WorldWideScience

Sample records for se te crystals

  1. Influence of gamma-irradiation on the electroluminescence of ZnSe:Zn,Te crystals

    International Nuclear Information System (INIS)

    Elmuratova, D.B.; Ibragimova, E.M.

    2007-01-01

    Effect of 60 Co gamma-radiation at the dose rate of 10 Gy/s on electroluminescence (El)Zn Se crystals with 0.5 weight % Te treated in zinc vapor was studied for possible manufacturing of light emitting structures. Broad El band with the maximum at 610 nm is excited in the origin samples at a voltage above 15 V. After irradiation to the high dose of 10 6 Gy the El intensity grows by ∼2.5 times in the direct polarity at 24 V. The observed El of Zn Se:Zn,Te single crystals is assumed to be caused by the charge carrier recombination at the interstitial zinc centers by the excitation mechanism of a barrier sub breakdown type (authors)

  2. Effect of adding Te to layered GaSe crystals to increase the van der Waals bonding force

    Science.gov (United States)

    Tanabe, Tadao; Zhao, Shu; Sato, Yohei; Oyama, Yutaka

    2017-10-01

    The interplanar binding strength of layered GaSe1-xTex crystals was directly measured using a tensile testing machine. The GaSe1-xTex crystals were grown by a low temperature liquid phase solution method under a controlled Se vapor pressure. The stoichiometry-controlled GaSe1-xTex crystal has the ɛ-polytype structure of GaSe, where the Te atoms are substituted for some of the Se atoms in the GaSe crystal. The effect of adding Te on the bonding strength between the GaSe layers was determined from direct measurements of the van der Waals bonding energy. The bonding energy was increased from 0.023 × 106 N/m2 for GaSe to 0.16 × 106 N/m2 for GaSe1-xTex (x = 0.106).

  3. Intensification of electroluminescence of ZnSe(Te,O) crystals after gamma-irradiation

    International Nuclear Information System (INIS)

    Elmurotova, D.B.; Ibragimova, E. M.

    2006-01-01

    Full text: Wide-gap A 2 B 6 semiconductors are of special interest within eyeshot of energy-saving, on the base of which light sources are produced. Excitation voltage for injection electro luminescence (EL) corresponds to a transition potential barrier height, and wavelength determines the radiative transition energy and a recombination level position. The problem is in increasing the EL excitation efficiency, in particular the way of lowering the working voltage. The aim of the present work is experimental researches of possible amendment of EL characteristics of wide-gap ZnSe(Te,O) single crystals by influence of ionizing gamma-radiation on the electrical and optical active centers, and also exposure of possibility for creation of light emitting structures. We studied ZnSe crystals grown with Bridgman method at the Research Institute for Single Crystals (Kharkov, Ukraine). Diffusion doping with Te was used for creation of p-n transition in ZnSe crystals, that resulted in additional generation of Zn vacancies, treatment in oxidizing environment caused formation of extra Zn interstitials. Dominating evaporation of Zn, which is stipulated by a higher mobility of Zn i , leads to the increase of defect concentration of V Zn type, this process is vividly expressed in the crystals doped with Te that may be explained by the formation of stable V Zn Te Se Zn i associates. A few samples of each series were irradiated with≅ 1.25 MeV gamma-rays of 60 Co radioisotope source at the dose power of 10 Gy/s to the dose of 10 6 Gy at 300 K and compared with the non-irradiated reference samples. Spectra of EL were measured in the wave range of 200-900 nm at 300 K. A constant voltage in the range of 7-80 V was applied in straight and inverse direction for exposing hysteresis in the EL voltage-brightness dependences. The EL spectra include a wide band with the maximum at 600 nm. For the untreated samples the threshold voltage was 70-80 V, when the EL intensity began growing sharply

  4. Large magnetoresistance and Fermi surface study of Sb2Se2Te single crystal

    Science.gov (United States)

    Shrestha, K.; Marinova, V.; Graf, D.; Lorenz, B.; Chu, C. W.

    2017-09-01

    We have studied the magnetotransport properties of a Sb2Se2Te single crystal. Magnetoresistance (MR) is maximum when the magnetic field is perpendicular to the sample surface and reaches a value of 1100% at B = 31 T with no sign of saturation. MR shows Shubnikov de Haas (SdH) oscillations above B = 15 T. The frequency spectrum of SdH oscillations consists of three distinct peaks at α = 32 T, β = 80 T, and γ = 117 T indicating the presence of three Fermi surface pockets. Among these frequencies, β is the prominent peak in the frequency spectrum of SdH oscillations measured at different tilt angles of the sample with respect to the magnetic field. From the angle dependence β and Berry phase calculations, we have confirmed the trivial topology of the β-pocket. The cyclotron masses of charge carriers, obtained by using the Lifshitz-Kosevich formula, are found to be mβ*=0.16mo and m γ*=0.63 mo for the β and γ bands, respectively. The Large MR of Sb2Se2Te is suitable for utilization in electronic instruments such as computer hard discs, high field magnetic sensors, and memory devices.

  5. Scanning tunneling microscopy on iron-chalcogenide superconductor Fe(Se, Te) single crystal

    International Nuclear Information System (INIS)

    Ukita, R.; Sugimoto, A.; Ekino, T.

    2011-01-01

    We show scanning tunneling microscopy/spectroscopy (STM/STS) results of Fe(Se, Te). STM topography shows square arrangements of spots with the lattice spacing 0.37 nm. Te and Se atoms are randomly distributed in the STM topography. The STM topography of FeTe exhibits clusters of separated iron atoms. We have investigated the iron-chalcogenide superconductor Fe(Se, Te) using a low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) technique. STM topography at 4.9 K shows clear regular square arrangements of spots with the lattice spacing ∼0.37 nm, from which what we observe are attributed to Se or Te atomic plane. In the topography, brighter and darker atomic spots are randomly distributed, which are most probably due to Te and Se atoms, respectively. For the FeTe compound, the topography exhibits clusters of the bright spots probably arising from separated iron atoms distributing over several Te lattice sites. The STS measurements clarify the existence of the large-size gap with 2Δ = 0.4-0.6 eV.

  6. Properties of the ZnSe/ZnTe heterojunction prepared by a multi-source evaporation of ZnTe:Sb on ZnSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, N [Parma Univ. (Italy). Ist. di Fisica; First, F [Uniwersytet Mikolaja Kopernika, Torun (Poland). Inst. Fizyki; Seuret, D [Universidad de La Habana, (Cuba). Facultad de Fisica-Matematica

    1979-07-16

    A new method of preparation is described of a ZnSe/ZnTe heterojunction in which Sb-doped ZnTe is deposited by a multi-source apparatus on ZnSe monocrystals. The properties of the heterojunction was studied, esp. the I-U characteristic, the 1/C/sup 2/ plot as a function of applied voltage, the photocurrent spectrum, and the electroluminescence spectrum.

  7. Magnetic properties and crystal field effects in TlLnX2 compounds (X=S, Se, Te)

    International Nuclear Information System (INIS)

    Duczmal, M.; Pawlak, L.

    1997-01-01

    Ternary thallium lanthanide chalcogenides TlLnX 2 (X=S, Se or Te) crystallize in the α-NaFeO 2 type of structure (R anti 3m). Each kind of the metal ions, surrounded by the distorted chalcogenide octahedra, forms separate layers. The TlX 6 octahedra are strongly elongated and the LnX 6 octahedra slightly shrunk along the threefold axis. The deformations of the coordination polyhedra and the cell volumes change regularly with the lanthanide ionic radii. The difference between the experimental and the calculated M-X distances increases on going from sulphides to tellurides, as a result of the growing covalent character of the bonds. The crystal field parameters were estimated from the high field magnetization (0-14 T) assuming trigonal distortion of the octahedral symmetry of LnX 6 polyhedra. The second-order crystal field parameters were found to correlate with the deformation of the lanthanide ions' environments. No magnetic transition was observed down to 4.2 K. (orig.)

  8. Crystallization processes in Ge2Sb2Se4Te glass

    Czech Academy of Sciences Publication Activity Database

    Svoboda, R.; Bezdička, Petr; Gutwirth, J.; Malek, J.

    2015-01-01

    Roč. 61, JAN (2015), s. 207-214 ISSN 0025-5408 Institutional support: RVO:61388980 Keywords : Chalcogenides * Glass es * Differential scanning calorimetry (DSC) * X-ray diffraction * Crystal structure Subject RIV: CA - Inorganic Chemistry Impact factor: 2.435, year: 2015

  9. Kinetics of crystal growth in amorphous solid and supercooled liquid TeSe20 using DTA and d.c. conductivity measurements

    International Nuclear Information System (INIS)

    Kotkata, M.F.; Mahmoud, E.A.; El-Mously, M.K.

    1979-07-01

    Curves of reaction rate versus temperature for constant heating rates (phi=1-10 0 C/min) constructed by analytical methods have been used to demonstrate the crystallization kinetics of amorphous solid TeSe 20 . The devitrification process takes place with predominance of random nucleation and one-dimensional growth, and is limited by combined switching and splitting of the chemical bonds. The mean value for the activation energy of the amorphous-crystal transformation, average E, is found to be 64 Kcal/mole. While, the quantity E calculated on the basis of d.c. conductivity changes during different isothermal crystallization (120-175 0 C) in supercooled liquid TeSe 20 , amounts to 11.5 Kcal/mole and suggests the existence of mixed chains in the liquid alloys. (author)

  10. Enhanced superconductivity and anisotropy of FeTe0.6Se0.4 single crystals with Li -NH3 intercalation

    Science.gov (United States)

    Li, Chenghe; Sun, Shanshan; Wang, Shaohua; Lei, Hechang

    2017-10-01

    We report a systematic study of anisotropy resistivity, magnetoresistance, and Hall effect of Li0.32(NH3)yFe2Te1.2Se0.8 single crystals. When compared to the parent compound FeTe0.6Se0.4 , the Li-NH3 intercalation not only increases the superconducting transition temperature but also enhances the electronic anisotropy in both normal and superconducting states. Moreover, in contrast to the parent compound, the Hall coefficient RH becomes negative at low temperature, indicating electron-type carriers are dominant due to Li doping. On the other hand, the sign reverse of RH at high temperature and the failure of scaling behavior of magnetoresistance imply that hole pockets may be still crossing or just below the Fermi energy level, leading to the multiband behavior in Li0.32(NH3)yFe2Te1.2Se0.8 .

  11. Composite detector for mixed radiations based on CsI(Tl) and dispersions of small ZnSe(Te) crystals

    International Nuclear Information System (INIS)

    Ryzhikov, V.; Gal'chinetskii, L.; Katrunov, K.; Lisetskaya, E.; Gavriluk, V.; Zelenskaya, O.; Starzhynskiy, N.; Chernikov, V.

    2005-01-01

    A new large area detector of high-energy X-ray and β-radiation has been designed and studied. A composite material based on small-crystalline ZnSe(Te) was applied onto the wide surface of a light guide. An experimental specimen has been prepared, which showed β-sensitivity C β =5.5cm 2 . The spectrograms of a 90 Sr+ 90 Y β-source obtained with the specimen under study make it possible to evaluate the age of the source by the ratio of low- and high-energy regions of the spectrum. The combined detector (CD) comprises a single crystalline plate of ZnSe(Te) placed onto the output window of a scintillating transparent light guide made of CsI(Tl) in the shape of a truncated pyramid. The CsI(Tl) light guide is used to create an additional channel for detection of γ-radiation, as well as for protecting the photodiode from the penetrating radiation. It is shown that introduction of the light guide does not worsen the energy resolution characteristics of ZnSe(Te). Separate detection of α- and γ-radiation has been achieved under simultaneous excitation by 239 Pu (ZnSe(Te), R α =6%) and 241 Am (CsI(Tl), R γ =20%). The use of selective optical filters allows separation of the peaks of total absorption (p.t.a.) in the case of their superposition

  12. Selenium Se and tellurium Te

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for determining selenium and tellurium in various objects are presented. The bichromatometric determination of Te in cadmium, zinc and mercury tellurides is based on oxidation of Te(4) to (6) in H 2 SO 4 with potassium bichromate. In steels, Te is determined photometrically with the aid of KI. The determination is hindered by Fe(3), Cu(2), Bi(3) and Se(4) ions, which must be separated. The extraction-photometric determination of Te in native sulfur is carried out with the aid of 5-mercapto-3-(naphthyl-2)-1,3,4-thiadiazolthione-2 (pH=4.8-5.0). The dyed complex is readily extracted with chloroform and benzene. The spectrophotometric determination of Te in selenium is performed with the aid of 3,5-diphenylpyrazoline-1-dithiocarbamate of sodium. Te is determined in commercial indium, arsenic and their semiconductor compounds photometrically with the aid of copper diethyldithiocarbamate. The method permits determining 5x10 -5 % Te in a weighed amount of 0.5 g. The chloride complex of Te(4) with diantipyriodolpropylmethane is quantitatively extracted with dichloroethane from hydrochloric acid solutions. Thus, any amounts of Te can be separated from Se and determined photometrically. The extraction-photometric determination of Te in commercial lead and bismuth is carried out with the aid of pyrazolone derivatives, in commercial copper with the aid of diantipyridolpropylmethane, and in ores (more than 0.01% Te) with the aid of bismuthol 2. Also described is the extraction-polarographic determination of Te in sulfide ores

  13. Studies of scintillation light nonproportionality of ZnSe(Te), CsI(Tl) and YAP(Ce) crystals using heavy ions

    CERN Document Server

    Klamra, W; Kapusta, M; Kérek, A; Moszynski, M; Norlin, L O; Novák, D; Possnert, G

    2002-01-01

    The scintillation light yield for ZnSe(Te), CsI(Tl) and YAP(Ce) crystals have been studied with alpha particles, sup 1 sup 2 C and sup 8 sup 1 Br in the energy region 2.8-42.2 MeV. A nonproportional behavior was observed, mostly pronounced for alpha particles on YAP(Ce). The results are understood in terms of delta-rays effect.

  14. Optical and electrical properties of heterostructures Zn{sub 1-x}Mg{sub x}Se crystallized on ZnTe and GaAs crystals by MBE method; Wlasnosci optyczne i elektryczne heterostruktur Zn{sub 1-x}Mg{sub x}Se krystalizowanych metoda MBE w krysztalach ZnTe i GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Gapinski, A; Glowacki, G; Bala, W [Uniwersytet Mikolaja Kopernika, Torun (Poland). Inst. Fizyki

    1997-12-01

    Triple component mixing crystals Zn{sub 1-x}Mg{sub x}Se have been crystallized on ZnTe and GaAs monocrystals by means of molecular beam epitaxy method. The optical and electrical properties of such structures with different magnesium content have been studied. The applicability for optoelectronial and light-pipe use have been discussed as well. 6 refs, 4 figs.

  15. X = S, Se, Te) heterostructures

    KAUST Repository

    Zhang, Qingyun; Schwingenschlö gl, Udo

    2018-01-01

    Using first-principles calculations, we investigate the electronic properties of the two-dimensional GaX/MX2 (M = Mo, W; X = S, Se, Te) heterostructures. Orbital hybridization between GaX and MX2 is found to result in Rashba splitting at the valence

  16. Jahn-Teller coupling of Cr2+ ion with degenerate modes in ZnS, ZnSe, and ZnTe crystals: microscopic treatment

    International Nuclear Information System (INIS)

    Natadze, A.L.; Ryskin, A.I.

    1980-01-01

    The Jahn-Teller (JT) interaction energy is calculated for 5 T 2 and 5 E states of the Cr 2+ ion in ZnS, ZnSe, and ZnTe crystals. The calculations are made within the framework of a particular microscopic model of the crystal field in the distorted crystal (model of point-like exchange charges), the multimode interaction is taken into account. For the 5 T 2 term the energies of interaction with tetragonal and trigonal modes are of the same order of magnitude. This circumstance results in a small height of the barriers that separate various minima of the adiabatic potential and is responsible for the dynamic aspect of the static JT effect in these systems. (author)

  17. Crystal structure of mineral grechishchevite synthetic analogue and Hg-X (X=S, Se, Te) bonds topology in structures of mercury chalcogenhalides

    International Nuclear Information System (INIS)

    Pervukhina, N.V.; Borisov, S.V.; Magarill, S.A.; Naumov, D.Yu.; Vasil'ev, V.I.; Nenashev, B.G.

    2004-01-01

    Structural studies of synthetic analog of mineral grechishchevite Hg 3 S 2 Br 1.00 Cl 0.50 I 0.50 were conducted, the mineral crystal structure was refined, the results of the studies being analyzed. For chalcogenhalides Hg 3 X 2 Hal 2 (X=S, Se, Te; Hal=Cl, Br, I) inventory was taken of intergrowing isolated and infinite, i.e. continuous, layered and carcass, covalently bonded Hg-X-radicals into pseudocubical matrix from halide ions [ru

  18. Plutonium oxychalcogenides Pu2O2X (X=O, S, Se, Te) crystal chemistry, magnetic and electrical properties. 5f electrons delocalization

    International Nuclear Information System (INIS)

    Costantini, Jean-Marc.

    1980-05-01

    We have studied the influence of the chalcogen X on the bonding and on the magnetic and electrical properties of the oxychalcogenides Pu 2 O 2 X. These compounds are isostructural with hexagonal La 2 O 3 for X=O, S, Se and with tetragonal La 2 O 2 Te for X=Te. Comparison of Nd 2 O 2 X and Pu 2 O 2 X cell volumes showed that plutonium crystal radius decreases from Pu 2 O 3 through Pu 2 O 2 Te with increasing 5f electrons delocalization and 5f-np overlap. Superexchange interactions through O 2- and X 2- were thought to be responsible for the observed antiferromagnetic ordering. Neel temperatures increase from Pu 2 O 3 through Pu 2 O 2 Te showing that these interactions and subsequent 5f-np covalency are strengthened as chalcogen electronegativity decreases. Hexagonal Pu 2 O 3 is an insulator while the other compounds are semi-conductors with energy gaps around 0.6 eV which were interpreted as the separation between the 6d-7s conduction band and the np valence band. The localized 5f states were located just below the np band, partially overlapping it [fr

  19. ZnSe/ZnSeTe Superlattice Nanotips

    Directory of Open Access Journals (Sweden)

    Young SJ

    2010-01-01

    Full Text Available Abstract The authors report the growth of ZnSe/ZnSeTe superlattice nanotips on oxidized Si(100 substrate. It was found the nanotips exhibit mixture of cubic zinc-blende and hexagonal wurtzite structures. It was also found that photoluminescence intensities observed from the ZnSe/ZnSeTe superlattice nanotips were much larger than that observed from the homogeneous ZnSeTe nanotips. Furthermore, it was found that activation energies for the ZnSe/ZnSeTe superlattice nanotips with well widths of 16, 20, and 24 nm were 76, 46, and 19 meV, respectively.

  20. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi{sub 2}Te{sub 2}Se

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, S. K., E-mail: kushwaha@princeton.edu; Gibson, Q. D.; Cava, R. J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Xiong, J.; Ong, N. P. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Pletikosic, I. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Condensed Matter Physics and Materials Science Department, Brookhaven National Lab, Upton, New York 11973 (United States); Weber, A. P. [National Synchrotron Light Source, Brookhaven National Lab, Upton, New York 11973 (United States); Fedorov, A. V. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Valla, T. [Condensed Matter Physics and Materials Science Department, Brookhaven National Lab, Upton, New York 11973 (United States)

    2014-04-14

    A comparative study of the properties of topological insulator Bi{sub 2}Te{sub 2}Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 × 10{sup 14} cm{sup −3}. Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E{sub F}) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E{sub F}. Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed.

  1. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi2Te2Se

    International Nuclear Information System (INIS)

    Kushwaha, S. K.; Gibson, Q. D.; Cava, R. J.; Xiong, J.; Ong, N. P.; Pletikosic, I.; Weber, A. P.; Fedorov, A. V.; Valla, T.

    2014-01-01

    A comparative study of the properties of topological insulator Bi 2 Te 2 Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 × 10 14  cm −3 . Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E F ) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E F . Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed

  2. Research Update: Point defects in CdTexSe1−x crystals grown from a Te-rich solution for applications in detecting radiation

    International Nuclear Information System (INIS)

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Yang, G.; James, R. B.; Lee, W.; Cui, Y.; Burger, A.

    2015-01-01

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Current Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from 1 to 30 V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material

  3. Syntheses, crystal structures and characterizations of BaZn(SeO3)2 and BaZn(TeO3)Cl2

    International Nuclear Information System (INIS)

    Jiang Hailong; Feng Meiling; Mao Jianggao

    2006-01-01

    Two new barium zinc selenite and tellurite, namely, BaZn(SeO 3 ) 2 and BaZn(TeO 3 )Cl 2 , have been synthesized by the solid state reaction. The structure of BaZn(SeO 3 ) 2 features double chains of [Zn(SeO 3 ) 2 ] 2- anions composed of four- and eight-member rings which are alternatively along a-axis. The double chains of [Zn 2 (TeO 3 ) 2 Cl 3 ] 3- anions in BaZn(TeO 3 )Cl 2 are formed by Zn 3 Te 3 rings in which each tellurite group connects with three ZnO 3 Cl tetrahedra. BaZn(SeO 3 ) 2 and BaZn(TeO 3 )Cl 2 are wide bandgap semiconductors based on optical diffuse reflectance spectrum measurements. -- Graphical abstract: Two new barium zinc selenite and tellurite, namely, BaZn(SeO 3 ) 2 and BaZn(TeO 3 )Cl 2 , have been synthesized by solid state reaction. The structure of BaZn(SeO 3 ) 2 features 1D double chains of [Zn(SeO 3 ) 2 ] 2- anions composed of four- and eight-member rings which are alternatively along a-axis. The 1D double chains of [Zn 2 (TeO 3 ) 2 Cl 3 ] 3- anions in BaZn(TeO 3 )Cl 2 are formed by Zn 3 Te 3 rings in which each tellurite group connects with one ZnO 3 Cl and two ZnO 2 Cl 2 tetrahedra. BaZn(SeO 3 ) 2 and BaZn(TeO 3 )Cl 2 are wide bandgap semiconductors based on optical diffuse reflectance spectrum measurements

  4. Synthesis and crystal structure of Fe[(Te1.5Se0.5)O5]Cl, the first iron compound with selenate(IV) and tellurate(IV) groups

    Science.gov (United States)

    Akhrorov, Akhmad Yu; Kuznetsova, Elena S.; Aksenov, Sergey M.; Berdonosov, Peter S.; Kuznetsov, Alexey N.; Dolgikh, Valery A.

    2017-12-01

    During the search for selenium analogues of FeTe2O5Cl, the new iron (III) tellurate(IV) selenate(IV) chloride with the composition Fe[(Te1.5Se0.5)O5]Cl was synthesized by chemical vapor transport (CVT) reaction and characterized by TGA-, EDX-,SCXRD-analysis, as well as IR and Raman spectroscopy. It was found that Fe[(Te1.5Se0.5)O5]Cl crystallizes in the monoclinic space group P21/c with unitcell parameters a = 5.183(3) Å, b = 15.521(9) Å, c = 7.128(5) Å and β = 107.16(1)°. The crystal structure of Fe[(Te1.5Se0.5)O5]Cl represents a new structure type and contains electroneutral heteropolyhedral layers formed by dimers of the [FeO5Cl]8- octahedra, linked via common O-O edges, and mixed [Te3SeO10]4- tetramers. Adjacent layers are stacked along the b axis and linked by weak residual bonds. The new compound is stable up to 420 °C. DFT calculations predict Fe[(Te1.5Se0.5)O5]Cl to be a wide-gap semiconductor with the band gap of ca. 2.7 eV.

  5. Flux free growth of large FeSe1/2Te1/2 superconducting single crystals by an easy high temperature melt and slow cooling method

    Directory of Open Access Journals (Sweden)

    P. K. Maheshwari

    2015-09-01

    Full Text Available We report successful growth of flux free large single crystals of superconducting FeSe1/2Te1/2 with typical dimensions of up to few cm. The AC and DC magnetic measurements revealed the superconducting transition temperature (Tc value of around 11.5K and the isothermal MH showed typical type-II superconducting behavior. The lower critical field (Hc1 being estimated by measuring the low field isothermal magnetization in superconducting regime is found to be above 200Oe at 0K. The temperature dependent electrical resistivity ρ(T  showed the Tc (onset to be 14K and the Tc(ρ = 0 at 11.5K. The electrical resistivity under various magnetic fields i.e., ρ(TH for H//ab and H//c demonstrated the difference in the width of Tc with applied field of 14Tesla to be nearly 2K, confirming the anisotropic nature of superconductivity. The upper critical and irreversibility fields at absolute zero temperature i.e., Hc2(0 and Hirr(0 being determined by the conventional one-band Werthamer–Helfand–Hohenberg (WHH equation for the criteria of normal state resistivity (ρn falling to 90% (onset, and 10% (offset is 76.9Tesla, and 37.45Tesla respectively, for H//c and 135.4Tesla, and 71.41Tesla respectively, for H//ab. The coherence length at the zero temperature is estimated to be above 20Å ´ by using the Ginsburg-Landau theory. The activation energy for the FeSe1/2Te1/2 in both directions H//c and H//ab is determined by using Thermally Activation Flux Flow (TAFF model.

  6. Forming Glasses from Se and Te

    Directory of Open Access Journals (Sweden)

    Pierre Lucas

    2009-10-01

    Full Text Available Despite being close neighbors on the Periodic Table, selenium and tellurium present a totally different abilities to form glasses. Se is a very good glass former, and gives rise to numerous glass compositions which are popular for their transparency in the infrared range and their stability against crystallization. These glasses can be shaped into sophisticated optical devices such as optical fibers, planar guides or lenses. Nevertheless, their transparencies are limited at about 12 μm (depending on the thickness of the optical systems due to the relatively small mass of the Se element. On the other hand, tellurium is heavier and its use in substitution for Se permits to shift the IR cutoff beyond 20 μm. However, the semimetallic nature of Te limits its glass formation ability and this glass family is known to be unstable and consequently has found application as phase change material in the Digital Versatile Disk (DVD technology. In this paper, after a review of selenide glasses and their applications, it will be shown how, in a recent past, it has been possible to stabilize tellurium glasses by introducing new elements like Ga or I in their compositions.

  7. The system SnTe-InSe

    International Nuclear Information System (INIS)

    Gurshumov, A.P.; Alidzhanov, M.A.; Aliev, A.S.; Gadzhiev, T.G.; Mamedov, N.A.

    1986-01-01

    This paper discusses the nature of the interaction and physicochemical properties of the alloys of the system SnTe-InSe. The DTA was performed on an NTR-74 pyrometer, XPA on a Dron-2.0 diffractometer and MSA on an MIM-7 metallographic microscope. The microhardness of the samples was determined on a PMT-3 microhardness tester. The congruently melting compound SnInTeSe and solid solutions based on the starting components are formed in the system

  8. Characterization of the phase composition, crystal structure and superconducting properties of Fe{sub 1.02}Se{sub y}Te{sub 1−y−x}S{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Abouhaswa, A.S., E-mail: aliabohaswa@hotmail.com [Institute of Natural Sciences, Ural Federal University, 620083, Ekaterinburg (Russian Federation); Merentsov, A.I. [Institute of Natural Sciences, Ural Federal University, 620083, Ekaterinburg (Russian Federation); Baranov, N.V. [Institute of Natural Sciences, Ural Federal University, 620083, Ekaterinburg (Russian Federation); M.N. Miheev Institute of Metal Physics, Ural Branch of RAS, 620990, Ekaterinburg (Russian Federation)

    2016-08-15

    Highlights: • The Fe{sub 1.02}Se{sub 0.5}Te{sub 0.5−x}S{sub x} and Fe{sub 1.02}Se{sub 0.4}Te{sub 0.6−x}S{sub x} samples have been synthesized. • The S for Te substitution results in a small expansion of the crystal lattice of the PbO-type phase. • This expansion is attributed to changes in the phase relation and chemical composition of phases. • There is a correlation between the changes of T{sub c} and lattice parameters of the PbO-type phase. - Abstract: Two series of the Fe{sub 1.02}Se{sub 0.5}Te{sub 0.5–x}S{sub x} (I) and Fe{sub 1.02}Se{sub 0.4}Te{sub 0.6–x}S{sub x} (II) samples with the sulfur for tellurium substitution and with the invariable Se concentrations have been synthesized and studied by means of X-ray diffraction, scanning electron microscopy, electrical resistivity and magnetic susceptibility measurements. The superconducting PbO-type phase is found to persists in the first series up to x = 0.4 and in the second one up to x = 0.5. Despite the lower ionic radius of sulfur in comparison with tellurium the replacement of tellurium by sulfur does not lead to contraction of the unit cell volume of the superconducting phase in both I and II series with ternary mixture of chalcogens. Variations of the lattice parameters caused by the S for Te substitution in the Fe{sub 1.02}Se{sub 0.5}Te{sub 0.5–x}S{sub x} and Fe{sub 1.02}Se{sub 0.4}Te{sub 0.6–x}S{sub x} samples are found to be less pronounced than that reported for the Fe{sub 1.02}Te{sub 0.5}Se{sub 0.5-x}S{sub x} system and are accompanied by lowering of the critical temperature. The behavior of the lattice parameters and critical temperature of Fe(S,Se,Te) materials with the ternary mixture of chalcogens at substitutions is ascribed to the changes in the volume fraction and chemical compositions of the coexisting tetragonal and hexagonal phases.

  9. Two new ternary chalcogenides Ba{sub 2}ZnQ{sub 3} (Q = Se, Te) with chains of ZnQ{sub 4} tetrahedra. Syntheses, crystal structure, and optical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai; Beard, Jessica; Malliakas, Christos D.; Ibers, James A. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Mesbah, Adel [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Bagnols-sur-Ceze (France); Rocca, Dario; Lebegue, Sebastien [Univ. de Lorraine, Vandoeuvre-les-Nancy (France). Lab. de Cristallographie, Resonance Magnetique et Modelisations (CRM2, UMR CNRS 7036)

    2016-08-01

    Single crystals of Ba{sub 2}ZnQ{sub 3} (Q = Se, Te) were obtained by solid-state reactions at 1173 K. These isostructural compounds crystallize in the K{sub 2}AgI{sub 3} structure type. The Zn atoms in this structure are coordinated to four Q atoms (2 Q1, 1 Q2, 1 Q3) and these form a distorted tetrahedron around each Zn atom. Each ZnQ{sub 4} tetrahedron shares two corners with neighboring ZnQ{sub 4} tetrahedra resulting in the formation of infinite chains of [ZnQ{sub 4}{sup 4-}] units. The absorption spectrum of a single crystal of Ba{sub 2}ZnTe{sub 3} shows an absorption edge at 2.10(2) eV, consistent with the dark-red color of the crystals. From DFT calculations Ba{sub 2}ZnSe{sub 3} and Ba{sub 2}ZnTe{sub 3} are found to be semiconductors with electronic band gaps of 2.6 and 1.9 eV, respectively.

  10. The crystal chemistry of novel thorium and uranium compounds with oxo-anions from group VI of periodic table (S, Se, Te, Cr, Mo and W)

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Bin

    2016-01-26

    This dissertation focus on the synthesis, phase studies and physicochemical properties of novel thorium and uranium compounds with the Group VI (S, Se, Te, Cr, Mo, W) of the Periodic Table. All the studied compounds are listed in Table 2.2 from the page 15. I subdivided all the newly synthesized compounds into several chapters according to their structural and topological differences. First, for thorium molybdates and tungstates, almost all of these compounds are based on corner-sharing of ThO{sub x} (x = 6, 8 and 9) and MoO{sub 4} or WO{sub x} (x = 4, 5, 6) polyhedra. Interestingly, all these compounds can be seen as derived from a pure thorium molybdate compound (ThMo{sub 2}O{sub 8}) which was isolated from high-temperature solid-state synthesis method. Therefore, the polymorphs of this most basic ThMo{sub 2}O{sub 8} compound is firstly introduced (see Chapter 3.1 from page 18). The thermodynamic, electronic and vibrational properties of all investigated ThMo{sub 2}O{sub 8} polymorphs were studied using ab initio calculations. Then, two subfamilies of thorium molybdates, that is, rubidium thorium molybdate and cesium thorium molybdate and their thermal and vibrational behaviors were discussed in details in Chapter 4.1 from page 37 and Chapter 4.2 from page 50, respectively. Moreover, some new insights about the complexity of thorium tungstates were also discussed (Chapter 4.3 from page 59). Some novel thorium molybdate and chromate compounds synthesized from aqueous condition are discussed in Chapter 5 from page 71. In the Chapter 8.2.4, the stereochemistry for thorium and uranium compounds are introduced, especially thorium selinites and uranyl tellurites (see Chapter 6.1 from page 82), thorium tellurites (Chapter 6.2 from page 93), and uranyl tellurites (Chapter 6.3 from page 99 for sodium uranyl tellurium and Chapter 6.4 from page 110 for potassium uranyl tellurium, respectively). In the actinide tellurium systems, additional MoO{sub 3}/WO{sub 3} were also

  11. Differential thermal analysis of the glassy system AsSe-AsTe

    International Nuclear Information System (INIS)

    El Den, M.B.; El Mously, M.K.

    1986-11-01

    Thermal induced phase transformation for the system AsSe-AsTe has been studied using DTA. The dependence of the characteristic temperature Tg, Tc and Tm on the ratio of Se/Tc has been determined. The increase of Te content leads to the decrease of both Tg and Tc, i.e. tellurium enhances the crystallization process in these glasses exactly as in the case of AsSe 3/2-x Te x and AsSe 5/2-x Te x . The kinetic calculations have also been tried. Reasonable results have been obtained for two compositions only AsSe 0.5 Te 0.5 and AsSe 0.1 Te 0.9 with E cryst equal to 31.0 kcal/mole for the first and 45 and 65 kcal/mole for the second. The other compositions either do not crystallize completely or have complicated and overlapped peaks. (author)

  12. Phase diagram of SnTe-CdSe cross-section of SnTe+CdSe reversible SnSe+CdTe ternary reciprocal system

    International Nuclear Information System (INIS)

    Dubrovin, I.V.; Budennaya, L.D.; Mizetskaya, I.B.; Sharkina, Eh.V.

