WorldWideScience

Sample records for sea breeze clouds

  1. A climatological study of sea breeze clouds in the southeast of the Iberian Peninsula (Alicante, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Azorin-Molina, C. [Grupo de Climatologia, Universidad de Barcelona, Barcelona, Cataluna (Spain)]. E-mail: cazorin@ceam.es; Sanchez-Lorenzo, A. [Grupo de Climatologia, Universidad de Barcelona, Barcelona, Cataluna (Spain); Calbo, J. [Grupo de Fisica Ambiental, Universidad de Girona, Campus Montilivi, Cataluna (Spain)

    2009-01-15

    Sea breezes blow under anticyclonic weather types, weak surface pressure gradients, intense solar radiation and relatively cloud-free skies. Generally, total cloud cover must be less than 4/8 in order to cause a thermal and pressure difference between land and sea air which allows the development of this local wind circulation. However, many numerical and observational studies have analyzed the ability of sea breezes to generate clouds in the convective internal boundary layer and in the sea breeze convergence zone. Accordingly, the aim of this study is to statistically analyze the impact of sea breezes on cloud types in the convective internal boundary layer and in the sea breeze convergence zone. The study area is located in the southeast of the Iberian Peninsula (province of Alicante, Spain) and the survey corresponds to a 6-yr study period (2000-2005). This climatological study is mainly based on surface cloud observations at the Alicante-Ciudad Jardin station (central coastal plain) and on an extensive cloud observation field campaign at the Villena-Ciudad station (Prebetic mountain ranges) over a 3-yr study period (2003-2005). The results confirm the hypothesis that the effect of sea breezes on cloud genera is to increase the frequency of low (Stratus) and convective (Cumulus) clouds. Sea breezes trigger the formation of thunderstorm clouds (Cumulonimbus) at the sea breeze convergence zone, which also have a secondary impact on high-level (Cirrus, Cirrocumulus, Cirrostratus), medium-level (Altostratus, Altocumulus) and low-level clouds (Stratus, Stratocumulus, Nimbostratus) associated with the Cumulonimbus clouds (e.g., Cumulonimbus anvil). [Spanish] Las brisas marinas soplan bajo tipos de tiempo anticiclonicos, debiles gradientes de presion atmosferica, radiacion solar intensa y cielos practicamente despejados. Por lo general, la cobertura nubosa total debe ser inferior a 4/8 para que se genere un diferencial termico y de presion entre el aire sobre las

  2. Interaction between a wildfire and the sea-breeze front

    Science.gov (United States)

    Deborah E. Hanley; Philip Cunningham; Scott Goodrick

    2013-01-01

    Florida experiences sea breezes, lake breezes, and bay breezes almost every day during the year, and there are frequently complex interactions between many of these breezes. Given the often-rapid changes in temperature, humidity, and wind speed that accompany these breezes, most wildfires and prescribed fires in Florida are affected in some way by their interaction...

  3. Urban effects of Chennai on sea breeze induced convection and ...

    Indian Academy of Sciences (India)

    gate the influence of Chennai urban land use on sea breeze initiated convection and precipitation. ... The larger surface temperature gradient along the coast due to urban effects increased onshore flow by 4.0m s. −1 ... Observational and modeling studies show the .... Explicit equations for cloud water, rainwater, ice.

  4. Interaction of the sea breeze with a river breeze in an area of complex coastal heating

    Science.gov (United States)

    Zhong, Shiyuan; Takle, Eugene S.; Leone, John M., Jr.

    1991-01-01

    The interaction of the sea-breeze circulation with a river-breeze circulation in an area of complex coastal heating (east coast of Florida) was studied using a 3D finite-element mesoscale model. The model simulations are compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment. The results from numerical experiments designed to isolate the effect of the river breeze indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.

  5. Sulfate accumulation in a sea breeze/land breeze circulation system

    OpenAIRE

    Cass, Glen R.; Shair, Frederick H.

    1984-01-01

    An atmospheric tracer study using SF_6 was conducted on July 22, 1977, to examine the origin of the high particulate sulfate concentrations observed in coastal Los Angeles County. It was found that the sea breeze/land breeze circulation system in the Los Angeles Basin both increases the retention time for sulfate formation in the marine environment and causes individual air parcels to make multiple passes over large coastal emissions sources. Day-old sulfur oxides emissions advected out to se...

  6. An observational study of sea breeze characteristics over Kalpakkam Coast

    International Nuclear Information System (INIS)

    Mohan, Manju; Mishra, M.K.

    2005-01-01

    An observational study of the sea breeze characteristics has been carried out at Kalpakkam, India which lies on the East coast of Southern Indian peninsula about 700 m inland from the sea, the Bay of Bengal. There are clear and significant changes in the surface meteorological parameters at the onset and during sea-breeze phenomenon in the coastal areas. Hourly averaged measurements from a 30 m tall micrometeorological tower were used to study the sea-breeze characteristics at the above site. In this study, based on detailed analysis of the data on-set criteria of the sea breeze is characterized by increase in relative humidity at least by 5%, fall in temperature by equal or greater than 0.5 K and increase in wind speed with respect to previous hour record. The present study is also compared with the earlier studies in relation to sea breeze carried out at Chennai located approximately 80 km North from Kalpakkam and the differences between these studies are discussed. The comparison of sea breeze characteristics of the present study with those from earlier studies that were carried out more than half a century back also reflects the changes due to urbanization and other development activities as well as resulting climatic impacts. (author)

  7. Climatology of sea breezes along the Red Sea coast of Saudi Arabia

    KAUST Repository

    Khan, Basit

    2018-04-25

    Long-term near-surface observations from five coastal stations, high-resolution model data from Modern Era Retrospective-Analysis for Research and Applications (MERRA) and high-resolution daily sea surface temperature (SST) from National Ocean and Atmospheric Administration (NOAA) are used to investigate the climatology of sea breezes over the eastern side of the Red Sea region. Results show existence of separate sea breeze systems along different segments of the Red Sea coastline. Based on the physical character and synoptic influences, sea breezes in the Red Sea are broadly divided into three regions: the north and the middle Red Sea (NMRS), the Red Sea convergence zone (RSCZ) and the southern Red Sea (SRS) regions. On average, sea breezes developed on 67% of days of the 10-year study period. Although sea breezes occur almost all year, this mesoscale phenomenon is most frequent from May to October (78% of the total sea breeze days). The sea breeze frequency increases from north to south (equatorwards), and sea breeze characteristics appear to vary both temporally and spatially. In addition to land-sea thermal differential, coastline shape, latitude and topography, the prevailing northwesterly at NMRS region, the convergence of northwesterly and southeasterly wind system at RSCZ region and the northeast and southwest monsoon at SRS region play an important role in defining the sea breeze characteristics over the Red Sea.

  8. Climatology of sea breezes along the Red Sea coast of Saudi Arabia

    KAUST Repository

    Khan, Basit; Abualnaja, Yasser; Al-Subhi, Abdullah M.; Nellayaputhenpeedika, Mohammedali; Nellikkattu Thody, Manoj; Sturman, Andrew P.

    2018-01-01

    and Atmospheric Administration (NOAA) are used to investigate the climatology of sea breezes over the eastern side of the Red Sea region. Results show existence of separate sea breeze systems along different segments of the Red Sea coastline. Based on the physical

  9. Simulation of the sea breeze front with a model of moist convection

    NARCIS (Netherlands)

    Berg, L.C.J. van de; Oerlemans, J.

    1985-01-01

    Although in general the sea breeze can be considered as a mesoscale atmospheric circulation, the sea-breeze front has a much smaller scale. Simulation of the development of a sea-breeze front should therefore be preferably done with a non-hydrostatic model, with high spatial resolution (grid

  10. Sulfate accumulation in a sea breeze/land breeze circulation system

    International Nuclear Information System (INIS)

    Cass, G.R.; Shair, F.H.

    1984-01-01

    An atmosphere tracer study using SF 6 was conducted on July 22, 1977, to examine the origin of the high particulate sulfate concentrations observed in coastal Los Angeles County. It was found that the sea breeze/land breeze circulation system in the Los Angeles Basin both increases the retention time for sulfate formation in the marine environment and causes individual air parcels to make multiple passes over large coastal emissions sources. Day-old sulfur oxides emissions advected out to sea by the land breeze at night were estimated to be the largest single contributor to 24-hour average sulfate air quality over land the next day. In contrast, 24-hour average SO 2 concentrations were dominated by fresh emissions from nearby sources. The overall rate of SO 2 transformation to form particular sulfur oxides along some trajectories that spent a considerable time over the ocean at night probably exceeds the rate that can be explained by known photochemical processes acting during the daylight portion of these trajectories. This suggests that appreciable aerosol formation may occur in a polluted marine environment at night

  11. Numerical simulation of sea breeze characteristics observed at ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    observed values except during night time wherein a small difference is seen in the wind speed. 1. Introduction .... opposing the sea breeze on the chosen day. So, the study is .... 3.3 TIBL height. The formation and growth of Thermal Internal.

  12. Impact of sea breeze of the sea off Goa, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Neetu, S.; Shetye, S.R.; Chandramohan, P.

    After withdrawal of the Indian Summer Monsoon and until onset of the next monsoon, i.e. roughly during November-May, winds in the coastal region of India are dominated by sea breeze. Impact of daily cycle of the breeze on the sea near the coast can...

  13. Meteorological and Land Surface Properties Impacting Sea Breeze Extent and Aerosol Distribution in a Dry Environment

    Science.gov (United States)

    Igel, Adele L.; van den Heever, Susan C.; Johnson, Jill S.

    2018-01-01

    The properties of sea breeze circulations are influenced by a variety of meteorological and geophysical factors that interact with one another. These circulations can redistribute aerosol particles and pollution and therefore can play an important role in local air quality, as well as impact remote sensing. In this study, we select 11 factors that have the potential to impact either the sea breeze circulation properties and/or the spatial distribution of aerosols. Simulations are run to identify which of the 11 factors have the largest influence on the sea breeze properties and aerosol concentrations and to subsequently understand the mean response of these variables to the selected factors. All simulations are designed to be representative of conditions in coastal sub tropical environments and are thus relatively dry, as such they do not support deep convection associated with the sea breeze front. For this dry sea breeze regime, we find that the background wind speed was the most influential factor for the sea breeze propagation, with the soil saturation fraction also being important. For the spatial aerosol distribution, the most important factors were the soil moisture, sea-air temperature difference, and the initial boundary layer height. The importance of these factors seems to be strongly tied to the development of the surface-based mixed layer both ahead of and behind the sea breeze front. This study highlights potential avenues for further research regarding sea breeze dynamics and the impact of sea breeze circulations on pollution dispersion and remote sensing algorithms.

  14. Spatial-temporal Detection of Sea-breeze Penetration Over Megacities from Himawari-8

    Science.gov (United States)

    Ferdiansyah, M. R.; Inagaki, A.; Kanda, M.

    2017-12-01

    For a coastal urban region, sea breeze is very important for air ventilation and cooling. However, most of sea-breeze monitoring is lacking and inadequate temporally and spatially. Japanese new geostationary meteorological satellite (Himawari-8) has been launched which can provide high resolution satellite imagery. This enables better monitoring of mesoscale weather phenomena such as sea breeze. In this study, we first attempt the feasibility of acquiring temporal-spatial information of sea breeze in a coastal urban region using Himawari-8. For study area, Tokyo (Japan) and Jakarta (Indonesia) area were selected as representative coastal urban regions; both cities located in very distant latitudes. Sea breeze events (Tokyo:16 cases and Jakarta:17 cases) in JAS season of 2015 and 2016 were analyzed. Convergence zones of two sea-breeze systems and delayed sea-breeze penetration were found for both Tokyo and Jakarta. Estimation of inland penetration speed and convergence area for sea breeze event, accompanied by the formation of non-precipitating cumulus type cloudline, is the primary objective. From the visible band image of Himawari-8, cumulus cloudline for each sea breeze event was extracted. The inland penetration speed was then estimated automatically from temporal evolution of these cloudlines. For the case of Tokyo, it was found that the sea breeze from Tokyo Bay had slower penetration speed than another sea breeze (Sagami Bay) coming from a less urbanized area. The average penetration speed of sea-breeze front was estimated to be 3.6 m/s and 1.3 m/s for sea breeze from Sagami Bay and Tokyo Bay, respectively. The penetration differences (from Sagami Bay and Tokyo Bay) could be attributed to the difference in urbanization levels between the coastal areas of Sagami and Tokyo Bay. For the case of Jakarta, the convergence of two sea-breeze systems were found persistent slightly east from the center of Jakarta. Interestingly, the sea-breeze delay was more pronounced

  15. Estimating the seaward extent of sea breeze from QuickSCAT scatterometry

    Digital Repository Service at National Institute of Oceanography (India)

    Aparna, M.; Shetye, S.R.; Shankar, D.; Shenoi, S.S.C.; Mehra, P.; Desai, R.G.P.

    An objective method for quantifying the seaward extent of the sea breeze is presented. The underlying assumption is that the offshore decay in the strength of the sea breeze results in an offshore decay of the vector correlation between the wind...

  16. A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences

    Science.gov (United States)

    Calmet, Isabelle; Mestayer, Patrice G.; van Eijk, Alexander M. J.; Herlédant, Olivier

    2018-04-01

    We complete the analysis of the data obtained during the experimental campaign around the semi circular bay of Quiberon, France, during two weeks in June 2006 (see Part 1). A reanalysis of numerical simulations performed with the Advanced Regional Prediction System model is presented. Three nested computational domains with increasing horizontal resolution down to 100 m, and a vertical resolution of 10 m at the lowest level, are used to reproduce the local-scale variations of the breeze close to the water surface of the bay. The Weather Research and Forecasting mesoscale model is used to assimilate the meteorological data. Comparisons of the simulations with the experimental data obtained at three sites reveal a good agreement of the flow over the bay and around the Quiberon peninsula during the daytime periods of sea-breeze development and weakening. In conditions of offshore synoptic flow, the simulations demonstrate that the semi-circular shape of the bay induces a corresponding circular shape in the offshore zones of stagnant flow preceding the sea-breeze onset, which move further offshore thereafter. The higher-resolution simulations are successful in reproducing the small-scale impacts of the peninsula and local coasts (breeze deviations, wakes, flow divergences), and in demonstrating the complexity of the breeze fields close to the surface over the bay. Our reanalysis also provides guidance for numerical simulation strategies for analyzing the structure and evolution of the near-surface breeze over a semi-circular bay, and for forecasting important flow details for use in upcoming sailing competitions.

  17. Variability of three-dimensional sea breeze structure in southern France: observations and evaluation of empirical scaling laws

    Science.gov (United States)

    Drobinski, P.; Bastin, S.; Dabas, A.; Delville, P.; Reitebuch, O.

    2006-08-01

    Sea-breeze dynamics in southern France is investigated using an airborne Doppler lidar, a meteorological surface station network and radiosoundings, in the framework of the ESCOMPTE experiment conducted during summer 2001 in order to evaluate the role of thermal circulations on pollutant transport and ventilation. The airborne Doppler lidar WIND contributed to three-dimensional (3-D) mapping of the sea breeze circulation in an unprecedented way. The data allow access to the onshore and offshore sea breeze extents (xsb), and to the sea breeze depth (zsb) and intensity (usb). They also show that the return flow of the sea breeze circulation is very seldom seen in this area due to (i) the presence of a systematic non zero background wind, and (ii) the 3-D structure of the sea breeze caused by the complex coastline shape and topography. A thorough analysis is conducted on the impact of the two main valleys (Rhône and Durance valleys) affecting the sea breeze circulation in the area. Finally, this dataset also allows an evaluation of the existing scaling laws used to derive the sea breeze intensity, depth and horizontal extent. The main results of this study are that (i) latitude, cumulative heating and surface friction are key parameters of the sea breeze dynamics; (ii) in presence of strong synoptic flow, all scaling laws fail in predicting the sea breeze characteristics (the sea breeze depth, however being the most accurately predicted); and (iii) the ratio zsb/usb is approximately constant in the sea breeze flow.

  18. Impact of sea breeze on wind-seas off Goa, west coast of India

    Indian Academy of Sciences (India)

    during November–May, winds in the coastal regions of India are dominated by sea breeze. It has an impact on the daily cycle of the sea state near the coast. The impact is quite significant when large scale winds are weak. During one such event, 1–15 April 1997, a Datawell directional waverider buoy was deployed in 23m ...

  19. Interactions between the thermal internal boundary layer and sea breezes

    Energy Technology Data Exchange (ETDEWEB)

    Steyn, D.G. [The Univ. of British Columbia, Dept. of Geography, Atmospheric Science Programme, Vancouver (Canada)

    1997-10-01

    In the absence of complex terrain, strongly curved coastline or strongly varying mean wind direction, the Thermal Internal Boundary Layer (TIBL) has well known square root behaviour with inland fetch. Existing slab modeling approaches to this phenomenon indicate no inland fetch limit at which this behaviour must cease. It is obvious however that the TIBL cannot continue to grow in depth with increasing fetch, since the typical continental Mixed Layer Depths (MLD) of 1500 to 2000 m must be reached between 100 and 200 km from the shoreline. The anticyclonic conditions with attendant strong convection and light winds which drive the TIBL, also drive daytime Sea Breeze Circulations (SBC) in the coastal zone. The onshore winds driving mesoscale advection of cool air are at the core of TIBL mechanisms, and are invariably part of a SBC. It is to be expected that TIBL and SBC be intimately linked through common mechanisms, as well as external conditions. (au)

  20. The monsoon system: Land-sea breeze or the ITCZ?

    Science.gov (United States)

    Gadgil, Sulochana

    2018-02-01

    For well over 300 years, the monsoon has been considered to be a gigantic land-sea breeze driven by the land-ocean contrast in surface temperature. In this paper, this hypothesis and its implications for the variability of the monsoon are discussed and it is shown that the observations of monsoon variability do not support this popular theory of the monsoon. An alternative hypothesis (whose origins can be traced to Blanford's (1886) remarkably perceptive analysis) in which the basic system responsible for the Indian summer monsoon is considered to be the Intertropical Convergence Zone (ITCZ) or the equatorial trough, is then examined and shown to be consistent with the observations. The implications of considering the monsoon as a manifestation of the seasonal migration of the ITCZ for the variability of the Indian summer monsoon and for identification of the monsoonal regions of the world are briefly discussed.

  1. Modelling study of sea breezes in a complex coastal environment

    Science.gov (United States)

    Cai, X.-M.; Steyn, D. G.

    This study investigates a mesoscale modelling of sea breezes blowing from a narrow strait into the lower Fraser valley (LFV), British Columbia, Canada, during the period of 17-20 July, 1985. Without a nudging scheme in the inner grid, the CSU-RAMS model produces satisfactory wind and temperature fields during the daytime. In comparison with observation, the agreement indices for surface wind and temperature during daytime reach about 0.6 and 0.95, respectively, while the agreement indices drop to 0.4 at night. In the vertical, profiles of modelled wind and temperature generally agree with tethersonde data collected on 17 and 19 July. The study demonstrates that in late afternoon, the model does not capture the advection of an elevated warm layer which originated from land surfaces outside of the inner grid. Mixed layer depth (MLD) is calculated from model output of turbulent kinetic energy field. Comparison of MLD results with observation shows that the method generates a reliable MLD during the daytime, and that accurate estimates of MLD near the coast require the correct simulation of wind conditions over the sea. The study has shown that for a complex coast environment like the LFV, a reliable modelling study depends not only on local surface fluxes but also on elevated layers transported from remote land surfaces. This dependence is especially important when local forcings are weak, for example, during late afternoon and at night.

  2. Analysis of Delayed Sea Breeze Onset for Fort Ord Prescribed Burning Operations

    Science.gov (United States)

    2015-12-01

    DELAYED SEA BREEZE ONSET FOR FORT ORD PRESCRIBED BURNING OPERATIONS by Dustin D. Hocking December 2015 Thesis Advisor: Wendell Nuss Second...AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ANALYSIS OF DELAYED SEA BREEZE ONSET FOR FORT ORD PRESCRIBED BURNING OPERATIONS 5...release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The U.S. Army conducts prescribed burns at Fort Ord

  3. Variability of three-dimensional sea breeze structure in southern France: observations and evaluation of empirical scaling laws

    Directory of Open Access Journals (Sweden)

    P. Drobinski

    2006-08-01

    Full Text Available Sea-breeze dynamics in southern France is investigated using an airborne Doppler lidar, a meteorological surface station network and radiosoundings, in the framework of the ESCOMPTE experiment conducted during summer 2001 in order to evaluate the role of thermal circulations on pollutant transport and ventilation. The airborne Doppler lidar WIND contributed to three-dimensional (3-D mapping of the sea breeze circulation in an unprecedented way. The data allow access to the onshore and offshore sea breeze extents (xsb, and to the sea breeze depth (zsb and intensity (usb. They also show that the return flow of the sea breeze circulation is very seldom seen in this area due to (i the presence of a systematic non zero background wind, and (ii the 3-D structure of the sea breeze caused by the complex coastline shape and topography. A thorough analysis is conducted on the impact of the two main valleys (Rhône and Durance valleys affecting the sea breeze circulation in the area.

    Finally, this dataset also allows an evaluation of the existing scaling laws used to derive the sea breeze intensity, depth and horizontal extent. The main results of this study are that (i latitude, cumulative heating and surface friction are key parameters of the sea breeze dynamics; (ii in presence of strong synoptic flow, all scaling laws fail in predicting the sea breeze characteristics (the sea breeze depth, however being the most accurately predicted; and (iii the ratio zsb/usb is approximately constant in the sea breeze flow.

  4. Variability of three-dimensional sea breeze structure in southern France: observations and evaluation of empirical scaling laws

    Directory of Open Access Journals (Sweden)

    P. Drobinski

    2006-08-01

    Full Text Available Sea-breeze dynamics in southern France is investigated using an airborne Doppler lidar, a meteorological surface station network and radiosoundings, in the framework of the ESCOMPTE experiment conducted during summer 2001 in order to evaluate the role of thermal circulations on pollutant transport and ventilation. The airborne Doppler lidar WIND contributed to three-dimensional (3-D mapping of the sea breeze circulation in an unprecedented way. The data allow access to the onshore and offshore sea breeze extents (xsb, and to the sea breeze depth (zsb and intensity (usb. They also show that the return flow of the sea breeze circulation is very seldom seen in this area due to (i the presence of a systematic non zero background wind, and (ii the 3-D structure of the sea breeze caused by the complex coastline shape and topography. A thorough analysis is conducted on the impact of the two main valleys (Rhône and Durance valleys affecting the sea breeze circulation in the area. Finally, this dataset also allows an evaluation of the existing scaling laws used to derive the sea breeze intensity, depth and horizontal extent. The main results of this study are that (i latitude, cumulative heating and surface friction are key parameters of the sea breeze dynamics; (ii in presence of strong synoptic flow, all scaling laws fail in predicting the sea breeze characteristics (the sea breeze depth, however being the most accurately predicted; and (iii the ratio zsb/usb is approximately constant in the sea breeze flow.

  5. Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore windfields

    Directory of Open Access Journals (Sweden)

    C. J. Steele

    2013-01-01

    Full Text Available The behaviour and characteristics of the marine component of sea breeze cells have received little attention relative to their onshore counterparts. Yet there is a growing interest and dependence on the offshore wind climate from, for example, a wind energy perspective. Using idealized model experiments, we investigate the sea breeze circulation at scales which approximate to those of the southern North Sea, a region of major ongoing offshore wind farm development. We also contrast the scales and characteristics of the pure and the little known corkscrew and backdoor sea breeze types, where the type is pre-defined by the orientation of the synoptic scale flow relative to the shoreline. We find, crucially, that pure sea breezes, in contrast to corkscrew and backdoor types, can lead to substantial wind speed reductions offshore and that the addition of a second eastern coastline emphasises this effect through generation of offshore "calm zones". The offshore extent of all sea breeze types is found to be sensitive to both the influence of Coriolis acceleration and to the boundary layer scheme selected. These extents range, for example for a pure sea breeze produced in a 2 m s−1 offshore gradient wind, from 0 km to 21 km between the Mellor-Yamada-Nakanishi-Niino and the Yonsei State University schemes respectively. The corkscrew type restricts the development of a backdoor sea breeze on the opposite coast and is also capable of traversing a 100 km offshore domain even under high along-shore gradient wind speed (>15 m s−1 conditions. Realistic variations in sea surface skin temperature and initializing vertical thermodynamic profile do not significantly alter the resulting circulation, though the strengths of the simulated sea breezes are modulated if the effective land-sea thermal contrast is altered. We highlight how sea breeze impacts on circulation need to be

  6. Investigation on the fine structure of sea-breeze during ESCOMPTE experiment

    Science.gov (United States)

    Puygrenier, V.; Lohou, F.; Campistron, B.; Saïd, F.; Pigeon, G.; Bénech, B.; Serça, D.

    2005-03-01

    Surface and remote-sensing instruments deployed during ESCOMPTE experiment over the Marseille area, along the Mediterranean coast, were used to investigate the fine structure of the atmospheric boundary layer (ABL) during sea-breeze circulation in relation to pollutant transport and diffusion. Six sea-breeze events are analyzed with a particular focus on 25 June 2001. Advection of cool and humid marine air over land has a profound influence on the daytime ABL characteristics. This impact decreases rapidly with the inland distance from the sea. Nearby the coast (3 km inland), the mixing height Zi rises up to 750 m and falls down after 15:00 (UT) when the breeze flow reaches its maximum intensity. A more classical evolution of the ABL is observed at only 11-km inland where Zi culminates in the morning and stabilizes in the afternoon at about 1000 m height. Fine inspection of the data revealed an oscillation of the sea-breeze with a period about 2 h 47 min. This feature, clearly discernable for 3 days at least, is present in several atmospheric variables such as wind, temperature, not only at the ground but also aloft in the ABL as observed by sodar/RASS and UHF wind profilers. In particular, the mixing height Zi deduced from UHF profilers observations is affected also by the same periodicity. This pulsated sea-breeze is observed principally above Marseille and, at the northern and eastern shores of the Berre pond. In summary, the periodic intrusion over land of cool marine air modifies the structure of the ABL in the vicinity of the coast from the point of view of stability, turbulent motions and pollutants concentration. An explanation of the source of this pulsated sea-breeze is suggested.

  7. The inland boundary layer at low latitudes: II Sea-breeze influences

    Science.gov (United States)

    Garratt, J. R.; Physick, W. L.

    1985-11-01

    Two-dimensional mesoscale model results support the claim of evening sea-breeze activity at Daly Waters, 280 km inland from the coast in northern Australia, the site of the Koorin boundary-layer experiment. The sea breeze occurs in conditions of strong onshore and alongshore geostrophic winds, not normally associated with such activity. It manifests itself at Daly Waters and in the model as a cooling in a layer 500 1000 m deep, as an associated surface pressure jump, as strong backing of the wind and, when an offshore low-level wind is present, as a collapse in the inland nocturnal jet. Both observational analysis and model results illustrate the rotational aspects of the deeply penetrating sea breeze; in our analysis this is represented in terms of a surge vector — the vector difference between the post- and pre-frontal low-level winds. There is further evidence to support earlier work that the sea breeze during the afternoon and well into the night — at least for these low-latitude experiments — behaves in many ways as an atmospheric gravity current, and that inland penetrations up to 500 km occur.

  8. A numerical study of sea breeze circulation observed at a tropical ...

    Indian Academy of Sciences (India)

    and roughness occur in the air adjacent to the coast and lead to formation of a thermal inter- nal boundary layer (TIBL) (Stull 1988). This effec- tively reduces the mixing height in the coastal regions in the daytime. Land–sea breeze circula- tion and TIBL are the two important phenomena that influence the pollution plume ...

  9. Nearshore Coastal Dynamics on a Sea-Breeze Dominated Micro-Tidal Beach (NCSAL)

    Science.gov (United States)

    Torres-Freyermuth, A.; Puleo, J. A.; Ruiz de Alegría-Arzaburu, A.; Figlus, J.; Mendoza, T.; Pintado-Patino, J. C.; Pieterse, A.; Chardon-Maldonado, P.; DiCosmo, N. R.; Wellman, N.; Garcia-Nava, H.; Palemón-Arcos, L.; Roberts, T.; López-González, J.; Bravo, M.; Ojeda, E.; Medellín, G.; Appendini, C. M.; Figueroa, B.; González-Leija, M.; Enriquez, C.; Pedrozo-Acuña, A.; Salles, P.

    2014-12-01

    A comprehensive field experiment devoted to the study of coastal processes on a micro-tidal beach was conducted from March 30th to April 12th 2014 in Sisal, Yucatán México. Wave conditions in the study area are controlled by local (i.e., sea-breezes) and meso-scale (i.e., Nortes) meteorological events. Simultaneous measurements of waves, tides, winds, currents, sediment transport, runup, and beach morphology were obtained in this experiment. Very dense nearshore instrumentation arrays allow us the study of the cross-/along- shore variability of surf/swash zone dynamics during different forcing conditions. Strong sea-breeze wind events produced a diurnal cycle with a maximum wind speed of 14 m/s. The persistent sea-breeze system forces small-amplitude (Hs1 m) Norte event, lasting 48 hours, reached the coast on April 8th generating a long-period swell (Tp>10 s) arriving from the NNW. This event induced an eastward net sediment transport across a wide surf zone. However, long-term observations of sand impoundment at a groin located near the study area suggests that the net sediment transport in the northern Yucatan peninsula is controlled by sea-breeze events and hence swash zone dynamics play an important role in the net sediment budget of this region. A comparative study of surf and swash zone dynamics during both sea-breeze and Norte events will be presented. The Institute of Engineering of UNAM, throughout an International Collaborative Project with the University of Delaware, and CONACYT (CB-167692) provided financial support. The first author acknowledges ONR Global for providing financial support throughout the Visiting Scientist Program.

  10. A characterisation of sea-breeze events in the eastern Cantabrian coast (Spain) from observational data and WRF simulations

    Science.gov (United States)

    Arrillaga, Jon A.; Yagüe, Carlos; Sastre, Mariano; Román-Cascón, Carlos

    2016-11-01

    The behaviour of the sea breeze along the north coast of Spain is investigated using observations of two topographically contrasting sites together with simulations from the Weather Research and Forecasting (WRF) model. An objective and systematic selection method is used to detect sea-breeze days from a database of two summer months. The direction and intensity of the sea breeze are significantly affected by the topography of the area; indeed, the estimated sea-breeze intensity shows an opposite relationship with the cross-shore temperature gradient for both sites. WRF simulations reproduce the onset of the sea breeze, but some characteristics are not adequately simulated: they generally overestimate the wind speed, smooth the temperature evolution and they do not represent the correct interaction with the terrain-induced flows. Additionally, four sensitivity experiments are performed with the WRF model varying the Planetary Boundary Layer (PBL) scheme, as well as the grid analysis nudging for an anomalous case study which is incorrectly filtered. As the two simulations considering nudging reproduce an unreal (not observed) sea breeze, this day turns out to be of great interest: it allows to evaluate the influence of the passage of the sea-breeze front (SBF) in other variables mainly related to turbulence. Furthermore, the best model scores are obtained for the PBL scheme that does not use a TKE closure.

  11. Impact of the Rhône and Durance valleys on sea-breeze circulation in the Marseille area

    Science.gov (United States)

    Bastin, Sophie; Drobinski, Philippe; Dabas, Alain; Delville, Patricia; Reitebuch, Oliver; Werner, Christian

    2005-03-01

    Sea-breeze dynamics in the Marseille area, in the south of France, is investigated in the framework of the ESCOMPTE experiment conducted during summer 2001 in order to evaluate the role of thermal circulations on pollutant transport and ventilation. Under particular attention in this paper is the sea-breeze channelling by the broad Rhône valley and the narrow Durance valley, both oriented nearly-north-south, i.e., perpendicular to the coastline, and its possible impact on the sea-breeze penetration, intensity and depth, which are key information for air pollution issues. One situation of slight synoptic pressure gradient leading to a northerly flow in the Rhône valley (25 June 2001) and one situation of a weak onshore prevailing synoptic wind (26 June 2001) are compared. The impact of the Rhône and Durance valleys on the sea-breeze dynamics on these two typical days is generalized to the whole ESCOMPTE observing period. The present study shows by combining simple scaling analysis with wind data from meteorological surface stations and Doppler lidars that (i) the Durance valley always affects the sea breeze by accelerating the flow. A consequence is that the Durance valley contributes to weaken the temperature gradient along the valley and thus the sea-breeze circulation. In some cases, the acceleration of the channelled flow in the Durance valley suppresses the sea-breeze flow by temperature gradient inhibition; (ii) the Rhône valley does not generally affect the sea breeze significantly. However, if the sea breeze is combined with an onshore flow, it leads to further penetration inland and intensification of the low-level southerly flow. In this situation, lateral constriction may accelerate the sea breeze. Simple scaling analysis suggests that Saint Paul (44.35°N, about 100 km from the coastline) is the lower limit where sea breeze can be affected by the Rhône valley. These conclusions have implications in air quality topics as channelled sea breeze may

  12. Effect of sea breeze circulation on aerosol mixing state and radiative properties in a desert setting

    Directory of Open Access Journals (Sweden)

    Y. Derimian

    2017-09-01

    Full Text Available Chemical composition, microphysical, and optical properties of atmospheric aerosol deep inland in the Negev Desert of Israel are found to be influenced by daily occurrences of sea breeze flow from the Mediterranean Sea. Abrupt increases in aerosol volume concentration and shifts of size distributions towards larger sizes, which are associated with increase in wind speed and atmospheric water content, were systematically recorded during the summertime at a distance of at least 80 km from the coast. Chemical imaging of aerosol samples showed an increased contribution of highly hygroscopic particles during the intrusion of the sea breeze. Besides a significant fraction of marine aerosols, the amount of internally mixed marine and mineral dust particles was also increased during the sea breeze period. The number fraction of marine and internally mixed particles during the sea breeze reached up to 88 % in the PM1–2. 5 and up to 62 % in the PM2. 5–10 size range. Additionally, numerous particles with residuals of liquid coating were observed by SEM/EDX analysis. Ca-rich dust particles that had reacted with anthropogenic nitrates were evidenced by Raman microspectroscopy. The resulting hygroscopic particles can deliquesce at very low relative humidity. Our observations suggest that aerosol hygroscopic growth in the Negev Desert is induced by the daily sea breeze arrival. The varying aerosol microphysical and optical characteristics perturb the solar and thermal infrared radiations. The changes in aerosol properties induced by the sea breeze, relative to the background situation, doubled the shortwave radiative cooling at the surface (from −10 to −20.5 W m−2 and increased by almost 3 times the warming of the atmosphere (from 5 to 14 W m−2, as evaluated for a case study. Given the important value of observed liquid coating of particles, we also examined the possible influence of the particle homogeneity assumption on the

  13. Mesoscale model response to random, surface-based perturbations — A sea-breeze experiment

    Science.gov (United States)

    Garratt, J. R.; Pielke, R. A.; Miller, W. F.; Lee, T. J.

    1990-09-01

    The introduction into a mesoscale model of random (in space) variations in roughness length, or random (in space and time) surface perturbations of temperature and friction velocity, produces a measurable, but barely significant, response in the simulated flow dynamics of the lower atmosphere. The perturbations are an attempt to include the effects of sub-grid variability into the ensemble-mean parameterization schemes used in many numerical models. Their magnitude is set in our experiments by appeal to real-world observations of the spatial variations in roughness length and daytime surface temperature over the land on horizontal scales of one to several tens of kilometers. With sea-breeze simulations, comparisons of a number of realizations forced by roughness-length and surface-temperature perturbations with the standard simulation reveal no significant change in ensemble mean statistics, and only small changes in the sea-breeze vertical velocity. Changes in the updraft velocity for individual runs, of up to several cms-1 (compared to a mean of 14 cms-1), are directly the result of prefrontal temperature changes of 0.1 to 0.2K, produced by the random surface forcing. The correlation and magnitude of the changes are entirely consistent with a gravity-current interpretation of the sea breeze.

  14. The influence of the Atlantic Warm Pool on the Florida panhandle sea breeze

    Science.gov (United States)

    Misra, Vasubandhu; Moeller, Lauren; Stefanova, Lydia; Chan, Steven; O'Brien, James J.; Smith, Thomas J.; Plant, Nathaniel

    2011-01-01

    In this paper we examine the variations of the boreal summer season sea breeze circulation along the Florida panhandle coast from relatively high resolution (10 km) regional climate model integrations. The 23 year climatology (1979–2001) of the multidecadal dynamically downscaled simulations forced by the National Centers for Environmental Prediction–Department of Energy (NCEP-DOE) Reanalysis II at the lateral boundaries verify quite well with the observed climatology. The variations at diurnal and interannual time scales are also well simulated with respect to the observations. We show from composite analyses made from these downscaled simulations that sea breezes in northwestern Florida are associated with changes in the size of the Atlantic Warm Pool (AWP) on interannual time scales. In large AWP years when the North Atlantic Subtropical High becomes weaker and moves further eastward relative to the small AWP years, a large part of the southeast U.S. including Florida comes under the influence of relatively strong anomalous low-level northerly flow and large-scale subsidence consistent with the theory of the Sverdrup balance. This tends to suppress the diurnal convection over the Florida panhandle coast in large AWP years. This study is also an illustration of the benefit of dynamic downscaling in understanding the low-frequency variations of the sea breeze.

  15. The monsoon system: Land–sea breeze or the ITCZ?

    Indian Academy of Sciences (India)

    Sulochana Gadgil

    2018-01-27

    Jan 27, 2018 ... ocean contrast is one of the main drivers of the monsoon rainfall, in the 5th Assessment Report of the Inter-governmental Panel on Climate Change. (IPCC Climate Change 2013), the likely enhance- ment of monsoon rainfall has been attributed to increased land–sea contrast, and more abundant.

  16. NASA's Newest SeaWinds Instrument Breezes Into Operation

    Science.gov (United States)

    2003-01-01

    One of NASA's newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan's Advanced Earth Observing Satellite (Adeos) 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet, generating its first high-quality images.From its orbiting perch high above Earth, SeaWinds on Midori 2 ('midori' is Japanese for the color green, symbolizing the environment) will provide the world's most accurate, highest resolution and broadest geographic coverage of ocean wind speed and direction, sea ice extent and properties of Earth's land surfaces. It will complement and eventually replace an identical instrument orbiting since June 1999 on NASA's Quick Scatterometer (QuikScat) satellite. Its three- to five-year mission will augment a long-term ocean surface wind data series that began in 1996 with launch of the NASA Scatterometer on Japan's first Adeos spacecraft.Climatologists, meteorologists and oceanographers will soon routinely use data from SeaWinds on Midori 2 to understand and predict severe weather patterns, climate change and global weather abnormalities like El Nino. The data are expected to improve global and regional weather forecasts, ship routing and marine hazard avoidance, measurements of sea ice extent and the tracking of icebergs, among other uses.'Midori 2, its SeaWinds instrument and associated ground processing systems are functioning very smoothly,' said Moshe Pniel, scatterometer projects manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 'Following initial checkout and calibration, we look forward to continuous operations, providing vital data to scientists and weather forecasters around the world.' 'These first images show remarkable detail over land, ice and oceans,' said Dr. Michael Freilich, Ocean Vector Winds Science Team Leader, Oregon State University, Corvallis, Ore. 'The combination of SeaWinds data and measurements from other instruments on Midori 2 with data from other international

  17. Modelling Local Sea-Breeze Flow and Associated Dispersion Patterns Over a Coastal Area in North-East Spain: A Case Study

    Science.gov (United States)

    Soler, M. R.; Arasa, R.; Merino, M.; Olid, M.; Ortega, S.

    2011-07-01

    The structure and evolution of the sea breeze in the north-west part of the Mediterranean (Catalonia, north-east Spain) is studied both experimentally and, predominantly, using numerical models to increase understanding of sea-breeze structure and three-dimensional (3D) pollution distributions in coastal environments. Sea-breeze components are modelled and analyzed using the fifth-generation Pennsylvania State University-National Centre for Atmospheric Research Mesoscale Model (MM5). The results show that the growth and structure of the sea-breeze circulation is modulated by the synoptic flow and especially by the complex topography of the area. 3D pollution transport in a sea breeze is modelled by coupling the MM5 to the Community Multiscale Air Quality (CMAQ) model, with results indicating that topography and synoptic flow are the main factors modulating horizontal and vertical pollutant transport in sea-breeze episodes. In this way, horizontal dispersion is limited by the complex topography of the area, whilst the sea-breeze flow is intensified by anabatic upslope winds that contribute to vertical pollutant transport. The numerical model results also indicate that the sea-breeze circulation with a weak return flow at upper levels grows due to a synoptic onshore wind component. However, such a sea-breeze circulation is capable of transporting pollutants towards the coast.

  18. Vertical Structure of the Urban Boundary Layer over Marseille Under Sea-Breeze Conditions

    Science.gov (United States)

    Lemonsu, Aude; Bastin, Sophie; Masson, Valéry; Drobinski, Philippe

    2006-03-01

    During the UBL-ESCOMPTE program (June July 2001), intensive observations were performed in Marseille (France). In particular, a Doppler lidar, located in the north of the city, provided radial velocity measurements on a 6-km radius area in the lowest 3 km of the troposphere. Thus, it is well adapted to document the vertical structure of the atmosphere above complex terrain, notably in Marseille, which is bordered by the Mediterranean sea and framed by numerous massifs. The present study focuses on the last day of the intensive observation period 2 (26 June 2001), which is characterized by a weak synoptic pressure gradient favouring the development of thermal circulations. Under such conditions, a complex stratification of the atmosphere is observed. Three-dimensional numerical simulations, with the Méso-NH atmospheric model including the town energy balance (TEB) urban parameterization, are conducted over south-eastern France. A complete evaluation of the model outputs was already performed at both regional and city scales. Here, the 250-m resolution outputs describing the vertical structure of the atmosphere above the Marseille area are compared to the Doppler lidar data, for which the spatial resolution is comparable. This joint analysis underscores the consistency between the atmospheric boundary layer (ABL) observed by the Doppler lidar and that modelled by Méso-NH. The observations and simulations reveal the presence of a shallow sea breeze (SSB) superimposed on a deep sea breeze (DSB) above Marseille during daytime. Because of the step-like shape of the Marseille coastline, the SSB is organized in two branches of different directions, which converge above the city centre. The analysis of the 250-m wind fields shows evidence of the role of the local topography on the local dynamics. Indeed, the topography tends to reinforce the SSB while it weakens the DSB. The ABL is directly affected by the different sea-breeze circulations, while the urban effects appear

  19. Modeling mesoscale diffusion and transport processes for releases within coastal zones during land/sea breezes

    International Nuclear Information System (INIS)

    Lyons, W.A.; Keen, C.S.; Schuh, J.A.

    1983-12-01

    This document discusses the impacts of coastal mesoscale regimes (CMRs) upon the transport and diffusion of potential accidental radionuclide releases from a shoreline nuclear power plant. CMRs exhibit significant spatial (horizontal and vertical) and temporal variability. Case studies illustrate land breezes, sea/lake breeze inflows and return flows, thermal internal boundary layers, fumigation, plume trapping, coastal convergence zones, thunderstorms and snow squalls. The direct application of a conventional Gaussian straight-line dose assessment model, initialized only by on-site tower data, can potentially produce highly misleading guidance as to plume impact locations. Since much is known concerning CMRs, there are many potential improvements to modularized dose assessment codes, such as by proper parameterization of TIBLs, forecasting the inland penetration of convergence zones, etc. A three-dimensional primitive equation prognostic model showed excellent agreement with detailed lake breeze field measurements, giving indications that such codes can be used in both diagnostic and prognostic studies. The use of relatively inexpensive supplemental meteorological data especially from remote sensing systems (Doppler sodar, radar, lightning strike tracking) and computerized data bases should save significantly on software development costs. Better quality assurance of emergency response codes could include systems of flags providing personnel with confidence levels as to the applicability of a code being used during any given CMR

  20. Atmospheric diffusion at coastal site in presence of sea-breeze

    International Nuclear Information System (INIS)

    Messaci, M.

    1987-03-01

    The coastal sites present special features so much by the dominant wind system then by the lower layers of the atmosphere. Two types of experiments were handled on a coastal site in presence of sea breeze. First, vertical atmospheric sounding by radiosounding and by throwing experimental balloons; then the discharge of tracer: the SF6. The first experiment lead us to put in a prominent position the Internal Boundary Layer and the determination of its height. Whereas the second experiment allowed us to estimate the diffusion parameters of the site as well as to obtain interesting conclusions on diffusivity of the environment studied and the influence of certain factors

  1. Nearshore circulation on a sea breeze dominated beach during intense wind events

    Science.gov (United States)

    Torres-Freyermuth, Alec; Puleo, Jack A.; DiCosmo, Nick; Allende-Arandía, Ma. Eugenia; Chardón-Maldonado, Patricia; López, José; Figueroa-Espinoza, Bernardo; de Alegria-Arzaburu, Amaia Ruiz; Figlus, Jens; Roberts Briggs, Tiffany M.; de la Roza, Jacobo; Candela, Julio

    2017-12-01

    A field experiment was conducted on the northern Yucatan coast from April 1 to April 12, 2014 to investigate the role of intense wind events on coastal circulation from the inner shelf to the swash zone. The study area is characterized by a micro-tidal environment, low-energy wave conditions, and a wide and shallow continental shelf. Furthermore, easterly trade winds, local breezes, and synoptic-scale events, associated with the passage of cold-fronts known as Nortes, are ubiquitous in this region. Currents were measured concurrently at different cross-shore locations during both local and synoptic-scale intense wind events to investigate the influence of different forcing mechanisms (i.e., large-scale currents, winds, tides, and waves) on the nearshore circulation. Field observations revealed that nearshore circulation across the shelf is predominantly alongshore-directed (westward) during intense winds. However, the mechanisms responsible for driving instantaneous spatial and temporal current variability depend on the weather conditions and the across-shelf location. During local strong sea breeze events (W > 10 m s-1 from the NE) occurring during spring tide, westward circulation is controlled by the tides, wind, and waves at the inner-shelf, shallow waters, and inside the surf/swash zone, respectively. The nearshore circulation is relaxed during intense land breeze events (W ≈ 9 m s-1 from the SE) associated with the low atmospheric pressure system that preceded a Norte event. During the Norte event (Wmax≈ 15 m s-1 from the NNW), westward circulation dominated outside the surf zone and was correlated to the Yucatan Current, whereas wave breaking forces eastward currents inside the surf/swash zone. The latter finding implies the existence of large alongshore velocity shear at the offshore edge of the surf zone during the Norte event, which enhances mixing between the surf zone and the inner shelf. These findings suggest that both sea breezes and Nortes play

  2. Identification of the Sea-Land Breeze Event and Influence to the Convective Activities on the Coast of Deli Serdang

    Science.gov (United States)

    Saragih, I. J. A.; Putra, A. W.; Nugraheni, I. R.; Rinaldy, N.; Yonas, B. W.

    2017-12-01

    Located close to the sea indicates that there are influences of the sea-land breeze circulation on the weather condition in Deli Serdang. The purpose of this study is to simulate sea-land breeze occurrence and its influence on the convective activities in Deli Serdang. The research area covers the area of Deli Serdang Regency and the surrounding ocean region in the coordinates 02°57‧-03°16‧N & 98°33‧-99°27‧E where Kualanamu Meteorological Station is the centre of the research area at coordinate 03°34‧N & 98°44‧E and the elevation about 27MAMSL. The research time is a day with the highest rainfall in the highest peak rainy month. The raw data consist of the Himawari-8 satellite image from BMKG, FNL (Final Analysis) data from http://rda.ucar.edu, and meteorological observation data from Kualanamu Meteorology Station. This study indicates that WRF-ARW can simulate the sea-land breeze occurrence on the coast of Deli Serdang well. The existence of the convective index cover in the convergence area proves the sea-land breeze occurred in the coast of Deli Serdang can form the convergence area as the interacted result with the wind from other directions that support convective activities.

  3. Observed and simulated sea breeze characteristics over Rayong coastal area, Thailand

    Science.gov (United States)

    Phan, Tung Thanh; Manomaiphiboon, Kasemsan

    2012-05-01

    This work presents the detailed characterization of sea breeze (SB) over the Rayong coastal area, one of the most rapidly developed and highly industrialized areas during the last decade in Thailand, using observation data analysis and fine-resolution (2 km) mesoscale meteorological modeling with incorporation of new land cover and satellite-derived vegetation fraction data sets. The key characteristics considered include frequency of SB occurrence, sea-breeze day (SBD) identification, degree of inland penetration, and boundary layer development. It was found that SBs occur frequently in the winter due mainly to relatively large land-sea temperature contrasts and minimally in the wet season. Monthly mean SB onset and cessation times are at around 12-15 local time (LT) and 18-21 LT, respectively, and its strength peaks during the early- to mid-afternoon. Monthly SB hodographs generally exhibit clockwise rotations, and SB inland penetration (at PCD-T tower) ranges widely with the monthly means of 25-55 km from the coast. Mesoscale MM5 modeling was performed on two selected SBDs (13 January and 16 March 2006), on which the SBs are under weak and onshore strong influences from background winds, respectively. Simulated near-surface winds and temperature were found to be in fair-to-acceptable agreement with the observations. The SB circulation along the Rayong coast is clearly defined with a return flow aloft and a front on 13 January, while it is enhanced by the onshore background winds on 16 March. Another SB along the Chonburi coast also develops separately, but their fronts merge into one in the mid-afternoon, resulting in large area coverage by the SB. Simulated planetary boundary layer height over the land area is significantly affected by a thermal internal boundary layer (TIBL) induced by an SB, which is found to be low near the coast and increases toward the front (up to 800-1,000 m along the Rayong coast).

  4. Temperature And Wind Velocity Oscillations Along a Gentle Slope During Sea-Breeze Events

    Science.gov (United States)

    Bastin, Sophie; Drobinski, Philippe

    2005-03-01

    The flow structure on a gentle slope at Vallon d’Ol in the northern suburbs of Marseille in southern France has been documented by means of surface wind and temperature measurements collected from 7 June to 14 July 2001 during the ESCOMPTE experiment. The analysis of the time series reveals temperature and wind speed oscillations during several nights (about 60--90 min oscillation period) and several days (about 120-180 min oscillation period) during the whole observing period. Oscillating katabatic winds have been reported in the literature from theoretical, experimental and numerical studies. In the present study, the dynamics of the observed oscillating katabatic winds are in good agreement with the theory.In contrast to katabatic winds, no daytime observations of oscillating anabatic upslope flows have ever been published to our knowledge, probably because of temperature inversion break-up that inhibits upslope winds. The present paper shows that cold air advection by a sea breeze generates a mesoscale horizontal temperature gradient, and hence baroclinicity in the atmosphere, which then allows low-frequency oscillations, similar to a katabatic flow. An expression for the oscillation period is derived that accounts for the contribution of the sea-breeze induced mesoscale horizontal temperature gradient. The theoretical prediction of the oscillation period is compared to the measurements, and good agreement is found. The statistical analysis of the wind flow at Vallon d’Ol shows a dominant north-easterly to easterly flow pattern for nighttime oscillations and a dominant south-westerly flow pattern for daytime oscillations. These results are consistent with published numerical simulation results that show that the air drains off the mountain along the maximum slope direction, which in the studied case is oriented south-west to north-east.

  5. The influence of the summer sea breeze on thermal comfort in Funchal (Madeira). A contribution to tourism and urban planning.

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Antonio; Lopes, Sergio; Joao Alcoforado, Maria [Univ. de Lisboa (Portugal). Centro der Estudos Geograficos; Matzarakis, Andreas [Freiburg Univ. (Germany). Meteorological Inst.

