness, snow depth and lead distribution. Here we present statistical analyses of the ice pack primarily derived from the following IceBridge instruments: the Digital Mapping System (DMS), a nadir-looking, high-resolution digital camera; the Airborne Topographic Mapper, a scanning lidar; and the University of Kansas snow radar, a novel instrument designed to estimate snow depth on sea ice. Together these instruments provide data from which a wide range of sea ice properties may be derived. We provide statistics on lead distribution and spacing, lead width and area, floe size and distance between floes, as well as ridge height, frequency and distribution. The goals of this study are to (i) identify unique statistics that can be used to describe the characteristics of specific ice regions, for example first-year/multi-year ice, diffuse ice edge/consolidated ice pack, and convergent

  7. Polarimetric C-Band SAR Observations of Sea Ice in the Greenland Sea

    DEFF Research Database (Denmark)

    Thomsen, Bjørn Bavnehøj; Nghiem, S.V.; Kwok, R.

    1998-01-01

    The fully polarimetric EMISAR acquired C-band radar signatures of sea ice in the Greenland Sea during a campaign in March 1995. The authors present maps of polarimetric signatures over an area containing various kinds of ice and discuss the use of polarimetric SAR for identification of ice types...

  8. Severnaya Zemlya, arctic Russia: a nucleation area for Kara Sea ice sheets during the Middle to Late Quaternary

    DEFF Research Database (Denmark)

    Möller, Per; Lubinski, David J.; Ingólfsson, Ólafur

    2006-01-01

    Quaternary glacial stratigraphy and relative sea-level changes reveal at least four expansions of the Kara Sea ice sheet over the Severnaya Zemlya Archipelago at 79°N in the Russian Arctic, as indicated from tills interbedded with marine sediments, exposed in stratigraphic superposition, and from......-5e and MIS 5d-3. The MIS 6-5e event, associated with the high marine limit, implies ice-sheet thickness of >2000 m only 200 km from the deep Arctic Ocean, consistent with published evidence of ice grounding at ~1000 m water depth in the central Arctic Ocean. Till fabrics and glacial tectonics record...... repeated expansions of local ice caps exclusively, suggesting wet-based ice cap advance followed by cold-based regional ice-sheet expansion. Local ice caps over highland sites along the perimeter of the shallow Kara Sea, including the Byrranga Mountains, appear to have repeatedly fostered initiation...

  9. Sea Ice Drift Monitoring in the Bohai Sea Based on GF4 Satellite

    Science.gov (United States)

    Zhao, Y.; Wei, P.; Zhu, H.; Xing, B.

    2018-04-01

    The Bohai Sea is the inland sea with the highest latitude in China. In winter, the phenomenon of freezing occurs in the Bohai Sea due to frequent cold wave influx. According to historical records, there have been three serious ice packs in the Bohai Sea in the past 50 years which caused heavy losses to our economy. Therefore, it is of great significance to monitor the drift of sea ice and sea ice in the Bohai Sea. The GF4 image has the advantages of short imaging time and high spatial resolution. Based on the GF4 satellite images, the three methods of SIFT (Scale invariant feature - the transform and Scale invariant feature transform), MCC (maximum cross-correlation method) and sift combined with MCC are used to monitor sea ice drift and calculate the speed and direction of sea ice drift, the three calculation results are compared and analyzed by using expert interpretation and historical statistical data to carry out remote sensing monitoring of sea ice drift results. The experimental results show that the experimental results of the three methods are in accordance with expert interpretation and historical statistics. Therefore, the GF4 remote sensing satellite images have the ability to monitor sea ice drift and can be used for drift monitoring of sea ice in the Bohai Sea.

  10. Summer Arctic sea ice albedo in CMIP5 models

    OpenAIRE

    Koenigk, T.; Devasthale, A.; Karlsson, K.-G.

    2014-01-01

    Spatial and temporal variations of summer sea ice albedo over the Arctic are analyzed using an ensemble of historical CMIP5 model simulations. The results are compared to the CLARA-SAL product that is based on long-term satellite observations. The summer sea ice albedo varies substantially among CMIP5 models, and many models show large biases compared to the CLARA-SAL product. Single summer months show an extreme spread of ice albedo among models; July values vary between 0....

  11. Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge.

    Science.gov (United States)

    Brierley, Andrew S; Fernandes, Paul G; Brandon, Mark A; Armstrong, Frederick; Millard, Nicholas W; McPhail, Steven D; Stevenson, Peter; Pebody, Miles; Perrett, James; Squires, Mark; Bone, Douglas G; Griffiths, Gwyn

    2002-03-08

    We surveyed Antarctic krill (Euphausia superba) under sea ice using the autonomous underwater vehicle Autosub-2. Krill were concentrated within a band under ice between 1 and 13 kilometers south of the ice edge. Within this band, krill densities were fivefold greater than that of open water. The under-ice environment has long been considered an important habitat for krill, but sampling difficulties have previously prevented direct observations under ice over the scale necessary for robust krill density estimation. Autosub-2 enabled us to make continuous high-resolution measurements of krill density under ice reaching 27 kilometers beyond the ice edge.

  12. Temporal dynamics of ikaite in experimental sea ice

    OpenAIRE

    S. Rysgaard; F. Wang; R. J. Galley; R. Grimm; D. Notz; M. Lemes; N.-X. Geilfus; A. Chaulk; A. A. Hare; O. Crabeck; B. G. T. Else; K. Campbell; L. L. Sørensen; J. Sievers; T. Papakyriakou

    2014-01-01

    Ikaite (CaCO3 · 6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air–sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution i...

  13. Sea ice contribution to the air-sea CO(2) exchange in the Arctic and Southern Oceans

    DEFF Research Database (Denmark)

    Rysgaard...[], Søren; Bendtsen, Jørgen; Delille, B.

    2011-01-01

    Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO(2) and the subsequent effect on air-sea CO(2) exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air......-sea CO(2) exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO(2) uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO(2) uptake in ice-free polar seas. This sea......-sea CO(2) exchange during winter, and (3) release of CO(2)-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO(2) drawdown during primary production in sea ice and surface oceanic waters....

  14. Linescan camera evaluation of SSM/I 85.5 GHz sea ice retrieval

    DEFF Research Database (Denmark)

    Garrity, Caren; Lubin, Dan; Kern, Stefan

    2002-01-01

    misclassify clouds over open water as sea ice, and is therefore unreliable for locating the sea ice edge. The best algorithm for locating the sea ice edge is found to be the SEA LION algorithm, which explicitly uses meteorological reanalysis data to correct for atmospheric contamination. For total sea ice...

  15. Reflection and transmission of irradiance by snow and sea ice in the central Arctic Ocean in summer 2010

    Directory of Open Access Journals (Sweden)

    Ruibo Lei

    2012-03-01

    Full Text Available Reflection and transmission of irradiance by the combined snow and sea ice layer were measured at an ice camp (ca. 10 days and several short-term stations (ca. 2 h established in the western sector of the Arctic Ocean above 80°N during the 2010 summer. These measurements were made with an intention to quantify the apparent optical properties of snow and sea ice, and to evaluate their roles in the mass balance of snow-covered sea ice in the High Arctic. The integrated 350–920 nm albedo ranged from 0.54 to 0.88, and was primarily dependent on the geophysical properties of snow, but not those of sea ice. This implies that all snow cover was still optically thick, even though snow melting had commenced at all measurement sites. For sea ice about 1.66 m thick and covered by 2.5–8.5 cm of snow at the ice camp, the integrated 350–920 nm transmittance ranged from 0.017 to 0.065. Rapid snow melting resulting from an event of slight drizzle doubled the available solar irradiance under the ice (from ca. 3.6 to 7.2 W·m−2, which further accelerated ice-bottom decay. During the measurement at the camp, the temporally averaged incident solar irradiance at 320–950 nm was 110.6±33.6 W·m−2, 29.2±2.9% of which was absorbed by snow and sea ice and utilized to melt snow and sea ice. The melting of snow and sea ice had a distinctly greater effect on the spectral reflection and transmission for the near-infrared spectrum than for the ultraviolet and visible spectra.

  16. Victoria Land, Ross Sea, and Ross Ice Shelf, Antarctica

    Science.gov (United States)

    2002-01-01

    On December 19, 2001, MODIS acquired data that produced this image of Antarctica's Victoria Land, Ross Ice Shelf, and the Ross Sea. The coastline that runs up and down along the left side of the image denotes where Victoria Land (left) meets the Ross Ice Shelf (right). The Ross Ice Shelf is the world's largest floating body of ice, approximately the same size as France. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  17. Expanding Antarctic Sea Ice: Anthropogenic or Natural Variability?

    Science.gov (United States)

    Bitz, C. M.

    2016-12-01

    Antarctic sea ice extent has increased over the last 36 years according to the satellite record. Concurrent with Antarctic sea-ice expansion has been broad cooling of the Southern Ocean sea-surface temperature. Not only are Southern Ocean sea ice and SST trends at odds with expectations from greenhouse gas-induced warming, the trend patterns are not reproduced in historical simulations with comprehensive global climate models. While a variety of different factors may have contributed to the observed trends in recent decades, we propose that it is atmospheric circulation changes - and the changes in ocean circulation they induce - that have emerged as the most likely cause of the observed Southern Ocean sea ice and SST trends. I will discuss deficiencies in models that could explain their incorrect response. In addition, I will present results from a series of experiments where the Antarctic sea ice and ocean are forced by atmospheric perturbations imposed within a coupled climate model. Figure caption: Linear trends of annual-mean SST (left) and annual-mean sea-ice concentration (right) over 1980-2014. SST is from NOAA's Optimum Interpolation SST dataset (version 2; Reynolds et al. 2002). Sea-ice concentration is from passive microwave observations using the NASA Team algorithm. Only the annual means are shown here for brevity and because the signal to noise is greater than in the seasonal means. Figure from Armour and Bitz (2015).

  18. Gypsum and hydrohalite dynamics in sea ice brines

    Science.gov (United States)

    Butler, Benjamin M.; Papadimitriou, Stathys; Day, Sarah J.; Kennedy, Hilary

    2017-09-01

    Mineral authigenesis from their dissolved sea salt matrix is an emergent feature of sea ice brines, fuelled by dramatic equilibrium solubility changes in the large sub-zero temperature range of this cryospheric system on the surface of high latitude oceans. The multi-electrolyte composition of seawater results in the potential for several minerals to precipitate in sea ice, each affecting the in-situ geochemical properties of the sea ice brine system, the habitat of sympagic biota. The solubility of two of these minerals, gypsum (CaSO4 ·2H2O) and hydrohalite (NaCl · 2H2O), was investigated in high ionic strength multi-electrolyte solutions at below-zero temperatures to examine their dissolution-precipitation dynamics in the sea ice brine system. The gypsum dynamics in sea ice were found to be highly dependent on the solubilities of mirabilite and hydrohalite between 0.2 and - 25.0 ° C. The hydrohalite solubility between - 14.3 and - 25.0 ° C exhibits a sharp change between undersaturated and supersaturated conditions, and, thus, distinct temperature fields of precipitation and dissolution in sea ice, with saturation occurring at - 22.9 ° C. The sharp changes in hydrohalite solubility at temperatures ⩽-22.9 °C result from the formation of an ice-hydrohalite aggregate, which alters the structural properties of brine inclusions in cold sea ice. Favourable conditions for gypsum precipitation in sea ice were determined to occur in the region of hydrohalite precipitation below - 22.9 ° C and in conditions of metastable mirabilite supersaturation above - 22.9 ° C (investigated at - 7.1 and - 8.2 ° C here) but gypsum is unlikely to persist once mirabilite forms at these warmer (>-22.9 °C) temperatures. The dynamics of hydrohalite in sea ice brines based on its experimental solubility were consistent with that derived from thermodynamic modelling (FREZCHEM code) but the gypsum dynamics derived from the code were inconsistent with that indicated by its

  19. Sea ice algal biomass and physiology in the Amundsen Sea, Antarctica

    Directory of Open Access Journals (Sweden)

    Kevin R. Arrigo

    2014-07-01

    Full Text Available Abstract Sea ice covers approximately 5% of the ocean surface and is one of the most extensive ecosystems on the planet. The microbial communities that live in sea ice represent an important food source for numerous organisms at a time of year when phytoplankton in the water column are scarce. Here we describe the distributions and physiology of sea ice microalgae in the poorly studied Amundsen Sea sector of the Southern Ocean. Microalgal biomass was relatively high in sea ice in the Amundsen Sea, due primarily to well developed surface communities that would have been replenished with nutrients during seawater flooding of the surface as a result of heavy snow accumulation. Elevated biomass was also occasionally observed in slush, interior, and bottom ice microhabitats throughout the region. Sea ice microalgal photophysiology appeared to be controlled by the availability of both light and nutrients. Surface communities used an active xanthophyll cycle and effective pigment sunscreens to protect themselves from harmful ultraviolet and visible radiation. Acclimation to low light microhabitats in sea ice was facilitated by enhanced pigment content per cell, greater photosynthetic accessory pigments, and increased photosynthetic efficiency. Photoacclimation was especially effective in the bottom ice community, where ready access to nutrients would have allowed ice microalgae to synthesize a more efficient photosynthetic apparatus. Surprisingly, the pigment-detected prymnesiophyte Phaeocystis antarctica was an important component of surface communities (slush and surface ponds where its acclimation to high light may precondition it to seed phytoplankton blooms after the sea ice melts in spring.

  20. Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data

    Science.gov (United States)

    Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie

    2016-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.

  1. Improving Arctic Sea Ice Edge Forecasts by Assimilating High Horizontal Resolution Sea Ice Concentration Data into the US Navy’s Ice Forecast Systems

    Science.gov (United States)

    2016-06-13

    1735-2015 © Author(s) 2015. CC Attribution 3.0 License. Improving Arctic sea ice edge forecasts by assimilating high horizontal resolution sea ice...concentration data into the US Navy’s ice forecast systems P. G. Posey1, E. J. Metzger1, A. J. Wallcraft1, D. A. Hebert1, R. A. Allard1, O. M. Smedstad2...error within the US Navy’s operational sea ice forecast systems gained by assimilating high horizontal resolution satellite-derived ice concentration

  2. In Situ Experimental Study of the Friction of Sea Ice and Steel on Sea Ice

    Directory of Open Access Journals (Sweden)

    Qingkai Wang

    2018-04-01

    Full Text Available The kinetic coefficient of friction μk was measured for sea ice, stainless steel, and coated steel sliding on a natural sea ice cover. The effects of normal stress (3.10–8.11 kPa, ice columnar grain orientation (vertical and parallel to the sliding direction, sliding velocity (0.02–2.97 m·s–1, and contact material were investigated. Air temperature was higher than −5.0 °C for the test duration. The results showed a decline of μk with increasing normal stress with μk independent of ice grain orientation. The μk of different materials varied, partly due to distinct surface roughnesses, but all cases showed a similar increasing trend with increasing velocity because of the viscous resistance of melt-water film. The velocity dependence of μk was quantified using the rate- and state- dependent model, and μk was found to increase logarithmically with increasing velocity. In addition, μk obtained at higher air temperatures was greater than at lower temperatures. The stick-slip phenomenon was observed at a relatively high velocity compared with previous studies, which was partly due to the low-stiffness device used in the field. Based on the experimental data, the calculation of physical models can be compared.