    1986-01-01

    Phase equilibrium diagram of SnTe-CdSe cross-section of Sn, Cd long Te, Se ternary reciprocal system is investigated using the methods of differential thermal, X-ray phase, and microstructural analyses. Maximum length of solid solutions on the base of SnTe corresponds to approximately 14 mol.% at 1050 K and approximately 3 mol.% of CdSe at 670 K. Region of solid solutions on the base of CdSe corresponds to less than 1 mol.% of SnTe at room temperature. SnTe-CdSe cross-section is not a quasibinar one. Equilibrium is shifted to the left in the SnTe+CdSe reversible SnSe+CdTe reciprocal system

  13. Instruments and detectors on the base of scintillator crystals ZnSe(Te), CWO, CsI(Tl) for systems of security and customs inspection systems

    International Nuclear Information System (INIS)

    Ryzhikov, V.D.; Opolonin, A.D.; Pashko, P.V.; Svishch, V.M.; Volkov, V.G.; Lysetskaya, E.K.; Kozin, D.N.; Smith, C.

    2005-01-01

    Results of experimental studies of detector arrays scintillator-photodiode (S-PD) and scintillator-photoreceiving device (S-PRD) used for X-ray digital radiography have shown that there exist further possibilities to increase spatial resolution of this system up to 2-3 line pairs per mm. Theoretical analysis and experimental studies show that the two-energy detection method not only allows one to detect organics on the background of metal, but also substantially increases (by 3-5 times) the detection ability of the system as a whole, especially if parameters of the S-PD pair are optimized, in particular, when ZnSe(Te) is used in the low-energy circuit. A possibility to distinguish, in principle, between substances with insignificant differences in atomic number has been theoretically proven--by transition to multi-energy radiography. 3D-imaging has been realized using S-PD detector arrays. On base of theoretical and experimental search was installation of several types of inspection systems for control objects with square size 0.4x0.6-2.5x3.5 m

  14. Optical absorption, piezoelectric effect and second harmonic generation studies of single crystal AgGaGe{sub 3}Se{sub 7.6}Te{sub 0.4} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Myronchuk, G.L.; Krymus, A.S.; Piasecki, M. [Institute of Physics, J. Dlugosz University, Czestochowa (Poland); Eastern European National University, Physics Department, Lutsk (Ukraine); Lakshminarayana, G. [Universiti Putra Malaysia, Wireless and Photonic Networks Research Centre, Faculty of Engineering, Serdang, Selangor (Malaysia); Kityk, I.V. [Czestochowa University of Technology, Faculty of Electrical Engineering, Czestochowa (Poland); Eastern European National University, Physics Department, Lutsk (Ukraine); Parasyuk, O.V. [Eastern European National University, Department of Chemistry, Lutsk (Ukraine); Rudysh, M.Ya.; Shchepanskyi, P.A. [Institute of Physics, J. Dlugosz University, Czestochowa (Poland); Ivan Franko National University of Lviv, Physics Department, Lviv (Ukraine)

    2017-03-15

    Spectral features of absorption were studied for novel AgGaGe{sub 3}Se{sub 7.6}Te{sub 0.4} solid-state alloys at different temperatures. The synthesized crystals structure parameters are obtained by the X-ray Rietveld refinement method. During increasing temperature from 100 up to 300 K, the energy gap of AgGaGe{sub 3}Se{sub 7.6}Te{sub 0.4} decreases linearly from 2.05 up to 1.94 eV at a rate 5.7 x 10{sup -4} eV/K. The magnitudes of piezoelectric coefficients are significantly changed and demonstrate substantial anisotropy. At room temperature, these values are equal to 5.2 pm/V (d{sub 11}), 31.5 pm/V (d{sub 22}) and 35.5 pm/V (d{sub 33}). It is crucial that with an increasing temperature the piezoelectric efficiencies are increased. We have explored temperature and laser-induced changes of piezoelectric coefficients. (orig.)

  15. Structure of Se-Te glasses studied using neutron, X-ray diffraction and reverse Monte Carlo modelling

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Keiji, E-mail: itoh@okayama-u.ac.jp [Graduate School of Education, Okayama University, Tsushima-naka, Okayama 700-8530 (Japan); Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan)

    2017-02-15

    Pulsed neutron diffraction and synchrotron X-ray diffraction measurements were performed on Se{sub 100-x}Te{sub x} bulk glasses with x=10, 20, 30 and 40. The coordination numbers obtained from the diffraction results demonstrate that Se and Te atoms are twofold coordinated and the glass structure is formed by the chain network. The three-dimensional structure model for Se{sub 60}Te{sub 40} glass obtained by using reverse Monte Carlo modelling shows that the alternating arrangements of Se and Te atoms compose the major part of the chain clusters but several other fragments such as Se{sub n} chains and Te-Te dimers are also present in large numbers. The chain clusters have geometrically disordered forms and the interchain atomic order is different from those in the crystal structures of trigonal Se and trigonal Te. - Graphical abstract: Coordination environment in Se{sub 60}Te{sub 40} glass.

  16. Determination of K shell fluorescence cross-section and Kβ/Kα intensity ratios for Fe, Se, Te, FeSe, FeTe and TeSe

    International Nuclear Information System (INIS)

    Saydam, M.; Aksoy, C.; Cengiz, E.; Alaşalvar, C.; Tıraşoğlu, E.; Apaydın, G.

    2012-01-01

    The fluorescence cross-sections (σ Ki ) and the intensity ratios K β /K α for pure Fe, Se, Te elements and FeSe, FeTe, TeSe complexes have been investigated. The samples were excited by 59.5 keV γ-rays from 241 Am annular radioactive source and emitted X-rays. They were counted by an Ultra-LEGe detector with resolution of 150 eV at 5.9 keV. For pure elements results have been compared with the theoretical calculated values. According to our results band length and mutual interaction of atoms affected the results. We claimed that these effects would help researchers who study on superconductors, especially determining which compound can be show the superconductor properties. - Highlights: ► TeSe, FeSe and FeTe complexes have affected each other in terms of charge transfer. ► Fe excitement and enhancement have been made by Se and Te. ► Attractive interactions between electrons can help to becoming superconductivity.

  17. Electronic structure of ZrX2 (X = Se, Te)

    Science.gov (United States)

    Shkvarin, A. S.; Merentsov, A. I.; Shkvarina, E. G.; Yarmoshenko, Yu. M.; Píš, I.; Nappini, S.; Titov, A. N.

    2018-03-01

    The electronic structure of the ZrX2 (X = Se, Te) compounds has been studied using photoelectron, resonant photoelectron and X-ray absorption spectroscopy, theoretical calculations of the X-ray absorption spectra, and density of electronic states. It was found that the absorption spectra and valence band spectra are influenced by the chalcogen type. The results of the multiplet calculation of the Zr4+ atom show that the change in the splitting in the crystal field, which is described by the 10Dq parameter, is due to the change in the ratio of covalent and ionic contributions to the chemical bond. The resonance band near the Fermi level in the valence band spectra is observed for ZrTe2 in the Zr 3p-4d resonant excitation mode. The extent of photon energy indicates the charge localization on the Zr atom. Similar resonance band for ZrSe2 is absent; it indicates the presence of a gap at the Fermi level.

  18. Solution Grown Se/Te Nanowires: Nucleation, Evolution, and The Role of Triganol Te seeds

    Directory of Open Access Journals (Sweden)

    Shan Xudong

    2009-01-01

    Full Text Available Abstract We have studied the nucleation and growth of Se–Te nanowires (NWs, with different morphologies, grown by a chemical solution process. Through systematic characterization of the Se–Te NW morphology as a function of the Te nanocrystallines (NCs precursor, the relative ratio between Se and Te, and the growth time, a number of significant insights into Se–Te NW growth by chemical solution processes have been developed. Specifically, we have found that: (i the growth of Se–Te NWs can be initiated from either long or short triganol Te nanorods, (ii the frequency of proximal interactions between nanorod tips and the competition between Se and Te at the end of short Te nanorods results in V-shaped structures of Se–Te NWs, the ratio between Se and Te having great effect on the morphology of Se–Te NWs, (iii by using long Te nanorods as seeds, Se–Te NWs with straight morphology were obtained. Many of these findings on Se–Te NW growth can be further generalized and provide very useful information for the rational synthesis of group VI based semiconductor NW compounds.

  19. HgSe(Te)-HgHal2 systems

    International Nuclear Information System (INIS)

    Pan'ko, V.V.; Khudolij, V.A.; Voroshilov, Yu.V.

    1989-01-01

    Using the methods of differential thermal and X-ray phase analyses the character of chemical interaction in the systems HgTe(Se)-HgHal 2 , where Hal is Cl, Br, I, is investigated. Formation of compounds Hg 3 Se 2 Hal 2 , Hg 3 Te 2 Hal 2 , Hg 3 TeCl 4 and Hg 3 TeBr 4 in these systems is established. The phase diagrams of the studied systems are presented. The parameters of elementary cells of the compounds with the unknown structure, as well as their unknown physicochemical properties, are determined

  20. The quadrupole interaction of 125Te and 129I in polycrystalline Te and in Te single crystals

    International Nuclear Information System (INIS)

    Langouche, G.; Rossum, M. van; Schmidt, K.P.; Coussement, R.

    1975-01-01

    Single crystals as hosts for Te and I sources were used in a study of Te. The Moessbauer spectra of 125 Te and 129 I in polycrystalline Te at liquid He temperature are given. Also presented are the Moessbauer spectra of 125 Te in a Te single crystal for the gamma ray parallel to the c-axis and perpendicular to the c-axis of the crystal at liquid He temperature. (Z.S.)

  1. Thermal characterization of Se-Te thin films

    Czech Academy of Sciences Publication Activity Database

    Svoboda, R.; Kincl, Miloslav; Málek, J.

    2015-01-01

    Roč. 644, 25 September (2015), s. 40-46 ISSN 0925-8388 Institutional support: RVO:61389013 Keywords : krystallization kinetics * DSC * Se-Te glass Subject RIV: CA - Inorganic Chemistry Impact factor: 3.014, year: 2015

  2. Photoemission investigation of the ZnSe/CdTe heterojunction band discontinuity

    International Nuclear Information System (INIS)

    Nelson, A.J.

    1995-01-01

    Synchrotron radiation soft x-ray photoemission spectroscopy and reflection high-energy electron diffraction were used to investigate the structural and electronic properties at the ZnSe/CdTe(100) heterojunction interface. ZnSe overlayers were sequentially grown in steps on p-type CdTe(100) single crystals at 200 degree C. In situ photoemission measurements were acquired after each growth in order to observe changes in the valence band electronic structure as well as changes in the Cd 4d, Zn 3d, and Te 4d core lines. The results were used to correlate the interfacial chemistry with the electronic structure and to directly determine the ZnSe/CdTe heterojunction valence band discontinuity and the consequent heterojunction band diagram. Results of these measurements reveal that the valence band offset is ΔE v =0.20 eV. copyright 1995 American Institute of Physics

  3. Crystallization study of Sn additive Se–Te chalcogenide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahim, M.A.; Gaber, A.; Abu-Sehly, A.A.; Abdelazim, N.M., E-mail: nana841@hotmail.co.uk

    2013-08-20

    Highlights: • The aim of the work deals with studying the crystallization kinetics by using different method. • Values of various kinetic parameters were calculated. • The results indicate that the rate of crystallization is related to the thermal stability and glass forming ability. - Abstract: Results of differential thermal analysis (DTA) under non-isothermal conditions of glasses Se{sub 90−x}Te{sub 10}Sn{sub x} (x = 0, 2.5, 5 and 7 at.%) are reported and discussed. The glass transition temperature (T{sub g}), the onset crystallization temperature (T{sub c}) and the peak temperature of crystallization (T{sub p}) were found to be dependent on the compositions and the heating rate. Values of various kinetic parameters such as activation energy of glass transition (E{sub g}), activation energy of crystallization (E{sub c}), rate constant (K{sub p}), Hurby number (H{sub r}) and the order parameter (n) were determined. For the present systems, the results indicate that the rate of crystallization is related to thermal stability and glass forming ability (GFA). According to the Avrami exponent (n), the results show a one dimensional growth for the composition Se{sub 90}Te{sub 10} and a three dimensional growth for the three other compositions. The crystalline phases resulting from DTA and (SEM) have been identified using X-ray diffraction.

  4. Study of Te Inclusions in CdMnTe Crystals for Nuclear Detector Applications

    International Nuclear Information System (INIS)

    Babalola, O.S.; Bolotnikov, A.; Groza, M.; Hossain, A.; Egarievwe, S.; James, R.; Burger, A.

    2009-01-01

    The concentration, size and spatial distribution of Te inclusions in the bulk of CdMnTe crystals mined from two batches of ingots were studied. An isolated planar layer decorated with Te inclusions was identified in CdMnTe crystals from the second ingot. The internal electric field of a CMT crystal was probed by infrared (IR) imaging employing Pockels electro-optic effect. The effect of an isolated plane of Te inclusions on the internal electric-field distribution within the CdMnTe crystal was studied. Space charge accumulation around the plane of Te inclusions was observed, which was found to be higher when the detector was reverse-biased. The effects of the plane of Te inclusions on the electric-field distribution within the CdMnTe crystal, and the quality of CdMnTe crystals for nuclear detector applications are discussed.

  5. Effects of tellurium concentration on the structure of melt-grown ZnSe crystals

    International Nuclear Information System (INIS)

    Atroshchenko, Lyubov V.; Galkin, Sergey N.; Rybalka, Irina A.; Voronkin, Evgeniy F.; Lalayants, Alexandr I.; Ryzhikov, Vladimir D.; Fedorov, Alexandr G.

    2005-01-01

    It has been shown that isovalent doping by tellurium positively affects the structural perfection of ZnSe crystals related to the completeness of the wurtzite-sphalerite phase transition. The optimum concentration range of tellurium in ZnSe crystals is 0.3-0.6 mass %. X-ray diffraction studies have shown that in ZnSe 1-x Te x crystals at tellurium concentrations below 0.3 mass % twinning and packing defects occur, while tellurium concentrations above 0.6 mass % lead to formation of tetragonal crystal lattice

  6. Influence of Te and Se doping on ZnO films growth by SILAR method

    Science.gov (United States)

    Güney, Harun; Duman, Ćaǧlar

    2016-04-01

    The AIP Successive ionic layer adsorption and reaction (SILAR) is an economic and simple method to growth thin films. In this study, SILAR method is used to growth Selenium (Se) and Tellurium (Te) doped zinc oxide (ZnO) thin films with different doping rates. For characterization of the films X-ray diffraction (XRD), absorbance and scanning electron microscopy (SEM) are used. XRD results are showed well-defined strongly (002) oriented crystal structure for all samples. Also, absorbance measurements show, Te and Se concentration are proportional and inversely proportional with band gap energy, respectively. SEM measurements show that the surface morphology and thickness of the material varied with Se and/or Te and varying concentrations.

  7. Influence of Te and Se doping on ZnO films growth by SILAR method

    International Nuclear Information System (INIS)

    Güney, Harun; Duman, Çağlar

    2016-01-01

    The AIP Successive ionic layer adsorption and reaction (SILAR) is an economic and simple method to growth thin films. In this study, SILAR method is used to growth Selenium (Se) and Tellurium (Te) doped zinc oxide (ZnO) thin films with different doping rates. For characterization of the films X-ray diffraction (XRD), absorbance and scanning electron microscopy (SEM) are used. XRD results are showed well-defined strongly (002) oriented crystal structure for all samples. Also, absorbance measurements show, Te and Se concentration are proportional and inversely proportional with band gap energy, respectively. SEM measurements show that the surface morphology and thickness of the material varied with Se and/or Te and varying concentrations.

  8. Influence of Te and Se doping on ZnO films growth by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Güney, Harun, E-mail: harunguney25@hotmail.com [Department of Electric and Energy, Vocation High School, Ağrı İbrahim Çeçen University (Turkey); Duman, Çağlar, E-mail: caglarduman@erzurum.edu.tr [Department of Electrical and Electronic Engineering, Faculty of Engineering, Erzurum Technical University (Turkey)

    2016-04-18

    The AIP Successive ionic layer adsorption and reaction (SILAR) is an economic and simple method to growth thin films. In this study, SILAR method is used to growth Selenium (Se) and Tellurium (Te) doped zinc oxide (ZnO) thin films with different doping rates. For characterization of the films X-ray diffraction (XRD), absorbance and scanning electron microscopy (SEM) are used. XRD results are showed well-defined strongly (002) oriented crystal structure for all samples. Also, absorbance measurements show, Te and Se concentration are proportional and inversely proportional with band gap energy, respectively. SEM measurements show that the surface morphology and thickness of the material varied with Se and/or Te and varying concentrations.

  9. Se-Se isoelectronic centers in high purity CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Rita; Andre, Regis; Mariette, Henri [CEA-CNRS, Nanophysique et Semiconducteurs, Institut Neel, 25 rue des martyrs, 38042 Grenoble (France); Golnik, Andrzej; Kossacki, Piotr; Gaj, Jan A. [Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland)

    2010-06-15

    We evidence zero-dimensional exciton states trapped on isoelectronic Se centers in CdTe quantum wells, {delta}-doped with Se. Thanks to special precautions taken to have very high purity CdTe heterostructures, it is possible to observe, in photoluminescence spectra, sharp discrete lines arising from individual centers related to the Se doping. These emission lines appear at about 40 meV below the CdTe band gap energy. The most prominent lines are attributed to the recombination of excitons bound to nearest-neighbor selenium pairs in a tetrahedral CdTe environment. This assignment is confirmed by a common linear polarization direction of the emitted light, parallel to <110>. These excitons localized on individual isoelectronic traps are good candidates as single photon emitters (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Second harmonic generation in Te crystal using free electron laser

    CERN Document Server

    Yamauchi, T; Minehara, E J

    2002-01-01

    The second harmonic generation signal converted from the fundamental wavelength of 22 mu m of a free electron laser was observed for the first time using a birefringent Te crystal. The experimental conversion efficiency of Te crystal for second harmonic generation is 0.53%, which is equivalent to the theoretical value within a factor of 2. The Te crystal has been incorporated into an autocorrelator system to measure the micro-pulse width of infrared free electron laser successfully. (author)

  11. Reassignment of oxygen-related defects in CdTe and CdSe

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, Dirk

    2015-05-22

    This thesis reassigns the O{sub Te}-V{sub Cd} complex in CdTe and the O{sub Se}-V{sub Cd} complex in CdSe to a sulfur-dioxygen complex SO{sub 2}*, and the O{sub Cd} defect in CdSe to a V{sub Cd}H{sub 2} complex using Fourier transformed infrared absorption spectroscopy. The publications of the previous complexes were investigated by theoreticians who performed first-principle calculations of theses complexes. The theoreticians ruled out the assignments and proposed alternative defects, instead. The discrepancy between the experimentally obtained and theoretically proposed defects was the motivation of this work. Two local vibrational modes located at 1096.8 (ν{sub 1}) and 1108.3 cm{sup -1} (ν{sub 2}) previously assigned to an O{sub Te}-V{sub Cd} complex are detected in CdTe single crystals doped with CdSO{sub 4} powder. Five weaker additional absorption lines accompanying ν{sub 1} and ν{sub 2} could be detected. The relative intensities of the absorption lines match a sulfur-dioxygen complex SO{sub 2}* having two configurations labeled ν{sub 1} and ν{sub 2}. A binding energy difference of 0.5±0.1 meV between the two configurations and an energy barrier of 53±4 meV separating the two configurations are determined. Uniaxial stress applied to the crystal leads to a splitting of the absorption lines which corresponds to an orthorhombic and monoclinic symmetry for ν{sub 1} and ν{sub 2}, respectively. In virgin and oxygen-doped CdSe single crystals, three local vibrational modes located at 1094.1 (γ{sub 1}), 1107.5 (γ{sub 2}), and 1126.3 cm{sup -1} (γ{sub 3}) previously attributed to an O{sub Se}-V{sub Cd} complex could be observed. The signals are accompanied by five weaker additional absorption features in their vicinity. The additional absorption lines are identified as isotope satellites of a sulfur-dioxygen complex SO{sub 2}* having three configurations γ{sub 1}, γ{sub 2}, and γ{sub 3}. IR absorption measurements with uniaxial stress applied to the

  12. Dual-bath electrodeposition of n-type Bi–Te/Bi–Se multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Ken; Okuhata, Mitsuaki; Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp

    2015-11-15

    N-type Bi–Te/Bi–Se multilayer thin films were prepared by dual-bath electrodeposition. We varied the number of layers from 2 to 10 while the total film thickness was maintained at approximately 1 μm. All the multilayer films displayed the X-ray diffraction peaks normally observed from individual Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystal structures, indicating that both phases coexist in the multilayer. The cross-section of the 10-layer Bi–Te/Bi–Se film was composed of stacked layers with nano-sized grains but the boundaries between the layers were not planar. The Seebeck coefficient was almost constant throughout the entire range of our experiment, but the electrical conductivity of the multilayer thin films increased significantly as the number of layers was increased. This may be because the electron mobility increases as the thickness of each layer is decreased. As a result of the increased electrical conductivity, the power factor also increased with the number of layers. The maximum power factor was 1.44 μW/(cm K{sup 2}) for the 10-layer Bi–Te/Bi–Se film, this was approximately 3 times higher than that of the 2-layer sample. - Highlights: • N-type Bi–Te/Bi–Se multilayer thin films were deposited by electrodeposition. • We employed a dual-bath electrodeposition process for preparing the multilayers. • The Bi–Te/Bi–Se film was composed of stacked layers with nano-sized grains. • The electrical conductivity increased as the number of layers was increased. • The power factor improved by 3 times as the number of layers was increased.

  13. Cultivation and characterization of GaInSe2 crystals

    International Nuclear Information System (INIS)

    Panakhov, T.M.; Kafarova, D.M.

    2013-01-01

    This work is the first systematic study devoted to the growth of GaInSe 2 crystals and their characterization by experimental methods such as X-ray diffraction, electron microscopy transmission with high resolution, sample electron diffraction. By the method of photoelectron roentgen spectroscopy it was studied the chemical structure of the GaInSe 2 crystals and the microprobe analysis indicated that the individual crystals have an excess of gallium. GaInSe 2 crystals were grown by the Bridgman method. Samples were prepared as single crystals by the Bridgman method. Studies showed that the GaInSe 2 crystals are hexagonal ones

  14. Stimulated transformation in nano-layered composites with Se0.6Te0.4

    International Nuclear Information System (INIS)

    Malyovanik, M.; Shipljak, M.; Cheresnya, V.; Ivan, I.; Csik, A.; Kokenyesi, S.; Debrecen Univ.

    2005-01-01

    Complete text of publication follows. The main types of the photo-induced structural transformations (PST) in chalcogenide glasses and amorphous layers can be systematized as i) structural transformations within amorphous phase, ii) photo-induced crystallization or amorphyzation, iii) photo-induced mass transport. These main known types of PST can be further detailed, for example concerning photo-induced anisotropy, photo- bleaching, etc., and are widely investigated. But the fundamentals of these effects even in the most known compositions like AsSe, As 2 S 3 are not clear, especially for the nanostructures, where the possible cluster formation, size restrictions and interface conditions may essentially influence the parameters of the material. Furthermore, the basic applied problem related to the PST consists of the possibility of digital or analog optical information storage, phase change memory, fabrication of elements for optics and photonics. These applications require determined spectral and temperature range of functioning, increased sensitivity, transformation rates and stability of the memory at the same time. The realization of such requirements can be expected in nanosized objects made of chalcogenides due to the suitable change of thermodynamical parameters, conductivity, optical and other characteristics. The establishment of correlations between the compositional modulation at nanoscale-dimensions (3-10 nm) in Se 0.6 Te 0.4 and the changes of the optical and electrical parameters as well as the possible improvement of optical recording process in comparison with homogeneous Se 0.6 Te 0.4 films were the aims of the present work. Two types of nano-multilayers, namely Se 0.6 Te 0.4 /SiO x and Se 0.6 Te 0.4 /As 2 S 3 were investigated with respect to the thermo- or light-stimulated structural transformations, since they strongly di r by the possibility of intermixing or crystallization in a steady-state process of heating or laser illumination. Photo

  15. A Micro-Raman Study of Exfoliated Few-Layered n-Type Bi2Te2.7Se0.3 (Postprint)

    Science.gov (United States)

    2017-11-28

    is feasible because the Bi-Te1 bond strength is the strongest bond in the quintuple20. In addition, the Te2 atom is known to lie at the inversion ...ii) mitigation of the bipolar effect in thermopower, and iii) a simultaneous reduction in the thermal conductivity, that led to the broadening of the...or Se-dopant at the Te sites (Te1 and Te2), where Te2 is the inversion center of the crystal symmetry (see Supplementary Fig. S1)33. As Se is

  16. Inhomogeneities and superconductivity in poly-phase Fe-Se-Te systems

    Science.gov (United States)

    Hartwig, S.; Schäfer, N.; Schulze, M.; Landsgesell, S.; Abou-Ras, D.; Blum, Ch. G. F.; Wurmehl, S.; Sokolowski, A.; Büchner, B.; Prokeš, K.

    2018-02-01

    The impact of synthesis conditions, post-preparation heating procedure, aging and influence of pressure on the superconducting properties of FeSe0.4Te0.6 crystals is reported. Two FeSe0.4Te0.6 single crystals were used in the study, prepared from stoichiometric melt but cooled down with very different cooling rates, and investigated using magnetic bulk and electrical-resistivity methods. The fast-cooled crystal contains large inclusions of Fe3Se2.1Te1.8 and exhibits bulk superconductivity in its as-prepared state, while the other is homogeneous and shows only traces of superconductivity. AC susceptibility measurements under hydrostatic pressure show that the superconducting transition temperature of the inhomogeneous crystal increases from 12.3 K at ambient pressure to Tsc = 17.9 K at 9 kbar. On the other hand, neither pressure nor mechanically-induced stress is sufficient to induce superconductivity in the homogeneous crystal. However, an additional heat treatment at 673 K followed by fast cooling down and/or long-term aging at ambient conditions leads to the appearance of bulk superconductivity also in the latter sample. This sample remains homogeneous on a scale down to few μm but shows an additional magnetic phase transition around 130 K suggesting that it must be inhomogeneous. For comparison also Fe3Se2.1Te1.8 polycrystals have been prepared and their magnetic properties have been studied. It appears that this phase is not superconducting by itself. It is concluded that nano-scale inhomogeneities that appear in the FeSexTe1-x system due to a spinodal decomposition in the solid state are necessary for bulk superconductivity, possibly due to minor changes in the crystal structure and microstructure. Macroscopic inclusions quenched by fast cooling from high temperatures lead obviously to strain and hence variations in the lattice constants, an effect that is further supported by application of pressure/stress.

  17. Andreev spectroscopy of FeSe{sub x}Te{sub 1−x}

    Energy Technology Data Exchange (ETDEWEB)

    Fujioka, Naoya, E-mail: f-naoya@moegi.waseda.jp; Shirai, Yoshiki; Miyamoto, Yukihiro; Tachibana, Hironori; Matsuda, Azusa

    2015-11-15

    Highlights: • We fabricated FeSe{sub 0.2}Te{sub 0.8}/oxide/Pb and FeSe{sub 0.2}Te{sub 0.8}/Al/Al{sub 2}O{sub 3}/Pb junctions. • These junctions show anomalous conductance spectra and no Josephson current. • These spectra are explained by S/N interface model with extraordinarily gaps. • Except for anomalous gap values, the result is consistent with s+− symmetry. - Abstract: We fabricated two types of junctions on the c-axis plane of FeSe{sub 0.2}Te{sub 0.8} (Fe[Se,Te], T{sub c} ∼ 13 K) crystals. In the superconductor/oxide/superconductor heterojunctions with a Pb film as a counter electrode, we found a large conductance peak centered at 0 V, and a gap-like feature, which has a much higher energy scale than those reported as a gap energy of Fe[Se,Te]. In spite of a large energy scale, their temperature dependence approximately follows a BCS curve, indicating they come from superconductivity of Fe[Se,Te]. Since these structures can be understood as the results of Andreev bound state at the S/N boundary and the interference effect in the normal metal [1], we tried to identify the effect of a normal layer by fabricating Fe[Se,Te]/Al/Al{sub 2}O{sub 3}/Pb junction. Here, we could realize a clean controlled S/N interface and the tunnel junction to investigate electronic properties of the Al slab. We found similar conductance spectra as those junctions without Al layer, giving a support that the anomalous conductance spectra come from the effect of the S/N interface. As expected, the energy scale of the observed features was reduced when the thickness of the normal metal was increased. The absence of Josephson current and the existence of an Andreev bound state may be a signature of the sign-reversal paring in Fe[Se,Te].

  18. Thermal analysis studies of Ge additive of Se-Te glasses

    International Nuclear Information System (INIS)

    Mohamed, M.; Abdel-Rahim, M.A.

    2016-01-01

    Ge x Se 50 Te 50-x (x= 5, 15, 20, 35 at.%) bulk glasses were synthesized by the melt quenching method. The amorphous nature of the investigated glasses was determined by X-ray diffraction. Results of differential scanning calorimetry (DSC) of the studied compositions under non-isothermal conditions were reported and discussed. The glass transition temperature (T g ), onset crystallization temperature (T c ), and crystallization peak temperature (T p ) were determined from DSC traces at different heating rates. It was found that the values of T g , T c , and T p rely on both composition and heating rate. A double crystallization stages were observed in the DSC results. Various kinetics parameters such as the glass transition energy (E g ), crystallization activation energy (E c ), and rate constant (K p ) were calculated. The glass-forming ability of the studied compositions was discussed as function of the determined kinetics parameters. (orig.)

  19. Short-range order parameters in amorphous YBaS4X7(X-S, SE, TE) films

    International Nuclear Information System (INIS)

    Hajiyev, E.S.

    2005-01-01

    Full text : Electron scattering intensity curves from amorphous YbAs 4 X 7 (X-S, SE, TE) films have ben obtained by the transmission electron diffraction (TED) method with rotation sector before screen up. The energy of electrons was 100 keV. Amorphous samples were crystallized and the composition of the products were measured by TED. The atomic radial distribution function has been calculated by the Fourier synthesis of intensities in the TED of amorphous YbAs 4 X 7 (X-S, SE, TE) films. The interatomic average distances of As - S (Se, Te) and As-Yb + 2 and partial coordination numbers have been estimated in these thilms. Based on these numbers, chemical orders in these films differ. This difference is due to differing topological order in the amorphous YbAs 4 X 7 (X-S, SE, TE) films

  20. Gigantic spin splitting of exciton states in CdSe:Mn hexagonal crystal

    International Nuclear Information System (INIS)

    Komarov, A.V.; Ryabchenko, S.M.; Semenov, Yu.G.; Shanina, B.D.; Vitrikhovskij, N.I.; AN Ukrainskoj SSR, Kiev. Inst. Poluprovodnikov)

    1980-01-01

    Gigantic spin splitting of exciton states in magneto-doped semiconductors is observed for the first time in the CdSe: Mn hexagonal crystal. A theoretical interpretation of some features of the effect due to the anisotropy of the crystal is presented. The parameters of the band structure are determined by comparing with the experiments: Δ 1 =46+-3, Δ 2 =137+-1, Δ 3 =140.6+-0.3 meV. It is shown that in CdSe:Mn just as in cubic semiconductors, exchange interaction with magnetic impurities is ferromagnetic for electrons of the conductivity band and antiferromagnetic for electrons of the valence band. The exchange constants are of the same order of magnetude as those for the CdTe:Mn, ZnTe:Mn and ZnSe:Mn crystals

  1. Atomic structures of Cd Te and Cd Se (110) surfaces

    International Nuclear Information System (INIS)

    Watari, K.; Ferraz, A.C.

    1996-01-01

    Results are reported based on the self-consistent density-functional theory, within the local-density approximation using ab-initio pseudopotentials of clean Cd Te and Cd Se (110) surfaces. We analyzed the trends for the equilibrium atomic structures, and the variations of the bond angles at the II-VI (110). The calculations are sensitive to the ionicity of the materials and the results are in agreement with the arguments which predict that the relaxed zinc-blend (110) surfaces should depend on ionicity. (author). 17 refs., 1 figs., 3 tabs

  2. Reassignment of oxygen-related defects in CdTe and CdSe

    International Nuclear Information System (INIS)

    Bastin, Dirk

    2015-01-01

    This thesis reassigns the O_T_e-V_C_d complex in CdTe and the O_S_e-V_C_d complex in CdSe to a sulfur-dioxygen complex SO_2*, and the O_C_d defect in CdSe to a V_C_dH_2 complex using Fourier transformed infrared absorption spectroscopy. The publications of the previous complexes were investigated by theoreticians who performed first-principle calculations of theses complexes. The theoreticians ruled out the assignments and proposed alternative defects, instead. The discrepancy between the experimentally obtained and theoretically proposed defects was the motivation of this work. Two local vibrational modes located at 1096.8 (ν_1) and 1108.3 cm"-"1 (ν_2) previously assigned to an O_T_e-V_C_d complex are detected in CdTe single crystals doped with CdSO_4 powder. Five weaker additional absorption lines accompanying ν_1 and ν_2 could be detected. The relative intensities of the absorption lines match a sulfur-dioxygen complex SO_2* having two configurations labeled ν_1 and ν_2. A binding energy difference of 0.5±0.1 meV between the two configurations and an energy barrier of 53±4 meV separating the two configurations are determined. Uniaxial stress applied to the crystal leads to a splitting of the absorption lines which corresponds to an orthorhombic and monoclinic symmetry for ν_1 and ν_2, respectively. In virgin and oxygen-doped CdSe single crystals, three local vibrational modes located at 1094.1 (γ_1), 1107.5 (γ_2), and 1126.3 cm"-"1 (γ_3) previously attributed to an O_S_e-V_C_d complex could be observed. The signals are accompanied by five weaker additional absorption features in their vicinity. The additional absorption lines are identified as isotope satellites of a sulfur-dioxygen complex SO_2* having three configurations γ_1, γ_2, and γ_3. IR absorption measurements with uniaxial stress applied to the CdSe crystal yield a monoclinic C_1_h symmetry for γ_1 and γ_2. The SO_2* complex is stable up to 600 C. This thesis assigns the ν-lines in

  3. Growth and Characterization of ZnTe Crystal

    International Nuclear Information System (INIS)

    Nann Thazin

    2011-12-01

    High quality ZnTe crystals have been synthesized by vapor Transport method. The grown crystals were p-type. The concentration and mobility were 2.5 x 10 16 cm-3 and 23 cm2/Vs at 300K, according to Hall effect measurements. Surface morphology of the crystal was investigated by scanning electron microscope (SEM). Crystal orientation and lattice parameters of the crystals were also analysed by XRD. From X-ray diffraction studies the structure of the grown crystals were found to be zinc-blende. The crystal emitted light in the visible range at room temperature.

  4. Hopping conduction in gamma-irradiated InSe and InSe:Sn single crystals

    International Nuclear Information System (INIS)

    MUSTAFAEVA, S.N.; ISMAILOV, A.A.; ASADOV, M.M.