    2011-10-15

    Tourism plays a crucial role for the development of coastal areas. Despite the mildness of Madeira's climate, very hot days can occur during summer, a situation to which most tourists from northern Europe (the majority of foreign tourists) are poorly adapted. As sea breezes strongly contribute to moderate heat stress in urban environments, their influence on the thermal comfort on the island has been studied. Sea breezes occurred on 84 % of the days during the period under study (May to October 2006). They usually start around 09:30 h and end after 22:00 h, with an average duration of about 12:50 hours and a mean velocity of 2.9 m/s. Physiologically Equivalent Temperature (PET) was used to evaluate the thermal comfort of a sample of days during the summer of 2006. It was concluded that most of the sites in the city are ''slightly comfortable'' during normal days with sea breeze, but only shore sites and the highest green areas offer some comfort during hot days. Inside the city, the thermal perception is generally ''hot'' and strong heat stress can occur. As sea breezes are important to mitigate heat stress, some basic guidelines were presented: urban planners should take advantage of this wind system avoiding dense construction near the shoreline that would act as a barrier to the renewal of the air inside the city. In terms of tourism, planners and local authorities should provide solutions to mitigate the negative effects during hot periods, creating a system to warn and relocate more vulnerable tourists to places near the shore line, to the mountains, to gardens and air-conditioned buildings. In combination with other components (beauty of the island, gastronomy, cultural values and safety), climate information can be a factor of attractiveness to tourists. (orig.)

  6. Evaluation of the atmospheric model WRF on the Qatar peninsula for a converging sea-breeze event

    Science.gov (United States)

    Balan Sobhana, Sandeepan; Nayak, Sashikant; Panchang, Vijay

    2016-04-01

    Qatar, a narrow peninsula covering an area of 11437 sq km, extends northwards into the Arabian Gulf for about 160km and has a maximum width of 88km. The convex shape of the coast-line and narrowness of the peninsula results in the Qatar region experiencing complex wind patterns. The geometry is favorable for formation of the land-sea breeze from both coastal sides of the peninsula. This can lead to the development of sea breeze convergence zones in the middle of the country. Although circulations arising from diurnal thermal contrast of land and water are amongst most intensively studied meteorological phenomena, there is no reported study for the Qatar peninsula and very few studies are reported for the Arabian Gulf region as whole. It is necessary to characterize the wind field for applications such as assessing air pollution, renewable energy etc. A non-hydrostatic mesoscale model, Weather Research and Forecast (WRF) with a nested high resolution grid permits the investigation of such fine scale phenomena. Data from eighteen land based Automated Weather Stations (AWS) and two offshore buoys deployed and maintained by the Qatar Meteorological Department were analyzed. Based on the analysis a clear case of sea breeze convergence were seen on 18 September 2015. Model simulations were used to investigate the synoptic conditions associated with the formation of this event. The season is characterized by week ambient north westerly wind over the Arabian Gulf. The WRF model performance is validated using observed in-situ data. Model simulations show that vertical extent of sea breeze cell was up to 1 km and the converging sea breeze regions were characterized with high vertical velocities. The WRF simulation also revealed that with high resolution, the model is capable of reproducing the fine scale patterns accurately. The error of predictions in the inner domain (highest resolution) are found to be relatively lower than coarse resolution domain. The maximum wind speed

  7. Numerical analysis of air pollution in a combined field of land/sea breeze and mountain/valley wind

    International Nuclear Information System (INIS)

    Kitada, T.; Igarashi, K.; Owada, M.

    1986-01-01

    Air pollution in the presence of two types of local flows (i.e., land/sea breeze and mountain/valley wind) was studies by advection simulation of the cluster of hypothetical fluid particles, and transport/chemistry calculation employing a three-dimensional Eulerian model for 20 advected species and about 90 chemical reactions. Three-dimensional flow fields over the River Yahagi basin in Japan were estimated for 48 h using an objective method with routine wind observations. Those obtained showed characteristics of the combined local flows such that in the daytime sea breeze and valley wind tend to form one united flow with substantial wind velocity in the whole region and, in contrast, land breeze and mountain wind during the nighttime form two separated circulating flows with a clear weak-wind area between the two local flow regimes. The results of the advection simulation of fluid particles and the transport/chemistry calculation using those flows as inputs elucidated how the features found in the diurnally varying, complex local flows contribute to produce characteristic time-variations of the concentrations of both primary and secondary pollutants. Among others, dynamics of NO 2 , HNO 3 , PAN, O 3 , SO 2 , and SO 4 /sup =/ concentrations are discussed

  8. Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Interplay of sea breeze, trade wind, typhoon, and topography

    Science.gov (United States)

    Wang, Jun; Ge, Cui; Yang, Zhifeng; Hyer, Edward J.; Reid, Jeffrey S.; Chew, Boon-Ning; Mahmud, Mastura; Zhang, Yongxin; Zhang, Meigen

    2013-03-01

    The online-coupled Weather Research and Forecasting model with Chemistry (WRFchem) is used to simulate the transport of smoke particles over the Southeast Asian Maritime Continent during September-October 2006. In this period, dry conditions associated with the moderate El Niño event caused the largest regional biomass burning outbreak since 1997. Smoke emission in WRFchem is specified according to the Fire Locating and Modeling of Burning Emissions (FLAMBE) database derived from Moderate Resolution Imaging Spectroradiometer (MODIS) fire products. The modeled smoke transport pathway is found to be consistent with the MODIS true color images and measured mass concentration of surface PM10 (particulate matter with diameter less than 10 μm). The interplay of sea/land breezes, typhoons and storms over the subtropical western Pacific Ocean, trade winds, and topographic effects, can be clearly seen in the model simulation. The most severe smoke events in 1-5 October 2006 are found to be associated with the meteorological responses to the typhoon Xangsane (#18) over the western subtropical Pacific Ocean, which moved smoke from Sumatra eastward in the lower troposphere (below 700 hPa), forming smoke layers mixed with and above the boundary layer clouds over Borneo. In contrast, the second largest week-long smoke transport event of 15-18 October 2006 was associated with the seasonal monsoonal transition period, during which smoke plumes were wide spread over the 5°S-5°N zone as a result of (a) the near surface divergence coupled with the 700 hPa bifurcation of wind (flowing both to the west and to the east), and (b) the near-surface southeasterly and easterly winds along the equator transporting smoke from Borneo to Sumatra and Peninsular Malaysia. Analysis of data from the Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) shows that smoke particles in October 2006 were primarily located within 3.5 km above the surface. Smoke particles contributed roughly half

  9. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  10. Field Observations of Swash-Zone Dynamics on a Sea-Breeze Dominated Beach at the Yucatán Peninsula, México

    Science.gov (United States)

    Chardon-Maldonado, P.; Puleo, J. A.; Torres-Freyermuth, A.

    2016-02-01

    Sea breezes can modify the nearshore processes and alter beach morphology depending on the geographical location. Prior studies have shown that surf zone wave energy intensifies during strong sea-breeze conditions (wind speeds > 10 ms-1) and the impact on the coast can be similar to a small storm. However, few research efforts have investigated the coastal dynamics on sea-breeze dominated beaches (e.g., Masselink and Pattiaratchi, 1998, Mar. Geol.; Pattiaratchi et al., 1997, Cont. Shelf Res.) and, to the authors' knowledge, only one study has focused on swash-zone processes (Sonu et al., 1973, EOS). A field study was performed on a microtidal, low wave energy, sea-breeze dominated sandy beach in order to investigate the effects of local (sea breeze) and synoptic (storm) scale meteorological events on swash-zone dynamics. In-situ measurements of swash-zone hydrodynamics and sediment transport processes were collected from March 31st to April 12th, 2014 in Sisal, Yucatán located on the northern coast of the Yucatán Peninsula. Flow velocities and suspended sediment concentrations were measured concurrently, at multiple cross-shore and alongshore locations, using Vectrino-II profiling velocimeters and optical backscatter sensors, respectively. The high resolution data allowed the quantification of bed shear stress, turbulent dissipation rate, sediment loads and sediment flux during a mesoscale frontal system (cold-front passage referred to as an El Norte) and local sea-breeze cycles. Field observations showed that strong swash-zone bed shear stresses, turbulence intensity and sediment suspension occur during energetic conditions (i.e., El Norte event). On the other hand, despite milder energy conditions during the sea-breeze events, the alongshore component of bed-shear stresses and velocities can be significant owing to the high incidence wave angle associated with the sea-breeze system in the study area. The increased forcing in the swash zone induced sediment

  11. Changes in nearshore waves during the active sea/land breeze period off Vengurla, central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Amrutha, M.M.; SanilKumar, V.; Singh, J.

    zones with use of mechanized boats and this area is also extensively used for tourism-related activities. Therefore, it is important to un- derstand the changes in wave parameters during the active land/sea breeze system in the nearshore region... and interaction. The wave computations in Delft3D-wave are stable due to the fully implicit schemes that have been implemented. In the Delft3D-wave module, the governing equation of wave transformation is based on action balance spectrum, in ge- ographical space...

  12. Impact of sea breeze on the wind-seas off Goa, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Neetu, S.; Shetye, S.R.; Chandramohan, P.

    , and fitted a theoretical equilibrium spectrum. The theoretical spectrum chosen was the TMA spectrum (Bouws et al 1985), formulated as an extension of the JONSWAP spec- trum (Hasselmann et al 1973) for wind-generated seas in a finite water depth. The depth... with the dispersion relationship for waves in finite water depth. The TMA spectrum that could provide the best fit for the sea-related observed spectrum off Goa, was determined by choosing the equivalent fetch and wind speed that minimized the sum of squares...

  13. Interaction between turbulent flow and sea breeze front over urban-like coast in large-eddy simulation

    Science.gov (United States)

    Jiang, Ping; Wen, Zhiping; Sha, Weiming; Chen, Guixing

    2017-05-01

    Turbulent flow and its interaction with a sea breeze front (SBF) over an urban-like coast with a regular block array were investigated using a building-resolving computational fluid dynamics model. It was found that during daytime with an offshore ambient flow, streaky turbulent structures tended to grow within the convective boundary layer (CBL) over a warm urban surface ahead of the SBF. The structures were organized as streamwise streaks at an interval of a few hundred meters, which initiated at the rooftop level with strong wind shear and strengthens in the CBL with moderate buoyancy. The streaks then interacted with the onshore-propagating SBF as it made landfall. The SBF, which was initially characterized as a shallow and quasi-linear feature over the sea, developed three-dimensional structures with intensified updrafts at an elevated frontal head after landfall. Frontal updrafts were locally enhanced at intersections where the streaks merged with the SBF, which greatly increased turbulent fluxes at the front. The frontal line was irregular because of merging, tilting, and transformation effects of vorticity associated with streaky structures. Inland penetration of the SBF was slowed by the frictional effect of urban-like surfaces and turbulent flow on land. The overall SBF intensity weakened after the interaction with turbulent flow. These findings aid understanding of local weather over coastal cities during typical sea breeze conditions.

  14. Short range forecasting of sea breeze generated thunderstorms at the Kennedy Space Center: A real-time experiment using a primitive equation mesoscale numerical model

    Science.gov (United States)

    Lyons, Walter A.; Schuh, Jerome A.; Moon, Dennis; Pielke, Roger A.; Cotton, William; Arritt, Raymond

    1987-01-01

    The operational efficiency of using guidance from a mesoscale numerical model to improve sea breeze thunderstorm forecasts at and around the Shuttle landing strip was assessed. The Prognostic Three-Dimensional Mesoscale (P3DM) model, developed as a sea breeze model, reveals a strong correlation between regions of mesoscale convergence and the triggering of sea breeze convection thunderstorms. The P3DM was modified to generate stability parameters familiar to the operational forecaster. In addition to the mesoscale fields of wind, vertical motion, moisture, temperature, a stability indicator, a combination of model-predicted K and Lifted Indices and the maximum grid cell vertical motion, were proposed and tested. Results of blind tests indicate that a forecaster, provided with guidance derived from model output, could improve local thunderstorm forecasts.

  15. On the use of GPS tomography to investigate water vapor variability during a Mistral/sea breeze event in southeastern France

    Science.gov (United States)

    Bastin, Sophie; Champollion, Cédric; Bock, Olivier; Drobinski, Philippe; Masson, Frédéric

    2005-03-01

    Global Positioning System (GPS) tomography analyses of water vapor, complemented by high-resolution numerical simulations are used to investigate a Mistral/sea breeze event in the region of Marseille, France, during the ESCOMPTE experiment. This is the first time GPS tomography has been used to validate the three-dimensional water vapor concentration from numerical simulation, and to analyze a small-scale meteorological event. The high spatial and temporal resolution of GPS analyses provides a unique insight into the evolution of the vertical and horizontal distribution of water vapor during the Mistral/sea-breeze transition.

  16. Utilizing TRMM to Analyze Sea Breeze Thunderstorm Patterns During El Nino Southern Oscillations and Their Effects upon Available Fresh Water for South Florida Agricultural Planning and Management

    Science.gov (United States)

    Cooley, Clayton; Billiot, Amanda; Lee, Lucas; McKee, Jake

    2010-01-01

    Water is in high demand for farmers regardless of where you go. Unfortunately, farmers in southern Florida have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. There is an interest by the agricultural community about the effect weather has on usable surface water, however, research into viable weather patterns during La Nina and El Nino has yet to be researched. Using rainfall accumulation data from NASA Tropical Rainfall Measurement Mission (TRMM) satellite, this project s purpose was to assess the influence of El Nino and La Nina Oscillations on sea breeze thunderstorm patterns, as well as general rainfall patterns during the summer season in South Florida. Through this research we were able to illustrate the spatial and temporal variations in rainfall accumulation for each oscillation in relation to major agricultural areas. The study period for this project is from 1998, when TRMM was first launched, to 2009. Since sea breezes in Florida typically occur in the months of May through October, these months were chosen to be the months of the study. During this time, there were five periods of El Nino and two periods of La Nina, with a neutral period separating each oscillation. In order to eliminate rainfall from systems other than sea breeze thunderstorms, only days that were conducive to the development of a sea breeze front were selected.

  17. The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over a tropical island

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2017-11-01

    Full Text Available This study examines the diurnal variation in precipitation over Hainan Island in the South China Sea using gauge observations from 1951 to 2012 and Climate Prediction Center MORPHing technique (CMORPH satellite estimates from 2006 to 2015, as well as numerical simulations. The simulations are the first to use climatological mean initial and lateral boundary conditions to study the dynamic and thermodynamic processes (and the impacts of land–sea breeze circulations that control the rainfall distribution and climatology. Precipitation is most significant from April to October and exhibits a strong diurnal cycle resulting from land–sea breeze circulations. More than 60 % of the total annual precipitation over the island is attributable to the diurnal cycle with a significant monthly variability. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimate precipitation and have a 1 h peak delay. The diurnal cycle of the rainfall and the related land–sea breeze circulations during May and June were well captured by convection-permitting numerical simulations with the Weather Research and Forecasting (WRF model, which were initiated from a 10-year average ERA-Interim reanalysis. The simulations have a slight overestimation of rainfall amounts and a 1 h delay in peak rainfall time. The diurnal cycle of precipitation is driven by the occurrence of moist convection around noontime owing to low-level convergence associated with the sea-breeze circulations. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea-breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. Generally, precipitation dissipates quickly in the evening due to the cooling and stabilization of the lower troposphere and decrease of boundary layer moisture. Interestingly, the rather high island orography is not a

  18. Study of the thermal internal boundary layer during sea-breeze events in the complex coastal area of Marseille

    Science.gov (United States)

    Calmet, Isabelle; Mestayer, Patrice

    2016-02-01

    A revisit of two sea-breeze episodes is presented, based on higher spatial resolution large eddy simulations (LES) of the lower atmosphere over the coastal area of Marseille and measurements obtained during the June 2001 experimental campaign UBL-ESCOMPTE. The focus is on the development of thermal internal boundary layers (TIBL) over a complex topography: the dynamic and thermal mechanisms that contribute to the TIBL growth and its further degeneration into a convective mixed layer, the respective influences of the coast shape, the large-scale flow above and the local low-level slope flows. The high-resolution LES permits exploring the potential temperature and turbulent kinetic energy fields in relation with the evolution of TIBL depth and heat fluxes along representative streamlines. Several theoretical TIBL depth models are further compared to the LES-deduced inversion height and other parameters, leading to a discussion of the relationships between the values of these parameters, the respective influences of the governing physical phenomena, and the TIBL behaviour. A threshold value of 0.35 is proposed for the friction velocity to convective velocity scale ratio u */ w * between the two regimes where the TIBL is either dominated by dynamical kinetic energy production or controlled by buoyancy.

  19. Effect of urbanization in a coastal region on sea breeze and urban thermal environment

    OpenAIRE

    河原, 能久; 川又, 孝太郎; 玉井, 信行

    1994-01-01

    Effect of land use development in a coastal region on heat island phenomenon is studied numerically by an urban climate model that employs the k-e turbulence model and an eddy diffusivity model for the transport of momentum, temperature and moisture in the Eckman layer together with a heat balance model for the surface boundary layer and the soil layer. Numerical simulations are carried out for a simplified terrain which consists of sea and land. Changes in wind velocity, temperature and heat...

  20. Spatial and Temporal Changes in Air Pollution Along the Gulf Coast Observed During BRACE: A Case Study of the Land-Sea Breeze

    Science.gov (United States)

    Wellman, D.; Luke, W.; Arnold, J.; Watson, T.; Gunter, L.

    2003-12-01

    NOAA's Air Resources Laboratory conducted airborne measurements of trace gases and aerosols in the Bay Region Atmospheric Chemistry Experiment (BRACE) using the NOAA Twin Otter. The Twin Otter flew more than 90 hours in 21 flights in and around the Tampa metropolitan region in May, 2002, at altitudes of 60-3000 m MSL. Flights were conducted over rural and suburban areas, over the centers of Tampa and St. Petersburg, and over Tampa Bay and the Gulf of Mexico. One objective of the aircraft flights was to investigate the role of the sea breeze circulation in determining patterns of nutrient deposition and pollutant loads in the Tampa Bay watershed. Results will be presented from a May 8 flight designed to investigate the effect of the sea breeze recirculation upon Tampa's air quality. The Twin Otter took off at 1425 UTC and after performing a spiral ascent over the Sydney ground site, proceeded to fly north, at 200 feet above mean sea level (MSL) just off the Gulf coast, west of St. Petersburg. Back trajectory analysis suggested the dominance of a northerly rotation in the sea breeze; thus, air sampled over the Gulf passed some hours earlier to the south of the Tampa metropolitan area, in an area largely devoid of major pollution sources, before being advected eastward in the afternoon return flow. Ozone levels in this air mass ranged from 40 to 50 ppbv. Farther north the Twin Otter encountered the advected urban plume from Tampa, displaced to the north by the combination of southeasterly sea breeze flow and westerly return flow, and tracked this plume inland. Ozone levels quickly jumped to 60 ppbv, and increased to as high as 90 ppbv as photochemical processing continued in the advected plume. Nitric acid levels, which approached 4 ppbv in the aged urban air at the coast, dropped rapidly to as low as 1 ppbv inland. A final flight leg to the east of downtown Tampa encountered fresh anthropogenic pollution from the afternoon rush hour; ozone was rapidly produced in the

  1. Investigation of enhanced cross-city transport and trapping of air pollutants by coastal and urban land-sea breeze circulations

    Science.gov (United States)

    Lo, Jeff C. F.; Lau, Alexis K. H.; Fung, Jimmy C. H.; Chen, Fei

    2006-07-01

    Recent satellite observations show that a layer of haze perpetually hangs over the Pearl River Delta (PRD) region and surface observations show numerous violations of the Hong Kong Air Quality Objective. This layer of haze mostly concentrates in the Pearl River Estuary and a narrow (20 km wide) band along the shoreline, in particular during weak wind situations. Although researchers suspect the land-sea breeze (LSB) circulations "concentrate" or "trap" various pollutants in this region, the physical mechanism of the phenomenon has never been fully explained or quantified. In this paper, a mesoscale atmospheric model (MM5) coupled with the Noah land surface model (LSM), which has bulk urban land use treatments along with a detailed Pearl River Delta land use map, is used to investigate the unique feature and mechanism of this land-sea breeze effect and the temporal evolution. A three-dimensional particle trajectory model is used to understand its associated pollutant transport, trapping and accumulation. A conceptual model is then developed for the perpetual air pollution phenomenon in the region. Further sensitivity experiments are used to illustrate the impact of urbanization and large-scale winds on the pollution processes. Results show that urbanization enhances the pollutant trapping and therefore contributes to the overall poor air quality in the region.

  2. Radial diffusive samplers for determination of 8-h concentration of BTEX, acetone, ethanol and ozone in ambient air during a sea breeze event

    Science.gov (United States)

    Roukos, Joelle; Locoge, Nadine; Sacco, Paolo; Plaisance, Hervé

    2011-01-01

    The radial diffusive sampler Radiello ® filled with Carbograph 4 was evaluated for monitoring BTEX, ethanol and acetone concentrations for 8-hour exposure time. The sampling rates were first evaluated in an exposure chamber under standard conditions. Benzene and toluene showed the highest sampling rates with satisfactory standard deviations. Ethylbenzene and xylenes showed medium sampling rates but higher standard deviations that can be attributed to a low affinity of these compounds with the adsorbent medium for short sampling time. Acetone has a fair result because of the increase of its partial pressure in the vicinity of the adsorbent surface in the course of sampling. The Carbograph 4 adsorbent does not seem to be suitable for sampling ethanol, likely because of its high volatility. The influences of three environmental factors (temperature (T), relative humidity (RH) and concentration level (C)) on the sampling rates were also evaluated, following a fractional factorial design at two factor levels (low and high). Results were only investigated on benzene, toluene and acetone. Temperature and relative humidity are found to be the most important factors leading to variability of the benzene and toluene sampling rates. The applicability of the sampler for 8-hour sampling was demonstrated by the results of a measurement campaign carried out during a sea breeze event. Mapping of benzene, toluene and acetone concentrations showed the highest concentrations in the industrial zone following the wind direction coming from the North. Nevertheless, the sea breeze tends to reduce the spread of the industrial plumes. On the contrary, the ozone map presents the lowest concentrations at the same industrial area indicating a net consumption of ozone. The highest ozone concentrations were found in the southeastern zone suggesting a local ozone formation.

  3. 3D Structures of the Sea-Breeze Front in Dual-Doppler Lidar Analysis and a State-of-the-Art Modeling System

    Science.gov (United States)

    Chen, G.; Iwai, H.; Seko, H.; Saito, K. K.; Sha, W.; Iwasaki, T.

    2017-12-01

    Sea breeze occurs at coastal regions around the world, with great impacts on the weather and air quality. Observations and forecasts of the fine-scale structures and local impacts of sea-breeze front (SBF) are a challenge. Three-dimensional structures of a quasi-stationary SBF were observed by dual-Doppler lidar over Sendai Airport in June 2007. Using a state-of-the-art local prediction system in which a computational fluid dynamics model is nested to a mesoscale model with data assimilation, we perform a realistic simulation of the observed SBF structures at 10-m resolution. Numerical simulations reproduce the detailed features of the SBF, such as frontal lobes/clefts, intense updrafts, rear downdrafts, and Kelvin-Helmholtz billows, consistent with lidar observations. Several localized maxima of updrafts occur at the active SBF lobes with ascending marine air mass and adjacent windward sides, where the ambient warm flows encounter a steep front face and penetrate SBF aloft. Strong downdrafts of marine cool air dominate at the SBF rear where they trap a high concentration of air pollutants. These features are regularly activated by the arc-shaped gravity currents at a horizontal scale of several kilometers and a period of 30 minutes. They are also influenced by the coastal buildings and strongly regulate the spatio-temporal variations of local winds near surface. The findings suggest that a novel full-scale nested prediction system has potential for forecasting coastal weather and environment at high precision, which are valuable for aviation safety, marine activities, and air quality monitoring. AcknowledgmentsThis study was supported by the Strategic Programs for Innovative Research (SPIRE) funded by the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT). The numerical calculations were performed using the K computer at RIKEN Advanced Institute for Computational Science (Proposal numbers hp130012 and hp140220). The observational data were

  4. Florida Agriculture - Utilizing TRMM to Analyze Sea Breeze Thunderstorm Patterns During El Nino Southern Oscillations and Their Effects Upon Available Fresh Water for South Florida Agricultural Planning and Management

    Science.gov (United States)

    Billiot, Amanda; Lee, Lucas; McKee, Jake; Cooley, Zachary Clayton; Mitchell, Brandie

    2010-01-01

    This project utilizes Tropical Rainfall Measuring Mission (TRMM) and Landsat satellite data to assess the impact of sea breeze precipitation upon areas of agricultural land use in southern Florida. Water is a critical resource to agriculture, and the availability of water for agricultural use in Florida continues to remain a key issue. Recent projections of statewide water use by 2020 estimate that 9.3 billion gallons of water per day will be demanded, and agriculture represents 47% of this demand (Bronson 2003). Farmers have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. Sea breeze thunderstorms are responsible for much of the rainfall delivered to Florida during the wet season (May-October) and have been recognized as an important overall contributor of rainfall in southern Florida (Almeida 2003). TRMM satellite data was used to analyze how sea breeze-induced thunderstorms during El Nino and La Nina affected interannual patterns of precipitation in southern Florida from 1998-2009. TRMM's Precipitation Radar and Microwave Imager provide data to quantify water vapor in the atmosphere, precipitation rates and intensity, and the distribution of precipitation. Rainfall accumulation data derived from TRMM and other microwave sensors were used to analyze the temporal and spatial variations of rainfall during each phase of the El Nino Southern Oscillation (ENSO). Through the use of TRMM and Landsat, slight variations were observed, but it was determined that neither sea breeze nor total rainfall patterns in South Florida were strongly affected by ENSO during the study period. However, more research is needed to characterize the influence of ENSO on summer weather patterns in South Florida. This research will provide the basis for continued observations and study with the Global Precipitation Measurement Mission.

  5. Cloud Formation, Sea-Air-Land Interaction, Mozambique, Africa

    Science.gov (United States)

    1991-01-01

    This rare depiction of the physical interactions of air land and sea in cloud formation was seen over Mozambique (12.0S, 40.5E). Moist low air, heated as it moves over land, rises and forms clouds. Even the coastal islands have enough heat to initiate the process. Once begun, the circulation is dynamic and the descending motion suppresses cloud formation on either side of the cloud stream. As clouds move inland, they rise to follow the land upslope.

  6. Surf Zone Sediment Size Variation, Morphodynamics, and Hydrodynamics During Sea/Land Breeze and El-Norte Storm in Sisal, Yucatan, Mexico

    Science.gov (United States)

    Alrushaid, T.; Figlus, J.; Torres-Freyermuth, A.; Puleo, J. A.; Dellapenna, T. M.

    2016-02-01

    Coastlines around the world are under ever-increasing pressure due to population trends, commerce, and geophysical processes like tropical storms and erosion. This multi-institutional field campaign was conducted to improve our understanding of complex nearshore processes under varying forcing conditions on a microtidal, sandy beach located in Sisal, Yucatan from 3/27 to 4/12/2014. Hydrodynamics, morphodynamics, and textural variability were investigated during: (1) a cold front event (referred to as El-Norte); (2) land breeze (LB); and (3) sea breeze (SB). The instrumentation layout included three surf/swash zone cross-shore transects where water elevation, suspended sediment concentration, bed load, and current velocities were measured, as well as several offshore ADCP for hydrodynamic measurements. TKE, τb, ɛ and were estimated using the data obtained from surf zone ADV. In addition, Hs and Tsin the surf zone were computed using measurements from ADV pressure sensors, while a separate pressure transducer was used to obtain water free-surface elevation within the swash zone. During SB cycles the study area experienced wind velocities reaching up to 12ms-1, and 15ms-1 during El-Norte. Elevated wind stress during El-Norte resulted in Hs of 1.5m and 0.6m in water depths of 10m and 0.4m, respectively. Surface sediment grab samples during SB/LB cycles showed that the swash zone had a moderately well sorted distribution with a mean grain size of 0.5mm, while poor sorting and a mean grain size of 0.7mm were found during El-Norte. Additionally, measured bathymetry data showed evidence for offshore sandbar migration during strong offshore currents (0.4ms-1) during El-Norte, while onshore sandbar migration was evident during SB/LB periods (0.3ms-1 and 0.1ms-1, respectively). This study highlights how different weather forcing conditions affect hydrodynamics, morphodynamics, and textural variability on a sandy beach. Aside from furthering our knowledge on these complex

  7. Arctic cloud-climate feedbacks: On relationships between Arctic clouds, sea ice, and lower tropospheric stability

    Science.gov (United States)

    Taylor, P. C.; Boeke, R.; Hegyi, B.

    2017-12-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence other important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these Arctic climate system elements creating the potential for Arctic cloud-climate feedbacks. To further our understanding of the potential for Arctic cloud-climate feedbacks, we quantify the influence of atmospheric state on the surface cloud radiative effect (CRE). In addition, we quantify the covariability between surface CRE and sea ice concentration (SIC). This paper builds on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, a statistically insignificant covariability is found between CRE and SIC for most atmospheric conditions. Third, we find a statistically significant increase in the average surface longwave CRE at lower SIC values in fall. Specifically, a +3-5 W m-2 larger longwave CRE is found over footprints with 0% versus 100% SIC. Because systematic changes on the order of 1 W m-2 are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback that could delay the fall freeze-up and influence the variability in sea ice extent and volume, under certain meteorological conditions. Our results also suggest that a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  8. A Coastal Bay Summer Breeze Study, Part 1: Results of the Quiberon 2006 Experimental Campaign

    Science.gov (United States)

    Mestayer, Patrice G.; Calmet, Isabelle; Herlédant, Olivier; Barré, Sophie; Piquet, Thibaud; Rosant, Jean-Michel

    2018-04-01

    The Quiberon 2006 experiment was launched to document the onset and development of land and sea breezes over a semi-circular coastal bay propitious to inshore sailing competitions. The measurements were taken during the 2 weeks of 16-28 June 2006. Micrometeorological variables were recorded at three shore sites around the bay using turbulence sensors on 10-30-m high masts, on four instrumented catamarans at selected sites within the bay, and at a fourth shore site with a Sodar. Synoptic data and local measurements are analyzed here from the point of view of both micrometeorologists and competition skippers, testing in particular the empirical rules of breeze veering and backing according to the wind direction with respect to the coastline orientation at the mesoscale (the quadrant theory). Our analysis focuses on the patterns of lower-altitude wind direction and speed around the bay and over the water basin, and the temporal variations during the periods of the breeze onset, establishment and thermal reinforcement. In offshore synoptic-flow conditions (quadrants 1 and 2), the clockwise rotation of the surface flow had a very large amplitude, reaching up to 360°. The breeze strength was negatively correlated to that of the synoptic wind speed. In conditions of onshore synoptic flow from the west (quadrant 3) at an angle to the mainland coast but perpendicular to the Quiberon peninsula, the rotation of the flow was backwards in the early morning and clockwise during the day with a moderate amplitude (40°-50°) around the synoptic wind direction. As the surface wind speed was much larger than the synoptic wind speed, such a case we have designated as a "synoptic breeze". The breeze onset was shown to fail several times under the influence of weak non-thermal events, e.g., the passage of an occluded front or clouds or an excess of convection. Finally, several local-scale influences of the complex coastal shape appeared in our measurements, e.g., wind fanning in the

  9. Distinguishing Clouds from Ice over the East Siberian Sea, Russia

    Science.gov (United States)

    2002-01-01

    As a consequence of its capability to retrieve cloud-top elevations, stereoscopic observations from the Multi-angle Imaging SpectroRadiometer (MISR) can discriminate clouds from snow and ice. The central portion of Russia's East Siberian Sea, including one of the New Siberian Islands, Novaya Sibir, are portrayed in these views from data acquired on May 28, 2002.The left-hand image is a natural color view from MISR's nadir camera. On the right is a height field retrieved using automated computer processing of data from multiple MISR cameras. Although both clouds and ice appear white in the natural color view, the stereoscopic retrievals are able to identify elevated clouds based on the geometric parallax which results when they are observed from different angles. Owing to their elevation above sea level, clouds are mapped as green and yellow areas, whereas land, sea ice, and very low clouds appear blue and purple. Purple, in particular, denotes elevations very close to sea level. The island of Novaya Sibir is located in the lower left of the images. It can be identified in the natural color view as the dark area surrounded by an expanse of fast ice. In the stereo map the island appears as a blue region indicating its elevation of less than 100 meters above sea level. Areas where the automated stereo processing failed due to lack of sufficient spatial contrast are shown in dark gray. The northern edge of the Siberian mainland can be found at the very bottom of the panels, and is located a little over 250 kilometers south of Novaya Sibir. Pack ice containing numerous fragmented ice floes surrounds the fast ice, and narrow areas of open ocean are visible.The East Siberian Sea is part of the Arctic Ocean and is ice-covered most of the year. The New Siberian Islands are almost always covered by snow and ice, and tundra vegetation is very scant. Despite continuous sunlight from the end of April until the middle of August, the ice between the island and the mainland

  10. The seasonal characteristics of the breeze circulation at a coastal Mediterranean site in South Italy

    DEFF Research Database (Denmark)

    Federico, S.; Pasqualoni, L.; Sempreviva, Anna Maria

    2010-01-01

    We present a study on the characteristics of the sea breeze flow at a coastal site located in the centre of the Mediterranean basin at the southern tip of Italy. This study is finalized to add new data on breeze circulations over a narrow peninsula and present a unique experimental coastal site...... at about 600 m from the coastline in a flat open area at the foot of a mountain chain located in a region of complex orography. We study the seasonal behaviour of the sea-land breeze circulation by analysing two years of hourly data of wind speed and direction, temperature, radiation and relative humidity...

  11. Sensitivity to deliberate sea salt seeding of marine clouds - observations and model simulations

    OpenAIRE

    Alterskjaer, K.; Kristjansson, J. E.; Seland, O.

    2012-01-01

    Sea salt seeding of marine clouds to increase their albedo is a proposed technique to counteract or slow global warming. In this study, we first investigate the susceptibility of marine clouds to sea salt injections, using observational data of cloud droplet number concentration, cloud optical depth, and liquid cloud fraction from the MODIS (Moderate Resolution Imaging Spectroradiometer) instruments on board the Aqua and Terra satellites. We then compare the derived susceptibility function to...

  12. When land breezes collide: Converging diurnal winds over small bodies of water

    OpenAIRE

    Gille, ST; Llewellyn Smith, SG

    2014-01-01

    © 2013 Royal Meteorological Society. Over enclosed and semi-enclosed bodies of water, the land-breeze/sea-breeze circulation is expected to be modified by the presence of opposing coastlines. These effects are studied using satellite scatterometer surface wind observations from the QuikSCAT and ADEOS-2 tandem mission from April-October 2003. Winds are studied for six bodies of water: the Red Sea, the Gulf of California, the Mediterranean, the Adriatic Sea, the Black Sea and the Caspian Sea. T...

  13. Effect of retreating sea ice on Arctic cloud cover in simulated recent global warming

    Directory of Open Access Journals (Sweden)

    M. Abe

    2016-11-01

    Full Text Available This study investigates the effect of sea ice reduction on Arctic cloud cover in historical simulations with the coupled atmosphere–ocean general circulation model MIROC5. Arctic sea ice has been substantially retreating since the 1980s, particularly in September, under simulated global warming conditions. The simulated sea ice reduction is consistent with satellite observations. On the other hand, Arctic cloud cover has been increasing in October, with about a 1-month lag behind the sea ice reduction. The delayed response leads to extensive sea ice reductions because the heat and moisture fluxes from the underlying open ocean into the atmosphere are enhanced. Sensitivity experiments with the atmospheric part of MIROC5 clearly show that sea ice reduction causes increases in cloud cover. Arctic cloud cover increases primarily in the lower troposphere, but it decreases in the near-surface layers just above the ocean; predominant temperature rises in these near-surface layers cause drying (i.e., decreases in relative humidity, despite increasing moisture flux. Cloud radiative forcing due to increases in cloud cover in autumn brings an increase in the surface downward longwave radiation (DLR by approximately 40–60 % compared to changes in clear-sky surface DLR in fall. These results suggest that an increase in Arctic cloud cover as a result of reduced sea ice coverage may bring further sea ice retreat and enhance the feedback processes of Arctic warming.

  14. Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level.

    Science.gov (United States)

    Taylor, Patrick C; Kato, Seiji; Xu, Kuan-Man; Cai, Ming

    2015-12-27

    Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.

  15. Covariance Between Arctic Sea Ice and Clouds Within Atmospheric State Regimes at the Satellite Footprint Level

    Science.gov (United States)

    Taylor, Patrick C.; Kato, Seiji; Xu, Kuan-Man; Cai, Ming

    2015-01-01

    Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and mid-tropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.

  16. Cloud Response to Arctic Sea Ice Loss and Implications for Feedbacks in the CESM1 Climate Model

    Science.gov (United States)

    Morrison, A.; Kay, J. E.; Chepfer, H.; Guzman, R.; Bonazzola, M.

    2017-12-01

    Clouds have the potential to accelerate or slow the rate of Arctic sea ice loss through their radiative influence on the surface. Cloud feedbacks can therefore play into Arctic warming as clouds respond to changes in sea ice cover. As the Arctic moves toward an ice-free state, understanding how cloud - sea ice relationships change in response to sea ice loss is critical for predicting the future climate trajectory. From satellite observations we know the effect of present-day sea ice cover on clouds, but how will clouds respond to sea ice loss as the Arctic transitions to a seasonally open water state? In this study we use a lidar simulator to first evaluate cloud - sea ice relationships in the Community Earth System Model (CESM1) against present-day observations (2006-2015). In the current climate, the cloud response to sea ice is well-represented in CESM1: we see no summer cloud response to changes in sea ice cover, but more fall clouds over open water than over sea ice. Since CESM1 is credible for the current Arctic climate, we next assess if our process-based understanding of Arctic cloud feedbacks related to sea ice loss is relevant for understanding future Arctic clouds. In the future Arctic, summer cloud structure continues to be insensitive to surface conditions. As the Arctic warms in the fall, however, the boundary layer deepens and cloud fraction increases over open ocean during each consecutive decade from 2020 - 2100. This study will also explore seasonal changes in cloud properties such as opacity and liquid water path. Results thus far suggest that a positive fall cloud - sea ice feedback exists in the present-day and future Arctic climate.

  17. Identifying and tracking plumes affected by an ocean breeze in support of emergency preparedness

    International Nuclear Information System (INIS)

    Schwartz, P.E.

    1989-01-01

    To better support emergency preparedness, General Public Utilities (GPU) Nuclear has investigated the frequency of occurrence of the mesoscale ocean breeze at the Oyster Creek Nuclear Generating Station (OCNGS). Through the analysis of the horizontal wind direction and temperature patterns, simple identification of the ocean breeze along with a plume tracking procedure has been developed and incorporated into the site's emergency plant to better safeguard the public with sophisticated protective action measures in case of a nonroutine release. The ocean breeze will frequently produce wind trajectory fields within the plant's emergency planning zone that are different from the normal gradient wind flow. This could greatly alter proper protective action measures since most utilities employ straight-line trajectory air dispersion models. Knowledge of the existence of the ocean breeze and the location of the ocean breeze front become important in the results generated from the straight-line Gaussian dose calculation methodology and in the further development of a more complex dose assessment model. This paper describes the verification and existence of the sea breeze phenomenon and the incorporation of its effects into the OCNGS emergency plan

  18. Cloud Occurrence Measurements Over Sea during the 2nd 7 Southeast Asian Studies (7SEAS) Field Campaign in Palawan Archipelago

    Science.gov (United States)

    Antioquia, C. T.; Uy, S. N.; Caballa, K.; Lagrosas, N.

    2014-12-01

    Ground based sky imaging cameras have been used to measure cloud cover over an area to aid in radiation budget models. During daytime, certain clouds tend to help decrease atmospheric temperature by obstructing sunrays in the atmosphere. Thus, the detection of clouds plays an important role in the formulation of radiation budget in the atmosphere. In this study, a wide angled sky imager (GoPro Hero 2) was brought on board M/Y Vasco to detect and quantity cloud occurrence over sea during the 2nd 7SEAS field campaign. The camera is just a part of a number of scientific instruments used to measure weather, aerosol chemistry and solar radiation among others. The data collection started during the departure from Manila Bay on 05 September 2012 and went on until the end of the cruise (29 September 2012). The camera was placed in a weather-proof box that is then affixed on a steel mast where other instruments are also attached during the cruise. The data has a temporal resolution of 1 minute, and each image is 500x666 pixels in size. Fig. 1a shows the track of the ship during the cruise. The red, blue, hue, saturation, and value of the pixels are analysed for cloud occurrence. A pixel is considered to "contain" thick cloud if it passes all four threshold parameters (R-B, R/B, R-B/R+B, HSV; R is the red pixel color value, blue is the blue pixel color value, and HSV is the hue saturation value of the pixel) and considered thin cloud if it passes two or three parameters. Fig. 1b shows the daily analysis of cloud occurrence. Cloud occurrence here is quantified as the ratio of the pixels with cloud to the total number of pixels in the data image. The average cloud cover for the days included in this dataset is 87%. These measurements show a big contrast when compared to cloud cover over land (Manila Observatory) which is usually around 67%. During the duration of the cruise, only one day (September 6) has an average cloud occurrence below 50%; the rest of the days have

  19. The Influence of Sea Ice on Arctic Low Cloud Properties and Radiative Effects

    Science.gov (United States)

    Taylor, Patrick C.

    2015-01-01

    The Arctic is one of the most climatically sensitive regions of the Earth. Climate models robustly project the Arctic to warm 2-3 times faster than the global mean surface temperature, termed polar warming amplification (PWA), but also display the widest range of surface temperature projections in this region. The response of the Arctic to increased CO2 modulates the response in tropical and extra-tropical regions through teleconnections in the atmospheric circulation. An increased frequency of extreme precipitation events in the northern mid-latitudes, for example, has been linked to the change in the background equator-to-pole temperature gradient implied by PWA. Understanding the Arctic climate system is therefore important for predicting global climate change. The ice albedo feedback is the primary mechanism driving PWA, however cloud and dynamical feedbacks significantly contribute. These feedback mechanisms, however, do not operate independently. How do clouds respond to variations in sea ice? This critical question is addressed by combining sea ice, cloud, and radiation observations from satellites, including CERES, CloudSAT, CALIPSO, MODIS, and microwave radiometers, to investigate sea ice-cloud interactions at the interannual timescale in the Arctic. Cloud characteristics are strongly tied to the atmospheric dynamic and thermodynamic state. Therefore, the sensitivity of Arctic cloud characteristics, vertical distribution and optical properties, to sea ice anomalies is computed within atmospheric dynamic and thermodynamic regimes. Results indicate that the cloud response to changes in sea ice concentration differs significantly between atmospheric state regimes. This suggests that (1) the atmospheric dynamic and thermodynamic characteristics and (2) the characteristics of the marginal ice zone are important for determining the seasonal forcing by cloud on sea ice variability.

  20. Simulating Arctic clouds during Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE)

    Science.gov (United States)

    Bromwich, D. H.; Hines, K. M.; Wang, S. H.

    2015-12-01

    The representation within global and regional models of the extensive low-level cloud cover over polar oceans remains a critical challenge for quantitative studies and forecasts of polar climate. In response, the polar-optimized version of the Weather Research and Forecasting model (Polar WRF) is used to simulate the meteorology, boundary layer, and Arctic clouds during the September-October 2014 Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE) project. Polar WRF was developed with several adjustments to the sea ice thermodynamics in WRF. ARISE was based out of Eielson Air Force Base near Fairbanks, Alaska and included multiple instrumented C-130 aircraft flights over open water and sea ice of the Beaufort Sea. Arctic boundary layer clouds were frequently observed within cold northeasterly flow over the open ocean and ice. Preliminary results indicate these clouds were primarily liquid water, with characteristics differing between open water and sea ice surfaces. Simulated clouds are compared to ARISE observations. Furthermore, Polar WRF simulations are run for the August-September 2008 Arctic Summer Cloud Ocean Study (ASCOS) for comparison to the ARISE. Preliminary analysis shows that simulated low-level water clouds over the sea ice are too extensive during the the second half of the ASCOS field program. Alternatives and improvements to the Polar WRF cloud schemes are considered. The goal is to use the ARISE and ASCOS observations to achieve an improved polar supplement to the WRF code for open water and sea ice that can be provided to the Polar WRF community.

  1. WARM BREEZE FROM THE STARBOARD BOW: A NEW POPULATION OF NEUTRAL HELIUM IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, M. A.; Bzowski, M.; Sokół, J. M.; Swaczyna, P.; Grzedzielski, S. [Space Research Centre of the Polish Academy of Sciences, Warsaw (Poland); Alexashov, D. B.; Izmodenov, V. V. [Space Research Institute (IKI) of the Russian Academy of Sciences, Moscow (Russian Federation); Möbius, E.; Leonard, T. [Space Research Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Fuselier, S. A.; McComas, D. J. [Southwest Research Institute, San Antonio, TX (United States); Wurz, P. [Physics Institute, University of Bern, Bern (Switzerland)

    2014-08-01

    We investigate the signals from neutral helium atoms observed in situ from Earth orbit in 2010 by the Interstellar Boundary Explorer (IBEX). The full helium signal observed during the 2010 observation season can be explained as a superposition of pristine neutral interstellar He gas and an additional population of neutral helium that we call the Warm Breeze. The Warm Breeze is approximately 2 times slower and 2.5 times warmer than the primary interstellar He population, and its density in front of the heliosphere is ∼7% that of the neutral interstellar helium. The inflow direction of the Warm Breeze differs by ∼19° from the inflow direction of interstellar gas. The Warm Breeze seems to be a long-term, perhaps permanent feature of the heliospheric environment. It has not been detected earlier because it is strongly ionized inside the heliosphere. This effect brings it below the threshold of detection via pickup ion and heliospheric backscatter glow observations, as well as by the direct sampling of GAS/Ulysses. We discuss possible sources for the Warm Breeze, including (1) the secondary population of interstellar helium, created via charge exchange and perhaps elastic scattering of neutral interstellar He atoms on interstellar He{sup +} ions in the outer heliosheath, or (2) a gust of interstellar He originating from a hypothetic wave train in the Local Interstellar Cloud. A secondary population is expected from models, but the characteristics of the Warm Breeze do not fully conform to modeling results. If, nevertheless, this is the explanation, IBEX-Lo observations of the Warm Breeze provide key insights into the physical state of plasma in the outer heliosheath. If the second hypothesis is true, the source is likely to be located within a few thousand AU from the Sun, which is the propagation range of possible gusts of interstellar neutral helium with the Warm Breeze characteristics against dissipation via elastic scattering in the Local Cloud. Whatever the

  2. Does a Relationship Between Arctic Low Clouds and Sea Ice Matter?

    Science.gov (United States)

    Taylor, Patrick C.

    2016-01-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with sea ice concentration (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in sea ice extent and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  3. Individual aerosol particles in and below clouds along a Mt. Fuji slope: Modification of sea-salt-containing particles by in-cloud processing

    Science.gov (United States)

    Ueda, S.; Hirose, Y.; Miura, K.; Okochi, H.

    2014-02-01

    Sizes and compositions of atmospheric aerosol particles can be altered by in-cloud processing by absorption/adsorption of gaseous and particulate materials and drying of aerosol particles that were formerly activated as cloud condensation nuclei. To elucidate differences of aerosol particles before and after in-cloud processing, aerosols were observed along a slope of Mt. Fuji, Japan (3776 m a.s.l.) during the summer in 2011 and 2012 using a portable laser particle counter (LPC) and an aerosol sampler. Aerosol samples for analyses of elemental compositions were obtained using a cascade impactor at top-of-cloud, in-cloud, and below-cloud altitudes. To investigate composition changes via in-cloud processing, individual particles (0.5-2 μm diameter) of samples from five cases (days) collected at different altitudes under similar backward air mass trajectory conditions were analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. For most cases (four cases), most particles at all altitudes mainly comprised sea salts: mainly Na with some S and/or Cl. Of those, in two cases, sea-salt-containing particles with Cl were found in below-cloud samples, although sea-salt-containing particles in top-of-cloud samples did not contain Cl. This result suggests that Cl in the sea salt was displaced by other cloud components. In the other two cases, sea-salt-containing particles on samples at all altitudes were without Cl. However, molar ratios of S to Na (S/Na) of the sea-salt-containing particles of top-of-cloud samples were higher than those of below-cloud samples, suggesting that sulfuric acid or sulfate was added to sea-salt-containing particles after complete displacement of Cl by absorption of SO2 or coagulation with sulfate. The additional volume of sulfuric acid in clouds for the two cases was estimated using the observed S/Na values of sea-salt-containing particles. The estimation revealed that size changes by in-cloud

  4. Strong modification of stratospheric ozone forcing by cloud and sea-ice adjustments

    Directory of Open Access Journals (Sweden)

    Y. Xia

    2016-06-01

    Full Text Available We investigate the climatic impact of stratospheric ozone recovery (SOR, with a focus on the surface temperature change in atmosphere–slab ocean coupled climate simulations. We find that although SOR would cause significant surface warming (global mean: 0.2 K in a climate free of clouds and sea ice, it causes surface cooling (−0.06 K in the real climate. The results here are especially interesting in that the stratosphere-adjusted radiative forcing is positive in both cases. Radiation diagnosis shows that the surface cooling is mainly due to a strong radiative effect resulting from significant reduction of global high clouds and, to a lesser extent, from an increase in high-latitude sea ice. Our simulation experiments suggest that clouds and sea ice are sensitive to stratospheric ozone perturbation, which constitutes a significant radiative adjustment that influences the sign and magnitude of the global surface temperature change.

  5. Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Webster, P.J.; Clayson, C.A.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    In the tropical Western Pacific (TWP) Ocean, the clouds and the cloud-radiation feedback can only be understood in the context of air/sea interactions and the ocean mixed layer. Considerable interest has been shown in attempting to explain why sea surface temperature (SST) rarely rises above 30{degrees}C, and gradients of the SST. For the most part, observational studies that address this issue have been conducted using monthly cloud and SST data, and the focus has been on intraseasonal and interannual time scales. For the unstable tropical atmosphere, using monthly averaged data misses a key feedback between clouds and SST that occurs on the cloud-SST coupling time scale, which was estimated to be 3-6 days for the unstable tropical atmosphere. This time scale is the time needed for a change in cloud properties, due to the change of ocean surface evaporation caused by SST variation, to feed back to the SST variation, to feed back to the SST through its effect on the surface heat flux. This paper addresses the relationship between clouds, surface radiation flux and SST of the TWP ocean over the diurnal cycle.

  6. Large Scale Variability of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and Wind

    Science.gov (United States)

    Comiso, Josefino C.; Cota, Glenn F.

    2004-01-01

    Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.

  7. Sensitivity to deliberate sea salt seeding of marine clouds – observations and model simulations

    Directory of Open Access Journals (Sweden)

    K. Alterskjær

    2012-03-01

    Full Text Available Sea salt seeding of marine clouds to increase their albedo is a proposed technique to counteract or slow global warming. In this study, we first investigate the susceptibility of marine clouds to sea salt injections, using observational data of cloud droplet number concentration, cloud optical depth, and liquid cloud fraction from the MODIS (Moderate Resolution Imaging Spectroradiometer instruments on board the Aqua and Terra satellites. We then compare the derived susceptibility function to a corresponding estimate from the Norwegian Earth System Model (NorESM. Results compare well between simulations and observations, showing that stratocumulus regions off the west coast of the major continents along with large regions over the Pacific and the Indian Oceans are susceptible. At low and mid latitudes the signal is dominated by the cloud fraction.

    We then carry out geo-engineering experiments with a uniform increase over ocean of 10−9 kg m−2 s−1 in emissions of sea salt particles with a dry modal radius of 0.13 μm, an emission strength and areal coverage much greater than proposed in earlier studies. The increased sea salt concentrations and the resulting change in marine cloud properties lead to a globally averaged forcing of −4.8 W m−2 at the top of the atmosphere, more than cancelling the forcing associated with a doubling of CO2 concentrations. The forcing is large in areas found to be sensitive by using the susceptibility function, confirming its usefulness as an indicator of where to inject sea salt for maximum effect.