  3. A multivariate analysis of Antarctic sea ice since 1979

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes Neto, Newton de; Evangelista, Heitor [Universidade do Estado do Rio de Janeiro (Uerj), LARAMG - Laboratorio de Radioecologia e Mudancas Globais, Maracana, Rio de Janeiro, RJ (Brazil); Tanizaki-Fonseca, Kenny [Universidade do Estado do Rio de Janeiro (Uerj), LARAMG - Laboratorio de Radioecologia e Mudancas Globais, Maracana, Rio de Janeiro, RJ (Brazil); Universidade Federal Fluminense (UFF), Dept. Analise Geoambiental, Inst. de Geociencias, Niteroi, RJ (Brazil); Penello Meirelles, Margareth Simoes [Universidade do Estado do Rio de Janeiro (UERJ)/Geomatica, Maracana, Rio de Janeiro, RJ (Brazil); Garcia, Carlos Eiras [Universidade Federal do Rio Grande (FURG), Laboratorio de Oceanografia Fisica, Rio Grande, RS (Brazil)

    2012-03-15

    Recent satellite observations have shown an increase in the total extent of Antarctic sea ice, during periods when the atmosphere and oceans tend to be warmer surrounding a significant part of the continent. Despite an increase in total sea ice, regional analyses depict negative trends in the Bellingshausen-Amundsen Sea and positive trends in the Ross Sea. Although several climate parameters are believed to drive the formation of Antarctic sea ice and the local atmosphere, a descriptive mechanism that could trigger such differences in trends are still unknown. In this study we employed a multivariate analysis in order to identify the response of the Antarctic sea ice with respect to commonly utilized climate forcings/parameters, as follows: (1) The global air surface temperature, (2) The global sea surface temperature, (3) The atmospheric CO{sub 2} concentration, (4) The South Annular Mode, (5) The Nino 3, (6) The Nino (3 + 4, 7) The Nino 4, (8) The Southern Oscillation Index, (9) The Multivariate ENSO Index, (10) the Total Solar Irradiance, (11) The maximum O{sub 3} depletion area, and (12) The minimum O{sub 3} concentration over Antarctica. Our results indicate that western Antarctic sea ice is simultaneously impacted by several parameters; and that the minimum, mean, and maximum sea ice extent may respond to a separate set of climatic/geochemical parameters. (orig.)

  4. Temporal dynamics of ikaite in experimental sea ice

    Science.gov (United States)

    Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Notz, D.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Sørensen, L. L.; Sievers, J.; Papakyriakou, T.

    2014-08-01

    Ikaite (CaCO3 · 6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an outdoor pool of the Sea-ice Environmental Research Facility (SERF) in Manitoba, Canada. During the experiment, ikaite precipitated in sea ice when temperatures were below -4 °C, creating three distinct zones of ikaite concentrations: (1) a millimeter-to-centimeter-thin surface layer containing frost flowers and brine skim with bulk ikaite concentrations of >2000 μmol kg-1, (2) an internal layer with ikaite concentrations of 200-400 μmol kg-1, and (3) a bottom layer with ikaite concentrations of ikaite crystals to dissolve. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The observed ikaite concentrations were on the same order of magnitude as modeled by FREZCHEM, which further supports the notion that ikaite concentration in sea ice increases with decreasing temperature. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This could have a major implication for CO2 exchange with the atmosphere and ocean that has not been accounted for previously.

  5. Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice

    Science.gov (United States)

    Underwood, Graham J. C.; Aslam, Shazia N.; Michel, Christine; Niemi, Andrea; Norman, Louiza; Meiners, Klaus M.; Laybourn-Parry, Johanna; Paterson, Harriet; Thomas, David N.

    2013-01-01

    Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions. PMID:24019487

  6. Mesoscale distribution and functional diversity of picoeukaryotes in the first-year sea ice of the Canadian Arctic.

    Science.gov (United States)

    Piwosz, Kasia; Wiktor, Józef Maria; Niemi, Andrea; Tatarek, Agnieszka; Michel, Christine

    2013-08-01

    Sea ice, a characteristic feature of polar waters, is home to diverse microbial communities. Sea-ice picoeukaryotes (unicellular eukaryotes with cell size Arctic first-year sea ice. Here, we investigated the abundance of all picoeukaryotes, and of 11 groups (chlorophytes, cryptophytes, bolidophytes, haptophytes, Pavlovaphyceae, Phaeocystis spp., pedinellales, stramenopiles groups MAST-1, MAST-2 and MAST-6 and Syndiniales Group II) at 13 first-year sea-ice stations localized in Barrow Strait and in the vicinity of Cornwallis Island, Canadian Arctic Archipelago. We applied Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization to identify selected groups at a single cell level. Pavlovaphyceae and stramenopiles from groups MAST-2 and MAST-6 were for the first time reported from sea ice. Total numbers of picoeukaryotes were significantly higher in the vicinity of Cornwallis Island than in Barrow Strait. Similar trend was observed for all the groups except for haptophytes. Chlorophytes and cryptophytes were the dominant plastidic, and MAST-2 most numerous aplastidic of all the groups investigated. Numbers of total picoeukaryotes, chlorophytes and MAST-2 stramenopiles were positively correlated with the thickness of snow cover. All studied algal and MAST groups fed on bacteria. Presence of picoeukaryotes from various trophic groups (mixotrophs, phagotrophic and parasitic heterotrophs) indicates the diverse ecological roles picoeukaryotes have in sea ice. Yet, >50% of total sea-ice picoeukaryote cells remained unidentified, highlighting the need for further study of functional and phylogenetic sea-ice diversity, to elucidate the risks posed by ongoing Arctic changes.

  7. Sea-ice cover in the Nordic Seas and the sensitivity to Atlantic water temperatures

    Science.gov (United States)

    Jensen, Mari F.; Nisancioglu, Kerim H.; Spall, Michael A.

    2017-04-01

    Changes in the sea-ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. However, with its proximity to the warm Atlantic water, how a sea-ice cover can persist in the Nordic Seas is not well understood. In this study, we apply an eddy-resolving configuration of the Massachusetts Institute of Technology general circulation model with an idealized topography to study the presence of sea ice in a Nordic Seas-like domain. We assume an infinite amount of warm Atlantic water present in the south by restoring the southern area to constant temperatures. The sea-surface temperatures are restored toward cold, atmospheric temperatures, and as a result, sea ice is present in the interior of the domain. However, the sea-ice cover in the margins of the Nordic Seas, an area with a warm, cyclonic boundary current, is sensitive to the amount of heat entering the domain, i.e., the restoring temperature in the south. When the temperature of the warm, cyclonic boundary current is high, the margins are free of sea ice and heat is released to the atmosphere. We show that with a small reduction in the temperature of the incoming Atlantic water, the Nordic Seas-like domain is fully covered in sea ice. Warm water is still entering the Nordic Seas, however, this happens at depths below a cold, fresh surface layer produced by melted sea ice. Consequently, the heat release to the atmosphere is reduced along with the eddy heat fluxes. Results suggest a threshold value in the amount of heat entering the Nordic Seas before the sea-ice cover disappears in the margins. We study the sensitivity of this threshold to changes in atmospheric temperatures and vertical diffusivity.

  8. Study suggests Arctic sea ice loss not irreversible

    Science.gov (United States)

    Balcerak, Ernie

    2011-10-01

    The Arctic has been losing sea ice as Earth's climate warms, and some studies have suggested that the Arctic could reach a tipping point, beyond which ice would not recover even if global temperatures cooled down again. However, a new study by Armour et al. that uses a state-of-the-art atmosphere-ocean global climate model found no evidence of such irreversibility. In their simulations, the researchers increased atmospheric carbon dioxide levels until Arctic sea ice disappeared year-round and then watched what happened as global temperatures were then decreased. They found that sea ice steadily recovered as global temperatures dropped. An implication of this result is that future sea ice loss will occur only as long as global temperatures continue to rise. (Geophysical Research Letters, doi:10.1029/2011GL048739, 2011)

  9. Tradition and Technology: Sea Ice Science on Inuit Sleds

    Science.gov (United States)

    Wilkinson, Jeremy P.; Hanson, Susanne; Hughes, Nick E.; James, Alistair; Jones, Bryn; MacKinnon, Rory; Rysgaard, Søren; Toudal, Leif

    2011-01-01

    The Arctic is home to a circumpolar community of native people whose culture and traditions have enabled them to thrive in what most would perceive as a totally inhospitable and untenable environment. In many ways, sea ice can be viewed as the glue that binds these northern communities together; it is utilized in all aspects of their daily life. Sea ice acts as highways of the north; indeed, one can travel on these highways with dogsleds and snowmobiles. These travels over the frozen ocean occur at all periods of the sea ice cycle and over different ice types and ages. Excursions may be hunting trips to remote regions or social visits to nearby villages. Furthermore, hunting on the sea ice contributes to the health, culture, and commercial income of a community.

  10. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    Science.gov (United States)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  11. IceMap250—Automatic 250 m Sea Ice Extent Mapping Using MODIS Data

    Directory of Open Access Journals (Sweden)

    Charles Gignac

    2017-01-01

    Full Text Available The sea ice cover in the North evolves at a rapid rate. To adequately monitor this evolution, tools with high temporal and spatial resolution are needed. This paper presents IceMap250, an automatic sea ice extent mapping algorithm using MODIS reflective/emissive bands. Hybrid cloud-masking using both the MOD35 mask and a visibility mask, combined with downscaling of Bands 3–7 to 250 m, are utilized to delineate sea ice extent using a decision tree approach. IceMap250 was tested on scenes from the freeze-up, stable cover, and melt seasons in the Hudson Bay complex, in Northeastern Canada. IceMap250 first product is a daily composite sea ice presence map at 250 m. Validation based on comparisons with photo-interpreted ground-truth show the ability of the algorithm to achieve high classification accuracy, with kappa values systematically over 90%. IceMap250 second product is a weekly clear sky map that provides a synthesis of 7 days of daily composite maps. This map, produced using a majority filter, makes the sea ice presence map even more accurate by filtering out the effects of isolated classification errors. The synthesis maps show spatial consistency through time when compared to passive microwave and national ice services maps.

  12. Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations

    Science.gov (United States)

    Stein, R. H.; Fahl, K.; Gierz, P.; Niessen, F.; Lohmann, G.

    2017-12-01

    Over the last about four decades, coinciding with global warming and atmospheric CO2increase, the extent and thickness of Arctic sea ice has decreased dramatically, a decrease much more rapid than predicted by climate models. The driving forces of this change are still not fully understood. In this context, detailed paleoclimatic records going back beyond the timescale of direct observations, i.e., high-resolution Holocene records but also records representing more distant warm periods, may help to to distinguish and quantify more precisely the natural and anthropogenic greenhouse gas forcing of global climate change and related sea ice decrease. Here, we concentrate on sea ice biomarker records representing the penultimate glacial/last interglacial (MIS 6/MIS 5e) and the Holocene time intervals. Our proxy records are compared with climate model simulations using a coupled atmosphere-ocean general circulation model (AOGCM). Based on our data, polynya-type sea ice conditions probably occurred off the major ice sheets along the northern Barents and East Siberian continental margins during late MIS 6. Furthermore, we demonstrate that even during MIS 5e, i.e., a time interval when the high latitudes have been significantly warmer than today, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Assuming a closed Bering Strait (no Pacific Water inflow) during early MIS 5, model simulations point to a significantly reduced sea ice cover in the central Arctic Ocean, a scenario that is however not supported by the proxy record and thus seems to be less realistic. Our Holocene biomarker proxy records from the Chukchi Sea indicate that main factors controlling the millennial Holocene variability in sea ice are probably changes in surface water and heat flow from the Pacific into the Arctic Ocean as well as the long-term decrease in summer insolation

  13. Sea Ice and Hydrographic Variability in the Northwest North Atlantic

    Science.gov (United States)

    Fenty, I. G.; Heimbach, P.; Wunsch, C. I.

    2010-12-01

    Sea ice anomalies in the Northwest North Atlantic's Labrador Sea are of climatic interest because of known and hypothesized feedbacks with hydrographic anomalies, deep convection/mode water formation, and Northern Hemisphere atmospheric patterns. As greenhouse gas concentrations increase, hydrographic anomalies formed in the Arctic Ocean associated with warming will propagate into the Labrador Sea via the Fram Strait/West Greenland Current and the Canadian Archipelago/Baffin Island Current. Therefore, understanding the dynamical response of sea ice in the basin to hydrographic anomalies is essential for the prediction and interpretation of future high-latitude climate change. Historically, efforts to quantify the link between the observed sea ice and hydrographic variability in the region has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and sea ice observations with numerical models. To elaborate the relationship between sea ice and ocean variability, we create three one-year (1992-1993, 1996-1997, 2003-2004) three-dimensional time-varying reconstructions of the ocean and sea ice state in Labrador Sea and Baffin Bay. The reconstructions are syntheses of a regional coupled 32 km ocean-sea ice model with a suite of contemporary in situ and satellite hydrographic and ice data using the adjoint method. The model and data are made consistent, in a least-squares sense, by iteratively adjusting several model control variables (e.g., ocean initial and lateral boundary conditions and the atmospheric state) to minimize an uncertainty-weighted model-data misfit cost function. The reconstructions reveal that the ice pack attains a state of quasi-equilibrium in mid-March (the annual sea ice maximum) in which the total ice-covered area reaches a steady state -ice production and dynamical divergence along the coasts balances dynamical convergence and melt along the pack’s seaward edge. Sea ice advected to the

  14. Environmental predictors of ice seal presence in the Bering Sea.

    Science.gov (United States)

    Miksis-Olds, Jennifer L; Madden, Laura E

    2014-01-01

    Ice seals overwintering in the Bering Sea are challenged with foraging, finding mates, and maintaining breathing holes in a dark and ice covered environment. Due to the difficulty of studying these species in their natural environment, very little is known about how the seals navigate under ice. Here we identify specific environmental parameters, including components of the ambient background sound, that are predictive of ice seal presence in the Bering Sea. Multi-year mooring deployments provided synoptic time series of acoustic and oceanographic parameters from which environmental parameters predictive of species presence were identified through a series of mixed models. Ice cover and 10 kHz sound level were significant predictors of seal presence, with 40 kHz sound and prey presence (combined with ice cover) as potential predictors as well. Ice seal presence showed a strong positive correlation with ice cover and a negative association with 10 kHz environmental sound. On average, there was a 20-30 dB difference between sound levels during solid ice conditions compared to open water or melting conditions, providing a salient acoustic gradient between open water and solid ice conditions by which ice seals could orient. By constantly assessing the acoustic environment associated with the seasonal ice movement in the Bering Sea, it is possible that ice seals could utilize aspects of the soundscape to gauge their safe distance to open water or the ice edge by orienting in the direction of higher sound levels indicative of open water, especially in the frequency range above 1 kHz. In rapidly changing Arctic and sub-Arctic environments, the seasonal ice conditions and soundscapes are likely to change which may impact the ability of animals using ice presence and cues to successfully function during the winter breeding season.

  15. Environmental predictors of ice seal presence in the Bering Sea.

    Directory of Open Access Journals (Sweden)

    Jennifer L Miksis-Olds

    Full Text Available Ice seals overwintering in the Bering Sea are challenged with foraging, finding mates, and maintaining breathing holes in a dark and ice covered environment. Due to the difficulty of studying these species in their natural environment, very little is known about how the seals navigate under ice. Here we identify specific environmental parameters, including components of the ambient background sound, that are predictive of ice seal presence in the Bering Sea. Multi-year mooring deployments provided synoptic time series of acoustic and oceanographic parameters from which environmental parameters predictive of species presence were identified through a series of mixed models. Ice cover and 10 kHz sound level were significant predictors of seal presence, with 40 kHz sound and prey presence (combined with ice cover as potential predictors as well. Ice seal presence showed a strong positive correlation with ice cover and a negative association with 10 kHz environmental sound. On average, there was a 20-30 dB difference between sound levels during solid ice conditions compared to open water or melting conditions, providing a salient acoustic gradient between open water and solid ice conditions by which ice seals could orient. By constantly assessing the acoustic environment associated with the seasonal ice movement in the Bering Sea, it is possible that ice seals could utilize aspects of the soundscape to gauge their safe distance to open water or the ice edge by orienting in the direction of higher sound levels indicative of open water, especially in the frequency range above 1 kHz. In rapidly changing Arctic and sub-Arctic environments, the seasonal ice conditions and soundscapes are likely to change which may impact the ability of animals using ice presence and cues to successfully function during the winter breeding season.

  16. Can regional climate engineering save the summer Arctic sea ice?

    Science.gov (United States)

    Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois

    2014-02-01

    Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.

  17. Sea ice production and transport of pollutants in Laptev Sea, 1979 to 1992

    International Nuclear Information System (INIS)

    Rigor, I.; Colony, R.