    2010-01-01

    Full text : The semiconductive InSe layer compound is characterized by a strong covalent bond inside the layers and a weak Van der Waals bonding between them. It was shown that across the layers of InSe single crystals at low temperatures (T ≤ 200 K) at direct current (dc) hopping conduction through localized states near the Fermi level takes place. The results of dc-conductivity of gamma-irradiated p-InSe and n-InSe : Sn layer single crystals have been presented in this work. ρ-InSe single crystal specimens grown by the Bridgman method were used in the experiments. Plates of the crystals under study were obtained by cleaving along the layers of single crystal ingots. The single-crystal InSe samples for electric measurements had the form of planar capacitors normal to the C axis of the crystals, with silver-paste electrodes. The thickness of the InSe samples was 300 mkm. Co 60 serves as the source of irradiation with energy of gamma-quantum equal to 1.3 MeV. The electric properties of non-irradiated and gamma-irradiated InSe crystals were measured under the same conditions. It is revealed that InSe and InSe : Sn (0.2 and 0.4 mole percent Sn) single crystals exhibit a variable range hopping conduction along a normal to their natural layers at temperatures T≤200 K in a dc electric field. From experimental data the parameters of localized states of p-InSe and n-InSe : Sn were calculated before and after gamma-irradiation. It is revealed that gamma-irradiation of p-InSe and n-InSe : Sn (0.2 and 0.4 mole percent Sn) single crystals leads to significant change of localized states parameters. After gamma-irradiation the density of states near the Fermi level increased, but their energy spread and the average jump distance decreased. The concentrations of radiated defects were estimated in p-InSe (5.18*10 1 7 sm - 3) and n-InSe : Sn (2.5*10 1 7 - 2.7*10 1 8 sm - 3) single crystals. The present results demonstrate that gamma-irradiation offers the possibility of tuning

  5. Matrix-controlled morphology evolution of Te inclusions in CdZnTe single crystal

    International Nuclear Information System (INIS)

    He, Yihui; Jie, Wanqi; Xu, Yadong; Wang, Tao; Zha, Gangqiang; Yu, Pengfei; Zheng, Xin; Zhou, Yan; Liu, Hang

    2012-01-01

    The fine morphologies of microscale Te inclusions in CdZnTe single crystal were investigated to reveal their shape evolution. Such inclusions from crystal ingots with different post-growth cooling rates were analyzed using scanning electron microscopy after surface treatment. A tetrakaidecahedron model embodying {1 0 0} and {1 1 1} matrix facets was developed to interpret the form of the Te inclusions. An entire shape evolution process was also proposed where the final configuration of the Te inclusions was a tetrahedron comprising {1 1 1}B facets.

  6. Magneto-transport studies on Bi2Te2+xSe1–x (x = 0.05 and 0.10 topological insulators

    Directory of Open Access Journals (Sweden)

    Bushra Irfan

    2016-09-01

    Full Text Available Bi2Te2Se is one of the most promising three dimensional topological insulators, for the study of surface states. In this work, we report the results of transport and magneto-transport behavior of Bi2Te2+xSe1–x (x=0.05 and 0.10 single crystals grown using modified Bridgeman technique. Resistance versus temperature measurements show semiconducting behavior for x = 0.05 and 0.10 crystals. Linear magnetoresistance is observed for Bi2Te2.05Se0.95 (i.e. x=0.05 whereas, Bi2Te2.10Se0.90 (x=0.10 single crystal shows a conductance fluctuations at low magnetic field.

  7. Chalcogenidosilicates: Ba/sub 2/SiTe/sub 4/ and Ba/sub 2/SiSe/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, C; Eisenmann, B; Schaefer, H [Technische Hochschule Darmstadt (Germany, F.R.). Fachbereich Anorganische Chemie und Kernchemie

    1985-05-01

    The new compounds Ba/sub 2/SiSe/sub 4/ and Ba/sub 2/SiTe/sub 4/ crystallize in the monoclinic system, space group: P2/sub 1//m (No. 11) with the lattice constants Ba/sub 2/SiSe/sub 4/: a = 918.4(5) pm, b = 703.3(3) pm, c = 687.2(3) pm, ..beta.. = 109.2(1)/sup 0/, Ba/sub 2/SiTe/sub 4/: a = 965.0(5) pm, b = 762.6(3) pm, c = 746.6(3) pm, ..beta.. = 108.9(1)/sup 0/. Both compounds are isotypic to the Sr/sub 2/GeS/sub 4/ structure. Ba/sub 2/SiTe/sub 4/ is the first o-telluridosilicate with discrete SiTe/sub 4//sup 4 -/ anions.

  8. Annealing effect on thermal conductivity and microhardness of carbon nanotube containing Se80Te16Cu4 glassy composites

    Science.gov (United States)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2018-02-01

    This study deals with the effect of thermal annealing on structural/microstructural, thermal and mechanical behavior of pristine Se80Te16Cu4 and carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composites. Pristine Se80Te16Cu4, 3 and 5 wt%CNTs-Se80Te16Cu4 glassy composites are annealed in the vicinity of glass transition temperature to onset crystallization temperature (340-380 K). X-ray diffraction (XRD) pattern revealed formation of polycrystalline phases of hexagonal CuSe and trigonal selenium. The indexed d-values in XRD patterns are in well conformity with the d-values obtained after the indexing of the ring pattern of selected area electron diffraction pattern of TEM images. The SEM investigation exhibited that the grain size of the CNTs containing Se80Te16Cu4 glassy composites increased with increasing annealing temperature and decreased at further higher annealing temperature. Thermal conductivity, microhardness exhibited a substantial increase with increasing annealing temperature of 340-360 K and slightly decreases for 380 K. The variation of thermal conductivity and microhardness can be explained by cross-linking formation and voids reduction.

  9. The Ag2Se-HgSe-GeSe2 system and crystal structures of the compounds

    International Nuclear Information System (INIS)

    Parasyuk, O.V.; Gulay, L.D.; Romanyuk, Ya.E.; Olekseyuk, I.D.; Piskach, L.V.

    2003-01-01

    The phase diagram of the quasi-ternary Ag 2 Se-HgSe-GeSe 2 system at 298 K was investigated using X-ray phase analysis and metallography. The formation of five intermediate quaternary phases β (Ag ∼7.12-∼6.32 Hg ∼0.44-∼0.82 GeSe 6 ), γ (Ag ∼6.08-∼4.00 Hg ∼0.96-∼2.00 GeSe 6 ), δ (Ag 3.4 Hg 2.3 GeSe 6 ), ε (Ag ∼2.24-∼2.00 Hg ∼2.88-∼3.00 GeSe 6 ) and ∼Ag 1.4 Hg 1.3 GeSe 6 was established. The crystal structure of the β-phase (for the Ag 6.504 Hg 0.912 GeSe 6 composition) was determined using X-ray single crystal diffraction. It crystallizes in a cubic structure (space group F4-bar 3m) with the lattice parameter a=1.09026(4) nm. The crystal structure of the δ-phase (Ag 3.4 Hg 2.3 GeSe 6 ) was determined using X-ray powder diffraction (space group F4-bar 3m, a=1.07767(8) nm). The crystal structure determination of the γ-phase (space group Pmn2 1 ) was performed for the compositions Ag 5.6 Hg 1.2 GeSe 6 , Ag 4.8 Hg 1.6 GeSe 6 and Ag 4 Hg 2 GeSe 6 using X-ray powder diffraction. The crystal structure of the LT-Hg 2 GeSe 4 compound (space group I4-bar , a=0.56786(2), c=1.12579(5) nm) was confirmed by powder diffraction also.

  10. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface

    Science.gov (United States)

    Zhang, Haijun; Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng

    2009-06-01

    Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of topologically protected states in two-dimensional and three-dimensional band insulators with large spin-orbit coupling. So far, the only known three-dimensional topological insulator is BixSb1-x, which is an alloy with complex surface states. Here, we present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3, Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not. These topological insulators have robust and simple surface states consisting of a single Dirac cone at the Γ point. In addition, we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3eV, which is larger than the energy scale of room temperature. We further present a simple and unified continuum model that captures the salient topological features of this class of materials.

  11. M = Mo, W; X = S, Se, Te) heterostructures

    KAUST Repository

    Zhang, Qingyun

    2018-04-16

    Using first-principles calculations, we investigate the electronic properties of the two-dimensional GaX/MX2 (M = Mo, W; X = S, Se, Te) heterostructures. Orbital hybridization between GaX and MX2 is found to result in Rashba splitting at the valence-band edge around the Γ point, which grows for increasing strength of the spin-orbit coupling in the p orbitals of the chalcogenide atoms. The location of the valence-band maximum in the Brillouin zone can be tuned by strain and application of an out-of-plane electric field. The coexistence of Rashba splitting (in-plane spin direction) and band splitting at the K and K′ valleys (out-of-plane spin direction) makes GaX/MX2 heterostructures interesting for spintronics and valleytronics. They are promising candidates for two-dimensional spin-field-effect transistors and spin-valley Hall effect devices. Our findings shed light on the spin-valley coupling in van der Waals heterostructures.

  12. Effect of Te atmosphere annealing on the properties of CdZnTe single crystals

    International Nuclear Information System (INIS)

    Yu Pengfei; Jie Wanqi; Wang Tao

    2011-01-01

    Low-resistivity CdZnTe:In (CZT:In) single crystals were annealed under Te atmosphere according to the behaviors of deep-donor Te antisite. The results indicated that the star-like Cd inclusions were completely eliminated after 120 h annealing. Meanwhile, the resistivity is greatly enhanced. The resistivity of the slice annealed after 240 h was achieved as high as 1.8x10 11 Ω cm, five orders of magnitude higher than that of as-grown slice. It suggested that the deep-donor level Te antisites were successfully introduced to pin the Fermi level at the mid band-gap position. The IR transmittances of the slices were also improved, which increased as the annealing time increased. PL measurement revealed that the (D 0 ,X) peak representing high quality of CZT crystal appeared. It can be concluded that the quality of CZT crystals is obviously improved after annealing under Te atmosphere. - Highlights: → High resistivity is due to deep-donor level Te Cd . → The resistivity achieved was as high as 1.8x10 11 Ω cm. → Star-like inclusions are Cd inclusions. → (D 0 ,X) peak represents the improvement of the crystal quality.

  13. Crystal growth and characterization of Ir-Te compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kurzhals, Philipp; Weber, Frank; Zocco, Diego; Adelmann, Peter; Merz, Michael; Wolf, Thomas; Kuntz, Sebastian; Grube, Kai [Karlsruhe Institute of Technology, Institute for Solid State Physics, Karlsruhe (Germany)

    2016-07-01

    IrTe{sub 2} is distinguished by a structural phase transition whose origin is not understood up to the present day. We grew crystals using the self-flux method starting from the reagents iridium and tellurium and got specimen with varying amounts of IrTe{sub 2} and Ir{sub 3}Te{sub 8}, analyzed by x-ray powder diffraction. We studied the transition near T = 280 K in magnetization measurements down to T = 1.8 K probing also for superconductivity, which was reported for intercalated samples. Results indicate that the structural transition happens over an extended range in temperature and superconductivity is absent in our samples. Ir{sub 3}Te{sub 8} is not studied to such an extent as IrTe{sub 2}. In previous publications a structural phase transition is reported. We characterized the transition by performing magnetization measurements and X-ray diffraction.

  14. Thermal studies of Se85-xTe15Inx (x = 3,6,9,12) glasses

    International Nuclear Information System (INIS)

    Sushama, D.; George, Achamma; Asokan, S.

    2011-01-01

    Bulk glasses of compositions Se 85-x Te 15 In x (x = 3,6,9,12) are prepared by melt quenching technique and Differential scanning calorimetry (DSC) is employed to study the thermal stability, crystallization mechanism as well as specific heat of these glasses. It is found that the addition of indium increases the glass transition temperature. From the heating rate dependence of the glass transition temperature the activation energy of glass transition is determined using Kissinger's equation for non-isothermal crystallization of materials. An attempt has been made to explain the variation in the value of T c , T p and ΔC p for the composition Se 73 Te 15 In 12 using rigidity percolation threshold (RPT). From the values of (T c -T g ) the stable glass system is determined.

  15. Infrared absorption in PbTe single crystals

    International Nuclear Information System (INIS)

    Kudykina, T.A.

    1982-01-01

    A group-theoretical analysis is conducted to select rules for optical transitions between bands in PbTe single crystals. It is shown that transitions between valence bands which are near a forbidden band are also forbidden. The extra absorption observed in p-PbTe and p-Pbsub(1-x)Snsub(x)Te in the region between the self-absorption edge and the free-carrier absorption edge is probably connected with transitions between one of valence bands and the p-state of the impurity

  16. Photoluminescence properties of boron doped InSe single crystals

    International Nuclear Information System (INIS)

    Ertap, H.; Bacıoğlu, A.; Karabulut, M.

    2015-01-01

    Undoped and boron doped InSe single crystals were grown by Bridgman–Stockbarger technique. The PL properties of undoped, 0.1% and 0.5% boron doped InSe single crystals have been investigated at different temperatures. PL measurements revealed four emission bands labeled as A, B, C and D in all the single crystals studied. These emission bands were associated with the radiative recombination of direct free excitons (n=1), impurity-band transitions, donor–acceptor recombinations and structural defect related band (impurity atoms, defects, defect complexes, impurity-vacancy complex etc.), respectively. The direct free exciton (A) bands of undoped, 0.1% and 0.5% boron doped InSe single crystals were observed at 1.337 eV, 1.335 eV and 1.330 eV in the PL spectra measured at 12 K, respectively. Energy positions and PL intensities of the emission bands varied with boron addition. The FWHM of direct free exciton band increases while the FWHM of the D emission band decreases with boron doping. Band gap energies of undoped and boron doped InSe single crystals were calculated from the PL measurements. It was found that the band gap energies of InSe single crystals decreased with increasing boron content. - Highlights: • PL spectra of InSe crystals have been studied as a function of temperature. • Four emission bands were observed in the PL spectra at low temperatures. • PL intensity and position of free exciton band vary with doping and temperature. • Temperature dependences of the bands observed in the PL spectra were analyzed

  17. Research on Cu2ZnSnTe4 crystals and heterojunctions based on such crystals

    Directory of Open Access Journals (Sweden)

    Kovaliuk T. T.

    2015-12-01

    Full Text Available The paper reports on the results of the studies of magnetic, kinetic and optical properties of Cu2ZnSnTe4 crystals. The Cu2ZnSnTe4 crystals showed diamagnetic properties (the magnetic susceptibility almost independent of the magnetic field and temperature. The Cu2ZnSnTe4 crystals possessed p-type of conductivity and the Hall coefficient was independent on temperature. The temperature dependence of the electrical conductivity of the Cu2ZnSnTe4 crystal shows metallic character, i. e. decreases with the increase of temperature, that is caused by the lower charge carrier mobility at higher temperature. Thermoelectric power of the samples ispositive that also indicates on the prevalence of p-type conductivity. Heterojunctions n-TiN/p-Cu2ZnSnTe4, n-TiO2/p-Cu2ZnSnTe4 and n-MoO/p-Cu2ZnSnTe4 were fabricated by the reactive magnetron sputtering of TiN, TiO2 and MoOx thin films, respectively, onto the substrates made of the Cu2ZnSnTe4 crystals. The dominating current transport mechanisms in the n-TiN/p-Cu2ZnSnTe4 and n-TiO2/p-Cu2ZnSnTe4 heterojunctions were established to be the tunnel-recombination mechanism at forward bias and tunneling at reverse bias.

  18. Structural and optical properties of alloyed quaternary CdSeTeS core and CdSeTeS/ZnS core–shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Adegoke, Oluwasesan, E-mail: adegoke.sesan@mailbox.co.za [Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria 0002 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Forbes, Patricia B.C., E-mail: patricia.forbes@up.ac.za [Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria 0002 (South Africa)

    2015-10-05

    Highlights: • Alloyed quaternary CdSeTeS core quantum dots (QDs) were synthesized. • Passivation was carried out using a ZnS shell. • Quaternary CdSeTeS core exhibited unique optical properties over CdSeTe/ZnS. • CdSeTeS can be employed as a useful alternative to core/shell QDs. - Abstract: Synthesis of fluorescent alloyed quantum dots (QDs) with unique optical properties suitable for a wide array of chemical, physical and biological applications is of research interest. In this work, highly luminescent and photostable alloyed quaternary CdSeTeS core QDs of two different sizes were fabricated via the organometallic hot-injection synthetic route. Characterization of the nanocrystals were performed using TEM, XRD, UV/vis and fluorescence spectrophotometric techniques. We have demonstrated in this work that the well fabricated alloyed quaternary CdSeTeS core QDs possess unique optical properties that are advantageous over conventional core/shell systems. Formation of the CdSeTeS/ZnS core/shell with the desired optical properties comes with a number of challenges, hence the advantages of the quaternary alloyed core over the core/shell QDs are (i) avoidance of the challenging process of determining the proper shell thickness which can provide the desired optical properties in the core/shell system and (ii) avoidance of the lattice-induced mismatch between the core and the shell material which can either lead to incomplete exciton confinement or dislocation at the core/shell interface.

  19. Synthesis and crystal structures of Pd.sub.3./sub.Pb.sub.2./sub.Te.sub.2./sub. and Pd.sub.3./sub.AgSe

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Vymazalová, A.; Drábek, M.; Drahokoupil, Jan; Chareev, D.A.; Kristavchuk, A.V.

    2010-01-01

    Roč. 17, 2a (2010), k76-k77 ISSN 1211-5894 Institutional research plan: CEZ:AV0Z10100520 Keywords : x-ray * crystal structure Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.xray.cz/ms/bul2010-2a/laufek.pdf

  20. Defect complexes formed with Ag atoms in CDTE, ZnTe, and ZnSe

    CERN Document Server

    Wolf, H; Ostheimer, V; Hamann, J; Lany, S; Wichert, T

    2000-01-01

    Using the radioactive acceptor $^{111}\\!$Ag for perturbed $\\gamma$-$\\gamma$-angular correlation (PAC) spectroscopy for the first time, defect complexes formed with Ag are investigated in the II-VI semiconductors CdTe, ZnTe and ZnSe. The donors In, Br and the Te-vacancy were found to passivate Ag acceptors in CdTe via pair formation, which was also observed in In-doped ZnTe. In undoped or Sb-doped CdTe and in undoped ZnSe, the PAC experiments indicate the compensation of Ag acceptors by the formation of double broken bond centres, which are characterised by an electric field gradient with an asymmetry parameter close to h = 1. Additionally, a very large electric field gradient was observed in CdTe, which is possibly connected with residual impurities.

  1. Study of Te Inclusion and Related Point Defects in THM-Growth CdMnTe Crystal

    Science.gov (United States)

    Mao, Yifei; Zhang, Jijun; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Ling, Liwen; Li, Ming; Zhang, Ying; Wang, Linjun

    2018-02-01

    This study establishes a model for describing the interaction between Te inclusions, dislocations and point defects in CdMnTe crystals. The role of the complex environment surrounding the formation of Te inclusions was analyzed. Images of Te inclusions captured by scanning electron microscope and infrared microscope were used to observe the morphology of Te inclusions. The morphology of Te inclusions is discussed in light of crystallography, from the crystal growth temperature at 900°C to the melting temperature of Te inclusions using the traveling heater method. The dislocation nets around Te inclusions were calculated by counting lattice mismatches between the Te inclusions and the bulk CdMnTe at 470°C. The point defects of Te antisites were found to be gathered around Te inclusions, with dislocation climb during the cooling phase of crystal growth from 470°C to room temperature. The Te inclusions, dislocation nets and surrounding point defects are considered to be an entirety for evaluating the effect of Te inclusions on CdMnTe detector performance, and an effective mobility-lifetime product (μτ) was obtained.

  2. Structural and superconducting properties of epitaxial Fe{sub 1+y}Se{sub 1-x}Te{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Stefan; Yuan, Feifei; Grinenko, Vadim; Huehne, Ruben [Institute for Metallic Materials, IFW Dresden (Germany); Sala, Alberto; Putti, Marina [Dipartimento di Fisica, Universita di Genova (Italy)

    2015-07-01

    The iron based superconductor Fe(Se,Te) is in the center of much ongoing research. The reason for this is on the one hand its simple crystal structure, that consists only of stacked Fe(Se,Te) layers so that structural and superconducting properties can be connected more easily, on the other hand FeSe itself shows a high sensibility for strain and changes in stoichiometry and can have potentially very high critical temperatures under hydrostatic pressure or in monolayers. We investigate epitaxial thin films of Fe{sub 1+y}Se{sub 1-x}Te{sub x} grown by pulsed laser deposition on different single crystalline substrates. A high crystalline quality and a superconducting transition of up to about 20 K can be achieved using optimized deposition parameters. The influence of growth conditions, Te-doping, film thickness and post growth oxygen treatment on the structural and superconducting properties on these films will be presented in detail.

  3. Emission variation in infrared (CdSeTe)/ZnS quantum dots conjugated to antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo Gómez, J.A. [UPIITA – Instituto Politécnico Nacional, México D. F. 07320, México (Mexico); Casas Espinola, J.L., E-mail: jlcasas@esfm.ipn.mx [ESFM – Instituto Politécnico Nacional, México D. F. 07738, México (Mexico); Douda, J. [UPIITA – Instituto Politécnico Nacional, México D. F. 07320, México (Mexico)

    2014-11-15

    The paper presents the photoluminescence (PL) and Raman scattering investigations of infrared CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) in nonconjugated states and after the conjugation to the anti-papilloma virus antibodies (Ab). The Raman scattering study has shown that the CdSeTe core includes two layers with different material compositions such as: CdSe{sub 0.5}Te{sub 0.5} and CdSe{sub 0.7}Te{sub 0.3}. PL spectra of nonconjugated CdSeTe/ZnS QDs are characterized by two Gaussian shape PL bands related to exciton emission in the CdSeTe core and in intermediate layer at the core/shell interface. PL spectra of bioconjugated QDs have changed essentially: the main PL band related to the core emission shifts into high energy and become asymmetric. The energy diagram of double core/shell CdSeTe/ZnS QDs has been analyzed to explain the PL spectrum of nonconjugated QDs and its transformation at the bioconjugation to the papiloma virus antibodies. It is shown that the PL spectrum transformation in bioconjugated QDs can be a powerful technique for biology and medicine.

  4. Use of INAA to study the interaction between Se and Te in cells of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Czauderna, M.; Turska, M.; Sierokowska, S.; Smolinski, S.

    1996-01-01

    The differences in the effects of inorganic Se (IV and VI) compounds and seleno-cystine [(CySe) 2 ] on the Te (as Na 2 TeO 3 ) uptake by the yeast, Saccharomyces cerevisiae, has been studied. Se, Te, Ag, Zn, Fe and Co contents of the cells were measured by instrumental neutron activation analysis. For the determination of the Ag content, the monostandard method was applied as the analytical method. The contents of other elements were determined by comparison with standards having similar amounts of the determined element as the sample. Results obtained show that an antagonist interaction occurs between SeO 2 and Te. There was a significant increase in the concentration of Se and Te when the yeast was incubated in the medium containing (CySe) 2 and Te. (CySe) 2 markedly increased the Ag content of cells, especially within the first 8 h of incubation. The low level of SeO 2 in the medium are the exterior factor which produce an observable increase of the Ag concentration in the cells. The higher level of SeO 2 in the medium causes a long-term marked increase in the Ag content of the cells. The uptake yield of Ag also increased in the presence of (NH 4 ) 2 SeO 4 in the medium. The Te supply produced a significant enhancement in the Ag content of the cells during the initial 8 h of incubation. The presence of Se and/or Te in the medium causes change in the intracellular Zn, Fe and Co levels. (author)

  5. Anisotropy of hopping conductivity in TIGaSe2, crystal

    International Nuclear Information System (INIS)

    Nadjafov, A.I.; Sardarli, R.M.; Samedov, O. A.; Abdullayev, A.P.; Zeynalova, E.A.; Jabbarov, J.H.

    2005-01-01

    Full Text: The temperature dependences of electrical conductivity of a chained semiconductor crystal TIGaTe 2 in a direction of chains and perpendicularly have been investigated. It was established that in a constant electrical field in both crystallographic directions took place hopping conductivity with variable length of a jump on located near Fermi level. The energy activation of conductivity has been determined. It was appreciated density of a condition in a vicinity of a Fermi level, their disorder, radius of localization, average distance of jumps of carriers

  6. CdSe/ZnSe quantum dot structures grown by molecular beam epitaxy with a CdTe submonolayer stressor

    International Nuclear Information System (INIS)

    Sedova, I. V.; Lyublinskaya, O. G.; Sorokin, S. V.; Sitnikova, A. A.; Toropov, A. A.; Donatini, F.; Dang, Si Le; Ivanov, S. V.

    2007-01-01

    A procedure for formation of CdSe quantum dots (QDs) in a ZnSe matrix is suggested. The procedure is based on the introduction of a CdTe submonolayer stressor deposited on the matrix surface just before deposition of the material of the QDs. (For CdTe/ZnSe structure, the relative lattice mismatch is Δa/a ∼ 14%.) The stressor forms small strained islands at the ZnSe surface, thus producing local fields of high elastic stresses controlling the process of the self-assembling of the QDs. According to the data of transmission electron microscopy, this procedure allows a considerable increase in the surface density of QDs, with a certain decrease in their lateral dimensions (down to 4.5 ± 1.5 nm). In the photoluminescence spectra, a noticeable (∼150 meV) shift of the peak to longer wavelengths from the position of the reference CdSe/ZnSe QD structure is observed. The shift is due to some transformation of the morphology of the QDs and an increase in the Cd content in the QDs. Comprehensive studies of the nanostructures by recording and analyzing the excitation spectra of photoluminescence, the time-resolved photoluminescence spectra, and the cathodoluminescence spectra show that the emission spectra involve two types of optical transitions, namely, the type-I transitions in the CdSeTe/ZnSe QDs and the type-II transitions caused mainly by the low cadmium content (Zn,Cd)(Se,Te)/ZnSe layer formed between the QDs

  7. Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe

    Science.gov (United States)

    Gurevich, A. S.; Kochereshko, V. P.; Bleuse, J.; Mariette, H.; Waag, A.; Akimoto, R.

    2011-09-01

    The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.

  8. Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A S; Kochereshko, V P [A F Ioffe Physical-Technical Institute, St Petersburg 194021 (Russian Federation); Bleuse, J; Mariette, H [CEA-CNRS Group ' Nanophysique et Semiconducteurs' , CEA, INAC/SP2M, and Institut Neel, 17 rue des Martyrs, F-38054 Grenoble (France); Waag, A [Braunschweig Technical University, Hans-Sommer-Strasse 66, D-38106 Braunschweig (Germany); Akimoto, R, E-mail: vladimir.kochereshko@mail.ioffe.ru [National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2-1, Tsukuba 305-8568 (Japan)

    2011-09-07

    The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.

  9. Transistor properties of exfoliated single crystals of 2 H -Mo (Se1-xT ex ) 2(0 ≤x ≤1 )

    Science.gov (United States)

    Uesugi, Eri; Miao, Xiao; Ota, Hiromi; Goto, Hidenori; Kubozono, Yoshihiro

    2017-06-01

    Field-effect transistors (FETs) were fabricated using exfoliated single crystals of Mo (Se1-xT ex) 2 with an x range of 0 to 1, and the transistor properties fully investigated at 295 K in four-terminal measurement mode. The chemical composition and crystal structure of exfoliated single crystals were identified by energy-dispersive x-ray spectroscopy (EDX), single-crystal x-ray diffraction, and Raman scattering, suggesting the 2 H - structure in all Mo (Se1-xT ex) 2 . The lattice constants of a and c increase monotonically with increasing x , indicating the substitution of Se by Te. When x 0.4 . In contrast, the polarity of a thick single-crystal Mo (Se1-xT ex) 2 FET did not change despite an increase in x . The change of polarity in a thin single-crystal FET was well explained by the variation of electronic structure. The absence of such change in the thick single-crystal FET can be reasonably interpreted based on the large bulk conduction due to naturally accumulated electrons. The μ value in the thin single-crystal FET showed a parabolic variation, with a minimum μ at around x =0.4 , which probably originates from the disorder of the single crystal caused by the partial replacement of Se by Te, i.e., a disorder that may be due to ionic size difference of Se and Te.

  10. Double stage crystallization of bulk Ge20Te80 glass

    International Nuclear Information System (INIS)

    Parthasarathy, G.; Bandyopadhyay, A.K.; Gopal, E.S.R.; Subbanna, G.N.

    1984-01-01

    The growing interest of the semiconducting glasses is partly because of their interesting electrical and optical properties. These properties are usually connected with their crystallization. In many glasses, the glass-supercooled liquid transition precedes crystallization. The glass transition temperature (Tsub(g)) is found to exhibit multistage processes for a few systems. In this communication, we report the observation of a double Tsub(g) effect in bulk Ge 20 Te 80 glass and also explain the structural changes taking place in the two stages. (author)

  11. Inversion symmetry breaking induced triply degenerate points in orderly arranged PtSeTe family materials

    Science.gov (United States)

    Xiao, R. C.; Cheung, C. H.; Gong, P. L.; Lu, W. J.; Si, J. G.; Sun, Y. P.

    2018-06-01

    k paths exactly with symmetry allow to find triply degenerate points (TDPs) in band structures. The paths that host the type-II Dirac points in PtSe2 family materials also have the spatial symmetry. However, due to Kramers degeneracy (the systems have both inversion symmetry and time reversal symmetry), the crossing points in them are Dirac ones. In this work, based on symmetry analysis, first-principles calculations, and method, we predict that PtSe2 family materials should undergo topological transitions if the inversion symmetry is broken, i.e. the Dirac fermions in PtSe2 family materials split into TDPs in PtSeTe family materials (PtSSe, PtSeTe, and PdSeTe) with orderly arranged S/Se (Se/Te). It is different from the case in high-energy physics that breaking inversion symmetry I leads to the splitting of Dirac fermion into Weyl fermions. We also address a possible method to achieve the orderly arranged in PtSeTe family materials in experiments. Our study provides a real example that Dirac points transform into TDPs, and is helpful to investigate the topological transition between Dirac fermions and TDP fermions.

  12. Critical current densities and vortex dynamics in FeTexSe1-x single crystals

    International Nuclear Information System (INIS)

    Taen, T.; Tsuchiya, Y.; Nakajima, Y.; Tamegai, T.

    2010-01-01

    The critical current density and the normalized relaxation rate are reported in FeTe 0.59 Se 0.41 single crystal. Critical current density is of order of 10 5 A/cm 2 , which is comparable to that in Co-doped BaFe 2 As 2 . In low temperature and low field region, the vortex dynamics of this system is well defined by the collective creep theory, which is quite similar to Co-doped BaFe 2 As 2 reported before. We also discuss the origin of the anomaly in the field dependence of the relaxation rate.

  13. Effect of Te doping on superconductivity and charge-density wave in dichalcogenides 2H-NbSe2-χTeχ(χ=0,0.1,0.2)

    Institute of Scientific and Technical Information of China (English)

    Wang Hong-Tao; Li Lin-Jun; Ye De-shu; Cheng Xin-Hong; Xu Zhu-An

    2007-01-01

    Single crystals of Te-doped dichalcogenides 2H-NbSe2-χTeχ(χ=0,0.10,0.20)were grown by vapour transport method.The effect of Te doping on the superconducting and charge-density wave(CDW)transitions has been investigated.The sharp decrease of residual resistance ratio,RRR=R(300K)/R(8K),with increasing Te content was observed,indicating that the disorder in the conducting plane is induced by Te doping.Meanwhile the superconducting transition temperature,Tc,decreases monotonically with Te content.However,the CDW transition temperature,TCDW,shown by a small jump in the temperature dependence of the resistivity near 30 K,increases slightly.The results show that the suppression of superconductivity might be caused by the enhancement of CDW ordering.The disorder has little influence on the CDW ordering.

  14. Crystallization kinetics of a-Se, part 4: thin films

    Science.gov (United States)

    Svoboda, Roman; Gutwirth, Jan; Málek, Jiří

    2014-09-01

    Differential scanning calorimetry was used to study the crystallization behaviour of selenium thin films in dependence on film thickness and deposition rate. In the current work, which is the fourth in a sequence of articles dealing with crystallization kinetics of a-Se, the non-isothermal crystallization kinetics was described in terms of the Johnson-Mehl-Avrami nucleation-growth model. Two-dimensional crystallite growth, consistent with the idea of sterically restricted crystallization in a thin layer, was confirmed for all data. It was found that neither the film thickness (tested within the 100-2350 nm range) nor the deposition rate appears to have any significant influence on the crystallization kinetics. However, the higher amount of intrinsic defects possibly produced by a higher deposition rate seems to accelerate the crystallization, shifting it towards lower temperatures. Very good correlation between the results obtained for thin films and those for fine powders was found. Based on the obtained results, interpretations of relevant literature data were made.

  15. Nonlinear Absorptions of CdSeTe Quantum Dots under Ultrafast Laser Radiation

    Directory of Open Access Journals (Sweden)

    Zhijun Chai

    2016-01-01

    Full Text Available The oil-soluble alloyed CdSeTe quantum dots (QDs are prepared by the electrostatic method. The basic properties of synthesized CdSeTe QDs are characterized by UV-Vis absorption spectroscopy, photoluminescence spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscope. The off-resonant nonlinear optical properties of CdSeTe QDs are studied by femtosecond Z-scan at 1 kHz (low-repetition rate and 84 MHz (high-repetition rate. Nonlinear absorption coefficients are calculated under different femtosecond laser excitations. Due to the long luminescent lifetime of CdSeTe QDs, under the conditions of high-repetition rate, for open-aperture curve, heat accumulation and bleaching of ground state are responsible for the decrease of two-photon absorption (TPA coefficient.

  16. Electronic properties of mixed molybdenum dichalcogenide MoTeSe: LCAO calculations and Compton spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ahuja, Ushma [Department of Electrical Engineering, Veermata Jijabai Technological Institute, H. R. Mahajani Marg, Matunga (East), Mumbai 400019, Maharashtra (India); Kumar, Kishor; Joshi, Ritu [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India); Bhavsar, D.N. [Department of Physics, Bhavan' s Seth R.A. College of Science, Khanpur, Ahmedabad 380001, Gujarat (India); Heda, N.L., E-mail: nlheda@yahoo.co.in [Department of Pure and Applied Physics, University of Kota, Kota 324007, Rajasthan (India)

    2016-07-01

    We have employed linear combination of atomic orbitals (LCAO) method to compute the Mulliken’s population (MP), energy bands, density of states (DOS) and Compton profiles for hexagonal MoTeSe. The density functional theory (DFT) and hybridization of Hartree-Fock with DFT (B3LYP) have been used within the LCAO approximation. Performance of theoretical models has been tested by comparing the theoretical momentum densities with the experimental Compton profile of MoTeSe measured using {sup 137}Cs Compton spectrometer. It is seen that the B3LYP prescription gives a better agreement with the experimental data than other DFT based approximations. The energy bands and DOS depict an indirect band gap character in MoTeSe. In addition, a relative nature of bonding in MoTeSe and its isovalent MoTe{sub 2} is discussed in terms of equal-valence-electron-density (EVED) profiles. On the basis of EVED profiles it is seen that MoTeSe is more covalent than MoTe{sub 2}.