    Results also show that the effectiveness of sea salt seeding is reduced because the injected sea salt provides a large surface area for water vapor and gaseous sulphuric acid to condense on, thereby lowering the maximum supersaturation and suppressing the formation and lifetime of sulphate particles. In some areas, our simulations show an

  8. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas

    Science.gov (United States)

    2014-09-30

    developed by incorporating the proposed IR sensors and ground-sky temperature difference algorithm into a tethered balloon borne payload (Figure 3...into the cloud base. RESULTS FROM FY 2014 • A second flight of the tethered balloon -borne IR cloud margin sensor was conducted in Colorado on...Figure 3: Tethered balloon -borne IR sensing payload IR Cloud Margin Sensor Figure 4: First successful flight validation of the IR cloud

  9. Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    Science.gov (United States)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  10. The Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    Science.gov (United States)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  11. The Impact of Cloud Properties on Young Sea Ice during Three Winter Storms at N-ICE2015

    Science.gov (United States)

    Murphy, S. Y.; Walden, V. P.; Cohen, L.; Hudson, S. R.

    2017-12-01

    The impact of clouds on sea ice varies significantly as cloud properties change. Instruments deployed during the Norwegian Young Sea Ice field campaign (N-ICE2015) are used to study how differing cloud properties influence the cloud radiative forcing at the sea ice surface. N-ICE2015 was the first campaign in the Arctic winter since SHEBA (1997/1998) to study the surface energy budget of sea ice and the associated effects of cloud properties. Cloud characteristics, surface radiative and turbulent fluxes, and meteorological properties were measured throughout the field campaign. Here we explore how cloud macrophysical and microphysical properties affect young, thin sea ice during three winter storms from 31 January to 15 February 2015. This time period is of interest due to the varying surface and atmospheric conditions, which showcase the variety of conditions the newly-formed sea ice can experience during the winter. This period was characterized by large variations in the ice surface and near-surface air temperatures, with highs near 0°C when warm, moist air was advected into the area and lows reaching -40°C during clear, calm periods between storms. The advection of warm, moist air into the area influenced the cloud properties and enhanced the downwelling longwave flux. For most of the period, downwelling longwave flux correlates closely with the air temperature. However, at the end of the first storm, a drop in downwelling longwave flux of about 50 Wm-2 was observed, independent of any change in surface or air temperature or cloud fraction, indicating a change in cloud properties. Lidar data show an increase in cloud height during this period and a potential shift in cloud phase from ice to mixed-phase. This study will describe the cloud properties during the three winter storms and discuss their impacts on surface energy budget.

  12. Plane-parallel biases computed from inhomogeneous Arctic clouds and sea ice

    Science.gov (United States)

    Rozwadowska, Anna; Cahalan, Robert F.

    2002-10-01

    Monte Carlo simulations of the expected influence of nonuniformity in cloud structure and surface albedo on shortwave radiative fluxes in the Arctic atmosphere are presented. In particular, plane-parallel biases in cloud albedo and transmittance are studied for nonabsorbing, low-level, all-liquid stratus clouds over sea ice. The "absolute bias" is defined as the difference between the cloud albedo or transmittance for the uniform or plane-parallel case, and the albedo or transmittance for nonuniform conditions with the same mean cloud optical thickness and the same mean surface albedo, averaged over a given area (i.e., bias > 0 means plane-parallel overestimates). Ranges of means and standard deviations of input parameters typical of Arctic conditions are determined from the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment Artic Cloud Experiment (FIRE/ACE)/Surface Heat Budget of the Arctic Ocean (SHEBA)/Atmospheric Radiation Measurement Program (ARM) experiment, a cooperative effort of the Department of Energy, NASA, NSF, the National Oceanic and Atmospheric Administration, the Office of Naval Research, and the Atmospheric Environment Service. We determine the sensitivity of the bias with respect to the following: domain averaged means and spatial variances of cloud optical thickness and surface albedo, shape of the surface reflectance function, presence of a scattering layer under the clouds, and solar zenith angle. The simulations show that the biases in Arctic conditions are generally lower than in subtropical stratocumulus. The magnitudes of the absolute biases are unlikely to exceed 0.02 for albedo and 0.05 for transmittance. The "relative bias" expresses the absolute bias as a percentage of the actual cloud albedo or transmittance. The magnitude of the relative bias in albedo is typically below 2% over the reflective Arctic surface, while the magnitude of the relative bias in transmittance can exceed 10%.

  13. Geoengineering by cloud seeding: influence on sea ice and climate system

    International Nuclear Information System (INIS)

    Rasch, Philip J; Latham, John; Chen, Chih-Chieh

    2009-01-01

    General circulation model computations using a fully coupled ocean-atmosphere model indicate that increasing cloud reflectivity by seeding maritime boundary layer clouds with particles made from seawater may compensate for some of the effects on climate of increasing greenhouse gas concentrations. The chosen seeding strategy (one of many possible scenarios) can restore global averages of temperature, precipitation and sea ice to present day values, but not simultaneously. The response varies nonlinearly with the extent of seeding, and geoengineering generates local changes to important climatic features. The global tradeoffs of restoring ice cover, and cooling the planet, must be assessed alongside the local changes to climate features.

  14. Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

    Science.gov (United States)

    Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.

    2012-12-01

    Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential

  15. SeaDataCloud - further developing the pan-European SeaDataNet infrastructure for marine and ocean data management

    Science.gov (United States)

    Schaap, Dick M. A.; Fichaut, Michele

    2017-04-01

    SeaDataCloud marks the third phase of developing the pan-European SeaDataNet infrastructure for marine and ocean data management. The SeaDataCloud project is funded by EU and runs for 4 years from 1st November 2016. It succeeds the successful SeaDataNet II (2011 - 2015) and SeaDataNet (2006 - 2011) projects. SeaDataNet has set up and operates a pan-European infrastructure for managing marine and ocean data and is undertaken by National Oceanographic Data Centres (NODC's) and oceanographic data focal points from 34 coastal states in Europe. The infrastructure comprises a network of interconnected data centres and central SeaDataNet portal. The portal provides users a harmonised set of metadata directories and controlled access to the large collections of datasets, managed by the interconnected data centres. The population of directories has increased considerably in cooperation with and involvement in many associated EU projects and initiatives such as EMODnet. SeaDataNet at present gives overview and access to more than 1.9 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centres from 34 countries riparian to European seas. SeaDataNet is also active in setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards of ISO (19115, 19139), and OGC (WMS, WFS, CS-W and SWE). Standards and associated SeaDataNet tools are made available at the SeaDataNet portal for wide uptake by data handling and managing organisations. SeaDataCloud aims at further developing standards, innovating services & products, adopting new technologies, and giving more attention to users. Moreover, it is about implementing a cooperation between the SeaDataNet consortium of marine data centres and the EUDAT consortium of e-infrastructure service providers. SeaDataCloud aims at considerably advancing services and

  16. Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean

    Directory of Open Access Journals (Sweden)

    G. Young

    2016-11-01

    Full Text Available In situ airborne observations of cloud microphysics, aerosol properties, and thermodynamic structure over the transition from sea ice to ocean are presented from the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA campaign. A case study from 23 March 2013 provides a unique view of the cloud microphysical changes over this transition under cold-air outbreak conditions. Cloud base lifted and cloud depth increased over the transition from sea ice to ocean. Mean droplet number concentrations, Ndrop, also increased from 110 ± 36 cm−3 over the sea ice to 145 ± 54 cm−3 over the marginal ice zone (MIZ. Downstream over the ocean, Ndrop decreased to 63 ± 30 cm−3. This reduction was attributed to enhanced collision-coalescence of droplets within the deep ocean cloud layer. The liquid water content increased almost four fold over the transition and this, in conjunction with the deeper cloud layer, allowed rimed snowflakes to develop and precipitate out of cloud base downstream over the ocean. The ice properties of the cloud remained approximately constant over the transition. Observed ice crystal number concentrations averaged approximately 0.5–1.5 L−1, suggesting only primary ice nucleation was active; however, there was evidence of crystal fragmentation at cloud base over the ocean. Little variation in aerosol particle number concentrations was observed between the different surface conditions; however, some variability with altitude was observed, with notably greater concentrations measured at higher altitudes ( >  800 m over the sea ice. Near-surface boundary layer temperatures increased by 13 °C from sea ice to ocean, with corresponding increases in surface heat fluxes and turbulent kinetic energy. These significant thermodynamic changes were concluded to be the primary driver of the microphysical evolution of the cloud. This study represents the first investigation, using in situ

  17. A multi-model assessment of the impact of sea spray geoengineering on cloud droplet number

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2012-12-01

    Full Text Available Artificially increasing the albedo of marine boundary layer clouds by the mechanical emission of sea spray aerosol has been proposed as a geoengineering technique to slow the warming caused by anthropogenic greenhouse gases. A previous global model study (Korhonen et al., 2010 found that only modest increases (< 20% and sometimes even decreases in cloud drop number (CDN concentrations would result from emission scenarios calculated using a windspeed dependent geoengineering flux parameterisation. Here we extend that work to examine the conditions under which decreases in CDN can occur, and use three independent global models to quantify maximum achievable CDN changes. We find that decreases in CDN can occur when at least three of the following conditions are met: the injected particle number is < 100 cm−3, the injected diameter is > 250–300 nm, the background aerosol loading is large (≥ 150 cm−3 and the in-cloud updraught velocity is low (< 0.2 m s−1. With lower background loadings and/or increased updraught velocity, significant increases in CDN can be achieved. None of the global models predict a decrease in CDN as a result of geoengineering, although there is considerable diversity in the calculated efficiency of geoengineering, which arises from the diversity in the simulated marine aerosol distributions. All three models show a small dependence of geoengineering efficiency on the injected particle size and the geometric standard deviation of the injected mode. However, the achievability of significant cloud drop enhancements is strongly dependent on the cloud updraught speed. With an updraught speed of 0.1 m s−1 a global mean CDN of 375 cm−3 (previously estimated to cancel the forcing caused by CO2 doubling is achievable in only about 50% of grid boxes which have > 50% cloud cover, irrespective of the amount of aerosol injected. But at stronger updraft speeds (0

  18. Convective Systems Over the Japan Sea: Cloud-Resolving Model Simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Yoshizaki, Masanori; Shie, Chung-Lin; Kato, Teryuki

    2002-01-01

    Wintertime observations of MCSs (Mesoscale Convective Systems) over the Sea of Japan - 2001 (WMO-01) were collected from January 12 to February 1, 2001. One of the major objectives is to better understand and forecast snow systems and accompanying disturbances and the associated key physical processes involved in the formation and development of these disturbances. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, wind profilers, radiometers, etc.) during WMO-01 provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with winter storms over the Sea of Japan region. WMO-01 also provided estimates of the apparent heat source (Q1) and apparent moisture sink (Q2). The vertical integrals of Q1 and Q2 are equal to the surface precipitation rates. The horizontal and vertical adjective components of Q1 and Q2 can be used as large-scale forcing for the Cloud Resolving Models (CRMs). The Goddard Cumulus Ensemble (GCE) model is a CRM (typically run with a 1-km grid size). The GCE model has sophisticated microphysics and allows explicit interactions between clouds, radiation, and surface processes. It will be used to understand and quantify precipitation processes associated with wintertime convective systems over the Sea of Japan (using data collected during the WMO-01). This is the first cloud-resolving model used to simulate precipitation processes in this particular region. The GCE model-simulated WMO-01 results will also be compared to other GCE model-simulated weather systems that developed during other field campaigns (i.e., South China Sea, west Pacific warm pool region, eastern Atlantic region and central USA).

  19. Observations of vegetation induced breezes and their impact on convection

    Science.gov (United States)

    Garcia-Carreras, Luis; Parker, Douglas J.; Taylor, Christopher M.; Reeves, Claire; Murphy, Jennifer

    2010-05-01

    Aircraft observations over Benin during the early afternoon of 17 August 2006 are used to look at the impact of heterogeneities in vegetation cover, primarily between crop and forest/shrub, on the thermodynamic and dynamical properties of the planetary boundary layer (PBL). Isoprene, a biogenic organic compound emitted primarily by woody vegetation species, was measured and is used to link the vegetation patterns to the PBL properties. The aircraft observations show the presence of a persistent mesoscale organization of the winds persisting over two hours, controlling the pattern of cumulus congestus cloud in the area. The mesoscale flows are closely linked to temperature anomalies that mirror the vegetation patterns at the surface. These results are consistent with the presence of higher Bowen ratios over forested areas, associated with higher evapotranspiration and isoprene emissions, producing negative PBL temperature anomalies over the forested area compared to adjacent cropland. The temperature gradients that thus arise at vegetation boundaries are then sufficient to initiate vegetation breezes. The relationships between PBL temperatures and isoprene, linking the land-surface to the PBL, and PBL temperatures and winds are very significant for length-scales above 10 and 8km respectively. The convergence zones, and therefore clouds, associated with the land-induced mesoscale flows tend to occur on the southern edge of the warm temperature anomalies. This is attributed to the presence of a northerly synoptic flow, which strengthens the southerly parts of the mesoscale flow, as well as displacing the convergence zones southward. A visible satellite climatology for the whole season shows an enhancement of cloud over the cropland during the early afternoon, consistent with the presence of land-induced flows. These results suggest that the presence of these flows have a climatological impact on the initiation of convection in the region.

  20. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR

    Science.gov (United States)

    Istomina, Larysa; Heygster, Georg

    2014-05-01

    of the product. Cloud detection over melting sea ice is a non-trivial problem as well. The sensitivity of AATSR 3.7 micron band to atmospheric reflectance is used to screen out clouds over melting sea ice.

  1. The Diversity of Cloud Responses to Twentieth Century Sea Surface Temperatures

    Science.gov (United States)

    Silvers, Levi G.; Paynter, David; Zhao, Ming

    2018-01-01

    Low-level clouds are shown to be the conduit between the observed sea surface temperatures (SST) and large decadal fluctuations of the top of the atmosphere radiative imbalance. The influence of low-level clouds on the climate feedback is shown for global mean time series as well as particular geographic regions. The changes of clouds are found to be important for a midcentury period of high sensitivity and a late century period of low sensitivity. These conclusions are drawn from analysis of amip-piForcing simulations using three atmospheric general circulation models (AM2.1, AM3, and AM4.0). All three models confirm the importance of the relationship between the global climate sensitivity and the eastern Pacific trends of SST and low-level clouds. However, this work argues that the variability of the climate feedback parameter is not driven by stratocumulus-dominated regions in the eastern ocean basins, but rather by the cloudy response in the rest of the tropics.

  2. Effects of sea surface temperature, cloud radiative and microphysical processes, and diurnal variations on rainfall in equilibrium cloud-resolving model simulations

    International Nuclear Information System (INIS)

    Jiang Zhe; Li Xiao-Fan; Zhou Yu-Shu; Gao Shou-Ting

    2012-01-01

    The effects of sea surface temperature (SST), cloud radiative and microphysical processes, and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations. For a rain rate of higher than 3 mm·h −1 , water vapor convergence prevails. The rainfall amount decreases with the decrease of SST from 29 °C to 27 °C, the inclusion of diurnal variation of SST, or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds, which are primarily associated with the decreases in water vapor convergence. However, the amount of rainfall increases with the increase of SST from 29 °C to 31 °C, the exclusion of diurnal variation of solar zenith angle, and the exclusion of the radiative effects of ice clouds, which are primarily related to increases in water vapor convergence. For a rain rate of less than 3 mm·h −1 , water vapor divergence prevails. Unlike rainfall statistics for rain rates of higher than 3 mm·h −1 , the decrease of SST from 29 °C to 27 °C and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount, which corresponds to the suppression in water vapor divergence. The exclusion of microphysical effects of ice clouds decreases the amount of rainfall, which corresponds to the enhancement in water vapor divergence. The amount of rainfall is less sensitive to the increase of SST from 29 °C to 31 °C and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Modeling and analysis of Off-beam lidar returns from thick clouds, snow, and sea ice

    International Nuclear Information System (INIS)

    Varnai, T.; Cahalan, R. F.

    2009-01-01

    A group of recently developed lidar (laser ranging and detection) systems can detect signals returning from several wide field-of-views, allowing them to observe the way laser pulses spread in thick media. The new capability enabled accurate measurements of cloud geometrical thickness and promises improved measurements of internal cloud structure as well as snow and sea ice thickness. This paper presents a brief overview of radiation transport simulation techniques and data analysis methods that were developed for multi-view lidar applications and for and considering multiple scattering effects in single-view lidar data. In discussing methods for simulating the three-dimensional spread of lidar pulses, we present initial results from Phase 3 of the Intercomparison of 3-D Radiation Codes (I3RC) project. The results reveal some differences in the capabilities of participating models, while good agreement among several models provides consensus results suitable for testing future models. Detailed numerical results are available at the I3RC web site at http://i3rc.gsfc.nasa. gov. In considering data analysis methods, we focus on the Thickness from Off-beam Returns (THOR) lidar. THOR proved successful in measuring the geometrical thickness of optically thick clouds; here we focus on its potential for retrieving the vertical profile of scattering coefficient in clouds and for measuring snow thickness. Initial observations suggest considerable promise but also reveal some limitations, for example that the maximum retrievable snow thickness drops from about 0.5 m in pristine areas to about 0.15 m in polluted regions. (authors)

  4. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert [University of Washington; Bretherton, Chris [University of Washington; McFarquhar, Greg [University of Illinois - Urbana; Protat, Alain [Bureau of Meteorology - Melbourne; Quinn, Patricia [NOAA PMEL; Siems, Steven [Monash Univ., Melbourne, VIC (Australia); Jakob, Christian [Monash Univ., Melbourne, VIC (Australia); Alexander, Simon [Australian Antarctic Division; Weller, Bob [Woods Hole Oceanographic Institute

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.

  5. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  6. Impact of aerosol intrusions on sea-ice melting rates and the structure Arctic boundary layer clouds

    Science.gov (United States)

    Cotton, W.; Carrio, G.; Jiang, H.

    2003-04-01

    The Los Alamos National Laboratory sea-ice model (LANL CICE) was implemented into the real-time and research versions of the Colorado State University-Regional Atmospheric Modeling System (RAMS@CSU). The original version of CICE was modified in its structure to allow module communication in an interactive multigrid framework. In addition, some improvements have been made in the routines involved in the coupling, among them, the inclusion of iterative methods that consider variable roughness lengths for snow-covered ice thickness categories. This version of the model also includes more complex microphysics that considers the nucleation of cloud droplets, allowing the prediction of mixing ratios and number concentrations for all condensed water species. The real-time version of RAMS@CSU automatically processes the NASA Team SSMI F13 25km sea-ice coverage data; the data are objectively analyzed and mapped to the model grid configuration. We performed two types of cloud resolving simulations to assess the impact of the entrainment of aerosols from above the inversion on Arctic boundary layer clouds. The first series of numerical experiments corresponds to a case observed on May 4 1998 during the FIRE-ACE/SHEBA field experiment. Results indicate a significant impact on the microstructure of the simulated clouds. When assuming polluted initial profiles above the inversion, the liquid water fraction of the cloud monotonically decreases, the total condensate paths increases and downward IR tends to increase due to a significant increase in the ice water path. The second set of cloud resolving simulations focused on the evaluation of the potential effect of aerosol concentration above the inversion on melting rates during spring-summer period. For these multi-month simulations, the IFN and CCN profiles were also initialized assuming the 4 May profiles as benchmarks. Results suggest that increasing the aerosol concentrations above the boundary layer increases sea-ice melting

  7. Uma teoria termodinâmica para brisas: teste utilizando simulações numéricas A thermodynamic theory for breezes: test using numeric simulations

    Directory of Open Access Journals (Sweden)

    Clênia Rodrigues Alcântara

    2008-03-01

    Full Text Available O objetivo deste trabalho foi testar uma teoria termodinâmica em brisas marítimas-terrestres acopladas com brisas de vale-montanha através de simulações numéricas tridimensionais em uma região da costa leste do Nordeste Brasileiro, considerando a presença e a ausência da topografia. Embora o contraste de temperatura entre as superfícies seja importante na formação da brisa, a eficiência termodinâmica é fundamental na determinação da sua intensidade. Tem-se que a inclinação faz com que a diferença de pressão entre dois pontos fique maior durante o dia e menor durante a noite contribuindo para a formação de brisas marítimas mais intensas e de brisas terrestres menos intensas, respectivamente. A máxima queda de pressão ocorre por volta de três horas antes da máxima intensidade da brisa. Isso porque grande parte da energia disponibilizada para as circulações é gasta para vencer dissipação, principalmente, no período diurno, quando esses processos são realmente efetivos. Do ponto de vista puramente termodinâmico a inclinação da montanha atua para intensificar a brisa durante o dia e para enfraquecê-la durante a noite.In this work we test a thermodynamic theory for sea-land breeze coupled with valley-mountain breeze through tri-dimensional numeric simulations. We verify the presence of such a breeze in Northeast Brazil's east coast and perform experiments with and without the topography of the region. Although the temperature contrast between two surfaces is important in forming the breezes, the thermodynamic efficiency is a key parameter for the breeze intensity. The presence of the slope causes the pressure difference between two points to increase during the day and to decrease during the night. This contributes for more intense daytime breeze and less intense nighttime ones. The maximum pressure drop occurs about three hours prior the maximum intensity of the sea breeze. This is because most of the available

  8. Large-Scale Control of the Arabian Sea Summer Monsoon Inversion and Low Clouds: A New Perspective

    Science.gov (United States)

    Wu, C. H.; Wang, S. Y.; Hsu, H. H.; Hsu, P. C.

    2016-12-01

    The Arabian Sea undergoes a so-called summer monsoon inversion that reaches the maximum intensity in August associated with a large amount of low-level clouds. The formation of inversion and low clouds was generally thought to be a local system influenced by the India-Pakistan monsoon advancement. New empirical and numerical evidence suggests that, rather than being a mere byproduct of the nearby monsoon, the Arabian Sea monsoon inversion is coupled with a broad-scale monsoon evolution connected across the Africa Sahel, South Asia, and the East Asia-western North Pacific (WNP). Several subseasonal variations occur in tandem: The eastward expansion of the Asian-Pacific monsoonal heating likely suppresses the India-Pakistan monsoon while enhancing low-level thermal inversion of Arabian Sea; the upper-tropospheric anticyclone in South Asia weakens in August smoothing zonal contrast in geopotential heights (10°N-30°N); the subtropical WNP monsoon trough in the lower troposphere that signals the revival of East Asian summer monsoon matures in August; the Sahel rainfall peaks in August accompanied by an intensified tropical easterly jet. The occurrence of the latter two processes enhances upper-level anticyclones over Africa and WNP and this, in turn, induces subsidence in between over the Arabian Sea. Numerical experiments demonstrate the combined effect of the African and WNP monsoonal heating on the enhancement of the Arabian Sea monsoon inversion. Connection is further found in the interannual and decadal variations between the East Asian-WNP monsoon and the Arabian Sea monsoon inversion. In years with reduced low clouds of Arabian Sea, the East Asian midlatitude jet stream remains strong in August while the WNP monsoon trough appears to be weakened. The Arabian Sea inversion (ridge) and WNP trough pattern which forms a dipole structure, is also found to have intensified since the 21st century.

  9. Sea Ice, Clouds, Sunlight, and Albedo: The Umbrella Versus the Blanket

    Science.gov (United States)

    Perovich, D. K.

    2017-12-01

    The Arctic sea ice cover has undergone a major decline in recent years, with reductions in ice extent, ice thickness, and ice age. Understanding the feedbacks and forcing driving these changes is critical in improving predictions. The surface radiation budget plays a central role in summer ice melt and is governed by clouds and surface albedo. Clouds act as an umbrella reducing the downwelling shortwave, but also serve as a blanket increasing the downwelling longwave, with the surface albedo also determining the net balance. Using field observations from the SHEBA program, pairs of clear and cloudy days were selected for each month from May through September and the net radiation flux was calculated for different surface conditions and albedos. To explore the impact of albedo we calculated a break even albedo, where the net radiation for cloudy skies is the same as clear skies. For albedos larger than the break-even value the net radiation flux is smaller under clear skies compared to cloudy skies. Break-even albedos ranged from 0.30 in September to 0.58 in July. For snow covered or bare ice, clear skies always resulted in less radiative heat input. In contrast, leads always had, and ponds usually had, more radiative heat input under clear skies than cloudy skies. Snow covered ice had a net radiation flux that was negative or near zero under clear skies resulting in radiative cooling. We combined the albedo of individual ice types with the area of those ice types to calculate albedos averaged over a 50 km x 50 km area. The July case had the smallest areally averaged albedo of 0.50. This was less than the breakeven albedo, so cloudy skies had a smaller net radiation flux than clear skies. For the cases from the other four months, the areally averaged albedo was greater than the break-even albedo. The areally averaged net radiation flux was negative under clear skies for the May and September cases.

  10. Understanding the Impact of Model Surfactants on Cloud Condensation Nuclei Activity of Sea Spray Aerosols

    Science.gov (United States)

    Forestieri, S.; Cappa, C. D.; Ruehl, C. R.; Bertram, T. H.; Staudt, S.; Kuborn, T.

    2017-12-01

    Aerosol impacts on cloud properties, also known as indirect effects, remain a major source of uncertainty in modeling global radiative forcing. Reducing this uncertainty necessitates better understanding of how aerosol chemical composition impacts the cloud-forming ability of aerosols. The presence of surfactants in aerosols can decrease the surface tension of activating droplets relative to water and lead to more efficient activation. The importance of this effect has been debated, but recent surface tension measurements of microscopic droplets indicate that surface tension is substantially depressed relative to water for lab-generated particles consisting of salt and a single organic species and for complex mixtures of organic matter. However, little work has been done on understanding how chemical complexity (i.e. interaction between different surfactant species) impacts surface tension for particles containing mixtures of surfactants. In this work, we quantified the surface tension of lab-generated aerosols containing surfactants that are commonly found in nascent sea spray aerosol (SSA) at humidities close to activation using a continuous flow stream-wise thermal gradient chamber (CFSTGC). Surface tension was quantified for particles containing single surfactant species and mixtures of these surfactants to investigate the role of chemical complexity on surface tension and molecular packing at the air-water interface. For all surfactants tested in this study, substantial surface tension depression (20-40 mN/m) relative to water was observed for particles containing large fractions of organic matter at humidities just below activation. However, the presence of these surfactants only weakly depressed surface tension at activation. Kinetic limitations were observed for particles coated with just palmitic acid, since palmitic acid molecules inhibit water uptake through their ability to pack tightly at the surface. However, these kinetic limitations disappeared when

  11. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    KAUST Repository

    Brindley, Helen

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  12. Foehn-induced effects on local dust pollution, frontal clouds and solar radiation in the Dead Sea valley

    Science.gov (United States)

    Kishcha, Pavel; Starobinets, Boris; Savir, Amit; Alpert, Pinhas; Kaplan, Michael

    2018-06-01

    Despite the long history of investigation of foehn phenomena, there are few studies of the influence of foehn winds on air pollution and none in the Dead Sea valley. For the first time the foehn phenomenon and its effects on local dust pollution, frontal cloudiness and surface solar radiation were analyzed in the Dead Sea valley, as it occurred on 22 March 2013. This was carried out using both numerical simulations and observations. The foehn winds intensified local dust emissions, while the foehn-induced temperature inversion trapped dust particles beneath this inversion. These two factors caused extreme surface dust concentration in the western Dead Sea valley. The dust pollution was transported by west winds eastward, to the central Dead Sea valley, where the speed of these winds sharply decreased. The transported dust was captured by the ascending airflow contributing to the maximum aerosol optical depth (AOD) over the central Dead Sea valley. On the day under study, the maximum surface dust concentration did not coincide with the maximum AOD: this being one of the specific effects of the foehn phenomenon on dust pollution in the Dead Sea valley. Radar data showed a passage of frontal cloudiness through the area of the Dead Sea valley leading to a sharp drop in noon solar radiation. The descending airflow over the downwind side of the Judean Mountains led to the formation of a cloud-free band followed by only the partial recovery of solar radiation because of the extreme dust pollution caused by foehn winds.

  13. Ocean breeze monitoring network at the Oyster Creek Nuclear Plant

    International Nuclear Information System (INIS)

    Heck, W.

    1987-01-01

    The Oyster Creek Nuclear Generating Station (OCNGS) is located in New Jersey 10 km west of the Atlantic Ocean. Routine meteorological monitoring at the station has consisted of a single meteorological tower 120 m high and instrumented at the 10-m, 46-m, and 116-m levels. An analysis of 5 yr of data from this tower showed the OCNGS is affected by an ocean breeze ∼ 1 day out of 4 during May through August. This suggested the need for meteorological monitoring in addition to the single met tower at OCNGS. As a result of the 1985 OCNGS meteorological monitoring study, GPU Nuclear established an ocean breeze monitoring network in the fall of 1986. It is a permanent part of OCNGS meteorological monitoring and consists of the same sites as used in the 1985 field study. Meteorological towers are located at the ocean site, the inland site, and at OCNGS. The ocean tower is 13 m (43 ft) high, the inland tower 10 m (33 ft), and the OCNGS tower 116 m (380 ft). Wind speed, wind direction, and temperature are measured on each tower; delta-temperature is also measured on the main tower. The instruments are calibrated in the spring, summer, and fall. The network is operated and maintained by GPU Nuclear Environmental Controls. The ocean breeze monitoring network and meteorological information system forms the basis for including the effects of the ocean breeze in OCNGS emergency off-site dose assessment

  14. DINEOF reconstruction of clouded images including error maps – application to the Sea-Surface Temperature around Corsican Island

    Directory of Open Access Journals (Sweden)

    J.-M. Beckers

    2006-01-01

    Full Text Available We present an extension to the Data INterpolating Empirical Orthogonal Functions (DINEOF technique which allows not only to fill in clouded images but also to provide an estimation of the error covariance of the reconstruction. This additional information is obtained by an analogy with optimal interpolation. It is shown that the error fields can be obtained with a clever rearrangement of calculations at a cost comparable to that of the interpolation itself. The method is presented on the reconstruction of sea-surface temperature in the Ligurian Sea and around the Corsican Island (Mediterranean Sea, including the calculation of inter-annual variability of average surface values and their expected errors. The application shows that the error fields are not only able to reflect the data-coverage structure but also the covariances of the physical fields.

  15. Foehn-induced effects on dust pollution, frontal clouds and solar radiation in the Dead Sea valley

    Science.gov (United States)

    Kishcha, Pavel; Starobinets, Boris; Alpert, Pinhas; Kaplan, Michael

    2017-04-01

    The significant drying up of the Dead Sea over the past 40 years has led to an increase in an exposed area contributing to local dust pollution. Measurements show that, sometimes, in the Dead Sea valley, dust pollution can reach extreme concentrations up to several thousands of micrograms per cubic meters. Our analysis of a meteorological situation shows that a foehn phenomenon can be a causal factor for the aforementioned extreme local dust concentration. This foehn phenomenon creates strong warm and dry winds, which are accompanied by air turbulence and temperature inversion. In our study, foehn-induced effects on dust pollution, frontal clouds and solar radiation were analyzed over the Judean Mountains ( 1000 m) and over the Dead Sea valley (-420 m), using high-resolution numerical simulations and in-situ observations at meteorological stations located across the mountain ridge. An extreme dust episode occurring on March 22, 2013, was analyzed, which was characterized by measured surface dust concentrations of up to 7000 µg m-3 in the Dead Sea valley. We simulated this foehn phenomenon with the 3-km resolution COSMO-ART model. Our analysis has shown that the foehn phenomenon could be observed even over the relatively low Judean Mountains. This analysis was based on various meteorological, pyranometer, radar, and aerosol measurements together with high-resolution model data. In the Dead Sea valley, the maximum aerosol optical depth (AOD) did not coincide with the maximum surface dust concentration. This lack of coincidence indicates difficulties in using satellite-based AOD for initializing dust concentration within numerical forecast systems over this region with complex terrain. In the western Dead Sea valley, strong foehn winds of over 20 m/s were accompanied by maximal air turbulence leading to maximal local dust emissions. Thus, the model showed that, by creating significant turbulence, the foehn phenomenon intensified the saltation (bombardment) mechanism

  16. Uncertainty in stratiform cloud optical thickness inferred from pyranometer measurements at the sea surface

    Directory of Open Access Journals (Sweden)

    Anna Rozwadowska

    2004-06-01

    Full Text Available The relative "plane-parallel" error in a mean cloud optical thickness retrieved from ground-based pyranometer measurements is estimated. The plane-parallel error is defined as the bias introduced by the assumption in the radiative transfer model used in cloud optical thickness retrievals that the atmosphere, including clouds, is horizontally homogeneous on the scale of an individual retrieval. The error is estimated for the optical thickness averaged over the whole domain, which simulates the mean cloud optical thickness obtained from a time series of irradiance measurements. The study is based on 3D Monte Carlo radiative transfer simulations for non-absorbing, all-liquid, layer clouds. Liquid water path distributions in the clouds are simulated by a bounded cascade fractal model. The sensitivity of the error is studied with respect to the following factors: averaging time of irradiance used in an individual retrieval, mean cloud optical thickness, cloud variability, cloud base height and solar zenith angle. In the simulations presented in this paper, the relative bias in the domain averaged cloud optical thickness retrieved from pyranometer measurements varies from +1% for optically thin clouds to nearly -20%. The highest absolute value of the relative bias is expected for thick and variable clouds with high bases (e.g. 1 km and retrievals based on long-term mean irradiances (averaging time of the order of several tens of minutes or hours. The bias can be diminished by using short-term irradiance averages, e.g. of one minute, and by limiting retrievals to low-level clouds.

  17. Mesoscale Features and Cloud Organization on 10-12 December 1978 over the South China Sea.

    Science.gov (United States)

    Warner, Charles

    1982-07-01

    Aircraft data from Winter MONEX have been combined with other data to study mesoscale features, and organization of cumulus clouds, on 10-12 December 1978. A moderate cold surge in the northeasterly monsoon flow, toward cloudiness in an equatorial trough off Borneo, peaked on 11 December.Clouds in the northeasterly monsoon flow were similar to those in the trades, with variations in convective regime on length scales on the order of 100 km. Marked mid-tropospheric subsidence was accompanied by low-level divergence near 20°N. During 10 December, anvil clouds near Borneo expanded; cumulus congestus and cumulonimbus formed on the periphery of this area. The approach of the low-level northeasterlies to the area of anvils was marked by a diminution of subsidence, conditional instability, and a weak field of low-level convergence, with randomly organized cumulus of increasing height. A low-level easterly jet was found in this transition zone, downstream from cloudiness over the Philippines. South of Vietnam, a clear area was associated with low air temperatures, and not subsidence. Congestus and cumulonimbus clouds formed near the eastern coast of the Malay Peninsula.Cloud streets were seen from latitude 19°N to the Malaysian coast (with a break south of Vietnam). These clouds were confined below the level of an inflection point in the profile of winds normal to the street direction. Greatest spacings of streets occurred with greatest vertical shears of the cross-winds. Cloud number densities were more closely related to the instability of the vertical stratification than to any other parameter.Cross-wind organization of clouds occurred in circumstances of unstable, stratification and apparently of net ascent. Alignment of clouds was at an angle to the directions of both winds and vertical wind shears. It is inferred that when convergence was strong, deep clouds occurred along lines of convergence in the surface streamlines.

  18. The cloud-radiative processes and its modulation by sea-ice cover and stability as derived from a merged C3M Data product.

    Science.gov (United States)

    Nag, B.

    2016-12-01

    The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aims to take advantage of a merged C3M data (CALIPSO, CloudSat, CERES, and MODIS) product from the NASA's A-Train Series to explore the sea-ice and atmospheric conditions in the Arctic on a spatial coverage spanning 70N to 80N. This study is aimed at the interactions or the feedbacks processes among sea-ice, clouds and the atmosphere. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture and its impacts. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally. The effect of the marginal sea-ice cover becomes more and more pronounced in the winter. The seasonal variation of the dependence of the atmospheric moisture on the surface and the subsequent feedback effects is controlled by the atmospheric stability measured as a difference between the potential temperature at the surface and the 700hPa level. It is found that a stronger stability cover in the winter is responsible for the longwave cloud radiative feedback in winter which is missing during the summer. A regional analysis of the same suggests that most of the depiction of the variations observed is contributed from the North Atlantic region.

  19. A breeze-driven current on sloped littoral waters

    Science.gov (United States)

    Tohidi, A.; Jamali, M.

    2017-12-01

    Various natural phenomena, e. g. uniform/non-uniform solar radiation and diurnal cycles, affect water circulation patterns through aquatic canopies, that is (usually shallow) shorelines of the rivers, lakes, and lagoons. Amongst these factors is vegetation that, plays a crucial role in conserving and dispersing the nutrients, oxygen, temperature, and generally regulating the life and interactions of organisms with each other (ecology) in aquatic canopies. So far, however, very little attention has been paid to the effects of very low, breeze-like, winds over the water surface in these vegetated regions. In this exploratory study, the evolution of a breeze-driven gravity current traveling up the slope towards the shorelines is shown, experimentally. The flow is characterized using Particle Image Velocimetry (PIV) technique. In addition, a detailed dimensional analysis of the parameter space of the phenomenon is conducted. The results strongly corroborate the experimental observations.

  20. Breeze Gravity Current in a Uniform Flow of Air

    Directory of Open Access Journals (Sweden)

    M.V. Shokurov

    2017-02-01

    Full Text Available Breeze circulation is often observed nearby the water basin coasts and usually accompanied by a background synoptic wind. One of the basic dynamically important components of the breeze circulation is gravity current. In the present paper the latter is used as the breeze simplified model. The theory of interaction of gravity current and a uniform synoptic wind are developed. The gravity current in the domain of infinite height in a stationary environment and environment with background flow was considered. To solve this problem the law of conservation of mass and universal property of the Froude number was used, which is true in the steady state. It is shown that increase of a tail-wind is followed by growth of the gravity current velocity and decrease of its height. The opposite situation is observed at increase of a head wind: the current velocity reduces and its height increases. Using a Taylor series expansion for small values of the background flow velocity a linear dependence of gravity current velocity on background flow velocity can be obtained. The factor determining the slope of the velocity of gravity current propagation on the background wind speed, which is equal 2/3, is a universal constant. The theory explains the results of numerical simulation previously obtained by numerous authors. A physical interpretation of dependence of the height and velocity of the gravity current on the background flow velocity is presented.

  1. Inclusion of the ocean breeze in Oyster Creek emergency off-site dose assessment

    International Nuclear Information System (INIS)

    Heck, W.

    1986-01-01

    The Oyster Creek Nuclear Generating Station (OCNGS) is located 6 mi west of the Atlantic Ocean. From spring through late summer, atmospheric transport in the vicinity of OCNGS is periodically affected by the ocean breeze. The ocean breeze produces large differences in wind direction within the OCNGS emergency planning zone during the morning to evening hours. In addition, trajectory reversals can occur near the ocean breeze front. These two characteristics of the ocean breeze must be taken into account when interpreting results from conventional atmospheric dispersion models. The purpose of the study was to determine the flow characteristics of the ocean breeze and to apply these characteristics to an emergency preparedness implementing procedure (EPIP). The EPIP would be used to determine the radiological plume impact region if an accidental release occurred during an ocean breeze

  2. Granulation of coke breeze fine for using in the sintering process

    Directory of Open Access Journals (Sweden)

    Mohamed F.M.

    2010-01-01

    Full Text Available Coke breeze is the main fuel used in the sintering process. The value of -3+1 mm. represents the most favorable particle size for coke breeze in the sintering process. About 20% of total coke fines (-0.5 mm are produced during different steps of preparation. Introducing these fines during the sintering process proves to be very harmful for different operating parameters. Thus ,this study aims at investigating the production of granules resulting from these fines using molasses as organic binder and its application in sintering of an iron ore. The results showed that the granules having the highest mechanical properties were obtained with 14.5 wt % molasses addition. The sintering experiments were performed by using coke breeze in different shapes (-3+1 mm in size, coke breeze without sieving and coke breeze granules -3+1 mm. The reduction experiments, microscopic structure and X-ray analysis for the produced sinter were carried out. The results revealed that, all sinter properties (such as shatter test, productivity of sinter machine and blast furnace, reduction time and chemical composition for produced sinter by using coke breeze with size -3+1 mm and coke breeze granules were almost the same. The iron ore sinter which was produced by using coke breeze without sieving yielded low productivity for both sinter machine and blast furnace. Furthermore, using coke breeze without sieving in sintering of an iron ore decreases the vertical velocity of sinter machine and increases the reduction time.

  3. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys

    Science.gov (United States)

    2017-06-04

    further, changes in lower atmospheric temperature, humidity, winds , and clouds are likely to result from changed sea ice concentrations and ocean...affect changes in cloud properties and cover, • develop novel instrumentation including low cost, expendable, air-deployed micro -aircraft to obtain...from June through October to obtain atmospheric profiles of temperature, humidity, and winds from the time of ice edge retreat in spring to advance

  4. Oil Droplet Clouds Suspended in the Sea: Can They Be Remotely Detected?

    Directory of Open Access Journals (Sweden)

    Zbigniew Otremba

    2016-10-01

    Full Text Available Oil floating on the sea surface can be detected by both passive and active methods using the ultraviolet-to-microwave spectrum, whereas oil immersed below the sea surface can signal its presence only in visible light. This paper presents an optical model representing a selected case of the sea polluted by an oil suspension for a selected concentration (10 ppm located in a layer of exemplary thickness (5 m separated from the sea surface by an unpolluted layer (thickness 1 m. The impact of wavelength and state of the sea surface on reflectance changes is presented based on the results of Monte Carlo ray tracing. A two-wavelength index of reflectance is proposed to detect oil suspended in the water column (645–469 nm.

  5. Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport

    Directory of Open Access Journals (Sweden)

    H. Korhonen

    2010-05-01

    Full Text Available Modification of cloud albedo by controlled emission of sea spray particles into the atmosphere has been suggested as a possible geoengineering option to slow global warming. Previous global studies have imposed changes in cloud drop concentration in low level clouds to explore the radiative and climatic effects. Here, we use a global aerosol transport model to quantify how an imposed flux of sea spray particles affects the natural aerosol processes, the particle size distribution, and concentrations of cloud drops. We assume that the proposed fleet of vessels emits sea spray particles with a wind speed-dependent flux into four regions of persistent stratocumulus cloud off the western coasts of continents. The model results show that fractional changes in cloud drop number concentration (CDNC vary substantially between the four regions because of differences in wind speed (which affects the spray efficiency of the vessels, transport and particle deposition rates, and because of variations in aerosols from natural and anthropogenic sources. Using spray emission rates comparable to those implied by previous studies we find that the predicted CDNC changes are very small (maximum 20% and in one of the four regions even negative. The weak or negative effect is because the added particles suppress the in-cloud supersaturation and prevent existing aerosol particles from forming cloud drops. A scenario with five times higher emissions (considerably higher than previously assumed increases CDNC on average by 45–163%, but median concentrations are still below the 375 cm−3 assumed in previous studies. An inadvertent effect of the spray emissions is that sulphur dioxide concentrations are suppressed by 1–2% in the seeded regions and sulphuric acid vapour by 64–68% due to chemical reactions on the additional salt particles. The impact of this suppression on existing aerosol is negligible in the model, but should be investigated further in

  6. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    KAUST Repository

    Brindley, Helen; Osipov, Serega; Bantges, Richard; Smirnov, Alexander; Banks, Jamie; Levy, Robert; Prakash, P.-Jish; Stenchikov, Georgiy L.

    2015-01-01

    for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly

  7. Interaction of clouds, radiation, and the tropical warm pool sea surface temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, N.; Zhang, G.J.; Barnett, T.P.; Ramanathan, V. [Scripps Institution of Oceanography, La Jolla, CA (United States)] [and others

    1996-04-01

    The primary focus of this study is the Tropical Western Pacific (TWP). In this study, we combine in-situ observations Tropical Ocean Global Atmosphere [TOGA]-Coupled Ocean Atmosphere Response Experiment [COARE] and Central Equatorial Pacific Experiment [CEPEX] with satellite cloud data.

  8. Interactions of Mineral Dust with Clouds, Sea Surface Temperature, and Climate Modes of Variability

    Science.gov (United States)

    DeFlorio, Michael J.

    Global climate models (GCMs) are a vital tool for ensuring the prosperity and security of modern society. They allow scientists to understand complex interactions between the air, ocean, and land, and are used by policymakers to project future changes in climate on regional and global scales. The previous generation of GCMs, represented by CMIP3 models, are shown to be deficient in their representation of precipitation over the western United States, a region that depends critically on wintertime orographically enhanced precipitation for drinking water. In addition, aerosol-cloud interactions were prescribed in CMIP3 models, which decreased the value of their representation of global aerosol, cloud, and precipitation features. This has potentially large impacts on global radiation budgets, since aerosol-cloud interactions affect the spatial extent and magnitude of clouds and precipitation. The newest suite of GCMs, the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, includes state-of-the-art parameterizations of small-scale features such as aerosols, clouds, and precipitation, and is widely used by the scientific community to learn more about the climate system. The Community Earth System Model (CESM), in conjunction with observations, provides several simulations to investigate the role of aerosols, clouds, and precipitation in the climate system and how they interact with larger modes of climate variability. We show that CESM produces a realistic spatial distribution of precipitation extremes over the western U.S., and that teleconnected signals of ENSO and the Pacific Decadal Oscillation to large-scale circulation patterns and precipitation over the western U.S. are improved when compared to CCSM3. We also discover a new semi-direct effect between dust and stratocumulus clouds over the subtropical North Atlantic, whereby boundary layer inversion strength increases during the most dusty summers due to shortwave absorption of dust above the planetary

  9. The Diversity of Cloud Responses to Twentieth-Century Sea Surface Temperatures

    Science.gov (United States)

    Silvers, L. G.; Paynter, D.; Zhao, M.

    2017-12-01

    Clouds play a crucial role in determining the magnitude of the global temperature response to forcing. Previous work has shown strong connections between cloud feedbacks and climate change, and between these feedbacks and changing patterns of surface temperature. We show that strong variability of the climate feedback parameter is present in three GFDL atmospheric general circulation models (AM2.1, AM3, AM4) over the twentieth century. This variability is highly correlated with the global mean cloud radiative effect (CRE) and low-cloud cover (LCC) anomalies. The decadal variability is characterized by a period of high climate sensitivity (1925-1955) and a period of low climate sensitivity (1975-2005). Observed trends of surface temperature also show distinct differences over these two periods. Although it is the SST that drives the atmospheric response, the estimated inversion strength (EIS) is necessary to reproduce the changing LCC field. During both periods, trends of EIS are shown to closely mirror trends of LCC over much of the globe, not only in the typical stratocumulus regions. Trends of the shortwave CRE (SWCRE), LCC, and the EIS are analyzed in particular geographic regions. All of these regions show a consistent relationship between LCC, SWCRE, and EIS, as well as significant differences between the two time periods. This study uses a 15 member ensemble of amip-piForcing simulations from 1870 -2005. These experiments are driven by observed SST patterns and hold greenhouse gases and other atmospheric forcing agents fixed at constant pre-industrial levels. This allows for a clean analysis of how clouds respond to changing patterns of SST and the resulting influence on the climate feedback parameter. The cloudy response of the atmosphere to changing SST patterns is critical in driving the variability of the climate feedback parameter during periods of both high and low climate sensitivity.

  10. Aircraft-based investigation of Dynamics-Aerosol-Chemistry-Cloud Interactions in Southern West Africa

    Science.gov (United States)

    Flamant, Cyrille

    2017-04-01

    The EU-funded project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa, http://www.dacciwa.eu) is investigating the relationship between weather, climate and air pollution in southern West Africa. The air over the coastal region of West Africa is a unique mixture of natural and anthropogenic gases, liquids and particles, emitted in an environment, in which multi-layer cloud decks frequently form. These exert a large influence on the local weather and climate, mainly due to their impact on radiation, the surface energy balance and thus the diurnal cycle of the atmospheric boundary layer. The main objective for the aircraft detachment was to build robust statistics of cloud properties in southern West Africa in different chemical landscapes to investigate the physical processes involved in their life cycle in such a complex chemical environment. As part of the DACCIWA field campaigns, three European aircraft (the German DLR Falcon 20, the French SAFIRE ATR 42 and the British BAS Twin Otter) conducted a total of 50 research flights across Ivory Coast, Ghana, Togo, and Benin from 27 June to 16 July 2016 for a total of 155 flight hours, including hours sponsored through 3 EUFAR projects. The aircraft were used in different ways based on their strengths, but all three had comparable instrumentation with the the capability to do gas-phase chemistry, aerosol and clouds, thereby generating a rich dataset of atmospheric conditions across the region. Eight types of flight objectives were conducted to achieve the goals of the DACCIWA: (i) Stratus clouds, (ii) Land-sea breeze clouds, (iii) Mid-level clouds, (iv) Biogenic emission, (v) City emissions, (vi) Flaring and ship emissions, (vii) Dust and biomass burning aerosols, and (viii) air-sea interactions. An overview of the DACCIWA aircraft campaign as well as first highlights from the airborne observations will be presented.

  11. Observations of Lake-Breeze Events During the Toronto 2015 Pan-American Games

    Science.gov (United States)

    Mariani, Zen; Dehghan, Armin; Joe, Paul; Sills, David

    2018-01-01

    Enhanced meteorological observations were made during the 2015 Pan and Parapan American Games in Toronto in order to measure the vertical and horizontal structure of lake-breeze events. Two scanning Doppler lidars (one fixed and one mobile), a C-band radar, and a network including 53 surface meteorological stations (mesonet) provided pressure, temperature, humidity, and wind speed and direction measurements over Lake Ontario and urban areas. These observations captured the full evolution (prior, during, and after) of 27 lake-breeze events (73% of observation days) in order to characterize the convective and dynamic processes driving lake breezes at the local scale and mesoscale. The dominant signal of a passing lake-breeze front (LBF) was an increase in dew-point temperature of 2.3 ± 0.3°C, coinciding with a 180° shift in wind direction and a decrease in air temperature of 2.1 ± 0.2°C. Doppler lidar observations over the lake detected lake breezes 1 hour (on average) before detection by radar and mesonet. On days with the synoptic flow in the offshore direction, the lidars observed wedge-shaped LBFs with shallow depths, which inhibited the radar's ability to detect the lake breeze. The LBF's ground speed and inland penetration distance were found to be well-correlated (r = 0.78), with larger inland penetration distances occurring on days with non-opposing (non-offshore) synoptic flow. The observed enhanced vertical motion ({>} 1 m s^{-1}) at the LBF, observed by the lidar on 54% of lake-breeze days, was greater (at times {>} 2.5 m s^{-1}) than that observed in previous studies and longer-lasting over the lake than over land. The weaker and less pronounced lake-breeze structure over land is illustrated in two case studies highlighting the lifetime of the lake-breeze circulation and the impact of propagation distance on lake-breeze intensity.

  12. How do the radiative effects of springtime clouds and water vapor modulate the melt onset of Arctic sea ice?

    Science.gov (United States)

    Huang, Y.; Dong, X.; Xi, B.; Deng, Y.

    2017-12-01

    Earlier studies show that there is a strong positive correlation between the mean onset date of snow melt north of 70°N and the minimum Arctic sea ice extent (SIE) in September. Based on satellite records from 1980 to 2016, the September Arctic SIE minimum is most sensitive to the early melt onset over the Siberian Sea (73°-84°N, 90°-155°), which is defined as the area of focus (AOF) in this analysis. The day with melt onset exceeding 10% area of the AOF is marked as the initial melt date for a given year. With this definition, a strong positive correlation (r=0.59 at 99% confidence level) is found between the initial melt date over the AOF and the September SIE minimum over the Arctic. Daily anomalies of cloud and radiation properties are compared between six years with earliest initial melt dates (1990, 2012, 2007, 2003, 1991, 2016) and six years with latest initial melt dates (1996, 1984, 1983, 1982, 1987, 1992) using the NASA MERRA-2 reanalysis. Our results suggest that higher cloud water path (CWP) and precipitable water vapor (PWV) are clearly associated with early melt onset years through the period of mid-March to August. Major contrasts in CWP are found between the early and late onset years in a period of approximately 30 days prior to the onset to 30 days after the onset. As a result, the early melt onset years exhibit positive anomalies for downward longwave flux at the surface and negative anomalies for downward shortwave flux, shortwave cloud radiative effect (CRE) as well as net CRE. The negative net CRE is over-compensated by the positive longwave flux anomaly associated with elevated PWV, contributing to early melt onsets. The temporal evolution of CRE and PWV radiative effect during the entire melting season will be documented together with an analysis tracing the dynamical, mid-latitude origins of increased CWP and PWV prior to initial melt onsets.