    1995-01-01

    About 900,000 km 2 of the polar pack ice is transferred annually from the Arctic Basin to the North Atlantic. The largest portion of this exported ice cover is created by the large scale divergence within the ice pack, but a significant portion of the ice cover originates in the marginal seas, either by fall freezing of the seasonally ice free waters or by wintertime advection away from the coast. The main objective of this study was to estimate the annual production of ice in the Laptev Sea and to determine its ultimate fate. The study was motivated by the possibility that ice formed in the Laptev Sea may be an agent for the long range transport of pollutants such as radionuclides. The authors have attempted to characterize the mean and interannual variability of ice production by investigating the winter production and subsequent melt of ice in the Laptev Sea from 1979 through 1992. The general approach was to associate pollution transport with the net exchange of ice area from the Laptev Sea to the perennial ice pack. The primary data sets supporting the study were ice charts, ice motion and geostrophic wind. 3 refs., 4 figs., 1 tab

  18. Ku-Band radar penetration into Snow over Arctic Sea Ice

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    is the snow/air interface, whereas radar waves interact with the variable physical properties of the snow cover on the Arctic sea ice. In addition, radar elevation measurements may vary for different retracker algorithms, which determine the track point of the scattered echo power distribution. Since accurate...... knowledge of the reflection horizon is critical for sea ice thickness retrieval, validation data is necessary to investigate the penetration of radar waves into the snow for the upcoming CryoSat-2 mission. Furthermore, the combination of both optical and RF wavelengths might be used to derive snow thickness......, if radar altimeters are capable of measuring the distance to the snow-ice interface reliably. We present the results of aircraft campaigns in the Arctic with a scanning laser altimeter and the Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) of the European Space Agency. The elevation...

  19. Reviews and syntheses: Ice acidification, the effects of ocean acidification on sea ice microbial communities

    Science.gov (United States)

    McMinn, Andrew

    2017-09-01

    Sea ice algae, like some coastal and estuarine phytoplankton, are naturally exposed to a wider range of pH and CO2 concentrations than those in open marine seas. While climate change and ocean acidification (OA) will impact pelagic communities, their effects on sea ice microbial communities remain unclear. Sea ice contains several distinct microbial communities, which are exposed to differing environmental conditions depending on their depth within the ice. Bottom communities mostly experience relatively benign bulk ocean properties, while interior brine and surface (infiltration) communities experience much greater extremes. Most OA studies have examined the impacts on single sea ice algae species in culture. Although some studies examined the effects of OA alone, most examined the effects of OA and either light, nutrients or temperature. With few exceptions, increased CO2 concentration caused either no change or an increase in growth and/or photosynthesis. In situ studies on brine and surface algae also demonstrated a wide tolerance to increased and decreased pH and showed increased growth at higher CO2 concentrations. The short time period of most experiments (bacterial communities in general, impacts appear to be minimal. In sea ice also, the few reports available suggest no negative impacts on bacterial growth or community richness. Sea ice ecosystems are ephemeral, melting and re-forming each year. Thus, for some part of each year organisms inhabiting the ice must also survive outside of the ice, either as part of the phytoplankton or as resting spores on the bottom. During these times, they will be exposed to the full range of co-stressors that pelagic organisms experience. Their ability to continue to make a major contribution to sea ice productivity will depend not only on their ability to survive in the ice but also on their ability to survive the increasing seawater temperatures, changing distribution of nutrients and declining pH forecast for the water

  20. Temporal variatiions of Sea ice cover in the Baltic Sea derived from operational sea ice products used in NWP.

    Science.gov (United States)

    Lange, Martin; Paul, Gerhard; Potthast, Roland

    2014-05-01

    Sea ice cover is a crucial parameter for surface fluxes of heat and moisture over water areas. The isolating effect and the much higher albedo strongly reduces the turbulent exchange of heat and moisture from the surface to the atmosphere and allows for cold and dry air mass flow with strong impact on the stability of the whole boundary layer and consequently cloud formation as well as precipitation in the downstream regions. Numerical weather centers as, ECMWF, MetoFrance or DWD use external products to initialize SST and sea ice cover in their NWP models. To the knowledge of the author there are mainly two global sea ice products well established with operational availability, one from NOAA NCEP that combines measurements with satellite data, and the other from OSI-SAF derived from SSMI/S sensors. The latter one is used in the Ostia product. DWD additionally uses a regional product for the Baltic Sea provided by the national center for shipping and hydrografie which combines observations from ships (and icebreakers) for the German part of the Baltic Sea and model analysis from the hydrodynamic HIROMB model of the Swedish meteorological service for the rest of the domain. The temporal evolution of the three different products are compared for a cold period in Februar 2012. Goods and bads will be presented and suggestions for a harmonization of strong day to day jumps over large areas are suggested.

  1. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes

    Science.gov (United States)

    Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon

    2014-04-01

    Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.

  2. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR

    Science.gov (United States)

    Istomina, Larysa; Heygster, Georg

    2014-05-01

    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  3. A Large Eddy Simulation Study of Heat Entrainment under Sea Ice in the Canadian Arctic Basin

    Science.gov (United States)

    Ramudu, E.; Yang, D.; Gelderloos, R.; Meneveau, C. V.; Gnanadesikan, A.

    2016-12-01

    Sea ice cover in the Arctic has declined rapidly in recent decades. The much faster than projected retreat suggests that climate models may be missing some key processes, or that these processes are not accurately represented. The entrainment of heat from the mixed layer by small-scale turbulence is one such process. In the Canadian Basin of the Arctic Ocean, relatively warm Pacific Summer Water (PSW) resides at the base of the mixed layer. With an increasing influx of PSW, the upper ocean in the Canadian Basin has been getting warmer and fresher since the early 2000s. While studies show a correlation between sea ice reduction and an increase in PSW temperature, others argue that PSW intrusions in the Canadian Basin cannot affect sea ice thickness because the strongly-stratified halocline prevents heat from the PSW layer from being entrained into the mixed layer and up to the basal ice surface. In this study, we try to resolve this conundrum by simulating the turbulent entrainment of heat from the PSW layer to a moving basal ice surface using large eddy simulation (LES). The LES model is based on a high-fidelity spectral approach on horizontal planes, and includes a Lagrangian dynamic subgrid model that reduces the need for empirical inputs for subgrid-scale viscosities and diffusivities. This LES tool allows us to investigate physical processes in the mixed layer at a very fine scale. We focus our study on summer conditions, when ice is melting, and show for a range of ice-drift velocities, halocline temperatures, and halocline salinity gradients characteristic of the Canadian Basin how much heat can be entrained from the PSW layer to the sea ice. Our results can be used to improve parameterizations of vertical heat flux under sea ice in coarse-grid ocean and climate models.

  4. Past and present stability of the Weddell Sea sector of the Antarctic Ice Sheet

    Science.gov (United States)

    Whitehouse, P. L.; Vieli, A.; Jamieson, S.; Bentley, M.; Hein, A.; Sugden, D.

    2016-12-01

    The contribution of the Weddell Sea sector of the Antarctic Ice Sheet to sea-level rise since the Last Glacial Maximum (LGM), along with the processes controlling the past and ongoing dynamics of this sector, are poorly known. Of particular concern is the fact that significant portions of the present-day grounding line are unstably located on bathymetry that deepens towards the interior of the continent. We present new modelling results, constrained by field evidence relating to past ice extent and thickness along the Foundation Ice Stream and Thiel Trough, which suggest that the post-LGM sea-level contribution from this sector was modest, and that the grounding line is unlikely to have been located at the continental shelf break for a prolonged period during the last glacial cycle. Poorly-constrained ice shelf and ocean processes are found to play a crucial role in controlling the past configuration and stability of this sector of the ice sheet. In particular, we find that we cannot rule out a scenario in which the grounding line of the Foundation Ice Stream retreated behind present during deglaciation, and has since re-advanced. This work complements a number of recent studies, based on independent data sets, that explore the possibility that grounding line re-advance occurred within the Weddell Sea sector during the mid-to-late Holocene. If this hypothesis is correct, then current glacial isostatic adjustment models, and hence contemporary estimates of ice mass balance derived from GRACE data, will be significantly biased. Piecing together, and understanding, the reason for recent changes in ice dynamics is crucial for determining the contemporary stability of the Weddell Sea sector of the Antarctic Ice Sheet.

  5. Deglacial climate modulated by the storage and release of Arctic sea ice

    Science.gov (United States)

    Condron, A.; Coletti, A. J.; Bradley, R. S.

    2017-12-01

    Periods of abrupt climate cooling during the last deglaciation (20 - 8 kyr ago) are often attributed to glacial outburst floods slowing the Atlantic meridional overturning circulation (AMOC). Here, we present results from a series of climate model simulations showing that the episodic break-up and mobilization of thick, perennial, Arctic sea ice during this time would have released considerable volumes of freshwater directly to the Nordic Seas, where processes regulating large-scale climate occur. Massive sea ice export events to the North Atlantic are generated whenever the transport of sea ice is enhanced, either by changes in atmospheric circulation, rising sea level submerging the Bering land bridge, or glacial outburst floods draining into the Arctic Ocean from the Mackenzie River. We find that the volumes of freshwater released to the Nordic Seas are similar to, or larger than, those estimated to have come from terrestrial outburst floods, including the discharge at the onset of the Younger Dryas. Our results provide the first evidence that the storage and release of Arctic sea ice helped drive deglacial climate change by modulating the strength of the AMOC.

  6. Interannual Variability of the Sea-Ice-Induced Salt Flux in the Greenland Sea

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Coon, M.D.

    2001-01-01

    The Greenland Sea is one of the few places in the World Ocean where deep convection takes place. The convection process is initiated by a density increase originating from rapid cooling and/or a salt flux to the upper layer of the ocean due to brine rejection from ice formation (Rudels, 1990......; Visbeck and others, 1995). The predominant ice types in the Greenland Sea arc frazil/grease ice and pancake ice. A numerical model has been developed relating ice formation and decay of these ice types as observed by the SMMR and SSM/I microwave radiometers and evaluating their contribution to salt...... redistribution in the Greenland Sea. The model has been used to calculate spatial distribution of the annual integrated net salt flux to the Greenland Sea from ice production and advection for the period 1979-97....

  7. Arctic Sea Ice in Transformation: A Review of Recent Observed Changes and Impacts on Biology and Human Activity

    Science.gov (United States)

    Meier, Walter N.; Hovelsrud, Greta K.; van Oort, Bob E. H.; Key, Jeffrey R.; Kovacs, Kit M.; Michel, Christine; Haas, Christian; Granskog, Mats A.; Gerland, Sebastian; Perovich, Donald K.; hide

    2014-01-01

    Sea ice in the Arctic is one of the most rapidly changing components of the global climate system. Over the past few decades, summer areal extent has declined over 30, and all months show statistically significant declining trends. New satellite missions and techniques have greatly expanded information on sea ice thickness, but many uncertainties remain in the satellite data and long-term records are sparse. However, thickness observations and other satellite-derived data indicate a 40 decline in thickness, due in large part to the loss of thicker, older ice cover. The changes in sea ice are happening faster than models have projected. With continued increasing temperatures, summer ice-free conditions are likely sometime in the coming decades, though there are substantial uncertainties in the exact timing and high interannual variability will remain as sea ice decreases. The changes in Arctic sea ice are already having an impact on flora and fauna in the Arctic. Some species will face increasing challenges in the future, while new habitat will open up for other species. The changes are also affecting peoples living and working in the Arctic. Native communities are facing challenges to their traditional ways of life, while new opportunities open for shipping, fishing, and natural resource extraction.

  8. Active microwave measurements of sea ice under fall conditions: The RADARSAT/FIREX fall experiment. [in the Canadian Arctic

    Science.gov (United States)

    Onstott, R. G.; Kim, Y. S.; Moore, R. K.

    1984-01-01

    A series of measurements of the active microwave properties of sea ice under fall growing conditions was conducted. Ice in the inland waters of Mould Bay, Crozier Channel, and intrepid inlet and ice in the Arctic Ocean near Hardinge Bay was investigated. Active microwave data were acquired using a helicopter borne scatterometer. Results show that multiyear ice frozen in grey or first year ice is easily detected under cold fall conditions. Multiyear ice returns were dynamic due to response to two of its scene constituents. Floe boundaries between thick and thin ice are well defined. Multiyear pressure ridge returns are similar in level to background ice returns. Backscatter from homogeneous first year ice is seen to be primarily due to surface scattering. Operation at 9.6 GHz is more sensitive to the detailed changes in scene roughness, while operation at 5.6 GHz seems to track roughness changes less ably.

  9. Loss of sea ice during winter north of Svalbard

    Directory of Open Access Journals (Sweden)

    Ingrid H. Onarheim

    2014-06-01

    Full Text Available Sea ice loss in the Arctic Ocean has up to now been strongest during summer. In contrast, the sea ice concentration north of Svalbard has experienced a larger decline during winter since 1979. The trend in winter ice area loss is close to 10% per decade, and concurrent with a 0.3°C per decade warming of the Atlantic Water entering the Arctic Ocean in this region. Simultaneously, there has been a 2°C per decade warming of winter mean surface air temperature north of Svalbard, which is 20–45% higher than observations on the west coast. Generally, the ice edge north of Svalbard has retreated towards the northeast, along the Atlantic Water pathway. By making reasonable assumptions about the Atlantic Water volume and associated heat transport, we show that the extra oceanic heat brought into the region is likely to have caused the sea ice loss. The reduced sea ice cover leads to more oceanic heat transferred to the atmosphere, suggesting that part of the atmospheric warming is driven by larger open water area. In contrast to significant trends in sea ice concentration, Atlantic Water temperature and air temperature, there is no significant temporal trend in the local winds. Thus, winds have not caused the long-term warming or sea ice loss. However, the dominant winds transport sea ice from the Arctic Ocean into the region north of Svalbard, and the local wind has influence on the year-to-year variability of the ice concentration, which correlates with surface air temperatures, ocean temperatures, as well as the local wind.

  10. The interaction of ultraviolet light with Arctic sea ice during SHEBA

    Science.gov (United States)

    Perovich, Donald K.

    The reflection, absorption and transmission of ultraviolet light by a sea-ice cover strongly impacts primary productivity, higher trophic components of the food web, and humans. Measurements of the incident irradiance at 305, 320, 340 and 380 nm and of the photosynthetically active radiation were made from April through September 1998 as part of the SHEBA (Surface Heat Budget of the Arctic Ocean program) field experiment in the Arctic Ocean. In addition, observations of snow depth and ice thickness were made at more than 100 sites encompassing a comprehensive range of conditions. The thickness observations were combined with a radiative transfer model to compute a time series of the ultraviolet light transmitted by the ice cover from April through September. Peak values of incident ultraviolet irradiance occurred in mid-June. Peak transmittance was later in the summer at the end of the melt season when the snow cover had completely melted, the ice had thinned and pond coverage was extensive. The fraction of the incident ultraviolet irradiance transmitted through the ice increased by several orders of magnitude as the melt season progressed. Ultraviolet transmittance was approximately a factor of ten greater for melt ponds than bare ice. Climate change has the potential to alter the amplitude and timing of the annual albedo cycle of sea ice. If the onset of melt occurs at increasingly earlier dates, ultraviolet transmittance will be significantly enhanced, with potentially deleterious biological impacts.

  11. Visualizing Glaciers and Sea Ice via Google Earth

    Science.gov (United States)

    Ballagh, L. M.; Fetterer, F.; Haran, T. M.; Pharris, K.

    2006-12-01

    The NOAA team at NSIDC manages over 60 distinct cryospheric and related data products. With an emphasis on data rescue and in situ data, these products hold value for both the scientific and non-scientific user communities. The overarching goal of this presentation is to promote products from two components of the cryosphere (glaciers and sea ice). Our Online Glacier Photograph Database contains approximately 3,000 photographs taken over many decades, exemplifying change in the glacier terminus over time. The sea ice product shows sea ice extent and concentration along with anomalies and trends. This Sea Ice Index product, which starts in 1979 and is updated monthly, provides visuals of the current state of sea ice in both hemispheres with trends and anomalies. The long time period covered by the data set means that many of the trends in ice extent and concentration shown in this product are statistically significant despite the large natural variability in sea ice. The minimum arctic sea ice extent has been a record low in September 2002 and 2005, contributing to an accelerated trend in sea ice reduction. With increasing world-wide interest in indicators of global climate change, and the upcoming International Polar Year, these data products are of interest to a broad audience. To further extend the impact of these data, we have made them viewable through Google Earth via the Keyhole Markup Language (KML). This presents an opportunity to branch out to a more diverse audience by using a new and innovative tool that allows spatial representation of data of significant scientific and educational interest.