  17. Superconductivity with twofold symmetry in Bi2Te3/FeTe0.55Se0.45 heterostructures

    Science.gov (United States)

    Du, Zengyi

    2018-01-01

    Topological superconductors are an interesting and frontier topic in condensed matter physics. In the superconducting state, an order parameter will be established with the basic or subsidiary symmetry of the crystalline lattice. In doped Bi2Se3 or Bi2Te3 with a basic threefold symmetry, it was predicted, however, that bulk superconductivity with order parameters of twofold symmetry may exist because of the presence of odd parity. We report the proximity effect–induced superconductivity in the Bi2Te3 thin film on top of the iron-based superconductor FeTe0.55Se0.45. By using the quasiparticle interference technique, we demonstrate clear evidence of twofold symmetry of the superconducting gap. The gap minimum is along one of the main crystalline axes following the so-called Δ4y notation. This is also accompanied by the elongated vortex shape mapped out by the density of states within the superconducting gap. Our results provide an easily accessible platform for investigating possible topological superconductivity in Bi2Te3/FeTe0.55Se0.45 heterostructures. PMID:29888330

  18. A Neutron Scattering Study of Lattice Dynamics of HgTe and HgSe

    DEFF Research Database (Denmark)

    Kepa, H.; Giebultowicz, T.; Buras, B.

    1982-01-01

    The dispersion relations for the acoustic and optic phonons in HgTe and for the acoustic phonons in HgSe were determined by neutron inelastic scattering in three high symmetry directions. The effect of the free-carrier screening of the long-range electric field of LO phonons in HgTe was observed....... The formalism of the rigid ion model is used for numerical calculations of the phonon dispersion relations and the phonon densities of states in HgTe and HgSe....

  19. Optical properties of n-CdSe sub 1-x Te sub x polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M T [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain). Inst. de Energias Renovables

    1991-01-01

    Absorption coefficient, {alpha}({lambda}), and energy gap, E{sub g}, of CdSe{sub 1-x}Te{sub x} thin films were determined from the measured transmittance and reflectance at normal incidence of light in the wavelength range 450-2500 nm. The thin film were electrochemically prepared on glass plates coated with conducting thin films of SnO{sub 2}. A combined method from Goodman and Lubberts was used to determine the absorption coefficient and its dependence on the wavelength. The evolution of the optical gap versus the composition of Te in CdSe{sub 1-x}Te{sub x} was made and a value of 1.4 eV of the optical gap was obtained for the composition of CdSe{sub 0.65}Te{sub 0.35}. (orig.).

  20. The geological and microbiological controls on the enrichment of Se and Te in sedimentary rocks

    Science.gov (United States)

    Bullock, Liam; Parnell, John; Armstrong, Joseph; Boyce, Adrian; Perez, Magali

    2017-04-01

    Selenium (Se) and tellurium (Te) have become elements of high interest, mainly due to their photovoltaic and photoconductive properties, and can contaminate local soils and groundwater systems during mobilisation. Due to their economic and environmental significance, it is important to understand the processes that lead to Se- and Te-enrichment in sediments. The distribution of Se and Te in sedimentary environments is primarily a function of redox conditions, and may be transported and concentrated by the movement of reduced fluids through oxidised strata. Se and Te concentrations have been measured in a suite of late Neoproterozoic Gwna Group black shales (UK) and uranium red bed (roll-front) samples (USA). Due to the chemical affinity of Se and sulphur (S), variations in the S isotopic composition of pyrite have also been measured in order to provide insights into their origin. Scanning electron microscopy of pyrite in the black shales shows abundant inclusions of the lead selenide mineral clausthalite. The data for the black shale samples show marked enrichment in Te and Se relative to crustal mean and several hundreds of other samples processed through our laboratory. While Se levels in sulphidic black shales are typically below 5 ppm, the measured values of up to 116 ppm are remarkable. The Se enrichment in roll-fronts (up to 168 ppm) is restricted to a narrow band of alteration at the interface between the barren oxidised core, and the highly mineralised reduced nose of the front. Te is depleted in roll-fronts with respect to the continental crust and other geological settings and deposits. S isotope compositions for pyrite in both the black shales and roll-fronts are very light and indicate precipitation by microbial sulphate reduction, suggesting that Se was microbially sequestered. Results show that Gwna Group black shales and U.S roll-front deposits contain marked elemental enrichments (particularly Se content). In Gwna Group black shales, Se and Te were

  1. Effects of annealing, acid and alcoholic beverages on Fe1+yTe0.6Se0.4

    International Nuclear Information System (INIS)

    Sun, Y; Taen, T; Tsuchiya, Y; Tamegai, T; Shi, Z X

    2013-01-01

    We have systematically investigated and compared different methods to induce superconductivity in the iron chalcogenide Fe 1+y Te 0.6 Se 0.4 , including annealing in a vacuum, N 2 , O 2 and I 2 atmospheres and immersing samples into acid and alcoholic beverages. Vacuum and N 2 annealing are proved to be ineffective in inducing superconductivity in a Fe 1+y Te 0.6 Se 0.4 single crystal. Annealing in O 2 and I 2 and immersion in acid and alcoholic beverages can induce superconductivity by oxidizing the excess Fe in the sample. Superconductivity in O 2 annealed samples is of a bulk nature, while I 2 , acid and alcoholic beverages can only induce superconductivity near the surface. By comparing the different effects of O 2 , I 2 , acid and alcoholic beverages we propose a scenario to explain how the superconductivity is induced in the non-superconducting as-grown Fe 1+y Te 0.6 Se 0.4 . (paper)

  2. Synthesis and crystal structure of the quaternary compound AgFe{sub 2}GaTe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Gerzon E., E-mail: gerzon@ula.ve [Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101 (Venezuela, Bolivarian Republic of); Quintero, Eugenio; Tovar, Rafael; Grima-Gallardo, Pedro; Quintero, Miguel [Centro de Estudio de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101 (Venezuela, Bolivarian Republic of)

    2014-11-15

    Highlights: • New quaternary compound. • Synthesis from solid state reaction. • Crystal structure. • Rietveld refinement. - Abstract: The crystal structure of the quaternary compound AgFe{sub 2}GaTe{sub 4}, belonging to the system I–II{sub 2}–III–VI{sub 4}, was characterized by Rietveld refinement using X-ray powder diffraction data. The powder pattern was composed by 84.5% of the principal phase AgFe{sub 2}GaTe{sub 4} and 15.5% of the secondary phase FeTe. This material crystallizes with stannite structure in the tetragonal space group I-42m (N° 121), Z = 2, unit cell parameters a = 6.3409(2) Å, c = 12.0233(4) Å, V = 483.42(3) Å{sup 3}, and is isostructural with CuFe{sub 2}InSe{sub 4}.

  3. Distributed Bragg reflectors obtained by combining Se and Te compounds: Influence on the luminescence from CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, J.-G., E-mail: j-g.rousset@fuw.edu.pl; Kobak, J.; Janik, E.; Slupinski, T.; Golnik, A.; Kossacki, P.; Nawrocki, M.; Pacuski, W. [Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warszawa (Poland); Parlinska-Wojtan, M. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland)

    2016-05-14

    We report on the optical properties of structures containing self assembled CdTe quantum dots (QDs) combined with Te and Se based distributed Bragg reflectors either in a half cavity geometry with a relatively broad cavity mode or in a full cavity geometry where the cavity mode is much narrower. We show that for both structures the extraction coefficient of the light emitted from the QDs ensemble is enhanced by more than one order of magnitude with respect to the QDs grown on a ZnTe buffer. However, a single QD line broadening is observed and attributed to an unintentional incorporation of Se in the vicinity of the CdTe QDs. We show that postponing the QDs growth for 24 h after the distributed Bragg reflector deposition allows recovering sharp emission lines from individual QDs. This two step growth method is proven to be efficient also for the structures with CdTe QDs containing a single Mn{sup 2+} ion.

  4. Fabrication Process and Thermoelectric Properties of CNT/Bi2(Se,Te3 Composites

    Directory of Open Access Journals (Sweden)

    Kyung Tae Kim

    2015-01-01

    Full Text Available Carbon nanotube/bismuth-selenium-tellurium composites were fabricated by consolidating CNT/Bi2(Se,Te3 composite powders prepared from a polyol-reduction process. The synthesized composite powders exhibit CNTs homogeneously dispersed among Bi2(Se,Te3 matrix nanopowders of 300 nm in size. The powders were densified into a CNT/Bi2(Se,Te3 composite in which CNTs were randomly dispersed in the matrix through spark plasma sintering process. The effect of an addition of Se on the dimensionless figure-of-merit (ZT of the composite was clearly shown in 3 vol.% CNT/Bi2(Se,Te3 composite as compared to CNT/Bi2Te3 composite throughout the temperature range of 298 to 473 K. These results imply that matrix modifications such as an addition of Se as well as the incorporation of CNTs into bismuth telluride thermoelectric materials is a promising means of achieving synergistic enhancement of the thermoelectric performance levels of these materials.

  5. Band alignment of type I at (100ZnTe/PbSe interface

    Directory of Open Access Journals (Sweden)

    Igor Konovalov

    2016-06-01

    Full Text Available A junction of lattice-matched cubic semiconductors ZnTe and PbSe results in a band alignment of type I so that the narrow band gap of PbSe is completely within the wider band gap of ZnTe. The valence band offset of 0.27 eV was found, representing a minor barrier during injection of holes from PbSe into ZnTe. Simple linear extrapolation of the valence band edge results in a smaller calculated band offset, but a more elaborate square root approximation was used instead, which accounts for parabolic bands. PbSe was electrodeposited at room temperature with and without Cd2+ ions in the electrolyte. Although Cd adsorbs at the surface, the presence of Cd in the electrolyte does not influence the band offset.

  6. Thermoelectric properties of quaternary (Bi,Sb){sub 2}(Te,Se){sub 3} compound

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Pengfei, E-mail: photon.bupt@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Li, Yiluan; Wu, Chengjie; Yu, Zhongyuan; Cao, Huawei; Zhang, Xianlong; Cai, Ningning; Zhong, Xuxia [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2014-01-25

    Highlights: • Sb and Se spin–orbit coupling play a key role in the band structure. • Substituted Bi/Sb and Te/Se have a limited impact on the transport coefficients. • n-Type doping will be preferred for quaternary (Bi,Sb){sub 2}(Te,Se){sub 3} compound. -- Abstract: The quaternary (Bi,Sb){sub 2}(Te,Se){sub 3} compounds are investigated using first-principles study and Boltzmann transport theory. The energy band structure and density of states are studied in detail. The electronic transport coefficients are then calculated as a function of chemical potential. The figure of merit ZT is obtained assuming a constant relaxation time and an averaged thermal conductivity. Our theoretical result agrees well with previous experimental data.

  7. Thermoelectric properties of quaternary (Bi,Sb)2(Te,Se)3 compound

    International Nuclear Information System (INIS)

    Lu, Pengfei; Li, Yiluan; Wu, Chengjie; Yu, Zhongyuan; Cao, Huawei; Zhang, Xianlong; Cai, Ningning; Zhong, Xuxia; Wang, Shumin

    2014-01-01

    Highlights: • Sb and Se spin–orbit coupling play a key role in the band structure. • Substituted Bi/Sb and Te/Se have a limited impact on the transport coefficients. • n-Type doping will be preferred for quaternary (Bi,Sb) 2 (Te,Se) 3 compound. -- Abstract: The quaternary (Bi,Sb) 2 (Te,Se) 3 compounds are investigated using first-principles study and Boltzmann transport theory. The energy band structure and density of states are studied in detail. The electronic transport coefficients are then calculated as a function of chemical potential. The figure of merit ZT is obtained assuming a constant relaxation time and an averaged thermal conductivity. Our theoretical result agrees well with previous experimental data

  8. High temperature luminescence of ZnSe:Yb crystals

    Directory of Open Access Journals (Sweden)

    Makhniy V. P.

    2016-05-01

    Full Text Available The problem of obtaining of effective edge luminescence with high temperature stability in the zinc selenide crystals is discussed. This task is solved by using as the dopant rare-earth element yttrium, which is introduced into the undoped ZnSe crystal by diffusion method. Doping was carried out in an evacuated to 10 -4 Torr. and a sealed quartz ampoule, in the opposite ends of which is a sample and a mixture of the crushed Yb and Se. It has been found that the diffusion coefficient of yttrium at a temperature of 1400 K is about 5⋅10 -7 cm 2/sec. It is shown that in the luminescence spectra of ZnSe:Yb samples in the temperature range 295-470 K only blue band is observed. Dependencies of parameters of this band from the excitation level are typical for the annihilation of excitons at their inelastic scattering by free carriers. The efficacy of blue radiation at 300 K is about 30% and does not fall more than twice with increasing temperature up to 470 K, indicating its high thermal stability.

  9. Thermoelectric Properties of Cu-Doped n-Type Bi2Te2.85Se0.15 Prepared by Liquid Phase Growth Using a Sliding Boat

    Science.gov (United States)

    Kitagawa, Hiroyuki; Matsuura, Tsukasa; Kato, Toshihito; Kamata, Kin-ya

    2015-06-01

    N-type Bi2Te2.85Se0.15 thermoelectric materials were prepared by liquid phase growth (LPG) using a sliding boat, a simple and short fabrication process for Bi2Te3-related materials. Cu was selected as a donor dopant, and its effect on thermoelectric properties was investigated. Thick sheets and bars of Cu x Bi2 Te2.85Se0.15 ( x=0-0.25) of 1-2mm in thickness were obtained using the process. X-ray diffraction patterns and scanning electron micrographs showed that the in-plane direction tended to correspond to the hexagonal c-plane, which is the preferred direction for thermoelectric conversion. Cu-doping was effective in controlling conduction type and carrier (electron) concentration. The conduction type was p-type for undoped Bi2Te2.85Se0.15 and became n-type after Cu-doping. The Hall carrier concentration was increased by Cu-doping. Small resistivity was achieved in Cu0.02Bi2Te2.85Se0.15 owing to an optimized amount of Cu-doping and high crystal orientation. As a result, the maximum power factor near 310K for Cu0.02Bi2Te2.85Se0.15 was approximately 4×10-3W/K2m and had good reproducibility. Furthermore, the thermal stability of Cu0.02Bi2Te2.85Se0.15 was also confirmed by thermal cycling measurements of electrical resistivity. Thus, n-type Bi2Te2.85Se0.15 with a large power factor was prepared using the present LPG process.

  10. Covalency effects of Te substitution on the antiferromagnetic stability of Cr3Se4-yTey

    International Nuclear Information System (INIS)

    Ohta, S.; Adachi, Y.

    1996-01-01

    Measurements of the magnetic susceptibility χ as a function of temperature T for Te-substituted Cr 3 Se 4-y Te y (0≤y≤1) with the NiAs-like crystal structure (space group I2/m) have been carried out. As y increases, the Neel temperature T N shifts to the lower temperature side. The magnetic transition temperature T A , where a sharp peak is observed in χ versus T plots, decreases with increasing y, in a similar fashion to the concentration dependence of T N . The effective number of Bohr magnetons per Cr takes an intermediate value which is expected in Cr 2+ and Cr 3+ states. Characteristic features of a spin-glass-like phase are observed in the sample with y=1. The results obtained are discussed qualitatively from the viewpoint of antiferromagnetic stability through d-p covalent mixing between Cr 3d and chalcogen p orbitals. (orig.)

  11. Tunable (δπ, δπ)-Type Antiferromagnetic Order in α-Fe(Te,Se) Superconductors

    Science.gov (United States)

    Bao, Wei; Qiu, Y.; Huang, Q.; Green, M. A.; Zajdel, P.; Fitzsimmons, M. R.; Zhernenkov, M.; Chang, S.; Fang, Minghu; Qian, B.; Vehstedt, E. K.; Yang, Jinhu; Pham, H. M.; Spinu, L.; Mao, Z. Q.

    2009-06-01

    The new α-Fe(Te,Se) superconductors share the common iron building block and ferminology with the LaFeAsO and BaFe2As2 families of superconductors. In contrast with the predicted commensurate spin-density-wave order at the nesting wave vector (π, 0), a completely different magnetic order with a composition tunable propagation vector (δπ, δπ) was determined for the parent compound Fe1+yTe in this powder and single-crystal neutron diffraction study. The new antiferromagnetic order survives as a short-range one even in the highest TC sample. An alternative to the prevailing nesting Fermi surface mechanism is required to understand the latest family of ferrous superconductors.

  12. Wide emission-tunable CdTeSe/ZnSe/ZnS core–shell quantum dots and their conjugation with E. coli O-157

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haifeng [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Zhou, Guangjun, E-mail: gjzhou@sdu.edu.cn [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Zhou, Juan [Center for Disease Control and Prevention of Jinan Military Command, Jinan 250014 (China); Xu, Dong; Zhang, Xingshuang; Kong, Peng; Yang, Zhongsen [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2015-05-15

    Highlights: • QDs with variety morphology were obtained via an injection controlled process. • 3-D PL spectra of core–shell QDs show different excitation wavelength dependence. • The PL intensity of QDs with ZnSe transition layer increases dramatically. • Core–shell QDs were processed into aqueous phase and conjugated with E. coli O-157. - Abstract: Wide emission-tunable and different morphological alloyed CdTeSe quantum dots (QDs), CdTeSe/ZnS and CdTeSe/ZnSe/ZnS core–shell QDs were successfully synthesized via an injection controlled process. The effect of injection procedure and reaction temperature were systematically discussed and the growth mechanism was proposed. Most efficient PL wavelength was correlated with reaction time and temperature. The 3-D PL spectra of spherical bare CdTeSe and core–shell QDs with different passivation showed different excitation wavelength dependency. The PL intensity of CdTeSe/ZnSe/ZnS core–shell QDs increased greatly in comparison with that of CdTeSe and CdTeSe/ZnSe QDs. ZnSe transition layer played an important role in improving the PL intensity by providing a smoothened interface and gradient band offsets. The core–shell QDs were transferred into aqueous phase and successfully conjugated with Escherichia coli O-157. The proposed phase-transfer and bio-labeling strategy may be applicable to various QDs with different compositions.

  13. The sublimation kinetics of GeSe single crystals

    Science.gov (United States)

    Irene, E. A.; Wiedemeier, H.

    1975-01-01

    The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.

  14. Excitonic surface polaritons in luminescence from ZnTe crystals

    International Nuclear Information System (INIS)

    Brodin, M.S.; Bandura, V.M.; Matsko, M.G.

    1984-01-01

    The form and structure of reflection and exciton-polariton luminescence spectra of ZnTe crystals are studied in the region of the ground (n = 1) exciton state. The longitudinal-transverse splitting magnitude ΔE/sub LT/ is determined from the shape of the reflection spectra. A detected doublet structure of an emission band from the lower polariton branch is associated with the k-linear term. The evolution of bulk and surface polariton luminescence spectra versus temperature and wavelength of the exciting light is investigated. (author)

  15. Excitonic surface polaritons in luminescence from ZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, M.S.; Bandura, V.M.; Matsko, M.G. (AN Ukrainskoj SSR, Kiev. Inst. Fiziki)

    1984-10-01

    The form and structure of reflection and exciton-polariton luminescence spectra of ZnTe crystals are studied in the region of the ground (n = 1) exciton state. The longitudinal-transverse splitting magnitude ..delta..E/sub LT/ is determined from the shape of the reflection spectra. A detected doublet structure of an emission band from the lower polariton branch is associated with the k-linear term. The evolution of bulk and surface polariton luminescence spectra versus temperature and wavelength of the exciting light is investigated.

  16. New semiconductor scintillators ZnSe(Te,O) and integrated radiation detectors based thereon

    NARCIS (Netherlands)

    Ryzhikov, [No Value; Starzhinskiy, N; Gal'chinetskii, L; Gashin, P; Kozin, D; Danshin, E

    Data are presented on properties of a new type of scintillator based on isovalently doped crystals of zinc selenide. Depending upon concentration of activating dopants Te and O, the wavelength of the luminescence maximum is 590-640 nm, response time is 1-50 mus, and afterglow level after 5 ms is not

  17. TM-TE hybridization and tunable refraction in magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Khanikaev, A.B. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1, Hibari-Ga-Oka, Toyohashi 441-8580 (Japan)]. E-mail: khanikaev@maglab.eee.tut.ac.jp; Inoue, M. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1, Hibari-Ga-Oka, Toyohashi 441-8580 (Japan); Granovsky, A.B. [Faculty of Physics, Lomonosov Moscow State University, Leninski Gory, Moscow 119992 (Russian Federation)

    2006-05-15

    In the present work we study the photonic band structure (PBS) and the polarization state of the Bloch eigenmodes of a two-dimensional magnetophotonic crystal (MPC) with square lattice formed from magneto-optically (MO) active cylinders. The refraction of light at the boundary of the MPC is analyzed. We found that both-the PBS and eigenmodes of the MPC-are most significantly altered by the MO activity in the vicinity of the degeneracies. For this case we demonstrated the possibility of an abrupt change in the propagation direction of light by the application of a magnetic field. For the Bloch wave vectors and frequencies corresponding to non-degenerate branches, the alteration of the PBS is shown to be negligible and eigenmodes almost completely coincide with linearly TE- and/or TM-polarized eigenmodes of the non-magnetic photonic crystal.

  18. TM-TE hybridization and tunable refraction in magnetophotonic crystals

    International Nuclear Information System (INIS)

    Khanikaev, A.B.; Inoue, M.; Granovsky, A.B.

    2006-01-01

    In the present work we study the photonic band structure (PBS) and the polarization state of the Bloch eigenmodes of a two-dimensional magnetophotonic crystal (MPC) with square lattice formed from magneto-optically (MO) active cylinders. The refraction of light at the boundary of the MPC is analyzed. We found that both-the PBS and eigenmodes of the MPC-are most significantly altered by the MO activity in the vicinity of the degeneracies. For this case we demonstrated the possibility of an abrupt change in the propagation direction of light by the application of a magnetic field. For the Bloch wave vectors and frequencies corresponding to non-degenerate branches, the alteration of the PBS is shown to be negligible and eigenmodes almost completely coincide with linearly TE- and/or TM-polarized eigenmodes of the non-magnetic photonic crystal

  19. Superconductivity in Pd-Intercalated Ternary Rare-Earth Polychalcogenide NdSeTe_2

    International Nuclear Information System (INIS)

    Wang Pei-Pei; Xue Mian-Qi; Long Yu-Jia; Zhao Ling-Xiao; Cai Yao; Yang Huai-Xin; Li Jian-Qi; Ren Zhi-An; Chen Gen-Fu

    2015-01-01

    We synthesize a set of Pd-doped polycrystalline samples Pd_xNdSeTe_2 and measure their physical properties. Compared with pure NdSeTe_2, the charge density wave (CDW) order is continuously suppressed with the Pd-intercalation. Bulk superconductivity first appears at x = 0.06 with T_c nearly 2.5K, coexisting with a CDW transition at 176K. Further Pd-doping enhances T_c, until it reaches the maximum value 2.84K at x=0.1, meanwhile the CDW transition vanishes. The upper critical field for the optimal doping sample Pd_0_._1NdSeTe_2 is determined from the R-H measurement, which is estimated to be 0.6 T. These results provide another kind of ideal compound for studying the interplay between CDW and superconductivity systematically. (paper)

  20. Few-Layer Nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with Highly Tunable Chemical Potential

    KAUST Repository

    Kong, Desheng

    2010-06-09

    A topological insulator (TI) represents an unconventional quantum phase of matter with insulating bulk band gap and metallic surface states. Recent theoretical calculations and photoemission spectroscopy measurements show that group V-VI materials Bi2Se3, Bi2Te3, and Sb2Te3 are TIs with a single Dirac cone on the surface. These materials have anisotropic, layered structures, in which five atomic layers are covalently bonded to form a quintuple layer, and quintuple layers interact weakly through van der Waals interaction to form the crystal. A few quintuple layers of these materials are predicted to exhibit interesting surface properties. Different from our previous nanoribbon study, here we report the synthesis and characterizations of ultrathin Bi2Te3 and Bi2Se3 nanoplates with thickness down to 3 nm (3 quintuple layers), via catalyst-free vapor-solid (VS) growth mechanism. Optical images reveal thickness-dependent color and contrast for nanoplates grown on oxidized silicon (300 nm SiO2/Si). As a new member of TI nanomaterials, ultrathin TI nanoplates have an extremely large surface-to-volume ratio and can be electrically gated more effectively than the bulk form, potentially enhancing surface state effects in transport measurements. Low-temperature transport measurements of a single nanoplate device, with a high-k dielectric top gate, show decrease in carrier concentration by several times and large tuning of chemical potential. © 2010 American Chemical Society.

  1. Investigation of omnidirectional reflection band in ZnTe/ZnSe distributed Bragg reflector

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying-Shin [Department of Electrical Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Hu, Sheng-Yao [Department of Digital Technology Design, Tungfang Design University, Kaohsiung 82941, Taiwan (China); Lee, Yueh-Chien, E-mail: jacklee@mail.tnu.edu.tw [Department of Electronic Engineering, Tungnan University, New Taipei City 22202, Taiwan (China); Chang, Chung-Cheng; Tiong, Kwong-Kau [Department of Electrical Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Shen, Ji-Lin [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2015-11-15

    We report the characteristics of reflectance spectra of the 15- and 20-period ZnTe/ZnSe distributed Bragg reflector grown on GaAs (001) substrates by molecular beam epitaxy. The reflectance spectra measured at various incident angles and polarizations were investigated by the theoretical curves simulated using transfer matrix method. The wavelength variation of the refractive indices described by Sellmeier equation and random thickness model were also considered for the interpretation of the experimentally observed curves. An omnidirectional reflection range defined from the edge of incident-angle-dependent reflection band with TE and TM polarizations is about 15 nm, and is consistent with the observed experimental curves. The results showed that the selected ZnTe and ZnSe materials are suitable for constructing multilayer structures having omnidirectional reflection band. - Highlights: • ZnTe/ZnSe distributed Bragg reflector grown by molecular beam epitaxy. • The reflectance spectra are measured at various incidence angles and polarizations. • The theoretical curves are considered by Sellmeier and random thickness models. • An observed omnidirectional reflection range in ZnTe/ZnSe DBR is about 15 nm.

  2. Phase equilibria in TlX-Cd(Zn)X (X-S, Se, Te) systems

    International Nuclear Information System (INIS)

    Gusejnov, F.Kh.; Babanly, M.B.; Kuliev, A.A.

    1982-01-01

    The methods of DTA, RPA and measurement of the alloys microhardness have been used to investigate the phase equilibria in the TlX-Zn(Cd)X systems. It is established that the TlZn(Cd)X 2 compounds, the presence of which is mentioned in the literature earlier, do not form in these systems. The TlSe-Zn(Cd)Se systems apply to the simple eutectic type and characterized by digenerated eutectic near the TlSe. Thermodynamical analysis of the liquidus of the TlSe-CdSe and TlTe-Zn(Cd)Te systems in approximation of the regular solutions, taking into account the dissociation of tallium chalcogenides in liquid phase, is made

  3. Crystallization and memory programming characteristics of Ge-doped SbTe materials of varying Sb : Te ratio

    International Nuclear Information System (INIS)

    Jeong, Jeung-hyun; Lee, Hyun Seok; Lee, Suyoun; Lee, Taek Sung; Kim, Won Mok; Wu Zhe; Cheong, Byung-ki; Kim, Seul Cham; Oh, Kyu Hwan

    2009-01-01

    A phase change memory (PCM) utilizes resistivity changes accompanying fast transitions from an amorphous to a crystalline phase (SET) and vice versa (RESET). An investigation was made on the SET characteristics of PCM cells with Ge-doped SbTe (Ge-ST) materials of two different Sb : Te ratios (4.53 and 2.08). For the material of higher Sb : Te (4.53), a SET operation was completed within several tens of nanoseconds via nucleation-free crystallization whereas the material of lower Sb : Te (2.08) rendered a slower SET operation requiring several hundred nanoseconds for a nucleation-mediated crystallization. From measurements of nucleation and growth kinetics via laser-induced crystallization, the observed SET characteristics of the former case were found to derive from a growth time about 10 3 times shorter than the nucleation time and those of the latter from a much shorter nucleation time as well as a longer growth time than in the former case. The measured nucleation kinetics of the lower Sb : Te (2.08) material is unexpected from the existing data, which has led us to advance an interesting finding that there occurs a trend-reversing change in the nucleation kinetics of the Ge-ST materials around the eutectic composition (Sb : Te ∼2.6); nucleation is accelerated with the increase in the Sb : Te ratio above Sb : Te of 2.6, but with a decrease in the Sb : Te ratio below it.

  4. A crystallization study of amorphous Tex(Bi2Se3)1-x alloys with variation of the Se content

    International Nuclear Information System (INIS)

    Saxena, Manish

    2005-01-01

    Alloys of the Te x (Bi 2 Se 3 ) 1-x glass system, obtained using rapid quenching technique, have been characterized by calorimetric measurements and differential thermal analysis for different heating rates in this work. A systematic investigation of crystallization kinetics is carried out for the composition range in which amorphous alloys exhibit a large glass-forming ability in Se-based systems, thermal stability including in the temperature range between the glass transition temperature, T g , and crystallization temperature, T c , and the effect of ΔT c (=T c - T g ) at different heating rates for the formation of an amorphous single phase is evaluated from thermal analytical data. The thermal stability of these glasses is found to provide good control for forming these glasses with ease. This analysis helps to find the suitability of an alloy for use in phase transition optical memories/switches

  5. Resonance tunneling of charge carriers in photoexcited type-II ZnSe/BeTe heterostructures

    International Nuclear Information System (INIS)

    Zaitsev, S. V.; Maksimov, A. A.; Tartakovskii, I. I.; Yakovlev, D. R.; Waag, A.

    2008-01-01

    In is shown that, at high densities of spatially separated electrons and holes in type-II ZnSe/BeTe heterostructures, the conditions for resonance tunneling of photoexcited holes from the ZnSe layer to the BeTe layer are attainable. Nonlinear behavior of the intensity of the photoluminescence band corresponding to spatially direct optical transitions with photoexcitation intensity is observed. Numerical calculations are carried out, and the results are in good agreement with the experimental data in a wide region of variation of the optical pumping intensity

  6. Demonstration of surface transport in a hybrid Bi2Se3/Bi2Te3 heterostructure

    OpenAIRE

    Zhao, Yanfei; Chang, Cui-Zu; Jiang, Ying; DaSilva, Ashley; Sun, Yi; Wang, Huichao; Xing, Ying; Wang, Yong; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Jian

    2013-01-01

    In spite of much work on topological insulators (TIs), systematic experiments for TI/TI heterostructures remain absent. We grow a high quality heterostructure containing single quintuple layer (QL) of Bi2Se3 on 19 QLs of Bi2Te3 and compare its transport properties with 20 QLs Bi2Se3 and 20 QLs Bi2Te3. All three films are grown on insulating sapphire (0001) substrates by molecular beam epitaxy (MBE). In situ angle-resolved photoemission spectroscopy (ARPES) provides direct evidence that the su...

  7. Characterization of single crystalline ZnTe and ZnSe grown by vapor phase transport

    Energy Technology Data Exchange (ETDEWEB)

    Trigubo, A B; Di Stefano, M C [FRBA-UTN, (1179) Buenos Aires (Argentina); Aguirre, M H [Dpto de Quim Inorg, Fac de Cs Quim, Univ Complutense, (28040) Madrid (Spain); Martinez, A M; D' Elia, R; Canepa, H; Heredia, E, E-mail: atrigubo@citefa.gov.a [CINSO-CITEFA: (1603) Villa Martelli, Pcia de Buenos Aires (Argentina)

    2009-05-01

    Tubular furnaces were designed and built to obtain single crystalline ZnTe and ZnSe ingots using respectively physical and chemical transport methods. Different temperature profiles and growth rates were analyzed in order to optimize the necessary crystalline quality for device development. Optical and scanning electron micrographs of the corrosion figures produced by chemical etching were used to obtain the dislocation density and the misorientation between adjacent subgrains in ZnTe and ZnSe wafers. Structural quality of the single crystalline material was determined by transmission electronic microscopy. Optical transmittance was measured by infrared transmission spectrometry and the resulting values were compared to commercial samples.

  8. Light-Induced Tellurium Enrichment on CdZnTe Crystal Surfaces Detected by Raman Spectroscopy

    International Nuclear Information System (INIS)

    Hawkins, Samantha A.; Villa-Aleman, Eliel; Duff, Martine C.; Hunter, Doug B.; Burger, Arnold; Groza, Michael; Buliga, Vladimir; Black, David R.

    2008-01-01

    CdZnTe (CZT) crystals can be grown under controlled conditions to produce high-quality crystals to be used as room-temperature radiation detectors. Even the best crystal growth methods result in defects, such as tellurium secondary phases, that affect the crystal's performance. In this study, CZT crystals were analyzed by micro-Raman spectroscopy. The growth of Te rich areas on the surface was induced by low-power lasers. The growth was observed versus time with low-power Raman scattering and was observed immediately under higher-power conditions. The detector response was also measured after induced Te enrichment.

  9. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity

    Science.gov (United States)

    Su, Ching-Hua; Ramachandran, N.

    2013-01-01

    Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  10. Different effect of quenching temperature on Fe1+σTe0.5Se0.5 and β-FeSe

    Directory of Open Access Journals (Sweden)

    Zhongnan Guo

    2015-02-01

    Full Text Available In this work, we have demonstrated a different effect on Fe1+σTe0.5Se0.5 and β-FeSe by changing the quenching temperature. Tc is clearly reduced in Fe1+σTe0.5Se0.5 after increasing the quenching temperature from 300 °C to 500 °C, while that of β-FeSe is almost unchanged. Structure refinement indicates that after quenched at 500 °C, FeTe4 tetrahedron exhibits an expansion with the stretched Fe-Te bond, together with the increased amount of interstitial iron. These particular changes on structure are believed to be responsible for the suppression of superconductivity in Fe1+σTe0.5Se0.5.

  11. Lattice parameters of the Hg1-xFexSe and Cd1-xFexTe semimagnetic semiconductors

    International Nuclear Information System (INIS)

    Sarem, A.; Soulayman, S.