  13. Sea-ice, clouds and atmospheric conditions in the arctic and their interactions as derived from a merged C3M data product

    Science.gov (United States)

    Nag, Bappaditya

    The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aimed to explore the atmospheric conditions in the Arctic on an unprecedented spatial coverage spanning 70°N to 80°N through the use of a merged data product, C3MData (derived from NASA's A-Train Series). The following three topics provide outline on how this dataset can be used to accomplish a detailed analysis of the Arctic environment and provide the modelling community with first information to update their models aimed at better forecasts. (1)The three properties of the Arctic climate system to be studied using the C3MData are sea-ice, clouds, and the atmospheric conditions. The first topic is to document the present states of the three properties and also their time evolutions or their seasonal cycles. (2)The second topic is aimed at the interactions or the feedbacks processes among the three properties. For example, the immediate alteration in the fluxes and the feedbacks arising from the change in the sea-ice cover is investigated. Seasonal and regional variations are also studied. (3)The third topics is aimed at the processes in native spatial resolution that drive or accompany with sea ice melting and sea ice growth. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally

  14. Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS BASELInE

    Science.gov (United States)

    Tsay, Si-Chee; Maring, Hal B.; Lin, Neng-Huei; Buntoung, Sumaman; Chantara, Somporn; Chuang, Hsiao-Chi; Gabriel, Philip M.; Goodloe, Colby S.; Holben, Brent N.; Hsiao, Ta-Chih; hide

    2016-01-01

    The objectives of 7-SEASBASELInE (Seven SouthEast Asian Studies Biomass-burning Aerosols and Stratocumulus Environment: Lifecycles and Interactions Experiment) campaigns in spring 2013-2015 were to synergize measurements from uniquely distributed ground-based networks (e.g., AERONET (AErosol RObotic NETwork)), MPLNET ( NASA Micro-Pulse Lidar Network)) and sophisticated platforms (e.g.,SMARTLabs (Surface-based Mobile Atmospheric Research and Testbed Laboratories), regional contributing instruments), along with satellite observations retrievals and regional atmospheric transport chemical models to establish a critically needed database, and to advance our understanding of biomass-burning aerosols and trace gases in Southeast Asia (SEA). We present a satellite-surface perspective of 7-SEASBASELInE and highlight scientific findings concerning: (1) regional meteorology of moisture fields conducive to the production and maintenance of low-level stratiform clouds over land; (2) atmospheric composition in a biomass-burning environment, particularly tracers-markers to serve as important indicators for assessing the state and evolution of atmospheric constituents; (3) applications of remote sensing to air quality and impact on radiative energetics, examining the effect of diurnal variability of boundary-layer height on aerosol loading; (4) aerosol hygroscopicity and ground-based cloud radar measurements in aerosol-cloud processes by advanced cloud ensemble models; and (5) implications of air quality, in terms of toxicity of nanoparticles and trace gases, to human health. This volume is the third 7-SEAS special issue (after Atmospheric Research, vol. 122, 2013; and Atmospheric Environment, vol. 78, 2013) and includes 27 papers published, with emphasis on air quality and aerosol-cloud effects on the environment. BASELInE observations of stratiform clouds over SEA are unique, such clouds are embedded in a heavy aerosol-laden environment and feature characteristically greater

  15. Teoria para o trabalho de expansão aplicada às brisas do nordeste Brasileiro Theory for expansion work applied to breezes of Northeast of Brazil

    Directory of Open Access Journals (Sweden)

    Clênia R. Alcântara

    2009-12-01

    Full Text Available Neste artigo investiga-se numericamente a interação entre brisas marítima-terrestre e de vale-montanha, que ocorrem no nordeste brasileiro devido à presença do Planalto da Borborema, aplicando o trabalho de expansão associado ao ramo inferior das circulações. Resultados da teoria da máquina térmica são comparados aos resultados 3D, obtidos com a versão brasileira do modelo RAMS. Os resultados indicaram que o efeito do contraste de temperatura no trabalho ligado às circulações (Wa, isoladamente, contribui para a formação de brisas marítimas mais intensas e de brisas terrestres menos intensas. Na realidade, o que se observa são brisas terrestres com intensidades iguais ou até maiores que das brisas marítimas. Assim, a contribuição da montanha para a intensidade das circulações de brisa no período noturno mostra-se extremamente não-linear. O trabalho de expansão que realmente está ligado às circulações, contribui em apenas 7% para o trabalho total. Dessa forma, a maior parte do trabalho total está associada ao trabalho de compressão que a atmosfera realiza para compensar a perda por resfriamento radiativo, e muito da energia disponibilizada para as circulações é gasta para vencer os processos dissipativos.The purpose of this work is to further understand the interactions between sea-land breeze and valley-mountain breeze that occur at the coast of Northeast Brazil due to the presence of the Borborema plateau, using the associated expansion work at the lower branch of these circulations. Results of the thermal machine theory are compared to the 3D results obtained from the Brazilian RAMS model version. The results indicate that the sole effect of temperature contrast on the work associated with circulations (Wa is more intense sea breezes and weaker land breezes. Actually, one can observe land breezes whose intensities are equal or even larger than sea breezes. Thus, the mountain contribution for the intensity of

  16. Marine ARM GPCI Investigation of Clouds Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, R. Michael [Remote Measurements & Research Company, Seattle, WA (United States); Long, Charles N. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.

    2016-01-10

    Sea surface temperature (SST) is one of the most appropriate and important climate parameters: a widespread increase is an indicator of global warming and modifications of the geographical distribution of SST are an extremely sensitive indicator of climate change. There is high demand for accurate, reliable, high-spatial-and-temporal-resolution SST measurements for the parameterization of ocean-atmosphere heat, momentum, and gas (SST is therefore critical to understanding the processes controlling the global carbon dioxide budget) fluxes, for detailed diagnostic and process-orientated studies to better understand the behavior of the climate system, as model boundary conditions, for assimilation into climate models, and for the rigorous validation of climate model output. In order to achieve an overall net flux uncertainty < 10 W/m2 (Bradley and Fairall, 2006), the sea surface (skin) temperature (SSST) must be measured to an error < 0.1 C and a precision of 0.05 C. Anyone experienced in shipboard meteorological measurements will recognize this is a tough specification. These demands require complete confidence in the content, interpretation, accuracy, reliability, and continuity of observational SST data—criteria that can only be fulfilled by the successful implementation of an ongoing data product validation strategy.

  17. Sea breeze-induced wind sea growth in the central west coast of India.

    Digital Repository Service at National Institute of Oceanography (India)

    Aboobacker, V.M.; Seemanth, M.; Samiksha, S.V.; Sudheesh, K.; Kerkar, J.; Vethamony, P.

    breaking and bottom friction, and refraction and shoaling due to depth variations. The formulation is based on the wave action conservation equation [Komen et al., 1994; Young, 1999], where the directional-frequency wave action spectrum is the dependent... using a fractional step approach where a multi-sequence explicit method is applied for the propagation of wave action [DHI, 2009]. 5    MIKE 21 SW model includes two different formulations: a directional decoupled parametric formulation and a fully...

  18. The "Physical feedbacks of Arctic PBL, Sea ice, Cloud and AerosoL (PASCAL)" campaign during the Arctic POLARSTERN expedition PS106 in spring 2017.

    Science.gov (United States)

    Macke, A.

    2017-12-01

    The Polar regions are important components in the global climate system. The widespread surface snow and ice cover strongly impacts the surface energy budget, which is tightly coupled to global atmospheric and oceanic circulations. The coupling of sea ice, clouds and aerosol in the transition zone between Open Ocean and sea ice is the focus of the PASCAL investigations to improve our understanding of the recent dramatic reduction in Arctic sea-ice. A large variety of active/passive remote sensing, in-situ-aerosol observation, and spectral irradiance measurements have been obtained during the German research icebreaker POLARSTERN expedition PS106, and provided detailed information on the atmospheric spatiotemporal structure, aerosol and cloud chemical and microphysical properties as well as the resulting surface radiation budget. Nearly identical measurements at the AWIPEV Base (German - French Research Base) in Ny-Ålesund close to the Open Ocean and collocated airborne activities of the POLAR 5 and POLAR 6 AWI aircraft in the framework of the ACLOUD project have been carried out in parallel. The airborne observations have been supplemented by observations of the boundary layer structure (mean and turbulent quantities) from a tethered balloon reaching up to 1500 m, which was operated at an ice floe station nearby POLARSTERN for two weeks. All observational activities together with intense modelling at various scales are part of the German Collaborative Research Cluster TR 172 "Arctic Amplification" that aims to provide an unprecedented picture of the complex Arctic weather and climate system. The presentation provides an overview of the measurements on-board POLARSTERN and on the ice floe station during PASCAL from May 24 to July 21 2017. We conclude how these and future similar measurements during the one-year ice drift of POLARSTERN in the framework of MOSAiC help to reduce uncertainties in Arctic aerosol-cloud interaction, cloud radiative forcing, and surface

  19. Meteorological observations of the coastal boundary layer structure by remote measurement methods for determining the impact of meteorological conditions on the breeze circulation

    Science.gov (United States)

    Barantiev, D.

    2010-09-01

    Continuous measurements of the characteristics of atmospheric boundary layer and the characteristics of breeze circulation were initiated at the meteorological observatory of Ahtopol on the Black Sea coast (south-east Bulgaria) under a Bulgarian-Russian collaborative programme. Research observations started in July 2008 and go on. These observations are the start of high resolution atmospheric boundary layer vertical structure climatology at a Bulgarian Black Sea coastal site. Automatic weather station «MK-15» with an acoustic anemometer (mounted at 4,5m height) and Flat Array Sodar without RASS extension «Scintec» were installed on polygon of Ahtopol. A preliminary analysis was made of the experimental data on the thermodynamic structure of the atmospheric boundary layer in the coastal zone. Vertical profiles of wind speed, direction and spatio-temporal sectional were constructed according to the sodar data. Graphs of temporal variations of the direction and modulus of wind velocity, vertical velocity, the standard deviation of the acoustic temperature and time variation of air temperature (at a height of 2m - standard synoptic measurements) were constructed according MK-15. The momentum u* = " - w-'u' and sensible heat H = w'T' surface turbulent fluxes were calculated from MK-15 raw data. Prevailing weather conditions contributing to breeze circulation in the area were investigated. Blurred pressure field of high pressure with warm air mass, clear and (or) the overcast weather was characterized for treatment cases. The average wind speed near the ground was did not exceed 3 m/s, with a ripple rate of up to 4 m/s according to MK-15. The nature of the wind changed direction during the day has been practically the same (i.e., diurnal repeats) in all cases. The breeze front location was also detected based on standard measurements in the surface layer (mean values of temperature at 2 m and wind speed and direction from MK-15). In the zone of the front the wind

  20. Coupling between marine boundary layer clouds and summer-to-summer sea surface temperature variability over the North Atlantic and Pacific

    Science.gov (United States)

    Myers, Timothy A.; Mechoso, Carlos R.; DeFlorio, Michael J.

    2018-02-01

    Climate modes of variability over the Atlantic and Pacific may be amplified by a positive feedback between sea-surface temperature (SST) and marine boundary layer clouds. However, it is well known that climate models poorly simulate this feedback. Does this deficiency contribute to model-to-model differences in the representation of climate modes of variability? Over both the North Atlantic and Pacific, typical summertime interannual to interdecadal SST variability exhibits horseshoe-like patterns of co-located anomalies of shortwave cloud radiative effect (CRE), low-level cloud fraction, SST, and estimated inversion strength over the subtropics and midlatitudes that are consistent with a positive cloud feedback. During winter over the midlatitudes, this feedback appears to be diminished. Models participating in the Coupled Model Intercomparison Project phase 5 that simulate a weak feedback between subtropical SST and shortwave CRE produce smaller and less realistic amplitudes of summertime SST and CRE variability over the northern oceans compared to models with a stronger feedback. The change in SST amplitude per unit change in CRE amplitude among the models and observations may be understood as the temperature response of the ocean mixed layer to a unit change in radiative flux over the course of a season. These results highlight the importance of boundary layer clouds in interannual to interdecadal atmosphere-ocean variability over the northern oceans during summer. The results also suggest that deficiencies in the simulation of these clouds in coupled climate models contribute to underestimation in their simulation of summer-to-summer SST variability.

  1. Marine cloud brightening

    OpenAIRE

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identi...

  2. Impact of Biomass Burning Aerosols on Cloud Formation in Coastal Regions

    Science.gov (United States)

    Nair, U. S.; Wu, Y.; Reid, J. S.

    2017-12-01

    In the tropics, shallow and deep convective cloud structures organize in hierarchy of spatial scales ranging from meso-gamma (2-20 km) to planetary scales (40,000km). At the lower end of the spectrum is shallow convection over the open ocean, whose upscale growth is dependent upon mesoscale convergence triggers. In this context, cloud systems associated with land breezes that propagate long distances into open ocean areas are important. We utilized numerical model simulations to examine the impact of biomass burning on such cloud systems in the maritime continent, specifically along the coastal regions of Sarawak. Numerical model simulations conducted using the Weather Research and Forecasting Chemistry (WRF-Chem) model show spatial patterns of smoke that show good agreement to satellite observations. Analysis of model simulations show that, during daytime the horizontal convective rolls (HCRs) that form over land play an important role in organizing transport of smoke in the coastal regions. Alternating patterns of low and high smoke concentrations that are well correlated to the wavelengths of HCRs are found in both the simulations and satellite observations. During night time, smoke transport is modulated by the land breeze circulation and a band of enhanced smoke concentration is found along the land breeze front. Biomass burning aerosols are ingested by the convective clouds that form along the land breeze and leads to changes in total water path, cloud structure and precipitation formation.

  3. IOCCG Report Number 16, 2015 Ocean Colour Remote Sensing in Polar Seas . Chapter 2; The Polar Environment: Sun, Clouds, and Ice

    Science.gov (United States)

    Comiso, Josefino C.; Perovich, Don; Stamnes, Knut; Stuart, Venetia (Editor)

    2015-01-01

    The polar regions are places of extremes. There are months when the regions are enveloped in unending darkness, and months when they are in continuous daylight. During the daylight months the sun is low on the horizon and often obscured by clouds. In the dark winter months temperatures are brutally cold, and high winds and blowing snow are common. Even in summer, temperatures seldom rise above 0degC. The cold winter temperatures cause the ocean to freeze, forming sea ice. This sea ice cover acts as a barrier limiting the transfer of heat, moisture, and momentum between the atmosphere and the ocean. It also greatly complicates the optical signature of the surface. Taken together, these factors make the polar regions a highly challenging environment for optical remote sensing of the ocean.

  4. 78 FR 62300 - Prairie Breeze Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2013-10-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER14-25-000] Prairie Breeze Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Breeze Wind Energy LLC's application for market-based rate authority, with an accompanying rate schedule...

  5. An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation

    Directory of Open Access Journals (Sweden)

    S. Solomos

    2011-01-01

    Full Text Available This report addresses the effects of pollution on the development of precipitation in clean ("pristine" and polluted ("hazy" environments in the Eastern Mediterranean by using the Integrated Community Limited Area Modeling System (ICLAMS (an extended version of the Regional Atmospheric Modeling System, RAMS. The use of this model allows one to investigate the interactions of the aerosols with cloud development. The simulations show that the onset of precipitation in hazy clouds is delayed compared to pristine conditions. Adding small concentrations of GCCN to polluted clouds promotes early-stage rain. The addition of GCCN to pristine clouds has no effect on precipitation amounts. Topography was found to be more important for the distribution of precipitation than aerosol properties. Increasing by 15% the concentration of hygroscopic dust particles for a case study over the Eastern Mediterranean resulted in more vigorous convection and more intense updrafts. The clouds that were formed extended about three kilometers higher, delaying the initiation of precipitation by one hour. Prognostic treatment of the aerosol concentrations in the explicit cloud droplet nucleation scheme of the model, improved the model performance for the twenty-four hour accumulated precipitation. The spatial distribution and the amounts of precipitation were found to vary greatly between the different aerosol scenarios. These results indicate the large uncertainty that remains and the need for more accurate description of aerosol feedbacks in atmospheric models and climate change predictions.

  6. The Helium Warm Breeze in IBEX Observations As a Result of Charge-exchange Collisions in the Outer Heliosheath

    Energy Technology Data Exchange (ETDEWEB)

    Bzowski, Maciej; Kubiak, Marzena A.; Czechowski, Andrzej; Grygorczuk, Jolanta, E-mail: bzowski@cbk.waw.pl [Space Research Centre PAS (CBK PAN) Bartycka 18A 00-716 Warsaw (Poland)

    2017-08-10

    We simulated the signal due to neutral He atoms, observed by the Interstellar Boundary Explorer ( IBEX ), assuming that charge-exchange collisions between neutral He atoms and He{sup +} ions operate everywhere between the heliopause and a distant source region in the local interstellar cloud, where the neutral and charged components are in thermal equilibrium. We simulated several test cases of the plasma flow within the outer heliosheath (OHS) and investigated the signal generation for plasma flows both in the absence and in the presence of the interstellar magnetic field (ISMF). We found that a signal in the portion of IBEX data identified as being due to the Warm Breeze (WB) does not arise when a homogeneous plasma flow in front of the heliopause is assumed, but it appears immediately when any reasonable disturbance in its flow due to the presence of the heliosphere is assumed. We obtained a good qualitative agreement between the data selected for comparison and the simulations for a model flow with the velocity vector of the unperturbed gas and the direction and intensity of magnetic field adopted from recent determinations. We conclude that direct-sampling observations of neutral He atoms at 1 au from the Sun are a sensitive tool for investigating the flow of interstellar matter in the OHS, that the WB is indeed the secondary population of interstellar helium, which was hypothesized earlier, and that the WB signal is consistent with the heliosphere distorted from axial symmetry by the ISMF.

  7. Air pollution studies in Chicago considering lake breeze events and land use

    Science.gov (United States)

    Schmeling, M.; Treering, D. J.

    2008-12-01

    Trace elemental, ionic species and reactive trace gases were monitored and measured in Chicago air during the summers of 2002 to 2005. Weather data obtained for the same time periods provided information about major wind patterns. Sampling times and duration were selected to coincide with lake breezes, which occur with highest frequency in summer. Lake breezes were observed between 14 and 47 percent of total collection days per summer and appeared to be more frequent in the cooler summers of 2003 and 2004. Depending on the predominant wind direction on the day before, pollutants increased briefly during a lake breeze event. On days without the occurrence of a lake breeze, it was found that the highest concentrations of pollutants were transported by southerly wind currents. Some major sources, such as brick and cement manufacturing, steel industry and heavy road traffic, lay in the path of this wind current. Chicago area land use and transportation maps were analyzed using a Geographic Information System (GIS) to identify major industrial complexes, intermodal terminals, highways and railroads. We also included demographic information in the GIS maps to analyze whether certain population groups are disproportionally exposed to air pollution. Our results will not only be interesting for the science community, but also to policy makers when considering air pollutant exposure and are expected to inform decisions regarding air pollution policy in the future.

  8. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    Science.gov (United States)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; hide

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  9. Bay breeze climatology at two sites along the Chesapeake bay from 1986-2010: Implications for surface ozone.

    Science.gov (United States)

    Stauffer, Ryan M; Thompson, Anne M

    Hourly surface meteorological measurements were coupled with surface ozone (O 3 ) mixing ratio measurements at Hampton, Virginia and Baltimore, Maryland, two sites along the Chesapeake Bay in the Mid-Atlantic United States, to examine the behavior of surface O 3 during bay breeze events and quantify the impact of the bay breeze on local O 3 pollution. Analyses were performed for the months of May through September for the years 1986 to 2010. The years were split into three groups to account for increasingly stringent environmental regulations that reduced regional emissions of nitrogen oxides (NO x ): 1986-1994, 1995-2002, and 2003-2010. Each day in the 25-year record was marked either as a bay breeze day, a non-bay breeze day, or a rainy/cloudy day based on the meteorological data. Mean eight hour (8-h) averaged surface O 3 values during bay breeze events were 3 to 5 parts per billion by volume (ppbv) higher at Hampton and Baltimore than on non-bay breeze days in all year periods. Anomalies from mean surface O 3 were highest in the afternoon at both sites during bay breeze days in the 2003-2010 study period. In conjunction with an overall lowering of baseline O 3 after the 1995-2002 period, the percentage of total exceedances of the Environmental Protection Agency (EPA) 75 ppbv 8-h O 3 standard that occurred on bay breeze days increased at Hampton for 2003-2010, while remaining steady at Baltimore. These results suggest that bay breeze circulations are becoming more important to causing exceedance events at particular sites in the region, and support the hypothesis of Martins et al. (2012) that highly localized meteorology increasingly drives air quality events at Hampton.

  10. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    KAUST Repository

    Brindley, H.

    2015-10-20

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m−2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m−2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  11. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    KAUST Repository

    Brindley, H.; Osipov, Sergey; Bantges, R.; Smirnov, A.; Banks, J.; Levy, R.; Jish Prakash, P.; Stenchikov, Georgiy L.

    2015-01-01

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m−2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m−2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  12. Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas

    Science.gov (United States)

    Mioche, Guillaume; Jourdan, Olivier; Delanoë, Julien; Gourbeyre, Christophe; Febvre, Guy; Dupuy, Régis; Monier, Marie; Szczap, Frédéric; Schwarzenboeck, Alfons; Gayet, Jean-François

    2017-10-01

    This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPCs). We compiled and analyzed cloud in situ measurements from four airborne spring campaigns (representing 18 flights and 71 vertical profiles in MPCs) over the Greenland and Norwegian seas mainly in the vicinity of the Svalbard archipelago. Cloud phase discrimination and representative vertical profiles of the number, size, mass and shape of ice crystals and liquid droplets are established. The results show that the liquid phase dominates the upper part of the MPCs. High concentrations (120 cm-3 on average) of small droplets (mean values of 15 µm), with an averaged liquid water content (LWC) of 0.2 g m-3 are measured at cloud top. The ice phase dominates the microphysical properties in the lower part of the cloud and beneath it in the precipitation region (mean values of 100 µm, 3 L-1 and 0.025 g m-3 for diameter, particle concentration and ice water content (IWC), respectively). The analysis of the ice crystal morphology shows that the majority of ice particles are irregularly shaped or rimed particles; the prevailing regular habits found are stellars and plates. We hypothesize that riming and diffusional growth processes, including the Wegener-Bergeron-Findeisen (WBF) mechanism, are the main growth mechanisms involved in the observed MPCs. The impact of larger-scale meteorological conditions on the vertical profiles of MPC properties was also investigated. Large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations and air mass origins from the south, which can lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling studies are also determined, such as IWC (and LWC) - extinction

  13. Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas

    Directory of Open Access Journals (Sweden)

    G. Mioche

    2017-10-01

    Full Text Available This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPCs. We compiled and analyzed cloud in situ measurements from four airborne spring campaigns (representing 18 flights and 71 vertical profiles in MPCs over the Greenland and Norwegian seas mainly in the vicinity of the Svalbard archipelago. Cloud phase discrimination and representative vertical profiles of the number, size, mass and shape of ice crystals and liquid droplets are established. The results show that the liquid phase dominates the upper part of the MPCs. High concentrations (120 cm−3 on average of small droplets (mean values of 15 µm, with an averaged liquid water content (LWC of 0.2 g m−3 are measured at cloud top. The ice phase dominates the microphysical properties in the lower part of the cloud and beneath it in the precipitation region (mean values of 100 µm, 3 L−1 and 0.025 g m−3 for diameter, particle concentration and ice water content (IWC, respectively. The analysis of the ice crystal morphology shows that the majority of ice particles are irregularly shaped or rimed particles; the prevailing regular habits found are stellars and plates. We hypothesize that riming and diffusional growth processes, including the Wegener–Bergeron–Findeisen (WBF mechanism, are the main growth mechanisms involved in the observed MPCs. The impact of larger-scale meteorological conditions on the vertical profiles of MPC properties was also investigated. Large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations and air mass origins from the south, which can lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling studies are also determined

  14. On the Clouds of Bubbles Formed by Breaking Wind-Waves in Deep Water, and their Role in Air -- Sea Gas Transfer

    Science.gov (United States)

    Thorpe, S. A.

    1982-02-01

    Clouds of small bubbles generated by wind waves breaking and producing whitecaps in deep water have been observed below the surface by using an inverted echo sounder. The bubbles are diffused down to several metres below the surface by turbulence against their natural tendency to rise. Measurements have been made at two sites, one in fresh water at Loch Ness and the other in the sea near Oban, northwest Scotland. Sonagraph records show bubble clouds of two distinct types, `columnar clouds' which appear in unstable or convective conditions when the air temperature is less than the surface water temperature, and `billow clouds' which appear in stable conditions when the air temperature exceeds that of the water. Clouds penetrate deeper as the wind speed increases, and deeper in convective conditions than in stable conditions at the same wind speed. The response to a change in wind speed occurs in a period of only a few minutes. Measurements of the acoustic scattering cross section per unit volume, Mv, of the bubbles have been made at several depths. The distributions of Mv at constant depth are close to logarithmic normal. The time-averaged value of Mv, {M}v, decreases exponentially with depth over scales of 40-85 cm (winds up to 12 m s-1),, the scale increasing as the wind increases. Values of {M}v at the same depth and at the same wind speed are greater in the sea than in the fresh-water loch, even at smaller fetches. Estimates have been made of the least mean vertical speed at which bubbles must be advected for them to reach the observed depths. Several centimetres per second are needed, the speeds increasing with wind. Results depend on the conditions at the surfaces of the bubbles, that is whether they are covered by a surface active-film. The presence of oxygen (or gases other than nitrogen) in the gas composing the bubbles appears not to be important in determining their general behaviour. The presence of turbulence in the water also appears unlikely to affect

  15. Recent studies on wind seas and swells in the Indian Ocean: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Rashmi, R.; Samiksha, S.V.; Aboobacker, V.M.

    resolution winds are necessary to understand the effect of land-sea breeze on wind-sea generation in the coastal regions We have used atmospheric models such as MM5 and WRF to generate fine resolution winds, and the same will be used in wave models...

  16. Photovoltaic at Hollywood and Desert Breeze Recreational Centers

    Energy Technology Data Exchange (ETDEWEB)

    Ammerman, Shane [Clark County Comprehensive Planning Department, NV (United States)

    2015-09-24

    Executive Summary Renewable Energy Initiatives for Clark County Parks and Recreation Solar Project DOE grant # DE-EE0003180 In accordance with the goals of the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy for promoting solar energy as clean, carbon-free and cost-effective, the County believed that a recreational center was an ideal place to promote solar energy technologies to the public. This project included the construction of solar electricity generation facilities (40kW) at two Clark County facility sites, Desert Breeze Recreational Center and Hollywood Recreational Center, with educational kiosks and Green Boxes for classroom instruction. The major objectives and goals of this Solar Project include demonstration of state of the art technologies for the generation of electricity from solar technology and the creation of an informative and educational tool in regards to the benefits and process of generating alternative energy. Clark County partnered with Anne Johnson (design architect/consultant), Affiliated Engineers Inc. (AEI), Desert Research Institute (DRI), and Morse Electric. The latest photovoltaic technologies were used in the project to help create the greatest expected energy savings for60443 each recreational center. This coupled with the data created from the monitoring system will help Clark County and NREL further understand the real time outputs from the system. The educational portion created with AEI and DRI incorporates material for all ages with a focus on K - 12. The AEI component is an animated story telling the fundamentals of how sunlight is turned into electricity and DRI‘s creation of Solar Green Boxes brings environmental education into the classroom. In addition to the educational component for the public, the energy that is created through the photovoltaic system also translates into saved money and health benefits for the general public. This project has helped Clark County to further add to its own

  17. Combined Observational and Modeling Efforts to Better Understand Aerosol-Cloud-Precipitation Interactions Over Land: Preliminary Results from 7-SEAS/BASELInE 2013

    Science.gov (United States)

    Loftus, Adrian M.; Tsay, Si-Chee

    2015-01-01

    This talk presents some of the detailed observations of low-level stratocumulus over northern Vietnam during 7-SEASBASELInE 2013 by SMARTLabs' ACHIEVE W-band cloud radar and other remote sensing instruments. These observations are the first of their kind for this region and will aid in ongoing studies of biomass-burning aerosol impacts on local and regional weather and climate. Preliminary results from simulations using the Goddard Cumulus Ensemble (GCE) with recently implemented triple-moment bulk microphysics to examine the sensitivity of low-level stratocumulus over land to aerosols are also presented. Recommendations for future observational activities in the 7-SEAS northern region in collaboration with international partners will also be discussed.

  18. The effect of Arctic sea-ice extent on the absorbed (net solar flux at the surface, based on ISCCP-D2 cloud data for 1983–2007

    Directory of Open Access Journals (Sweden)

    C. Matsoukas

    2010-01-01

    Full Text Available We estimate the effect of the Arctic sea ice on the absorbed (net solar flux using a radiative transfer model. Ice and cloud input data to the model come from satellite observations, processed by the International Satellite Cloud Climatology Project (ISCCP and span the period July 1983–June 2007. The sea-ice effect on the solar radiation fluctuates seasonally with the solar flux and decreases interannually in synchronisation with the decreasing sea-ice extent. A disappearance of the Arctic ice cap during the sunlit period of the year would radically reduce the local albedo and cause an annually averaged 19.7 W m−2 increase in absorbed solar flux at the Arctic Ocean surface, or equivalently an annually averaged 0.55 W m−2 increase on the planetary scale. In the clear-sky scenario these numbers increase to 34.9 and 0.97 W m−2, respectively. A meltdown only in September, with all other months unaffected, increases the Arctic annually averaged solar absorption by 0.32 W m−2. We examined the net solar flux trends for the Arctic Ocean and found that the areas absorbing the solar flux more rapidly are the North Chukchi and Kara Seas, Baffin and Hudson Bays, and Davis Strait. The sensitivity of the Arctic absorbed solar flux on sea-ice extent and cloud amount was assessed. Although sea ice and cloud affect jointly the solar flux, we found little evidence of strong non-linearities.

  19. Evolution of the Large Scale Circulation, Cloud Structure and Regional Water Cycle Associated with the South China Sea Monsoon During May-June, 1998

    Science.gov (United States)

    Lau, William K.-M.; Li, Xiao-Fan

    2001-01-01

    In this paper, changes in the large-scale circulation, cloud structures and regional water cycle associated with the evolution of the South China Sea (SCS) monsoon in May-June 1998 were investigated using data from the Tropical Rainfall Measuring Mission (TRMM) and field data from the South China Sea Monsoon Experiment (SCSMEX). Results showed that both tropical and extratropical processes strongly influenced the onset and evolution of the SCS monsoon. Prior to the onset of the SCS monsoon, enhanced convective activities associated with the Madden and Julian Oscillation were detected over the Indian Ocean, and the SCS was under the influence of the West Pacific Anticyclone (WPA) with prevailing low level easterlies and suppressed convection. Establishment of low-level westerlies across Indo-China, following the development of a Bay of Bengal depression played an important role in building up convective available potential energy over the SCS. The onset of SCS monsoon appeared to be triggered by the equatorward penetration of extratropical frontal system, which was established over the coastal region of southern China and Taiwan in early May. Convective activities over the SCS were found to vary inversely with those over the Yangtze River Valley (YRV). Analysis of TRMM microwave and precipitation radar data revealed that during the onset phase, convection over the northern SCS consisted of squall-type rain cell embedded in meso-scale complexes similar to extratropical systems. The radar Z-factor intensity indicated that SCS clouds possessed a bimodal distribution, with a pronounced signal (less than 30dBz) at a height of 2-3 km, and another one (less than 25 dBz) at the 8-10 km level, separated by a well-defined melting level indicated by a bright band at around 5-km level. The stratiform-to-convective cloud ratio was approximately 1:1 in the pre-onset phase, but increased to 5:1 in the active phase. Regional water budget calculations indicated that during the

  20. Reducibility mill scale industrial waste via coke breeze at 850-950ºC

    Directory of Open Access Journals (Sweden)

    Gaballah N.M.

    2015-01-01

    Full Text Available Mill scale is a very attractive industrial waste due to its elevated iron content (about = 69.33% Fe besides being suiTab. for direct recycling to the blast furnace via sintering plant. In this paper the characteristics of raw materials and the briquettes produced from this mill scale were studied by different methods of analyses. The produced briquettes were reduced with different amounts of coke breeze at varying temperatures, and the reduction kinetics was determined. The activation energy of this reaction ≈ 61.5 kJ/mole for reduction of mill scale with coke breeze in the form of briquettes with 2% molasses where the chemical reaction interface model is applicable.

  1. Trapping fresh sea breeze in desert? Health status of Camanchaca, Atacama's fog.

    Science.gov (United States)

    Bonnail, Estefanía; Cunha Lima, Ricardo; Martínez Turrieta, Gladys

    2018-05-24

    Water fog composition was investigated at a fog harvesting installation in the coast of Atacama (North Chile). Chañaral is historically affected by mining contamination discharges. Hydro-chemical characterization of fog water from top of the mountain (where capture installation is located) and at the bottom of the mountain (after vertical transportation where an aquaponic system is located) revealed many compositional differences that compromise the use of water. High acidity and high concentrations in Cu and As in water collected on top of the mountain were found; meanwhile, acidity and Cu decreased, and As levels overpassed the drinking water standards after the vertical transportation. Collected data was assessed according to national and international regulatory standards, neutralization factors (NF), sodium adsorption ratio (SAR), and ion ratios to determine origin of contamination and suitability of destined for human consumption, irrigation, or aquaculture purposes.

  2. Diurnal Sea Breeze Effects on Nearshore Temperature Variability in Southern Monterey Bay

    Science.gov (United States)

    2017-12-01

    from multi-year, single-location measurements of the velocity profiles (Fewings et al. 2008; Lentz et al. 2008; Hendrickson and MacMahan 2009) to...shorter O(0-2 months) experiments with multi-location moorings (Hally- Rosendahl et al. 2015; Reniers et al. 2009). Direct approaches for accounting for...zone (~5m). Two cross-shore arrays were deployed to account for the spatial heterogeneity of cross- shore flows associated with rip currents on the

  3. The Nature of The Propagation of Sea Breeze Fronts in Central California

    Science.gov (United States)

    1990-09-01

    propagation vector % ith stations in the southern portion of Monterey Bay shows that the front is curved on the mesoscale. 20 Distribution Availabilit of...solar radiation warms the land more than the adjacent water . The resulting temperature contrast produces a slight variation in pressure. The isobaric...surfaces bend upward over the land, producing an upper-level high. The upper-level air flows seaward increasing the surface pressure over the water . The

  4. From enzymes and viruses to clouds, snow, sea-glaciers, and green icebergs: How a protein crystallographer got into glaciology and atmospheric radiation

    Science.gov (United States)

    Warren, S. G.

    2016-12-01

    Through a series of lucky breaks beginning five years after my Ph.D., I was able to change careers from molecular biology to earth science, via a postdoc at NCAR in 1978, leading to a job at the University of Washington (UW) in 1982. Steve Schneider, Warren Wiscombe, Julius London, Gary Thomas, and Ed LaChapelle helped me make the transition. At UW, a collaboration with Tom Grenfell got me started in Antarctic fieldwork. Long-term dedicated coworkers Carole Hahn (cloud climatology) and Rich Brandt (radiative and thermal properties of snow and sea ice) kept our funded projects going. Conversations with UW colleagues Bob Charlson on dimethyl sulfide (DMS) and Qiang Fu on the microwave sounding unit (MSU) enticed me into unfunded projects (biological influence on cloud albedo; satellite-derived tropospheric temperatures). Several other key collaborators I first met when they were students at UW: Tony Clarke and Sarah Doherty (black carbon in snow), Bonnie Light (laboratory experiments for Snowball Earth), and Von Walden (longwave radiation spectra). Ian Allison of the Australian Antarctic Division sponsored my first sabbatical, to learn about sea ice. Most of our work, of course, is on projects that are proposed, then funded, then completed (or not completed). But at least as much fun are projects that were completed but not proposed. Some of these were inspired by listening to seminars (particularly by Charlson), or were developed from student term-papers in my snow-and-ice class (Jon Rhodes's report on suncups, and Steve Hudson's on Antarctic bacteria). There is not much cross-cultural connection between my former life and my current life, but there is some, now institutionalized in UW's Astrobiology Program. My enthusiasm for the CLAW project was partly motivated by my background in biology and the knowledge that DMS originates from the amino acid methionine. I was happy to accept oceanic biota as the explanation for the color of green icebergs. And my motivation

  5. Examining the eastern Amazon Basin breeze circulations, channeling and boundary layer properties using altitude controlled meteorological balloons

    Science.gov (United States)

    Fitzjarrald, D. R.; Voss, P. B.; Silva, R. D.; Callahan, S.; Dewald, A.; do Vale, R. S.

    2017-12-01

    During the period August 24-28, 2016, in a delayed component the GO-Amazon Project, we launched nine altitude-controlled free balloons (CMET). Smaller than typical rawinsondes, CMET are equipped with altitude control, global communication via Iridium satellite, and aspirated sensors. The aims of our effort were to examine the interactions among convective boundary layer and dual river breeze circulations near the confluence of the Tapajos and Amazon Rivers in the eastern Basin. The week-long field campaign was timed to examine the reestablishment of the breeze circulations shortly after the passage of a strong instability line on August 22. Nine CMET were launched at the Curua-Una hydroelectric dam (2.8S; 54.3W), timed to encounter the Tapajos river breeze front by late afternoon. Soundings were made to establish the thickness of interface between the easterly trade and westerly Tapajos breeze circulation. Careful use of sounding strategies allowed these free balloons to track along the northerly channeled flow in the lowest 300 m above the River. Following the river encounter, balloons tracked to the west, sounding to describe the diurnal course of boundary layer in the forest west of the Tapajos River. The longest flight traveled more than 770 km over three days and twice rested overnight in the rain forest canopy. Ancillary data from surface climate and flux stations as well as the Santarem radiosonde, satellite images will be used to illustrate how the breeze circulations are seen near the surface and how they were disrupted by larger-scale events. Comparisons with HYSPLIT trajectories will illustrate how sensitive real trajectories are to the refraction that the encounter with the breeze effects.

  6. From BASE-ASIA Toward 7-SEAS: A Satellite-Surface Perspective of Boreal Spring Biomass-Burning Aerosols and Clouds in Southeast Asia

    Science.gov (United States)

    Tsay, Si-Chee; Hsu, N. Christina; Lau, William K.-M.; Li, Can; Gabriel, Philip M.; Ji, Qiang; Holben, Brent N.; Welton, E. Judd; Nguyen, Anh X.; Janjai, Serm; hide

    2013-01-01

    In this paper, we present recent field studies conducted by NASA's SMART-COMMIT (and ACHIEVE, to be operated in 2013) mobile laboratories, jointly with distributed ground-based networks (e.g., AERONET, http://aeronet.gsfc.nasa.gov/ and MPLNET, http://mplnet.gsfc.nasa.gov/) and other contributing instruments over northern Southeast Asia. These three mobile laboratories, collectively called SMARTLabs (cf. http://smartlabs.gsfc.nasa.gov/, Surface-based Mobile Atmospheric Research & Testbed Laboratories) comprise a suite of surface remote sensing and in-situ instruments that are pivotal in providing high spectral and temporal measurements, complementing the collocated spatial observations from various Earth Observing System (EOS) satellites. A satellite-surface perspective and scientific findings, drawn from the BASE-ASIA (2006) field deployment as well as a series of ongoing 7-SEAS (2010-13) field activities over northern Southeast Asia are summarized, concerning (i) regional properties of aerosols from satellite and in situ measurements, (ii) cloud properties from remote sensing and surface observations, (iii) vertical distribution of aerosols and clouds, and (iv) regional aerosol radiative effects and impact assessment. The aerosol burden over Southeast Asia in boreal spring, attributed to biomass burning, exhibits highly consistent spatial and temporal distribution patterns, with major variability arising from changes in the magnitude of the aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from the source regions, the tightly coupled-aerosolecloud system provides a unique, natural laboratory for further exploring the micro- and macro-scale relationships of the complex interactions. The climatic significance is presented through large-scale anti-correlations between aerosol and precipitation anomalies, showing spatial and seasonal variability, but their precise cause-and-effect relationships

  7. Extreme total solar irradiance due to cloud enhancement at sea level of the NE Atlantic coast of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Piacentini, Ruben D. [Instituto de Fisica Rosario (CONICET-Universidad Nacional de Rosario), 27 de Febrero 210bis, 2000 Rosario (Argentina); Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Pellegrini 250, 2000 Rosario (Argentina); Salum, Graciela M. [Instituto de Fisica Rosario (CONICET-Universidad Nacional de Rosario), 27 de Febrero 210bis, 2000 Rosario (Argentina); Facultad Regional Concepcion del Uruguay, Universidad Tecnologica Nacional, Concepcion del Uruguay (Argentina); Fraidenraich, Naum; Tiba, Chigueru [Grupo de Pesquisas em Fontes Alternativas de Energia, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, 1000 - 50.740-540, Recife, PE (Brazil)

    2011-01-15

    Extraterrestrial total solar irradiance, usually called Solar Constant, is attenuated by the atmosphere in different proportions, depending mainly on solar zenith angle and altitude of the measurement point. In this work, it is presented very high and extreme horizontal plane measurements of global solar irradiance that in some days overpassed the Solar Constant corrected by the actual Sun-Earth distance (CSC). They were obtained at sea level of the intertropical Atlantic coast, in the city of Recife, Brazil, in the period February 2008-January 2009. Extreme total solar irradiance values larger than CSC were measured during 3.4% of the days of the total registered period. This percentage increases to 7.4% for global solar irradiance within 95.1-100% of the CSC and to 15.3% within 90.1-95% of the CSC. The largest extreme total solar irradiance value, 1477 {+-} 30 W/m{sup 2}, was registered the 28th of March 2008 at 11:34 local time (UT - 3h). It overpassed by 7.9% the CSC value for this day (1369.4 W/m{sup 2}) and by 42.3% the estimated value of the clear sky Iqbal C radiation model (1037.7 W/m{sup 2}). The observation of extreme values should be taken into account in the study of solar radiation effects related to materials exposed to the outside, UV index and biological effects, among others. Also, the detailed knowledge of this interesting effect may contribute significantly to clarify physical aspects about the interaction of global solar radiation with the ecosystem and climate change. (author)

  8. Reducibility study of Rossetta ilmenite ore briquettes and powder with coke breeze at 800-1100°C

    Directory of Open Access Journals (Sweden)

    Abd el Gawad Hala H.

    2013-01-01

    Full Text Available Ilmenite ore fine and coke breeze as reduced material were briquetted with different amounts of organic materials such as molasses or pitch were studied in this investigation. The produced briquettes at reasonable condition were reduced in nitrogen atmosphere at temperature range 800 - 1100oC to determine the factors controlling the reduction and to determine the controlling mechanism. Also ilmenite ore fine with coke breeze were reduced at the same temperature range in nitrogen atmosphere without briquetting process, for the sake of comparison.

  9. Cloud amount/frequency, NITRATE and other data from ERNST KRENKEL, MUSSON and other platforms in the Mediterranean Sea and Black Sea from 1978-02-11 to 1979-12-20 (NODC Accession 9000266)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Station data in this accession was collected in Black Sea and Mediterranean Sea as part of the International Council for the Exploration of Seas (ICES)...

  10. Marine Cloud Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  11. Marine cloud brightening.

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  12. Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea

    Science.gov (United States)

    Bi, X.; Huang, J.; Gao, Z.; Liu, Y.

    2017-12-01

    This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.

  13. Marine cloud brightening

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  14. Cloud amount/frequency, ANIMALS - INDIVIDUAL and other data from AIRCRAFT in the Bering Sea from 1987-09-02 to 1988-10-20 (NODC Accession 9100026)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The aerial surveys of Whales data in this accession were collected from aircraft by Steve Tracey over the Bering Sea between September 1987 and October 1988 by Sea...

  15. Cloud amount/frequency, ANIMALS - INDIVIDUAL and other data from AIRCRAFT in the Chukchi Sea from 1987-09-01 to 1988-10-16 (NODC Accession 9100025)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The aerial surveys of Whales data in this accession were collected from aircraft by Don Llungblad over the Chukchi Sea between September 1987 and October 1988 by Sea...

  16. Contrasting Cloud Composition Between Coupled and Decoupled Marine Boundary Layer Clouds

    Science.gov (United States)

    WANG, Z.; Mora, M.; Dadashazar, H.; MacDonald, A.; Crosbie, E.; Bates, K. H.; Coggon, M. M.; Craven, J. S.; Xian, P.; Campbell, J. R.; AzadiAghdam, M.; Woods, R. K.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.; Sorooshian, A.

    2016-12-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (E-PEACE 2011, NiCE 2013, BOAS 2015). Decoupled clouds exhibited significantly lower overall mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and sub-cloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Non-refractory sub-micrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Total cloud water mass concentration in coupled clouds was dominated by sodium and chloride, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea salt constituents (e.g., Cl, Na, Mg, K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. These results suggest that an important variable is the extent to which clouds are coupled to the surface layer when interpreting microphysical data relevant to clouds and aerosol particles.

  17. Local scale atmospheric diffusion at a coastal site in the presence of breeze effect (Phase I and II: data collection at a coastal site and off shore)

    International Nuclear Information System (INIS)

    Cagnetti, P.; Ferrara, V.; Pellegrini, A.

    1985-01-01

    The aim of this contract is the characterization, from the thermal and anemological point of view of the lower layers of the atmosphere at a coastal site, affected by breeze circulation. Data are utilized to set up diffusion models for accidental releases of airborne materials, both of short and prolonged duration. Five inland meteorological campaigns, starting from Jan. 82 (Jan., Apr., Jul., Oct. 1982, Jan. 1983), have been carried out; an appropriate extension of the contract allowed the execution of two more campaigns in the open sea (Apr., Jul. 1983), utilizing the oceanographic ship ''Bannock'' kindly supplied by CNR. The analysis of the data showed the development of a well defined IBL during on-shore flow only in Spring and Summer, while an inversion layer was detectable aloft independently of the season (provided that an anticyclonic situation was present). According to those relevant features a simple diffusion model has been developed for short duration releases at local scale. Finally, the analysis and elaboration of the data, collected on site by a meteorological automatic station, allowed the extension of the model to prolonged releases

  18. Local scale atmospheric diffusion at a coastal site in the presence of breeze effect (phase III: data elaboration and model development). Volume 1

    International Nuclear Information System (INIS)

    Cagnetti, P.; Ferrara, V.; Pellegrini, A.

    1985-01-01

    The aim of this contract is the characterization, from the thermal and anemological point of view, of the lower layers of the atmosphere at a coastal site, affected by breeze circulation. Data are utilized to set up diffusion models for accidental releases of airborne materials, both of short and prolonged duration. Five inland meteorological campaigns, starting from Jan. 82 (Jan., Apr., Jul., Oct. 1982, Jan. 1983), have been carried out; an appropriate extension of the contract allowed the execution of two more campaigns in the open sea (Apr., Jul. 1983), utilizing the oceanographic ship ''Bannock'' kindly supplied by CNR. The analysis of the data showed the development of a well defined IBL during on-shore flow only in Spring and Summer, while an inversion layer was detectable aloft independently of the season (provided that an anticyclonic situation was present). According to those relevant features a simple diffusion model has been developed for short duration releases at local scale. Finally, the analysis and elaboration of the data, collected on site by a meteorological automatic station, allowed the extension of the model to prolonged releases

  19. Cloud amount/frequency, NITRATE and other data from ALPHA HELIX in the Bering Sea and Chukchi Sea from 1993-09-09 to 1993-10-10 (NODC Accession 9400036)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Bering Sea and Chukchi Sea. Data was collected from Ship ALPHA HELIX. The data was...

  20. Vertical structure of orographic precipitating clouds observed over ...

    Indian Academy of Sciences (India)

    Shailendra Kumar

    2017-11-23

    Nov 23, 2017 ... the highest over the Western Ghats and the eastern Arabian Sea. ... Shallow clouds; mixed phase clouds; TRMM PR; Western Ghats; radar reflectivity. ..... The focus in the present work is on iden- ... A similar behaviour, but at.

  1. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys

    Science.gov (United States)

    2017-06-04

    conditions in the SIZ affeCt changes in cloud properties and cover, • develop novel instrumentation including low cost , expendable, air-deployed micro...hour per response, induding the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...From- To) 04 - 06 - 2017 Final Technical 0/1/01/2012 - 12/31/2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Atmospheric Profiles , Clouds and the

  2. Atmospheric electrical field measurements near a fresh water reservoir and the formation of the lake breeze

    Directory of Open Access Journals (Sweden)

    Francisco Lopes

    2016-06-01

    Full Text Available In order to access the effect of the lakes in the atmospheric electrical field, measurements have been carried out near a large man-made lake in southern Portugal, the Alqueva reservoir, during the ALqueva hydro-meteorological EXperiment 2014. The purpose of these conjoint experiments was to study the impact of the Alqueva reservoir on the atmosphere, in particular on the local atmospheric electric environment by comparing measurements taken in the proximity of the lake. Two stations 10 km apart were used, as they were located up- and down-wind of the lake (Amieira and Parque Solar, respectively, in reference to the dominant northwestern wind direction. The up-wind station shows lower atmospheric electric potential gradient (PG values than the ones observed in the down-wind station between 12 and 20 UTC. The difference in the atmospheric electric PG between the up-wind and the down-wind station is ~30 V/m during the day. This differential occurs mainly during the development of a lake breeze, between 10 and 18 UTC, as a consequence of the surface temperature gradient between the surrounding land and the lake water. In the analysis presented, a correlation is found between the atmospheric electric PG differences and both wind speed and temperature gradients over the lake, thus supporting the influence of the lake breeze over the observed PG variation in the two stations. Two hypotheses are provided to explain this observation: (1 The air that flows from the lake into the land station is likely to increase the local electric conductivity through the removal of ground dust and the transport of cleaner air from higher altitudes with significant light ion concentrations. With such an increase in conductivity, it is expected to see a reduction of the atmospheric electric PG; (2 the resulting air flow over the land station carries negative ions formed by wave splashing in the lake's water surface, as a result of the so-called balloelectric effect

  3. Investigating erosion of building materials used in an installation for pneumatic transport of coke breeze and coal

    Energy Technology Data Exchange (ETDEWEB)

    Bandrowski, J.; Kot-Borkowska, Z.; Misztal, M.; Raczek, J.; Kaczmarzyk, G.

    1980-09-01

    This article investigates the influence of the following factors on erosion of building material used in pneumatic transport of coal and coke breeze: intensity of coal or coke breeze flow within the range of 47 to 120 kg/h for coke and 99 to 165 kg/h for coal; speed of solid material particles within the range 3.71 to 7.97 m/s for coke, and 3.30 to 7.58 m/s for coal; duration of the experiments 0.5 to 1.5 h for coke and 2.0 to 5.0 for coal; angle of inclination of the sample of building material 30 to 60 degrees for both coal and coke breeze. Three types of construction material used in pneumatic transport were tested: steel, concrete and chamotte bricks. Investigations show that concrete is characterized by the highest erosion, chamotte bricks by medium erosion and steel by the lowest erosion. As a result of mathematical processing of experimental data, empirical models of erosion of the three materials are constructed. (7 refs.)