  12. Satellite Remote Sensing of Snow Depth on Antarctic Sea Ice: An Inter-Comparison of Two Empirical Approaches

    Directory of Open Access Journals (Sweden)

    Stefan Kern

    2016-05-01

    Full Text Available Snow on Antarctic sea ice plays a key role for sea ice physical processes and complicates retrieval of sea ice thickness using altimetry. Current methods of snow depth retrieval are based on satellite microwave radiometry, which perform best for dry, homogeneous snow packs on level sea ice. We introduce an alternative approach based on in-situ measurements of total (sea ice plus snow freeboard and snow depth, which we use to compute snow depth on sea ice from Ice, Cloud, and land Elevation Satellite (ICESat total freeboard observations. We compare ICESat snow depth for early winter and spring of the years 2004 through 2006 with the Advanced Scanning Microwave Radiometer aboard EOS (AMSR-E snow depth product. We find ICESat snow depths agree more closely with ship-based visual and air-borne snow radar observations than AMSR-E snow depths. We obtain average modal and mean ICESat snow depths, which exceed AMSR-E snow depths by 5–10 cm in winter and 10–15 cm in spring. We observe an increase in ICESat snow depth from winter to spring for most Antarctic regions in accordance with ground-based observations, in contrast to AMSR-E snow depths, which we find to stay constant or to decrease. We suggest satellite laser altimetry as an alternative method to derive snow depth on Antarctic sea ice, which is independent of snow physical properties.

  13. Remotely Operated Vehicles under sea ice - Experiences and results from five years of polar operations

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Lange, Benjamin; Belter, Hans Jakob; Schiller, Martin; Nicolaus, Marcel

    2016-04-01

    The availability of advanced robotic technologies to the Earth Science community has largely increased in the last decade. Remotely operated vehicles (ROV) enable spatially extensive scientific investigations underneath the sea ice of the polar oceans, covering a larger range and longer diving times than divers with significantly lower risks. Here we present our experiences and scientific results acquired from ROV operations during the last five years in the Arctic and Antarctic sea ice region. Working under the sea ice means to have all obstacles and investigated objects above the vehicle, and thus changes several paradigms of ROV operations as compared to blue water applications. Observations of downwelling spectral irradiance and radiance allow a characterization of the optical properties of sea ice and the spatial variability of the energy partitioning across the atmosphere-ice-ocean boundary. Our results show that the decreasing thickness and age of the sea ice have led to a significant increase in light transmission during summer over the last three decades. Spatially extensive measurements from ROV surveys generally provide more information on the light field variability than single spot measurements. The large number of sampled ice conditions during five cruises with the German research icebreaker RV Polarstern allows for the investigations of the seasonal evolution of light transmittance. Both, measurements of hyperspectral light transmittance through sea ice, as well as classification of upward-looking camera images were used to investigate the spatial distribution of ice-algal biomass. Buoyant ice-algal aggregates were found to be positioned in the stretches of level ice, rather than pressure ridges due to a physical interaction of aggregate-buoyancy and under-ice currents. Synchronous measurements of sea ice thickness by upward looking sonar provides crucial additional information to put light-transmittance and biological observations into context

  14. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    Science.gov (United States)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  15. Model Forecast Skill and Sensitivity to Initial Conditions in the Seasonal Sea Ice Outlook

    Science.gov (United States)

    Blanchard-Wrigglesworth, E.; Cullather, R. I.; Wang, W.; Zhang, J.; Bitz, C. M.

    2015-01-01

    We explore the skill of predictions of September Arctic sea ice extent from dynamical models participating in the Sea Ice Outlook (SIO). Forecasts submitted in August, at roughly 2 month lead times, are skillful. However, skill is lower in forecasts submitted to SIO, which began in 2008, than in hindcasts (retrospective forecasts) of the last few decades. The multimodel mean SIO predictions offer slightly higher skill than the single-model SIO predictions, but neither beats a damped persistence forecast at longer than 2 month lead times. The models are largely unsuccessful at predicting each other, indicating a large difference in model physics and/or initial conditions. Motivated by this, we perform an initial condition sensitivity experiment with four SIO models, applying a fixed -1 m perturbation to the initial sea ice thickness. The significant range of the response among the models suggests that different model physics make a significant contribution to forecast uncertainty.

  16. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  17. Total Sediment Thickness of the World's Oceans & Marginal Seas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A digital total-sediment-thickness database for the world's oceans and marginal seas has been compiled by the NOAA National Geophysical Data Center (NGDC). The data...

  18. Potential decadal predictability and its sensitivity to sea ice albedo parameterization in a global coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Koenigk, Torben; Caian, Mihaela; Doescher, Ralf; Wyser, Klaus [Swedish Meteorological and Hydrological Institute, Rossby Centre, Norrkoeping (Sweden); Koenig Beatty, Christof [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium)

    2012-06-15

    Decadal prediction is one focus of the upcoming 5th IPCC Assessment report. To be able to interpret the results and to further improve the decadal predictions it is important to investigate the potential predictability in the participating climate models. This study analyzes the upper limit of climate predictability on decadal time scales and its dependency on sea ice albedo parameterization by performing two perfect ensemble experiments with the global coupled climate model EC-Earth. In the first experiment, the standard albedo formulation of EC-Earth is used, in the second experiment sea ice albedo is reduced. The potential prognostic predictability is analyzed for a set of oceanic and atmospheric parameters. The decadal predictability of the atmospheric circulation is small. The highest potential predictability was found in air temperature at 2 m height over the northern North Atlantic and the southern South Atlantic. Over land, only a few areas are significantly predictable. The predictability for continental size averages of air temperature is relatively good in all northern hemisphere regions. Sea ice thickness is highly predictable along the ice edges in the North Atlantic Arctic Sector. The meridional overturning circulation is highly predictable in both experiments and governs most of the decadal climate predictability in the northern hemisphere. The experiments using reduced sea ice albedo show some important differences like a generally higher predictability of atmospheric variables in the Arctic or higher predictability of air temperature in Europe. Furthermore, decadal variations are substantially smaller in the simulations with reduced ice albedo, which can be explained by reduced sea ice thickness in these simulations. (orig.)

  19. Photophysiology and cellular composition of sea ice algae

    International Nuclear Information System (INIS)

    Lizotte, M.P.

    1989-01-01

    The productivity of sea ice algae depends on their physiological capabilities and the environmental conditions within various microhabitats. Pack ice is the dominant form of sea ice, but the photosynthetic activity of associated algae has rarely been studied. Biomass and photosynthetic rates of ice algae of the Weddell-Scotia Sea were investigated during autumn and winter, the period when ice cover grows from its minimum to maximum. Biomass-specific photosynthetic rates typically ranged from 0.3 to 3.0 μg C · μg chl -1 · h -1 higher than land-fast ice algae but similar to Antarctic phytoplankton. Primary production in the pack ice during winter may be minor compared to annual phytoplankton production, but could represent a vital seasonal contribution to the Antarctic ecosystem. Nutrient supply may limit the productivity of ice algae. In McMurdo Sound, congelation ice algae appeared to be more nutrient deficient than underlying platelet ice algae based on: lower nitrogen:carbon, chlorophyll:carbon, and protein:carbohydrate; and 14 C-photosynthate distribution to proteins and phospholipids was lower, while distribution to polysaccharides and neutral lipids was higher. Depletion of nitrate led to decreased nitrogen:carbon, chlorophyll:carbon, protein:carbohydrate, and 14 C-photosynthate to proteins. Studied were conducted during the spring bloom; therefore, nutrient limitation may only apply to dense ice algal communities. Growth limiting conditions may be alleviated when algae are released into seawater during the seasonal recession of the ice cover. To continue growth, algae must adapt to the variable light field encountered in a mixed water column. Photoadaptation was studied in surface ice communities and in bottom ice communities

  20. Late Cenozoic Arctic Ocean sea ice and terrestrial paleoclimate.

    Science.gov (United States)

    Carter, L.D.; Brigham-Grette, J.; Marincovich, L.; Pease, V.L.; Hillhouse, J.W.

    1986-01-01

    Sea otter remains found in deposits of two marine transgressions (Bigbendian and Fishcreekian) of the Alaskan Arctic Coastal Plain which occurred between 2.4 and 3 Ma suggest that during these two events the southern limit of seasonal sea ice was at least 1600 km farther north than at present in Alaskan waters. Perennial sea ice must have been severely restricted or absent, and winters were warmer than at present during these two sea-level highstands. Paleomagnetic, faunal, and palynological data indicate that the later transgression (Fishcreekian) occurred during the early part of the Matuyama Reversed-Polarity Chron. -from Authors

  1. Arctic sea ice albedo from AVHRR

    Science.gov (United States)

    Lindsay, R. W.; Rothrock, D. A.

    1994-01-01

    The seasonal cycle of surface albedo of sea ice in the Arctic is estimated from measurements made with the Advanced Very High Resolution Radiometer (AVHRR) on the polar-orbiting satellites NOAA-10 and NOAA-11. The albedos of 145 200-km-square cells are analyzed. The cells are from March through September 1989 and include only those for which the sun is more than 10 deg above the horizon. Cloud masking is performed manually. Corrections are applied for instrument calibration, nonisotropic reflection, atmospheric interference, narrowband to broadband conversion, and normalization to a common solar zenith angle. The estimated albedos are relative, with the instrument gain set to give an albedo of 0.80 for ice floes in March and April. The mean values for the cloud-free portions of individual cells range from 0.18 to 0.91. Monthly averages of cells in the central Arctic range from 0.76 in April to 0.47 in August. The monthly averages of the within-cell standard deviations in the central Arctic are 0.04 in April and 0.06 in September. The surface albedo and surface temperature are correlated most strongly in March (R = -0.77) with little correlation in the summer. The monthly average lead fraction is determined from the mean potential open water, a scaled representation of the temperature or albedo between 0.0 (for ice) and 1.0 (for water); in the central Arctic it rises from an average 0.025 in the spring to 0.06 in September. Sparse data on aerosols, ozone, and water vapor in the atmospheric column contribute uncertainties to instantaneous, area-average albedos of 0.13, 0.04, and 0.08. Uncertainties in monthly average albedos are not this large. Contemporaneous estimation of these variables could reduce the uncertainty in the estimated albedo considerably. The poor calibration of AVHRR channels 1 and 2 is another large impediment to making accurate albedo estimates.

  2. Sea Ice Melt Pond Data from the Canadian Arctic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains observations of albedo, depth, and physical characteristics of melt ponds on sea ice, taken during the summer of 1994. The melt ponds studied...

  3. Arctic Sea Ice Charts from Danish Meteorological Institute, 1893 - 1956

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1893 to 1956, the Danish Meteorological Institute (DMI) created charts of observed and inferred sea ice extent for each summer month. These charts are based on...

  4. Sea Ice Prediction Has Easy and Difficult Years

    Science.gov (United States)

    Hamilton, Lawrence C.; Bitz, Cecilia M.; Blanchard-Wrigglesworth, Edward; Cutler, Matthew; Kay, Jennifer; Meier, Walter N.; Stroeve, Julienne; Wiggins, Helen

    2014-01-01

    Arctic sea ice follows an annual cycle, reaching its low point in September each year. The extent of sea ice remaining at this low point has been trending downwards for decades as the Arctic warms. Around the long-term downward trend, however, there is significant variation in the minimum extent from one year to the next. Accurate forecasts of yearly conditions would have great value to Arctic residents, shipping companies, and other stakeholders and are the subject of much current research. Since 2008 the Sea Ice Outlook (SIO) (http://www.arcus.org/search-program/seaiceoutlook) organized by the Study of Environmental Arctic Change (SEARCH) (http://www.arcus.org/search-program) has invited predictions of the September Arctic sea ice minimum extent, which are contributed from the Arctic research community. Individual predictions, based on a variety of approaches, are solicited in three cycles each year in early June, July, and August. (SEARCH 2013).

  5. Sea-ice induced growth decline in Arctic shrubs.

    Science.gov (United States)

    Forchhammer, Mads

    2017-08-01

    Measures of increased tundra plant productivity have been associated with the accelerating retreat of the Arctic sea-ice. Emerging studies document opposite effects, advocating for a more complex relationship between the shrinking sea-ice and terrestrial plant productivity. I introduce an autoregressive plant growth model integrating effects of biological and climatic conditions for analysing individual ring-width growth time series. Using 128 specimens of Salix arctica , S. glauca and Betula nana sampled across Greenland to Svalbard, an overall negative effect of the retreating June sea-ice extent was found on the annual growth. The negative effect of the retreating June sea-ice was observed for younger individuals with large annual growth allocations and with little or no trade-off between previous and current year's growth. © 2017 The Author(s).

  6. Modelling sea ice formation in the Terra Nova Bay polynya

    Science.gov (United States)

    Sansiviero, M.; Morales Maqueda, M. Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G.

    2017-02-01

    Antarctic sea ice is constantly exported from the shore by strong near surface winds that open leads and large polynyas in the pack ice. The latter, known as wind-driven polynyas, are responsible for significant water mass modification due to the high salt flux into the ocean associated with enhanced ice growth. In this article, we focus on the wind-driven Terra Nova Bay (TNB) polynya, in the western Ross Sea. Brine rejected during sea ice formation processes that occur in the TNB polynya densifies the water column leading to the formation of the most characteristic water mass of the Ross Sea, the High Salinity Shelf Water (HSSW). This water mass, in turn, takes part in the formation of Antarctic Bottom Water (AABW), the densest water mass of the world ocean, which plays a major role in the global meridional overturning circulation, thus affecting the global climate system. A simple coupled sea ice-ocean model has been developed to simulate the seasonal cycle of sea ice formation and export within a polynya. The sea ice model accounts for both thermal and mechanical ice processes. The oceanic circulation is described by a one-and-a-half layer, reduced gravity model. The domain resolution is 1 km × 1 km, which is sufficient to represent the salient features of the coastline geometry, notably the Drygalski Ice Tongue. The model is forced by a combination of Era Interim reanalysis and in-situ data from automatic weather stations, and also by a climatological oceanic dataset developed from in situ hydrographic observations. The sensitivity of the polynya to the atmospheric forcing is well reproduced by the model when atmospheric in situ measurements are combined with reanalysis data. Merging the two datasets allows us to capture in detail the strength and the spatial distribution of the katabatic winds that often drive the opening of the polynya. The model resolves fairly accurately the sea ice drift and sea ice production rates in the TNB polynya, leading to

  7. Ice–ocean coupled computations for sea-ice prediction to support ice navigation in Arctic sea routes

    Directory of Open Access Journals (Sweden)

    Liyanarachchi Waruna Arampath De Silva

    2015-11-01

    Full Text Available With the recent rapid decrease in summer sea ice in the Arctic Ocean extending the navigation period in the Arctic sea routes (ASR, the precise prediction of ice distribution is crucial for safe and efficient navigation in the Arctic Ocean. In general, however, most of the available numerical models have exhibited significant uncertainties in short-term and narrow-area predictions, especially in marginal ice zones such as the ASR. In this study, we predict short-term sea-ice conditions in the ASR by using a mesoscale eddy-resolving ice–ocean coupled model that explicitly treats ice floe collisions in marginal ice zones. First, numerical issues associated with collision rheology in the ice–ocean coupled model (ice–Princeton Ocean Model [POM] are discussed and resolved. A model for the whole of the Arctic Ocean with a coarser resolution (about 25 km was developed to investigate the performance of the ice–POM model by examining the reproducibility of seasonal and interannual sea-ice variability. It was found that this coarser resolution model can reproduce seasonal and interannual sea-ice variations compared to observations, but it cannot be used to predict variations over the short-term, such as one to two weeks. Therefore, second, high-resolution (about 2.5 km regional models were set up along the ASR to investigate the accuracy of short-term sea-ice predictions. High-resolution computations were able to reasonably reproduce the sea-ice extent compared to Advanced Microwave Scanning Radiometer–Earth Observing System satellite observations because of the improved expression of the ice–albedo feedback process and the ice–eddy interaction process.

  8. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone

    Science.gov (United States)

    Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.

    2016-12-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong

  9. Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice.