    2004-01-01

    Full text.Hg 1-x Fe x Se and Cd 1-x Fe x Te are members of a family of semiconducting alloys referred to as diluted magnetic semiconductors (DMS), i.e., ternary alloys whose lattice is made up in part of substitutional magnetic ions (in the present case, fe 2+ ). These materials are of considerable interest because, apart from the opportunities provided by the ternary nature of these compounds (e.g., tunability of the energy gap or the lattice constant), they display interesting magnetic properties as well as exchange interaction between the localized Fe 2+ moments and band electrons, resulting in a host of novel effects. In this paper we investigate the behavior of the crystal lattice of Hg 1-x Fe x Se and Cd 1-x Fe x Te, grown using modified Bridgman method. The purpose of the study is providing precise quantitative data for the lattice parameter as a function of x, which can then be used as a means of determining composition. The results of lattice parameter measurements on the ternary semiconductor alloys Hg 1-x Fe x Se over the range (0≤x≤0.15) and Cd 1-x Fe x Te in the range (0≤x≤0.03) are reports. Each sample was subjected to chemical analysis for determining the real concentration of iron. Here it was found that the differences between the nominal compositions and the real ones for all investigated samples are negligible. The powdered samples of Hg 1-x Fe x Se and Cd 1-x Fe x Te with different nominal compositions were studied using a DRON diffractometer with filtered Cο radiation (λ kα1 =1.78892A; λ kα2 =1.79278A). The diffraction patterns with a scan rate of 1 degree 2θ/min were taken. Precise measurements of the line position diffracted and extrapolation method to determine a to value θ=90 degree were made by Least Square Method. This method allowed determining cell parameters foe each sample with accuracy ±0.0001A. The crystal structure of these compounds was determined as a cubic one of the zinc blede type. The structural homogeneity of

  12. In Situ X-ray Diffraction Study of the Formation of Fe(Se,Te) from Various Precursors

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Wulff, Anders Christian

    2012-01-01

    The formation of the FeSe0.5Te0.5 phase was studied by means of high energy synchrotron x-ray diffraction. The precursors consisted of Fe, Se and Te or Se0.5Te0.5 powder mixtures and were encased in a metal (Cu/Nb) composite sheath to prevent evaporation of Se and Te during high temperature...... equilibria of the SeTe system. The grain size of the starting Fe powder has no influence on the reaction path for the grain sizes used in the present study. However, the reaction rate for Fe(Se,Te) formation is clearly sensitive to this parameter....

  13. Compositions of Mg and Se, surface morphology, roughness and Raman property of Zn1-xMgxSeyTe1-y layers grown at various substrate temperatures or dopant transport rates by MOVPE

    Science.gov (United States)

    Nishio, Mitsuhiro; Saito, Katsuhiko; Urata, Kensuke; Okamoto, Yasuhiro; Tanaka, Daichi; Araki, Yasuhiro; Abiru, Masakatsu; Mori, Eiichiro; Tanaka, Tooru; Guo, Qixin

    2015-03-01

    The growth of undoped and phosphorus (P)-doped Zn1-xMgxSeyTe1-y layers on (100) ZnTe substrates by metalorganic vapor phase epitaxy was carried out. The compositions of Mg and Se, surface morphology, roughness and Raman property were characterized as a function of substrate temperature. Not only the compositions of Mg and Se but also the crystal quality of undoped Zn1-xMgxSeyTe1-y layer strongly depended upon the substrate temperature. Furthermore, the growth of Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe substrate was achieved independent of the transport rate of trisdimethylaminophosphorus. Undoped Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe led to improvement of surface roughness. On the other hand, P doping brought about deterioration of crystalline quality.

  14. Effect of Se substitution on the phase change properties of Ge2Sb2Te5

    Science.gov (United States)

    Shekhawat, Roopali; Rangappa, Ramanna; Gopal, E. S. R.; Ramesh, K.

    2018-05-01

    Ge2Sb2Te5 popularly known as GST is being explored for non-volatile phase change random access memory(PCRAM) applications. Under high electric field, thin films of amorphous GST undergo a phase change from amorphous to crystalline with a high contrast in electrical resistivity (about 103). The phase change is between amorphous and metastable NaCl structure occurs at about 150°C and not to the stable hexagonal phase which occurs at a high temperature (> 250 °C). In GST, about 50 % of Te substituted by Se (Ge2Sb2Te2.5Se2.5) is found to increase the contrast in electrical resistivity by 7 orders of magnitude (about 4 orders of magnitude higher than GST). The phase transition in Se added GST also found to be between amorphous and the stable hexagonal structure. The threshold voltage at which the Ge2Sb2Te2.5Se2.5 switches to the high conducting state increases to 9V as compared to 2V in GST. Interestingly, the threshold current decrease to 1mA as compared to 1.8mA in GST indicating the Se substitution reduces the power needed for switching between the low and high conducting states. The reduction in power needed for phase change, high contrast in electrical resistivity with high thermal stability makes Ge2Sb2Te2.5Se2.5 as a better candidate for PCRAM.

  15. Ultrafast quasiparticle dynamics of FeTe0.75Se0.25 superconductor

    Directory of Open Access Journals (Sweden)

    Katagiri T.

    2013-03-01

    Full Text Available The electron-phonon coupling constant (λ≈0.45 obtained from femtosecond pump-probe reflection measurements suggests that a phonon-mediated process cannot be the dominant mechanism for superconductivity of FeTe0.75Se0.25.

  16. Optical characterization of CdSe/ZnTe type-II interfaces for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Richters, Jan-Peter; Bleuse, Joel [CEA-CNRS group ' ' Nanophysique et semiconducteurs' ' , CEA-Grenoble, INAC, SP2M, 17 rue des Martyrs, 38042 Grenoble (France); Gerard, Lionel; Andre, Regis [CEA-CNRS group ' ' Nanophysique et semiconducteurs' ' , Institut Neel, CNRS, BP 166, 38042 Grenoble Cedex 9 (France)

    2012-07-01

    Solar cells based on direct bandgap semiconductors (GaAs,CdTe,CdSe..) show an efficient light absorption compared to silicon solar cells. This is an advantage for material savings due to thinner absorbers, but it also comes with the drawback of higher losses due to efficient radiative electron-hole recombination. Such losses could be prevented through the use of type-II interfaces which separate electrons and holes within the active area, similar to a p-n junction. We report a study of CdSe/ZnTe samples showing such an interface. The CdSe bandgap (1.7 eV) is well adapted to the solar spectrum and its lattice parameter mismatch with ZnTe is exceptionally low. We have grown, by MBE, different kinds of samples like CdSe/ZnTe 2D interfaces and superlattices and present time-resolved spectroscopy results which specify the efficiency of the electron-hole separation in these type-II structures. The measured decay time can be above 100 ns for the interface optical transition, i.e. 3 orders of magnitude slower than the typical PL decay time for the constitutive materials taken separately.

  17. MSM optical detector on the basis of II-type ZnSe/ZnTe superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetzov, P. I., E-mail: pik218@ire216.msk.su; Averin, S. V., E-mail: sva278@ire216.msk.su; Zhitov, V. A.; Zakharov, L. Yu.; Kotov, V. M. [Russian Academy of Sciences, Kotel’nikov Institute of Radioengineering and Electronics (Fryazino Branch) (Russian Federation)

    2017-02-15

    On the basis of a type-II ZnSe/ZnTe superlattice, a MSM (metal—semiconductor–metal) photodetector is fabricated and investigated. The detector features low dark currents and a high sensitivity. The spectral characteristic of the detector provides the possibility of the selective detection of three separate spectral portions of visible and near-infrared radiation.

  18. Study on the local stress induced dislocations on (1 bar 1 bar 1 bar) Te face of CdTe-based crystals

    Science.gov (United States)

    Fu, Xu; Xu, Yadong; Xu, Lingyan; Gu, Yaxu; Jia, Ningbo; Jie, Wanqi

    2017-11-01

    The rosette-like dislocation clusters around Te inclusions in as-grown CdZnTe/CdTe crystals and those introduced by the micro-indentation on CdZnTe/CdTe surface are studied experimentally. The extended dislocation patterns are formed around Te inclusions in both CdZnTe and CdTe crystals, owing to the build-in stress. Two mutually orthogonal tetrahedrons are observed in CdZnTe crystal. However, the ;double-arms; dislocation rosette pattern extended along 〈1 1 0〉 direction is observed in CdTe crystal. The Peierls kink pair mechanism and the Hirsch effects are used to explain the discrepancy of these two different rosette patterns. Similar dislocation rosette patterns are observed on indentation surface of CdZnTe crystal. The dislocation rosette patterns are found to be independent of the indenter orientation, but completely determined by the crystallographic properties of zinc-blende structure of the crystal. Furthermore, the Te(g) and Cd(g) dislocation arms are found to be mixed and bended with each other in CdTe crystal under high indentation stress, making it different from that generated around Te inclusions. A model concerning the comprehensive impact of stress field and electronic polarities dislocations is proposed to clarify the dislocation bending phenomenon.

  19. Influence of CdTe sub-monolayer stressor on CdSe quantum dot self-assembling in ZnSe

    International Nuclear Information System (INIS)

    Sedova, I.V.; Lyublinskaya, O.G.; Sorokin, S.V.; Sitnikova, A.A.; Solnyshkov, D.D.; Rykhova, O.V.; Toropov, A.A.; Ivanov, S.V.

    2006-01-01

    This paper reports on the attempt to apply the stressor-controlled quantum dot (QD) fabrication technique to the conventional CdSe/ZnSe nanostructures. Super-strained CdTe fractional monolayer (Δa/a∝14% for CdTe/ZnSe) grown on top of the Te-stabilized ZnSe surface prior to deposition of the QD material (CdSe) has been used as a stressor which is expected to affect size, composition and density of CdSe QDs. The grown structures are studied by X-ray diffraction, transmission-electron microscopy, photoluminescence (PL) and PL excitation in comparison with conventional CdSe/ZnSe QDs obtained by a modified migration enhanced epitaxy technique. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Study of the CdX-B2X3-X (X=S, Se), CdTe-B-Te systems

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Safronov, E.V.; Kozlovskij, V.F.

    2001-01-01

    Liquidus surfaces of the CdX-B 2 X 3 -X (X=S, Se), CdTe-B-Te systems are plotted for the first time. It is shown that in equilibrium solid solutions on the basis of ternary Cd 2 B 2 X 5 compounds and binary B 2 X 3 , CdX, BS 2 compounds take part with liquid phases. p gen -T and T-x projects of p-T-x phase diagram of B-S (59-100 at. % S), B-Se (59-100 at. % Se), B-Te systems are plotted . B 2 X 3 , BS 2 compounds are formed in that regions of compositions of B-X systems . In the B-Te system compounds are not formed. Ternary compounds are not formed in the CdTe-B-Te system [ru

  1. Photo- and Thermo-Induced Changes in Optical Constants and Structure of Thin Films from GeSe2-GeTe-ZnTe System

    Science.gov (United States)

    Petkov, Kiril; Todorov, Rossen; Vassilev, Venceslav; Aljihmani, Lilia

    We examined the condition of preparation of thin films from GeSe2-GeTe-ZnTe system by thermal evaporation and changes in their optical properties after exposure to light and thermal annealing. The results for composition analysis of thin films showed absence of Zn independently of the composition of the bulk glass. By X-ray diffraction (XRD) analysis it was found that a reduction of ZnTe in ZnSe in bulk materials takes of place during the film deposition. A residual from ZnSe was observed in the boat after thin film deposition. Optical constants (refractive index, n and absorption coefficient, α) and thickness, d as well as the optical band gap, Eg, depending of the content of Te in ternary Ge-Se-Te system are determined from specrophotometric measurements in the spectral range 400-2500 nm applying the Swanepoel's envelope method and Tauc's procedure. With the increase of Te content in the layers the absorption edge is shifted to the longer wavelengths, refractive index increases while the optical band gap decreases from 2.02 eV for GeSe2 to 1.26 eV for Ge34Se42Te24. The values of the refractive index decrease after annealing of all composition and Eg increase, respectively. Thin films with composition of Ge27Se47Te9Zn17 and Ge28Se49Te10Zn13 were prepared by co-evaporation of (GeSe2)78(GeTe)22 and Zn from a boat and a crucible and their optical properties, surface morphology and structure were investigated. The existence of a correlation between the optical band gap and the copostion of thin films from the system studied was demonstrated.

  2. Changes in the shapes of self-organized PbSe quantum dots during PbEuTe overgrowth investigated by anomalous X-ray diffraction

    International Nuclear Information System (INIS)

    Holy, V.; Schuelli, T.U.; Lechner, R.T.; Springholz, G.; Bauer, G.

    2006-01-01

    Anomalous X-ray diffraction was used for the investigation of shape and chemical composition of self-organized PbSe quantum dots covered by PbEuTe capping layers. From reciprocal-space maps of diffracted intensities measured at two energies of the primary radiation, we discriminated the contributions of the dot volumes and the surrounding crystal lattice to the diffracted intensity. We have found that the presence of Eu atoms suppresses the flattening of the dots during their overgrowth

  3. CRYSTAL-QUASICHEMICAL ANALYSIS OF DEFECT SUBSYSTEM OF DOPED PbTe: Sb CRYSTALS AND Pb-Sb-Te SOLID SOLUTIONS

    Directory of Open Access Journals (Sweden)

    D.M. Freik

    2014-05-01

    Full Text Available Within crystalquasichemical formalism models of point defects of crystals in the Pb-Sb-Te system were specified. Based on proposed crystalquasichemical formulae of antimony doped crystals PbTe:Sb amphoteric dopant effect was explained. Mechanisms of solid solution formation for РbТе-Sb2Те3: replacement of antimony ions lead sites  with the formation of cation vacancies  (I or neutral interstitial tellurium atoms  (II were examined. Dominant point defects in doped crystals PbTe:Sb and РbТе-Sb2Те3 solid solutions based on p-PbTe were defined. Dependences of concentration of dominant point defects, current carriers and Hall concentration on content of dopant compound and the initial deviation from stoichiometry in the basic matrix were calculated.

  4. Thermoelectric properties of Bi2Te3-Bi2Se3 solid solutions prepared by attrition milling and hot pressing

    International Nuclear Information System (INIS)

    Lee, Go-Eun; Kim, Il-Ho; Choi, Soon-Mok; Lim, Young-Soo; Seo, Won-Seon; Park, Jae-Soung; Yang, Seung-Ho

    2014-01-01

    Bi 2 Te 3-y Se y (y = 0.15 - 0.6) solid solutions were prepared by attrition milling and hot pressing. The lattice constants decreased with increasing Se content, indicating that the Se atoms were successfully substituted into the Te sites. All specimens exhibited n-type conduction, and their electrical resistivities increased slightly with increasing temperature. With increasing Se content, the Seebeck coefficients increased while the thermal conductivity decreased due to the increase in phonon scattering. The maximum figure of merit obtained was 0.63 at 440 K for the undoped Bi 2 Te 2.4 Se 0.6 solid solution.

  5. Ion implantation of CdTe single crystals

    International Nuclear Information System (INIS)

    Wiecek, Tomasz; Popovich, Volodymir; Bester, Mariusz; Kuzma, Marian

    2017-01-01

    Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (10"1"7 1/cm"2). The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  6. Electrochemical synthesis of photosensitive nano-nest like CdSe{sub 0.6}Te{sub 0.4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Surendra K., E-mail: surendrashinde.phy@gmail.com [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S (India); Thombare, Jagannath V. [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S (India); Dubal, Deepak P. [Department of Electrochemistry, Technische Universität Chemnitz Institut für Chemie, Straße der Nationen 62, D-09111 Chemnitz (Germany); Fulari, Vijay J., E-mail: vijayfulari@gmail.com [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S (India)

    2013-10-01

    Polycrystalline CdSe{sub 0.6}Te{sub 0.4} thin films were deposited on stainless steel and ITO coated glass (ITO) substrates by using simple and inexpensive electrodeposition method. CdSe{sub 0.6} Te{sub 0.4} films are characterized by different characterization techniques such as X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and contact angle measurement. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure. FE-SEM studies reveal that the entire substrate surface is covered with CdSe{sub 0.6} Te{sub 0.4} nano-nest. Formation of CdSe{sub 0.6}Te{sub 0.4} compound was confirmed from the FTIR studies. Optical absorption study shows the presence of direct transition and a considerable band gap, E{sub g} = 1.7 eV. Surface wettability with solid–liquid interface showed hydrophilic nature with water contact angle 57° (<90°). Further photovoltaic activity of CdSe{sub 0.6}Te{sub 0.4} films were studied by forming the photoelectrochemical cell having CdSe{sub 0.6}Te{sub 0.4}/1 M (Na{sub 2}S + S + NaOH)/C cell configuration. The efficiency and fill factor of these PEC cells are found to be 0.64% and 0.49 respectively.

  7. Weak antilocalization effect due to topological surface states in Bi2Se2.1Te0.9

    Science.gov (United States)

    Shrestha, K.; Graf, D.; Marinova, V.; Lorenz, B.; Chu, C. W.

    2017-10-01

    We have investigated the weak antilocalization (WAL) effect in the p-type Bi2Se2.1Te0.9 topological system. The magnetoconductance shows a cusp-like feature at low magnetic fields, indicating the presence of the WAL effect. The WAL curves measured at different tilt angles merge together when they are plotted as a function of the normal field components, showing that surface states dominate the magnetoconductance in the Bi2Se2.1Te0.9 crystal. We have calculated magnetoconductance per conduction channel and applied the Hikami-Larkin-Nagaoka formula to determine the physical parameters that characterize the WAL effect. The number of conduction channels and the phase coherence length do not change with temperature up to T = 5 K. In addition, the sample shows a large positive magnetoresistance that reaches 1900% under a magnetic field of 35 T at T = 0.33 K with no sign of saturation. The magnetoresistance value decreases with both increasing temperature and tilt angle of the sample surface with respect to the magnetic field. The large magnetoresistance of topological insulators can be utilized in future technology such as sensors and memory devices.

  8. Ab initio study of lattice instabilities of zinc chalcogenides ZnX (X=O, S, Se, Te induced by ultrafast intense laser irradiation

    Directory of Open Access Journals (Sweden)

    Dahua Ren

    2017-09-01

    Full Text Available Ab initio calculations of lattice constants, lattice stabilities of ZnX (X=O, S, Se, Te at different electronic temperatures (Te have been performed using generalized gradient approximation (GGA pseudopotential method within the density functional theory (DFT. The calculated phonon frequencies of ZnX at Te = 0 eV accord well with the experimental and other theoretical values. Firstly, it is indicated that the lattice constants of ZnX increase and all the phonon frequencies reduce as Te increases. Additionally, the transverse-acoustic phonon frequencies of ZnX are imaginary with the elevation of Te, namely the lattices of ZnX become unstable under ultrafast intense laser irradiation. Moreover, the transverse optical mode-longitudinal optical mode (LO-TO splitting degree of ZnX (X=S, Se, Te gradually decreases as the electronic temperature increases, mainly due to the reason that the electronic excitation weakens the strength ionicity of ionic crystal ZnX under intense laser irradiation. However, the LO-TO splitting degree of ZnO firstly increases and then decreases with the increase of electronic temperature. After that, it can be helpful for understanding the mechanism of ultrafast intense laser induced semiconductors damage.

  9. Stokes shift and fine-structure splitting in CdSe / CdTe invert type-II ...

    Indian Academy of Sciences (India)

    Worasak Sukkabot

    2018-01-09

    Jan 9, 2018 ... optical properties can be easily manipulated. The entan- ... and shape on the Stokes shift and FSS in core/shell .... Figure 4. Ground-state wave function overlaps of. CdSe/CdTe and CdTe/CdSe core/shell nanocrystals as.

  10. Local structural environments of Ge doped in eutectic Sb-Te film before and after crystallization

    Science.gov (United States)

    Shin, Sang Yeol; Cheong, Byung-ki; Choi, Yong Gyu

    2018-06-01

    Electrical phase change device using the Ge-doped eutectic Sb-Te (e.g., Ge1Sb8Te2) film is known to exhibit improved energy efficiency thanks to lowered threshold voltage as well as decreased power consumption for the reset operation, as compared with Ge2Sb2Te5 film. Ge K-edge EXAFS analysis is employed in this study in an effort to elucidate such merits of Ge1Sb8Te2 film in connection with its local atomic arrangements. It is then verified that a Ge atom is four-fold coordinated in its nearest-neighboring shell both in the as-deposited and in the annealed films. It needs to be highlighted that approximately two Sb atoms constitute the Ge tetrahedral units in its amorphous state; however, after being crystallized, heteropolar Ge-Sb bonds hardly exist in this Ge1Sb8Te2 film. It has been known that crystallization temperature and activation energy for crystallization of this Ge1Sb8Te2 composition are greater than those of Ge2Sb2Te5 composition. In addition, these two phase change materials exhibit distinctly different crystallization mechanisms, i.e., nucleation-dominant for Ge2Sb2Te5 film but growth-dominant for Ge1Sb8Te2 film. These discrepancies in the crystallization-related properties are delineated in terms of the local structural changes verified from the present EXAFS analysis.

  11. Live-monitoring of Te inclusions laser-induced thermo-diffusion and annealing in CdZnTe crystals

    International Nuclear Information System (INIS)

    Zappettini, A.; Zambelli, N.; Benassi, G.; Calestani, D.; Pavesi, M.

    2014-01-01

    The presence of Te inclusions is one of the main factors limiting performances of CdZnTe crystals as X-ray detectors. We show that by means of infrared laser radiation it is possible to move and anneal tellurium inclusions exploiting a thermo-diffusion mechanism. The process is studied live during irradiation by means of an optical microscope equipment. Experimental conditions, and, in particular, energy laser fluence, for annealing inclusions of different dimensions are determined.

  12. Live-monitoring of Te inclusions laser-induced thermo-diffusion and annealing in CdZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zappettini, A.; Zambelli, N.; Benassi, G.; Calestani, D. [Istituto Materiali Elettronica e Magnetismo – Consiglio Nazionale delle Ricerche, Parma (Italy); Pavesi, M. [Istituto Materiali Elettronica e Magnetismo – Consiglio Nazionale delle Ricerche, Parma (Italy); Istituto di Fisica e Scienze della Terra, Università degli Studi di Parma, Parma (Italy)

    2014-06-23

    The presence of Te inclusions is one of the main factors limiting performances of CdZnTe crystals as X-ray detectors. We show that by means of infrared laser radiation it is possible to move and anneal tellurium inclusions exploiting a thermo-diffusion mechanism. The process is studied live during irradiation by means of an optical microscope equipment. Experimental conditions, and, in particular, energy laser fluence, for annealing inclusions of different dimensions are determined.

  13. Research into the electrical property variation of undoped CdTe and ZnTe crystals grown under Te-rich conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yadong, E-mail: xyd220@nwpu.edu.cn; Liu, Hang; He, Yihui; Yang, Rui; Luo, Lin; Jie, Wanqi

    2014-11-05

    Highlights: • Conductivity type and resistivity of undoped Te-rich ZnTe and CdTe are different. • Te{sub i} and V{sub Zn} as the dominant defects account for the p-type low resistivity ZnTe. • Te{sub Cd} as the principle defect leading to the light n-type high resistivity CdTe. • DAP and eA peaks dominate the luminescence with their intensities anti-correlated. - Abstract: Both undoped ZnTe and CdTe bulk single crystals are grown under Te-saturated conditions from the solution and melt, respectively. To give an insight into the variation of the electrical properties, the defects structures in both tellurides are discussed. According to the actual growth velocities and the entire cooling history, tellurium interstitials (Te{sub i}) and Zinc vacancies (V{sub Zn}) are proposed as the dominant grown-in defects, account for the low resistivity of p-type ZnTe. However, relatively high pulling rates and slow cooling-down processes result in tellurium anti-sites (Te{sub Cd}) as the principle grown-in defects, leading to the high resistivity of light n-type CdTe. Further low-temperature (8.6 K) photoluminescence spectra of both tellurides are obtained. The donor–acceptor pair (DAP) and recombination of free electron to neutral acceptor (eA) dominate the luminescence, however, with their intensities are anti-correlated. eA is superior to DAP in undoped Te-rich ZnTe, suggests a high concentration of Te{sub i} or V{sub Zn}. On the contrary, DAP is the principal emission for undoped Te-rich CdTe. In addition, V-line is clearly identified in undoped Te-rich ZnTe, which possibly associated with V{sub Zn} or close Frenkel pair V{sub Zn}–Zn{sub i}.

  14. First-principles study on electronic and optical properties of Cu2ZnSiV I4 (VI=S, Se, and Te quaternary semiconductors

    Directory of Open Access Journals (Sweden)

    Xuebiao Zhang

    2015-05-01

    Full Text Available The electronic and optical properties of Cu2ZnSiS4, Cu2ZnSiSe4 and Cu2ZnSiTe4 in kesterite and stannite structures are systematically studied using first-principles calculations. Crystal field splitting, optical transitions, p-d bonding, and anti-bonding overlapping are analyzed. The physical and chemical trends in these properties are investigated with respect to the crystal structure and anion atomic number. The optical spectra, such as dielectric function, refractive index, reflectivity and absorption coefficient are explored in a broad range of energy. A good agreement between the calculated results and experimental data is obtained.

  15. Electrodeposition and characterization of CdSe x-Te 1- x semiconducting thin films

    Science.gov (United States)

    Benamar, E.; Rami, M.; Fahoume, M.; Chraibi, F.; Ennaoui, A.

    1999-07-01

    Thin polycrystalline films of cadmium chalcogenides CdSe xTe 1-x ( 0 ≤ x ≤ 1) have been prepared by electrochemical plating on ITO (indium tin oxide) coated glass substrates from an acid sulfate solution at 90 °C. Structural, morphological and compositional studies of the deposited films are reported as a function of the x coefficient. XRD analysis shows that all deposits have a cubic structure with a preferred orientation along the (111) direction. The composition in the films is found to vary linearly with the composition in the solution. The increase in the selenium content x in the CdSe xTe 1-x films decreases the lattice constant and increases the band gap. Nevertheless this latter presents a minimum for x = 0.27.

  16. Growth and microtopographic study of CuInSe{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat - 388120 (India); Tailor, J. P. [Applied Physics Department, S.V.N.I.T., Surat, Gujarat - 395007 (India)

    2016-05-23

    The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.

  17. Weak Antilocalization in Bi 2 (Se x Te 1– x ) 3 Nanoribbons and Nanoplates

    KAUST Repository

    Cha, Judy J.; Kong, Desheng; Hong, Seung-Sae; Analytis, James G.; Lai, Keji; Cui, Yi

    2012-01-01

    Studying the surface states of Bi 2Se 3 and Bi 2Te 3 topological insulators has proven challenging due to the high bulk carrier density that masks the surface states. Ternary compound Bi 2(Se xTe 1-x) 3 may present a solution to the current materials challenge by lowering the bulk carrier mobility significantly. Here, we synthesized Bi 2(Se xTe 1-x) 3 nanoribbons and nanoplates via vapor-liquid-solid and vapor-solid growth methods where the atomic ratio x was controlled by the molecular ratio of Bi 2Se 3 to Bi 2Te 3 in the source mixture and ranged between 0 and 1. For the whole range of x, the ternary nanostructures are single crystalline without phase segregation, and their carrier densities decrease with x. However, the lowest electron density is still high (∼10 19 cm -3) and the mobility low, suggesting that the majority of these carriers may come from impurity states. Despite the high carrier density, weak antilocalization (WAL) is clearly observed. Angle-dependent magnetoconductance study shows that an appropriate magnetic field range is critical to capture a true, two-dimensional (2D) WAL effect, and a fit to the 2D localization theory gives α of -0.97, suggesting its origin may be the topological surface states. The power law dependence of the dephasing length on temperature is ∼T -0.49 within the appropriate field range (∼0.3 T), again reflecting the 2D nature of the WAL. Careful analysis on WAL shows how the surface states and the bulk/impurity states may interact with each other. © 2012 American Chemical Society.

  18. Weak Antilocalization in Bi 2 (Se x Te 1– x ) 3 Nanoribbons and Nanoplates

    KAUST Repository

    Cha, Judy J.

    2012-02-08

    Studying the surface states of Bi 2Se 3 and Bi 2Te 3 topological insulators has proven challenging due to the high bulk carrier density that masks the surface states. Ternary compound Bi 2(Se xTe 1-x) 3 may present a solution to the current materials challenge by lowering the bulk carrier mobility significantly. Here, we synthesized Bi 2(Se xTe 1-x) 3 nanoribbons and nanoplates via vapor-liquid-solid and vapor-solid growth methods where the atomic ratio x was controlled by the molecular ratio of Bi 2Se 3 to Bi 2Te 3 in the source mixture and ranged between 0 and 1. For the whole range of x, the ternary nanostructures are single crystalline without phase segregation, and their carrier densities decrease with x. However, the lowest electron density is still high (∼10 19 cm -3) and the mobility low, suggesting that the majority of these carriers may come from impurity states. Despite the high carrier density, weak antilocalization (WAL) is clearly observed. Angle-dependent magnetoconductance study shows that an appropriate magnetic field range is critical to capture a true, two-dimensional (2D) WAL effect, and a fit to the 2D localization theory gives α of -0.97, suggesting its origin may be the topological surface states. The power law dependence of the dephasing length on temperature is ∼T -0.49 within the appropriate field range (∼0.3 T), again reflecting the 2D nature of the WAL. Careful analysis on WAL shows how the surface states and the bulk/impurity states may interact with each other. © 2012 American Chemical Society.

  19. The lunar core can be a major reservoir for volatile elements S, Se, Te and Sb.

    Science.gov (United States)

    Steenstra, Edgar S; Lin, Yanhao; Dankers, Dian; Rai, Nachiketa; Berndt, Jasper; Matveev, Sergei; van Westrenen, Wim

    2017-11-06

    The Moon bears a striking compositional and isotopic resemblance to the bulk silicate Earth (BSE) for many elements, but is considered highly depleted in many volatile elements compared to BSE due to high-temperature volatile loss from Moon-forming materials in the Moon-forming giant impact and/or due to evaporative loss during subsequent magmatism on the Moon. Here, we use high-pressure metal-silicate partitioning experiments to show that the observed low concentrations of volatile elements sulfur (S), selenium (Se), tellurium (Te), and antimony (Sb) in the silicate Moon can instead reflect core-mantle equilibration in a largely to fully molten Moon. When incorporating the core as a reservoir for these elements, their bulk Moon concentrations are similar to those in the present-day bulk silicate Earth. This suggests that Moon formation was not accompanied by major loss of S, Se, Te, Sb from Moon-forming materials, consistent with recent indications from lunar carbon and S isotopic compositions of primitive lunar materials. This is in marked contrast with the losses of other volatile elements (e.g., K, Zn) during the Moon-forming event. This discrepancy may be related to distinctly different cosmochemical behavior of S, Se, Te and Sb within the proto-lunar disk, which is as of yet virtually unconstrained.

  20. Morphological and luminescent evolution of near-infrared-emitting CdTe{sub x}Se{sub 1-x} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ruili; Yang Ping, E-mail: mse_yangp@ujn.edu.cn [University of Jinan, School of Material Science and Engineering (China)

    2012-08-15

    A facile organic route has been developed to synthesize CdTe{sub x}Se{sub 1-x} nanocrystals (NCs) using stearic acid as a capping agent. Because of growth kinetics of CdTe and CdSe, the molar ratio of Te/Se enables CdTe{sub x}Se{sub 1-x} NCs with various morphologies. By increasing the Te/Se ratio, the morphology of the NCs can be adjusted from tetrahedron to tetrapod. This is ascribed to the energy difference between wurtzite and the zinc-blende structures, which determines the nucleation and growth processes of the NCs. The diameters of the branches of tetrapod were 4-6 nm and their lengths were 7-20 nm. The CdTe{sub x}Se{sub 1-x} NCs revealed near-infrared (NIR) range (700-800 nm) photoluminescence (PL). The PL properties of the resulting NCs are strongly dependent on preparation conditions such as the molar ratio of Te/Se as well as the reaction temperature and time. In the cases of various reaction temperature (120-260 Degree-Sign C), the NCs revealed adjusted PL peak wavelength from visible to NIR range and narrow PL spectra. In addition, even though a high Te/Se molar ratio (0.67) was used, the CdTe{sub x}Se{sub 1-x} NCs revealed improved stability compared with CdTe NCs. Being coated with a composite Cd{sub y}Zn{sub 1-y}S shell, the PL intensity was drastically enhanced. The approach described here is utilizable to the fabrication of other semiconductor NCs with various morphologies. Because of the adjusted morphologies, tunable NIR range emission, and high stability of these composite NCs, we will focus on their applications such as solar cell and biolabeling.

  1. Elaboration and optical properties of type-II ZnTe on ZnSe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Rita, E-mail: rita.najjar@cea.f [CEA-CNRS group ' Nanophysique et semiconducteurs' , Institut NEEL-CNRS, BP166, 25 rue des martyrs, 38042 Grenoble Cedex 9 (France); Andre, Regis; Besombes, Lucien; Bougerol, Catherine; Tatarenko, Serge; Mariette, Henri [CEA-CNRS group ' Nanophysique et semiconducteurs' , Institut NEEL-CNRS, BP166, 25 rue des martyrs, 38042 Grenoble Cedex 9 (France)

    2009-11-25

    Special growth conditions are presented in this work, in order to produce ZnTe/ZnSe type-II quantum dots and preserve them during the capping stage. A detailed study emphasizes the high sensitivity of the sample structure to Se/Zn ratio as opposed to other growth parameters. It is shown that nominally identical samples can evolve into two-dimensional quantum well or quantum dot plane, depending on which element is in excess. Transmission electron microscopy, atomic force microscopy and optical characterizations evidence this phenomenon.

  2. Excitation states in type-II ZnSe/BeTe quantum wells

    International Nuclear Information System (INIS)

    Platonov, A.V.; Kochereshko, V.P.; Yakovlev, D.R.; Zehnder, U.; Ossau, W.; Fisher, F.; Litz, Th.; Waag, A.; Landwehr, G.

    1997-01-01

    We present an optical investigation of novel heterostructures based on beryllium chalcogenides with a type-I and type-II band alignment. In the type-II quantum well structures (ZnSe/BeTe) we observed a strong exciton transition involving an electron confined in the conduction band well and a hole localized in the valence band barrier (both in ZnSe layer). This transition is drastically broadened by the temperature increase due to enhanced exciton-acoustic phonon interaction. (author)

  3. On the Role of Boron in CdTe and CdZnTe Crystals

    Science.gov (United States)

    Pavesi, M.; Marchini, L.; Zha, M.; Zappettini, A.; Zanichelli, M.; Manfredi, M.