  4. Cloud Governance

    DEFF Research Database (Denmark)

    Berthing, Hans Henrik

    Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing.......Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing....

  5. Influence of winds on temporally varying short and long period gravity waves in the near shore regions of the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Glejin, J.; SanilKumar, V.; Nair, T.M.B.; Singh, J.

    pro- vided by the NOAA-CIRES (Cooperative Institute for Re- search in the Environmental Sciences) Climate Diagnostics Center in Boulder, Colorado (http://www.cdc.noaa.gov/). To determine the sea/land breeze system at Ratnagiri during the study period...

  6. Cloud amount/frequency, NITRATE and other data from ALPHA HELIX in the Chukchi Sea from 1992-09-21 to 1992-10-04 (NODC Accession 9300097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Chukchi Sea. Data was collected from Ship ALPHA HELIX. The data was collected over a...

  7. Cloud amount/frequency, NITRATE and other data from ALPHA HELIX in the Bering Sea from 1993-06-12 to 1993-07-01 (NODC Accession 9400026)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Bering Sea. Data was collected from Ship ALPHA HELIX cruise HX 171. The data was...

  8. Cloud amount/frequency, NITRATE and other data from SURVEYOR in the Chukchi Sea from 1990-10-02 to 1990-10-20 (NODC Accession 9200012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Chukchi Sea. Data was collected during 155 Casts from Ship SURVEYOR. The data was...

  9. Cloud amount/frequency, TRANSMISSIVITY and other data from BARTLETT in the Greenland Sea from 1989-09-07 to 1989-09-20 (NODC Accession 9200159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Greenland Sea. Data was collected from Ship BARTLETT. The data was collected over a...

  10. Cloud amount/frequency, TRANSMISSIVITY and other data from BARTLETT in the Greenland Sea from 1990-08-02 to 1990-08-20 (NODC Accession 9200158)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in Greenland Sea. Data was collected from Ship BARTLETT. The data was collected over a...

  11. Alone on a wide wide sea. The origin of SECCO 1, an isolated star-forming gas cloud in the Virgo cluster*†‡

    Science.gov (United States)

    Bellazzini, M.; Armillotta, L.; Perina, S.; Magrini, L.; Cresci, G.; Beccari, G.; Battaglia, G.; Fraternali, F.; de Zeeuw, P. T.; Martin, N. F.; Calura, F.; Ibata, R.; Coccato, L.; Testa, V.; Correnti, M.

    2018-06-01

    SECCO 1 is an extremely dark, low-mass (M⋆ ≃ 105 M⊙), star-forming stellar system lying in the low-velocity cloud (LVC) substructure of the Virgo cluster of galaxies, and hosting several H II regions. Here, we review our knowledge of this remarkable system, and present the results of (a) additional analysis of our panoramic spectroscopic observations with MUSE, (b) the combined analysis of Hubble Space Telescope and MUSE data, and (c) new narrow-band observations obtained with OSIRIS@GTC to search for additional H II regions in the surroundings of the system. We provide new evidence supporting an age as young as ≲ 4 Myr for the stars that are currently ionizing the gas in SECCO 1. We identify only one new promising candidate H II region possibly associated with SECCO 1, thus confirming the extreme isolation of the system. We also identify three additional candidate pressure-supported dark clouds in Virgo among the targets of the SECCO survey. Various possible hypotheses for the nature and origin of SECCO 1 are considered and discussed, also with the help of dedicated hydrodynamical simulations showing that a hydrogen cloud with the characteristics of SECCO 1 can likely survive for ≳ 1 Gyr while travelling within the LVC Intra Cluster Medium.

  12. Cloud Computing

    CERN Document Server

    Antonopoulos, Nick

    2010-01-01

    Cloud computing has recently emerged as a subject of substantial industrial and academic interest, though its meaning and scope is hotly debated. For some researchers, clouds are a natural evolution towards the full commercialisation of grid systems, while others dismiss the term as a mere re-branding of existing pay-per-use technologies. From either perspective, 'cloud' is now the label of choice for accountable pay-per-use access to third party applications and computational resources on a massive scale. Clouds support patterns of less predictable resource use for applications and services a

  13. Radiative effects of clouds and cryosphere in the Antarctic

    Directory of Open Access Journals (Sweden)

    Takashi Yamanouchi

    1997-03-01

    Full Text Available Examination of the effects of clouds, ice sheet and sea ice on the radiation budget in the Antarctic using Earth Radiation Budget Experiment (ERBE data were reported. The continental ice sheet affects not only the albedo, but also the surface temperature because of elevation, and hence the OLR. Sea ice, which is a critical climate feedback factor, appears to have less impact on radiation than do clouds. However, these surfaces lie underneath clouds, and it was found that the independent effect of sea ice is as large as that of clouds, and clouds are masking the radiative effect of sea ice by more than half. The radiation budget at the top of the atmosphere from satellite observation and that at the surface from the surface radiation measurements at Syowa and South Pole Stations were compared. Cloud radiative forcing at both stations for the surface, atmosphere and top of the atmosphere was derived.

  14. A Comparison of Modeled and Observed Ocean Mixed Layer Behavior in a Sea Breeze Influenced Coastal Region

    Science.gov (United States)

    1993-12-21

    Latent(Lower Solid), Net Infrared (Dashed), and Net viii Heat Loss (Upper Solid - the Other 3 Surmmed) are Plotted, with Positive Values :ndicating...gained from solar insolation, Qs, and the heat lost from the surface due to latent, Qe, sensible, Qh, and net infrared radiation, Qb is positive...five empirically derived dimensionless constants in the model. With the introduction of two new unknowns, <E> and < ww2 >, the prediction of the upper

  15. Influence of the North Atlantic Subtropical High on wet and dry sea-breeze events in North Carolina, United States

    Directory of Open Access Journals (Sweden)

    Nicholas T. Luchetti

    2017-01-01

    Full Text Available La brisa marina (BM es una importante fuente de precipitación de verano en Carolina del Norte (NC en su sigla en inglés, sudeste de Estados Unidos. Sin embargo, no todos los eventos de BM producen precipitación. En este trabajo se utiliza una climatología de eventos de BM lluviosos y secos en NC para investigar las condiciones que conducen a la precipitación. Se utilizaron imágenes de radar para detectar 88 eventos de BM ocurridos a lo largo de la costa NC entre mayo y septiembre de 2009 a 2012. La mayoría (85% de los eventos de BM ocurrieron durante períodos de viento hacia el mar (53% o viento paralelo a la costa (22%. Los eventos BM se separaron en eventos secos (53% y lluviosos (47% y se analizaron las diferencias en los parámetros dinámicos y termodinámicos del entorno en el que se formaron. Se encontraron diferencias significativas en las condiciones dinámicas y termodinámicas. Eventos de BM secos ocurrieron bajo vientos más fuertes (6,00 ± 2,36 ms-1 que los eventos de BM lluviosos (4,02 ± 2,16 ms-1. Las BM lluviosas ocurrieron bajo valores de energía potencial convectiva disponible más altos y valores del parámetro de inhibición convectiva más bajos, condiciones que favorecen la lluvia. En general, los eventos de BM lluviosos representaron el 20-30% de la precipitación a lo largo de la región costera de NC de mayo a septiembre. La posición de la Alta Subtropical del Atlántico Norte (ASAN controla la disponibilidad de humedad y los vientos a lo largo de la costa de NC, proporcionando así un mecanismo de control de escala sinóptica para la precipitación de la BM. En particular, cuando la cresta occidental de la ASAN se localiza a lo largo de la costa sureste de los Estados Unidos, se produce un flujo de sudoeste húmedo a lo largo de la costa NC que puede favorecer la ocurrencia de eventos de BM lluviosos.

  16. Cloud Cover

    Science.gov (United States)

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  17. Cloud Control

    Science.gov (United States)

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  18. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  19. Co-existence of wind seas and swells along the west coast of India during non-monsoon season

    Digital Repository Service at National Institute of Oceanography (India)

    Rashmi, R.; Aboobacker, V.M.; Vethamony, P; John, M.P

    -dimensional significant wind sea heightH ∗S and peak wind sea period T ∗P have been calculated (Fig. 9). The best fit between log (H ∗Sws) and log (T ∗Pws) has been es- timated and resolved as follows: Fig. 7. (a), (b), (c), (d), (e) and (f) are wave energy spectrum, wave... of shallow water waves along Indian coast, J. Coastl. Res., 19, 1052–1065, 2003. Neetu, S., Shetye, S., and Chandramohan, P.: Impact of sea-breeze on wind seas off Goa, west coast of India, J. Earth Sys. Sci., 115, 229–234, 2006. Peterson, E. W. and Hennessey...

  20. A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based sea fog detection

    International Nuclear Information System (INIS)

    Wu, Dong; Lu, Bo; Zhang, Tianche; Yan, Fengqi

    2015-01-01

    A method to detect sea fogs from the measurement data acquired by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite is proposed in this paper. Because of the unique capability of vertical-resolved measurements, sea fogs and low clouds can be more easily distinguished in the CALIOP data compared with passive satellite measurements. Yellow Sea where sea fogs occur frequently is selected to test the method. Nine cases of daytime sea fog events from 2008 to 2011 in the Yellow Sea are studied intensively to characterize the remotely sensed radiation properties of various targets, such as clear-sky sea surface, sea fog, low cloud and high cloud. These fog cases are then used in an attempt to evaluate sea fogs identified from the MODIS measurements. The method proposed in this paper can also be used for nighttime cases. Multi-year sea fog dataset can be made from the CALIOP measurement and used to validate the MODIS sea fog detection. - Highlights: • A method of sea fog detection from the CALIOP measurements is proposed. • CALIOP VFM and 532-nm attenuated backscatter products are integrated used. • Sea fogs and low clouds can be more easily distinguished in the CALIOP data. • 9 Cases of daytime sea fog events in the Yellow Sea are selected to test the method. • The MODIS sea fog detections are evaluated using the collocated CALIOP data

  1. Development and propagation of a pollution gradient in the marine ...

    Indian Academy of Sciences (India)

    are significantly influenced by the diurnal cycle of coastal sea-land breeze circulations along India's west coast. Transport of ... cloud bands during INDOEX were in fact pollu- tion gradients ...... State Climate Office of North Carolina. We thank.

  2. Cloud Computing Fundamentals

    Science.gov (United States)

    Furht, Borko

    In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.

  3. Addressing the use of cloud computing for web hosting providers

    OpenAIRE

    Fitó, Josep Oriol; Guitart Fernández, Jordi

    2009-01-01

    Nobody doubts about cloud computing is and will be a sea change for the Information Tech nology. Specifically, we address an application of this emerging paradigm into the web hosting providers. We create the Cloud Hosting Provider (CHP): a web hosting provider that uses the outsourcing technique in order to take advantage of cloud computing infrastructures (i.e. cloud-based outsourcing) for providing scalability and availability capabilities to the web applications deployed. Hence, the...

  4. Cloud Computing

    CERN Document Server

    Baun, Christian; Nimis, Jens; Tai, Stefan

    2011-01-01

    Cloud computing is a buzz-word in today's information technology (IT) that nobody can escape. But what is really behind it? There are many interpretations of this term, but no standardized or even uniform definition. Instead, as a result of the multi-faceted viewpoints and the diverse interests expressed by the various stakeholders, cloud computing is perceived as a rather fuzzy concept. With this book, the authors deliver an overview of cloud computing architecture, services, and applications. Their aim is to bring readers up to date on this technology and thus to provide a common basis for d

  5. Cloud Computing

    DEFF Research Database (Denmark)

    Krogh, Simon

    2013-01-01

    with technological changes, the paradigmatic pendulum has swung between increased centralization on one side and a focus on distributed computing that pushes IT power out to end users on the other. With the introduction of outsourcing and cloud computing, centralization in large data centers is again dominating...... the IT scene. In line with the views presented by Nicolas Carr in 2003 (Carr, 2003), it is a popular assumption that cloud computing will be the next utility (like water, electricity and gas) (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). However, this assumption disregards the fact that most IT production......), for instance, in establishing and maintaining trust between the involved parties (Sabherwal, 1999). So far, research in cloud computing has neglected this perspective and focused entirely on aspects relating to technology, economy, security and legal questions. While the core technologies of cloud computing (e...

  6. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    A mobile cloud is a cooperative arrangement of dynamically connected communication nodes sharing opportunistic resources. In this book, authors provide a comprehensive and motivating overview of this rapidly emerging technology. The book explores how distributed resources can be shared by mobile...... users in very different ways and for various purposes. The book provides many stimulating examples of resource-sharing applications. Enabling technologies for mobile clouds are also discussed, highlighting the key role of network coding. Mobile clouds have the potential to enhance communications...... performance, improve utilization of resources and create flexible platforms to share resources in very novel ways. Energy efficient aspects of mobile clouds are discussed in detail, showing how being cooperative can bring mobile users significant energy saving. The book presents and discusses multiple...

  7. Regional Hydrological Cycle over the Red Sea in ERA-Interim

    KAUST Repository

    Zolina, Olga

    2016-09-30

    The major sources of atmospheric moisture over the Red Sea are analyzed using ERA-Interim for the 1979-2013 period. The vertical structure of moisture transports across the coastlines has been computed separately for the western and eastern coasts of the Red Sea. The vertical structure of the moisture transport from the Red Sea to the continents is dominated by a breeze-like circulation in the near-surface layer and the Arabian high above 850 hPa. The lower-layer, breeze-like circulation is acting to export the moisture to the northwest of Africa and to the Arabian Peninsula and contributes about 80% of the moisture exports from the Red Sea, dominating over the transport in the upper layer, where the moisture is advected to the Arabian Peninsula in the northern part of the sea and to the African continent in the southern part. Integrated moisture divergence over the Red Sea decreased from the early 1980s to 1997 and then increased until the 2010s. Associated changes in the moisture export were provided primarily by the increasing intensity of the breeze-associated transports. The transports above the boundary layer, while being strong across the western and the eastern coasts, have a smaller effect on the net moisture export. The interannual variability of the moisture export in the near-surface layer was found to be closely correlated with the variability in sea surface temperature, especially in summer. Implications of the observed changes in the moisture advection for the hydrological cycle of the Middle East are discussed.

  8. Regional Hydrological Cycle over the Red Sea in ERA-Interim

    KAUST Repository

    Zolina, Olga; Dufour, Ambroise; Gulev, Sergey K.; Stenchikov, Georgiy L.

    2016-01-01

    The major sources of atmospheric moisture over the Red Sea are analyzed using ERA-Interim for the 1979-2013 period. The vertical structure of moisture transports across the coastlines has been computed separately for the western and eastern coasts of the Red Sea. The vertical structure of the moisture transport from the Red Sea to the continents is dominated by a breeze-like circulation in the near-surface layer and the Arabian high above 850 hPa. The lower-layer, breeze-like circulation is acting to export the moisture to the northwest of Africa and to the Arabian Peninsula and contributes about 80% of the moisture exports from the Red Sea, dominating over the transport in the upper layer, where the moisture is advected to the Arabian Peninsula in the northern part of the sea and to the African continent in the southern part. Integrated moisture divergence over the Red Sea decreased from the early 1980s to 1997 and then increased until the 2010s. Associated changes in the moisture export were provided primarily by the increasing intensity of the breeze-associated transports. The transports above the boundary layer, while being strong across the western and the eastern coasts, have a smaller effect on the net moisture export. The interannual variability of the moisture export in the near-surface layer was found to be closely correlated with the variability in sea surface temperature, especially in summer. Implications of the observed changes in the moisture advection for the hydrological cycle of the Middle East are discussed.

  9. An operational procedure for precipitable and cloud liquid water estimate in non-raining conditions over sea Study on the assessment of the nonlinear physical inversion algorithm

    CERN Document Server

    Nativi, S; Mazzetti, P

    2004-01-01

    In a previous work, an operative procedure to estimate precipitable and liquid water in non-raining conditions over sea was developed and assessed. The procedure is based on a fast non-linear physical inversion scheme and a forward model; it is valid for most of satellite microwave radiometers and it also estimates water effective profiles. This paper presents two improvements of the procedure: first, a refinement to provide modularity of the software components and portability across different computation system architectures; second, the adoption of the CERN MINUIT minimisation package, which addresses the problem of global minimisation but is computationally more demanding. Together with the increased computational performance that allowed to impose stricter requirements on the quality of fit, these refinements improved fitting precision and reliability, and allowed to relax the requirements on the initial guesses for the model parameters. The re-analysis of the same data-set considered in the previous pap...

  10. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...... archiving. The Soft Clouding Project is part of LARM - a major infrastructure combining research in and access to sound and radio archives in Denmark. In 2012 the LARM infrastructure will consist of more than 1 million hours of radio, combined with metadata who describes the content. The idea is to analyse...... the concept of ‘infrastructure’ and ‘interface’ on a creative play with the fundamentals of LARM (and any sound archive situation combining many kinds and layers of data and sources). This paper will present and discuss the Soft clouding project from the perspective of the three practices and competencies...

  11. CloudSat observations of cloud-type distribution over the Indian summer monsoon region

    Directory of Open Access Journals (Sweden)

    K. V. Subrahmanyam

    2013-07-01

    Full Text Available The three-dimensional distribution of various cloud types over the Indian summer monsoon (ISM region using five years (2006–2010 of CloudSat observations during June-July-August-September months is discussed for the first time. As the radiative properties, latent heat released and microphysical properties of clouds differ largely depending on the cloud type, it becomes important to know what types of clouds occur over which region. In this regard, the present analysis establishes the three-dimensional distribution of frequency of occurrence of stratus (St, stratocumulus (Sc, nimbostratus (Ns, cumulus (Cu, altocumulus (Ac, altostratus (As, cirrus (Ci and deep convective (DC clouds over the ISM region. The results show that the various cloud types preferentially occur over some regions of the ISM, which are consistent during all the years of observations. It is found that the DC clouds frequently occur over northeast of Bay of Bengal (BoB, Ci clouds over a wide region of south BoB–Indian peninsula–equatorial Indian Ocean, and Sc clouds over the north Arabian Sea. Ac clouds preferentially occur over land, and a large amount of As clouds are found over BoB. The occurrence of both St and Ns clouds over the study region is much lower than all other cloud types.The interannual variability of all these clouds including their vertical distribution is discussed. It is envisaged that the present study opens up possibilities to quantify the feedback of individual cloud type in the maintenance of the ISM through radiative forcing and latent heat release.

  12. Cloud Chamber

    DEFF Research Database (Denmark)

    Gfader, Verina

    Cloud Chamber takes its roots in a performance project, titled The Guests 做东, devised by Verina Gfader for the 11th Shanghai Biennale, ‘Why Not Ask Again: Arguments, Counter-arguments, and Stories’. Departing from the inclusion of the biennale audience to write a future folk tale, Cloud Chamber......: fiction and translation and translation through time; post literacy; world picturing-world typing; and cartographic entanglements and expressions of subjectivity; through the lens a social imaginary of worlding or cosmological quest. Art at its core? Contributions by Nikos Papastergiadis, Rebecca Carson...

  13. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Science.gov (United States)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; Uy, Sherdon N.; Zaiger, Kimo; Blake, Donald R.; Bucholtz, Anthony; Campbell, James R.; Chew, Boon Ning; Cliff, Steven S.; Holben, Brent N.; Holz, Robert E.; Hyer, Edward J.; Kreidenweis, Sonia M.; Kuciauskas, Arunas P.; Lolli, Simone; Oo, Min; Perry, Kevin D.; Salinas, Santo V.; Sessions, Walter R.; Smirnov, Alexander; Walker, Annette L.; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing

    2016-11-01

    . Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.

  14. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2016-11-01

    very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.

  15. Aerosol Meteorology of Maritime Continent for the 2012 7SEAS Southwest Monsoon Intensive Study - Part 2: Philippine Receptor Observations of Fine-Scale Aerosol Behavior

    Science.gov (United States)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; hide

    2016-01-01

    . Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.

  16. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; Uy, Sherdon N.; Zaiger, Kimo; Blake, Donald R.; Bucholtz, Anthony; Campbell, James R.; Chew, Boon Ning; Cliff, Steven S.; Holben, Brent N.; Holz, Robert E.; Hyer, Edward J.; Kreidenweis, Sonia M.; Kuciauskas, Arunas P.; Lolli, Simone; Oo, Min; Perry, Kevin D.; Salinas, Santo V.; Sessions, Walter R.; Smirnov, Alexander; Walker, Annette L.; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing

    2016-01-01

    and very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.

  17. Wind effect on currents in a thin surface layer of coastal waters faced open-sea

    International Nuclear Information System (INIS)

    Nakano, Masanao; Isozaki, Hisaaki; Isozaki, Tokuju; Nemoto, Masashi; Hasunuma, Keiichi; Kitamura, Takashi

    2009-01-01

    Two-years of continuous observation of wind and current were carried out to investigate the relationship between them in the coastal waters off Tokai-mura, Ibaraki prefecture. Three instruments to measure the current were set in a thin surface layer of 3 m above the strong pycnocline, which is a common feature in coastal waters. Both of the power spectra of wind and currents showed very similar features, an outstanding high peak at 24-hour period and a range of high peaks longer than several-days period. The long term variation of the wind field always contained north-wind component, which contributed to forming the southward current along the shore throughout the year. A high correlation coefficient (0.64) was obtained between the wind and the current at a depth of 0.5 m on the basis of the two-year observation. Harmonic analysis revealed that an outstanding current with 24-hour period was the S 1 component (meteorological tide), and was driven by land and sea breezes. These breezes also contained solar tidal components such as K 1 , P 1 and S 2 . These wind components added their own wind driven currents on the original tidal currents. This meant that land and sea breezes generated wind driven currents with solar tidal periods which behaved like astronomical tidal currents. As result, coastal currents contained pseudo tidal currents which behaved like astronomical tidal currents. (author)

  18. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  19. Cloud computing.

    Science.gov (United States)

    Wink, Diane M

    2012-01-01

    In this bimonthly series, the author examines how nurse educators can use Internet and Web-based technologies such as search, communication, and collaborative writing tools; social networking and social bookmarking sites; virtual worlds; and Web-based teaching and learning programs. This article describes how cloud computing can be used in nursing education.

  20. Cloud Computing

    Indian Academy of Sciences (India)

    IAS Admin

    2014-03-01

    Mar 1, 2014 ... There are several types of services available on a cloud. We describe .... CPU speed has been doubling every 18 months at constant cost. Besides this ... Plain text (e.g., email) may be read by anyone who is able to access it.

  1. Dynamics of Clouds and Mesoscale Circulations over the Maritime Continent

    Science.gov (United States)

    Jin, Y.; Wang, S.; Xian, P.; Reid, J. S.; Nachamkin, J.

    2010-12-01

    In recent decades Southeast Asia (SEA) has seen rapid economic growth as well as increased biomass burning, resulting in high air pollution levels and reduced air qual-ity. At the same time clouds often prevent accurate air-quality monitoring and analysis using satellite observations. The Seven SouthEast Asian Studies (7SEAS) field campaign currently underway over SEA provides an unprecedented opportunity to study the com-plex interplay between aerosol and clouds. 7SEAS is a comprehensive interdisciplinary atmospheric sciences program through international partnership of NASA, NRL, ONR and seven local institutions including those from Indonesia, Malaysia, the Philippines, Singapore, Taiwan, Thailand, and Vietnam. While the original goal of 7SEAS is to iso-late the impacts of aerosol particles on weather and the environment, it is recognized that better understanding of SEA meteorological conditions, especially those associated with cloud formation and evolution, is critical to the success of the campaign. In this study we attempt to gain more insight into the dynamic and physical processes associated with low level clouds and atmospheric circulation at the regional scale over SEA, using the Navy’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS® ), a regional forecast model in operation at FNMOC since 1998. This effort comprises two main components. First, multiple-years of COAMPS operational forecasts over SEA are analyzed for basic climatology of atmospheric fea-tures. Second, mesoscale circulation and cloud properties are simulated at relatively higher resolution (15-km) for selected periods in the Gulf of Tonkin and adjacent coastal areas. Simulation results are compared to MODIS cloud observations and local sound-ings obtained during 7SEAS for model verifications. Atmospheric boundary layer proc-esses are examined in relation to spatial and temporal variations of cloud fields. The cur-rent work serves as an important step toward improving our

  2. Cloud and surface textural features in polar regions

    Science.gov (United States)

    Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.

    1990-01-01

    The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.

  3. Cloud management and security

    CERN Document Server

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  4. Cloud time

    CERN Document Server

    Lockwood, Dean

    2012-01-01

    The ‘Cloud’, hailed as a new digital commons, a utopia of collaborative expression and constant connection, actually constitutes a strategy of vitalist post-hegemonic power, which moves to dominate immanently and intensively, organizing our affective political involvements, instituting new modes of enclosure, and, crucially, colonizing the future through a new temporality of control. The virtual is often claimed as a realm of invention through which capitalism might be cracked, but it is precisely here that power now thrives. Cloud time, in service of security and profit, assumes all is knowable. We bear witness to the collapse of both past and future virtuals into a present dedicated to the exploitation of the spectres of both.

  5. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  6. Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia

    Science.gov (United States)

    Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.

    2009-12-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.

  7. Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds

    Science.gov (United States)

    Christensen, M. W.; Suzuki, K.; Zambri, B.; Stephens, G. L.

    2014-10-01

    Aerosol influences on clouds are a major source of uncertainty to our understanding of forced climate change. Increased aerosol can enhance solar reflection from clouds countering greenhouse gas warming. Recently, this indirect effect has been extended from water droplet clouds to other types including mixed-phase clouds. Aerosol effects on mixed-phase clouds are important because of their fundamental role on sea ice loss and polar climate change, but very little is known about aerosol effects on these clouds. Here we provide the first analysis of the effects of aerosol emitted from ship stacks into mixed-phase clouds. Satellite observations of solar reflection in numerous ship tracks reveal that cloud albedo increases 5 times more in liquid clouds when polluted and persist 2 h longer than in mixed-phase clouds. These results suggest that seeding mixed-phase clouds via shipping aerosol is unlikely to provide any significant counterbalancing solar radiative cooling effects in warming polar regions.

  8. Essentials of cloud computing

    CERN Document Server

    Chandrasekaran, K

    2014-01-01

    ForewordPrefaceComputing ParadigmsLearning ObjectivesPreambleHigh-Performance ComputingParallel ComputingDistributed ComputingCluster ComputingGrid ComputingCloud ComputingBiocomputingMobile ComputingQuantum ComputingOptical ComputingNanocomputingNetwork ComputingSummaryReview PointsReview QuestionsFurther ReadingCloud Computing FundamentalsLearning ObjectivesPreambleMotivation for Cloud ComputingThe Need for Cloud ComputingDefining Cloud ComputingNIST Definition of Cloud ComputingCloud Computing Is a ServiceCloud Computing Is a Platform5-4-3 Principles of Cloud computingFive Essential Charact

  9. Cloud amount/frequency, TRANSMISSIVITY and other data from NOAA Ship MILLER FREEMAN in the Bering Sea, NW Pacific and other waters from 1992-04-04 to 1992-09-25 (NODC Accession 9300022)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in NW Pacific (limit-180), NE Pacific (limit-180), Greenland Sea and Bering Sea as part...

  10. Linescan camera evaluation of SSM/I 85.5 GHz sea ice retrieval

    DEFF Research Database (Denmark)

    Garrity, Caren; Lubin, Dan; Kern, Stefan

    2002-01-01

    misclassify clouds over open water as sea ice, and is therefore unreliable for locating the sea ice edge. The best algorithm for locating the sea ice edge is found to be the SEA LION algorithm, which explicitly uses meteorological reanalysis data to correct for atmospheric contamination. For total sea ice...

  11. Cloud Computing, Tieto Cloud Server Model

    OpenAIRE

    Suikkanen, Saara

    2013-01-01

    The purpose of this study is to find out what is cloud computing. To be able to make wise decisions when moving to cloud or considering it, companies need to understand what cloud is consists of. Which model suits best to they company, what should be taken into account before moving to cloud, what is the cloud broker role and also SWOT analysis of cloud? To be able to answer customer requirements and business demands, IT companies should develop and produce new service models. IT house T...

  12. Blue skies for CLOUD

    CERN Multimedia

    2006-01-01

    Through the recently approved CLOUD experiment, CERN will soon be contributing to climate research. Tests are being performed on the first prototype of CLOUD, an experiment designed to assess cosmic radiation influence on cloud formation.

  13. Clouds enhance Greenland ice sheet mass loss

    Science.gov (United States)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  14. Moving towards Cloud Security

    OpenAIRE

    Edit Szilvia Rubóczki; Zoltán Rajnai

    2015-01-01

    Cloud computing hosts and delivers many different services via Internet. There are a lot of reasons why people opt for using cloud resources. Cloud development is increasing fast while a lot of related services drop behind, for example the mass awareness of cloud security. However the new generation upload videos and pictures without reason to a cloud storage, but only few know about data privacy, data management and the proprietary of stored data in the cloud. In an enterprise environment th...

  15. Extreme Vertical Gusts in the Atmospheric Boundary Layer

    Science.gov (United States)

    2015-07-01

    Density Currents Sea breezes, thunderstorm outflows and cold fronts are all physically similar, but differ in size22. They cause lift as the cold air...the consideration of sea breezes and other density currents. Moreover, some thunderstorm outflows run far ahead of their parent storm and may even...substantially opaque to these frequencies means most of the infra- red radiation from water molecules to space is coming from the top of the cloud. On

  16. Tides in three enclosed basins: the Baltic, Black and Caspian seas

    Directory of Open Access Journals (Sweden)

    Igor P Medvedev

    2016-04-01

    Full Text Available Tides are the main type of sea level variability in the world ocean. However, oceanic tides penetrate weakly, or do not penetrate at all, into enclosed basins such as the Baltic, Black and Caspian seas. Consequently, only directly forced tides are formed in these basins. Long observation time series (up to 123 years in the Baltic Sea and 38 years in the Black and Caspian seas at numerous stations were used to precisely estimate tidal constituents. High-resolution spectra revealed fine structure of discrete peaks at tidal frequencies. The diurnal radiational constituent S1 (1 cpd, apparently associated with breeze winds, was found to play an important role in general tidal dynamics in these seas. Harmonic analysis of tides for individual yearly series with consecutive vector averaging over the entire observational period was applied to estimate mean amplitudes and phases of tidal constituents. Our findings indicate that the formation and predominance of diurnal or semidiurnal tides in these seas appears to depend on the frequency-selective properties of the basins. Thus, in the Baltic Sea with fundamental modal period of about 27 h, diurnal tides dominate in the major eastern gulfs. In the Black Sea resonant amplification of semidiurnal tides is observed in the northwestern part. The predominance of semidiurnal tides in the Caspian Sea has also probably a resonant nature. Maximum tidal heights estimated for a 100-year period are 23 cm in the Baltic Sea, 18 cm in the Black Sea and 21 cm in the southern Caspian Sea.

  17. Influence of Indian summer monsoon variability on the surface waves in the coastal regions of eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Jesbin, G.

    –885, 2016 www.ann-geophys.net/34/871/2016/ doi:10.5194/angeo-34-871-2016 © Author(s) 2016. CC Attribution 3.0 License. Influence of Indian summer monsoon variability on the surface waves in the coastal regions of eastern Arabian Sea V. Sanil Kumar and Jesbin... of the period. The annual average value is ∼ 1.5 m (Anoop et al., 2015). During the non-monsoon period, the land and sea breeze has a signif- icant influence on the wave climate of eastern AS (Glejin Ann. Geophys., 34, 871–885, 2016 www.ann-geophys.net/34...

  18. Cloud-Top Entrainment in Stratocumulus Clouds

    Science.gov (United States)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  19. Cloud Infrastructure & Applications - CloudIA

    Science.gov (United States)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  20. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  1. Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS

    Science.gov (United States)

    Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.

    2014-05-01

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.

  2. Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS

    Science.gov (United States)

    Alfaro, Ricardo

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of

  3. Cloud Statistics and Discrimination in the Polar Regions

    Science.gov (United States)

    Chan, M.; Comiso, J. C.

    2012-12-01

    Despite their important role in the climate system, cloud cover and their statistics are poorly known, especially in the polar regions, where clouds are difficult to discriminate from snow covered surfaces. The advent of the A-train, which included Aqua/MODIS, CALIPSO/CALIOP and CloudSat/CPR sensors has provided an opportunity to improve our ability to accurately characterize the cloud cover. MODIS provides global coverage at a relatively good temporal and spatial resolution while CALIOP and CPR provide limited nadir sampling but accurate characterization of the vertical structure and phase of the cloud cover. Over the polar regions, cloud detection from a passive sensors like MODIS is challenging because of the presence of cold and highly reflective surfaces such as snow, sea-ice, glaciers, and ice-sheet, which have surface signatures similar to those of clouds. On the other hand, active sensors such as CALIOP and CPR are not only very sensitive to the presence of clouds but can also provide information about its microphysical characteristics. However, these nadir-looking sensors have sparse spatial coverage and their global data can have data spatial gaps of up to 100 km. We developed a polar cloud detection system for MODIS that is trained using collocated data from CALIOP and CPR. In particular, we employ a machine learning system that reads the radiative profile observed by MODIS and determine whether the field of view is cloudy or clear. Results have shown that the improved cloud detection scheme performs better than typical cloud mask algorithms using a validation data set not used for training. A one-year data set was generated and results indicate that daytime cloud detection accuracies improved from 80.1% to 92.6% (over sea-ice) and 71.2% to 87.4% (over ice-sheet) with CALIOP data used as the baseline. Significant improvements are also observed during nighttime, where cloud detection accuracies increase by 19.8% (over sea-ice) and 11.6% (over ice

  4. Ten Years of Cloud Optical and Microphysical Retrievals from MODIS

    Science.gov (United States)

    Platnick, Steven; King, Michael D.; Wind, Galina; Hubanks, Paul; Arnold, G. Thomas; Amarasinghe, Nandana

    2010-01-01

    The MODIS cloud optical properties algorithm (MOD06/MYD06 for Terra and Aqua MODIS, respectively) has undergone extensive improvements and enhancements since the launch of Terra. These changes have included: improvements in the cloud thermodynamic phase algorithm; substantial changes in the ice cloud light scattering look up tables (LUTs); a clear-sky restoral algorithm for flagging heavy aerosol and sunglint; greatly improved spectral surface albedo maps, including the spectral albedo of snow by ecosystem; inclusion of pixel-level uncertainty estimates for cloud optical thickness, effective radius, and water path derived for three error sources that includes the sensitivity of the retrievals to solar and viewing geometries. To improve overall retrieval quality, we have also implemented cloud edge removal and partly cloudy detection (using MOD35 cloud mask 250m tests), added a supplementary cloud optical thickness and effective radius algorithm over snow and sea ice surfaces and over the ocean, which enables comparison with the "standard" 2.1 11m effective radius retrieval, and added a multi-layer cloud detection algorithm. We will discuss the status of the MOD06 algorithm and show examples of pixellevel (Level-2) cloud retrievals for selected data granules, as well as gridded (Level-3) statistics, notably monthly means and histograms (lD and 2D, with the latter giving correlations between cloud optical thickness and effective radius, and other cloud product pairs).

  5. The CLOUD experiment

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The Cosmics Leaving Outdoor Droplets (CLOUD) experiment as shown by Jasper Kirkby (spokesperson). Kirkby shows a sketch to illustrate the possible link between galactic cosmic rays and cloud formations. The CLOUD experiment uses beams from the PS accelerator at CERN to simulate the effect of cosmic rays on cloud formations in the Earth's atmosphere. It is thought that cosmic ray intensity is linked to the amount of low cloud cover due to the formation of aerosols, which induce condensation.

  6. BUSINESS INTELLIGENCE IN CLOUD

    OpenAIRE

    Celina M. Olszak

    2014-01-01

    . The paper reviews and critiques current research on Business Intelligence (BI) in cloud. This review highlights that organizations face various challenges using BI cloud. The research objectives for this study are a conceptualization of the BI cloud issue, as well as an investigation of some benefits and risks from BI cloud. The study was based mainly on a critical analysis of literature and some reports on BI cloud using. The results of this research can be used by IT and business leaders ...

  7. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  8. Variability in modeled cloud feedback tied to differences in the climatological spatial pattern of clouds

    Science.gov (United States)

    Siler, Nicholas; Po-Chedley, Stephen; Bretherton, Christopher S.

    2018-02-01

    Despite the increasing sophistication of climate models, the amount of surface warming expected from a doubling of atmospheric CO_2 (equilibrium climate sensitivity) remains stubbornly uncertain, in part because of differences in how models simulate the change in global albedo due to clouds (the shortwave cloud feedback). Here, model differences in the shortwave cloud feedback are found to be closely related to the spatial pattern of the cloud contribution to albedo (α) in simulations of the current climate: high-feedback models exhibit lower (higher) α in regions of warm (cool) sea-surface temperatures, and therefore predict a larger reduction in global-mean α as temperatures rise and warm regions expand. The spatial pattern of α is found to be strongly predictive (r=0.84) of a model's global cloud feedback, with satellite observations indicating a most-likely value of 0.58± 0.31 Wm^{-2} K^{-1} (90% confidence). This estimate is higher than the model-average cloud feedback of 0.43 Wm^{-2} K^{-1}, with half the range of uncertainty. The observational constraint on climate sensitivity is weaker but still significant, suggesting a likely value of 3.68 ± 1.30 K (90% confidence), which also favors the upper range of model estimates. These results suggest that uncertainty in model estimates of the global cloud feedback may be substantially reduced by ensuring a realistic distribution of clouds between regions of warm and cool SSTs in simulations of the current climate.

  9. Cloud Processed CCN Suppress Stratus Cloud Drizzle

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    Conversion of sulfur dioxide to sulfate within cloud droplets increases the sizes and decreases the critical supersaturation, Sc, of cloud residual particles that had nucleated the droplets. Since other particles remain at the same sizes and Sc a size and Sc gap is often observed. Hudson et al. (2015) showed higher cloud droplet concentrations (Nc) in stratus clouds associated with bimodal high-resolution CCN spectra from the DRI CCN spectrometer compared to clouds associated with unimodal CCN spectra (not cloud processed). Here we show that CCN spectral shape (bimodal or unimodal) affects all aspects of stratus cloud microphysics and drizzle. Panel A shows mean differential cloud droplet spectra that have been divided according to traditional slopes, k, of the 131 measured CCN spectra in the Marine Stratus/Stratocumulus Experiment (MASE) off the Central California coast. K is generally high within the supersaturation, S, range of stratus clouds (< 0.5%). Because cloud processing decreases Sc of some particles, it reduces k. Panel A shows higher concentrations of small cloud droplets apparently grown on lower k CCN than clouds grown on higher k CCN. At small droplet sizes the concentrations follow the k order of the legend, black, red, green, blue (lowest to highest k). Above 13 µm diameter the lines cross and the hierarchy reverses so that blue (highest k) has the highest concentrations followed by green, red and black (lowest k). This reversed hierarchy continues into the drizzle size range (panel B) where the most drizzle drops, Nd, are in clouds grown on the least cloud-processed CCN (blue), while clouds grown on the most processed CCN (black) have the lowest Nd. Suppression of stratus cloud drizzle by cloud processing is an additional 2nd indirect aerosol effect (IAE) that along with the enhancement of 1st IAE by higher Nc (panel A) are above and beyond original IAE. However, further similar analysis is needed in other cloud regimes to determine if MASE was

  10. Thermal Internal Boundary Layer characteristics at a tropical coastal ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    reduction in the momentum fluxes gives rise to decrease in the turbulence intensity. Updraft in the sea breeze front ... upper level synoptic flow and the sea breeze. Ver- tical velocity ...... the sea breezes over south Florida; Mon. Weather Rev.

  11. Gathering by the Red Sea highlights links between environment and epigenetics

    KAUST Repository

    Li, Mo

    2017-06-06

    The number of conferences on epigenetics has been increasing in the past decade, underscoring the impact of the field on a variety of areas in biology and medicine. However, the mechanistic role of the epigenome in adaptation and inheritance, and how the environment may impinge on epigenetic control, are topics of growing debate. Those themes were the focus of the inaugural international King Abdullah University of Science and Technology (KAUST) Research Conference on Environmental Epigenetics in Saudi Arabia, where more than 100 participants from 19 countries enjoyed vibrant scientific discussions and a pleasant February breeze from the Red Sea.

  12. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  13. Variability in the air–sea interaction patterns and timescales within the south-eastern Bay of Biscay, as observed by HF radar data

    Directory of Open Access Journals (Sweden)

    A. Fontán

    2013-04-01

    Full Text Available Two high-frequency (HF radar stations were installed on the coast of the south-eastern Bay of Biscay in 2009, providing high spatial and temporal resolution and large spatial coverage of currents in the area for the first time. This has made it possible to quantitatively assess the air–sea interaction patterns and timescales for the period 2009–2010. The analysis was conducted using the Barnett–Preisendorfer approach to canonical correlation analysis (CCA of reanalysis surface winds and HF radar-derived surface currents. The CCA yields two canonical patterns: the first wind–current interaction pattern corresponds to the classical Ekman drift at the sea surface, whilst the second describes an anticyclonic/cyclonic surface circulation. The results obtained demonstrate that local winds play an important role in driving the upper water circulation. The wind–current interaction timescales are mainly related to diurnal breezes and synoptic variability. In particular, the breezes force diurnal currents in waters of the continental shelf and slope of the south-eastern Bay. It is concluded that the breezes may force diurnal currents over considerably wider areas than that covered by the HF radar, considering that the northern and southern continental shelves of the Bay exhibit stronger diurnal than annual wind amplitudes.

  14. The Research of Dr. Joanne Simpson: Fifty Years Investigating Hurricanes, Tropical Clouds and Cloud Systems

    Science.gov (United States)

    Tao, W. -K.; Halverson, J.; Adler, R.; Garstang, M.; Houze, R., Jr.; LeMone, M.; Pielke, R., Sr.; Woodley, W.; O'C.Starr, David (Technical Monitor)

    2001-01-01

    This AMS Meteorological Monographs is dedicated to Dr. Joanne Simpson for her many pioneering research efforts in tropical meteorology during her fifty-year career. Dr. Simpson's major areas of scientific research involved the "hot tower" hypothesis and its role in hurricanes, structure and maintenance of trade winds, air-sea interaction, and observations and the mechanism for hurricanes and waterspouts. She was also a pioneer in cloud modeling with the first one-dimensional model and had the first cumulus model on a computer. She also played a major role in planning and leading observational experiments on convective cloud systems. The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, a joint U.S.-Japan project, in November of 1997 made it possible for quantitative measurements of tropical rainfall to be obtained on a continuous basis over the entire global tropics. Dr. Simpson was the TRAM Project Scientist from 1986 until its launch in 1997. Her efforts during this crucial period ensured that the mission was both well planned scientifically and well engineered as well as within budget. In this paper, Dr. J. Simpson's nine specific accomplishments during her fifty-year career: (1) hot tower hypothesis, (2) hurricanes, (3) airflow and clouds over heated islands, (4) cloud models, (5) trade winds and their role in cumulus development, (6) air-sea interaction, (7) cloud-cloud interactions and mergers, (8) waterspouts, and (9) TRMM science, will be described and discussed.

  15. Cloud CCN feedback

    International Nuclear Information System (INIS)

    Hudson, J.G.

    1992-01-01

    Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result

  16. Cloud-Scale Numerical Modeling of the Arctic Boundary Layer

    Science.gov (United States)

    Krueger, Steven K.

    1998-01-01

    The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.

  17. Mesoscale energetics and flows induced by sea-land and mountain-valley contrasts

    Directory of Open Access Journals (Sweden)

    S. Federico

    2000-02-01

    Full Text Available We study the relative importance of sea-land and mountain-valley thermal contrasts in determining the development of thermally forced mesoscale circulations (TFMCs over a mountainous peninsula. We first analyse the energetics of the problem, and using this theory, we interprete the numerical simulations over Calabria, a mountainous peninsula in southern Italy. The CSU 3-D nonlinear numerical model is utilised to simulate the dynamics and the thermodynamics of the atmospheric fields over Calabria. Results show the importance of orography in determining the pattern of the flow and the local climate in a region as complex as Calabria. Analysis of the results shows that the energetics due to the sea-land interactions are more efficient when the peninsula is flat. The importance of the energy due to the sea-land decreases as the mountain height of the peninsula increases. The energy stored over the mountain gains in importance, untill it is released by the readjustment of the warm mountain air as it prevails over the energy released by the inland penetration of the sea breeze front. For instance, our results show that over a peninsula 100 km wide the energy over the mountain and the energy in the sea-land contrast are of the same order when the height of the mountain is about 700 m, for a 1500 m convective boundary layer (CBL depth. Over the Calabrian peninsula, the energy released by the hot air in the CBL of the mountain prevails over the energy released by the inland penetration of the sea air. Calabria is about 1500 m high and about 50 km wide, and the CBL is of the order of 1500 m. The energy over the mountain is about four time larger than the energy contained in the sea-land contrast. Furthermore, the energetics increase with the patch width of the peninsula, and when its half width is much less than the Rossby radius, the MAPE of the sea breeze is negligible. When its half width is much larger than the Rossby radius, the breezes from the two

  18. Daytime sea fog retrieval based on GOCI data: a case study over the Yellow Sea.

    Science.gov (United States)

    Yuan, Yibo; Qiu, Zhongfeng; Sun, Deyong; Wang, Shengqiang; Yue, Xiaoyuan

    2016-01-25

    In this paper, a new daytime sea fog detection algorithm has been developed by using Geostationary Ocean Color Imager (GOCI) data. Based on spectral analysis, differences in spectral characteristics were found over different underlying surfaces, which include land, sea, middle/high level clouds, stratus clouds and sea fog. Statistical analysis showed that the Rrc (412 nm) (Rayleigh Corrected Reflectance) of sea fog pixels is approximately 0.1-0.6. Similarly, various band combinations could be used to separate different surfaces. Therefore, three indices (SLDI, MCDI and BSI) were set to discern land/sea, middle/high level clouds and fog/stratus clouds, respectively, from which it was generally easy to extract fog pixels. The remote sensing algorithm was verified using coastal sounding data, which demonstrated that the algorithm had the ability to detect sea fog. The algorithm was then used to monitor an 8-hour sea fog event and the results were consistent with observational data from buoys data deployed near the Sheyang coast (121°E, 34°N). The goal of this study was to establish a daytime sea fog detection algorithm based on GOCI data, which shows promise for detecting fog separately from stratus.

  19. Hybrid cloud for dummies

    CERN Document Server

    Hurwitz, Judith; Halper, Fern; Kirsch, Dan

    2012-01-01

    Understand the cloud and implement a cloud strategy for your business Cloud computing enables companies to save money by leasing storage space and accessing technology services through the Internet instead of buying and maintaining equipment and support services. Because it has its own unique set of challenges, cloud computing requires careful explanation. This easy-to-follow guide shows IT managers and support staff just what cloud computing is, how to deliver and manage cloud computing services, how to choose a service provider, and how to go about implementation. It also covers security and

  20. Secure cloud computing

    CERN Document Server

    Jajodia, Sushil; Samarati, Pierangela; Singhal, Anoop; Swarup, Vipin; Wang, Cliff

    2014-01-01

    This book presents a range of cloud computing security challenges and promising solution paths. The first two chapters focus on practical considerations of cloud computing. In Chapter 1, Chandramouli, Iorga, and Chokani describe the evolution of cloud computing and the current state of practice, followed by the challenges of cryptographic key management in the cloud. In Chapter 2, Chen and Sion present a dollar cost model of cloud computing and explore the economic viability of cloud computing with and without security mechanisms involving cryptographic mechanisms. The next two chapters addres

  1. Clouds of Venus

    Energy Technology Data Exchange (ETDEWEB)

    Knollenberg, R G [Particle Measuring Systems, Inc., 1855 South 57th Court, Boulder, Colorado 80301, U.S.A.; Hansen, J [National Aeronautics and Space Administration, New York (USA). Goddard Inst. for Space Studies; Ragent, B [National Aeronautics and Space Administration, Moffett Field, Calif. (USA). Ames Research Center; Martonchik, J [Jet Propulsion Lab., Pasadena, Calif. (USA); Tomasko, M [Arizona Univ., Tucson (USA)

    1977-05-01

    The current state of knowledge of the Venusian clouds is reviewed. The visible clouds of Venus are shown to be quite similar to low level terrestrial hazes of strong anthropogenic influence. Possible nucleation and particle growth mechanisms are presented. The Pioneer Venus experiments that emphasize cloud measurements are described and their expected findings are discussed in detail. The results of these experiments should define the cloud particle composition, microphysics, thermal and radiative heat budget, rough dynamical features and horizontal and vertical variations in these and other parameters. This information should be sufficient to initialize cloud models which can be used to explain the cloud formation, decay, and particle life cycle.

  2. Recent Findings Related to Giant Cloud Condensation Nuclei in the Marine Boundary Layer and Impacts on Clouds and Precipitation

    Science.gov (United States)

    Sorooshian, Armin; Dadashazar, Hossein; Wang, Zhen; Crosbie, Ewan; Brunke, Michael; Zeng, Xubin; Jonsson, Haflidi; Woods, Roy; Flagan, Richard; Seinfeld, John

    2017-04-01

    This presentation reports on findings from multiple airborne field campaigns off the California coast to understand the sources, nature, and impacts of giant cloud condensation nuclei (GCCN). Aside from sea spray emissions, measurements have revealed that ocean-going ships can be a source of GCCN due to wake and stack emissions off the California coast. Observed particle number concentrations behind 10 ships exceeded those in "control" areas, exhibiting number concentration enhancement ratios (ERs) for minimum threshold diameters of 2, 10, and 20 μm as high as 2.7, 5.5, and 7.5, respectively. The data provide insights into how ER is related to a variety of factors (downwind distance, altitude, ship characteristics such as gross tonnage, length, and beam). The data also provide insight into the extent to which a size distribution parameter and a cloud water chemical measurement can capture the effect of sea salt on marine stratocumulus cloud properties. The two GCCN proxy variables, near-surface particle number concentration for diameter > 5 µm and cloud water chloride concentration, are significantly correlated with each other, and both exhibit expected relationships with other parameters that typically coincide with sea salt emissions. Factors influencing the relationship between these two GCCN proxy measurements will be discussed. When comparing twelve pairs of high and low chloride cloud cases (at fixed liquid water path and cloud drop number concentration), the average drop spectra for high chloride cases exhibit enhanced drop number at diameters exceeding 20 µm, especially above 30 µm. In addition, high chloride cases coincide with enhanced mean columnar R and negative values of precipitation susceptibility. The difference in drop effective radius (re) between high and low chloride conditions decreases with height in cloud, suggesting that some GCCN-produced rain drops precipitate before reaching cloud tops. The sign of cloud responses (i.e., re, R) to

  3. The impact of parametrized convection on cloud feedback

    Science.gov (United States)

    Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming

    2015-01-01

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud

  4. Radiative properties of clouds

    International Nuclear Information System (INIS)

    Twomey, S.

    1993-01-01

    The climatic effects of condensation nuclei in the formation of cloud droplets and the subsequent role of the cloud droplets as contributors to the planetary short-wave albedo is emphasized. Microphysical properties of clouds, which can be greatly modified by the degree of mixing with cloud-free air from outside, are discussed. The effect of clouds on visible radiation is assessed through multiple scattering of the radiation. Cloudwater or ice absorbs more with increasing wavelength in the near-infrared region, with water vapor providing the stronger absorption over narrower wavelength bands. Cloud thermal infrared absorption can be solely related to liquid water content at least for shallow clouds and clouds in the early development state. Three-dimensional general circulation models have been used to study the climatic effect of clouds. It was found for such studies (which did not consider variations in cloud albedo) that the cooling effects due to the increase in planetary short-wave albedo from clouds were offset by heating effects due to thermal infrared absorption by the cloud. Two permanent direct effects of increased pollution are discussed in this chapter: (a) an increase of absorption in the visible and near infrared because of increased amounts of elemental carbon, which gives rise to a warming effect climatically, and (b) an increased optical thickness of clouds due to increasing cloud droplet number concentration caused by increasing cloud condensation nuclei number concentration, which gives rise to a cooling effect climatically. An increase in cloud albedo from 0.7 to 0.87 produces an appreciable climatic perturbation of cooling up to 2.5 K at the ground, using a hemispheric general circulation model. Effects of pollution on cloud thermal infrared absorption are negligible

  5. Cloud amount/frequency, NITRATE and other data from POISK, FRITJOF NANSEN and other platforms in the NE Atlantic and Norwegian Sea from 1969-04-17 to 1980-09-28 (NODC Accession 9000077)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Russian Ocean Station data was collected in Norwegian Sea and NE Atlantic (limit-40 W) using four different Ships by Polar Research and Designing Institute of...