    Science.gov (United States)

    Hatam, Ido; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2016-10-01

    Arctic sea ice can be classified into two types: seasonal ice (first-year ice, FYI) and multi-year ice (MYI). Despite striking differences in the physical and chemical characteristics of FYI and MYI, and the key role sea ice bacteria play in biogeochemical cycles of the Arctic Ocean, there are a limited number of studies comparing the bacterial communities from these two ice types. Here, we compare the membership and composition of bacterial communities from FYI and MYI sampled north of Ellesmere Island, Canada. Our results show that communities from both ice types were dominated by similar class-level phylogenetic groups. However, at the operational taxonomic unit (OTU) level, communities from MYI and FYI differed in both membership and composition. Communities from MYI sites had consistent structure, with similar membership (presence/absence) and composition (OTU abundance) independent of location and year of sample. By contrast, communities from FYI were more variable. Although FYI bacterial communities from different locations and different years shared similar membership, they varied significantly in composition. Should these findings apply to sea ice across the Arctic, we predict increased compositional variability in sea ice bacterial communities resulting from the ongoing transition from predominantly MYI to FYI, which may impact nutrient dynamics in the Arctic Ocean.

  10. The Satellite Passive-Microwave Record of Sea Ice in the Ross Sea Since Late 1978

    Science.gov (United States)

    Parkinson, Claire L.

    2009-01-01

    Satellites have provided us with a remarkable ability to monitor many aspects of the globe day-in and day-out and sea ice is one of numerous variables that by now have quite substantial satellite records. Passive-microwave data have been particularly valuable in sea ice monitoring, with a record that extends back to August 1987 on daily basis (for most of the period), to November 1970 on a less complete basis (again for most of the period), and to December 1972 on a less complete basis. For the period since November 1970, Ross Sea sea ice imagery is available at spatial resolution of approximately 25 km. This allows good depictions of the seasonal advance and retreat of the ice cover each year, along with its marked interannual variability. The Ross Sea ice extent typically reaches a minimum of approximately 0.7 x 10(exp 6) square kilometers in February, rising to a maximum of approximately 4.0 x 10(exp 6) square kilometers in September, with much variability among years for both those numbers. The Ross Sea images show clearly the day-by-day activity greatly from year to year. Animations of the data help to highlight the dynamic nature of the Ross Sea ice cover. The satellite data also allow calculation of trends in the ice cover over the period of the satellite record. Using linear least-squares fits, the Ross Sea ice extent increased at an average rate of 12,600 plus or minus 1,800 square kilometers per year between November 1978 and December 2007, with every month exhibiting increased ice extent and the rates of increase ranging from a low of 7,500 plus or minus 5,000 square kilometers per year for the February ice extents to a high of 20,300 plus or minus 6,100 kilometers per year for the October ice extents. On a yearly average basis, for 1979-2007 the Ross Sea ice extent increased at a rate of 4.8 plus or minus 1.6 % per decade. Placing the Ross Sea in the context of the Southern Ocean as a whole, over the November 1978-December 2007 period the Ross Sea had

  11. A laboratory experiment assessing the effect of sea ice on wave dumping

    Science.gov (United States)

    Cavaliere, Claudio; Alberello, Alberto; Bennetts, Luke; Meylan, Mike; Babanin, Alexander; Malavasi, Stefano; Toffoli, Alessandro

    2014-05-01

    Wave-ice interaction is a critical factor in the dynamics of the marginal ice zone (MIZ), the region between open ocean and an expanse of ice floes of varying size and shape. This interaction works both ways: while waves cause the fractures of ice floes, the presence of ice floes affects waves through scattering and various dissipative processes. In order to assess the latter, a laboratory experiment has been carried out in the coastal directional basin at Plymouth University. Sea ice has been simulated with two deformable plates: 1mX1m plastic sheet with variable thickness of polypropylene, which holds the same density (~0.9 g/cm3) of ice, and PVC Forex, which hold the same mechanical property of ice. Experiments have been conducted using monochromatic as well as random wave fields with different steepness and wavelengths (both shorter and larger than the floe). The wave field has been monitored before and after the simulated ice floe with a number of wave probes deployed along the basin, including a 6-probe array to track directional properties. On the whole, results show a substantial scattering and dissipation of the wave field, which appears to be dependent on the amount of overwash on the ice floe.

  12. Some Results on Sea Ice Rheology for the Seasonal Ice Zone, Obtained from the Deformation Field of Sea Ice Drift Pattern

    Science.gov (United States)

    Toyota, T.; Kimura, N.

    2017-12-01

    Sea ice rheology which relates sea ice stress to the large-scale deformation of the ice cover has been a big issue to numerical sea ice modelling. At present the treatment of internal stress within sea ice area is based mostly on the rheology formulated by Hibler (1979), where the whole sea ice area behaves like an isotropic and plastic matter under the ordinary stress with the yield curve given by an ellipse with an aspect ratio (e) of 2, irrespective of sea ice area and horizontal resolution of the model. However, this formulation was initially developed to reproduce the seasonal variation of the perennial ice in the Arctic Ocean. As for its applicability to the seasonal ice zones (SIZ), where various types of sea ice are present, it still needs validation from observational data. In this study, the validity of this rheology was examined for the Sea of Okhotsk ice, typical of the SIZ, based on the AMSR-derived ice drift pattern in comparison with the result obtained for the Beaufort Sea. To examine the dependence on a horizontal scale, the coastal radar data operated near the Hokkaido coast, Japan, were also used. Ice drift pattern was obtained by a maximum cross-correlation method with grid spacings of 37.5 km from the 89 GHz brightness temperature of AMSR-E for the entire Sea of Okhotsk and the Beaufort Sea and 1.3 km from the coastal radar for the near-shore Sea of Okhotsk. The validity of this rheology was investigated from a standpoint of work rate done by deformation field, following the theory of Rothrock (1975). In analysis, the relative rates of convergence were compared between theory and observation to check the shape of yield curve, and the strain ellipse at each grid cell was estimated to see the horizontal variation of deformation field. The result shows that the ellipse of e=1.7-2.0 as the yield curve represents the observed relative conversion rates well for all the ice areas. Since this result corresponds with the yield criterion by Tresca and

  13. Sea Ice Monitoring from Space with Synthetic Aperture Radar

    Science.gov (United States)

    Eltoft, T.; Dierking, W.; Doulgeris, A.; Kasapoglu, G.; Kraemer, T.

    2013-03-01

    This paper summarizes the knowledge status in some areas of SAR monitoring of sea ice. It starts with a brief summary of the whitepaper by Breivik et al. from OceanObs’09 [3], and then focuses on segmentation and classification, drift estimation, and assimilation strategies, which are considered as key areas in the development of more mature sea ice products from SAR and polarimetric SAR (PoLSAR) data.

  14. Mechanisms causing reduced Arctic sea ice loss in a coupled climate model

    Directory of Open Access Journals (Sweden)

    A. E. West

    2013-03-01

    Full Text Available The fully coupled climate model HadGEM1 produces one of the most accurate simulations of the historical record of Arctic sea ice seen in the IPCC AR4 multi-model ensemble. In this study, we examine projections of sea ice decline out to 2030, produced by two ensembles of HadGEM1 with natural and anthropogenic forcings included. These ensembles project a significant slowing of the rate of ice loss to occur after 2010, with some integrations even simulating a small increase in ice area. We use an energy budget of the Arctic to examine the causes of this slowdown. A negative feedback effect by which rapid reductions in ice thickness north of Greenland reduce ice export is found to play a major role. A slight reduction in ocean-to-ice heat flux in the relevant period, caused by changes in the meridional overturning circulation (MOC and subpolar gyre in some integrations, as well as freshening of the mixed layer driven by causes other than ice melt, is also found to play a part. Finally, we assess the likelihood of a slowdown occurring in the real world due to these causes.

  15. Sea-Ice Feature Mapping using JERS-1 Imagery

    Science.gov (United States)

    Maslanik, James; Heinrichs, John

    1994-01-01

    JERS-1 SAR and OPS imagery are examined in combination with other data sets to investigate the utility of the JERS-1 sensors for mapping fine-scale sea ice conditions. Combining ERS-1 C band and JERS-1 L band SAR aids in discriminating multiyear and first-year ice. Analysis of OPS imagery for a field site in the Canadian Archipelago highlights the advantages of OPS's high spatial and spectral resolution for mapping ice structure, melt pond distribution, and surface albedo.

  16. Modeling the summertime evolution of sea-ice melt ponds

    DEFF Research Database (Denmark)

    Lüthje, Mikael; Feltham, D.L.; Taylor, P.D.

    2006-01-01

    We present a mathematical model describing the summer melting of sea ice. We simulate the evolution of melt ponds and determine area coverage and total surface ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt rate beneath the melt ponds...

  17. Observations of brine plumes below melting Arctic sea ice

    Directory of Open Access Journals (Sweden)

    A. K. Peterson

    2018-02-01

    Full Text Available In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m−2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  18. Observations of brine plumes below melting Arctic sea ice

    Science.gov (United States)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  19. Assimilation of ice and water observations from SAR imagery to improve estimates of sea ice concentration

    Directory of Open Access Journals (Sweden)

    K. Andrea Scott

    2015-09-01

    Full Text Available In this paper, the assimilation of binary observations calculated from synthetic aperture radar (SAR images of sea ice is investigated. Ice and water observations are obtained from a set of SAR images by thresholding ice and water probabilities calculated using a supervised maximum likelihood estimator (MLE. These ice and water observations are then assimilated in combination with ice concentration from passive microwave imagery for the purpose of estimating sea ice concentration. Due to the fact that the observations are binary, consisting of zeros and ones, while the state vector is a continuous variable (ice concentration, the forward model used to map the state vector to the observation space requires special consideration. Both linear and non-linear forward models were investigated. In both cases, the assimilation of SAR data was able to produce ice concentration analyses in closer agreement with image analysis charts than when assimilating passive microwave data only. When both passive microwave and SAR data are assimilated, the bias between the ice concentration analyses and the ice concentration from ice charts is 19.78%, as compared to 26.72% when only passive microwave data are assimilated. The method presented here for the assimilation of SAR data could be applied to other binary observations, such as ice/water information from visual/infrared sensors.

  20. Climate Modeling and Causal Identification for Sea Ice Predictability

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Elizabeth Clare [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urrego Blanco, Jorge Rolando [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urban, Nathan Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-12

    This project aims to better understand causes of ongoing changes in the Arctic climate system, particularly as decreasing sea ice trends have been observed in recent decades and are expected to continue in the future. As part of the Sea Ice Prediction Network, a multi-agency effort to improve sea ice prediction products on seasonal-to-interannual time scales, our team is studying sensitivity of sea ice to a collection of physical process and feedback mechanism in the coupled climate system. During 2017 we completed a set of climate model simulations using the fully coupled ACME-HiLAT model. The simulations consisted of experiments in which cloud, sea ice, and air-ocean turbulent exchange parameters previously identified as important for driving output uncertainty in climate models were perturbed to account for parameter uncertainty in simulated climate variables. We conducted a sensitivity study to these parameters, which built upon a previous study we made for standalone simulations (Urrego-Blanco et al., 2016, 2017). Using the results from the ensemble of coupled simulations, we are examining robust relationships between climate variables that emerge across the experiments. We are also using causal discovery techniques to identify interaction pathways among climate variables which can help identify physical mechanisms and provide guidance in predictability studies. This work further builds on and leverages the large ensemble of standalone sea ice simulations produced in our previous w14_seaice project.

  1. Numerical modelling of thermodynamics and dynamics of sea ice in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    A. Herman

    2011-04-01

    Full Text Available In this paper, a numerical dynamic-thermo-dynamic sea-ice model for the Baltic Sea is used to analyze the variability of ice conditions in three winter seasons. The modelling results are validated with station (water temperature and satellite data (ice concentration as well as by qualitative comparisons with the Swedish Meteorological and Hydrological Institute ice charts. Analysis of the results addresses two major questions. One concerns effects of meteorological forcing on the spatio-temporal distribution of ice concentration in the Baltic. Patterns of correlations between air temperature, wind speed, and ice-covered area are demonstrated to be different in larger, more open sub-basins (e.g., the Bothnian Sea than in the smaller ones (e.g., the Bothnian Bay. Whereas the correlations with the air temperature are positive in both cases, the influence of wind is pronounced only in large basins, leading to increase/decrease of areas with small/large ice concentrations, respectively. The other question concerns the role of ice dynamics in the evolution of the ice cover. By means of simulations with the dynamic model turned on and off, the ice dynamics is shown to play a crucial role in interactions between the ice and the upper layers of the water column, especially during periods with highly varying wind speeds and directions. In particular, due to the fragmentation of the ice cover and the modified surface fluxes, the ice dynamics influences the rate of change of the total ice volume, in some cases by as much as 1 km3 per day. As opposed to most other numerical studies on the sea-ice in the Baltic Sea, this work concentrates on the short-term variability of the ice cover and its response to the synoptic-scale forcing.

  2. Increased Arctic sea ice drift alters adult female polar bear movements and energetics.

    Science.gov (United States)

    Durner, George M; Douglas, David C; Albeke, Shannon E; Whiteman, John P; Amstrup, Steven C; Richardson, Evan; Wilson, Ryan R; Ben-David, Merav

    2017-09-01

    Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987-1998 and 1999-2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%-9.6%) or by increasing their travel speed (8.5%-8.9%). This increased their calculated annual energy expenditure by 1.8%-3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1-3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  3. Global Daily Sea Ice Concentration Reprocessing Data Set for 1978-2007 from the EUMETSAT Ocean and Sea Ice Satellite Application Facility (NODC Accession 0068294)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data constitute the reprocessed sea ice concentration data set from the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF), covering the...

  4. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    Science.gov (United States)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  5. Ross sea ice motion, area flux, and deformation

    Science.gov (United States)

    kwok, Ron

    2005-01-01

    The sea ice motion, area export, and deformation of the Ross Sea ice cover are examined with satellite passive microwave and RADARSAT observations. The record of high-resolution synthetic aperture radar (SAR) data, from 1998 and 2000, allows the estimation of the variability of ice deformation at the small scale (10 km) and to assess the quality of the longer record of passive microwave ice motion. Daily and subdaily deformation fields and RADARSAT imagery highlight the variability of motion and deformation in the Ross Sea. With the passive microwave ice motion, the area export at a flux gate positioned between Cape Adare and Land Bay is estimated. Between 1992 and 2003, a positive trend can be seen in the winter (March-November) ice area flux that has a mean of 990 x 103 km2 and ranges from a low of 600 x 103 km2 in 1992 to a peak of 1600 x 103 km2 in 2001. In the mean, the southern Ross Sea produces almost twice its own area of sea ice during the winter. Cross-gate sea level pressure (SLP) gradients explain 60% of the variance in the ice area flux. A positive trend in this gradient, from reanalysis products, suggests a 'spinup' of the Ross Sea Gyre over the past 12 yr. In both the NCEP-NCAR and ERA-40 surface pressure fields, longer-term trends in this gradient and mean SLP between 1979 and 2002 are explored along with positive anomalies in the monthly cross-gate SLP gradient associated with the positive phase of the Southern Hemisphere annular mode and the extrapolar Southern Oscillation.

  6. PARAMETERS COMPARSION OF LEADS DETECTION IN ARCTIC SEA ICE USING CRYOSAT-2 WAVEFORM DATA

    Directory of Open Access Journals (Sweden)

    J. Li

    2018-04-01

    Full Text Available Leads are only a small part of the polar sea ice structure, but they play a dominant role on the turbulence exchange between the ocean and the atmosphere, they are also important factors about sea ice thickness inversion. Since the early 2000s, Satellite altimetry has been applied to monitor the Arctic sea ice thickness, Satellite altimetry data can be used to distinguish leads and sea ice. In this paper, four parameters including Pulse peakiness (PP, stack standard deviation (SSD, stack kurtosis (SKU and stack skewness (SSK are extracted from CryoSat-2 satellite altimetry waveform data. The four parameters are combined into five combinations (PP, PP&SSD, PP&SSD&SKU, PP&SSD&SSK, PP&SSD&SSK&SKU with constrain conditions to detect the leads. The results of the five methods are compared with MODIS (moderate-resolution imagining spectroradiometer images and show that, the combination of PP&SSD is better than the single PP, the rest of combinations are the same as the combination of PP&SSD. It turns out, there is no promotion when we add SSK and SKU, successively or simultaneously.