    2011-10-01

    It is well known that group III elements act as donors if they play a substitutional role at the metallic site in II-tellurides; nevertheless, several studies report both on the creation of complexes with vacancies, named A-centers, and on the involvement in self-compensation mechanisms, especially for indium. The boron concentration in II-tellurides is negligible, and its contribution to transport mechanisms has not been studied yet. For the last few years the authors have been developing a new technique to grow CdZnTe by the vertical Bridgman technique, taking advantage of encapsulation by means of boron oxide. In this way, crystals characterized by large single grains, low etch pit density, and high resistivity have been obtained. Recently, x-ray detectors with state-of-the-art performance have been produced from such crystals. Boron contamination, as a consequence of this growth method, is quite low but at least one order of magnitude above values obtained with other growth techniques. Besides being a low-cost technique which is also suitable for large-scale mass production, the encapsulated vertical Bridgman technique is quite useful to prevent dislocations, grain boundaries, and stacking faults; for these reasons, careful characterization was performed to understand the effect of boron both on the electrical properties and on the spectroscopic performance of the final crystals. Our characterization is mainly based on low-temperature photoluminescence in addition to electrical current-voltage measurements, photostimulated current, and x-ray spectroscopy. The results indicate that boron behaves like other group III elements; in fact, boron forms a complex that does not affect the good performance of our x-ray detectors, even if it shows some properties which are typical of A-centers.

  4. Molecular beam epitaxy of CdSe epilayers and quantum wells on ZnTe substrate

    International Nuclear Information System (INIS)

    Park, Y.M.; Andre, R.; Kasprzak, J.; Dang, Le Si; Bellet-Amalric, E.

    2007-01-01

    We have grown zinc-blende cadmium selenide (CdSe) epilayers on ZnTe-(0 0 1) substrate by molecular beam epitaxy (MBE). By controlling the substrate temperature and beam-equivalent pressure (BEP) ratio, of Se to Cd, we determined the most suitable growth condition based on reflection high-energy electron diffraction (RHEED) pattern. At a substrate temperature of 280 deg. C and a BEP ratio of 3.6, the RHEED pattern showed a V-like feature, indicating a rough surface with facets. As the substrate temperature was increased to 360 deg. C at the same BEP ratio, a V-like RHEED pattern moved to a clear streaky pattern. Moreover when the BEP ratio was increased to 4.8 at 360 deg. C of substrate temperature, a clear (2 x 1) reconstruction of the CdSe layer was observed. A CdSe/CdMgSe single quantum well structure was also grown on ZnTe-(0 0 1) substrate by MBE. The RHEED pattern showed a clear (2 x 1) surface reconstruction during the growth. By photoluminescence measurement, a good optical property of the structure was obtained

  5. The crystal structure of TeCl3+AuCl4-

    International Nuclear Information System (INIS)

    Jones, P.G.; Jentsch, D.; Schwarzmann, E.

    1986-01-01

    TeCl 3 + AuCl 4 - crystallizes in the triclinic space group Panti 1 with a=7.564(2), b=7.720(3), c=8.964(3) A, α=78.26(3), β=88.84(3), γ=89.35(3) 0 , Z=2. The structure was refined to R 0.041 for 1380 reflections. The cation polyhedron, including secondary Te...Cl interactions, is a square pyramid with mean Te-Cl 2.294, Te...Cl 3.028 A. The secondary interactions link the ions to form centrosymmetric (TeCl 3 .AuCl 4 ) 2 dimers. (orig.)

  6. Identification of a type of defects in CdTe crystals by the piezo spectroscopic method

    International Nuclear Information System (INIS)

    Tarbajev, M.Yi.

    1999-01-01

    The dependence of line shifts and the photoluminescence line intensity of bound exciton complexes on the direction of elastic deformation are studied for CdTe crystals at 4.2 K. On the basis of the found differences in piezo optic behavior of excitons bound to neutral donors and acceptors, the method of identification of a type of defects in CdTe crystals is proposed

  7. Heterojunctions formed by annealing of GaSe and InSe layered crystals in zinc vapor

    Directory of Open Access Journals (Sweden)

    Kudrynskyi Z. R.

    2012-12-01

    Full Text Available The article presents a method of creating heterojunc¬tions based on semiconductors with different lattice types. Substrates manufactured from GaSe and InSe layered crystals were annealed in Zn vapor. This way, n-ZnSe–p-GaSe and n-ZnSe–p-InSe heterojunctions were obtained. The obtained heterojunctions are photo¬sensitive in near and infrared spectral regions. This method opens up greate possibilities of producing heterostructures with a desired sensitivity band.

  8. Expression and crystallization of SeDsbA, SeDsbL and SeSrgA from Salmonella enterica serovar Typhimurium

    International Nuclear Information System (INIS)

    Jarrott, R.; Shouldice, S. R.; Gunčar, G.; Totsika, M.; Schembri, M. A.; Heras, B.

    2010-01-01

    The cloning, purification, crystallization and preliminary crystallographic studies of three DsbA-like proteins present in S. enterica serovar Typhimurium, SeDsbA, SeDsbL and SeSrgA, are reported. Pathogens require protein-folding enzymes to produce functional virulence determinants. These foldases include the Dsb family of proteins, which catalyze oxidative folding in bacteria. Bacterial disulfide catalytic processes have been well characterized in Escherichia coli K-12 and these mechanisms have been extrapolated to other organisms. However, recent research indicates that the K-12 complement of Dsb proteins is not common to all bacteria. Importantly, many pathogenic bacteria have an extended arsenal of Dsb catalysts that is linked to their virulence. To help to elucidate the process of oxidative folding in pathogens containing a wide repertoire of Dsb proteins, Salmonella enterica serovar Typhimurium has been focused on. This Gram-negative bacterium contains three DsbA proteins: SeDsbA, SeDsbL and SeSrgA. Here, the expression, purification, crystallization and preliminary diffraction analysis of these three proteins are reported. SeDsbA, SeDsbL and SeSrgA crystals diffracted to resolution limits of 1.55, 1.57 and 2.6 Å and belonged to space groups P2 1 , P2 1 2 1 2 and C2, respectively

  9. A study of the reactivity of elemental Cr/Se/Te thin multilayers using X-ray reflectometry, in situ X-ray diffraction and X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Behrens, Malte; Tomforde, Jan; May, Enno; Kiebach, Ragnar; Bensch, Wolfgang; Haeussler, Dietrich; Jaeger, Wolfgang

    2006-01-01

    The reactivity of [Cr/Se/Te] multilayers under annealing was investigated using X-ray reflectometry, in situ X-ray diffraction, X-ray absorption fine structure (XAFS) measurements and transmission electron microscopy. For all samples, interdiffusion was complete at temperatures between 100 and 300 deg. C, depending on the repeating tri-layer thickness. A crystalline phase nucleated approximately 20 deg. C above the temperature where interdiffusion was finished. The first crystalline phase in a binary Cr/Te sample was layered CrTe 3 nucleating at 230 deg. C. In ternary samples (Se:Te=0.6-1.2), the low-temperature nucleation of such a layered CrQ 3 (Q=Se, Te) phase is suppressed and instead the phase Cr 2 Q 3 nucleates first. Interestingly, this phase decomposes around 500 deg. C into layered CrQ 3 . In contrast, binary Cr/Se samples form stable amorphous alloys after interdiffusion and Cr 3 Se 4 nucleates around 500 deg. C as the only crystalline phase. Evaluation of the XAFS data of annealed samples yield Se-Cr distances of 2.568(1) and 2.552(1) A for Cr 2 Q 3 and CrQ 3 , respectively. In the latter sample, higher coordination shells around Se are seen accounting for the Se-Te contacts in the structure. - Graphical abstract: The first step of the reaction of elemental Cr/Te/Se-multilayers is the interdiffusion of the elements as evidenced by the decay of the modulation peaks in the low-angle region of the X-ray diffraction patterns. The subsequent growth of Bragg peaks at higher scattering angles indicates crystallization of chromium chalcogenide Cr 2 Te 3- x Se x

  10. Optical properties change in Te diffused As{sub 50}Se{sub 50} chalcogenide thin film

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Ramakanta; Behera, M.; Panda, R.; Mishra, N. C. [Department of Physics, Utkal University, Bhubaneswar, 751004, Odisha (India)

    2016-05-23

    In the present report, we present the effect of Te diffusion into As{sub 50}Se{sub 50} thin film which changes the optical properties. The Te/As{sub 50}Se{sub 50} film was irradiated by a laser beam of 532 nm to study the diffusion mechanism due to photo induced effect. The As{sub 50}Se{sub 50}, Te/As{sub 50}Se{sub 50} films show a completely amorphous nature from X-ray diffraction study. A non direct transition was found for these films on the basis of optical transmission data carried out by Fourier Transform infrared Spectroscopy. The optical bandgap is found to be decreased with Te deposition and photo darkening phenomena is observed for the diffused film. The change in the optical constants are well supported by the corresponding change in different types of bonds which are being studied by X-ray photoelectron spectroscopy.

  11. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    International Nuclear Information System (INIS)

    Ung, Thi Dieu Thuy; Tran, Thi Kim Chi; Pham, Thu Nga; Nguyen, Quang Liem; Nguyen, Duc Nghia; Dinh, Duy Khang

    2012-01-01

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ∼500 and 700 nm with the luminescence quantum yield (LQY) of 30–85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml −1 . For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3–50 ng μl −1 with a detection limit of 3 ng μL −1 has been performed based on the antibody-antigen recognition. (review)

  12. Studies on Cd1Se0.6Te0.4 Thin Films by Spectroscopic and Diffractometer Characterization

    Directory of Open Access Journals (Sweden)

    Cliff Orori Mosiori

    2017-09-01

    Full Text Available Cadmium selenide tellurium is a compound containing cadmium, tellurium and selenium elements forming a combined solid. Hall measurements suggest that it is an n-type semiconductor. Related optical studies indicate that is transparent to infra-red radiation. Structural studies clearly show that it has a wurtzite, sphalerite crystalline forms. Cadmium is a toxic heavy metal, and selenium is only toxic in large amounts or doses. By this toxicity, cadmium selenide is a known to be carcinogen to humans; however, this does not stop investigating it for optoelectronic applications. Current research has narrowed down to investigating cadmium selenide when in the form of nanoparticles. Cadmium selenide finds applications has found applications in opto-electronic devices like laser diodes, biomedical imaging, nano-sensing, high-efficiency solar cells and thin-film transistors. By chemical bath deposition, Cd1Se0.6Te0.4 thin films were grown onto glass. Tellurium was gradually introduced as an impurity and its crystalline structure and optical properties were investigated by XRD and UV-VIS spectroscopy. The main Cd1Se0.6Te0.4/glass characteristics were correlated with the conditions of growing and post-growth treatment and it was found out that films were homogeneous films with controllable thickness onto the glass substrate and suitable for n-type “sandwich” heterostructures applications. Comparison of the intensities of equivalent reflexions provided a test for the internal consistency of the measurements. Equivalent reflexions in two specimens differed on average by 1.4 % and 0.6% from the mean measured intensity, attesting to the high internal consistency of measurements from extended-face crystals. By comparison from data obtained from all samples showed their average deviation from the mean to be 0.9 %.

  13. Crystallization behavior of Ge-doped eutectic Sb70Te30 films in optical disks

    International Nuclear Information System (INIS)

    Khulbe, Pramod K.; Hurst, Terril; Mansuripur, Masud; Horie, Michikazu

    2002-01-01

    We report laser-induced crystallization behavior of binary Sb-Te and ternary Ge-doped eutectic Sb70Te30 thin film samples in a typical quadrilayer stack as used in phase-change optical disk data storage. Several experiments have been conducted on a two-laser static tester in which one laser operating in pulse mode writes crystalline marks on amorphous film or amorphous marks on crystalline film, while the second laser operating at low-power cw mode simultaneously monitors the progress of the crystalline or amorphous mark formation in real time in terms of the reflectivity variation. The results of this study show that the crystallization kinetics of this class of film is strongly growth dominant, which is significantly different from the crystallization kinetics of stochiometric Ge-Sb-Te compositions. In Sb-Te and Ge-doped eutectic Sb70Te30 thin-film samples, the crystallization behavior of the two forms of amorphous states, namely, as-deposited amorphous state and melt-quenched amorphous state, remains approximately same. We have also presented experiments showing the effect of the variation of the Sb/Te ratio and Ge doping on the crystallization behavior of these films

  14. Impact of Antibody Bioconjugation on Emission and Energy Band Profile of CdSeTe/ZnS Quantum Dots

    Science.gov (United States)

    Torchynska, T. V.; Gomez, J. A. Jaramillo; Polupan, G.; Macotela, L. G. Vega

    2018-03-01

    The variation of the photoluminescence (PL) and Raman scattering spectra of CdSeTe/ZnS quantum dots (QDs) on conjugation to an antibody has been investigated. Two types of CdSeTe/ZnS QD with different emission wavelength (705 nm and 800 nm) were studied comparatively before and after conjugation to anti-pseudorabies virus antibody (AB). Nonconjugated QDs were characterized by Gaussian-type PL bands. PL shifts to higher energy and asymmetric shape of PL bands was detected in PL spectra of bioconjugated QDs. The surface-enhanced Raman scattering effect was exhibited by the bioconjugated CdSeTe/ZnS QDs, indicating that the excitation light used in the Raman study generated electric dipoles in the AB molecules. The optical bandgap of the CdSeTe core was calculated numerically as a function of its radius based on an effective mass approximation model. The energy band diagrams for non- and bioconjugated CdSeTe/ZnS QDs were obtained, revealing a type II quantum well in the CdSeTe core. The calculations show that AB dipoles, excited in the bioconjugated QDs, stimulate a change in the energy band diagram of the QDs that alters the PL spectrum. These results could be useful for improving the sensitivity of QD biosensors.

  15. Influence of the additive Ag for crystallization of amorphous Ge-Sb-Te thin films

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki-Ho; Kim, Sung-Won; Seo, Jae-Hee [Faculty of Applied Chemical Engineering, Chonnam National University, 300 Yongbong-dong, Kwangju 500-757 (Korea, Republic of); Lee, Hyun-Yong, E-mail: hyleee@chonnam.ac.k [Faculty of Applied Chemical Engineering, Chonnam National University, 300 Yongbong-dong, Kwangju 500-757 (Korea, Republic of)

    2009-05-29

    We have investigated the optical and amorphous-to-crystalline transition properties in four-types of chalcogenide thin films; Ge{sub 2}Sb{sub 2}Te{sub 5}, Ge{sub 8}Sb{sub 2}Te{sub 11}, Ag-Ge{sub 2}Sb{sub 2}Te{sub 5} and Ag-Ge{sub 8}Sb{sub 2}Te{sub 11}. Crystallization was caused by nano-pulse illumination ({lambda} = 658 nm) with power (P) of 1-17 mW and pulse duration (t) of 10-460 ns, and the morphologies of crystallized spots were observed by SEM and microscope. It was found that the crystallized spot nearby linearly increases in size with increasing the illuminating energy (E = P {center_dot} t) and eventually ablated out by over illumination. Changes in the optical transmittance of as-deposited and annealed films were measured using a UV-vis-IR spectrophotometer. In addition, a speed of amorphous-to-crystalline transition was evaluated by detecting the reflection response signals for the nano-pulse scanning. Conclusively, the Ge{sub 8}Sb{sub 2}Te{sub 11} film has a faster crystallization speed than the Ge{sub 2}Sb{sub 2}Te{sub 5} film despite its higher crystallization temperature. The crystallization speed was largely improved by adding Ag in Ge{sub 2}Sb{sub 2}Te{sub 5} film but not in Ge{sub 8}Sb{sub 2}Te{sub 11} film. To explain these results, we considered a heat confinement by electron hopping.

  16. Shaped crystal growth of PbTe by the open tube technique

    International Nuclear Information System (INIS)

    Klimakow, A.M.; Hoefer, C.

    1984-01-01

    The possibility of growing shaped A/sup IV/B/sup VI/ crystals from the vapour phase by the open tube technique was investigated on PbTe. The thermodynamic conditions to reproducible prepare several habits of PbTe crystals - whiskers, tetrahedral prisms and cubes, platelets (a), dendrites, cubic and octahedral skeletons (b) as well as their properties were examined. The crystalline habits (a) are characterized by perfectly mirror-like (100) surfaces and low dislocation densities. The type and concentration of charge carriers are mainly determined by the vapour composition within the crystallization zone and very from n = 3 x 10 17 to p = 1 x 10 19 cm -3 . These properties are the reason of the interest in shaped PbTe crystals for the aim of IR optoelectronic devices. (author)

  17. Signatures of charge inhomogeneities in the infrared spectra of topological insulators Bi2Se3, Bi2Te3 and Sb2Te3

    International Nuclear Information System (INIS)

    Dordevic, S V; Wolf, M S; Stojilovic, N; Lei Hechang; Petrovic, C

    2013-01-01

    We present the results of an infrared spectroscopy study of topological insulators Bi 2 Se 3 , Bi 2 Te 3 and Sb 2 Te 3 . Reflectance spectra of all three materials look similar, with a well defined plasma edge. However, there are some important differences. Most notably, as temperature decreases the plasma edge shifts to lower frequencies in Bi 2 Se 3 , whereas in Bi 2 Te 3 and Sb 2 Te 3 it shifts to higher frequencies. In the loss function spectra we identify asymmetric broadening of the plasmon, and assign it to the presence of charge inhomogeneities. It remains to be seen if charge inhomogeneities are characteristic of all topological insulators, and whether they are of intrinsic or extrinsic nature.

  18. Neutron Activation Resonance Integrals of 74Se, 78Se, 80Se, 81Br, 127I, 130Te, 138Ba, 140Ce, and 142Ce

    International Nuclear Information System (INIS)

    Ricabarra, M. D.; Turjanskl, R.; Ricabarra, G. H.; Bigham, C.B.

    1968-01-01

    A lithium-drift germanium γ-ray spectrometer has been used to make accurate intercomparisons of the ratio of resonance-integral to thermal-activation cross section by measuring cadmium ratios or relative activation rates in two different neutron spectra. The standard, gold, or secondary standard, indium, was mixed uniformly in the samples and the activities resolved with the spectrometer. Expressed as Westcott S 0 values, the results relative to S 0 = 17.7 for gold were as follows: 74 Se = 10.3 +± 0.1, 78 Se = 12.3 ± 0.3, 80 Sc = 2.65 ± 0.02, 81 Br = 24.3 ± 0.5, 127 I = 27.8 ± 0.5, 130 Te = 2.10 ± 0.07, 138 Ba = 0.649 ± 0.004, 140 Ce = 0.476 ± 0.003, 142 Ce = 0.865 ± 0.005. (author)

  19. Synthesis of Cu(In,Ga)Se{sub 2} crystals using a crank ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Suzuka; Noji, Hideki; Akaki, Yoji [Miyakonojo National College of Technology, 473-1 Yoshio, Miyakonojo Miyazaki 885-8567 (Japan); Okamoto, Tomoichiro [Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2015-06-15

    Cu(In,Ga)Se{sub 2} (CIGS) crystals were synthesized by a mechanochemical (MC) process using a crank ball mill. The molar ratios of starting materials were Cu:In:Ga:Se=1:1-x:x:2 (0≤x≤1) and Cu:In:Ga:Se=1:0.7:0.3:y (2≤y≤3). The reaction time reduced with decreasing Se and Ga molar ratios. The collection rate decreased with longer reaction times. From XRD patterns, we confirmed that the CuInSe{sub 2} and/or CuGaSe{sub 2}crystals were successfully grown when the powders reacted. Although the crystals grown with a selenium molar ration of 2 were Se-poor, those grown at a molar ratio of 3 were Se-rich. When Se increasing molar ratio, Cu, In, and Ga were away from the stoichiometric. With a molar ratio of Cu:In:Ga:Se=1:0.7:0.3:2.5∝2.7, their composition became stoichiometric. Crystal morphology was varied. CIGS crystals were thus successfully synthesized using a crank ball mill. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Synthesis and crystal structure determination of Br2SeIBr ...

    Indian Academy of Sciences (India)

    Unknown

    termined by single crystal X-ray diffraction method. This compound was ... company and SeBr4 was prepared from the reaction of Se powder (0⋅1 g) with Br2 ... angles of Br2SeIBr and table 4 shows anisotropic displace- ment parameters.

  1. Optical properties of Sb(Se,Te)I and photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Tablero, C., E-mail: ctablero@etsit.upm.es

    2016-09-05

    SbXI (X = Se, Te) are ferroelectric semiconductors that allow a variety of applications including optoelectronic and photovoltaic applications. An analysis of the optical properties is carried out starting from first-principles density-functional theory with orbital-dependent one-electron potentials. To go into the contributions to the optical properties more deeply, the absorption coefficients have been split into inter- and intra-species contributions and into atomic angular momentum contributions. The optical results are used to evaluate the efficiencies when this material is used to absorb sunlight at several sunlight concentrations and the usual radiative and the ferroelectric photovoltaic mechanisms. The results indicate their applicability in photovoltaic devices as absorbent of the solar spectrum with high conversion efficiency. - Highlights: • The SbXI (X = Se, Te) are ferroelectric semiconductors with a high optical absorption. • The absorption coefficients have been split into different contributions to understand the cause of the high absorption. • Using the first-principles results the maximum efficiency of this photovoltaic absorber material has been estimated. • The efficiency of this compound is near the maximum efficiency for single-gap solar cells even using small-width devices. • The coexistence of the R-PV and R-PV effects has been evaluated.

  2. Density functional study of BiSbTeSe{sub 2} topological insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpourrad, Zahra; Abolhassani, Mohammadreza [Department of Physics, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2017-08-15

    In this work, using density functional theory calculations, we have investigated the band topology of bulk BiSbTeSe{sub 2} and its thin film electronic properties in several thicknesses. It is one member of the quaternary compounds Bi{sub 2-x}Sb{sub x}Te{sub 3-y}Se{sub y} (BSTS) with the best intrinsic bulk insulating behavior. Based on our calculations we have found that a band inversion at Γ-point is induced when spin-orbit coupling is turned on, with an energy gap of about 0.318 eV. The film thickness has an effect on the surface states such that a gap opens at Dirac point in 6 quintuple-layers film and with decrease in thickness, the magnitude of the gap increases. The atomic contributions have been mapped out for the first few layers of thin films to demonstrate the surface states. The relative charge density has been calculated layer-wise and the penetration depth of the surface states into the bulk region is found to be about 2.5-3.5 quintuple layers, depending on the termination species of thin films. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Quarternair CuGaSeTe and CuGa0.5In 0.5Te2 Thin Films Fabrication Using Flash Evaporation

    Directory of Open Access Journals (Sweden)

    A Harsono Soepardjo

    2010-10-01

    Full Text Available Quarternair materials CuGaSeTe and CuGa0.5In 0.5Te2 are the basic materials to solar cell fabrication. These materials have high absorption coefficients around 103 - 105 cm-1 and band gap energy in the range of 1-5 eV. In this research, the films were made by flash evaporation method using quarternair powder materials of CuGaSeTe and CuGa0.5In 0.5Te2 to adhere in a glass substrate. After the films were obtained, the properties of these films will be characterized optically and electrically. The lattice parameter of the films and the crystalline film structure were obtained using X-Ray Diffraction (XRD spectroscopy. The XRD results show that the quarternair CuGaSeTe and CuGa0.5In 0.5Te2 films have a chalcopyrite structure. The absorption coefficient and the  band gap energy of the films were calculated using transmittance and reflectance patterns that measured using UV-VIS Difractometer. The films composition can be detected by using the Energy Dispersive Spectroscopy (EDS, while the films resistivity, mobility and the majority carrier of the films were obtained from Hall Effect experiments.

  4. NIR-Emitting Alloyed CdTeSe QDs and Organic Dye Assemblies: A Nontoxic, Stable, and Efficient FRET System

    Directory of Open Access Journals (Sweden)

    Doris E. Ramírez-Herrera

    2018-04-01

    Full Text Available In the present work, we synthesize Near Infrared (NIR-emitting alloyed mercaptopropionic acid (MPA-capped CdTeSe quantum dots (QDs in a single-step one-hour process, without the use of an inert atmosphere or any pyrophoric ligands. The quantum dots are water soluble, non-toxic, and highly photostable and have high quantum yields (QYs up to 84%. The alloyed MPA-capped CdTeSe QDs exhibit a red-shifted emission, whose color can be tuned between visible and NIR regions (608–750 nm by controlling the Te:Se molar ratio in the precursor mixtures and/or changing the time reaction. The MPA-capped QDs were characterized by UV-visible absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, and zeta potential measurements. Photostability studies were performed by irradiating the QDs with a high-power xenon lamp. The ternary MPA-CdTeSe QDs showed greater photostability than the corresponding binary MPA-CdTe QDs. We report the Förster resonance energy transfer (FRET from the MPA-capped CdTeSe QDs as energy donors and Cyanine5 NHS-ester (Cy5 dye as an energy acceptor with efficiency (E up to 95%. The distance between the QDs and dye (r, the Förster distance (R0, and the binding constant (K are reported. Additionally, cytocompatibility and cell internalization experiments conducted on human cancer cells (HeLa cells revealed that alloyed MPA-capped CdTeSe QDs are more cytocompatible than MPA-capped CdTe QDs and are capable of ordering homogeneously all over the cytoplasm, which allows their use as potential safe, green donors for biological FRET applications.

  5. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes.

    Science.gov (United States)

    Park, Ah-Ram; Park, Cheol-Min

    2017-06-27

    A cubic crystal-structured Sn-based compound, SnTe, was easily synthesized using a solid-state synthetic process to produce a better rechargeable battery, and its possible application as a Sn-based high-capacity anode material for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was investigated. The electrochemically driven phase change mechanisms of the SnTe electrodes during Li and Na insertion/extraction were thoroughly examined utilizing various ex situ analytical techniques. During Li insertion, SnTe was converted to Li 4.25 Sn and Li 2 Te; meanwhile, during Na insertion, SnTe experienced a sequential topotactic transition to Na x SnTe (x ≤ 1.5) and conversion to Na 3.75 Sn and Na 2 Te, which recombined into the original SnTe phase after full Li and Na extraction. The distinctive phase change mechanisms provided remarkable electrochemical Li- and Na-ion storage performances, such as large reversible capacities with high Coulombic efficiencies and stable cyclabilities with fast C-rate characteristics, by preparing amorphous-C-decorated nanostructured SnTe-based composites. Therefore, SnTe, with its interesting phase change mechanisms, will be a promising alternative for the oncoming generation of anode materials for LIBs and NIBs.

  6. Ab-initio calculations of Co-based diluted magnetic semiconductors Cd 1-xCoxX (X=S, Se, Te)

    KAUST Repository

    Saeed, Yasir

    2010-10-01

    Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic semiconductors composed of IIVI compounds Cd1-xCoxX (X=S, Se, Te) at x=0.25. From the calculated results of band structure and density of states, the half-metallic character and stability of ferromagnetic state for Cd1-xCoxS, Cd1-xCoxSe and Cd 1-xCoxTe alloys are determined. It is found that the tetrahedral crystal field gives rise to triple degeneracy t2g and double degeneracy eg. Furthermore, we predict the values of spin-exchange splitting energies Δx(d) and Δ x(p-d) and exchange constants N0α and N 0β produced by the Co 3d states. Calculated total magnetic moments and the robustness of half-metallicity of Cd1-xCo xX (X=S, Se, Te) with respect to the variation in lattice parameters are also discussed. We also extend our calculations to x=0.50, 0.75 for S compounds in order to observe the change due to increase in Co. © 2010 Elsevier B.V.

  7. The Crystal Structure of Cu4Bi4Se9

    DEFF Research Database (Denmark)

    Makovicky, E.; Søtofte, Inger; Karup-Møller, S.

    2002-01-01

    contains three square pyramidal Bi sites, an octahedrally coordinated Bi site as well as two tetrahedrally and two irregularly coordinated Cu sites. The structure is an intergrowth of PbS-like slabs with irregularly configured slabs of Bi pyramids and Cu tetrahedra. It contains covalently bonded Se-2...

  8. Low temperature scintillation in ZnSe crystals

    Czech Academy of Sciences Publication Activity Database

    Dafinei, I.; Fasoli, M.; Ferroni, F.; Mihóková, Eva; Orio, F.; Pirro, S.; Vedda, A.

    2010-01-01

    Roč. 57, č. 3 (2010), 1470-1474 ISSN 0018-9499 Institutional research plan: CEZ:AV0Z10100521 Keywords : bolometers * double beta decay * scintillation detectors * ZnSe Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.519, year: 2010

  9. Crystalline structure and XMCD studies of Co40Fe40B20 grown on Bi2Te3, BiTeI and Bi2Se3

    OpenAIRE

    Kaveev, A. K.; Sokolov, N. S.; Suturin, S. M.; Zhiltsov, N. S.; Golyashov, V. A.; Tereshchenko, O. E.; Prosvirin, I. P.; Kokh, K. A.; Sawada, M.

    2018-01-01

    Epitaxial films of Co40Fe40B20 (further - CoFeB) were grown on Bi2Te3(001) and Bi2Se3(001) substrates by laser molecular beam epitaxy (LMBE) technique at 200-400C. Bcc-type crystalline structure of CoFeB with (111) plane parallel to (001) plane of Bi2Te3 was observed, in contrast to polycrystalline CoFeB film formed on Bi2Se3(001) at RT using high-temperature seeding layer. Therefore, structurally ordered ferromagnetic thin films were obtained on the topological insulator surface for the firs...

  10. Structure and optical properties of GaSe-CdSe composites driven by Cd intercalation in GaSe lamellar crystals

    International Nuclear Information System (INIS)

    Caraman, Iuliana; Kantser, Valeriu; Evtodiev, Igor; Untila, Dumitru; Dmitroglo, Liliana; Leontie, Liviu; Arzumanyan, Grigory

    2015-01-01

    A new composite material composed of GaSe and CdSe has been obtained by treatment of GaSe single-crystal lamellas in Cd vapors at temperatures of 773-853 K and intercalation of Cd interlayers. The structure and optical properties of the GaSe-CdSe composite material have been studied. The content of CdSe crystallites was found to grow with increasing treatment temperature or with increasing duration of treatment at a constant temperature. Analysis of XRD, PL, XPS, AFM, and Raman patterns has shown that the heterogeneous composite composed of micro and nanocrystallites of CdSe in GaSe can be obtained by Cd intercalation in a temperature range of 753-853 K. On the basis of Raman spectrum, the vibrational modes of the composite have been identified. The PL of these materials contains emission bands of free and bound excitons, donor-acceptor bands, and bands of recombination via impurity levels. The PL emission spectra measured at a temperature of 78 and 300 K for the composites result from the overlapping of the emission bands of the components of GaSe doped with Cd and the CdSe crystallites. (authors)

  11. Fundamental absorption edge in CuIn5Se8 and CuGa3Se5 single crystals

    International Nuclear Information System (INIS)

    Leon, M.; Merino, J.M.; Levcenko, S.; Nateprov, A.; Tezlevan, V.; Arushanov, E.; Syrbu, N.N.

    2006-01-01

    Optical absorption spectra of CuIn 5 Se 8 and CuGa 3 Se 5 single crystals have been investigated. The energy gap E g for CuIn 5 Se 8 (CuGa 3 Se 5 ) was found to be varied from 1.27(1.79) to 1.21(1.71) eV in the temperature range between 10 and 300 K. The temperature dependence of E g was studied by means of the Einstein model and the Paessler model. The Einstein temperature {222(267)K}, the Debye temperature {310(380)K}, a dimensionless constant related to the electron-phonon coupling {1.62(2.65)} as well as an effective energy {20 (24) meV} and a cut-off phonon energy {35(39) meV} have been estimated for CuIn 5 Se 8 (CuGa 3 Se 5 ). It was also found that the major contribution of phonons to the shift of E g versus temperature in CuIn 5 Se 8 (CuGa 3 Se 5 ) is mainly from optical phonons. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  12. Growth and characterization of LiInSe2 single crystals

    Science.gov (United States)

    Ma, Tianhui; Zhu, Chongqiang; Lei, Zuotao; Yang, Chunhui; Sun, Liang; Zhang, Hongchen

    2015-04-01

    Large and crack-free LiInSe2 single crystals were obtained by the vertical gradient freezing method with adding a temperature oscillation technology in a two-zone furnace. X-ray diffraction data showed that the pure LiInSe2 compound was synthesized. The grown crystals had different color depending on melt composition. The atomic ratios of elements of LiInSe2 crystals were obtained by an Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), and the structural formula were calculated according to the relative contents of elements. The average absorption coefficients were estimated by using average reflection indices. The absorption coefficients of the thermal annealing samples are 0.6 cm-1 at 2-3 μm. The transparent range of our LiInSe2 crystals is from 0.6 μm to 13.5 μm.

  13. Metastable phases freezing from melts of reciprocal systems PbX + CdI2=CdX + PbI2 (X=S, Se, Te)

    International Nuclear Information System (INIS)

    Odin, I.N.; Chukichev, M.V.

    2001-01-01

    The transformations in the mutual PbX + CdI 2 =CdX + PbI 2 (X=S, Se, Te) systems leading to the crystallization of metastable polytypical modifications of lead iodide in metastable ternary compounds are studied for the first time. Microstructural and X-ray diffraction analyses were conducted. Their phase diagrams were constructed. The luminescence properties of the stable and metastable modifications of the lead iodide and the metastable compound Pb 4 SeI 6 were investigated. The lines 504 and 512 nm are noted in the 2H-PbI 2 cathodoluminescence spectra. The close lines - 508 and 516 nm provide for the 6R-PbI 2 modification. The metastable compound Pb 4 SeI 6 is characterized by the 769 and 868 nm lines [ru

  14. Microstructural, optical and electrical properties of Cl-doped CdTe single crystals

    Directory of Open Access Journals (Sweden)

    Choi Hyojeong

    2016-09-01

    Full Text Available Microstructural, optical and electrical properties of Cl-doped CdTe crystals grown by the low pressure Bridgman (LPB method were investigated for four different doping concentrations (unintentionally doped, 4.97 × 1019 cm−3, 9.94 × 1019 cm−3 and 1.99 × 1020 cm−3 and three different locations within the ingots (namely, samples from top, middle and bottom positions in the order of the distance from the tip of the ingot. It was shown that Cl dopant suppressed the unwanted secondary (5 1 1 crystalline orientation. Also, the average size and surface coverage of Te inclusions decreased with an increase in Cl doping concentration. Spectroscopic ellipsometry measurements showed that the optical quality of the Cl-doped CdTe single crystals was enhanced. The resistivity of the CdTe sample doped with Cl at the 1.99 × 1020 cm−3 was above 1010 Ω.cm.