  6. Turbidity, cloud amount/frequency and other data from ALPHA HELIX in the Gulf of Alaska and Bering Sea from 1989-10-04 to 1990-06-26 (NODC Accession 9100032)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and Benthic data were collected from Gulf of Alaska and Bering Sea using NOAA Ship Alpha Helix. The data was collected...

  7. Cloud amount/frequency, NITRATE and other data from CHARLES DARWIN in the Arabian Sea and Indian Ocean from 1986-12-20 to 1987-08-14 (NODC Accession 9000045)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) data with oxygen was collected off of Indian Ocean and Arabian Sea using Charles Darwin ship as part of Monsoon And...

  8. Cloud amount/frequency, NITRATE and other data from KNORR, ENDEAVOR and OCEANUS in the Greenland Sea from 1988-09-11 to 1991-03-22 (NODC Accession 9100241)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD), Bathythermograph (XBT) and Sound Velocity data (XSV) were collected from fifty seven stations in Greenland Sea using...

  9. CURRENT DIRECTION, cloud amount/frequency and other data from SCANDIA, MAKEDA and other platforms in the Coral Sea from 1959-09-17 to 1972-12-30 (NODC Accession 7700278)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data consists of Moored Current Meters deployed by the Australian ship STRADBROOKE over Moreton Bay, Coral sea. Project was supported by Council of Scientific...

  10. Cloud amount/frequency, NITRATE and other data from RYOFU MARU in the Sea of Japan from 1979-06-02 to 1979-07-21 (NODC Accession 9100223)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Serial data in this accession was collected in Sea of Japan using ship RYOFU MARU. The data was collected between June 2, 1979 and July 21, 1979 and...

  11. Cloud amount/frequency, NITRATE and other data from STRANGER, AKADEMIK ALEKSANDR NESMEYANOV and other platforms in the South China Sea from 1947-12-07 to 1988-03-08 (NODC Accession 9200011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Serial data in this accession was collected in South China Sea (Nan Hai), TOGA Area - Pacific (30 N to 30 S) as part of Tropical Ocean Global Atmosphere...

  12. Moving towards Cloud Security

    Directory of Open Access Journals (Sweden)

    Edit Szilvia Rubóczki

    2015-01-01

    Full Text Available Cloud computing hosts and delivers many different services via Internet. There are a lot of reasons why people opt for using cloud resources. Cloud development is increasing fast while a lot of related services drop behind, for example the mass awareness of cloud security. However the new generation upload videos and pictures without reason to a cloud storage, but only few know about data privacy, data management and the proprietary of stored data in the cloud. In an enterprise environment the users have to know the rule of cloud usage, however they have little knowledge about traditional IT security. It is important to measure the level of their knowledge, and evolve the training system to develop the security awareness. The article proves the importance of suggesting new metrics and algorithms for measuring security awareness of corporate users and employees to include the requirements of emerging cloud security.

  13. Cloud Computing for radiologists.

    Science.gov (United States)

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  14. Cloud Computing for radiologists

    International Nuclear Information System (INIS)

    Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future

  15. Cloud computing for radiologists

    Directory of Open Access Journals (Sweden)

    Amit T Kharat

    2012-01-01

    Full Text Available Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  16. A Simple Technique for Creating Regional Composites of Sea Surface Temperature from MODIS for Use in Operational Mesoscale NWP

    Science.gov (United States)

    Knievel, Jason C.; Rife, Daran L.; Grim, Joseph A.; Hahmann, Andrea N.; Hacker, Joshua P.; Ge, Ming; Fisher, Henry H.

    2010-01-01

    This paper describes a simple technique for creating regional, high-resolution, daytime and nighttime composites of sea surface temperature (SST) for use in operational numerical weather prediction (NWP). The composites are based on observations from NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra. The data used typically are available nearly in real time, are applicable anywhere on the globe, and are capable of roughly representing the diurnal cycle in SST. The composites resolution is much higher than that of many other standard SST products used for operational NWP, including the low- and high-resolution Real-Time Global (RTG) analyses. The difference in resolution is key because several studies have shown that highly resolved SSTs are important for driving the air sea interactions that shape patterns of static stability, vertical and horizontal wind shear, and divergence in the planetary boundary layer. The MODIS-based composites are compared to in situ observations from buoys and other platforms operated by the National Data Buoy Center (NDBC) off the coasts of New England, the mid-Atlantic, and Florida. Mean differences, mean absolute differences, and root-mean-square differences between the composites and the NDBC observations are all within tenths of a degree of those calculated between RTG analyses and the NDBC observations. This is true whether or not one accounts for the mean offset between the skin temperatures of the MODIS dataset and the bulk temperatures of the NDBC observations and RTG analyses. Near the coast, the MODIS-based composites tend to agree more with NDBC observations than do the RTG analyses. The opposite is true away from the coast. All of these differences in point-wise comparisons among the SST datasets are small compared to the 61.08C accuracy of the NDBC SST sensors. Because skin-temperature variations from land to water so strongly affect the development and life cycle of the sea breeze, this

  17. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    OpenAIRE

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice ...

  18. Cloud computing strategies

    CERN Document Server

    Chorafas, Dimitris N

    2011-01-01

    A guide to managing cloud projects, Cloud Computing Strategies provides the understanding required to evaluate the technology and determine how it can be best applied to improve business and enhance your overall corporate strategy. Based on extensive research, it examines the opportunities and challenges that loom in the cloud. It explains exactly what cloud computing is, what it has to offer, and calls attention to the important issues management needs to consider before passing the point of no return regarding financial commitments.

  19. Towards Indonesian Cloud Campus

    OpenAIRE

    Thamrin, Taqwan; Lukman, Iing; Wahyuningsih, Dina Ika

    2013-01-01

    Nowadays, Cloud Computing is most discussed term in business and academic environment.Cloud campus has many benefits such as accessing the file storages, e-mails, databases,educational resources, research applications and tools anywhere for faculty, administrators,staff, students and other users in university, on demand. Furthermore, cloud campus reduces universities’ IT complexity and cost.This paper discuss the implementation of Indonesian cloud campus and various opportunies and benefits...

  20. Cloud Infrastructure Security

    OpenAIRE

    Velev , Dimiter; Zlateva , Plamena

    2010-01-01

    Part 4: Security for Clouds; International audience; Cloud computing can help companies accomplish more by eliminating the physical bonds between an IT infrastructure and its users. Users can purchase services from a cloud environment that could allow them to save money and focus on their core business. At the same time certain concerns have emerged as potential barriers to rapid adoption of cloud services such as security, privacy and reliability. Usually the information security professiona...

  1. Cloud services in organization

    OpenAIRE

    FUXA, Jan

    2013-01-01

    The work deals with the definition of the word cloud computing, cloud computing models, types, advantages, disadvantages, and comparing SaaS solutions such as: Google Apps and Office 365 in the area of electronic communications. The work deals with the use of cloud computing in the corporate practice, both good and bad practice. The following section describes the methodology for choosing the appropriate cloud service organization. Another part deals with analyzing the possibilities of SaaS i...

  2. Orchestrating Your Cloud Orchestra

    OpenAIRE

    Hindle, Abram

    2015-01-01

    Cloud computing potentially ushers in a new era of computer music performance with exceptionally large computer music instruments consisting of 10s to 100s of virtual machines which we propose to call a `cloud-orchestra'. Cloud computing allows for the rapid provisioning of resources, but to deploy such a complicated and interconnected network of software synthesizers in the cloud requires a lot of manual work, system administration knowledge, and developer/operator skills. This is a barrier ...

  3. Cloud security mechanisms

    OpenAIRE

    2014-01-01

    Cloud computing has brought great benefits in cost and flexibility for provisioning services. The greatest challenge of cloud computing remains however the question of security. The current standard tools in access control mechanisms and cryptography can only partly solve the security challenges of cloud infrastructures. In the recent years of research in security and cryptography, novel mechanisms, protocols and algorithms have emerged that offer new ways to create secure services atop cloud...

  4. Cloud computing for radiologists

    OpenAIRE

    Amit T Kharat; Amjad Safvi; S S Thind; Amarjit Singh

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as...

  5. Cloud Robotics Model

    OpenAIRE

    Mester, Gyula

    2015-01-01

    Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen a...

  6. Genomics With Cloud Computing

    OpenAIRE

    Sukhamrit Kaur; Sandeep Kaur

    2015-01-01

    Abstract Genomics is study of genome which provides large amount of data for which large storage and computation power is needed. These issues are solved by cloud computing that provides various cloud platforms for genomics. These platforms provides many services to user like easy access to data easy sharing and transfer providing storage in hundreds of terabytes more computational power. Some cloud platforms are Google genomics DNAnexus and Globus genomics. Various features of cloud computin...

  7. Meteorological explanation of wake clouds at Horns Rev wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Emeis, S. [Karlsruhe Institute of Technology (Germany). Inst. for Meteorology and Climate Research

    2010-08-15

    The occurrence of wake clouds at Horns Rev wind farm is explained as mixing fog. Mixing fog forms when two nearly saturated air masses with different temperature are mixed. Due to the non-linearity of the dependence of the saturation water vapour pressure on temperature, the mixed air mass is over-saturated and condensation sets in. On the day in February 2008, when the wake clouds were observed at Horns Rev, cold and very humid air was advected from the nearby land over the warmer North Sea and led to the formation of a shallow layer with sea smoke or fog close above the sea surface. The turbines mixed a much deeper layer and thus provoked the formation of cloud trails in the wakes of the turbines. (orig.)

  8. Chargeback for cloud services.

    NARCIS (Netherlands)

    Baars, T.; Khadka, R.; Stefanov, H.; Jansen, S.; Batenburg, R.; Heusden, E. van

    2014-01-01

    With pay-per-use pricing models, elastic scaling of resources, and the use of shared virtualized infrastructures, cloud computing offers more efficient use of capital and agility. To leverage the advantages of cloud computing, organizations have to introduce cloud-specific chargeback practices.

  9. On CLOUD nine

    CERN Multimedia

    2009-01-01

    The team from the CLOUD experiment - the world’s first experiment using a high-energy particle accelerator to study the climate - were on cloud nine after the arrival of their new three-metre diameter cloud chamber. This marks the end of three years’ R&D and design, and the start of preparations for data taking later this year.

  10. Cloud Computing Explained

    Science.gov (United States)

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  11. Greening the Cloud

    NARCIS (Netherlands)

    van den Hoed, Robert; Hoekstra, Eric; Procaccianti, G.; Lago, P.; Grosso, Paola; Taal, Arie; Grosskop, Kay; van Bergen, Esther

    The cloud has become an essential part of our daily lives. We use it to store our documents (Dropbox), to stream our music and lms (Spotify and Net ix) and without giving it any thought, we use it to work on documents in the cloud (Google Docs). The cloud forms a massive storage and processing

  12. Security in the cloud.

    Science.gov (United States)

    Degaspari, John

    2011-08-01

    As more provider organizations look to the cloud computing model, they face a host of security-related questions. What are the appropriate applications for the cloud, what is the best cloud model, and what do they need to know to choose the best vendor? Hospital CIOs and security experts weigh in.

  13. New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data

    Science.gov (United States)

    Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.

    2016-05-01

    Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.

  14. Coastal precipitation formation and discharge based on TRMM observations

    OpenAIRE

    R. H. Heiblum; I. Koren; O. Altaratz

    2011-01-01

    The interaction between breezes and synoptic gradient winds creates persistent convergence zones nearby coastlines. The low level convergence of moist air promotes the dynamical and microphysical processes responsible for the formation of clouds and precipitation.

    Our work focuses on the winter seasons of 1998–2011 in the Eastern Mediterrenean. During the winter the Mediterrenean sea is usually warmer than the adjacent land, resulting in frequent occurence of land breeze ...

  15. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  16. CLOUD STORAGE SERVICES

    OpenAIRE

    Yan, Cheng

    2017-01-01

    Cloud computing is a hot topic in recent research and applications. Because it is widely used in various fields. Up to now, Google, Microsoft, IBM, Amazon and other famous co partnership have proposed their cloud computing application. Look upon cloud computing as one of the most important strategy in the future. Cloud storage is the lower layer of cloud computing system which supports the service of the other layers above it. At the same time, it is an effective way to store and manage heavy...

  17. Cloud Computing Quality

    Directory of Open Access Journals (Sweden)

    Anamaria Şiclovan

    2013-02-01

    Full Text Available Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offered to the consumers as a product delivered online. This paper is meant to describe the quality of cloud computing services, analyzing the advantages and characteristics offered by it. It is a theoretical paper.Keywords: Cloud computing, QoS, quality of cloud computing

  18. Benchmarking Cloud Storage Systems

    OpenAIRE

    Wang, Xing

    2014-01-01

    With the rise of cloud computing, many cloud storage systems like Dropbox, Google Drive and Mega have been built to provide decentralized and reliable file storage. It is thus of prime importance to know their features, performance, and the best way to make use of them. In this context, we introduce BenchCloud, a tool designed as part of this thesis to conveniently and efficiently benchmark any cloud storage system. First, we provide a study of six commonly-used cloud storage systems to ident...

  19. The Magellanic clouds

    International Nuclear Information System (INIS)

    1989-01-01

    As the two galaxies nearest to our own, the Magellanic Clouds hold a special place in studies of the extragalactic distance scale, of stellar evolution and the structure of galaxies. In recent years, results from the South African Astronomical Observatory (SAAO) and elsewhere have shown that it is possible to begin understanding the three dimensional structure of the Clouds. Studies of Magellanic Cloud Cepheids have continued, both to investigate the three-dimensional structure of the Clouds and to learn more about Cepheids and their use as extragalactic distance indicators. Other research undertaken at SAAO includes studies on Nova LMC 1988 no 2 and red variables in the Magellanic Clouds

  20. Cloud Computing Bible

    CERN Document Server

    Sosinsky, Barrie

    2010-01-01

    The complete reference guide to the hot technology of cloud computingIts potential for lowering IT costs makes cloud computing a major force for both IT vendors and users; it is expected to gain momentum rapidly with the launch of Office Web Apps later this year. Because cloud computing involves various technologies, protocols, platforms, and infrastructure elements, this comprehensive reference is just what you need if you'll be using or implementing cloud computing.Cloud computing offers significant cost savings by eliminating upfront expenses for hardware and software; its growing popularit

  1. Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2008-12-01

    Full Text Available Arctic boundary-layer clouds were investigated with remote sensing and in situ instruments during the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR campaign in March and April 2007. The clouds formed in a cold air outbreak over the open Greenland Sea. Beside the predominant mixed-phase clouds pure liquid water and ice clouds were observed. Utilizing measurements of solar radiation reflected by the clouds three methods to retrieve the thermodynamic phase of the cloud are introduced and compared. Two ice indices IS and IP were obtained by analyzing the spectral pattern of the cloud top reflectance in the near infrared (1500–1800 nm wavelength spectral range which is characterized by ice and water absorption. While IS analyzes the spectral slope of the reflectance in this wavelength range, IS utilizes a principle component analysis (PCA of the spectral reflectance. A third ice index IA is based on the different side scattering of spherical liquid water particles and nonspherical ice crystals which was recorded in simultaneous measurements of spectral cloud albedo and reflectance.

    Radiative transfer simulations show that IS, IP and IA range between 5 to 80, 0 to 8 and 1 to 1.25 respectively with lowest values indicating pure liquid water clouds and highest values pure ice clouds. The spectral slope ice index IS and the PCA ice index IP are found to be strongly sensitive to the effective diameter of the ice crystals present in the cloud. Therefore, the identification of mixed-phase clouds requires a priori knowledge of the ice crystal dimension. The reflectance-albedo ice index IA is mainly dominated by the uppermost cloud layer (τ<1.5. Therefore, typical boundary-layer mixed-phase clouds with a liquid cloud top layer will

  2. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    Ştefan IOVAN

    2016-05-01

    Full Text Available Cloud computing reprentes the software applications offered as a service online, but also the software and hardware components from the data center.In the case of wide offerd services for any type of client, we are dealing with a public cloud. In the other case, in wich a cloud is exclusively available for an organization and is not available to the open public, this is consider a private cloud [1]. There is also a third type, called hibrid in which case an user or an organization might use both services available in the public and private cloud. One of the main challenges of cloud computing are to build the trust and ofer information privacy in every aspect of service offerd by cloud computingle. The variety of existing standards, just like the lack of clarity in sustenability certificationis not a real help in building trust. Also appear some questions marks regarding the efficiency of traditionsecurity means that are applied in the cloud domain. Beside the economic and technology advantages offered by cloud, also are some advantages in security area if the information is migrated to cloud. Shared resources available in cloud includes the survey, use of the "best practices" and technology for advance security level, above all the solutions offered by the majority of medium and small businesses, big companies and even some guvermental organizations [2].

  3. Southeast Atlantic Cloud Properties in a Multivariate Statistical Model - How Relevant is Air Mass History for Local Cloud Properties?

    Science.gov (United States)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik

    2017-04-01

    This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.

  4. A high-resolution assessment of wind and wave energy potentials in the Red Sea

    KAUST Repository

    Langodan, Sabique

    2016-08-24

    This study presents an assessment of the potential for harvesting wind and wave energy from the Red Sea based on an 18-year high-resolution regional atmospheric reanalysis recently generated using the Advanced Weather Research Forecasting model. This model was initialized with ERA-Interim global data and the Red Sea reanalysis was generated using a cyclic three-dimensional variational approach assimilating available data in the region. The wave hindcast was generated using WAVEWATCH III on a 5 km resolution grid, forced by the Red Sea reanalysis surface winds. The wind and wave products were validated against data from buoys, scatterometers and altimeters. Our analysis suggests that the distribution of wind and wave energy in the Red Sea is inhomogeneous and is concentrated in specific areas, characterized by various meteorological conditions including weather fronts, mesoscale vortices, land and sea breezes and mountain jets. A detailed analysis of wind and wave energy variation was performed at three hotspots representing the northern, central and southern parts of the Red Sea. Although there are potential sites for harvesting wind energy from the Red Sea, there are no potential sites for harvesting wave energy because wave energy in the Red Sea is not strong enough for currently available wave energy converters. Wave energy should not be completely ignored, however, at least from the perspective of hybrid wind-wave projects. (C) 2016 Elsevier Ltd. All rights reserved.

  5. The mechanism of coking pressure generation I: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and plastic coal layer permeability

    Energy Technology Data Exchange (ETDEWEB)

    Seiji Nomura; Merrick Mahoney; Koichi Fukuda; Kenji Kato; Anthony Le Bas; Sid McGuire [Nippon Steel Corporation, Chiba (Japan). Environment and Process Technology Center

    2010-07-15

    One of the most important aspects of the cokemaking process is to control and restrain the coking pressure since excessive coking pressure tends to lead to operational problems and oven wall damage. Therefore, in order to understand the mechanism of coking pressure generation, the permeability of the plastic coal layer and the coking pressure for the same single coal and the same blended coal were measured and the relationship between them was investigated. Then the 'inert' (pressure modifier) effect of organic additives such as high volatile matter coking coal, semi-anthracite and coke breeze was studied. The coking pressure peak for box charging with more uniform bulk density distribution was higher than that for top charging. It was found that the coking pressure peaks measured at different institutions (NSC and BHPBilliton) by box charging are nearly the same. The addition of high volatile matter coking coal, semi-anthracite and coke breeze to a low volatile matter, high coking pressure coal greatly increased the plastic layer permeability in laboratory experiments and correspondingly decreased the coking pressure. It was found that, high volatile matter coking coal decreases the coking pressure more than semi-anthracite at the same plastic coal layer permeability, which indicates that the coking pressure depends not only on plastic coal layer permeability but also on other factors. Coking pressure is also affected by the contraction behavior of the coke layer near the oven walls and a large contraction decreases the coal bulk density in the oven center and hence the internal gas pressure in the plastic layer. The effect of contraction on coking pressure needs to be investigated further. 33 refs., 18 figs., 5 tabs.

  6. The use of fractionated fly ash of thermal power plants as binder for production of briquettes of coke breeze and dust

    Science.gov (United States)

    Temnikova, E. Yu; Bogomolov, A. R.; Lapin, A. A.

    2017-11-01

    In this paper, we propose to use the slag and ash material of thermal power plants (TPP) operating on pulverized coal fuel. The elemental and chemical composition of fly ash of five Kuzbass thermal power plants differs insignificantly from the composition of the mineral part of coking coal because coke production uses a charge, whose composition defines the main task: obtaining coke with the required parameters for production of iron and steel. These indicators are as follows: CRI reactivity and strength of the coke residue after reaction with CO2 - CSR. The chemical composition of fly ash of thermal power plants and microsilica with bulk density of 0.3-0.6 t/m3 generated at production of ferroalloys was compared. Fly ash and microsilica are the valuable raw material for production of mineral binder in manufacturing coke breeze briquettes (fraction of 2-10 mm) and dust (0-200 μm), generated in large quantities during coking (up to 40wt%). It is shown that this binder is necessary for production of smokeless briquettes with low reactivity, high strength and cost, demanded for production of cupola iron and melting the silicate materials, basaltic rocks in low-shaft furnaces. It is determined that microsilica contains up to 90% of silicon oxide, and fly ash contains up to 60% of silicon oxide and aluminum oxide of up to 20%. On average, the rest of fly ash composition consists of basic oxides. According to calculation by the VUKHIN formula, the basicity index of briquette changes significantly, when fly ash is introduced into briquette raw material component as a binder. The technology of coke briquette production on the basis of the non-magnetic fraction of TPP fly ash in the ratio from 3.5:1 to 4.5:1 (coke breeze : coke dust) with the addition of the binder component to 10% is proposed. The produced briquettes meet the requirements by CRI and require further study on CSR requirements.

  7. Searchable Encryption in Cloud Storage

    OpenAIRE

    Ren-Junn Hwang; Chung-Chien Lu; Jain-Shing Wu

    2014-01-01

    Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying ...

  8. Enterprise Cloud Adoption - Cloud Maturity Assessment Model

    OpenAIRE

    Conway, Gerry; Doherty, Eileen; Carcary, Marian; Crowley, Catherine

    2017-01-01

    The introduction and use of cloud computing by an organization has the promise of significant benefits that include reduced costs, improved services, and a pay-per-use model. Organizations that successfully harness these benefits will potentially have a distinct competitive edge, due to their increased agility and flexibility to rapidly respond to an ever changing and complex business environment. However, as cloud technology is a relatively new ph...

  9. Star clouds of Magellan

    International Nuclear Information System (INIS)

    Tucker, W.

    1981-01-01

    The Magellanic Clouds are two irregular galaxies belonging to the local group which the Milky Way belongs to. By studying the Clouds, astronomers hope to gain insight into the origin and composition of the Milky Way. The overall structure and dynamics of the Clouds are clearest when studied in radio region of the spectrum. One benefit of directly observing stellar luminosities in the Clouds has been the discovery of the period-luminosity relation. Also, the Clouds are a splendid laboratory for studying stellar evolution. It is believed that both Clouds may be in the very early stage in the development of a regular, symmetric galaxy. This raises a paradox because some of the stars in the star clusters of the Clouds are as old as the oldest stars in our galaxy. An explanation for this is given. The low velocity of the Clouds with respect to the center of the Milky Way shows they must be bound to it by gravity. Theories are given on how the Magellanic Clouds became associated with the galaxy. According to current ideas the Clouds orbits will decay and they will spiral into the Galaxy

  10. Cloud Computing Governance Lifecycle

    Directory of Open Access Journals (Sweden)

    Soňa Karkošková

    2016-06-01

    Full Text Available Externally provisioned cloud services enable flexible and on-demand sourcing of IT resources. Cloud computing introduces new challenges such as need of business process redefinition, establishment of specialized governance and management, organizational structures and relationships with external providers and managing new types of risk arising from dependency on external providers. There is a general consensus that cloud computing in addition to challenges brings many benefits but it is unclear how to achieve them. Cloud computing governance helps to create business value through obtain benefits from use of cloud computing services while optimizing investment and risk. Challenge, which organizations are facing in relation to governing of cloud services, is how to design and implement cloud computing governance to gain expected benefits. This paper aims to provide guidance on implementation activities of proposed Cloud computing governance lifecycle from cloud consumer perspective. Proposed model is based on SOA Governance Framework and consists of lifecycle for implementation and continuous improvement of cloud computing governance model.

  11. THE CALIFORNIA MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F.

    2009-01-01

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). Both a uniform foreground star density and measurements of the cloud's velocity field from CO observations indicate that this cloud is likely a coherent structure at a single distance. From comparison of foreground star counts with Galactic models, we derive a distance of 450 ± 23 pc to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of ∼ 10 5 M sun , rivaling the Orion (A) molecular cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion molecular cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps of both clouds shows that the new cloud contains only 10% the amount of high extinction (A K > 1.0 mag) material as is found in the OMC. This, in turn, suggests that the level of star formation activity and perhaps the star formation rate in these two clouds may be directly proportional to the total amount of high extinction material and presumably high density gas within them and that there might be a density threshold for star formation on the order of n(H 2 ) ∼ a few x 10 4 cm -3 .

  12. Sea-town interactions over Marseille: 3D urban boundary layer and thermodynamic fields near the surface

    Science.gov (United States)

    Lemonsu, A.; Pigeon, G.; Masson, V.; Moppert, C.

    2006-02-01

    3D numerical simulations with the Meso-NH atmospheric model including the Town Energy Balance urban parameterization, are conducted over the south-east of France and the one million inhabitants city of Marseille in the frameworks of the ESCOMPTE-UBL program. The geographic situation of the area is relatively complex, because of the proximity of the Mediterranean Sea and the presence of numerous massifs, inducing complex meteorological flows. The present work is focused on six days of the campaign, characterized by the development of strong summer sea-breeze circulations. A complete evaluation of the model is initially realized at both regional- and city-scales, by using the large available database. The regional evaluation shows a good behavior of the model, during the six days of simulation, either for the parameters near the surface or for the vertical profiles describing the structure of the atmosphere. The urban-scale evaluation indicates that the fine structure of the horizontal fields of air temperature above the city is correctly simulated by the model. A specific attention is then pointed to the 250-m horizontal resolution outputs, focused on the Marseille area, for two days of the campaign. From the study of the vertical structure of the Urban Boundary Layer and the thermodynamic fields near the surface, one underscores the important differences due to the regional and local flows, and the complex interactions that occur between the urban effects and the effects of sea breezes.

  13. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the intertropical convergence zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern Hadley cell. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scale spatiotemporal ...

  14. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the Intertropical Convergence Zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern branch of the Hadley cell in the Atlantic. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scal...

  15. Marine low cloud sensitivity to an idealized climate change : The CGILS LES intercomparison

    NARCIS (Netherlands)

    Blossey, P.N.; Bretherton, C.S.; Zhang, M.; Cheng, A.; Endo, S.; Heus, T.; Liu, Y.; Lock, A.P.; De Roode, S.R.; Xu, K.M.

    2013-01-01

    Subtropical marine low cloud sensitivity to an idealized climate change is compared in six large-eddy simulation (LES) models as part of CGILS. July cloud cover is simulated at three locations over the subtropical northeast Pacific Ocean, which are typified by cold sea surface temperatures (SSTs)

  16. Development of a cloud microphysical model and parameterizations to describe the effect of CCN on warm cloud

    Directory of Open Access Journals (Sweden)

    N. Kuba

    2006-01-01

    Full Text Available First, a hybrid cloud microphysical model was developed that incorporates both Lagrangian and Eulerian frameworks to study quantitatively the effect of cloud condensation nuclei (CCN on the precipitation of warm clouds. A parcel model and a grid model comprise the cloud model. The condensation growth of CCN in each parcel is estimated in a Lagrangian framework. Changes in cloud droplet size distribution arising from condensation and coalescence are calculated on grid points using a two-moment bin method in a semi-Lagrangian framework. Sedimentation and advection are estimated in the Eulerian framework between grid points. Results from the cloud model show that an increase in the number of CCN affects both the amount and the area of precipitation. Additionally, results from the hybrid microphysical model and Kessler's parameterization were compared. Second, new parameterizations were developed that estimate the number and size distribution of cloud droplets given the updraft velocity and the number of CCN. The parameterizations were derived from the results of numerous numerical experiments that used the cloud microphysical parcel model. The input information of CCN for these parameterizations is only several values of CCN spectrum (they are given by CCN counter for example. It is more convenient than conventional parameterizations those need values concerned with CCN spectrum, C and k in the equation of N=CSk, or, breadth, total number and median radius, for example. The new parameterizations' predictions of initial cloud droplet size distribution for the bin method were verified by using the aforesaid hybrid microphysical model. The newly developed parameterizations will save computing time, and can effectively approximate components of cloud microphysics in a non-hydrostatic cloud model. The parameterizations are useful not only in the bin method in the regional cloud-resolving model but also both for a two-moment bulk microphysical model and

  17. Expansion of magnetic clouds

    International Nuclear Information System (INIS)

    Suess, S.T.

    1987-01-01

    Magnetic clouds are a carefully defined subclass of all interplanetary signatures of coronal mass ejections whose geometry is thought to be that of a cylinder embedded in a plane. It has been found that the total magnetic pressure inside the clouds is higher than the ion pressure outside, and that the clouds are expanding at 1 AU at about half the local Alfven speed. The geometry of the clouds is such that even though the magnetic pressure inside is larger than the total pressure outside, expansion will not occur because the pressure is balanced by magnetic tension - the pinch effect. The evidence for expansion of clouds at 1 AU is nevertheless quite strong so another reason for its existence must be found. It is demonstrated that the observations can be reproduced by taking into account the effects of geometrical distortion of the low plasma beta clouds as they move away from the Sun

  18. Encyclopedia of cloud computing

    CERN Document Server

    Bojanova, Irena

    2016-01-01

    The Encyclopedia of Cloud Computing provides IT professionals, educators, researchers and students with a compendium of cloud computing knowledge. Authored by a spectrum of subject matter experts in industry and academia, this unique publication, in a single volume, covers a wide range of cloud computing topics, including technological trends and developments, research opportunities, best practices, standards, and cloud adoption. Providing multiple perspectives, it also addresses questions that stakeholders might have in the context of development, operation, management, and use of clouds. Furthermore, it examines cloud computing's impact now and in the future. The encyclopedia presents 56 chapters logically organized into 10 sections. Each chapter covers a major topic/area with cross-references to other chapters and contains tables, illustrations, side-bars as appropriate. Furthermore, each chapter presents its summary at the beginning and backend material, references and additional resources for further i...

  19. Considerations for Cloud Security Operations

    OpenAIRE

    Cusick, James

    2016-01-01

    Information Security in Cloud Computing environments is explored. Cloud Computing is presented, security needs are discussed, and mitigation approaches are listed. Topics covered include Information Security, Cloud Computing, Private Cloud, Public Cloud, SaaS, PaaS, IaaS, ISO 27001, OWASP, Secure SDLC.

  20. Evaluating statistical cloud schemes

    OpenAIRE

    Grützun, Verena; Quaas, Johannes; Morcrette , Cyril J.; Ament, Felix

    2015-01-01

    Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based re...

  1. Cloud Computing Governance Lifecycle

    OpenAIRE

    Soňa Karkošková; George Feuerlicht

    2016-01-01

    Externally provisioned cloud services enable flexible and on-demand sourcing of IT resources. Cloud computing introduces new challenges such as need of business process redefinition, establishment of specialized governance and management, organizational structures and relationships with external providers and managing new types of risk arising from dependency on external providers. There is a general consensus that cloud computing in addition to challenges brings many benefits but it is uncle...

  2. Security in cloud computing

    OpenAIRE

    Moreno Martín, Oriol

    2016-01-01

    Security in Cloud Computing is becoming a challenge for next generation Data Centers. This project will focus on investigating new security strategies for Cloud Computing systems. Cloud Computingisarecent paradigmto deliver services over Internet. Businesses grow drastically because of it. Researchers focus their work on it. The rapid access to exible and low cost IT resources on an on-demand fashion, allows the users to avoid planning ahead for provisioning, and enterprises to save money ...

  3. The Dead Sea

    Science.gov (United States)

    2006-01-01

    The Dead Sea is the lowest point on Earth at 418 meters below sea level, and also one of the saltiest bodies of water on Earth with a salinity of about 300 parts-per-thousand (nine times greater than ocean salinity). It is located on the border between Jordan and Israel, and is fed by the Jordan River. The Dead Sea is located in the Dead Sea Rift, formed as a result of the Arabian tectonic plate moving northward away from the African Plate. The mineral content of the Dead Sea is significantly different from that of ocean water, consisting of approximately 53% magnesium chloride, 37% potassium chloride and 8% sodium chloride. In the early part of the 20th century, the Dead Sea began to attract interest from chemists who deduced that the Sea was a natural deposit of potash and bromine. From the Dead Sea brine, Israel and Jordan produce 3.8 million tons potash, 200,000 tons elemental bromine, 45,000 tons caustic soda, 25, 000 tons magnesium metal, and sodium chloride. Both countries use extensive salt evaporation pans that have essentially diked the entire southern end of the Dead Sea. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining

  4. CLOUD TECHNOLOGY IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Alexander N. Dukkardt

    2014-01-01

    Full Text Available This article is devoted to the review of main features of cloud computing that can be used in education. Particular attention is paid to those learning and supportive tasks, that can be greatly improved in the case of the using of cloud services. Several ways to implement this approach are proposed, based on widely accepted models of providing cloud services. Nevertheless, the authors have not ignored currently existing problems of cloud technologies , identifying the most dangerous risks and their impact on the core business processes of the university. 

  5. Cloud Computing: An Overview

    Science.gov (United States)

    Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao

    In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.

  6. Genomics With Cloud Computing

    Directory of Open Access Journals (Sweden)

    Sukhamrit Kaur

    2015-04-01

    Full Text Available Abstract Genomics is study of genome which provides large amount of data for which large storage and computation power is needed. These issues are solved by cloud computing that provides various cloud platforms for genomics. These platforms provides many services to user like easy access to data easy sharing and transfer providing storage in hundreds of terabytes more computational power. Some cloud platforms are Google genomics DNAnexus and Globus genomics. Various features of cloud computing to genomics are like easy access and sharing of data security of data less cost to pay for resources but still there are some demerits like large time needed to transfer data less network bandwidth.

  7. Cloud forcing: A modeling perspective

    International Nuclear Information System (INIS)

    Potter, G.L.; Mobely, R.L.; Drach, R.S.; Corsetti, T.G.; Williams, D.N.; Slingo, J.M.

    1990-11-01

    Radiation fields from a perpetual July integration of a T106 version of the ECMWF operational model are used as surrogate observations of the radiation budget at the top of the atmosphere to illustrate various difficulties that modellers might face when trying to reconcile cloud radiation forcings derived from satellite observations with model-generated ones. Differences between the so-called Methods 1 and 2 of Cess and Potter (1987) and a variant Method 3 are addressed. Method 1 is shown to be the least robust of all methods, due to potential uncertainties related to persistent cloudiness, length of the period over which clear-sky conditions are looked for, biases in retrieved clear-sky quantities due to an insufficient sampling of the diurnal cycle. We advocate the use of Method 2 as the only unambiguous one to produce consistent radiative diagnostics for intercomparing model results. Impact of the three methods on the derived sensitivities and cloud feedbacks following an imposed change in sea surface temperature (used as a surrogate climate change) is discussed. 17 refs., 12 figs., 1 tab

  8. Review of Cloud Computing and existing Frameworks for Cloud adoption

    OpenAIRE

    Chang, Victor; Walters, Robert John; Wills, Gary

    2014-01-01

    This paper presents a selected review for Cloud Computing and explains the benefits and risks of adopting Cloud Computing in a business environment. Although all the risks identified may be associated with two major Cloud adoption challenges, a framework is required to support organisations as they begin to use Cloud and minimise risks of Cloud adoption. Eleven Cloud Computing frameworks are investigated and a comparison of their strengths and limitations is made; the result of the comparison...

  9. +Cloud: An Agent-Based Cloud Computing Platform

    OpenAIRE

    González, Roberto; Hernández de la Iglesia, Daniel; de la Prieta Pintado, Fernando; Gil González, Ana Belén

    2017-01-01

    Cloud computing is revolutionizing the services provided through the Internet, and is continually adapting itself in order to maintain the quality of its services. This study presents the platform +Cloud, which proposes a cloud environment for storing information and files by following the cloud paradigm. This study also presents Warehouse 3.0, a cloud-based application that has been developed to validate the services provided by +Cloud.

  10. Lost in Cloud

    Science.gov (United States)

    Maluf, David A.; Shetye, Sandeep D.; Chilukuri, Sri; Sturken, Ian

    2012-01-01

    Cloud computing can reduce cost significantly because businesses can share computing resources. In recent years Small and Medium Businesses (SMB) have used Cloud effectively for cost saving and for sharing IT expenses. With the success of SMBs, many perceive that the larger enterprises ought to move into Cloud environment as well. Government agency s stove-piped environments are being considered as candidates for potential use of Cloud either as an enterprise entity or pockets of small communities. Cloud Computing is the delivery of computing as a service rather than as a product, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network. Underneath the offered services, there exists a modern infrastructure cost of which is often spread across its services or its investors. As NASA is considered as an Enterprise class organization, like other enterprises, a shift has been occurring in perceiving its IT services as candidates for Cloud services. This paper discusses market trends in cloud computing from an enterprise angle and then addresses the topic of Cloud Computing for NASA in two possible forms. First, in the form of a public Cloud to support it as an enterprise, as well as to share it with the commercial and public at large. Second, as a private Cloud wherein the infrastructure is operated solely for NASA, whether managed internally or by a third-party and hosted internally or externally. The paper addresses the strengths and weaknesses of both paradigms of public and private Clouds, in both internally and externally operated settings. The content of the paper is from a NASA perspective but is applicable to any large enterprise with thousands of employees and contractors.

  11. Clouds and the Near-Earth Environment: Possible Links

    Directory of Open Access Journals (Sweden)

    Condurache-Bota Simona

    2015-12-01

    Full Text Available Climate variability is a hot topic not only for scientists and policy-makers, but also for each and every one of us. The anthropogenic activities are considered to be responsible for most climate change, however there are large uncertainties about the magnitude of effects of solar variability and other extraterrestrial influences, such as galactic cosmic rays on terrestrial climate. Clouds play an important role due to feedbacks of the radiation budget: variation of cloud cover/composition affects climate, which, in turn, affects cloud cover via atmospheric dynamics and sea temperature variations. Cloud formation and evolution are still under scientific scrutiny, since their microphysics is still not understood. Besides atmospheric dynamics and other internal climatic parameters, extraterrestrial sources of cloud cover variation are considered. One of these is the solar wind, whose effect on cloud cover might be modulated by the global atmospheric electrical circuit. Clouds height and composition, their seasonal variation and latitudinal distribution should be considered when trying to identify possible mechanisms by which solar energy is transferred to clouds. The influence of the solar wind on cloud formation can be assessed also through the ap index - the geomagnetic storm index, which can be readily connected with interplanetary magnetic field, IMF structure. This paper proposes to assess the possible relationship between both cloud cover and solar wind proxies, as the ap index, function of cloud height and composition and also through seasonal studies. The data covers almost three solar cycles (1984-2009. Mechanisms are looked for by investigating observed trends or correlation at local/seasonal scale

  12. Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds

    Directory of Open Access Journals (Sweden)

    L. M. Zamora

    2017-06-01

    Full Text Available Aerosol indirect effects have potentially large impacts on the Arctic Ocean surface energy budget, but model estimates of regional-scale aerosol indirect effects are highly uncertain and poorly validated by observations. Here we demonstrate a new way to quantitatively estimate aerosol indirect effects on a regional scale from remote sensing observations. In this study, we focus on nighttime, optically thin, predominantly liquid clouds. The method is based on differences in cloud physical and microphysical characteristics in carefully selected clean, average, and aerosol-impacted conditions. The cloud subset of focus covers just ∼ 5 % of cloudy Arctic Ocean regions, warming the Arctic Ocean surface by ∼ 1–1.4 W m−2 regionally during polar night. However, within this cloud subset, aerosol and cloud conditions can be determined with high confidence using CALIPSO and CloudSat data and model output. This cloud subset is generally susceptible to aerosols, with a polar nighttime estimated maximum regionally integrated indirect cooling effect of ∼ −0.11 W m−2 at the Arctic sea ice surface (∼ 8 % of the clean background cloud effect, excluding cloud fraction changes. Aerosol presence is related to reduced precipitation, cloud thickness, and radar reflectivity, and in some cases, an increased likelihood of cloud presence in the liquid phase. These observations are inconsistent with a glaciation indirect effect and are consistent with either a deactivation effect or less-efficient secondary ice formation related to smaller liquid cloud droplets. However, this cloud subset shows large differences in surface and meteorological forcing in shallow and higher-altitude clouds and between sea ice and open-ocean regions. For example, optically thin, predominantly liquid clouds are much more likely to overlay another cloud over the open ocean, which may reduce aerosol indirect effects on the surface. Also, shallow clouds over

  13. Research on cloud computing solutions

    OpenAIRE

    Liudvikas Kaklauskas; Vaida Zdanytė

    2015-01-01

    Cloud computing can be defined as a new style of computing in which dynamically scala-ble and often virtualized resources are provided as a services over the Internet. Advantages of the cloud computing technology include cost savings, high availability, and easy scalability. Voas and Zhang adapted six phases of computing paradigms, from dummy termi-nals/mainframes, to PCs, networking computing, to grid and cloud computing. There are four types of cloud computing: public cloud, private cloud, ...

  14. VMware vCloud security

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    VMware vCloud Security provides the reader with in depth knowledge and practical exercises sufficient to implement a secured private cloud using VMware vCloud Director and vCloud Networking and Security.This book is primarily for technical professionals with system administration and security administration skills with significant VMware vCloud experience who want to learn about advanced concepts of vCloud security and compliance.

  15. Security Architecture of Cloud Computing

    OpenAIRE

    V.KRISHNA REDDY; Dr. L.S.S.REDDY

    2011-01-01

    The Cloud Computing offers service over internet with dynamically scalable resources. Cloud Computing services provides benefits to the users in terms of cost and ease of use. Cloud Computing services need to address the security during the transmission of sensitive data and critical applications to shared and public cloud environments. The cloud environments are scaling large for data processing and storage needs. Cloud computing environment have various advantages as well as disadvantages o...

  16. Security in hybrid cloud computing

    OpenAIRE

    Koudelka, Ondřej

    2016-01-01

    This bachelor thesis deals with the area of hybrid cloud computing, specifically with its security. The major aim of the thesis is to analyze and compare the chosen hybrid cloud providers. For the minor aim this thesis compares the security challenges of hybrid cloud as opponent to other deployment models. In order to accomplish said aims, this thesis defines the terms cloud computing and hybrid cloud computing in its theoretical part. Furthermore the security challenges for cloud computing a...

  17. Cloud security in vogelvlucht

    NARCIS (Netherlands)

    Pieters, Wolter

    2011-01-01

    Cloud computing is dé hype in IT op het moment, en hoewel veel aspecten niet nieuw zijn, leidt het concept wel tot de noodzaak voor nieuwe vormen van beveiliging. Het idee van cloud computing biedt echter ook juist kansen om hierover na te denken: wat is de rol van informatiebeveiliging in een

  18. CLOUD SERVICES IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Z.S. Seydametova

    2011-05-01

    Full Text Available We present the on-line services based on cloud computing, provided by Google to educational institutions. We describe the own experience of the implementing the Google Apps Education Edition in the educational process. We analyzed and compared the other universities experience of using cloud technologies.

  19. Cloud MicroAtlas

    Indian Academy of Sciences (India)

    We begin by outlining the life cycle of a tall cloud, and thenbriefly discuss cloud systems. We choose one aspect of thislife cycle, namely, the rapid growth of water droplets in ice freeclouds, to then discuss in greater detail. Taking a singlevortex to be a building block of turbulence, we demonstrateone mechanism by which ...

  20. Greening the cloud

    NARCIS (Netherlands)

    van den Hoed, Robert; Hoekstra, Eric; Procaccianti, Giuseppe; Lago, Patricia; Grosso, Paolo; Taal, Arie; Grosskop, Kay; van Bergen, Esther

    The cloud has become an essential part of our daily lives. We use it to store our documents (Dropbox), to stream our music and films (Spotify and Netflix) and without giving it any thought, we use it to work on documents in the cloud (Google Docs).

  1. Learning in the Clouds?

    Science.gov (United States)

    Butin, Dan W.

    2013-01-01

    Engaged learning--the type that happens outside textbooks and beyond the four walls of the classroom--moves beyond right and wrong answers to grappling with the uncertainties and contradictions of a complex world. iPhones back up to the "cloud." GoogleDocs is all about "cloud computing." Facebook is as ubiquitous as the sky.…

  2. Kernel structures for Clouds

    Science.gov (United States)

    Spafford, Eugene H.; Mckendry, Martin S.

    1986-01-01

    An overview of the internal structure of the Clouds kernel was presented. An indication of how these structures will interact in the prototype Clouds implementation is given. Many specific details have yet to be determined and await experimentation with an actual working system.

  3. Ozone pollution around a coastal region of South China Sea: interaction between marine and continental air

    Science.gov (United States)

    Wang, Hao; Lyu, Xiaopu; Guo, Hai; Wang, Yu; Zou, Shichun; Ling, Zhenhao; Wang, Xinming; Jiang, Fei; Zeren, Yangzong; Pan, Wenzhuo; Huang, Xiaobo; Shen, Jin

    2018-03-01

    Marine atmosphere is usually considered to be a clean environment, but this study indicates that the near-coast waters of the South China Sea (SCS) suffer from even worse air quality than coastal cities. The analyses were based on concurrent field measurements of target air pollutants and meteorological parameters conducted at a suburban site (Tung Chung, TC) and a nearby marine site (Wan Shan, WS) from August to November 2013. The observations showed that the levels of primary air pollutants were significantly lower at WS than those at TC, while the ozone (O3) value was greater at WS. Higher O3 levels at WS were attributed to the weaker NO titration and higher O3 production rate because of stronger oxidative capacity of the atmosphere. However, O3 episodes were concurrently observed at both sites under certain meteorological conditions, such as tropical cyclones, continental anticyclones and sea-land breezes (SLBs). Driven by these synoptic systems and mesoscale recirculations, the interaction between continental and marine air masses profoundly changed the atmospheric composition and subsequently influenced the formation and redistribution of O3 in the coastal areas. When continental air intruded into marine atmosphere, the O3 pollution was magnified over the SCS, and the elevated O3 ( > 100 ppbv) could overspread the sea boundary layer ˜ 8 times the area of Hong Kong. In some cases, the exaggerated O3 pollution over the SCS was recirculated to the coastal inshore by sea breeze, leading to aggravated O3 pollution in coastal cities. The findings are applicable to similar mesoscale environments around the world where the maritime atmosphere is potentially influenced by severe continental air pollution.

  4. Cloud computing basics

    CERN Document Server

    Srinivasan, S

    2014-01-01

    Cloud Computing Basics covers the main aspects of this fast moving technology so that both practitioners and students will be able to understand cloud computing. The author highlights the key aspects of this technology that a potential user might want to investigate before deciding to adopt this service. This book explains how cloud services can be used to augment existing services such as storage, backup and recovery. Addressing the details on how cloud security works and what the users must be prepared for when they move their data to the cloud. Also this book discusses how businesses could prepare for compliance with the laws as well as industry standards such as the Payment Card Industry.

  5. Solar variability and clouds

    CERN Document Server

    Kirkby, Jasper

    2000-01-01

    Satellite observations have revealed a surprising imprint of the 11- year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of Galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how. (37 refs).

  6. Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds

    Science.gov (United States)

    Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.

    2017-12-01

    Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.

  7. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  8. Atmospheric radon daughters concentration inside and outside of cloud

    International Nuclear Information System (INIS)

    Nishikawa, Tsuguo; Okabe, Shigeru; Aoki, Masayoshi; Imamura, Takakazu; Iwata, Yoshitomo; Tamura, Yukihide; Tsuboguchi, Masayasu

    1987-01-01

    The measurements of the atmospheric radon daughters concentration in and out of the cloud were carried out on the top of the mountain, and in the upper air of the sea by using the airplane. The difference of the concentrations between inside and outside of the stratus measured on the top of the mountain was not clear. The atmospheric radon daughters concentration at the top of the mountain decreased when the amount of precipitation at that point was large. Concerning the cumulus investigated by using the airplane, the concentration in the cloud was a little higher than the concentration out of the cloud. Results of the measurements show that the cloud seems to be constructed of the various air masses whose radon daughters concentrations are different from each other even though it appears to be uniform. (author)

  9. Sea Dragon

    National Research Council Canada - National Science Library

    1997-01-01

    .... In preparation for these changes, the Navy is exploring new command and control relationships, and the Marine Corps established Sea Dragon to experiment with emerging technologies, operational...

  10. Alien seas oceans in space

    CERN Document Server

    Lopes, Rosaly

    2013-01-01

    In the early days of planetary observation, oceans were thought to exist in all corners of the Solar System. Carbonated seas percolated beneath the clouds of Venus. Features on the Moon's surface were given names such as "the Bay of Rainbows” and the "Ocean of Storms." With the advent of modern telescopes and spacecraft exploration these ancient concepts of planetary seas have been replaced by the reality of something even more exotic. Alien Seas serves up the current research, past beliefs, and new theories to offer a rich array of the "seas" on other worlds. It is organized by location and by the material composing the oceans under discussion, with expert authors penning chapters on their  specialty. Each chapter features new original art depicting alien seas, as well as the latest ground-based and spacecraft images. With the contributors as guides, readers can explore the wild seas of Jupiter's watery satellite Europa, believed similar in composition to battery acid. Saturn's planet-sized moon Titan see...

  11. An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol

    Science.gov (United States)

    Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.

    2017-12-01

    In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is

  12. Making and Breaking Clouds

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Molecular clouds which youre likely familiar with from stunning popular astronomy imagery lead complicated, tumultuous lives. A recent study has now found that these features must be rapidly built and destroyed.Star-Forming CollapseA Hubble view of a molecular cloud, roughly two light-years long, that has broken off of the Carina Nebula. [NASA/ESA, N. Smith (University of California, Berkeley)/The Hubble Heritage Team (STScI/AURA)]Molecular gas can be found throughout our galaxy in the form of eminently photogenic clouds (as featured throughout this post). Dense, cold molecular gas makes up more than 20% of the Milky Ways total gas mass, and gravitational instabilities within these clouds lead them to collapse under their own weight, resulting in the formation of our galaxys stars.How does this collapse occur? The simplest explanation is that the clouds simply collapse in free fall, with no source of support to counter their contraction. But if all the molecular gas we observe collapsed on free-fall timescales, star formation in our galaxy would churn a rate thats at least an order of magnitude higher than the observed 12 solar masses per year in the Milky Way.Destruction by FeedbackAstronomers have theorized that there may be some mechanism that supports these clouds against gravity, slowing their collapse. But both theoretical studies and observations of the clouds have ruled out most of these potential mechanisms, and mounting evidence supports the original interpretation that molecular clouds are simply gravitationally collapsing.A sub-mm image from ESOs APEX telescope of part of the Taurus molecular cloud, roughly ten light-years long, superimposed on a visible-light image of the region. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin]If this is indeed the case, then one explanation for our low observed star formation rate could be that molecular clouds are rapidly destroyed by feedback from the very stars

  13. Cloud Computing: An Overview

    Directory of Open Access Journals (Sweden)

    Libor Sarga

    2012-10-01

    Full Text Available As cloud computing is gaining acclaim as a cost-effective alternative to acquiring processing resources for corporations, scientific applications and individuals, various challenges are rapidly coming to the fore. While academia struggles to procure a concise definition, corporations are more interested in competitive advantages it may generate and individuals view it as a way of speeding up data access times or a convenient backup solution. Properties of the cloud architecture largely preclude usage of existing practices while achieving end-users’ and companies’ compliance requires considering multiple infrastructural as well as commercial factors, such as sustainability in case of cloud-side interruptions, identity management and off-site corporate data handling policies. The article overviews recent attempts at formal definitions of cloud computing, summarizes and critically evaluates proposed delimitations, and specifies challenges associated with its further proliferation. Based on the conclusions, future directions in the field of cloud computing are also briefly hypothesized to include deeper focus on community clouds and bolstering innovative cloud-enabled platforms and devices such as tablets, smart phones, as well as entertainment applications.