  7. Parameters Comparsion of Leads Detection in Arctic Sea Ice Using CRYOSAT-2 Waveform Data

    Science.gov (United States)

    Li, J.; Zhang, S.; Xiao, F.; Zhu, C.; Zhang, Y.; Zhu, T.; Yuan, L.

    2018-04-01

    Leads are only a small part of the polar sea ice structure, but they play a dominant role on the turbulence exchange between the ocean and the atmosphere, they are also important factors about sea ice thickness inversion. Since the early 2000s, Satellite altimetry has been applied to monitor the Arctic sea ice thickness, Satellite altimetry data can be used to distinguish leads and sea ice. In this paper, four parameters including Pulse peakiness (PP), stack standard deviation (SSD), stack kurtosis (SKU) and stack skewness (SSK) are extracted from CryoSat-2 satellite altimetry waveform data. The four parameters are combined into five combinations (PP, PP&SSD, PP&SSD&SKU, PP&SSD&SSK, PP&SSD&SSK&SKU) with constrain conditions to detect the leads. The results of the five methods are compared with MODIS (moderate-resolution imagining spectroradiometer) images and show that, the combination of PP&SSD is better than the single PP, the rest of combinations are the same as the combination of PP&SSD. It turns out, there is no promotion when we add SSK and SKU, successively or simultaneously.

  8. Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead

    Science.gov (United States)

    Kauko, Hanna M.; Taskjelle, Torbjørn; Assmy, Philipp; Pavlov, Alexey K.; Mundy, C. J.; Duarte, Pedro; Fernández-Méndez, Mar; Olsen, Lasse M.; Hudson, Stephen R.; Johnsen, Geir; Elliott, Ashley; Wang, Feiyue; Granskog, Mats A.

    2017-06-01

    The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year ice cover, with significant consequences for radiative transfer through the ice pack and light availability for algal growth. A thinner, more dynamic ice cover will possibly result in more frequent leads, covered by newly formed ice with little snow cover. We studied a refrozen lead (≤0.27 m ice) in drifting pack ice north of Svalbard (80.5-81.8°N) in May-June 2015 during the Norwegian young sea ICE expedition (N-ICE2015). We measured downwelling incident and ice-transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs), and chlorophyll a (Chl a) in melted sea ice samples. We found occasionally very high MAA concentrations (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during ice melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin ice was significantly higher than that of the adjacent thicker ice with deep snow cover, ice algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent ice. Ice algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.

  9. Wave scattering by an axisymmetric ice floe of varying thickness

    Science.gov (United States)

    Bennetts, Luke G.; Biggs, Nicholas R. T.; Porter, David

    2009-04-01

    The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh-Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413-443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.

  10. Determination of Arctic sea ice variability modes on interannual timescales via nonhierarchical clustering

    Science.gov (United States)

    Fučkar, Neven-Stjepan; Guemas, Virginie; Massonnet, François; Doblas-Reyes, Francisco

    2015-04-01

    Over the modern observational era, the northern hemisphere sea ice concentration, age and thickness have experienced a sharp long-term decline superimposed with strong internal variability. Hence, there is a crucial need to identify robust patterns of Arctic sea ice variability on interannual timescales and disentangle them from the long-term trend in noisy datasets. The principal component analysis (PCA) is a versatile and broadly used method for the study of climate variability. However, the PCA has several limiting aspects because it assumes that all modes of variability have symmetry between positive and negative phases, and suppresses nonlinearities by using a linear covariance matrix. Clustering methods offer an alternative set of dimension reduction tools that are more robust and capable of taking into account possible nonlinear characteristics of a climate field. Cluster analysis aggregates data into groups or clusters based on their distance, to simultaneously minimize the distance between data points in a given cluster and maximize the distance between the centers of the clusters. We extract modes of Arctic interannual sea-ice variability with nonhierarchical K-means cluster analysis and investigate the mechanisms leading to these modes. Our focus is on the sea ice thickness (SIT) as the base variable for clustering because SIT holds most of the climate memory for variability and predictability on interannual timescales. We primarily use global reconstructions of sea ice fields with a state-of-the-art ocean-sea-ice model, but we also verify the robustness of determined clusters in other Arctic sea ice datasets. Applied cluster analysis over the 1958-2013 period shows that the optimal number of detrended SIT clusters is K=3. Determined SIT cluster patterns and their time series of occurrence are rather similar between different seasons and months. Two opposite thermodynamic modes are characterized with prevailing negative or positive SIT anomalies over the

  11. Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6

    Directory of Open Access Journals (Sweden)

    P. Mathiot

    2017-07-01

    Full Text Available Ice-shelf–ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean–sea ice model NEMO (Nucleus for European Modelling of the Ocean currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface, inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used three equation ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated.

  12. Ice bridges and ridges in the Maxwell-EB sea ice rheology

    Directory of Open Access Journals (Sweden)

    V. Dansereau

    2017-09-01

    Full Text Available This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB, is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr–Coulomb damage criterion that allows for pure (uniaxial and biaxial tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.

  13. Ice bridges and ridges in the Maxwell-EB sea ice rheology

    Science.gov (United States)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe; Coche, Edmond

    2017-09-01

    This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB), is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr-Coulomb damage criterion that allows for pure (uniaxial and biaxial) tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.

  14. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture

    Science.gov (United States)

    Biggs, A. W.

    1983-01-01

    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  15. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals

    Science.gov (United States)

    Li, Weiqiang; Cardellach, Estel; Fabra, Fran; Rius, Antonio; Ribó, Serni; Martín-Neira, Manuel

    2017-08-01

    A track of sea ice reflected Global Navigation Satellite System (GNSS) signal collected by the TechDemoSat-1 mission is processed to perform phase altimetry over sea ice. High-precision carrier phase measurements are extracted from coherent GNSS reflections at a high angle of elevation (>57°). The altimetric results show good consistency with a mean sea surface (MSS) model, and the root-mean-square difference is 4.7 cm with an along-track sampling distance of ˜140 m and a spatial resolution of ˜400 m. The difference observed between the altimetric results and the MSS shows good correlation with the colocated sea ice thickness data from Soil Moisture and Ocean Salinity. This is consistent with the reflecting surface aligned with the bottom of the ice-water interface, due to the penetration of the GNSS signal into the sea ice. Therefore, these high-precision altimetric results have potential to be used for determination of sea ice thickness.

  16. New Techniques for Radar Altimetry of Sea Ice and the Polar Oceans

    Science.gov (United States)

    Armitage, T. W. K.; Kwok, R.; Egido, A.; Smith, W. H. F.; Cullen, R.

    2017-12-01

    Satellite radar altimetry has proven to be a valuable tool for remote sensing of the polar oceans, with techniques for estimating sea ice thickness and sea surface height in the ice-covered ocean advancing to the point of becoming routine, if not operational, products. Here, we explore new techniques in radar altimetry of the polar oceans and the sea ice cover. First, we present results from fully-focused SAR (FFSAR) altimetry; by accounting for the phase evolution of scatterers in the scene, the FFSAR technique applies an inter-burst coherent integration, potentially over the entire duration that a scatterer remains in the altimeter footprint, which can narrow the effective along track resolution to just 0.5m. We discuss the improvement of using interleaved operation over burst-more operation for applying FFSAR processing to data acquired by future missions, such as a potential CryoSat follow-on. Second, we present simulated sea ice retrievals from the Ka-band Radar Interferometer (KaRIn), the instrument that will be launched on the Surface Water and Ocean Topography (SWOT) mission in 2021, that is capable of producing swath images of surface elevation. These techniques offer the opportunity to advance our understanding of the physics of the ice-covered oceans, plus new insight into how we interpret more conventional radar altimetry data in these regions.

  17. Sea ice contribution to the air-sea CO{sub 2} exchange in the Arctic and Southern Oceans

    Energy Technology Data Exchange (ETDEWEB)

    Rysgaard, Soeren (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Centre for Earth Observation Science, CHR Faculty of Environment Earth and Resources, Univ. of Manitoba, Winnipeg (Canada)), e-mail: rysgaard@natur.gl; Bendtsen, Joergen (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Centre for Ice and Climate, Niels Bohr Inst., Univ. of Copenhagen, Copenhagen O (Denmark)); Delille, Bruno (Unit' e d' Oceanographie Chimique, Interfacultary Centre for Marine Research, Universite de Liege, Liege (Belgium)); Dieckmann, Gerhard S. (Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany)); Glud, Ronnie N. (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark); Scottish Association of Marine Sciences, Scotland UK, Southern Danish Univ. and NordCee, Odense M (Denmark)); Kennedy, Hilary; Papadimitriou, Stathys (School of Ocean Sciences, Bangor Univ., Menai Bridge, Anglesey, Wales (United Kingdom)); Mortensen, John (Greenland Climate Research Centre, Greenland Inst. of Natural Resources, Nuuk, Greenland (Denmark)); Thomas, David N. (School of Ocean Sciences, Bangor Univ., Menai Bridge, Anglesey, Wales (United Kingdom); Finnish Environment Inst. (SYKE), Marine Research Centre, Helsinki (Finland)); Tison, Jean-Louis (Glaciology Unit, Dept. of Earth and Environmental Sciences, Universite Libre de Bruxelles, Bruxelles, (Belgium))

    2011-11-15

    Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO{sub 2} and the subsequent effect on air-sea CO{sub 2} exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air-sea CO{sub 2} exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO{sub 2} uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO{sub 2} uptake in ice-free polar seas. This sea-ice driven CO{sub 2} uptake has not been considered so far in estimates of global oceanic CO{sub 2} uptake. Net CO{sub 2} uptake in sea-ice-covered oceans can be driven by; (1) rejection during sea-ice formation and sinking of CO{sub 2}-rich brine into intermediate and abyssal oceanic water masses, (2) blocking of air-sea CO{sub 2} exchange during winter, and (3) release of CO{sub 2}-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO{sub 2} drawdown during primary production in sea ice and surface oceanic waters

  18. Air-sea interactions in the marginal ice zone

    Directory of Open Access Journals (Sweden)

    Seth Zippel

    2016-03-01

    Full Text Available Abstract The importance of waves in the Arctic Ocean has increased with the significant retreat of the seasonal sea-ice extent. Here, we use wind, wave, turbulence, and ice measurements to evaluate the response of the ocean surface to a given wind stress within the marginal ice zone, with a focus on the local wind input to waves and subsequent ocean surface turbulence. Observations are from the Beaufort Sea in the summer and early fall of 2014, with fractional ice cover of up to 50%. Observations showed strong damping and scattering of short waves, which, in turn, decreased the wind energy input to waves. Near-surface turbulent dissipation rates were also greatly reduced in partial ice cover. The reductions in waves and turbulence were balanced, suggesting that a wind-wave equilibrium is maintained in the marginal ice zone, though at levels much less than in open water. These results suggest that air-sea interactions are suppressed in the marginal ice zone relative to open ocean conditions at a given wind forcing, and this suppression may act as a feedback mechanism in expanding a persistent marginal ice zone throughout the Arctic.

  19. Circulation and water properties in the landfast ice zone of the Alaskan Beaufort Sea

    Science.gov (United States)

    Weingartner, Thomas J.; Danielson, Seth L.; Potter, Rachel A.; Trefry, John H.; Mahoney, Andy; Savoie, Mark; Irvine, Cayman; Sousa, Leandra

    2017-09-01

    Moorings, hydrography, satellite-tracked drifters, and high-frequency radar data describe the annual cycle in circulation and water properties in the landfast ice zone (LIZ) of the Alaskan Beaufort Sea. Three seasons, whose duration and characteristics are controlled by landfast ice formation and ablation, define the LIZ: ;winter;, ;break-up;, and ;open-water;. Winter begins in October with ice formation and ends in June when rivers commence discharging. Winter LIZ ice velocities are zero, under-ice currents are weak ( 5 cm s-1), and poorly correlated with winds and local sea level. The along-shore momentum balance is between along-shore pressure gradients and bottom and ice-ocean friction. Currents at the landfast ice-edge are swift ( 35 cm s-1), wind-driven, with large horizontal shears, and potentially unstable. Weak cross-shore velocities ( 1 cm s-1) imply limited exchanges between the LIZ and the outer shelf in winter. The month-long break-up season (June) begins with the spring freshet and concludes when landfast ice detaches from the bottom. Cross-shore currents increase, and the LIZ hosts shallow ( 2 m), strongly-stratified, buoyant and sediment-laden, under-ice river plumes that overlie a sharp, 1 m thick, pycnocline across which salinity increases by 30. The plume salt balance is between entrainment and cross-shore advection. Break-up is followed by the 3-month long open-water season when currents are swift (≥20 cm s-1) and predominantly wind-driven. Winter water properties are initialized by fall advection and evolve slowly due to salt rejection from ice. Fall waters and ice within the LIZ derive from local rivers, the Mackenzie and/or Chukchi shelves, and the Arctic basin.

  20. Increased Land Use by Chukchi Sea Polar Bears in Relation to Changing Sea Ice Conditions.

    Science.gov (United States)

    Rode, Karyn D; Wilson, Ryan R; Regehr, Eric V; St Martin, Michelle; Douglas, David C; Olson, Jay

    2015-01-01

    Recent observations suggest that polar bears (Ursus maritimus) are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986-1995 and 2008-2013) when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia), highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions.

  1. Increased Land Use by Chukchi Sea Polar Bears in Relation to Changing Sea Ice Conditions.

    Directory of Open Access Journals (Sweden)

    Karyn D Rode

    Full Text Available Recent observations suggest that polar bears (Ursus maritimus are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986-1995 and 2008-2013 when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia, highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions.

  2. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    Science.gov (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  3. Walrus areas of use in the Chukchi Sea during sparse sea ice cover

    Science.gov (United States)

    Jay, Chadwick V.; Fischbach, Anthony S.; Kochnev, Anatoly A.

    2012-01-01

    The Pacific walrus Odobenus rosmarus divergens feeds on benthic invertebrates on the continental shelf of the Chukchi and Bering Seas and rests on sea ice between foraging trips. With climate warming, ice-free periods in the Chukchi Sea have increased and are projected to increase further in frequency and duration. We radio-tracked walruses to estimate areas of walrus foraging and occupancy in the Chukchi Sea from June to November of 2008 to 2011, years when sea ice was sparse over the continental shelf in comparison to historical records. The earlier and more extensive sea ice retreat in June to September, and delayed freeze-up of sea ice in October to November, created conditions for walruses to arrive earlier and stay later in the Chukchi Sea than in the past. The lack of sea ice over the continental shelf from September to October caused walruses to forage in nearshore areas instead of offshore areas as in the past. Walruses did not frequent the deep waters of the Arctic Basin when sea ice retreated off the shelf. Walruses foraged in most areas they occupied, and areas of concentrated foraging generally corresponded to regions of high benthic biomass, such as in the northeastern (Hanna Shoal) and southwestern Chukchi Sea. A notable exception was the occurrence of concentrated foraging in a nearshore area of northwestern Alaska that is apparently depauperate in walrus prey. With increasing sea ice loss, it is likely that walruses will increase their use of coastal haul-outs and nearshore foraging areas, with consequences to the population that are yet to be understood.

  4. An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol

    Science.gov (United States)

    Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.

    2017-12-01

    In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is

  5. Observational Evidence of a Hemispheric-wide Ice-ocean Albedo Feedback Effect on Antarctic Sea-ice Decay

    Science.gov (United States)

    Nihashi, Sohey; Cavalieri, Donald J.

    2007-01-01

    The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.