  15. The variation of the energy gap with composition in the quaternary alloy system ZnTe/sub 1-2x/S/sub x/Se/sub x/

    International Nuclear Information System (INIS)

    Litvinchuk, A.P.; Vitrikhovskii, N.I.

    1983-01-01

    Studies are presented of photoluminescence spectra of the quaternary ZnTe/sub 1-2x/S/sub x/Se/sub x/ alloy (x = 0.05, 0.10, and 0.20). The determination of the energy gap variation with composition at 85 K is given. The nonlinear variation of the energy gap E/sub g/ with composition for the quaternary ZnTe/sub 1-2x/S/sub x/Se/sub x/ alloy may be interpreted in the framework of the pseudopotential theory based on the nonlinear crystal field properties

  16. Intermolecular and very strong intramolecular C-SeO/N chalcogen bonds in nitrophenyl selenocyanate crystals.

    Science.gov (United States)

    Wang, Hui; Liu, Ju; Wang, Weizhou

    2018-02-14

    Single-crystal X-ray diffraction reveals that polymorphic ortho-nitrophenyl selenocyanate (o-NSC, crystals 1a and 1b) and monomorphic para-nitrophenyl selenocyanate (p-NSC, crystal 2) crystals are all stabilized mainly by intermolecular and very strong intramolecular C-SeO/N chalcogen bonds, as well as by other different interactions. Thermogravimetric (TG) and differential scanning calorimetry thermogram (DSC) analyses show that the starting decomposition temperatures and melting points of the three crystals are different, following the order 1b > 1a > 2, which is consistent with the structural characteristics of the crystals. In addition, atoms in molecules (AIM) and natural bond orbital (NBO) analyses indicate that the total strengths of the C-SeO and C-SeN chalcogen bonds decrease in the order 1b > 1a > 2. This study could be significant for engineering functional crystals based on robust C-SeO and C-SeN chalcogen bonds, and for designing drugs containing selenium as well as understanding their interaction in biosystems.

  17. Secondary overprinting of S-Se-Te signatures in the Earth's mantle: Implications for the Late Veneer

    Science.gov (United States)

    Koenig, S.; Luguet, A.; Lorand, J.; Pearson, D.

    2013-12-01

    Sulphur, Selenium and Tellurium are both chalcophile and highly siderophile elements (HSE) with near-chondritic ratios and absolute abundances in the terrestrial mantle that exceed those predicted by core-mantle differentiation[1]. These 'excess' HSE abundances have been attributed to addition of ca. 0.5% of chondrite-like material that hit the Earth in its accretionary stage between 4 to 3.8 billion years ago after core-mantle differentiation (Late Veneer[2]). Therefore, like other HSE, S, Se and Te are considered potential tracers for the composition of the Late Veneer, provided that their bulk silicate Earth abundances are properly constrained. In contrast to ca. 250 ppm S, Se and Te are ultra-trace elements in the terrestrial mantle. Like all HSE, they are furthermore controlled by base metal sulphides (BMS) and micrometric platinum group minerals (PGMs)[3]. This strong control exerted by the host mineralogy and petrology on the S-Se-Te systematics at both the micro-scale and the whole-rock scale makes detailed mineralogical and petrological studies of BMS and PGM a pre-requisite to fully understand and accurately interpret the whole-rock signatures. Here we combine in-situ sulphide data and detailed mineralogical observations with whole-rock S-Se-Te-HSE signatures of both lherzolites and harburgites from different geodynamic settings. We demonstrate that the near-chondritic Se and Te signature of 'fertile' mantle rocks (Se/Te ≈9×5) is not a primitive signature of the Earth's mantle, but rather reflects strong enrichment in metasomatic HSE host phases, which erased previous pristine signatures. Consequently, current attempts to identify a potential Late Veneer composition are seriously flawed because, neither refertilisation/metasomatism nor true melt depletion (e.g. harzburgitic residues) have been taken into account for the Primitive Upper Mantle composition estimate[4]. Our combined whole rock and in-situ sulphide data indicate a refertilisation trend

  18. X-ray conductivity of ZnSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Degoda, V. Ya., E-mail: degoda@univ.kiev.ua; Podust, G. P. [Taras Shevchenko Kyiv National University, Physics Department (Ukraine)

    2016-05-15

    The experimental I–V and current–illuminance characteristics of the X-ray conductivity and X-ray luminescence of zinc-selenide single crystals feature a nonlinear shape. The performed theoretical analysis of the kinetics of the X-ray conductivity shows that even with the presence of shallow and deep traps for free charge carriers in a semiconductor sample, the integral characteristics of the X-ray conductivity (the current–illuminance and I–V dependences) should be linear. It is possible to assume that the nonlinearity experimentally obtained in the I–V and current–illuminance characteristics can be caused by features of the generation of free charge carriers upon X-ray irradiation, i.e., the generation of hundreds of thousands of free charge carriers of opposite sign in a local region with a diameter of <1 μm and Coulomb interaction between the free charge carriers of opposite signs.

  19. Photoluminescence characteristics of Pb-doped, molecular-beam-epitaxy grown ZnSe crystal layers

    International Nuclear Information System (INIS)

    Mita, Yoh; Kuronuma, Ryoichi; Inoue, Masanori; Sasaki, Shoichiro; Miyamoto, Yoshinobu

    2004-01-01

    The characteristic green photoluminescence emission and related phenomena in Pb-doped, molecular-beam-epitaxy (MBE)-grown ZnSe crystal layers were investigated to explore the nature of the center responsible for the green emission. The intensity of the green emission showed a distinct nonlinear dependence on excitation intensity. Pb-diffused polycrystalline ZnSe was similarly examined for comparison. The characteristic green emission has been observed only in MBE-grown ZnSe crystal layers with moderate Pb doping. The results of the investigations on the growth conditions, luminescence, and related properties of the ZnSe crystal layers suggest that the green emission is due to isolated Pb replacing Zn and surrounded with regular ZnSe lattice with a high perfection

  20. Study of optical properties of vacuum evaporated carbon nanotube containing Se80Te16Cu4 thin films

    Science.gov (United States)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2016-08-01

    Thin films of Se80Te16Cu4 glassy alloy and 3 wt.% of carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composite were deposited on clean glass substrate by thermal evaporation technique. The scanning electron microscope and energy dispersive x-ray analysis were performed to investigate the surface morphology and elemental composition of as synthesised samples. The reflectance and transmittance spectra of as-deposited thin films were recorded (200-1100 nm) by using UV/VIS/NIR spectrophotometer. The optical band gap and optical constants such as absorption coefficient (α), refractive index (n) and extinction coefficient (k) of Se80Te16Cu4 and 3 wt.% CNTs-Se80Te16Cu4 glassy composite thin films were calculated. It is observed that optical properties alter due to CNTs incorporation in Se80Te16Cu4 glassy alloy. Effect on optical properties due to CNTs incorporation can be explained in terms of concentration of unsaturated bonds/defects in the localised states.

  1. Polytypism in ZnS, ZnSe, and ZnTe: First-principles study

    KAUST Repository

    Boutaiba, F.; Belabbes, Abderrezak; Ferhat, M.; Bechstedt, F.

    2014-01-01

    We report results of first-principles calculations based on the projector augmented wave (PAW) method to explore the structural, thermodynamic, and electronic properties of cubic (3C) and hexagonal (6H, 4H, and 2H) polytypes of II-VI compounds: ZnS, ZnSe, and ZnTe. We find that the different bond stacking in II-VI polytypes remarkably influences the resulting physical properties. Furthermore, the degree of hexagonality is found to be useful to understand both the ground-state properties and the electronic structure of these compounds. The resulting lattice parameters, energetic stability, and characteristic band energies are in good agreement with available experimental data. Trends with hexagonality of the polytype are investigated.

  2. Polytypism in ZnS, ZnSe, and ZnTe: First-principles study

    KAUST Repository

    Boutaiba, F.

    2014-06-23

    We report results of first-principles calculations based on the projector augmented wave (PAW) method to explore the structural, thermodynamic, and electronic properties of cubic (3C) and hexagonal (6H, 4H, and 2H) polytypes of II-VI compounds: ZnS, ZnSe, and ZnTe. We find that the different bond stacking in II-VI polytypes remarkably influences the resulting physical properties. Furthermore, the degree of hexagonality is found to be useful to understand both the ground-state properties and the electronic structure of these compounds. The resulting lattice parameters, energetic stability, and characteristic band energies are in good agreement with available experimental data. Trends with hexagonality of the polytype are investigated.

  3. Photoconductivity of Se85-xTe15Hgx thin films

    International Nuclear Information System (INIS)

    Chaudhary, Neetu; Bahishti, Adam A.; Zulfequar, M.

    2012-01-01

    The photoconductive properties such as dark conductivity, steady state and transient characteristics of a-Se 85-x Te 15 Hg x thin films, prepared by thermal vacuum evaporation technique have been studied in the temperature range 312-380 K. Analysis of data shows that the activation energy of dark current is greater as compared to the activation energy of photocurrent. The activation energy increases at higher concentration of Hg which shows that the defect density of states decreases. Analysis of intensity dependent photoconductivity shows that the bimolecular recombination is predominant. The transient photoconductivity shows that the carrier lifetime decreases with the increase in Hg concentration and increases at higher concentration of Hg. This decrease is due to the transition trapping process. Further the photosensitivity and carrier lifetime increases at higher concentration of Hg which also confirms that the density of defect states decreases.

  4. Structural, electronic and optical properties of AgXY{sub 2}(X = Al, Ga, In and Y = S, Se, Te)

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Saeed; Din, Haleem Ud [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Ouahrani, T. [Laboratoire de Physique Théorique, B.P. 119, Université de Tlemcen, Tlemcen 13000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, Mascara 29000 (Algeria); Naeemullah [Department of Physics, G.D.C. Darra Adam Khel, F.R. Kohat, KPK (Pakistan); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2014-12-25

    Highlights: • The compounds are studied by FP-LAPW method within mBJ approximation. • All of the studied materials show isotropic behavior. • All the compounds show direct band gap nature. • Bonding nature is mostly covalent among the studied compounds. • High absorption peaks and reflectivity ensures there utility in optoelectronic devices. - Abstract: The structural, electronic and optical properties of the ternary semiconducting compounds AgXY{sub 2} (X = Al, Ga, In and Y = S, Se, Te) in Heusler and chalcopyrite crystal phases have been investigated using the density functional theory (DFT) based on the full potential linear augmented plane wave (FP-LAPW) method. The calculated lattice constant and band gap values for AgXY{sub 2} in chalcopyrite phase are in good agreement with the available experimental data. Band structure calculations are performed using modified Becke–Johnson (mBJ) method which match closely with experimental data and yield better band gaps rather than those obtained by using generalized gradient approximation (GGA) and Engel–Vosko generalized gradient approximation (EV–GGA). Decrease in band gap is observed by changing cations X and Y from the top to bottom of periodic table. Chemical bonding trends are predicted through charge density plots and quantified by Bader’s analysis. Optical properties reveal that these compounds are suitable candidates for optoelectronic devices in the visible and ultraviolet (UV) regions.

  5. Topological surface states of Bi{sub 2}Te{sub 2}Se are robust against surface chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Conor R.; Sahasrabudhe, Girija; Kushwaha, Satya Kumar; Cava, Robert J.; Schwartz, Jeffrey [Department of Chemistry, Princeton University, Princeton, NJ (United States); Xiong, Jun [Department of Physics, Princeton University, Princeton, NJ (United States)

    2014-12-01

    The robustness of the Dirac-like electronic states on the surfaces of topological insulators (TIs) during materials process-ing is a prerequisite for their eventual device application. Here, the (001) cleavage surfaces of crystals of the topological insulator Bi{sub 2}Te{sub 2}Se (BTS) were subjected to several surface chemical modification procedures that are common for electronic materials. Through measurement of Shubnikov-de Hass (SdH) oscillations, which are the most sensitive measure of their quality, the surface states of the treated surfaces were compared to those of pristine BTS that had been exposed to ambient conditions. In each case - surface oxidation, deposition of thin layers of Ti or Zr oxides, or chemical modification of the surface oxides - the robustness of the topological surface electronic states was demonstrated by noting only very small changes in the frequency and amplitude of the SdH oscillations. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Optical properties change in laser-induced Te/As{sub 2}Se{sub 3} chalcogenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Mukta; Naik, Ramakanta [Utkal University, Department of Physics, Bhubaneswar (India)

    2016-10-15

    In the present work, we report the change in optical parameters due to the deposition and photo-induced diffusion of Te layer into the chalcogenide As{sub 2}Se{sub 3} film. The photo-diffusion creates a solid solution of As-Se-Te which has potential application in optical devices. The Te/As{sub 2}Se{sub 3} bilayer films prepared by thermal evaporation technique were studied by various experimental techniques. The photo-diffusion of Te into As{sub 2}Se{sub 3} matrix was done by 532-nm laser irradiation. The structure of the As{sub 2}Se{sub 3}, as-prepared and irradiated Te/As{sub 2}Se{sub 3} films was studied by X-ray diffraction which were amorphous in nature. The presence of all the elements was checked by energy-dispersive X-ray analysis, and the optical transmission spectra were recorded by Fourier transform infrared spectrometer. The optical band gap is reduced by the deposition and diffusion of Te into As{sub 2}Se{sub 3} film which is due to the increase in density of defect states in the gap region. The transmission is decreased, whereas the absorption efficiency is increased with the increase in disorderness. The X-ray photoelectron spectroscopy carried out on these films gives information about the bonding change due to the photo-diffusion process. Therefore, this is an important result which will open up new directions for the application of this material in semiconducting devices. (orig.)

  7. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Bacaksiz, C., E-mail: cihanbacaksiz@iyte.edu.tr [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Senger, R.T. [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Sahin, H. [Department of Photonics, Izmir Institute of Technology, 35430 Izmir (Turkey)

    2017-07-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  8. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    International Nuclear Information System (INIS)

    Bacaksiz, C.; Senger, R.T.; Sahin, H.

    2017-01-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  9. Explorations of new phases in the Ga(III)/In(III)-Mo(VI)-Se(IV)/Te(IV)-O systems.

    Science.gov (United States)

    Kong, Fang; Hu, Chun-Li; Hu, Ting; Zhou, Yong; Mao, Jiang-Gao

    2009-07-07

    Systematic explorations of new phases in the Ga(III)/In(III)-Mo(VI)-Se(IV)/Te(IV)-O systems by hydrothermal syntheses or solid-state reactions at high-temperature led to four new quaternary compounds, namely, Ga(2)MoQ(2)O(10) (Q = Se, Te), In(2)Mo(2)Se(2)O(13)(H(2)O) and In(2)MoTe(2)O(10). Ga(2)MoQ(2)O(10) (Q = Se, Te) are isostructural and their structures feature a 3D network of gallium selenite/tellurite with 12-member ring tunnels along b-axis, the distorted MoO(6) octahedra are attached on the wall of the above tunnels. The structure of In(2)Mo(2)Se(2)O(13)(H(2)O) features a new pillared-layered architecture composed of 2D indium(III) selenite layers that are interconnected by Mo(2)O(10) dimers, forming 8-membered ring tunnels along the b-axis. The structure of In(2)MoTe(2)O(10) features a 2D indium oxide layer formed by corner- and edge-sharing InO(6) and InO(7) polyhedra with MoO(4) tetrahedra and TeO(n) (n = 4, 5) polyhedra hanging on both sides of the layer, there are weak interlayer Te-O bonds of 2.512 A. Results of optical diffuse reflectance spectrum measurements indicate that all four compounds are insulators, which are in agreement with results of band structure calculations based on DFT methods.

  10. Crystal structure and transport properties of Pd5HgSe

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Vymazalová, A.; Drábek, M.; Navrátil, Jiří; Plecháček, T.; Drahokoupil, Jan

    2012-01-01

    Roč. 14, č. 10 (2012), s. 1476-1479 ISSN 1293-2558 R&D Projects: GA ČR GAP108/10/1315 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : Pd5HgSe * Pd-Hg-Se system * crystal structure Subject RIV: CA - Inorganic Chemistry Impact factor: 1.671, year: 2012

  11. Enhancing the blue shift of SHG signal in GaSe:B/Ce crystal

    Science.gov (United States)

    Karatay, Ahmet; Yuksek, Mustafa; Ertap, Hüseyin; Elmali, Ayhan; Karabulut, Mevlut

    2018-02-01

    The influence of Ce3+ on the wavelength of second harmonic generation (SHG) signal in boron doped GaSe crystals have been investigated. We found that by substitution of Ce3+ with B3+, SHG signal shifted to lower wavelength. In addition, the nonlinear absorption (NA) properties and ultrafast dynamics of pure, 1 at.% B3+ and 0.5 at.% B3++ 0.5 at.% Ce3+ doped GaSe crystals have been studied by open aperture Z-scan and ultrafast pump probe spectroscopy techniques. From the open aperture Z-scan experiments we observed that all of the crystals showed nonlinear absorption (NA). However, pump-probe experiments revealed that when GaSe crystal is doped, the NA signal turns into a bleaching signal with different lifetimes depending on the type and concentration of the dopant atoms.

  12. Isotopic equilibrium constants of the deuterium exchange between HDO and H2S, H2Se and H2Te

    International Nuclear Information System (INIS)

    Marx, D.

    1959-11-01

    We have determined experimentally the equilibrium constant K of each of the following isotope exchanges: SH 2 + OHD ↔ SHD + OH 2 ; SeH 2 + OHD ↔ SeHD + OH 2 ; TeH 2 + OHD ↔ TeHD + OH 2 . In gaseous phase, statistical thermodynamics leads to the expression: K (Z OHD x Z RH 2 )/(Z OH 2 x Z RHD ) x e W/T (R being the elements S, Se or Te). Z, the partition functions, have been calculated and, through our experimental results, the constant W has been determined. Having obtained W, the equilibrium constant K has been calculated for a series of temperatures. (author) [fr

  13. Crystal growth and characterization of bulk Sb2Te3 topological insulator

    Science.gov (United States)

    Sultana, Rabia; Gurjar, Ganesh; Patnaik, S.; Awana, V. P. S.

    2018-04-01

    The Sb2Te3 crystals are grown using the conventional self flux method via solid state reaction route, by melting constituent elements (Sb and Te) at high temperature (850 °C), followed by slow cooling (2 °C/h). As grown Sb2Te3 crystals are analysed for various physical properties by x-ray diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) coupled with Energy Dispersive x-ray Spectroscopy (EDAX) and electrical measurements under magnetic field (6 Tesla) down to low temperature (2.5 K). The XRD pattern revealed the growth of synthesized Sb2Te3 sample along (00l) plane, whereas the SEM along with EDAX measurements displayed the layered structure with near stoichiometric composition, without foreign contamination. The Raman scattering studies displayed known ({{{{A}}}1{{g}}}1, {{{{E}}}{{g}}}2 and {{{{A}}}1{{g}}}2) vibrational modes for the studied Sb2Te3. The temperature dependent electrical resistivity measurements illustrated the metallic nature of the as grown Sb2Te3 single crystal. Further, the magneto—transport studies represented linear positive magneto-resistance (MR) reaching up to 80% at 2.5 K under an applied field of 6 Tesla. The weak anti localization (WAL) related low field (±2 Tesla) magneto-conductance at low temperatures (2.5 K and 20 K) has been analysed and discussed using the Hikami—Larkin—Nagaoka (HLN) model. Summarily, the short letter reports an easy and versatile method for crystal growth of bulk Sb2Te3 topological insulator (TI) and its brief physical property characterization.

  14. Crystal structure of RbCe(SeO4)2 · 5H2O

    International Nuclear Information System (INIS)

    Ovanesyan, S.M.; Iskhakova, L.D.; Trunov, V.K.

    1987-01-01

    RbTR(SeO 4 ) 2 x5H 2 O TR=La-Pr are synthesized. Crystal structure of RbCe(SeO 4 ) 2 x5H 2 O is studied. Monoclinic unit parameters are: a=7,200(2), b=8,723(1), c=19,258(6) A, Β=90,88(2), ρ (calc) =3,304 sp.gr. P2 1 /c. Within the structure the Ce nine vertex cages are united by Se(1)- and Se(2)-tetrahedrons in (Ce(SeO 4 ) 2 (H 2 O) 5 ) 2 ∞ n- layers. Some crystal structure regularities of the laminated MTR(EO 4 ) 2 xnH 2 O (M=NH 4 ,K,Rb,Cs; TR=La-Ln, E=S,Se) are considered

  15. Electric properties of semi-insulating crystals CdTe:Cl

    International Nuclear Information System (INIS)

    Arkadyeva, E.N.; Matveev, O.A.

    1977-01-01

    Hall effect and conductivity measurement were carried out on chlorine doped semi-insulating CdTe crystals, of p and n electric type. In p type crystals the depth of the dominating level was determined (+0.7eV) as well as the concentration of associated centres (10 13 -10 14 cm -3 ). The mobility values are limited by a process of diffusion on heterogeneities

  16. Heat treatment and thickness-dependent electrical study of Se{sub 50}Te{sub 20}S{sub 30} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elrahman, M.I.; Hafiz, M.M.; Qasem, Ammar; Abdel-Rahim, M.A. [Assiut University, Physics Department, Faculty of Science, Assiut (Egypt)

    2016-08-15

    Chalcogenide Se{sub 50}Te{sub 20}S{sub 30} thin film of different thickness was deposited using thermal evaporation technique. The thermogram of the chalcogenide bulk Se{sub 50}Te{sub 20}S{sub 30} was obtained using a differential scanning calorimetry (DSC) with heating rate of 7.5 K/min. The glass transition temperature T{sub g}, crystallization temperature T{sub c} and peak crystallization temperature T{sub p} were identified. The X-ray diffraction (XRD) examination indicates the amorphous nature of the as-deposited film and polycrystalline structure of the thermal annealed ones. The dark electrical resistivity (ρ) measurements were taken in temperature range (300-500 K) and thickness range (200-450 nm). Analysis of the electrical resistivity results revealed two types of conduction mechanisms: conduction due to extended states in the temperature range (T > T{sub c}) and variable range hopping in the temperature range (T < T{sub c}). The effect of the heat treatment and thickness on the density of localized states at the Fermi level N(E{sub F}) and hopping parameters were studied. (orig.)

  17. Effect of lattice disorder on the thermal conductivity of ZnBeSe, ZnMgSe and ZnBeMgSe crystals

    International Nuclear Information System (INIS)

    Strzałkowski, K.

    2015-01-01

    Zn 1−x−y Be x Mg y Se mixed crystals investigated in this work were grown from the melt by the high pressure high temperature modified Bridgman method in the range of composition 0 < x,y < 0.33. Photopyroelectric (PPE) calorimetry in the back (BPPE) and front (FPPE) configuration was applied for thermal investigation of solid samples. The thermal diffusivity and effusivity of investigated crystals were derived from the experimental data. Since dynamic thermal parameters are connected with each other, thermal conductivity of the specimens was calculated from theoretical dependencies between them. The influence of the beryllium (x) and magnesium (y) content on thermal properties of these crystals have been presented and discussed. Order-disorder effects observed for these materials previously have been also taken into account. Finally, thermal diagrams, i.e. thermal conductivity versus composition were presented and discussed applying model given by Sadao Adachi. - Highlights: • Investigated II–VI crystals were obtained by a high pressure modified Bridgman method. • A complete thermal characterization of Zn 1−x−y Be x Mg y Se semiconductors was carried out. • The effect of lattice disorder on thermal properties was presented and discussed. • Obtained data were analyzed applying lattice thermal conductivity model. • Contribution to thermal resistivity arising from lattice disorder was calculated

  18. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    Science.gov (United States)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  19. Phonons of single quintuple Bi 2 Te 3 and Bi 2 Se 3 films and bulk materials

    KAUST Repository

    Cheng, Wei; Ren, Shang-Fen

    2011-01-01

    Phonons of single quintuple films of Bi2Te3 and Bi2Se3 and corresponding bulk materials are calculated in detail by MedeA (a trademark of Materials Design) and Vienna ab initio simulation package (VASP). The calculated results with and without spin-orbit couplings are compared, and the important roles that the spin-orbit coupling plays in these materials are discussed. A symmetry breaking caused by the anharmonic potentials around Bi atoms in the single quintuple films is identified and discussed. The observed Raman intensity features in Bi 2Te3 and Bi2Se3 quintuple films are explained. © 2011 American Physical Society.

  20. Physicochemical properties of new As2Se3–Ag4SSe–CdTe glasses

    International Nuclear Information System (INIS)

    Aljihmani, Lilia; Vassilev, Venceslav; Hristova-Vasileva, Temenuga; Fidancevska, Emilija

    2009-01-01

    Chalcogenide glasses from the As 2 Se 3 –Ag 4 SSe–CdTe system were synthesized. The basic physicochemical parameters such as density (d), microhardness (HV) and the temperatures glass transition Tg were measured. Compactness (C) and some thermomechanical characteristics such as volume (Vh) and formation energy (Eh) of micro-voids in the glassy network, as well as the module of elasticity (E) were calculated. A correlation between the composition and properties of the As 2 Se 3 –Ag 4 SSe–CdTe glasses was established and comprehensively discussed. Keywords: chalcogenide glasses, density, microhardness, compactness, elasticity modulus, thermomechanical characteristics

  1. Millimeter wave absorption by confined acoustic modes in CdSe/CdTe core-shell quantum dots

    International Nuclear Information System (INIS)

    Liu, T-M; Lu, J-Y; Kuo, C-C; Wen, Y-C; Lai, C-W; Yang, M-J; Chou, P-T; Murray, D B; Saviot, L; Sun, C-Kuang

    2007-01-01

    Taking advantage of the specific core-shell charge separation structure in the CdSe/CdTe core-shell Type-II quantum dots (QDs), we experimentally observed the resonant-enhanced dipolar interaction between millimeter-wave (MMW) photons and their corresponding (l = 1) confined acoustic phonons. With proper choice of size, the absorption band can be tuned to desired frequency of MMW imaging. Exploiting this characteristic absorption, in a fiber-scanned MMW imaging system, we demonstrated the feasibility of CdSe/CdTe QDs as the contrast agents of MMW imaging

  2. Detection of current-induced spin polarization in BiSbTeSe{sub 2} toplogical insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Ghatak, Subhamoy; Taskin, Alexey; Ando, Yoichi [Institute of Physics II, University of Cologne (Germany); Ando, Yuichiro [Department of Electronic Science and Engineering, Kyoto University (Japan)

    2016-07-01

    Topological insulators (TIs) are a class of quantum matter which possess spin-momentum-locked Dirac Fermions on the surfaces. Due to the spin-momentum locking, spin polarization will be induced when a charge current flows through the surface of a TI. Such spin polarization can be detected by using a ferromagnetic tunneling contact as a detector. In this talk, we present our results measured in devices fabricated from BiSbTeSe{sub 2} flakes. Spin signals were observed in both n-type and p-type BiSbTeSe{sub 2} samples.

  3. Phonons of single quintuple Bi 2 Te 3 and Bi 2 Se 3 films and bulk materials

    KAUST Repository

    Cheng, Wei

    2011-03-10

    Phonons of single quintuple films of Bi2Te3 and Bi2Se3 and corresponding bulk materials are calculated in detail by MedeA (a trademark of Materials Design) and Vienna ab initio simulation package (VASP). The calculated results with and without spin-orbit couplings are compared, and the important roles that the spin-orbit coupling plays in these materials are discussed. A symmetry breaking caused by the anharmonic potentials around Bi atoms in the single quintuple films is identified and discussed. The observed Raman intensity features in Bi 2Te3 and Bi2Se3 quintuple films are explained. © 2011 American Physical Society.

  4. Highly Enhanced Fluorescence of CdSeTe Quantum Dots Coated with Polyanilines via In-Situ Polymerization and Cell Imaging Application.

    Science.gov (United States)

    Xue, Jingjing; Chen, Xinyi; Liu, Shanglin; Zheng, Fenfen; He, Li; Li, Lingling; Zhu, Jun-Jie

    2015-09-02

    The polyaniline (PAN)-coated CdSeTe quantum dots (QDs) were prepared by in situ polymerization of aniline on the surface of CdSeTe QDs. The PAN-coated CdSeTe QDs has a tremendously enhanced fluorescence (∼40 times) and improved biocompatibility compared to the uncoated CdSeTe QDs. The fluorescence intensity of the PAN-coated CdSeTe QDs can be adjusted by controlling the construction parameters of the PAN shell. The kinetics of the in situ controllable polymerization process was studied by varying the temperature, and the apparent activation energy of polymerization was estimated. With the same method, a series of the PAN derivatives were also tested to coat the CdSeTe QDs in this study. All the QDs showed a significant enhancement of the fluorescence intensity and better biocompatibility. The significantly enhanced fluorescence can provide highly amplified signal for luminescence-based cell imaging.

  5. Effect of Sn additive on the structure and crystallization kinetics in Ge–Se alloy

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elrahman, M.I., E-mail: mostafaia11@yahoo.com; Hafiz, M.M.; Abdelraheem, A.M.; Abu-Sehly, A.A.

    2016-08-05

    The structure of Ge{sub 20}Se{sub 80−x}Snx glassy alloys and crystallization phases are identified using the X-ray diffraction (XRD) and Scanning Electron Microscope (SEM). The glass transition kinetics and the crystallization mechanism of the system are studied using Differential Scanning Calorimeter (DSC) under non-isothermal condition. The results reveal that glass transition temperature (Tg) increases with increasing Sn content which is attributed to the increase in the coordination number. The increase of the glass transition activation energy (Eg) with increasing Sn content is attributed to the decrease in the internal energy of the system as Sn increases. The compositional dependence of both glass forming ability and thermal stability are studied. From the experimental data, the thermal stability parameter (S) is found to be maximum for Ge{sub 20}Se{sub 78}Sn{sub 2} alloy, which indicates that this alloy is thermally more stable in the composition range under investigation. The effect of composition on the crystallization mechanism is discussed using different kinetic models. The crystallization activation energy (Ec) decreases with increasing Sn. This is attributed to the addition of Sn increases the tendency of crystallization. The calculated values of Avrami exponent (n) indicates the crystallization process occurs in one-and two dimensions for Sn is less than or equals 12 at%, respectively. - Highlights: • Glass and crystallization transitions in Ge{sub 20}Se{sub 80−x}Sn{sub x} candidate for devices. • The addition of Sn increases the tendency of Ge-Se alloy to crystallization. • The glass forming ability and thermal stability increase as Sn decreases. • The dimension of the crystals growth is one or two depending on the Sn content.

  6. Effect of deviation from stoichiometry on the nature of shallow acceptor states in CdTe crystals

    International Nuclear Information System (INIS)

    Agrinskaya, N.V.; Shashkova, V.V.

    1988-01-01

    Photoconductivity and photoluminescence spectra in the region of donor-acceptor recombination of pure CdTe crystals, grown under conditions of different deviations from stoichiometry are investigated. It is shown that the predominant type of minor acceptors in n-type crystals (with Cd excess) differs from acceptors in p-type crystals (with Te excess). Residual acceptors replacing Te(P, As) prevail in n-type crystals and acceptors replacing Cd(Li, Na) prevail in p-type crystals. As a result of p-type crystal annealing a change of the type of prevailing aceptors accurs in Cd pairs (bands linked with P, As prevail) which testifies to the residual impurity reconstruction in Cd and Te sublattices

  7. Stellar laboratories . IX. New Se v, Sr iv-vii, Te vi, and I vi oscillator strengths and the Se, Sr, Te, and I abundances in the hot white dwarfs G191-B2B and RE 0503-289

    Science.gov (United States)

    Rauch, T.; Quinet, P.; Knörzer, M.; Hoyer, D.; Werner, K.; Kruk, J. W.; Demleitner, M.

    2017-10-01

    Context. To analyze spectra of hot stars, advanced non-local thermodynamic equilibrium (NLTE) model-atmosphere techniques are mandatory. Reliable atomic data is crucial for the calculation of such model atmospheres. Aims: We aim to calculate new Sr iv-vii oscillator strengths to identify for the first time Sr spectral lines in hot white dwarf (WD) stars and to determine the photospheric Sr abundances. To measure the abundances of Se, Te, and I in hot WDs, we aim to compute new Se v, Te vi, and I vi oscillator strengths. Methods: To consider radiative and collisional bound-bound transitions of Se v, Sr iv - vii, Te vi, and I vi in our NLTE atmosphere models, we calculated oscillator strengths for these ions. Results: We newly identified four Se v, 23 Sr v, 1 Te vi, and three I vi lines in the ultraviolet (UV) spectrum of RE 0503-289. We measured a photospheric Sr abundance of 6.5+ 3.8-2.4× 10-4 (mass fraction, 9500-23 800 times solar). We determined the abundances of Se (1.6+ 0.9-0.6× 10-3, 8000-20 000), Te (2.5+ 1.5-0.9× 10-4, 11 000-28 000), and I (1.4+ 0.8-0.5× 10-5, 2700-6700). No Se, Sr, Te, and I line was found in the UV spectra of G191-B2B and we could determine only upper abundance limits of approximately 100 times solar. Conclusions: All identified Se v, Sr v, Te vi, and I vi lines in the UV spectrum of RE 0503-289 were simultaneously well reproduced with our newly calculated oscillator strengths. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. Full Tables A.15 to A.21 are only available via the German Astrophysical Virtual Observatory (GAVO) service TOSS (http://dc.g-vo.org/TOSS).

  8. Fundamental optical absorption edge in MnGa2Te4 single crystals

    International Nuclear Information System (INIS)

    Medvedkin, G.A.; Rud, Yu.V.; Tairov, M.A.

    1988-01-01

    A study is made of the optical properties of oriented MnGa 2 Te 4 crystals in the region of the fundamental absorption edge. The energy gap width for the temperatures 77, 300, and 370 K is determined to be E G = 1.635, 1.52, and 1.50 eV. The spectral response α(ℎω/2π) is found to follow Urbach's rule thoughout the temperature range studied, the slope of the absorption edge remaining constant (α = 10 2 cm -1 ). Crystal annealing with subsequent rapid cooling results in a shift of the absorption edge longward by 25 meV with the exponential form of α(ℎω/2π) prevailing over the range T = 77 to 370 K. An analysis shows the optical absorption in the region of the fundamental edge to be a sum of the effects coming from the density-of-states tails, local scattering centers associated with a high vacancy concentration, and electron-phonon interaction. Optical linear dichroism of the absorption edge of MnGa 2 Te 4 single crystals with pseudotetragonal structure is revealed and studied. The single crystals are established to be optically uniaxial, their optical transmission dichroism being negative. It is shown that the minimal direct optical transitions in MnGa 2 Te 4 are allowed in the E parallel c polarization in the temperature range 77 to 370 K, the crystal-field splitting of the valence band increasing with temperature. (author)

  9. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    International Nuclear Information System (INIS)

    Gross, Dieter Konrad Michael

    2013-01-01

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  10. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  11. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  12. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition

    Science.gov (United States)

    Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2015-07-01

    Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ~21% and 3-4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications.