  14. Cloud Computing Law

    CERN Document Server

    Millard, Christopher

    2013-01-01

    This book is about the legal implications of cloud computing. In essence, ‘the cloud’ is a way of delivering computing resources as a utility service via the internet. It is evolving very rapidly with substantial investments being made in infrastructure, platforms and applications, all delivered ‘as a service’. The demand for cloud resources is enormous, driven by such developments as the deployment on a vast scale of mobile apps and the rapid emergence of ‘Big Data’. Part I of this book explains what cloud computing is and how it works. Part II analyses contractual relationships between cloud service providers and their customers, as well as the complex roles of intermediaries. Drawing on primary research conducted by the Cloud Legal Project at Queen Mary University of London, cloud contracts are analysed in detail, including the appropriateness and enforceability of ‘take it or leave it’ terms of service, as well as the scope for negotiating cloud deals. Specific arrangements for public sect...

  15. Community Cloud Computing

    Science.gov (United States)

    Marinos, Alexandros; Briscoe, Gerard

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.

  16. Analysis of co-located MODIS and CALIPSO observations near clouds

    Directory of Open Access Journals (Sweden)

    T. Várnai

    2012-02-01

    Full Text Available This paper aims at helping synergistic studies in combining data from different satellites for gaining new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects. In particular, the paper examines the way cloud information from the MODIS (MODerate resolution Imaging Spectroradiometer imager can refine our perceptions based on CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization lidar measurements about the systematic aerosol changes that occur near clouds.

    The statistical analysis of a yearlong dataset of co-located global maritime observations from the Aqua and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellites reveals that MODIS's multispectral imaging ability can greatly help the interpretation of CALIOP observations. The results show that imagers on Aqua and CALIPSO yield very similar pictures, and that the discrepancies – due mainly to wind drift and differences in view angle – do not significantly hinder aerosol measurements near clouds. By detecting clouds outside the CALIOP track, MODIS reveals that clouds are usually closer to clear areas than CALIOP data alone would suggest. The paper finds statistical relationships between the distances to clouds in MODIS and CALIOP data, and proposes a rescaling approach to statistically account for the impact of clouds outside the CALIOP track even when MODIS cannot reliably detect low clouds, for example at night or over sea ice. Finally, the results show that the typical distance to clouds depends on both cloud coverage and cloud type, and accordingly varies with location and season. In maritime areas perceived cloud free, the global median distance to clouds below 3 km altitude is in the 4–5 km range.

  17. The influence of rain and clouds on a satellite dual frequency radar altimeter system operating at 13 and 35 GHz

    Science.gov (United States)

    Walsh, E. J.; Monaldo, F. M.; Goldhirsh, J.

    1983-01-01

    The effects of inhomogeneous spatial attenuation resulting from clouds and rain on the altimeter estimate of the range to mean sea level are modelled. It is demonstrated that typical cloud and rain attenuation variability at commonly expected spatial scales can significantly degrade altimeter range precision. Rain cell and cloud scale sizes and attenuations are considered as factors. The model simulation of altimeter signature distortion is described, and the distortion of individual radar pulse waveforms by different spatial scales of attenuation is considered. Examples of range errors found for models of a single cloud, a rain cell, and cloud streets are discussed.

  18. Description of Mixed-Phase Clouds in Weather Forecast and Climate Models

    Science.gov (United States)

    2014-09-30

    deficits, leading to freeze-up of both sea ice and the ocean surface. The surface albedo and processes impacting the energy content of the upper ocean...appear key to producing a temporal difference be- tween the freeze-up of the sea - ice surface and adjacent open water. While synoptic conditions, atmos...Leck, 2013: Cloud and boundary layer interactions over the Arctic sea - ice in late summer, Atmos. Chem. Phys. Discuss., 13, 13191-13244, doi

  19. Diffuse interstellar clouds

    International Nuclear Information System (INIS)

    Black, J.H.

    1987-01-01

    The author defines and discusses the nature of diffuse interstellar clouds. He discusses how they contribute to the general extinction of starlight. The atomic and molecular species that have been identified in the ultraviolet, visible, and near infrared regions of the spectrum of a diffuse cloud are presented. The author illustrates some of the practical considerations that affect absorption line observations of interstellar atoms and molecules. Various aspects of the theoretical description of diffuse clouds required for a full interpretation of the observations are discussed

  20. Cloud Computing Security

    OpenAIRE

    Ngongang, Guy

    2011-01-01

    This project aimed to show how possible it is to use a network intrusion detection system in the cloud. The security in the cloud is a concern nowadays and security professionals are still finding means to make cloud computing more secure. First of all the installation of the ESX4.0, vCenter Server and vCenter lab manager in server hardware was successful in building the platform. This allowed the creation and deployment of many virtual servers. Those servers have operating systems and a...

  1. Aerosols, clouds and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, S [University of Arizona, Tucson, AZ (USA). Inst. of Atmospheric Physics

    1991-01-01

    Most of the so-called 'CO{sub 2} effect' is, in fact, an 'H{sub 2}O effect' brought into play by the climate modeler's assumption that planetary average temperature dictates water-vapor concentration (following Clapeyron-Clausius). That assumption ignores the removal process, which cloud physicists know to be influenced by the aerosol, since the latter primarily controls cloud droplet number and size. Droplet number and size are also influential for shortwave (solar) energy. The reflectance of many thin to moderately thick clouds changes when nuclei concentrations change and make shortwave albedo susceptible to aerosol influence.

  2. Trusted cloud computing

    CERN Document Server

    Krcmar, Helmut; Rumpe, Bernhard

    2014-01-01

    This book documents the scientific results of the projects related to the Trusted Cloud Program, covering fundamental aspects of trust, security, and quality of service for cloud-based services and applications. These results aim to allow trustworthy IT applications in the cloud by providing a reliable and secure technical and legal framework. In this domain, business models, legislative circumstances, technical possibilities, and realizable security are closely interwoven and thus are addressed jointly. The book is organized in four parts on "Security and Privacy", "Software Engineering and

  3. Correlation of upper Llandovery–lower Wenlock bentonites in the När (Gotland, Sweden and Ventspils (Latvia drill cores: role of volcanic ash clouds and shelf sea currents in determining areal distribution of bentonite

    Directory of Open Access Journals (Sweden)

    Tarmo Kiipli

    2012-11-01

    Full Text Available Study of volcanic ash beds using biostratigraphy, sanidine composition and immobile elements within bentonites has manifested several well-established and some provisional correlations between Gotland and East Baltic sections. Energy dispersive X-ray fluorescence microanalysis of phenocrysts has revealed bentonites containing Mg-rich or Fe-rich biotite. Sanidine phenocrysts contain, in addition to a major Na and K component, often a few per cent of Ca and Ba. On the basis of new correlations the mapping of the distribution areas of bentonites has been extended from the East Baltic to Gotland. The bentonite distribution can be separated into two parts in North Latvia–South Estonia, indicating the existence of shelf sea currents in the Baltic Silurian Basin.

  4. COMPARATIVE STUDY OF CLOUD COMPUTING AND MOBILE CLOUD COMPUTING

    OpenAIRE

    Nidhi Rajak*, Diwakar Shukla

    2018-01-01

    Present era is of Information and Communication Technology (ICT) and there are number of researches are going on Cloud Computing and Mobile Cloud Computing such security issues, data management, load balancing and so on. Cloud computing provides the services to the end user over Internet and the primary objectives of this computing are resource sharing and pooling among the end users. Mobile Cloud Computing is a combination of Cloud Computing and Mobile Computing. Here, data is stored in...

  5. Molecular clouds near supernova remnants

    International Nuclear Information System (INIS)

    Wootten, H.A.

    1978-01-01

    The physical properties of molecular clouds near supernova remnants were investigated. Various properties of the structure and kinematics of these clouds are used to establish their physical association with well-known remmnants. An infrared survey of the most massive clouds revealed embedded objects, probably stars whose formation was induced by the supernova blast wave. In order to understand the relationship between these and other molecular clouds, a control group of clouds was also observed. Excitation models for dense regions of all the clouds are constructed to evaluate molecular abundances in these regions. Those clouds that have embedded stars have lower molecular abundances than the clouds that do not. A cloud near the W28 supernova remnant also has low abundances. Molecular abundances are used to measure an important parameter, the electron density, which is not directly observable. In some clouds extensive deuterium fractionation is observed which confirms electron density measurements in those clouds. Where large deuterium fractionation is observed, the ionization rate in the cloud interior can also be measured. The electron density and ionization rate in the cloud near W28 are higher than in most clouds. The molecular abundances and electron densities are functions of the chemical and dynamical state of evolution of the cloud. Those clouds with lowest abundances are probably the youngest clouds. As low-abundance clouds, some clouds near supernova remnants may have been recently swept from the local interstellar material. Supernova remnants provide sites for star formation in ambient clouds by compressing them, and they sweep new clouds from more diffuse local matter

  6. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    Science.gov (United States)

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-20

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  7. Taxonomy of cloud computing services

    NARCIS (Netherlands)

    Hoefer, C.N.; Karagiannis, Georgios

    2010-01-01

    Cloud computing is a highly discussed topic, and many big players of the software industry are entering the development of cloud services. Several companies want to explore the possibilities and benefits of cloud computing, but with the amount of cloud computing services increasing quickly, the need

  8. Do clouds save the great barrier reef? satellite imagery elucidates the cloud-SST relationship at the local scale.

    Directory of Open Access Journals (Sweden)

    Susannah M Leahy

    Full Text Available Evidence of global climate change and rising sea surface temperatures (SSTs is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006 and two relatively cool summers (2007 and 2008. Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005 and La Niña (2008 study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.

  9. Loss of sea ice in the Arctic.

    Science.gov (United States)

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  10. Early Spring Dust over the Mediterranean Sea

    Science.gov (United States)

    2002-01-01

    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) observed this large cloud of dust (brownish pixels) blowing from northern Africa across the Mediterranean Sea on March 4, 2002. The dust can be seen clearly blowing across Southern Italy, Albania, Greece, and Turkey-all along the Mediterranean's northeastern shoreline. Notice that there also appears to be human-made aerosol pollution (greyish pixels) pooling in the air just south of the Italian Alps and blowing southeastward over the Adriatic Sea. The Alps can be easily identified as the crescent-shaped, snow-capped mountain range in the top center of this true-color scene. There also appears to be a similar haze over Austria, Hungary, and Yugoslavia to the north and east of Italy. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  11. Cloud Computing (1/2)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Cloud computing, the recent years buzzword for distributed computing, continues to attract and keep the interest of both the computing and business world. These lectures aim at explaining "What is Cloud Computing?" identifying and analyzing it's characteristics, models, and applications. The lectures will explore different "Cloud definitions" given by different authors and use them to introduce the particular concepts. The main cloud models (SaaS, PaaS, IaaS), cloud types (public, private, hybrid), cloud standards and security concerns will be presented. The borders between Cloud Computing and Grid Computing, Server Virtualization, Utility Computing will be discussed and analyzed.

  12. Cloud Computing (2/2)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Cloud computing, the recent years buzzword for distributed computing, continues to attract and keep the interest of both the computing and business world. These lectures aim at explaining "What is Cloud Computing?" identifying and analyzing it's characteristics, models, and applications. The lectures will explore different "Cloud definitions" given by different authors and use them to introduce the particular concepts. The main cloud models (SaaS, PaaS, IaaS), cloud types (public, private, hybrid), cloud standards and security concerns will be presented. The borders between Cloud Computing and Grid Computing, Server Virtualization, Utility Computing will be discussed and analyzed.

  13. IBM SmartCloud essentials

    CERN Document Server

    Schouten, Edwin

    2013-01-01

    A practical, user-friendly guide that provides an introduction to cloud computing using IBM SmartCloud, along with a thorough understanding of resource management in a cloud environment.This book is great for anyone who wants to get a grasp of what cloud computing is and what IBM SmartCloud has to offer. If you are an IT specialist, IT architect, system administrator, or a developer who wants to thoroughly understand the cloud computing resource model, this book is ideal for you. No prior knowledge of cloud computing is expected.

  14. Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS

    Directory of Open Access Journals (Sweden)

    K. Loewe

    2017-06-01

    Full Text Available The Arctic climate is changing; temperature changes in the Arctic are greater than at midlatitudes, and changing atmospheric conditions influence Arctic mixed-phase clouds, which are important for the Arctic surface energy budget. These low-level clouds are frequently observed across the Arctic. They impact the turbulent and radiative heating of the open water, snow, and sea-ice-covered surfaces and influence the boundary layer structure. Therefore the processes that affect mixed-phase cloud life cycles are extremely important, yet relatively poorly understood. In this study, we present sensitivity studies using semi-idealized large eddy simulations (LESs to identify processes contributing to the dissipation of Arctic mixed-phase clouds. We found that one potential main contributor to the dissipation of an observed Arctic mixed-phase cloud, during the Arctic Summer Cloud Ocean Study (ASCOS field campaign, was a low cloud droplet number concentration (CDNC of about 2 cm−3. Introducing a high ice crystal concentration of 10 L−1 also resulted in cloud dissipation, but such high ice crystal concentrations were deemed unlikely for the present case. Sensitivity studies simulating the advection of dry air above the boundary layer inversion, as well as a modest increase in ice crystal concentration of 1 L−1, did not lead to cloud dissipation. As a requirement for small droplet numbers, pristine aerosol conditions in the Arctic environment are therefore considered an important factor determining the lifetime of Arctic mixed-phase clouds.

  15. Cloud MicroAtlas∗

    Indian Academy of Sciences (India)

    ∗Any resemblance to the title of David Mitchell's book is purely intentional! RESONANCE | March 2017. 269 .... The most comprehensive reference we know of on the subject of cloud microphysics is the book .... Economic and. Political Weekly ...

  16. Experimental project - Cloud chamber

    International Nuclear Information System (INIS)

    Nour, Elena; Quinchard, Gregory; Soudon, Paul

    2015-01-01

    This document reports an academic experimental project dealing with the general concepts of radioactivity and their application to the cloud room experiment. The author first recalls the history of the design and development of a cloud room, and some definitions and characteristics of cosmic radiation, and proposes a description of the principle and physics of a cloud room. The second part is a theoretical one, and addresses the involved particles, the origins of electrons, and issues related to the transfer of energy (Bremsstrahlung effect, Bragg peak). The third part reports the experimental work with the assessment of a cloud droplet radius, the identification of a trace for each particle (alphas and electrons), and the study of the magnetic field deviation

  17. Green symbiotic cloud communications

    CERN Document Server

    Mustafa, H D; Desai, Uday B; Baveja, Brij Mohan

    2017-01-01

    This book intends to change the perception of modern day telecommunications. Communication systems, usually perceived as “dumb pipes”, carrying information / data from one point to another, are evolved into intelligently communicating smart systems. The book introduces a new field of cloud communications. The concept, theory, and architecture of this new field of cloud communications are discussed. The book lays down nine design postulates that form the basis of the development of a first of its kind cloud communication paradigm entitled Green Symbiotic Cloud Communications or GSCC. The proposed design postulates are formulated in a generic way to form the backbone for development of systems and technologies of the future. The book can be used to develop courses that serve as an essential part of graduate curriculum in computer science and electrical engineering. Such courses can be independent or part of high-level research courses. The book will also be of interest to a wide range of readers including b...

  18. Entangled Cloud Storage

    DEFF Research Database (Denmark)

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre

    2012-01-01

    keeps the files in it private but still lets each client P_i recover his own data by interacting with S; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of c as this will imply that none of the clients can......Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation...

  19. Influence of Meteorological Regimes on Cloud Microphysics Over Ross Island, Antarctica

    Science.gov (United States)

    Glennon, C.; Wang, S. H.; Scott, R. C.; Bromwich, D. H.; Lubin, D.

    2017-12-01

    The Antarctic provides a sharp contrast in cloud microphysics from the high Arctic, due to orographic lifting and resulting strong vertical motions induced by mountain ranges and other varying terrain on several spatial scales. The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) deployed advanced cloud remote sensing equipment to Ross Island, Antarctica, from December 2015 until January 2016. This equipment included scanning and zenith radars operating in the Ka and X bands, a high spectral resolution lidar (HSRL), and a polarized micropulse lidar (MPL). A major AWARE objective is to provide state-of-the-art data for improving cloud microphysical parameterizations in climate models. To further this objective we have organized and classified the local Ross Island meteorology into distinct regimes using k-means clustering on ERA-Interim reanalysis data. We identify synoptic categories producing unique regimes of cloud cover and cloud microphysical properties over Ross Island. Each day of observations can then be associated with a specific meteorological regime, thus assisting modelers with identifying case studies. High-resolution (1 km) weather forecasts from the Antarctic Mesoscale Prediction System (AMPS) are sorted into these categories. AMPS-simulated anomalies of cloud fraction, near-surface air temperature, and vertical velocity at 500-mb are composited and compared with ground-based radar and lidar-derived cloud properties to identify mesoscale meteorological processes driving Antarctic cloud formation. Synoptic lows over the Ross and Amundsen Seas drive anomalously warm conditions at Ross Island by injecting marine air masses inland over the West Antarctic Ice Sheet (WAIS). This results in ice and mixed-phase orographic cloud systems arriving at Ross Island from the south to southeast along the Transantarctic Mountains. In contrast, blocking over the Amundsen Sea region brings classical liquid-dominated mixed-phase and

  20. CLOUD COMPUTING SECURITY ISSUES

    OpenAIRE

    Florin OGIGAU-NEAMTIU

    2012-01-01

    The term “cloud computing” has been in the spotlights of IT specialists the last years because of its potential to transform this industry. The promised benefits have determined companies to invest great sums of money in researching and developing this domain and great steps have been made towards implementing this technology. Managers have traditionally viewed IT as difficult and expensive and the promise of cloud computing leads many to think that IT will now be easy and cheap. The reality ...

  1. Cloud benchmarking for performance

    OpenAIRE

    Varghese, Blesson; Akgun, Ozgur; Miguel, Ian; Thai, Long; Barker, Adam

    2014-01-01

    Date of Acceptance: 20/09/2014 How can applications be deployed on the cloud to achieve maximum performance? This question has become significant and challenging with the availability of a wide variety of Virtual Machines (VMs) with different performance capabilities in the cloud. The above question is addressed by proposing a six step benchmarking methodology in which a user provides a set of four weights that indicate how important each of the following groups: memory, processor, computa...

  2. Toward Cloud Computing Evolution

    OpenAIRE

    Susanto, Heru; Almunawar, Mohammad Nabil; Kang, Chen Chin

    2012-01-01

    -Information Technology (IT) shaped the success of organizations, giving them a solid foundation that increases both their level of efficiency as well as productivity. The computing industry is witnessing a paradigm shift in the way computing is performed worldwide. There is a growing awareness among consumers and enterprises to access their IT resources extensively through a "utility" model known as "cloud computing." Cloud computing was initially rooted in distributed grid-based computing. ...

  3. A TRUSTWORTHY CLOUD FORENSICS ENVIRONMENT

    OpenAIRE

    Zawoad , Shams; Hasan , Ragib

    2015-01-01

    Part 5: CLOUD FORENSICS; International audience; The rapid migration from traditional computing and storage models to cloud computing environments has made it necessary to support reliable forensic investigations in the cloud. However, current cloud computing environments often lack support for forensic investigations and the trustworthiness of evidence is often questionable because of the possibility of collusion between dishonest cloud providers, users and forensic investigators. This chapt...

  4. On Cloud-based Oversubscription

    OpenAIRE

    Householder, Rachel; Arnold, Scott; Green, Robert

    2014-01-01

    Rising trends in the number of customers turning to the cloud for their computing needs has made effective resource allocation imperative for cloud service providers. In order to maximize profits and reduce waste, providers have started to explore the role of oversubscribing cloud resources. However, the benefits of cloud-based oversubscription are not without inherent risks. This paper attempts to unveil the incentives, risks, and techniques behind oversubscription in a cloud infrastructure....

  5. SOME CONSIDERATIONS ON CLOUD ACCOUNTING

    OpenAIRE

    Doina Pacurari; Elena Nechita

    2013-01-01

    Cloud technologies have developed intensively during the last years. Cloud computing allows the customers to interact with their data and applications at any time, from any location, while the providers host these resources. A client company may choose to run in the cloud a part of its business (sales by agents, payroll, etc.), or even the entire business. The company can get access to a large category of cloud-based software, including accounting software. Cloud solutions are especially reco...

  6. CLOUD COMPUTING TECHNOLOGY TRENDS

    Directory of Open Access Journals (Sweden)

    Cristian IVANUS

    2014-05-01

    Full Text Available Cloud computing has been a tremendous innovation, through which applications became available online, accessible through an Internet connection and using any computing device (computer, smartphone or tablet. According to one of the most recent studies conducted in 2012 by Everest Group and Cloud Connect, 57% of companies said they already use SaaS application (Software as a Service, and 38% reported using standard tools PaaS (Platform as a Service. However, in the most cases, the users of these solutions highlighted the fact that one of the main obstacles in the development of this technology is the fact that, in cloud, the application is not available without an Internet connection. The new challenge of the cloud system has become now the offline, specifically accessing SaaS applications without being connected to the Internet. This topic is directly related to user productivity within companies as productivity growth is one of the key promises of cloud computing system applications transformation. The aim of this paper is the presentation of some important aspects related to the offline cloud system and regulatory trends in the European Union (EU.

  7. Satellite remote sensing of aerosol and cloud properties over Eurasia

    Science.gov (United States)

    Sogacheva, Larisa; Kolmonen, Pekka; Saponaro, Giulia; Virtanen, Timo; Rodriguez, Edith; Sundström, Anu-Maija; Atlaskina, Ksenia; de Leeuw, Gerrit

    2015-04-01

    Satellite remote sensing provides the spatial distribution of aerosol and cloud properties over a wide area. In our studies large data sets are used for statistical studies on aerosol and cloud interaction in an area over Fennoscandia, the Baltic Sea and adjacent regions over the European mainland. This area spans several regimes with different influences on aerosol cloud interaction such as a the transition from relative clean air over Fennoscandia to more anthropogenically polluted air further south, and the influence maritime air over the Baltic and oceanic air advected from the North Atlantic. Anthropogenic pollution occurs in several parts of the study area, and in particular near densely populated areas and megacities, but also in industrialized areas and areas with dense traffic. The aerosol in such areas is quite different from that produced over the boreal forest and has different effects on air quality and climate. Studies have been made on the effects of aerosols on air quality and on the radiation balance in China. The aim of the study is to study the effect of these different regimes on aerosol-cloud interaction using a large aerosol and cloud data set retrieved with the (Advanced) Along Track Scanning Radiometer (A)ATSR Dual View algorithm (ADV) further developed at Finnish Meteorological Institute and aerosol and cloud data provided by MODIS. Retrieval algorithms for aerosol and clouds have been developed for the (A)ATSR, consisting of a series of instruments of which we use the second and third one: ATSR-2 which flew on the ERS-2 satellite (1995-2003) and AATSR which flew on the ENVISAT satellite (2002-2012) (both from the European Space Agency, ESA). The ADV algorithm provides aerosol data on a global scale with a default resolution of 10x10km2 (L2) and an aggregate product on 1x1 degree (L3). Optional, a 1x1 km2 retrieval products is available over smaller areas for specific studies. Since for the retrieval of AOD no prior knowledge is needed on

  8. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    Science.gov (United States)

    2015-09-30

    fraction product and the remotely sensed albedo product in the context of understanding the surface radiation budget. Particular attention is paid to...Stamnes, Chapter 2 The Polar Environment: Sun, Clouds, and Ice, in Ocean Colour Remote Sensing in Polar Seas, p 5-25, in press. Istomina, L, G

  9. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover

    Science.gov (United States)

    2015-11-30

    the remotely sensed albedo product in the context of understanding the surface radiation budget. Particular attention is paid to the infrequent...Chapter 2 The Polar Environment: Sun, Clouds, and Ice, in Ocean Colour Remote Sensing in Polar Seas, p 5-25, in press. Istomina, L, G. Heygster, M

  10. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  11. USGEO DMWG Cloud Computing Recommendations

    Science.gov (United States)

    de la Beaujardiere, J.; McInerney, M.; Frame, M. T.; Summers, C.

    2017-12-01

    The US Group on Earth Observations (USGEO) Data Management Working Group (DMWG) has been developing Cloud Computing Recommendations for Earth Observations. This inter-agency report is currently in draft form; DMWG hopes to have released the report as a public Request for Information (RFI) by the time of AGU. The recommendations are geared toward organizations that have already decided to use the Cloud for some of their activities (i.e., the focus is not on "why you should use the Cloud," but rather "If you plan to use the Cloud, consider these suggestions.") The report comprises Introductory Material, including Definitions, Potential Cloud Benefits, and Potential Cloud Disadvantages, followed by Recommendations in several areas: Assessing When to Use the Cloud, Transferring Data to the Cloud, Data and Metadata Contents, Developing Applications in the Cloud, Cost Minimization, Security Considerations, Monitoring and Metrics, Agency Support, and Earth Observations-specific recommendations. This talk will summarize the recommendations and invite comment on the RFI.

  12. Cloud GIS Based Watershed Management

    Science.gov (United States)

    Bediroğlu, G.; Colak, H. E.

    2017-11-01

    In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.

  13. Security Problems in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Rola Motawie

    2016-12-01

    Full Text Available Cloud is a pool of computing resources which are distributed among cloud users. Cloud computing has many benefits like scalability, flexibility, cost savings, reliability, maintenance and mobile accessibility. Since cloud-computing technology is growing day by day, it comes with many security problems. Securing the data in the cloud environment is most critical challenges which act as a barrier when implementing the cloud. There are many new concepts that cloud introduces, such as resource sharing, multi-tenancy, and outsourcing, create new challenges for the security community. In this work, we provide a comparable study of cloud computing privacy and security concerns. We identify and classify known security threats, cloud vulnerabilities, and attacks.

  14. A multi-stage oil-water-separating process design for the sea oil spill recovery robot

    Science.gov (United States)

    Zhang, Min-ge; Wu, Jian-guo; Lin, Xinhua; Wang, Xiao-ming

    2018-03-01

    Oil spill have the most common pollution to the marine ecological environment. In the late stage of physical method recovery, because of the thin oil and the strong sea breeze, the recovery vessels has low efficiency and high energy consumption. This paper develops a multi-stage oil-water-separating process carried by the sea oil spill recovery robot in severe conditions. This design consists of three separation process, among which both the first and third process adopt corrugated sheets horizontal oil-water separator, while the second is hydraulic rotary breaker. This design also equiptment with rectifier and cyclone separator and other important components. This process has high flexibility and high recovery efficiency. The implement effect is significant.

  15. Cloud Condensation Nuclei Measurements During the First Year of the ORACLES Study

    Science.gov (United States)

    Kacarab, M.; Howell, S. G.; Wood, R.; Redemann, J.; Nenes, A.

    2016-12-01

    Aerosols have significant impacts on air quality and climate. Their ability to scatter and absorb radiation and to act as cloud condensation nuclei (CCN) plays a very important role in the global climate. Biomass burning organic aerosol (BBOA) can drastically elevate the concentration of CCN in clouds, but the response in droplet number may be strongly suppressed (or even reversed) owing to low supersaturations that may develop from the strong competition of water vapor (Bougiatioti et al. 2016). Understanding and constraining the magnitude of droplet response to biomass burning plumes is an important component of the aerosol-cloud interaction problem. The southeastern Atlantic (SEA) cloud deck provides a unique opportunity to study these cloud-BBOA interactions for marine stratocumulus, as it is overlain by a large, optically thick biomass burning aerosol plume from Southern Africa during the burning season. The interaction between these biomass burning aerosols and the SEA cloud deck is being investigated in the NASA ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) study. The CCN activity of aerosol around the SEA cloud deck and associated biomass burning plume was evaluated during the first year of the ORACLES study with direct measurements of CCN concentration, aerosol size distribution and composition onboard the NASA P-3 aircraft during August and September of 2016. Here we present analysis of the observed CCN activity of the BBOA aerosol in and around the SEA cloud deck and its relationship to aerosol size, chemical composition, and plume mixing and aging. We also evaluate the predicted and observed droplet number sensitivity to the aerosol fluctuations and quantify, using the data, the drivers of droplet number variability (vertical velocity or aerosol properties) as a function of biomass burning plume characteristics.

  16. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount

    Directory of Open Access Journals (Sweden)

    B. H. Kahn

    2008-03-01

    Full Text Available The precision of the two-layer cloud height fields derived from the Atmospheric Infrared Sounder (AIRS is explored and quantified for a five-day set of observations. Coincident profiles of vertical cloud structure by CloudSat, a 94 GHz profiling radar, and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO, are compared to AIRS for a wide range of cloud types. Bias and variability in cloud height differences are shown to have dependence on cloud type, height, and amount, as well as whether CloudSat or CALIPSO is used as the comparison standard. The CloudSat-AIRS biases and variability range from −4.3 to 0.5±1.2–3.6 km for all cloud types. Likewise, the CALIPSO-AIRS biases range from 0.6–3.0±1.2–3.6 km (−5.8 to −0.2±0.5–2.7 km for clouds ≥7 km (<7 km. The upper layer of AIRS has the greatest sensitivity to Altocumulus, Altostratus, Cirrus, Cumulonimbus, and Nimbostratus, whereas the lower layer has the greatest sensitivity to Cumulus and Stratocumulus. Although the bias and variability generally decrease with increasing cloud amount, the ability of AIRS to constrain cloud occurrence, height, and amount is demonstrated across all cloud types for many geophysical conditions. In particular, skill is demonstrated for thin Cirrus, as well as some Cumulus and Stratocumulus, cloud types infrared sounders typically struggle to quantify. Furthermore, some improvements in the AIRS Version 5 operational retrieval algorithm are demonstrated. However, limitations in AIRS cloud retrievals are also revealed, including the existence of spurious Cirrus near the tropopause and low cloud layers within Cumulonimbus and Nimbostratus clouds. Likely causes of spurious clouds are identified and the potential for further improvement is discussed.

  17. Sea Legs

    Science.gov (United States)

    Macdonald, Kenneth C.

    Forty-foot, storm-swept seas, Spitzbergen polar bears roaming vast expanses of Arctic ice, furtive exchanges of forbidden manuscripts in Cold War Moscow, the New York city fashion scene, diving in mini-subs to the sea floor hot srings, life with the astronauts, romance and heartbreak, and invading the last bastions of male exclusivity: all are present in this fast-moving, non-fiction account of one woman' fascinating adventures in the world of marine geology and oceanography.

  18. Counting the clouds

    International Nuclear Information System (INIS)

    Randall, David A

    2005-01-01

    Cloud processes are very important for the global circulation of the atmosphere. It is now possible, though very expensive, to simulate the global circulation of the atmosphere using a model with resolution fine enough to explicitly represent the larger individual clouds. An impressive preliminary calculation of this type has already been performed by Japanese scientists, using the Earth Simulator. Within the next few years, such global cloud-resolving models (GCRMs) will be applied to weather prediction, and later they will be used in climatechange simulations. The tremendous advantage of GCRMs, relative to conventional lowerresolution global models, is that GCRMs can avoid many of the questionable 'parameterizations' used to represent cloud effects in lower-resolution global models. Although cloud microphysics, turbulence, and radiation must still be parameterized in GCRMs, the high resolution of a GCRM simplifies these problems considerably, relative to conventional models. The United States currently has no project to develop a GCRM, although we have both the computer power and the expertise to do it. A research program aimed at development and applications of GCRMs is outlined

  19. Trust management in cloud services

    CERN Document Server

    Noor, Talal H; Bouguettaya, Athman

    2014-01-01

    This book describes the design and implementation of Cloud Armor, a novel approach for credibility-based trust management and automatic discovery of cloud services in distributed and highly dynamic environments. This book also helps cloud users to understand the difficulties of establishing trust in cloud computing and the best criteria for selecting a service cloud. The techniques have been validated by a prototype system implementation and experimental studies using a collection of real world trust feedbacks on cloud services.The authors present the design and implementation of a novel pro

  20. Scale analysis of convective clouds

    Directory of Open Access Journals (Sweden)

    Micha Gryschka

    2008-12-01

    Full Text Available The size distribution of cumulus clouds due to shallow and deep convection is analyzed using satellite pictures, LES model results and data from the German rain radar network. The size distributions found can be described by simple power laws as has also been proposed for other cloud data in the literature. As the observed precipitation at ground stations is finally determined by cloud numbers in an area and individual sizes and rain rates of single clouds, the cloud size distributions might be used for developing empirical precipitation forecasts or for validating results from cloud resolving models being introduced to routine weather forecasts.

  1. On the Influence of Air Mass Origin on Low-Cloud Properties in the Southeast Atlantic

    Science.gov (United States)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik; Hollmann, Rainer; Schwarz, Katharina

    2017-10-01

    This study investigates the impact of air mass origin and dynamics on cloud property changes in the Southeast Atlantic (SEA) during the biomass burning season. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget and thus prominent in climate system research. In this study, the thermodynamically stable SEA stratocumulus cover is observed not only as the result of local environmental conditions but also as connected to large-scale meteorology by the often neglected but important role of spatial origins of air masses entering this region. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a Hybrid Single-Particle Lagrangian Integrated Trajectory cluster analysis is conducted linking satellite observations of cloud properties (Spinning-Enhanced Visible and Infrared Imager), information on aerosol species (Monitoring Atmospheric Composition and Climate), and meteorological context (ERA-Interim reanalysis) to air mass clusters. It is found that a characteristic pattern of air mass origins connected to distinct synoptical conditions leads to marked cloud property changes in the southern part of the study area. Long-distance air masses are related to midlatitude weather disturbances that affect the cloud microphysics, especially in the southwestern subdomain of the study area. Changes in cloud effective radius are consistent with a boundary layer deepening and changes in lower tropospheric stability (LTS). In the southeastern subdomain cloud cover is controlled by a generally higher LTS, while air mass origin plays a minor role. This study leads to a better understanding of the dynamical drivers behind observed stratocumulus cloud properties in the SEA and frames potentially interesting conditions for aerosol-cloud interactions.

  2. Moving HammerCloud to CERN's private cloud

    CERN Document Server

    Barrand, Quentin

    2013-01-01

    HammerCloud is a testing framework for the Worldwide LHC Computing Grid. Currently deployed on about 20 hand-managed machines, it was desirable to move it to the Agile Infrastructure, CERN's OpenStack-based private cloud.

  3. Modeling of Cloud/Radiation Processes for Cirrus Cloud Formation

    National Research Council Canada - National Science Library

    Liou, K

    1997-01-01

    This technical report includes five reprints and pre-prints of papers associated with the modeling of cirrus cloud and radiation processes as well as remote sensing of cloud optical and microphysical...

  4. Atlantic Multidecadal Oscillation footprint on global high cloud cover

    Science.gov (United States)

    Vaideanu, Petru; Dima, Mihai; Voiculescu, Mirela

    2017-12-01

    Due to the complexity of the physical processes responsible for cloud formation and to the relatively short satellite database of continuous data records, cloud behavior in a warming climate remains uncertain. Identifying physical links between climate modes and clouds would contribute not only to a better understanding of the physical processes governing their formation and dynamics, but also to an improved representation of the clouds in climate models. Here, we identify the global footprint of the Atlantic Multidecadal Oscillation (AMO) on high cloud cover, with focus on the tropical and North Atlantic, tropical Pacific and on the circum-Antarctic sector. In the tropical band, the sea surface temperature (SST) and high cloud cover (HCC) anomalies are positively correlated, indicating a dominant role played by convection in mediating the influence of the AMO-related SST anomalies on the HCC field. The negative SST-HCC correlation observed in North Atlantic could be explained by the reduced meridional temperature gradient induced by the AMO positive phase, which would be reflected in less storms and negative HCC anomalies. A similar negative SST-HCC correlation is observed around Antarctica. The corresponding negative correlation around Antarctica could be generated dynamically, as a response to the intensified upward motion in the Ferrel cell. Despite the inherent imperfection of the observed and reanalysis data sets, the AMO footprint on HCC is found to be robust to the choice of dataset, statistical method, and specific time period considered.

  5. Combining observations and models to reduce uncertainty in the cloud response to global warming

    Science.gov (United States)

    Norris, J. R.; Myers, T.; Chellappan, S.

    2017-12-01

    Currently there is large uncertainty on how subtropical low-level clouds will respond to global warming and whether they will act as a positive feedback or negative feedback. Global climate models substantially agree on what changes in atmospheric structure and circulation will occur with global warming but greatly disagree over how clouds will respond to these changes in structure and circulation. An examination of models with the most realistic simulations of low-level cloudiness indicates that the model cloud response to atmospheric changes associated with global warming is quantitatively similar to the model cloud response to atmospheric changes at interannual time scales. For these models, the cloud response to global warming predicted by multilinear regression using coefficients derived from interannual time scales is quantitatively similar to the cloud response to global warming directly simulated by the model. Since there is a large spread among cloud response coefficients even among models with the most realistic cloud simulations, substitution of coefficients derived from satellite observations reduces the uncertainty range of the low-level cloud feedback. Increased sea surface temperature associated with global warming acts to reduce low-level cloudiness, which is partially offset by increased lower tropospheric stratification that acts to enhance low-level cloudiness. Changes in free-tropospheric relative humidity, subsidence, and horizontal advection have only a small impact on low-level cloud. The net reduction in subtropical low-level cloudiness increases absorption of solar radiation by the climate system, thus resulting in a weak positive feedback.

  6. Case studies of radiation in the cloud-capped atmospheric boundary layer

    International Nuclear Information System (INIS)

    Schmetz, J.; Raschke, E.

    1983-01-01

    This review presents observations of marine stratocumulus obtained by the three research aircraft that participated in the Joint Air-Sea Interaction Project (JASIN). Detailed measurements were made of the thermodynamic, cloud physics and radiation fields for a uniform cloud sheet on 8 August 1978. These show a well mixed boundary layer with cloud liquid water contents close to their adiabatic values. The longwave and shortwave radiative components of the cloud layer energy budget were measured and good agreement was obtained between the observations and several radiation schemes. In particular, the measured cloud shortwave absorption was close to the theoretical values. Observations of shortwave fluxes made from the Falcon aircraft beneath broken stratocumulus are also shown and compared with calculations made by using a Monte Carlo model. It is concluded that the radiative cloud-cloud interactions do not play a dominant role in the bulk radiative properties of cloud fields. These are mainly determined by cloud amount and the vertical and horizontal optical depths of the clouds within the field. (author)

  7. Tharsis Limb Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Annotated image of Tharsis Limb Cloud 7 September 2005 This composite of red and blue Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired on 6 July 2005 shows an isolated water ice cloud extending more than 30 kilometers (more than 18 miles) above the martian surface. Clouds such as this are common in late spring over the terrain located southwest of the Arsia Mons volcano. Arsia Mons is the dark, oval feature near the limb, just to the left of the 'T' in the 'Tharsis Montes' label. The dark, nearly circular feature above the 'S' in 'Tharsis' is the volcano, Pavonis Mons, and the other dark circular feature, above and to the right of 's' in 'Montes,' is Ascraeus Mons. Illumination is from the left/lower left. Season: Northern Autumn/Southern Spring

  8. Transition to the Cloud

    DEFF Research Database (Denmark)

    Hedman, Jonas; Xiao, Xiao

    2016-01-01

    The rising of cloud computing has dramatically changed the way software companies provide and distribute their IT product and related services over the last decades. Today, most software is bought offthe-shelf and distributed over the Internet. This transition is greatly influencing how software...... companies operate. In this paper, we present a case study of an ERP vendor for SMB (small and mediumsize business) in making a transition towards a cloud-based business model. Through the theoretical lens of ecosystem, we are able to analyze the evolution of the vendor and its business network as a whole......, and find that the relationship between vendor and Value-added-Reseller (VAR) is greatly affected. We conclude by presenting critical issues and challenges for managing such cloud transition....

  9. The photoevaporation of interstellar clouds

    International Nuclear Information System (INIS)

    Bertoldi, F.

    1989-01-01

    The dynamics of the photoevaporation of interstellar clouds and its consequences for the structure and evolution of H II regions are studied. An approximate analytical solution for the evolution of photoevaporating clouds is derived under the realistic assumption of axisymmetry. The effects of magnetic fields are taken into account in an approximate way. The evolution of a neutral cloud subjected to the ionizing radiation of an OB star has two distinct stages. When a cloud is first exposed to the radiation, the increase in pressure due to the ionization at the surface of the cloud leads to a radiation-driven implosion: an ionization front drives a shock into the cloud, ionizes part of it and compresses the remaining into a dense globule. The initial implosion is followed by an equilibrium cometary stage, in which the cloud maintains a semistationary comet-shaped configuration; it slowly evaporates while accelerating away from the ionizing star until the cloud has been completely ionized, reaches the edge of the H II region, or dies. Expressions are derived for the cloud mass-loss rate and acceleration. To investigate the effect of the cloud photoevaporation on the structure of H II regions, the evolution of an ensemble of clouds of a given mass distribution is studied. It is shown that the compressive effect of the ionizing radiation can induce star formation in clouds that were initially gravitationally stable, both for thermally and magnetically supported clouds

  10. Cloud Computing: A study of cloud architecture and its patterns

    OpenAIRE

    Mandeep Handa,; Shriya Sharma

    2015-01-01

    Cloud computing is a general term for anything that involves delivering hosted services over the Internet. Cloud computing is a paradigm shift following the shift from mainframe to client–server in the early 1980s. Cloud computing can be defined as accessing third party software and services on web and paying as per usage. It facilitates scalability and virtualized resources over Internet as a service providing cost effective and scalable solution to customers. Cloud computing has...

  11. Aerosol processing in stratiform clouds in ECHAM6-HAM

    Science.gov (United States)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna

    2013-04-01

    Aerosol processing in stratiform clouds by uptake into cloud particles, collision-coalescence, chemical processing inside the cloud particles and release back into the atmosphere has important effects on aerosol concentration, size distribution, chemical composition and mixing state. Aerosol particles can act as cloud condensation nuclei. Cloud droplets can take up further aerosol particles by collisions. Atmospheric gases may also be transferred into the cloud droplets and undergo chemical reactions, e.g. the production of atmospheric sulphate. Aerosol particles are also processed in ice crystals. They may be taken up by homogeneous freezing of cloud droplets below -38° C or by heterogeneous freezing above -38° C. This includes immersion freezing of already immersed aerosol particles in the droplets and contact freezing of particles colliding with a droplet. Many clouds do not form precipitation and also much of the precipitation evaporates before it reaches the ground. The water soluble part of the aerosol particles concentrates in the hydrometeors and together with the insoluble part forms a single, mixed, larger particle, which is released. We have implemented aerosol processing into the current version of the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM (Stier et al., 2005). ECHAM6-HAM solves prognostic equations for the cloud droplet number and ice crystal number concentrations. In the standard version of HAM, seven modes are used to describe the total aerosol. The modes are divided into soluble/mixed and insoluble modes and the number concentrations and masses of different chemical components (sulphate, black carbon, organic carbon, sea salt and mineral dust) are prognostic variables. We extended this by an explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds similar to Hoose et al. (2008a,b). Aerosol particles in cloud droplets are represented by 5 tracers for the

  12. Global variability of cloud condensation nuclei concentrations

    Science.gov (United States)

    Makkonen, Risto; Krüger, Olaf

    2017-04-01

    Atmospheric aerosols can influence cloud optical and dynamical processes by acting as cloud condensation nuclei (CCN). Globally, these indirect aerosol effects are significant to the radiative budget as well as a source of high uncertainty in anthropogenic radiative forcing. While historically many global climate models have fixed CCN concentrations to a certain level, most state-of-the-art models calculate aerosol-cloud interactions with sophisticated methodologies based on interactively simulated aerosol size distributions. However, due to scarcity of atmospheric observations simulated global CCN concentrations remain poorly constrained. Here we assess global CCN variability with a climate model, and attribute potential trends during 2000-2010 to changes in emissions and meteorological fields. Here we have used ECHAM5.5-HAM2 with model M7 microphysical aerosol model. The model has been upgraded with a secondary organic aerosol (SOA) scheme including ELVOCs. Dust and sea salt emissions are calculated online, based on wind speed and hydrology. Each experiment is 11 years, analysed after a 6-month spin-up period. The MODIS CCN product (Terra platform) is used to evaluate model performance throughout 2000-2010. While optical remote observation of CCN column includes several deficiencies, the products serves as a proxy for changes during the simulation period. In our analysis we utilize the observed and simulated vertical column integrated CCN concentration, and limit our analysis only over marine regions. Simulated annual CCN column densities reach 2ṡ108 cm-2 near strong source regions in central Africa, Arabian Sea, Bay of Bengal and China sea. The spatial concentration gradient in CCN(0.2%) is steep, and column densities drop to coasts. While the spatial distribution of CCN at 0.2% supersaturation is closer to that of MODIS proxy, as opposed to 1.0% supersaturation, the overall column integrated CCN are too low. Still, we can compare the relative response of CCN

  13. Cloud Collaboration: Cloud-Based Instruction for Business Writing Class

    Science.gov (United States)

    Lin, Charlie; Yu, Wei-Chieh Wayne; Wang, Jenny

    2014-01-01

    Cloud computing technologies, such as Google Docs, Adobe Creative Cloud, Dropbox, and Microsoft Windows Live, have become increasingly appreciated to the next generation digital learning tools. Cloud computing technologies encourage students' active engagement, collaboration, and participation in their learning, facilitate group work, and support…

  14. Cloud blueprints for integrating and managing cloud federations

    NARCIS (Netherlands)

    Papazoglou, M.; Heisel, M.

    2012-01-01

    Contemporary cloud technologies face insurmountable obstacles. They follow a pull-based, producer-centric trajectory to development where cloud consumers have to ‘squeeze and bolt’ applications onto cloud APIs. They also introduce a monolithic SaaS/PaaS/IaaS stack where a one-size-fits-all mentality

  15. Opaque cloud detection

    Science.gov (United States)

    Roskovensky, John K [Albuquerque, NM

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  16. Storm and cloud dynamics

    CERN Document Server

    Cotton, William R

    1992-01-01

    This book focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models.Key Features* Key Highlight

  17. Detailed Information Security in Cloud Computing

    OpenAIRE

    Pavel Valerievich Ivonin

    2013-01-01

    The object of research in this article is technology of public clouds, structure and security system of clouds. Problems of information security in clouds are considered, elements of security system in public clouds are described.

  18. Cloud Based Applications and Platforms (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  19. Testing a polarimetric cloud imager aboard research vessel Polarstern: comparison of color-based and polarimetric cloud detection algorithms.

    Science.gov (United States)

    Barta, András; Horváth, Gábor; Horváth, Ákos; Egri, Ádám; Blahó, Miklós; Barta, Pál; Bumke, Karl; Macke, Andreas

    2015-02-10

    Cloud cover estimation is an important part of routine meteorological observations. Cloudiness measurements are used in climate model evaluation, nowcasting solar radiation, parameterizing the fluctuations of sea surface insolation, and building energy transfer models of the atmosphere. Currently, the most widespread ground-based method to measure cloudiness is based on analyzing the unpolarized intensity and color distribution of the sky obtained by digital cameras. As a new approach, we propose that cloud detection can be aided by the additional use of skylight polarization measured by 180° field-of-view imaging polarimetry. In the fall of 2010, we tested such a novel polarimetric cloud detector aboard the research vessel Polarstern during expedition ANT-XXVII/1. One of our goals was to test the durability of the measurement hardware under the extreme conditions of a trans-Atlantic cruise. Here, we describe the instrument and compare the results of several different cloud detection algorithms, some conventional and some newly developed. We also discuss the weaknesses of our design and its possible improvements. The comparison with cloud detection algorithms developed for traditional nonpolarimetric full-sky imagers allowed us to evaluate the added value of polarimetric quantities. We found that (1) neural-network-based algorithms perform the best among the investigated schemes and (2) global information (the mean and variance of intensity), nonoptical information (e.g., sun-view geometry), and polarimetric information (e.g., the degree of polarization) improve the accuracy of cloud detection, albeit slightly.

  20. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    Science.gov (United States)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  1. Sea level trends in South East Asian Seas (SEAS)

    Science.gov (United States)

    Strassburg, M. W.; Hamlington, B. D.; Leben, R. R.; Manurung, P.; Lumban Gaol, J.; Nababan, B.; Vignudelli, S.; Kim, K.-Y.

    2014-10-01

    Southeast Asian Seas (SEAS) span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian Oceans. The SEAS regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost two decades. Initial comparisons of global sea level reconstructions find that 17 year sea level trends over the past 60 years exhibit good agreement in areas and at times of strong signal to noise associated decadal variability forced by low frequency variations in Pacific trade winds. The SEAS region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer time scales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past twenty years, the rate of sea level rise is greatly reduced in the SEAS region. As a result of the influence of the PDO, the SEAS regional sea level trends during 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the SEAS will continue to be affected by GMSL rise occurring now and in the future.

  2. Securing virtual and cloud environments

    CSIR Research Space (South Africa)

    Carroll, M

    2012-01-01

    Full Text Available targets such as reduced costs, scalability, flexibility, capacity utilisation, higher efficiencies and mobility. Many of these benefits are achieved through the utilisation of technologies such as cloud computing and virtualisation. In many instances cloud...

  3. Efficient Resource Management in Cloud Computing

    OpenAIRE

    Rushikesh Shingade; Amit Patil; Shivam Suryawanshi; M. Venkatesan

    2015-01-01

    Cloud computing, one of the widely used technology to provide cloud services for users who are charged for receiving services. In the aspect of a maximum number of resources, evaluating the performance of Cloud resource management policies are difficult to optimize efficiently. There are different simulation toolkits available for simulation and modelling the Cloud computing environment like GridSim CloudAnalyst, CloudSim, GreenCloud, CloudAuction etc. In proposed Efficient Resource Manage...

  4. Cloud computing basics for librarians.

    Science.gov (United States)

    Hoy, Matthew B

    2012-01-01

    "Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article. Copyright © Taylor & Francis Group, LLC

  5. Cloud Computing Security: A Survey

    OpenAIRE

    Khalil, Issa; Khreishah, Abdallah; Azeem, Muhammad

    2014-01-01

    Cloud computing is an emerging technology paradigm that migrates current technological and computing concepts into utility-like solutions similar to electricity and water systems. Clouds bring out a wide range of benefits including configurable computing resources, economic savings, and service flexibility. However, security and privacy concerns are shown to be the primary obstacles to a wide adoption of clouds. The new concepts that clouds introduce, such as multi-tenancy, resource sharing a...

  6. Database security in the cloud

    OpenAIRE

    Sakhi, Imal

    2012-01-01

    The aim of the thesis is to get an overview of the database services available in cloud computing environment, investigate the security risks associated with it and propose the possible countermeasures to minimize the risks. The thesis also analyzes two cloud database service providers namely; Amazon RDS and Xeround. The reason behind choosing these two providers is because they are currently amongst the leading cloud database providers and both provide relational cloud databases which makes ...