  6. Primary production calculations for sea ice from bio-optical observations in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Susann Müller

    2016-09-01

    Full Text Available Abstract Bio-optics is a powerful approach for estimating photosynthesis rates, but has seldom been applied to sea ice, where measuring photosynthesis is a challenge. We measured absorption coefficients of chromophoric dissolved organic matter (CDOM, algae, and non-algal particles along with solar radiation, albedo and transmittance at four sea-ice stations in the Gulf of Finland, Baltic Sea. This unique compilation of optical and biological data for Baltic Sea ice was used to build a radiative transfer model describing the light field and the light absorption by algae in 1-cm increments. The maximum quantum yields and photoadaptation of photosynthesis were determined from 14C-incorporation in photosynthetic-irradiance experiments using melted ice. The quantum yields were applied to the radiative transfer model estimating the rate of photosynthesis based on incident solar irradiance measured at 1-min intervals. The calculated depth-integrated mean primary production was 5 mg C m–2 d–1 for the surface layer (0–20 cm ice depth at Station 3 (fast ice and 0.5 mg C m–2 d–1 for the bottom layer (20–57 cm ice depth. Additional calculations were performed for typical sea ice in the area in March using all ice types and a typical light spectrum, resulting in depth-integrated mean primary production rates of 34 and 5.6 mg C m–2 d–1 in surface ice and bottom ice, respectively. These calculated rates were compared to rates determined from 14C incorporation experiments with melted ice incubated in situ. The rate of the calculated photosynthesis and the rates measured in situ at Station 3 were lower than those calculated by the bio-optical algorithm for typical conditions in March in the Gulf of Finland by the bio-optical algorithm. Nevertheless, our study shows the applicability of bio-optics for estimating the photosynthesis of sea-ice algae.

  7. Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    Science.gov (United States)

    Boening, C.; Schlegel, N.; Limonadi, D.; Schodlok, M.; Seroussi, H. L.; Larour, E. Y.; Watkins, M. M.

    2017-12-01

    In order to better quantify uncertainties in global mean sea level rise projections and in particular upper bounds, we aim at systematically evaluating the contributions from ice sheets and potential for extreme sea level rise due to sudden ice mass loss. Here, we take advantage of established uncertainty quantification tools embedded within the Ice Sheet System Model (ISSM) as well as sensitivities to ice/ocean interactions using melt rates and melt potential derived from MITgcm/ECCO2. With the use of these tools, we conduct Monte-Carlo style sampling experiments on forward simulations of the Antarctic ice sheet, by varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges. Uncertainty bounds for climate forcing are informed by CMIP5 ensemble precipitation and ice melt estimates for year 2100, and uncertainty bounds for ocean melt rates are derived from a suite of regional sensitivity experiments using MITgcm. Resulting statistics allow us to assess how regional uncertainty in various parameters affect model estimates of century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  8. Antarctic ice sheet thickness estimation based on P-receiver function and waveform inversion

    Science.gov (United States)

    Yan, P.; Li, F.; LI, Z.; Li, J.; Yang, Y.; Hao, W.

    2016-12-01

    Antarctic ice sheet thickness is key parameter and boundary condition for ice sheet model construction, which has great significance for glacial isostatic adjustment, ice sheet mass balance and global change study. Ice thickness acquired utilizing seismological receiver function method can complement and verify with results obtained by radar echo sounding method. In this paper, P-receiver functions(PRFs) are extracted for stations deployed on Antarctic ice sheet, then Vp/Vs ratio and ice thickness are obtained using H-Kappa stacking. Comparisons are made between Bedmap2 dataset and the ice thickness from PRFs, most of the absolute value of the differences are less than 200 meters, only a few reach 600 meters. Taking into account of the intensity of Bedmap2 dataset survey lines and the uncertainty of radio echo sounding, as well as the inherit complexity of the internal ice structure beneath some stations, the ice thickness obtained from receiver function method is reliable. However limitation exists when using H-Kappa stacking method for stations where sediment squeezed between the ice and the bed rock layer. For better verifying the PRF result, a global optimizing method-Neighbourhood algotithm(NA) and spline interpolation are used to modeling PRFs assuming an isotropic layered ice sheet with depth varied densities and velocities beneath the stations. Then the velocity structure and ice sheet thickness are obtained through nonlinear searching by optimally fitting the real and the theoretical PRFs. The obtained ice sheet thickness beneath the stations agree well with the former H-Kappa method, but further detailed study are needed to constrain the inner ice velocity structure.

  9. Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska

    Science.gov (United States)

    Reimnitz, E.; Toimil, L.; Barnes, P.

    1978-01-01

    Landsat-1 and NOAA satellite imagery for the winter 1972-1973, and a variety of ice and sea-floor data were used to study sea-ice zonation and dynamics and their relation to bottom morphology and geology on the Beaufort Sea continental shelf of arctic Alaska. In early winter the location of the boundary between undeformed fast ice and westward-drifting pack ice of the Pacific Gyre is controlled by major coastal promontories. Pronounced linear pressure- and shear-ridges, as well as hummock fields, form along this boundary and are stabilized by grounding, generally between the 10- and 20-m isobaths. Slippage along this boundary occurs intermittently at or seaward of the grounded ridges, forming new grounded ridges in a widening zone, the stamukhi zone, which by late winter extends out to the 40-m isobath. Between intermittent events along the stamukhi zone, pack-ice drift and slippage is continuous along the shelf edge, at average rates of 3-10 km/day. Whether slippage occurs along the stamukhi zone or along the shelf edge, it is restricted to a zone several hundred meters wide, and ice seaward of the slip face moves at uniform rates without discernible drag effects. A causal relationship is seen between the spatial distribution of major ice-ridge systems and offshore shoals downdrift of major coastal promontories. The shoals appear to have migrated shoreward under the influence of ice up to 400 m in the last 25 years. The sea floor seaward of these shoals within the stamukhi zone shows high ice-gouge density, large incision depths, and a high degree of disruption of internal sedimentary structures. The concentration of large ice ridges and our sea floor data in the stamukhi zone indicate that much of the available marine energy is expended here, while the inner shelf and coast, where the relatively undeformed fast ice grows, are sheltered. There is evidence that anomalies in the overall arctic shelf profile are related to sea-ice zonation, ice dynamics, and bottom

  10. Snow depth retrieval from L-band satellite measurements on Arctic and Antarctic sea ice

    Science.gov (United States)

    Maaß, N.; Kaleschke, L.; Wever, N.; Lehning, M.; Nicolaus, M.; Rossmann, H. L.

    2017-12-01

    The passive microwave mission SMOS provides daily coverage of the polar regions and measures at a low frequency of 1.4 GHz (L-band). SMOS observations have been used to operationally retrieve sea ice thickness up to 1 m and to estimate snow depth in the Arctic for thicker ice. Here, we present how SMOS-retrieved snow depths compare with airborne measurements from NASA's Operation IceBridge mission (OIB) and with AMSR-2 satellite retrievals at higher frequencies, and we show first applications to Antarctic sea ice. In previous studies, SMOS and OIB snow depths showed good agreement on spatial scales from 50 to 1000 km for some days and disagreement for other days. Here, we present a more comprehensive comparison of OIB and SMOS snow depths in the Arctic for 2011 to 2015. We find that the SMOS retrieval works best for cold conditions and depends on auxiliary information on ice surface temperature, here provided by MODIS thermal imagery satellite data. However, comparing SMOS and OIB snow depths is difficult because of the different spatial resolutions (SMOS: 40 km, OIB: 40 m). Spatial variability within the SMOS footprint can lead to different snow conditions as seen from SMOS and OIB. Ideally the comparison is made for uniform conditions: Low lead and open water fraction, low spatial and temporal variability of ice surface temperature, no mixture of multi- and first-year ice. Under these conditions and cold temperatures (surface temperatures below -25°C), correlation coefficients between SMOS and OIB snow depths increase from 0.3 to 0.6. A finding from the comparison with AMSR-2 snow depths is that the SMOS-based maps depend less on the age of the sea ice than the maps derived from higher frequencies. Additionally, we show first results of SMOS snow depths for Antarctic sea ice. SMOS observations are compared to measurements of autonomous snow buoys drifting in the Weddell Sea since 2014. For a better comparability of these point measurements with SMOS data, we use

  11. Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica

    Science.gov (United States)

    Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.

    2016-01-01

    A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (< 20 m deep water columns) perennially ice-covered lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.

  12. Toward Sub-seasonal to Seasonal Arctic Sea Ice Forecasting Using the Regional Arctic System Model (RASM)

    Science.gov (United States)

    Kamal, S.; Maslowski, W.; Roberts, A.; Osinski, R.; Cassano, J. J.; Seefeldt, M. W.

    2017-12-01

    The Regional Arctic system model has been developed and used to advance the current state of Arctic modeling and increase the skill of sea ice forecast. RASM is a fully coupled, limited-area model that includes the atmosphere, ocean, sea ice, land hydrology and runoff routing components and the flux coupler to exchange information among them. Boundary conditions are derived from NCEP Climate Forecasting System Reanalyses (CFSR) or Era Iterim (ERA-I) for hindcast simulations or from NCEP Coupled Forecast System Model version 2 (CFSv2) for seasonal forecasts. We have used RASM to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook (SIO) of the Sea Ice Prediction Network (SIPN). Each year, we produced three SIOs for the September minimum, initialized on June 1, July 1 and August 1. In 2016, predictions used a simple linear regression model to correct for systematic biases and included the mean September sea ice extent, the daily minimum and the week of the minimum. In 2017, we produced a 12-member ensemble on June 1 and July 1, and 28-member ensemble August 1. The predictions of September 2017 included the pan-Arctic and regional Alaskan sea ice extent, daily and monthly mean pan-Arctic maps of sea ice probability, concentration and thickness. No bias correction was applied to the 2017 forecasts. Finally, we will also discuss future plans for RASM forecasts, which include increased resolution for model components, ecosystem predictions with marine biogeochemistry extensions (mBGC) to the ocean and sea ice components, and feasibility of optional boundary conditions using the Navy Global Environmental Model (NAVGEM).

  13. Arctic cloud-climate feedbacks: On relationships between Arctic clouds, sea ice, and lower tropospheric stability

    Science.gov (United States)

    Taylor, P. C.; Boeke, R.; Hegyi, B.

    2017-12-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence other important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these Arctic climate system elements creating the potential for Arctic cloud-climate feedbacks. To further our understanding of the potential for Arctic cloud-climate feedbacks, we quantify the influence of atmospheric state on the surface cloud radiative effect (CRE). In addition, we quantify the covariability between surface CRE and sea ice concentration (SIC). This paper builds on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, a statistically insignificant covariability is found between CRE and SIC for most atmospheric conditions. Third, we find a statistically significant increase in the average surface longwave CRE at lower SIC values in fall. Specifically, a +3-5 W m-2 larger longwave CRE is found over footprints with 0% versus 100% SIC. Because systematic changes on the order of 1 W m-2 are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback that could delay the fall freeze-up and influence the variability in sea ice extent and volume, under certain meteorological conditions. Our results also suggest that a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  14. Does a Relationship Between Arctic Low Clouds and Sea Ice Matter?

    Science.gov (United States)

    Taylor, Patrick C.

    2016-01-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with sea ice concentration (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in sea ice extent and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  15. Controls on Arctic sea ice from first-year and multi-year survival rates

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Jes [Los Alamos National Laboratory

    2009-01-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi year ice. The transition to an Arctic that is populated by thinner first year sea ice has important implications for future trends in area and volume. Here we develop a reduced model for Arctic sea ice with which we investigate how the survivability of first year and multi year ice control the mean state, variability, and trends in ice area and volume.

  16. Indicators of Arctic Sea Ice Bistability in Climate Model Simulations and Observations

    Science.gov (United States)

    2014-09-30

    associated with the ice - albedo feedback and the seasonal melt and growth of sea ice , as well as horizontal climate variations on a global domain. (2...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Indicators of Arctic Sea Ice Bistability in Climate...possibility that the climate system supports multiple Arctic sea ice states that are relevant for the evolution of sea ice during the next several

  17. Simulating Arctic clouds during Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE)

    Science.gov (United States)

    Bromwich, D. H.; Hines, K. M.; Wang, S. H.

    2015-12-01

    The representation within global and regional models of the extensive low-level cloud cover over polar oceans remains a critical challenge for quantitative studies and forecasts of polar climate. In response, the polar-optimized version of the Weather Research and Forecasting model (Polar WRF) is used to simulate the meteorology, boundary layer, and Arctic clouds during the September-October 2014 Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE) project. Polar WRF was developed with several adjustments to the sea ice thermodynamics in WRF. ARISE was based out of Eielson Air Force Base near Fairbanks, Alaska and included multiple instrumented C-130 aircraft flights over open water and sea ice of the Beaufort Sea. Arctic boundary layer clouds were frequently observed within cold northeasterly flow over the open ocean and ice. Preliminary results indicate these clouds were primarily liquid water, with characteristics differing between open water and sea ice surfaces. Simulated clouds are compared to ARISE observations. Furthermore, Polar WRF simulations are run for the August-September 2008 Arctic Summer Cloud Ocean Study (ASCOS) for comparison to the ARISE. Preliminary analysis shows that simulated low-level water clouds over the sea ice are too extensive during the the second half of the ASCOS field program. Alternatives and improvements to the Polar WRF cloud schemes are considered. The goal is to use the ARISE and ASCOS observations to achieve an improved polar supplement to the WRF code for open water and sea ice that can be provided to the Polar WRF community.

  18. Operational SAR-based sea ice drift monitoring over the Baltic Sea

    Directory of Open Access Journals (Sweden)

    J. Karvonen

    2012-07-01

    Full Text Available An algorithm for computing ice drift from pairs of synthetic aperture radar (SAR images covering a common area has been developed at FMI. The algorithm has been developed based on the C-band SAR data over the Baltic Sea. It is based on phase correlation in two scales (coarse and fine with some additional constraints. The algorithm has been running operationally in the Baltic Sea from the beginning of 2011, using Radarsat-1 ScanSAR wide mode and Envisat ASAR wide swath mode data. The resulting ice drift fields are publicly available as part of the MyOcean EC project. The SAR-based ice drift vectors have been compared to the drift vectors from drifter buoys in the Baltic Sea during the first operational season, and also these validation results are shown in this paper. Also some navigationally useful sea ice quantities, which can be derived from ice drift vector fields, are presented.

  19. Impact of increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean

    Science.gov (United States)

    Merino, Nacho; Jourdain, Nicolas C.; Le Sommer, Julien; Goosse, Hugues; Mathiot, Pierre; Durand, Gael

    2018-01-01

    The sensitivity of Antarctic sea-ice to increasing glacial freshwater release into the Southern Ocean is studied in a series of 31-year ocean/sea-ice/iceberg model simulations. Glaciological estimates of ice-shelf melting and iceberg calving are used to better constrain the spatial distribution and magnitude of freshwater forcing around Antarctica. Two scenarios of glacial freshwater forcing have been designed to account for a decadal perturbation in glacial freshwater release to the Southern Ocean. For the first time, this perturbation explicitly takes into consideration the spatial distribution of changes in the volume of Antarctic ice shelves, which is found to be a key component of changes in freshwater release. In addition, glacial freshwater-induced changes in sea ice are compared to typical changes induced by the decadal evolution of atmospheric states. Our results show that, in general, the increase in glacial freshwater release increases Antarctic sea ice extent. But the response is opposite in some regions like the coastal Amundsen Sea, implying that distinct physical mechanisms are involved in the response. We also show that changes in freshwater forcing may induce large changes in sea-ice thickness, explaining about one half of the total change due to the combination of atmospheric and freshwater changes. The regional contrasts in our results suggest a need for improving the representation of freshwater sources and their evolution in climate models.

  20. Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    Science.gov (United States)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  1. The Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    Science.gov (United States)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  2. Radio Echo Sounding (RES investigations at Talos Dome (East Antarctica: bedrock topography and ice thickness

    Directory of Open Access Journals (Sweden)

    I. E. Tabacco

    2003-06-01

    Full Text Available Radio echo sounding measurements were collected during two Antarctic expeditions to determine the ice thickness and the sub-glacial morphology of Talos Dome in the region around 72°48'S; 159°06'E (about 6400 km2 on the edge of the East Antarctic plateau adjacent to Victoria Land in the western Ross Sea sector. The increasing interest in this region is due to the fact that in this area the ice accumulation is higher than in other sites in East Antarctica. Because of this, Talos Dome could be a new site for a project of a deep ice core drilling to obtain information on climate changes near the coast of Antarctica. In this frame, the knowledge of the bedrock topography is of great importance to choose the best location for the drilling site. In this paper, airborne radio echo sounding results from two Antarctic expeditions (1997 and 1999 are presented. Bedrock topography in bi- and three-dimensions for the Talos Dome region are discussed.

  3. High-resolution ice thickness and bed topography of a land-terminating section of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Lindbäck, K.; Pettersson, R.; Doyle, S. H.

    2014-01-01

    We present ice thickness and bed topography maps with high spatial resolution (250 to 500 m) of a and-terminating section of the Greenland Ice Sheet derived from combined ground-based and airborne radar surveys. The data have a total area of ~12000 km2 and cover the whole ablation area of the out...

  4. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    OpenAIRE

    A. A. Marks; M. D. King

    2013-01-01

    The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section ov...

  5. Statistical Analysis of SSMIS Sea Ice Concentration Threshold at the Arctic Sea Ice Edge during Summer Based on MODIS and Ship-Based Observational Data.

    Science.gov (United States)

    Ji, Qing; Li, Fei; Pang, Xiaoping; Luo, Cong

    2018-04-05

    The threshold of sea ice concentration (SIC) is the basis for accurately calculating sea ice extent based on passive microwave (PM) remote sensing data. However, the PM SIC threshold at the sea ice edge used in previous studies and released sea ice products has not always been consistent. To explore the representable value of the PM SIC threshold corresponding on average to the position of the Arctic sea ice edge during summer in recent years, we extracted sea ice edge boundaries from the Moderate-resolution Imaging Spectroradiometer (MODIS) sea ice product (MOD29 with a spatial resolution of 1 km), MODIS images (250 m), and sea ice ship-based observation points (1 km) during the fifth (CHINARE-2012) and sixth (CHINARE-2014) Chinese National Arctic Research Expeditions, and made an overlay and comparison analysis with PM SIC derived from Special Sensor Microwave Imager Sounder (SSMIS, with a spatial resolution of 25 km) in the summer of 2012 and 2014. Results showed that the average SSMIS SIC threshold at the Arctic sea ice edge based on ice-water boundary lines extracted from MOD29 was 33%, which was higher than that of the commonly used 15% discriminant threshold. The average SIC threshold at sea ice edge based on ice-water boundary lines extracted by visual interpretation from four scenes of the MODIS image was 35% when compared to the average value of 36% from the MOD29 extracted ice edge pixels for the same days. The average SIC of 31% at the sea ice edge points extracted from ship-based observations also confirmed that choosing around 30% as the SIC threshold during summer is recommended for sea ice extent calculations based on SSMIS PM data. These results can provide a reference for further studying the variation of sea ice under the rapidly changing Arctic.

  6. Thin Ice Area Extraction in the Seasonal Sea Ice Zones of the Northern Hemisphere Using Modis Data

    Science.gov (United States)

    Hayashi, K.; Naoki, K.; Cho, K.

    2018-04-01

    Sea ice has an important role of reflecting the solar radiation back into space. However, once the sea ice area melts, the area starts to absorb the solar radiation which accelerates the global warming. This means that the trend of global warming is likely to be enhanced in sea ice areas. In this study, the authors have developed a method to extract thin ice area using reflectance data of MODIS onboard Terra and Aqua satellites of NASA. The reflectance of thin sea ice in the visible region is rather low. Moreover, since the surface of thin sea ice is likely to be wet, the reflectance of thin sea ice in the near infrared region is much lower than that of visible region. Considering these characteristics, the authors have developed a method to extract thin sea ice areas by using the reflectance data of MODIS (NASA MYD09 product, 2017) derived from MODIS L1B. By using the scatter plots of the reflectance of Band 1 (620 nm-670 nm) and Band 2 (841 nm-876 nm)) of MODIS, equations for extracting thin ice area were derived. By using those equations, most of the thin ice areas which could be recognized from MODIS images were well extracted in the seasonal sea ice zones in the Northern Hemisphere, namely the Sea of Okhotsk, the Bering Sea and the Gulf of Saint Lawrence. For some limited areas, Landsat-8 OLI images were also used for validation.

  7. The effect of changing sea ice on the vulnerability of Arctic coasts

    OpenAIRE

    K. R. Barnhart; I. Overeem; R. S. Anderson

    2014-01-01

    Shorefast sea ice prevents the interaction of the land and the ocean in the Arctic winter and influences this interaction in the summer by governing the fetch. In many parts of the Arctic the sea-ice-free season is increasing in duration, and the summertime sea ice extents are decreasing. Sea ice provides a first order control on the vulnerability of Arctic coasts to erosion, inundation, and damage to settlements and infrastructure. We ask how the changing sea ic...

  8. Fragmentation and melting of the seasonal sea ice cover

    Science.gov (United States)

    Feltham, D. L.; Bateson, A.; Schroeder, D.; Ridley, J. K.; Aksenov, Y.

    2017-12-01

    Recent years have seen a rapid reduction in the summer extent of Arctic sea ice. This trend has implications for navigation, oil exploration, wildlife, and local communities. Furthermore the Arctic sea ice cover impacts the exchange of heat and momentum between the ocean and atmosphere with significant teleconnections across the climate system, particularly mid to low latitudes in the Northern Hemisphere. The treatment of melting and break-up processes of the seasonal sea ice cover within climate models is currently limited. In particular floes are assumed to have a uniform size which does not evolve with time. Observations suggest however that floe sizes can be modelled as truncated power law distributions, with different exponents for smaller and larger floes. This study aims to examine factors controlling the floe size distribution in the seasonal and marginal ice zone. This includes lateral melting, wave induced break-up of floes, and the feedback between floe size and the mixed ocean layer. These results are then used to quantify the proximate mechanisms of seasonal sea ice reduction in a sea ice—ocean mixed layer model. Observations are used to assess and calibrate the model. The impacts of introducing these processes to the model will be discussed and the preliminary results of sensitivity and feedback studies will also be presented.

  9. Assessing concentration uncertainty estimates from passive microwave sea ice products

    Science.gov (United States)

    Meier, W.; Brucker, L.; Miller, J. A.

    2017-12-01

    Sea ice concentration is an essential climate variable and passive microwave derived estimates of concentration are one of the longest satellite-derived climate records. However, until recently uncertainty estimates were not provided. Numerous validation studies provided insight into general error characteristics, but the studies have found that concentration error varied greatly depending on sea ice conditions. Thus, an uncertainty estimate from each observation is desired, particularly for initialization, assimilation, and validation of models. Here we investigate three sea ice products that include an uncertainty for each concentration estimate: the NASA Team 2 algorithm product, the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) product, and the NOAA/NSIDC Climate Data Record (CDR) product. Each product estimates uncertainty with a completely different approach. The NASA Team 2 product derives uncertainty internally from the algorithm method itself. The OSI-SAF uses atmospheric reanalysis fields and a radiative transfer model. The CDR uses spatial variability from two algorithms. Each approach has merits and limitations. Here we evaluate the uncertainty estimates by comparing the passive microwave concentration products with fields derived from the NOAA VIIRS sensor. The results show that the relationship between the product uncertainty estimates and the concentration error (relative to VIIRS) is complex. This may be due to the sea ice conditions, the uncertainty methods, as well as the spatial and temporal variability of the passive microwave and VIIRS products.

  10. Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice

    Science.gov (United States)

    Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.

    2017-08-01

    Arctic sea ice over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on sea ice in the Nordic Seas (including the Barents Sea). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of sea ice growth or even melting. Our analysis indicates that the recently observed sea ice decline in the Nordic Seas during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic ice at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic sea ice.

  11. Evaluation of the sea ice proxy IP against observational and diatom proxy data in the SW Labrador Sea

    DEFF Research Database (Denmark)

    Weckström, K.; Andersen, M.L.; Kuijpers, A.

    2013-01-01

    The recent rapid decline in Arctic sea ice cover has increased the need to improve the accuracy of the sea ice component in climate models and to provide detailed long-term sea ice concentration records, which are only available via proxy data. Recently, the highly branched isoprenoid IP25...

  12. Diatom-induced silicon isotopic fractionation in Antarctic sea ice

    Science.gov (United States)

    Francois, F.; Damien, C.; Jean-Louis, T.; Anthony, W.; Luc, A.

    2006-12-01

    We measured silicon-isotopic composition of dissolved silicon and biogenic silica collected by sequential melting from spring 2003 Antarctic pack ice (Australian sector). Sea ice is a key ecosystem in the Southern Ocean and its melting in spring has been often thought to have a seeding effect for the surface waters, triggering blooms in the mixed layer. This work is the first investigation of the silicon isotopes' proxy in sea ice and allows to estimate the activity of sea-ice diatoms in the different brine structures and the influence of sea- ice diatoms on the spring ice edge blooms. The relative use of the dissolved silicon pool by sea-ice diatoms is usually assessed by calculating nutrient:salinity ratios in the brines. However such an approach is biased by difficulties in evaluating the initial nutrient concentrations in the different brines structures, and by the impossibility to account for late sporadic nutrient replenishments. The silicon-isotopic composition of biogenic silica is a convenient alternative since it integrates an average Si utilization on all generations of diatoms. Measurements were performed on a MC-ICP-MS, in dry plasma mode using external Mg doping. Results are expressed as delta29Si relative to the NBS28 standard. From three sea ice cores with contrasted physico-chemical characteristics, we report significant isotopic fractionations linked to the diatoms activity, with distinct silicon biogeochemical dynamics between different brine structure. The diatoms in snow ice and in brine pockets of frazil or congelation ice have the most positive silicon-isotopic composition (+0.53 to +0.86 p.mil), indicating that they grow in a closed system and use a significant part of the small dissolved silicon pool. In the brine channels and skeletal layer, diatoms display a relatively less positive Si-isotopic composition (+0.41 to +0.70 p.mil), although it is still heavier compared to equilibrium fractionation (+0.38 p.mil). This suggests that they have

  13. Indigenous Knowledge and Sea Ice Science: What Can We Learn from Indigenous Ice Users?

    Science.gov (United States)

    Eicken, H.

    2010-12-01

    Drawing on examples mostly from Iñupiaq and Yup’ik sea-ice expertise in coastal Alaska, this contribution examines how local, indigenous knowledge (LIK) can inform and guide geophysical and biological sea-ice research. Part of the relevance of LIK derives from its linkage to sea-ice use and the services coastal communities derive from the ice cover. As a result, indigenous experts keep track of a broad range of sea-ice variables at a particular location. These observations are embedded into a broader worldview that speaks to both long-term variability or change and to the system of values associated with ice use. The contribution examines eight different contexts in which LIK in study site selection and assessment of a sampling campaign in the context of inter annual variability, the identification of rare or inconspicuous phenomena or events, the contribution by indigenous experts to hazard assessment and emergency response, the record of past and present climate embedded in LIK, and the value of holistic sea-ice knowledge in detecting subtle, intertwined patterns of environmental change. The relevance of local, indigenous sea-ice expertise in helping advance adaptation and responses to climate change as well as its potential role in guiding research questions and hypotheses are also examined. The challenges that may have to be overcome in creating an interface for exchange between indigenous experts and seaice researchers are considered. Promising approaches to overcome these challenges include cross-cultural, interdisciplinary education, and the fostering of Communities of Practice.

  14. Reviews and syntheses: Ice acidification, the effects of ocean acidification on sea ice microbial communities

    Directory of Open Access Journals (Sweden)

    A. McMinn

    2017-09-01

    Full Text Available Sea ice algae, like some coastal and estuarine phytoplankton, are naturally exposed to a wider range of pH and CO2 concentrations than those in open marine seas. While climate change and ocean acidification (OA will impact pelagic communities, their effects on sea ice microbial communities remain unclear. Sea ice contains several distinct microbial communities, which are exposed to differing environmental conditions depending on their depth within the ice. Bottom communities mostly experience relatively benign bulk ocean properties, while interior brine and surface (infiltration communities experience much greater extremes. Most OA studies have examined the impacts on single sea ice algae species in culture. Although some studies examined the effects of OA alone, most examined the effects of OA and either light, nutrients or temperature. With few exceptions, increased CO2 concentration caused either no change or an increase in growth and/or photosynthesis. In situ studies on brine and surface algae also demonstrated a wide tolerance to increased and decreased pH and showed increased growth at higher CO2 concentrations. The short time period of most experiments (< 10 days, together with limited genetic diversity (i.e. use of only a single strain, however, has been identified as a limitation to a broader interpretation of the results. While there have been few studies on the effects of OA on the growth of marine bacterial communities in general, impacts appear to be minimal. In sea ice also, the few reports available suggest no negative impacts on bacterial growth or community richness. Sea ice ecosystems are ephemeral, melting and re-forming each year. Thus, for some part of each year organisms inhabiting the ice must also survive outside of the ice, either as part of the phytoplankton or as resting spores on the bottom. During these times, they will be exposed to the full range of co-stressors that pelagic organisms experience. Their ability

  15. Wind-sea surface temperature-sea ice relationship in the Chukchi-Beaufort Seas during autumn

    Science.gov (United States)

    Zhang, Jing; Stegall, Steve T.; Zhang, Xiangdong

    2018-03-01

    Dramatic climate changes, especially the largest sea ice retreat during September and October, in the Chukchi-Beaufort Seas could be a consequence of, and further enhance, complex air-ice-sea interactions. To detect these interaction signals, statistical relationships between surface wind speed, sea surface temperature (SST), and sea ice concentration (SIC) were analyzed. The results show a negative correlation between wind speed and SIC. The relationships between wind speed and SST are complicated by the presence of sea ice, with a negative correlation over open water but a positive correlation in sea ice dominated areas. The examination of spatial structures indicates that wind speed tends to increase when approaching the ice edge from open water and the area fully covered by sea ice. The anomalous downward radiation and thermal advection, as well as their regional distribution, play important roles in shaping these relationships, though wind-driven sub-grid scale boundary layer processes may also have contributions. Considering the feedback loop involved in the wind-SST-SIC relationships, climate model experiments would be required to further untangle the underlying complex physical processes.

  16. Does Arctic sea ice reduction foster shelf-basin exchange?

    Science.gov (United States)

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  17. Climate drift of AMOC, North Atlantic salinity and arctic sea ice in CFSv2 decadal predictions

    Science.gov (United States)

    Huang, Bohua; Zhu, Jieshun; Marx, Lawrence; Wu, Xingren; Kumar, Arun; Hu, Zeng-Zhen; Balmaseda, Magdalena A.; Zhang, Shaoqing; Lu, Jian; Schneider, Edwin K.; Kinter, James L., III

    2015-01-01

    There are potential advantages to extending operational seasonal forecast models to predict decadal variability but major efforts are required to assess the model fidelity for this task. In this study, we examine the North Atlantic climate simulated by the NCEP Climate Forecast System, version 2 (CFSv2), using a set of ensemble decadal hindcasts and several 30-year simulations initialized from realistic ocean-atmosphere states. It is found that a substantial climate drift occurs in the first few years of the CFSv2 hindcasts, which represents a major systematic bias and may seriously affect the model's fidelity for decadal prediction. In particular, it is noted that a major reduction of the upper ocean salinity in the northern North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) significantly. This freshening is likely caused by the excessive freshwater transport from the Arctic Ocean and weakened subtropical water transport by the North Atlantic Current. A potential source of the excessive freshwater is the quick melting of sea ice, which also causes unrealistically thin ice cover in the Arctic Ocean. Our sensitivity experiments with adjusted sea ice albedo parameters produce a sustainable ice cover with realistic thickness distribution. It also leads to a moderate increase of the AMOC strength. This study suggests that a realistic freshwater balance, including a proper sea ice feedback, is crucial for simulating the North Atlantic climate and its variability.

  18. Summer Arctic sea ice character from satellite microwave data

    Science.gov (United States)

    Carsey, F. D.

    1985-01-01

    It is pointed out that Arctic sea ice and its environment undergo a number of changes during the summer period. Some of these changes affect the ice cover properties and, in turn, their response to thermal and mechanical forcing throughout the year. The main objective of this investigation is related to the development of a method for estimating the areal coverage of exposed ice, melt ponds, and leads, which are the basic surface variables determining the local surface albedo. The study is based on data obtained in a field investigation conducted from Mould Bay (NWT), Nimbus 5 satellite data, and Seasat data. The investigation demonstrates that microwave data from satellites, especially microwave brightness temperature, provide good data for estimating important characteristics of summer sea ice cover.

  19. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    Science.gov (United States)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting fr