  7. QUALITY ASSURANCE FOR CLOUD COMPUTING

    OpenAIRE

    Sumaira Aslam; Hina Shahid

    2016-01-01

    Cloud computing is a greatest and latest thing. Marketers for lots of big companies are all using cloud computing terms in their marketing campaign to make them seem them impressive so, that they can get clients and customers. Cloud computing is overall the philosophy and design concept and it is much more complicated and yet much simpler. The basic underlined thing that cloud computing do is to separate the applications from operating systems from the software from the hardware that runs eve...

  8. Cloud services, networking, and management

    CERN Document Server

    da Fonseca, Nelson L S

    2015-01-01

    Cloud Services, Networking and Management provides a comprehensive overview of the cloud infrastructure and services, as well as their underlying management mechanisms, including data center virtualization and networking, cloud security and reliability, big data analytics, scientific and commercial applications. Special features of the book include: State-of-the-art content. Self-contained chapters for readers with specific interests. Includes commercial applications on Cloud (video services and games).

  9. Security Dynamics of Cloud Computing

    OpenAIRE

    Khan, Khaled M.

    2009-01-01

    This paper explores various dimensions of cloud computing security. It argues that security concerns of cloud computing need to be addressed from the perspective of individual stakeholder. Security focuses of cloud computing are essentially different in terms of its characteristics and business model. Conventional way of viewing as well as addressing security such as ‘bolting-in’ on the top of cloud computing may not work well. The paper attempts to portray the security spectrum necessary for...

  10. Green Cloud on the Horizon

    Science.gov (United States)

    Ali, Mufajjul

    This paper proposes a Green Cloud model for mobile Cloud computing. The proposed model leverage on the current trend of IaaS (Infrastructure as a Service), PaaS (Platform as a Service) and SaaS (Software as a Service), and look at new paradigm called "Network as a Service" (NaaS). The Green Cloud model proposes various Telco's revenue generating streams and services with the CaaS (Cloud as a Service) for the near future.

  11. Reusability Framework for Cloud Computing

    OpenAIRE

    Singh, Sukhpal; Singh, Rishideep

    2012-01-01

    Cloud based development is a challenging task for several software engineering projects, especially for those which needs development with reusability. Present time of cloud computing is allowing new professional models for using the software development. The expected upcoming trend of computing is assumed to be this cloud computing because of speed of application deployment, shorter time to market, and lower cost of operation. Until Cloud Co mputing Reusability Model is considered a fundamen...

  12. Electron-microscope study of cloud and fog nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ogiwara, S; Okita, T

    1952-01-01

    Droplets of clouds on a mountain and of fog in an urban area were captured and the form, nature and size of their nuclei were studied by means of an electron-microscope and by a chamber of constant humidity. These nuclei have similar form and nature to the hygroscopic particles in haze and to the artificially produced combustion particles. No sea-salt nuclei were found in our observations, therefore, sea-spray appears to be an insignificant source of condensation nuclei. It was found that both the cloud and the fog nuclei originated in combustion products which were the mixture of hygroscopic and non-hygroscopic substances, and that the greater part of the nuclei did not contain pure sulfuric acid.

  13. The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic

    Directory of Open Access Journals (Sweden)

    H. Struthers

    2011-04-01

    Full Text Available Understanding Arctic climate change requires knowledge of both the external and the local drivers of Arctic climate as well as local feedbacks within the system. An Arctic feedback mechanism relating changes in sea ice extent to an alteration of the emission of sea salt aerosol and the consequent change in radiative balance is examined. A set of idealized climate model simulations were performed to quantify the radiative effects of changes in sea salt aerosol emissions induced by prescribed changes in sea ice extent. The model was forced using sea ice concentrations consistent with present day conditions and projections of sea ice extent for 2100. Sea salt aerosol emissions increase in response to a decrease in sea ice, the model results showing an annual average increase in number emission over the polar cap (70–90° N of 86 × 106 m−2 s−1 (mass emission increase of 23 μg m−2 s−1. This in turn leads to an increase in the natural aerosol optical depth of approximately 23%. In response to changes in aerosol optical depth, the natural component of the aerosol direct forcing over the Arctic polar cap is estimated to be between −0.2 and −0.4 W m−2 for the summer months, which results in a negative feedback on the system. The model predicts that the change in first indirect aerosol effect (cloud albedo effect is approximately a factor of ten greater than the change in direct aerosol forcing although this result is highly uncertain due to the crude representation of Arctic clouds and aerosol-cloud interactions in the model. This study shows that both the natural aerosol direct and first indirect effects are strongly dependent on the surface albedo, highlighting the strong coupling between sea ice, aerosols, Arctic clouds and their radiative effects.

  14. iCloud standard guide

    CERN Document Server

    Alfi, Fauzan

    2013-01-01

    An easy-to-use guide, filled with tutorials that will teach you how to set up and use iCloud, and profit from all of its marvellous features.This book is for anyone with basic knowledge of computers and mobile operations. Prior knowledge of cloud computing or iCloud is not expected.

  15. Coherent Radiation of Electron Cloud

    International Nuclear Information System (INIS)

    Heifets, S.

    2004-01-01

    The electron cloud in positron storage rings is pinched when a bunch passes by. For short bunches, the radiation due to acceleration of electrons of the cloud is coherent. Detection of such radiation can be used to measure the density of the cloud. The estimate of the power and the time structure of the radiated signal is given in this paper

  16. Understanding and Monitoring Cloud Services

    NARCIS (Netherlands)

    Drago, Idilio

    2013-01-01

    Cloud services have changed the way computing power is delivered to customers. The advantages of the cloud model have fast resulted in powerful providers. However, this success has not come without problems. Cloud providers have been related to major failures, including outages and performance

  17. Research on cloud computing solutions

    Directory of Open Access Journals (Sweden)

    Liudvikas Kaklauskas

    2015-07-01

    Full Text Available Cloud computing can be defined as a new style of computing in which dynamically scala-ble and often virtualized resources are provided as a services over the Internet. Advantages of the cloud computing technology include cost savings, high availability, and easy scalability. Voas and Zhang adapted six phases of computing paradigms, from dummy termi-nals/mainframes, to PCs, networking computing, to grid and cloud computing. There are four types of cloud computing: public cloud, private cloud, hybrid cloud and community. The most common and well-known deployment model is Public Cloud. A Private Cloud is suited for sensitive data, where the customer is dependent on a certain degree of security.According to the different types of services offered, cloud computing can be considered to consist of three layers (services models: IaaS (infrastructure as a service, PaaS (platform as a service, SaaS (software as a service. Main cloud computing solutions: web applications, data hosting, virtualization, database clusters and terminal services. The advantage of cloud com-puting is the ability to virtualize and share resources among different applications with the objective for better server utilization and without a clustering solution, a service may fail at the moment the server crashes.DOI: 10.15181/csat.v2i2.914

  18. GEWEX cloud assessment: A review

    Science.gov (United States)

    Stubenrauch, Claudia; Rossow, William B.; Kinne, Stefan; Ackerman, Steve; Cesana, Gregory; Chepfer, Hélène; Di Girolamo, Larry; Getzewich, Brian; Guignard, Anthony; Heidinger, Andy; Maddux, Brent; Menzel, Paul; Minnis, Patrick; Pearl, Cindy; Platnick, Steven; Poulsen, Caroline; Riedi, Jérôme; Sayer, Andrew; Sun-Mack, Sunny; Walther, Andi; Winker, Dave; Zeng, Shen; Zhao, Guangyu

    2013-05-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provides the first coordinated intercomparison of publicly available, global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multi-angle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. The monthly, gridded database presented here facilitates further assessments, climate studies, and the evaluation of climate models.

  19. The Basics of Cloud Computing

    Science.gov (United States)

    Kaestner, Rich

    2012-01-01

    Most school business officials have heard the term "cloud computing" bandied about and may have some idea of what the term means. In fact, they likely already leverage a cloud-computing solution somewhere within their district. But what does cloud computing really mean? This brief article puts a bit of definition behind the term and helps one…

  20. Towards trustworthy health platform cloud

    NARCIS (Netherlands)

    Deng, M.; Nalin, M.; Petkovic, M.; Baroni, I.; Marco, A.; Jonker, W.; Petkovic, M.

    2012-01-01

    To address today’s major concerns of health service providers regarding security, resilience and data protection when moving on the cloud, we propose an approach to build a trustworthy healthcare platform cloud, based on a trustworthy cloud infrastructure. This paper first highlights the main

  1. A View from the Clouds

    Science.gov (United States)

    Chudnov, Daniel

    2010-01-01

    Cloud computing is definitely a thing now, but it's not new and it's not even novel. Back when people were first learning about the Internet in the 1990s, every diagram that one saw showing how the Internet worked had a big cloud in the middle. That cloud represented the diverse links, routers, gateways, and protocols that passed traffic around in…

  2. Trusting Privacy in the Cloud

    NARCIS (Netherlands)

    Prüfer, J.O.

    2014-01-01

    Cloud computing technologies have the potential to increase innovation and economic growth considerably. But many users worry that data in the cloud can be accessed by others, thereby damaging the data owner. Consequently, they do not use cloud technologies up to the efficient level. I design an

  3. Cloud Feedback Key to Marine Heatwave off Baja California

    Science.gov (United States)

    Myers, Timothy A.; Mechoso, Carlos R.; Cesana, Gregory V.; DeFlorio, Michael J.; Waliser, Duane E.

    2018-05-01

    Between 2013 and 2015, the northeast Pacific Ocean experienced the warmest surface temperature anomalies in the modern observational record. This "marine heatwave" marked a shift of Pacific decadal variability to its warm phase and was linked to significant impacts on marine species as well as exceptionally arid conditions in western North America. Here we show that the subtropical signature of this warming, off Baja California, was associated with a record deficit in the spatial coverage of co-located marine boundary layer clouds. This deficit coincided with a large increase in downwelling solar radiation that dominated the anomalous energy budget of the upper ocean, resulting in record-breaking warm sea surface temperature anomalies. Our observation-based analysis suggests that a positive cloud-surface temperature feedback was key to the extreme intensity of the heatwave. The results demonstrate the extent to which boundary layer clouds can contribute to regional variations in climate.

  4. Securing the Cloud Cloud Computer Security Techniques and Tactics

    CERN Document Server

    Winkler, Vic (JR)

    2011-01-01

    As companies turn to cloud computing technology to streamline and save money, security is a fundamental concern. Loss of certain control and lack of trust make this transition difficult unless you know how to handle it. Securing the Cloud discusses making the move to the cloud while securing your peice of it! The cloud offers felxibility, adaptability, scalability, and in the case of security-resilience. This book details the strengths and weaknesses of securing your company's information with different cloud approaches. Attacks can focus on your infrastructure, communications network, data, o

  5. AceCloud: Molecular Dynamics Simulations in the Cloud.

    Science.gov (United States)

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  6. VMware private cloud computing with vCloud director

    CERN Document Server

    Gallagher, Simon

    2013-01-01

    It's All About Delivering Service with vCloud Director Empowered by virtualization, companies are not just moving into the cloud, they're moving into private clouds for greater security, flexibility, and cost savings. However, this move involves more than just infrastructure. It also represents a different business model and a new way to provide services. In this detailed book, VMware vExpert Simon Gallagher makes sense of private cloud computing for IT administrators. From basic cloud theory and strategies for adoption to practical implementation, he covers all the issues. You'll lea

  7. Properties of Arctic Aerosol Particles and Residuals of Warm Clouds: Cloud Activation Efficiency and the Aerosol Indirect Effect

    Science.gov (United States)

    Zelenyuk, A.; Imre, D. G.; Leaitch, R.; Ovchinnikov, M.; Liu, P.; Macdonald, A.; Strapp, W.; Ghan, S. J.; Earle, M. E.

    2012-12-01

    Single particle mass spectrometer, SPLAT II, was used to characterize the size, composition, number concentration, density, and shape of individual Arctic spring aerosol. Background particles, particles above and below the cloud, cloud droplet residuals, and interstitial particles were characterized with goal to identify the properties that separate cloud condensation nuclei (CCN) from background aerosol particles. The analysis offers a comparison between warm clouds formed on clean and polluted days, with clean days having maximum particle concentrations (Na) lower than ~250 cm-3, as compared with polluted days, in which maximum concentration was tenfold higher. On clean days, particles were composed of organics, organics mixed with sulfates, biomass burning (BB), sea salt (SS), and few soot and dust particles. On polluted days, BB, organics associated with BB, and their mixtures with sulfate dominated particle compositions. Based on the measured compositions and size distributions of cloud droplet residuals, background aerosols, and interstitial particles, we conclude that these three particle types had virtually the same compositions, which means that cloud activation probabilities were surprisingly nearly composition independent. Moreover, these conclusions hold in cases in which less than 20% or more than 90% of background particles got activated. We concluded that for the warm clouds interrogated in this study particle size played a more important factor on aerosol CCN activity. Comparative analysis of all studied clouds reveals that aerosol activation efficiency strongly depends on the aerosol concentrations, such that at Na <200 cm-3, nearly all particles activate, and at higher concentrations the activation efficiency is lower. For example, when Na was greater than 1500 cm-3, less than ~30% of particles activated. The data suggest that as the number of nucleated droplets increases, condensation on existing droplets effectively competes with particle

  8. Benchmarking personal cloud storage

    NARCIS (Netherlands)

    Drago, Idilio; Bocchi, Enrico; Mellia, Marco; Slatman, Herman; Pras, Aiko

    2013-01-01

    Personal cloud storage services are data-intensive applications already producing a significant share of Internet traffic. Several solutions offered by different companies attract more and more people. However, little is known about each service capabilities, architecture and - most of all -

  9. CLOUD COMPUTING SECURITY ISSUES

    Directory of Open Access Journals (Sweden)

    Florin OGIGAU-NEAMTIU

    2012-01-01

    Full Text Available The term “cloud computing” has been in the spotlights of IT specialists the last years because of its potential to transform this industry. The promised benefits have determined companies to invest great sums of money in researching and developing this domain and great steps have been made towards implementing this technology. Managers have traditionally viewed IT as difficult and expensive and the promise of cloud computing leads many to think that IT will now be easy and cheap. The reality is that cloud computing has simplified some technical aspects of building computer systems, but the myriad challenges facing IT environment still remain. Organizations which consider adopting cloud based services must also understand the many major problems of information policy, including issues of privacy, security, reliability, access, and regulation. The goal of this article is to identify the main security issues and to draw the attention of both decision makers and users to the potential risks of moving data into “the cloud”.

  10. Computing in the Clouds

    Science.gov (United States)

    Johnson, Doug

    2010-01-01

    Web-based applications offer teachers, students, and school districts a convenient way to accomplish a wide range of tasks, from accounting to word processing, for free. Cloud computing has the potential to offer staff and students better services at a lower cost than the technology deployment models they're using now. Saving money and improving…

  11. CloudETL

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Thomsen, Christian; Pedersen, Torben Bach

    2014-01-01

    Extract-Transform-Load (ETL) programs process data into data warehouses (DWs). Rapidly growing data volumes demand systems that scale out. Recently, much attention has been given to MapReduce for parallel handling of massive data sets in cloud environments. Hive is the most widely used RDBMS...

  12. Predictable cloud computing

    NARCIS (Netherlands)

    Mullender, Sape J.

    The standard tools for cloud computing—processor and network virtualization—make it difficult to achieve dependability, both in terms of real time operations and fault tolerance. Virtualization multiplexes virtual resources onto physical ones, typically by time division or statistical multiplexing.

  13. SiCloud

    DEFF Research Database (Denmark)

    Jiang, Cathy Y.; Devore, Peter T.S.; Lonappan, Cejo Konuparamban

    2017-01-01

    The silicon photonics industry is projected to be a multibillion dollar industry driven by the growth of data centers. In this work, we present an interactive online tool for silicon photonics. Silicon Photonics Cloud (SiCCloud.org) is an easy to use instructional tool for optical properties...

  14. Towards autonomous vehicular clouds

    Directory of Open Access Journals (Sweden)

    Stephan Olariu

    2011-09-01

    Full Text Available The dawn of the 21st century has seen a growing interest in vehicular networking and its myriad potential applications. The initial view of practitioners and researchers was that radio-equipped vehicles could keep the drivers informed about potential safety risks and increase their awareness of road conditions. The view then expanded to include access to the Internet and associated services. This position paper proposes and promotes a novel and more comprehensive vision namely, that advances in vehicular networks, embedded devices and cloud computing will enable the formation of autonomous clouds of vehicular computing, communication, sensing, power and physical resources. Hence, we coin the term, autonomous vehicular clouds (AVCs. A key feature distinguishing AVCs from conventional cloud computing is that mobile AVC resources can be pooled dynamically to serve authorized users and to enable autonomy in real-time service sharing and management on terrestrial, aerial, or aquatic pathways or theaters of operations. In addition to general-purpose AVCs, we also envision the emergence of specialized AVCs such as mobile analytics laboratories. Furthermore, we envision that the integration of AVCs with ubiquitous smart infrastructures including intelligent transportation systems, smart cities and smart electric power grids will have an enormous societal impact enabling ubiquitous utility cyber-physical services at the right place, right time and with right-sized resources.

  15. Seeding the Cloud

    Science.gov (United States)

    Schaffhauser, Dian

    2013-01-01

    For any institution looking to shift enterprise resource planning (ERP) systems to the cloud, big savings can be achieved--but only if the school has properly prepped "before" negotiations begin. These three steps can help: (1) Mop up the mess first; (2) Understand the true costs for services; and (3) Calculate the cost of transition.

  16. Data in the Cloud

    Science.gov (United States)

    Bull, Glen; Garofalo, Joe

    2010-01-01

    The ability to move from one representation of data to another is one of the key characteristics of expert mathematicians and scientists. Cloud computing will offer more opportunities to create and display multiple representations of data, making this skill even more important in the future. The advent of the Internet led to widespread…

  17. Framework of cloud parameterization including ice for 3-D mesoscale models

    Energy Technology Data Exchange (ETDEWEB)

    Levkov, L; Jacob, D; Eppel, D; Grassl, H

    1989-01-01

    A parameterization scheme for the simulation of ice in clouds incorporated into the hydrostatic version of the GKSS three-dimensional mesoscale model. Numerical simulations of precipitation are performed: over the Northe Sea, the Hawaiian trade wind area and in the region of the intertropical convergence zone. Not only some major features of convective structures in all three areas but also cloud-aerosol interactions have successfully been simulated. (orig.) With 19 figs., 2 tabs.

  18. AIRS-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2

    Data.gov (United States)

    National Aeronautics and Space Administration — This is AIRS-CloudSat collocated subset, in NetCDF 4 format. These data contain collocated: AIRS Level 1b radiances spectra, CloudSat radar reflectivities, and MODIS...

  19. Sea Ice

    Science.gov (United States)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  20. Arsia Mons Spiral Cloud

    Science.gov (United States)

    2002-01-01

    One of the benefits of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission is the opportunity to observe how the planet's weather changes during a second full martian year. This picture of Arsia Mons was taken June 19, 2001; southern spring equinox occurred the same day. Arsia Mons is a volcano nearly large enough to cover the state of New Mexico. On this particular day (the first day of Spring), the MOC wide angle cameras documented an unusual spiral-shaped cloud within the 110 km (68 mi) diameter caldera--the summit crater--of the giant volcano. Because the cloud is bright both in the red and blue images acquired by the wide angle cameras, it probably consisted mostly of fine dust grains. The cloud's spin may have been induced by winds off the inner slopes of the volcano's caldera walls resulting from the temperature differences between the walls and the caldera floor, or by a vortex as winds blew up and over the caldera. Similar spiral clouds were seen inside the caldera for several days; we don't know if this was a single cloud that persisted throughout that time or one that regenerated each afternoon. Sunlight illuminates this scene from the left/upper left.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  1. Cloud-turbulence interactions: Sensitivity of a general circulation model to closure assumptions

    International Nuclear Information System (INIS)

    Brinkop, S.; Roeckner, E.

    1993-01-01

    Several approaches to parameterize the turbulent transport of momentum, heat, water vapour and cloud water for use in a general circulation model (GCM) have been tested in one-dimensional and three-dimensional model simulations. The schemes differ with respect to their closure assumptions (conventional eddy diffusivity model versus turbulent kinetic energy closure) and also regarding their treatment of cloud-turbulence interactions. The basis properties of these parameterizations are discussed first in column simulations of a stratocumulus-topped atmospheric boundary layer (ABL) under a strong subsidence inversion during the KONTROL experiment in the North Sea. It is found that the K-models tend to decouple the cloud layer from the adjacent layers because the turbulent activity is calculated from local variables. The higher-order scheme performs better in this respect because internally generated turbulence can be transported up and down through the action of turbulent diffusion. Thus, the TKE-scheme provides not only a better link between the cloud and the sub-cloud layer but also between the cloud and the inversion as a result of cloud-top entrainment. In the stratocumulus case study, where the cloud is confined by a pronounced subsidence inversion, increased entrainment favours cloud dilution through enhanced evaporation of cloud droplets. In the GCM study, however, additional cloud-top entrainment supports cloud formation because indirect cloud generating processes are promoted through efficient ventilation of the ABL, such as the enhanced moisture supply by surface evaporation and the increased depth of the ABL. As a result, tropical convection is more vigorous, the hydrological cycle is intensified, the whole troposphere becomes warmer and moister in general and the cloudiness in the upper part of the ABL is increased. (orig.)

  2. A multilinear regression methodology to analyze the effect of atmospheric and surface forcing on Arctic clouds

    Science.gov (United States)

    Boeke, R.; Taylor, P. C.; Li, Y.

    2017-12-01

    Arctic cloud amount as simulated in CMIP5 models displays large intermodel spread- models disagree on the processes important for cloud formation as well as the radiative impact of clouds. The radiative response to cloud forcing can be better assessed when the drivers of Arctic cloud formation are known. Arctic cloud amount (CA) is a function of both atmospheric and surface conditions, and it is crucial to separate the influences of unique processes to understand why the models are different. This study uses a multilinear regression methodology to determine cloud changes using 3 variables as predictors: lower tropospheric stability (LTS), 500-hPa vertical velocity (ω500), and sea ice concentration (SIC). These three explanatory variables were chosen because their effects on clouds can be attributed to unique climate processes: LTS is a thermodynamic indicator of the relationship between clouds and atmospheric stability, SIC determines the interaction between clouds and the surface, and ω500 is a metric for dynamical change. Vertical, seasonal profiles of necessary variables are obtained from the Coupled Model Intercomparison Project 5 (CMIP5) historical simulation, an ocean-atmosphere couple model forced with the best-estimate natural and anthropogenic radiative forcing from 1850-2005, and statistical significance tests are used to confirm the regression equation. A unique heuristic model will be constructed for each climate model and for observations, and models will be tested by their ability to capture the observed cloud amount and behavior. Lastly, the intermodel spread in Arctic cloud amount will be attributed to individual processes, ranking the relative contributions of each factor to shed light on emergent constraints in the Arctic cloud radiative effect.

  3. Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Ernie R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    The Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign, which deployed the second ARM Mobile Facility (AMF2) aboard the Horizon Lines cargo container ship Spirit as it ran its regular route between Los Angeles, California and Honolulu, Hawaii, measured properties of clouds and precipitation, aerosols, radiation, and atmospheric, meteorological, and oceanic conditions with the goal of obtaining statistics of these properties to achieve better understanding of the transition between stratocumulus and cumulus cloud regimes that occur in that region. This Sc-Cu transition is poorly represented in models, and a major reason for this is the lack of high-quality and comprehensive data that can be used to constrain, validate, and improve model representation of the transition. MAGIC consisted of 20 round trips between Los Angeles and Honolulu, and thus over three dozen transects through the transition, totaling nearly 200 days at sea between September, 2012 and October, 2013. During this time MAGIC collected a unique and unprecedented data set, including more than 550 successful radiosonde launches. An Intensive Observational Period (IOP) occurred in July, 2013 during which more detailed measurements of the atmospheric structure were made. MAGIC was very successful in its operations and overcame numerous logistical and technological challenges, clearly demonstrating the feasibility of a marine AMF2 deployment and the ability to make accurate measurements of clouds and precipitation, aerosols, and radiation while at sea.

  4. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Alex [University of California, Los Angeles, CA (United States). Joint Institute for Regional Earth System Science and Engineering

    2013-07-24

    the mostly dry mountain-breeze circulations force an additional component that results in semi-diurnal variations near the coast. A series of numerical tests, however, reveal sensitivity of the simulations to the choice of vertical grid, limiting the possibility of solid quantitative statements on the amplitudes and phases of the diurnal and semidiurnal components across the domain. According to our experiments, the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer scheme and the WSM6 microphysics scheme is the combination of schemes that performs best. For that combination, mean cloud cover, liquid water path, and cloud depth are fairly wellsimulated, while mean cloud top height remains too low in comparison to observations. Both microphysics and boundary layer schemes contribute to the spread in liquid water path and cloud depth, although the microphysics contribution is slightly more prominent. Boundary layer schemes are the primary contributors to cloud top height, degree of adiabaticity, and cloud cover. Cloud top height is closely related to surface fluxes and boundary layer structure. Thus, our study infers that an appropriate tuning of cloud top height would likely improve the low-cloud representation in the model. Finally, we show that entrainment governs the degree of adiabaticity, while boundary layer decoupling is a control on cloud cover. In the intercomparison study using WRF single-column model experiments, most parameterizations show a poor agreement of the vertical boundary layer structure when compared with large-eddy simulation models. We also implement a new Total-Energy/Mass- Flux boundary layer scheme into the WRF model and evaluate its ability to simulate both stratocumulus and shallow cumulus clouds. Result comparisons against large-eddy simulation show that this advanced parameterization based on the new Eddy-Diffusivity/Mass-Flux approach provides a better performance than other boundary layer parameterizations.

  5. A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution

    Science.gov (United States)

    Goldsmith, K. J. A.; Pittard, J. M.

    2018-05-01

    The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.

  6. Sea level change

    Digital Repository Service at National Institute of Oceanography (India)

    Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; Payne, A.J.; Pfeffer, W.T.; Stammer, D.; Unnikrishnan, A.S.

    This chapter considers changes in global mean sea level, regional sea level, sea level extremes, and waves. Confidence in projections of global mean sea level rise has increased since the Fourth Assessment Report (AR4) because of the improved...

  7. Cloud Computing Security Issue: Survey

    Science.gov (United States)

    Kamal, Shailza; Kaur, Rajpreet

    2011-12-01

    Cloud computing is the growing field in IT industry since 2007 proposed by IBM. Another company like Google, Amazon, and Microsoft provides further products to cloud computing. The cloud computing is the internet based computing that shared recourses, information on demand. It provides the services like SaaS, IaaS and PaaS. The services and recourses are shared by virtualization that run multiple operation applications on cloud computing. This discussion gives the survey on the challenges on security issues during cloud computing and describes some standards and protocols that presents how security can be managed.

  8. Security for cloud storage systems

    CERN Document Server

    Yang, Kan

    2014-01-01

    Cloud storage is an important service of cloud computing, which offers service for data owners to host their data in the cloud. This new paradigm of data hosting and data access services introduces two major security concerns. The first is the protection of data integrity. Data owners may not fully trust the cloud server and worry that data stored in the cloud could be corrupted or even removed. The second is data access control. Data owners may worry that some dishonest servers provide data access to users that are not permitted for profit gain and thus they can no longer rely on the servers

  9. Cloud database development and management

    CERN Document Server

    Chao, Lee

    2013-01-01

    Nowadays, cloud computing is almost everywhere. However, one can hardly find a textbook that utilizes cloud computing for teaching database and application development. This cloud-based database development book teaches both the theory and practice with step-by-step instructions and examples. This book helps readers to set up a cloud computing environment for teaching and learning database systems. The book will cover adequate conceptual content for students and IT professionals to gain necessary knowledge and hands-on skills to set up cloud based database systems.

  10. Formation of giant molecular clouds in global spiral structures: the role of orbital dynamics and cloud-cloud collisions

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes

  11. Atmospheric diffusion of large clouds

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T. V. [Univ. of California, Lawrence Radiation Lab., Livermore, California (United States)

    1967-07-01

    Clouds of pollutants travel within a coordinate system that is fixed to the earth's surface, and they diffuse and grow within a coordinate system fixed to the cloud's center. This paper discusses an approach to predicting the cloud's properties, within the latter coordinate system, on space scales of a few hundred meters to a few hundred kilometers and for time periods of a few days. A numerical cloud diffusion model is presented which starts with a cloud placed arbitrarily within the troposphere. Similarity theories of atmospheric turbulence are used to predict the horizontal diffusivity as a function of initial cloud size, turbulent atmospheric dissipation, and time. Vertical diffusivity is input as a function of time and height. Therefore, diurnal variations of turbulent diffusion in the boundary layer and effects of temperature inversions, etc. can be modeled. Nondiffusive cloud depletion mechanisms, such as dry deposition, washout, and radioactive decay, are also a part of this numerical model. An effluent cloud, produced by a reactor run at the Nuclear Rocket Development Station, Nevada, is discussed in this paper. Measurements on this cloud, for a period of two days, are compared to calculations with the above numerical cloud diffusion model. In general, there is agreement. within a factor of two, for airborne concentrations, cloud horizontal area, surface air concentrations, and dry deposition as airborne concentration decreased by seven orders of magnitude during the two-day period. (author)

  12. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water

  13. A Framework to Improve Communication and Reliability Between Cloud Consumer and Provider in the Cloud

    OpenAIRE

    Vivek Sridhar

    2014-01-01

    Cloud services consumers demand reliable methods for choosing appropriate cloud service provider for their requirements. Number of cloud consumer is increasing day by day and so cloud providers, hence requirement for a common platform for interacting between cloud provider and cloud consumer is also on the raise. This paper introduces Cloud Providers Market Platform Dashboard. This will act as not only just cloud provider discoverability but also provide timely report to consumer on cloud ser...

  14. Lean computing for the cloud

    CERN Document Server

    Bauer, Eric

    2016-01-01

    Applies lean manufacturing principles across the cloud service delivery chain to enable application and infrastructure service providers to sustainably achieve the shortest lead time, best quality, and value This book focuses on lean in the context of cloud computing capacity management of applications and the physical and virtual cloud resources that support them. Lean Computing for the Cloud considers business, architectural and operational aspects of efficiently delivering valuable services to end users via cloud-based applications hosted on shared cloud infrastructure. The work also focuses on overall optimization of the service delivery chain to enable both application service and infrastructure service providers to adopt leaner, demand driven operations to serve end users more efficiently. The book’s early chapters analyze how capacity management morphs with cloud computing into interlocked physical infrastructure capacity management, virtual resou ce capacity management, and application capacity ma...

  15. Observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    Science.gov (United States)

    Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.

    2015-01-01

    Based on airborne spectral imaging observations three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and ice floes have been identified and quantified. A method is presented to discriminate sea ice and open water in case of clouds from imaging radiance measurements. This separation simultaneously reveals that in case of clouds the transition of radiance between open water and sea ice is not instantaneously but horizontally smoothed. In general, clouds reduce the nadir radiance above bright surfaces in the vicinity of sea ice - open water boundaries, while the nadir radiance above dark surfaces is enhanced compared to situations with clouds located above horizontal homogeneous surfaces. With help of the observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge. This affected distance Δ L was found to depend on both, cloud and sea ice properties. For a ground overlaying cloud in 0-200 m altitude, increasing the cloud optical thickness from τ = 1 to τ = 10 decreases Δ L from 600 to 250 m, while increasing cloud base altitude or cloud geometrical thickness can increase Δ L; Δ L(τ = 1/10) = 2200 m/1250 m for 500-1000 m cloud altitude. To quantify the effect for different shapes and sizes of the ice floes, various albedo fields (infinite straight ice edge, circles, squares, realistic ice floe field) were modelled. Simulations show that Δ L increases by the radius of the ice floe and for sizes larger than 6 km (500-1000 m cloud altitude) asymptotically reaches maximum values, which corresponds to an infinite straight ice edge. Furthermore, the impact of these 3-D-radiative effects on retrieval of cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30% in retrievals of cloud optical thickness and effective radius reff, respectively. With help of Δ L quantified here, an

  16. Spatial Feature Reconstruction of Cloud-Covered Areas in Daily MODIS Composites

    Directory of Open Access Journals (Sweden)

    Stephan Paul

    2015-04-01

    Full Text Available The opacity of clouds is the main problem for optical and thermal space-borne sensors, like the Moderate-Resolution Imaging Spectroradiometer (MODIS. Especially during polar nighttime, the low thermal contrast between clouds and the underlying snow/ice results in deficiencies of the MODIS cloud mask and affected products. There are different approaches to retrieve information about frequently cloud-covered areas, which often operate with large amounts of days aggregated into single composites for a long period of time. These approaches are well suited for static-nature, slow changing surface features (e.g., fast-ice extent. However, this is not applicable to fast-changing features, like sea-ice polynyas. Therefore, we developed a spatial feature reconstruction to derive information for cloud-covered sea-ice areas based on the surrounding days weighted directly proportional with their temporal proximity to the initial day of interest. Its performance is tested based on manually-screened and artificially cloud-covered case studies of MODIS-derived polynya area data for the polynya in the Brunt Ice Shelf region of Antarctica. On average, we are able to completely restore the artificially cloud-covered test areas with a spatial correlation of 0.83 and a mean absolute spatial deviation of 21%.

  17. Sea level trends in Southeast Asian seas

    Science.gov (United States)

    Strassburg, M. W.; Hamlington, B. D.; Leben, R. R.; Manurung, P.; Lumban Gaol, J.; Nababan, B.; Vignudelli, S.; Kim, K.-Y.

    2015-05-01

    Southeast Asian seas span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian oceans. The Southeast Asian sea regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost 2 decades. Initial comparisons of global sea level reconstructions find that 17-year sea level trends over the past 60 years exhibit good agreement with decadal variability associated with the Pacific Decadal Oscillation and related fluctuations of trade winds in the region. The Southeast Asian sea region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer timescales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past 20 years, the rate of sea level rise is greatly reduced in the Southeast Asian sea region. As a result of the influence of the PDO, the Southeast Asian sea regional sea level trends during the 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the Southeast Asian seas will continue to be affected by GMSL rise occurring now and in the future.

  18. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    Science.gov (United States)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  19. CN in dark clouds

    International Nuclear Information System (INIS)

    Churchwell, E.; Bieging, J.H.

    1983-01-01

    We have detected CN (N = 1--0) emission toward six locations in the Taurus dark cloud complex, but not toward L183 or B227. The two hyperfine components, F = 3/2--1/2 and F = 5/2--3/2 (of J = 3/2--1/2), have intensity ratios near unity toward four locations in Taurus, consistent with large line optical depths. CN column densities are found to be > or approx. =6 x 10 13 cm -2 in those directions where the hyperfine ratios are near unity. By comparing CN with NH 3 and C 18 O column densities, we find that the relative abundance of CN in the Taurus cloudlets is at least a factor of 10 greater than in L183. In this respect, CN fits the pattern of enhanced abundances of carbon-bearing molecules (in partricular the cyanopolyynes) in the Taurus cloudlets relative to similar dark clouds outside Taurus

  20. Instantaneous Linkages between Clouds and Large-Scale Meteorology over the Southern Ocean in Observations and a Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Casey J. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Hartmann, Dennis L. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

    2017-12-01

    Instantaneous, coincident, footprint-level satellite observations of cloud properties and radiation taken during austral summer over the Southern Ocean are used to study relationships between clouds and large-scale meteorology. Cloud properties are very sensitive to the strength of vertical motion in the middle-troposphere, and low-cloud properties are sensitive to estimated inversion strength, low-level temperature advection, and sea surface temperature. These relationships are quantified. An index for the meteorological anomalies associated with midlatitude cyclones is presented, and it is used to reveal the sensitivity of clouds to the meteorology within the warm- and cold-sector of cyclones. The observed relationships between clouds and meteorology are compared to those in the Community Atmosphere Model version 5 (CAM5) using satellite simulators. Low-clouds simulated by CAM5 are too few, too bright, and contain too much ice, and low-clouds located in the cold-sector of cyclones are too sensitive to variations in the meteorology. The latter two biases are dramatically reduced when CAM5 is coupled with an updated boundary layer parameterization know as Cloud Layers Unified by Binormals (CLUBB). More generally, this study demonstrates that examining the instantaneous timescale is a powerful approach to understanding the physical processes that control clouds and how they are represented in climate models. Such an evaluation goes beyond the cloud climatology and exposes model bias under various meteorological conditions.

  1. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    Directory of Open Access Journals (Sweden)

    Nicholas Meskhidze

    2010-01-01

    Full Text Available Using satellite data for the surface ocean, aerosol optical depth (AOD, and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl-a] and liquid cloud effective radii over productive areas of the oceans varies between −0.2 and −0.6. Special attention is given to identifying (and addressing problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AODdiff is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AODdiff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN correlates well with [Chl-a] over the productive waters of the Southern Ocean. Since [Chl-a] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.

  2. Manifestation of Aerosol Indirect Effects in Arctic Clouds

    Science.gov (United States)

    Lubin, D.; Vogelmann, A. M.

    2009-12-01

    The first aerosol indirect effect has traditionally been conceived as an enhancement of shortwave cloud reflectance in response to decreased effective droplet size at fixed liquid water path, as cloud nucleating aerosol becomes entrained in the cloud. The high Arctic, with its pervasive low-level stratiform cloud cover and frequent episodes of anthropogenic aerosol (Artic "haze"), has in recent years served as a natural laboratory for research on actual manifestations of aerosol indirect effects. This paper will review the surprising set of developments: (1) the detection of the indirect effect as a source of surface warming, rather than cooling, throughout early spring, (2) a transition to a cooling effect in late spring, corresponding to the beginning of the sea ice melt season, and (3) detection of an indirect effect during summer, outside of the "Arctic haze" season. This paper will also discuss measurements of spectral shortwave irradiance (350-2200 nm) made at Barrow, Alaska, during the U.S. Department of Energy's Indirect and Semi-Direct Aerosol Campaign (ISDAC), which reveal complications in our conception of the indirect effect related to the ice phase in Arctic stratiform clouds.

  3. Carbon pellet cloud striations

    International Nuclear Information System (INIS)

    Parks, P.B.

    1989-01-01

    Fine scale striations, with alternating rows of bright and dark zones, have been observed in the ablation clouds of carbon pellets injected into the TEXT tokamak. The striations extend along the magnetic field for about 1 cm with quite regular cross-field variations characterized by a wavelength of a few mm. Their potential as a diagnostic tool for measuring q-profiles in tokamaks provides motivation for investigating the origin of the striations. The authors propose that the striations are not due to a sequence of high and low ablation rates because of the finite thermal magnetic islands localized at rational surfaces, q = m/n, would be responsible for reducing the electron flux to the pellet region; the length of the closed field line which forms the local magnetic axis of the island is too long to prevent a depletion of plasma electrons in a flux tube intercepting the pellet for the duration 2 rp / vp . Instead, they propose that striations are the manifestation of the saturated state of growing fluctuations inside the cloud. The instability is generated by E x B rotation of the ablation cloud. The outward centrifugal force points down the ablation density gradient inducing the Rayleigh-Taylor instability. The instability is not present for wave numbers along the field lines, which may explain why the striations are long and uniform in that direction. The E field develops inside the ablation cloud as a result of cold electron return currents which are induced to cancel the incoming hot plasma electron current streaming along the field lines

  4. Security in cloud computing and virtual environments

    OpenAIRE

    Aarseth, Raymond

    2015-01-01

    Cloud computing is a big buzzwords today. Just watch the commercials on TV and I can promise that you will hear the word cloud service at least once. With the growth of cloud technology steadily rising, and everything from cellphones to cars connected to the cloud, how secure is cloud technology? What are the caveats of using cloud technology? And how does it all work? This thesis will discuss cloud security and the underlying technology called Virtualization to ...

  5. IBM Cloud Computing Powering a Smarter Planet

    Science.gov (United States)

    Zhu, Jinzy; Fang, Xing; Guo, Zhe; Niu, Meng Hua; Cao, Fan; Yue, Shuang; Liu, Qin Yu

    With increasing need for intelligent systems supporting the world's businesses, Cloud Computing has emerged as a dominant trend to provide a dynamic infrastructure to make such intelligence possible. The article introduced how to build a smarter planet with cloud computing technology. First, it introduced why we need cloud, and the evolution of cloud technology. Secondly, it analyzed the value of cloud computing and how to apply cloud technology. Finally, it predicted the future of cloud in the smarter planet.

  6. Sea ice-albedo climate feedback mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J.L.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States); Ebert, E.E. [Bureau of Meterology Research Center, Melbourne (Australia)

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  7. In situ measurements of cloud microphysics and aerosol over coastal Antarctica during the MAC campaign

    Science.gov (United States)

    O'Shea, Sebastian J.; Choularton, Thomas W.; Flynn, Michael; Bower, Keith N.; Gallagher, Martin; Crosier, Jonathan; Williams, Paul; Crawford, Ian; Fleming, Zoë L.; Listowski, Constantino; Kirchgaessner, Amélie; Ladkin, Russell S.; Lachlan-Cope, Thomas

    2017-11-01

    During austral summer 2015, the Microphysics of Antarctic Clouds (MAC) field campaign collected unique and detailed airborne and ground-based in situ measurements of cloud and aerosol properties over coastal Antarctica and the Weddell Sea. This paper presents the first results from the experiment and discusses the key processes important in this region, which is critical to predicting future climate change. The sampling was predominantly of stratus clouds, at temperatures between -20 and 0 °C. These clouds were dominated by supercooled liquid water droplets, which had a median concentration of 113 cm-3 and an interquartile range of 86 cm-3. Both cloud liquid water content and effective radius increased closer to cloud top. The cloud droplet effective radius increased from 4 ± 2 µm near cloud base to 8 ± 3 µm near cloud top. Cloud ice particle concentrations were highly variable with the ice tending to occur in small, isolated patches. Below approximately 1000 m, glaciated cloud regions were more common at higher temperatures; however, the clouds were still predominantly liquid throughout. When ice was present at temperatures higher than -10 °C, secondary ice production most likely through the Hallett-Mossop mechanism led to ice concentrations 1 to 3 orders of magnitude higher than the number predicted by commonly used primary ice nucleation parameterisations. The drivers of the ice crystal variability are investigated. No clear dependence on the droplet size distribution was found. The source of first ice in the clouds remains uncertain but may include contributions from biogenic particles, blowing snow or other surface ice production mechanisms. The concentration of large aerosols (diameters 0.5 to 1.6 µm) decreased with altitude and were depleted in air masses that originated over the Antarctic continent compared to those more heavily influenced by the Southern Ocean and sea ice regions. The dominant aerosol in the region was hygroscopic in nature, with

  8. Grids, Clouds, and Virtualization

    Science.gov (United States)

    Cafaro, Massimo; Aloisio, Giovanni

    This chapter introduces and puts in context Grids, Clouds, and Virtualization. Grids promised to deliver computing power on demand. However, despite a decade of active research, no viable commercial grid computing provider has emerged. On the other hand, it is widely believed - especially in the Business World - that HPC will eventually become a commodity. Just as some commercial consumers of electricity have mission requirements that necessitate they generate their own power, some consumers of computational resources will continue to need to provision their own supercomputers. Clouds are a recent business-oriented development with the potential to render this eventually as rare as organizations that generate their own electricity today, even among institutions who currently consider themselves the unassailable elite of the HPC business. Finally, Virtualization is one of the key technologies enabling many different Clouds. We begin with a brief history in order to put them in context, and recall the basic principles and concepts underlying and clearly differentiating them. A thorough overview and survey of existing technologies provides the basis to delve into details as the reader progresses through the book.

  9. From clouds to stars

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1982-01-01

    At the present time, the theory of star formation must be limited to what we know about the lowest density gas, or about the pre-main sequence stars themselves. We would like to understand two basic processes: 1) how star-forming clouds are created from the ambient interstellar gas in the first place, and 2) how small parts of these clouds condense to form individual stars. We are interested also in knowing what pre-main sequence stars are like, and how they can interact with their environment. These topics are reviewed in what follows. In this series of lectures, what we know about the formation of stars is tentatively described. The lectures begin with a description of the interstellar medium, and then they proceed along the same direction that a young star would follow during its creation, namely from clouds through the collapse phase and onto the proto-stellar phase. The evolution of viscous disks and two models for the formation of the solar system are described in the last lectures. The longest lectures, and the topics that are covered in most detail, are not necessarily the ones for which we have the most information. Physically intuitive explanations for the various processes are emphasized, rather then mathematical explanations. In some cases, the mathematical aspects are developed as well, but only when the equations can be used to give important numerical values for comparison with the observations

  10. ATLAS cloud R and D

    International Nuclear Information System (INIS)

    Panitkin, Sergey; Bejar, Jose Caballero; Hover, John; Zaytsev, Alexander; Megino, Fernando Barreiro; Girolamo, Alessandro Di; Kucharczyk, Katarzyna; Llamas, Ramon Medrano; Benjamin, Doug; Gable, Ian; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Hendrix, Val; Love, Peter; Ohman, Henrik; Walker, Rodney

    2014-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R and D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R and D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R and D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R and D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  11. Cloud Computing Security: A Survey

    Directory of Open Access Journals (Sweden)

    Issa M. Khalil

    2014-02-01

    Full Text Available Cloud computing is an emerging technology paradigm that migrates current technological and computing concepts into utility-like solutions similar to electricity and water systems. Clouds bring out a wide range of benefits including configurable computing resources, economic savings, and service flexibility. However, security and privacy concerns are shown to be the primary obstacles to a wide adoption of clouds. The new concepts that clouds introduce, such as multi-tenancy, resource sharing and outsourcing, create new challenges to the security community. Addressing these challenges requires, in addition to the ability to cultivate and tune the security measures developed for traditional computing systems, proposing new security policies, models, and protocols to address the unique cloud security challenges. In this work, we provide a comprehensive study of cloud computing security and privacy concerns. We identify cloud vulnerabilities, classify known security threats and attacks, and present the state-of-the-art practices to control the vulnerabilities, neutralize the threats, and calibrate the attacks. Additionally, we investigate and identify the limitations of the current solutions and provide insights of the future security perspectives. Finally, we provide a cloud security framework in which we present the various lines of defense and identify the dependency levels among them. We identify 28 cloud security threats which we classify into five categories. We also present nine general cloud attacks along with various attack incidents, and provide effectiveness analysis of the proposed countermeasures.

  12. ATLAS Cloud R&D

    Science.gov (United States)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  13. Lightning channels emerging from the top of thunderstorm clouds

    Science.gov (United States)

    van der Velde, Oscar; Montanyà, Joan; Soula, Serge; Pineda, Nicolau

    2013-04-01

    In recent years, research of transient luminous events is shifting from the rather common elves and sprites high above thunderclouds to the much less frequently observed phenomena issued by the storm cloud itself: gigantic jets (GJ) connecting to the ionosphere, and high-energy terrestrial gamma-ray flashes (TGFs) recorded at spacecraft. These phenomena both are observed more often at tropical latitudes, and a link may or may not exist between the two. It is likely that both share the requirement of high-altitude leaders of negative polarity, which in the case of a GJ escapes from the cloud top and transforms into a long streamer discharge. While this should be easier at lower air densities (higher altitude), previous studies showed that GJs need not be produced by storms with the highest tops. TGFs have still unclear origins, but may be related to production in negative leaders or other regions with strong vertically directed electric fields by runaway electron mechnisms. In December 2009, a gigantic jet was observed in the Mediterranean Sea region. During the same night, a nearby storm produced repeatedly multiple leaders piercing through the cloud top, without any sign of streamers reaching higher altitudes (unlike jets or starters). Similar observations of upward cloud-to-air lightning have been obtained recently by low-light cameras over storms near the Catalonian coast in different seasons. The production conditions are currently being investigated, with a focus on optically determined altitudes of lightning and evolution of storm tops (and their temperature level). The initial impression is that cloud flashes escape into the air above during stages when the growing convective cloud top is very close to the main charge production region. Upward cloud-to-air lightning has also been mapped by the Ebro Lightning Mapping Array, exhibiting inverse bolt-from-the blue characteristics, and as a by-product of a bolt-from-the-blue lightning strike to ground, recorded

  14. CloudSafetyNet: Detecting Data Leakage between Cloud Tenants

    OpenAIRE

    Pietzuch, PR; Priebe, C; Muthukumaran, D; O'Keeffe, D; Eyers, D; Shand, B; Kapitza, R

    2014-01-01

    01.12.14 KB. Ok to add accepted version to spiral. Copyright ? 2014 by the Association for Computing Machinery, Inc. (ACM).When tenants deploy applications under the control of third-party cloud providers, they must trust the providers security mechanisms for inter-tenant isolation, resource sharing and access control. Despite a providers best efforts, accidental data leakage may occur due to misconfigurations or bugs in the cloud platform. Especially in Platform-as-a-Service (PaaS) clouds...

  15. Military clouds: utilization of cloud computing systems at the battlefield

    Science.gov (United States)

    Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai

    2012-05-01

    Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.

  16. PROSPECTS FOR COKE BREEZE RECOVERY

    Directory of Open Access Journals (Sweden)

    D. N. Mihnovets

    2012-01-01

    Full Text Available Researches give grounds to believe in the possibility of receiving briquettes from coke waste mixed with peat dry coal and their use for smelting iron in the cupola or as a household fuel.

  17. Sea salt

    OpenAIRE

    Galvis-Sánchez, Andrea C.; Lopes, João Almeida; Delgadillo, Ivone; Rangel, António O. S. S.

    2013-01-01

    The geographical indication (GI) status links a product with the territory and with the biodiversity involved. Besides, the specific knowledge and cultural practices of a human group that permit transforming a resource into a useful good is protected under a GI designation. Traditional sea salt is a hand-harvested product originating exclusively from salt marshes from specific geographical regions. Once salt is harvested, no washing, artificial drying or addition of anti-caking agents are all...

  18. Security prospects through cloud computing by adopting multiple clouds

    DEFF Research Database (Denmark)

    Jensen, Meiko; Schwenk, Jörg; Bohli, Jens Matthias

    2011-01-01

    Clouds impose new security challenges, which are amongst the biggest obstacles when considering the usage of cloud services. This triggered a lot of research activities in this direction, resulting in a quantity of proposals targeting the various security threats. Besides the security issues coming...... with the cloud paradigm, it can also provide a new set of unique features which open the path towards novel security approaches, techniques and architectures. This paper initiates this discussion by contributing a concept which achieves security merits by making use of multiple distinct clouds at the same time....

  19. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-01-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation

  20. CLOUD PARAMETERIZATIONS, CLOUD PHYSICS, AND THEIR CONNECTIONS: AN OVERVIEW

    International Nuclear Information System (INIS)

    LIU, Y.; DAUM, P.H.; CHAI, S.K.; LIU, F.

    2002-01-01

    This paper consists of three parts. The first part is concerned with the parameterization of cloud microphysics in climate models. We demonstrate the crucial importance of spectral dispersion of the cloud droplet size distribution in determining radiative properties of clouds (e.g., effective radius), and underline the necessity of specifying spectral dispersion in the parameterization of cloud microphysics. It is argued that the inclusion of spectral dispersion makes the issue of cloud parameterization essentially equivalent to that of the droplet size distribution function, bringing cloud parameterization to the forefront of cloud physics. The second part is concerned with theoretical investigations into the spectral shape of droplet size distributions in cloud physics. After briefly reviewing the mainstream theories (including entrainment and mixing theories, and stochastic theories), we discuss their deficiencies and the need for a paradigm shift from reductionist approaches to systems approaches. A systems theory that has recently been formulated by utilizing ideas from statistical physics and information theory is discussed, along with the major results derived from it. It is shown that the systems formalism not only easily explains many puzzles that have been frustrating the mainstream theories, but also reveals such new phenomena as scale-dependence of cloud droplet size distributions. The third part is concerned with the potential applications of the systems theory to the specification of spectral dispersion in terms of predictable variables and scale-dependence under different fluctuating environments