  13. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W; Decker, Ulrich; Rauschenbach, Bernd

    2015-01-01

    Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ∼21% and 3–4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications. (paper)

  14. To study the linear and nonlinear optical properties of Se-Te-Bi-Sn/PVP (polyvinylpyrrolidone) nanocomposites

    Science.gov (United States)

    Tyagi, Chetna; Yadav, Preeti; Sharma, Ambika

    2018-05-01

    The present work reveals the optical study of Se82Te15Bi1.0Sn2.0/polyvinylpyrrolidone (PVP) nanocomposites. Bulk glasses of chalcogenide was prepared by well-known melt quenching technique. Wet chemical technique is proposed for making the composite of Se82Te15Bi1.0Sn2.0 and PVP polymer as it is easy to handle and cost effective. The composites films were made on glass slide from the solution of Se-Te-Bi-Sn and PVP polymer using spin coating technique. The transmission as well as absorbance is recorded by using UV-Vis-NIR spectrophotometer in the spectral range 350-700 nm. The linear refractive index (n) of polymer nanocomposites are calculated by Swanepoel approach. The linear refractive index (n) PVP doped Se82Te15Bi1.0Sn2.0 chalcogenide is found to be 1.7. The optical band gap has been evaluated by means of Tauc extrapolation method. Tichy and Ticha model was utilized for the characterization of nonlinear refractive index (n2).

  15. Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems : Ab initio study

    NARCIS (Netherlands)

    Govaerts, K.; Sluiter, M.H.F.; Partoens, B.; Lamoen, D.

    2014-01-01

    In order to account explicitly for the existence of long-periodic layered structures and the strong structural relaxations in the most common binary and ternary alloys of the Bi-Sb-Te-Se system, we have developed a one-dimensional cluster expansion (CE) based on first-principles electronic structure

  16. Influence of Bi, Se and Te additions on the formation temperature of MgB2

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Andersen, Niels Hessel; Pallewatta, P. G. Asanka Pramod

    2012-01-01

    The formation of the MgB2 superconducting compound from a mixture of Mg and amorphous B powders with various low melting point metals (Bi, Se and Te) was studied in situ by means of high-energy (synchrotron) x-ray diffraction in wires with a composite Cu/Nb sheath. In comparison with an undoped s...

  17. A first-principles study of II-VI (II = Zn; VI = O{,} S{,} Se{,} Te) semiconductor nanostructures

    NARCIS (Netherlands)

    Azpiroz, Jon M.; Infante, Ivan; Lopez, Xabier; Ugalde, Jesus M.; De Angelis, Filippo

    2012-01-01

    We present a systematic investigation of the structural{,} electronic and optical properties of wurtzite-like ZnX (X = O{,} S{,} Se{,} Te) nanostructures at the DFT/TDDFT level of theory. To provide a direct comparison with the experiment{,} realistic 1.0-1.5 nm quantum dots have been built up from

  18. Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Kühnelt, M.; Langbein, Wolfgang Werner

    1998-01-01

    We have measured the absolute values of the second-harmonic generation (SHG) coefficient \\d\\ for the zinc-blende II-VI semiconductors ZnTe, ZnSe, and ZnS at room temperature. The investigated spectral region of the fundamental radiation lambda(F) ranges from 520 to 1321 nm using various pulsed...

  19. Biogenic SeNPs from Bacillus mycoides SelTE01 and Stenotrophomonas maltophilia SelTE02: Characterization with reference to their associated organic coating

    Science.gov (United States)

    Piacenza, Elena; Bulgarini, Alessandra; Lampis, Silvia; Vallini, Giovanni; Turner, Raymond J.

    2017-08-01

    The exploitation of biological systems (i.e. plants, fungi and bacteria) for the production of nanomaterials relies on their ability to bioconvert toxic metal(loid) ions into their less toxic and bioavailable elemental states forming mainly nanoparticles (NPs) or nanorods (NRs). Further, these methods of nanomaterial production are nowadays recognized as eco-friendly alternatives to the chemical synthesis processes. A common feature among the so-called biogenic nanomaterials is the presence of an organic layer surrounding them. However, we are just learning the existing relation between biogenic nanostructures and their organic material. Our work is focused on the study of bacterial strains for the production of selenium nanoparticles (SeNPs) as end product of selenite (SeO32 -) bioconversion. In this context, our previous reports described the ability of two bacteria, namely Bacillus mycoides SelTE01 and Stenotrophomonas maltophilia SelTE02, to generate SeNPs, which were surrounded by organic material. Here, the potential role of this organic material as stabilizing agent of SeNPs was investigated altering both the bacteria cells culturing and the SeNPs extraction procedure, in order to understand the interaction between these two elements in suspension. As a result, SeNPs produced by both bacterial strains showed the tendency to aggregate when subjected to the treatments tested, suggesting an involvement of the surrounding organic material in their stabilization in suspension.

  20. Effect of surface treatment of thermoelectric materials on the properties of thermoelements made from solid solutions of Bi2Te3-Bi2Se3 and Bi2Te3-Sb2Te3 systems

    International Nuclear Information System (INIS)

    Alieva, T.D.; Abdinov, D.Sh.; Salaev, Eh.Yu.

    1981-01-01

    Effect of surface treatment technology of samples of solid solutions of Ei 2 Te 3 -Bi 2 Se 3 and Bi 2 Te 3 -Sb 2 Te 3 systems on their thermoelectric efficiency is studied. Branches of thermoelements have been produced with the help of electroerosion or mechanical cutting of monocrystal ingots of semiconducting solid Bi 2 Te 3 -base solutions. It is shown that in case of the treatment of side surfaces of branches of thermoelements produced of monocrystals of Bi 2 Te 3 base solid solutions their thermoelectrical efficiency grows considerably. Maximum growth of efficiency (approximately 20%) is observed during mechanical grinding of branches surfaces with diamond paste with the following chemical or electrochemical etching [ru

  1. Generalized stacking fault energies, cleavage energies, ionicity and brittleness of Cu(Al/Ga/In)Se2 and CuGa(S/Se/Te)2

    Science.gov (United States)

    Xue, H. T.; Tang, F. L.; Gruhn, T.; Lu, W. J.; Wan, F. C.; Rui, Z. Y.; Feng, Y. D.

    2014-04-01

    We calculate the generalized stacking fault (GSF) energies and cleavage energies γcl of the chalcopyrite compounds CuAlSe2, CuGaSe2, CuInSe2, CuGaS2 and CuGaTe2 using first principles. From the GSF energies, we obtain the unstable stacking fault energies γus and intrinsic stacking fault energies γisf. By analyzing γus and γisf, we find that the \\langle \\bar{{1}}\\,1\\,0\\rangle (1 1 2) direction is the easiest slip direction for these five compounds. Also, for CuInSe2, it is most possible to undergo a dislocation-nucleation-induced plastic deformation along the \\langle \\bar{{1}}\\,1\\,0\\rangle (1 1 2) slip direction. We show that the (1 1 2) plane is the preferable plane for fracture in the five compounds by comparing γcl of the (0 0 1) and (1 1 2) planes. It is also found that both γus and γcl decrease as the cationic or anionic radius increases in these chalcopyrites, i.e. along the sequences CuAlSe2 → CuGaSe2 → CuInSe2 and CuGaS2 → CuGaSe2 → CuGaTe2. Based on the values of the ratio γcl/γus, we discuss the brittle-ductile properties of these compounds. All of the compounds can be considered as brittle materials. In addition, a strong relationship between γcl/γus and the total proportion of ionic bonding in these compounds is found.

  2. Spectral response of THM grown CdZnTe crystals

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Harris, F.

    2008-01-01

    The spectral response of several crystals grown by the Traveling Heater Method (THM) were investigated. An energy resolution of 0.98% for a Pseudo Frisch-Grid of 4 × 4 × 9 mm3 and 2.1% FWHM for a coplanar-grid of size 11 × 11 × 5 mm3 were measured using 137Cs-662 keV. In addition a 4% FWHM at 122...

  3. Absorption measurement s in InSe single crystal under an applied electric field

    International Nuclear Information System (INIS)

    Ates, A.; Guerbulak, B.; Guer, E.; Yildirim, T.; Yildirim, M.

    2002-01-01

    InSe single crystal was grown by Bridgman-Stockberger method. Electric field effect on the absorption measurements have been investigated as a function of temperature in InSe single crystal. The absorption edge shifted towards longer wavelengths and decreased of intensity in absorption spectra under an electric field. Using absorption measurements, Urbach energy was calculated under an electric field. Applied electric field caused a increasing in the Urbach energy. At 10 K and 320 K, the first exciton energies were calculated as 1.350 and 1.311 eV for zero voltage and 1.334 and 1.301 eV for electric field respectively

  4. (Li1−xFexOHFeSe Superconductors: Crystal Growth, Structure, and Electromagnetic Properties

    Directory of Open Access Journals (Sweden)

    Guo-Yong Zhang

    2017-06-01

    Full Text Available This review focuses on the growth of high-quality (Li1−xFexOHFeSe single crystals by a hydrothermal method using floating-zone-grown AxFe2−ySe2 (A = K, Rb, and Cs as precursors. The structure, superconductivity, and magnetic behavior of the obtained crystals are highly influenced by the growth conditions, such as time, temperature, and composition. A phase diagram with temperature against the c-lattice constant is summarized including the antiferromagnetic spin density wave, superconducting, and paramagnetic phases.

  5. Growth and characterization of Bi2Se3 crystals by chemical vapor transport

    Directory of Open Access Journals (Sweden)

    W. H. Jiao

    2012-06-01

    Full Text Available Regularly-shaped high-quality Bi2Se3 crystals were grown by a chemical vapor transport using iodine as the transport agent. In addition to exhibiting a characteristic Dirac cone for a topological insulator, the Bi2Se3 crystals show some outstanding properties including additional crystallographic surfaces, large residual resistance ratio (∼10, and high mobility (∼8000 cm2·V−1·s−1. The low-temperature resistivity abnormally increases with applying pressures up to 1.7 GPa, and no superconductivity was observed down to 0.4 K.

  6. Unexpected Ge-Ge contacts in the two-dimensional Ge{sub 4}Se{sub 3}Te phase and analysis of their chemical cause with the density of energy (DOE) function

    Energy Technology Data Exchange (ETDEWEB)

    Kuepers, Michael; Konze, Philipp M.; Maintz, Stefan; Steinberg, Simon [Institute of Inorganic Chemistry, Chair of Solid-State and Quantum Chemistry, RWTH Aachen University (Germany); Mio, Antonio M.; Cojocaru-Miredin, Oana; Zhu, Min; Wuttig, Matthias [I. Physikalisches Institut, RWTH Aachen University (Germany); Mueller, Merlin; Mayer, Joachim [Gemeinschaftslabor fuer Elektronenmikroskopie, RWTH Aachen University (Germany); Luysberg, Martina [Ernst-Ruska-Center, Forschungszentrum Juelich GmbH (Germany); Dronskowski, Richard [Institute of Inorganic Chemistry, Chair of Solid-State and Quantum Chemistry, RWTH Aachen University (Germany); Juelich-Aachen Research Alliance (JARA-HPC), RWTH Aachen University (Germany)

    2017-08-14

    A hexagonal phase in the ternary Ge-Se-Te system with an approximate composition of GeSe{sub 0.75}Te{sub 0.25} has been known since the 1960s but its structure has remained unknown. We have succeeded in growing single crystals by chemical transport as a prerequisite to solve and refine the Ge{sub 4}Se{sub 3}Te structure. It consists of layers that are held together by van der Waals type weak chalcogenide-chalcogenide interactions but also display unexpected Ge-Ge contacts, as confirmed by electron microscopy analysis. The nature of the electronic structure of Ge{sub 4}Se{sub 3}Te was characterized by chemical bonding analysis, in particular by the newly introduced density of energy (DOE) function. The Ge-Ge bonding interactions serve to hold electrons that would otherwise go into antibonding Ge-Te contacts. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. The determination of the surface potential for the CdxHg1-xTe crystals and the V-CdxHg1-xTe and Ni-V-CdxMg1-xTe structures

    International Nuclear Information System (INIS)

    Veliyulin, Eh.I.; Ragimova, R.A.; Mamedov, A.A.

    1996-01-01

    Surface potential of semiconductor crystals n-Cd x Hg 1-x Te (unannealed and annealed in mercury vapors) and of the structures V-Cd x Hg 1-x Te, Ni-V-Cd x Hg 1-x Te has been defined using spectroscopy of weak-field electric reflection. It is shown that a deep penetration of vanadium atoms in near the surface region of the crystal occurs in the structures on the basis of unannealed Cd x Hg 1-x Te. 1 ref.; 4 figs

  8. Electric field influence on exciton absorption of Er doped and undoped InSe single crystals

    International Nuclear Information System (INIS)

    Guerbulak, B; Kundakci, M; Ates, A; Yildirim, M

    2007-01-01

    Undoped InSe and Er doped InSe (InSe:Er) single crystals were grown by using the Stockbarger method. Ingots had no cracks and voids on the surface. The absorption measurements were carried out in InSe and InSe:Er samples for U=0 and U=30 V in the temperature range 10-320 K with a step of 10 K. Electric field effects on excitons are observed in InSe and InSe:Er single crystals. The absorption edge shifted towards longer wavelengths and decreased intensity in absorption spectra under an electric field E≅5.9 kV cm -1 . The applied electric field caused a shifting and a decreasing of intensity in the absorption spectra. The shifting of the absorption edge can be explained on the basis of the Franz-Keldysh effect (FKE) or thermal heating of the sample under the electric field. At 10 and 320 K, the first exciton energies for InSe were calculated as 1.336 and 1.291 eV for zero voltage and 1.331 and 1.280 eV for electric field and InSe:Er as 1.329 and 1.251 eV for zero voltage and 1.318 and 1.248 eV for electric field, respectively

  9. Origin of electronic properties of PbGa2Se4 crystal: Experimental and theoretical investigations

    International Nuclear Information System (INIS)

    Babuka, T.; Kityk, I.V.; Parasyuk, O.V.; Myronchuk, G.; Khyzhun, O.Y.; Fedorchuk, A.O.; Makowska-Janusik, M.

    2015-01-01

    Graphical abstract: In the presented work the structural and electronic properties of the PbGa 2 Se 4 single crystal were investigated experimentally as well as theoretically. The XPS spectra, Urbach’s rule and steepness parameters of PbGa 2 Se 4 single crystal have been investigated for the first time. The quantum chemical calculations were also never performed before for the studied structure. The theoretically obtained data help to explain the properties of material. - Highlights: • Urbach’s rule and steepness parameters for PbGa 2 Se 4 crystals explored for the first time. • Non-reactivity of the PbGa 2 Se 4 surface was established by XPS. • DFT approach shows its efficiency to describe electronic properties of PbGa 2 Se 4 . • Electronic parameters are affected by existence of electron–phonon interaction. - Abstract: The PbGa 2 Se 4 crystal is a promising material for optoelectronic applications. It is caused by coexistence of the large polarized Pb cations and a huge contribution of anharmonic phonon subsystem caused by chalcogenide anions. In the present work the electronic and optical properties of the mentioned material were studied theoretically as well as experimentally by optical and X-ray photoelectron spectroscopy methods. The DFT approach has been used for the quantum chemical electronic properties calculations. Urbach rule and steepness parameters of the PbGa 2 Se 4 crystal have been evaluated for the first time. These parameters and Urbach energies increase with increasing temperature of the samples that is typical for the semiconducting materials. The XPS measurements of the investigated crystal reveal that all the spectral features are originated from core-level states of the constituent elements. Simultaneously these results also confirm non-reactivity of the PbGa 2 Se 4 surface. However, the titled single crystal possesses a number of intrinsic structural defects and vacancies thereby affecting its electronic properties. The

  10. Quality improvement of CdZnTe single crystal by ultrasound processing

    Science.gov (United States)

    Lisiansky, M.; Berner, A.; Korchnoy, V.

    2017-06-01

    Intrinsic defects and contaminations removal from the undoped p-type Cd0.96Zn0.04Te single crystals has been achieved by the ultrasound vibration processing at the room temperature. Surface analysis based on Auger Electron Spectroscopy, Energy Dispersive Spectroscopy, and Scanning Electron Spectroscopy shows a significant reconstruction of the crystal surface after processing, namely, the appearance of numerous "volcano craters" and triangle-shaped defects with a typical size of 0.2-5.0 μm. Elemental analysis of these defects shows that they are Te inclusions emerged on the surface. The regular crystal surface outside the defects also displays a considerable enrichment by Te. Distinct presence of copper is found in both the thin surface layer and in the defects emerged on the surface. The surface reconstruction is associated with a remarkable change in the bulk material properties, electrical (an increase in the resistivity by a factor of ∼6) and optical (an IR transmittance increase). A post-polishing following the ultrasound processing makes the CdZnTe material more stable and reliable for a wide range of device applications.

  11. Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal

    Science.gov (United States)

    Chen, Zhong; Li, Decong; Deng, Shuping; Tang, Yu; Sun, Luqi; Liu, Wenting; Shen, Lanxian; Yang, Peizhi; Deng, Shukang

    2018-06-01

    In this study, n-type Bi-doped single-crystal PbTe thermoelectric materials were prepared by melting and slow cooling method according to the stoichiometric ratio of Pb:Bi:Te = 1-x:x:1 (x = 0, 0.1, 0.15, 0.2, 0.25). The X-ray diffraction patterns of Pb1-xBixTe samples show that all main diffraction peaks are well matched with the PbTe matrix, which has a face-centered cubic structure with the space group Fm 3 bar m . Electron probe microanalysis reveals that Pb content decreases gradually, and Te content remains invariant basically with the increase of Bi content, indicating that Bi atoms are more likely to replace Pb atoms. Thermal analysis shows that the prepared samples possess relatively high thermal stability. Simultaneously, transmission electron microscopy and selected area electron diffraction pattern indicate that the prepared samples have typical single-crystal structures with good mechanical properties. Moreover, the electrical conductivity of the prepared samples improved significantly compared with that of the pure sample, and the maximum ZT value of 0.84 was obtained at 600 K by the sample with x = 0.2.

  12. Density functional/molecular dynamics simulations of nucleus-driven crystallization of amorphous Ge2Sb2Te5

    Energy Technology Data Exchange (ETDEWEB)

    Akola, Jaakko [Department of Physics, Tampere University of Technology (Finland); COMP Centre of Excellence, Department of Applied Physics, Aalto University (Finland); GRSS and PGI-1, Forschungszentrum Juelich (Germany); Kalikka, Janne; Larrucea, Julen [Nanoscience Center, Department of Physics, University of Jyvaeskylae (Finland); Jones, Robert O. [GRSS and PGI-1, Forschungszentrum Juelich (Germany)

    2013-07-01

    Early stages of nucleus-driven crystallization of the prototype phase change material Ge{sub 2}Sb{sub 2}Te{sub 5} have been studied by massively-parallel density functional/molecular dynamics simulations for amorphous samples (460 and 648 atoms) at 500, 600, and 700 K. All systems assumed a fixed cubic seed of 58 atoms and 6 vacancies in order to achieve sub-nanosecond phase transition. Crystallization occurs within 600 ps for the 460-atom system at 600 and 700 K, and signs of crystallization (nucleus growth, percolation) are present in the others. Crystallization is accompanied by an increase in the number of ABAB squares (A: Ge,Sb, B: Te), and atoms of all elements move significantly. The evolution of cavities/vacancies is closely monitored. The existence of Te-Te, Ge-Ge, Ge-Sb, and Sb-Sb (wrong) bonds is an inevitable consequence of rapid crystallization.

  13. Investigation on lattice parameters and superconducting properties in Fe(Te, Se, S) ternary-chalcogen system

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhongnan; Zhang, Huanhuan; Han, Bingling; Yuan, Wenxia, E-mail: wxyuanwz@163.com

    2015-02-15

    Highlights: • A series sample of Fe{sub 1.02}Te{sub 0.85}Se{sub 0.15−x}S{sub x} has been synthesised. • The lattice parameters is basically unchanged with the S doping. • The superconductivity is clearly suppressed with the S substitution of Se. • The solid solubility region of the tetragonal phase in this system is discussed. - Abstract: A series of samples with the nominal compositions Fe{sub 1.02}Te{sub 0.85}Se{sub 0.15−x}S{sub x} (x = 0, 0.0375, 0.075, 0.1125 and 0.15) have been synthesized to study the influence of the S substitution of Se on the lattice parameters and superconducting properties. It has been found that the S substitution basically has no effect on the lattice parameters a and c of the tetragonal phase. However, T{sub c} of Fe{sub 1.02}(Te{sub 0.85}Se{sub 0.15−x}S{sub x}) superconductors clearly decreases with S doping.

  14. Effect of high pressure sintering and annealing on microstructure and thermoelectric properties of nanocrystalline Bi2Te2.7Se0.3 doped with Gd

    Institute of Scientific and Technical Information of China (English)

    Ping Zou; Guiying Xun; Song Wang; Penglei Chen; Fengzhu Huang

    2014-01-01

    Bi2Te2.7Se0.3 of high performance doped with Gd bulk materials was prepared by a high pressure (6.0 GPa) sintering (HPS) method at 593 K, 633 K, 673 K and 693 K. The sample was then annealed for 36 h in a vacuum at 633 K. The phase composition, crystal structure and morphology of the sample were analyzed by X-ray diffraction and scanning electron microscopy. The electric conductivity, Seebeck coefficient, and thermal conductivity aspects of the sample were measured from 298 K to 473 K. The results show that high pressure sintering and the doping with Gd has a great effect on the crystal structure and the thermoelectric properties of the samples. The samples are consisted of nanoparticles before and after annealing, and these nanostructures have good stability at high temperature. HPS together with annealing can improve the TE properties of the sample by decreasing the thermal conductivity of the sample with nanostructures. The maximum ZT value of 0.74 was obtained at 423 K for the sample, which was sintered at 673 K and then annealed at 633 K for 36 h. Compared with the zone melting sample, it was increased by 85%at 423 K. Hence the temperature of the maximum of figure of merit was increased. The results can be applied to the field of thermoelectric power generation materials.

  15. On the role of Pb0 atoms on the nucleation and growth of PbSe and PbTe nanoparticles

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, Domingo I.; Leon-Covian, Lina M. De; Garcia-Gutierrez, Diana F.; Treviño-Gonzalez, M.; Garza-Navarro, M. A.; Sepulveda-Guzman, S.

    2013-01-01

    In this contribution, a nucleation and growth mechanism of PbSe and PbTe nanoparticles are proposed. The formation and growth of PbSe and PbTe nanoparticles during their reaction synthesis were studied and followed using transmission electron microscopy, and their related techniques. In the synthesis method, trioctylphosphine-selenide and telluride were used as the chalcogen precursors, while lead oleate was employed as the lead precursor. Different synthesis conditions were tested to assess the effect of varying the reaction time, lead to chalcogen ratio, reaction temperature, and lead oleate concentration. The synthesized nanoparticles were characterized by means of electron diffraction, energy dispersive X-ray spectroscopy, scanning transmission electron microscopy, and electron energy loss spectroscopy, to obtain information related to their morphology, crystal structure, and composition. The experimental results suggest that the growth of the lead chalcogenide nanoparticles greatly relies on the reduction of Pb 2+ ions to Pb 0 atoms at early reaction times; this reduction of the lead precursor is evidenced by the formation of Pb nanoparticles with sizes between 1 and 3 nm under certain synthesis conditions. These Pb nanoparticles gradually disappear as the reaction progresses, suggesting that the reduced Pb 0 atoms are able to contribute to the growth of the PbSe and PbTe nanoparticles, reaching sizes between 8 and 18 nm. The current results contribute to a better understanding of the nucleation and growth mechanisms of lead chalcogenide nanoparticles, which will enable the definition of more efficient synthesis routes of these types of nanostructures.

  16. On the role of Pb{sup 0} atoms on the nucleation and growth of PbSe and PbTe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, Domingo I., E-mail: domingo.garciagt@uanl.edu.mx; Leon-Covian, Lina M. De; Garcia-Gutierrez, Diana F. [Universidad Autonoma de Nuevo Leon, UANL, Facultad de Ingenieria Mecanica y Electrica, FIME (Mexico); Trevino-Gonzalez, M. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, CIIDIT, Universidad Autonoma de Nuevo Leon, UANL (Mexico); Garza-Navarro, M. A.; Sepulveda-Guzman, S. [Universidad Autonoma de Nuevo Leon, UANL, Facultad de Ingenieria Mecanica y Electrica, FIME (Mexico)

    2013-05-15

    In this contribution, a nucleation and growth mechanism of PbSe and PbTe nanoparticles are proposed. The formation and growth of PbSe and PbTe nanoparticles during their reaction synthesis were studied and followed using transmission electron microscopy, and their related techniques. In the synthesis method, trioctylphosphine-selenide and telluride were used as the chalcogen precursors, while lead oleate was employed as the lead precursor. Different synthesis conditions were tested to assess the effect of varying the reaction time, lead to chalcogen ratio, reaction temperature, and lead oleate concentration. The synthesized nanoparticles were characterized by means of electron diffraction, energy dispersive X-ray spectroscopy, scanning transmission electron microscopy, and electron energy loss spectroscopy, to obtain information related to their morphology, crystal structure, and composition. The experimental results suggest that the growth of the lead chalcogenide nanoparticles greatly relies on the reduction of Pb{sup 2+} ions to Pb{sup 0} atoms at early reaction times; this reduction of the lead precursor is evidenced by the formation of Pb nanoparticles with sizes between 1 and 3 nm under certain synthesis conditions. These Pb nanoparticles gradually disappear as the reaction progresses, suggesting that the reduced Pb{sup 0} atoms are able to contribute to the growth of the PbSe and PbTe nanoparticles, reaching sizes between 8 and 18 nm. The current results contribute to a better understanding of the nucleation and growth mechanisms of lead chalcogenide nanoparticles, which will enable the definition of more efficient synthesis routes of these types of nanostructures.

  17. RGDS-conjugated CdSeTe/CdS quantum dots as near-infrared fluorescent probe: preparation, characterization and bioapplication

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenzhen; Zhang, Qiyi; Huang, Huaying; Ren, Changjing; Pan, Yujin; Wang, Qing; Zhao, Qiang, E-mail: Zhaoqiang@scu.edu.cn [Sichuan University, School of Chemical Engineering (China)

    2016-12-15

    In the experiments, high-quality, water-soluble and near-infrared (NIR)-emitting CdSeTe and CdSeTe/CdS quantum dots (QDs) were successfully prepared. The average size of CdSeTe⁄CdS QDs was 7.68 nm and CdSeTe QDs was 4.33 nm. Arginine-glycine-aspartic-serine acid (RGDS) peptides were linked to CdSeTe/CdS QDs by N-(3-(dimethylamino)propyl)-N′-ehtylcarbodiimide hydrochloride (EDC) and N′-hydroxysuccinimide (NHS). The prepared RGDS-tagged NIR CdSeTe/CdS QDs (denoted as RGDS-CdSeTe/CdS) had an average diameter of 24.83 nm and were used for cancer cell immunofluorescence imaging. The characteristics of RGDS-conjugated CdSeTe/CdS such as morphology, structure, spectra, stability, cytotoxicity, and near-infrared microscopic imaging were investigated in detail. HepG2 cells were incubated with the novel fluorescent probe (RGDS-CdSeTe/CdS), which realized immunofluorescence targeting and imaging. The results reported here open up new perspectives for integrin-targeted near-infrared imaging and may aid in tumor detection including imaging-guided surgery.

  18. Random lasing of microporous surface of Cr2+:ZnSe crystal induced by femtosecond laser

    International Nuclear Information System (INIS)

    Yang, Xianheng; Feng, Guoying; Yao, Ke; Yi, Jiayu; Zhang, Hong; Zhou, Shouhuan

    2015-01-01

    We demonstrate a random lasing emission based on microporous surface of Cr 2+ :ZnSe crystal prepared by femtosecond pulsed laser ablation in high vacuum (below 5 × 10 −4 Pa). The scanning electron microscope results show that there are a mass of micropores with an average size of ∼13 μm and smaller ones with ∼1.2 μm on the surface of Cr 2+ :ZnSe crystal. The adjacent micropore spacing of the smaller micropores ranges from 1 μm to 5 μm. Under 1750 nm excitation of Nd:YAG (355 nm) pumped optical parametric oscillator, a random lasing emission with center wavelength of 2350 nm and laser-like threshold of 0.3 mJ/pulse is observed. The emission lifetime of 2350 nm laser reduces from 800 ns to 30 ns as the pump energy increases above threshold. The emission spectra and decay time of smooth surface, groove and microporous surface of Cr 2+ :ZnSe crystal are contrasted. The optional pump wavelength range is from 1500 nm to 1950 nm, which in accordance with the optical absorption property of Cr 2+ :ZnSe crystal. The peak position of excitation spectra is almost identical to the strongest absorption wavelength

  19. Electrical and photoelectric properties of PbGa2Se4 single crystals

    International Nuclear Information System (INIS)

    Tagiev, B.G.; Tagiev, O.B.; Dzhabbarov, R.B.; Musaeva, N.N.

    1999-01-01

    Thermal dependence of dark current spectral distribution of photocurrent and temperature quenching of photocurrent of PbGa 2 Se 4 single crystals are investigated. Concentrations and mobilities of free charge carriers, concentrations and activation energies of gaps, values of Fermi level and forbidden zone width are calculated [ru

  20. Lithium ions in the van der Waals gap of Bi2Se3 single crystals

    Czech Academy of Sciences Publication Activity Database

    Bludská, Jana; Jakubec, Ivo; Karamazov, S.; Horák, Jaromír; Uher, C.

    2010-01-01

    Roč. 183, č. 12 (2010), s. 2813-2817 ISSN 0022-4596 Institutional research plan: CEZ:AV0Z40320502 Keywords : intercalation * van Der Waals gap * Bi2Se3 crystals Subject RIV: CG - Electrochemistry Impact factor: 2.261, year: 2010

  1. Passive Fe2+ : ZnSe single-crystal Q switch for 3-mu m lasers

    NARCIS (Netherlands)

    Voronov, AA; Kozlovskii, [No Value; Korostelin, YV; Podmar'kov, YP; Polushkin, VG; Frolov, MP

    Passive Q-switching of 3-mu m lasers with the help of a Fe2+ : ZnSe single crystal is demonstrated. The 6-mJ, 50-ns giant pulses are obtained from a 2.9364-mu m Er : YAG laser by using this passive Q switch.

  2. Optical and electrical properties of ZrSe3 single crystals grown by ...

    Indian Academy of Sciences (India)

    Unknown

    The optical band gap ... The indirect as well as direct band gap of ZrSe3 were found to be 1⋅1 eV and 1⋅47 eV, respec- ... solar cell studies have attracted attention of crystal grow- ers. .... shown in figures 1 and 2, it is possible to determine the.

  3. Defect characterization of Ga4Se3S layered single crystals by ...

    Indian Academy of Sciences (India)

    Trapping centres in undoped Ga 4 Se 3 S single crystals grown by Bridgman method were characterized for the first time by thermoluminescence (TL) measurements carried out in the low temperature range of 15−300 K. After illuminating the sample with blue light (∼470 nm) at 15 K, TL glow curve exhibited one peak ...

  4. Optical absorption and Faraday rotation in spin doped Cd1-xHgxSe : Mn crystals

    NARCIS (Netherlands)

    Savchuk, AI; Paranchich, SY; Paranchich, LD; Romanyuk, OS; Andriychuk, MD; Nikitin, PI; Tomlinson, RD; Hill, AE; Pilkington, RD

    1998-01-01

    Optical absorption spectra and the Faraday effect in crystals of Cd1-xHgxSe : Mn have been studied. The studied samples have been characterized abrupt absorption edge and transparency region with high transmission coefficient. The measured values of Verdet constant were considerably larger than in

  5. Frequency and Thermal Behavior of Acoustic Absorption in ɛ-GaSe Crystals

    Science.gov (United States)

    Dzhafarova, S. Z.

    2018-04-01

    The paper presents results of measuring acoustic absorption in ɛ-GaSe crystals. The absorption of a longitudinal wave which propagates normal to the crystal layers, quadratically depends on frequency. However, it does not depend on temperature, i.e. it displays an Akhiezer behavior although its absolute value considerably exceeds the expected. The analysis of the frequency and thermal behavior of absorption of piezoelectric waves propagating along the layers, includes the deduction of contribution made by the interaction between waves and charge carriers. This analysis shows the linear dependence between the lattice absorption of these waves and the frequency. The linear frequency and weak temperature dependences of the acoustic absorption characterize the additional ultra-Akhiezer absorption in glasses. In our case, it can be caused by various polytypes forming in GaSe crystals which differ merely in a mutual arrangement of layers.

  6. X-ray dosimetry of TlGaSe2 single crystals

    International Nuclear Information System (INIS)

    Kerimova, E.M.; Mustafaeva, S.N.; Mamedbeili, S.D.; Jabarov, J.N.; Iskenderova, P.M.; Kazimov, S.B.

    2002-01-01

    TlGaSe 2 compound belongs to group of layered semiconductors of A 3 B 3 C 2 6 -type. Photoelectric and optical properties of TlGaSe 2 single crystals were investigated in detail. Influence of gamma-, electron and neutron radiation on photoelectric properties of TlGaSe 2 single crystals is investigated too. The present work deals with experimental results relative to X-ray dosimetric characteristics of TlGaSe 2 crystals at 300 K. X-ray conductivity and X-ray dosimetric characteristic measurements are carried out in low load resistance regime. The source of X-ray radiation is the installation of X-ray diffraction analysis (URS-55a) with the BCV-2(Cu). Intensity of X-ray radiation (E) is regulated by measurement with current variation in tube at each given value of X-ray radiation dose E (R/min) are measured by crystal dosimeter DRGZ-02. X-ray conductivity coefficients K σ characterising X-ray sensitivity of investigated crystals are determined as the relative change of conductivity under X-ray radiation a per dose. There have been determined values of characteristic coefficients of TlGaSe 2 single crystal X-ray conductivity at different values of accelerating voltage (V a ) on the tube and corresponding doses of X-ray radiation. Analysis of obtained data showed that X-ray conductivity coefficients K σ in studied crystals are regularly decreased (from 0.276 to 0.033) as with the rise of dose (E=0.75-78.0 R/min) as with the increase of values of V a on X-ray tube (V a =254-50 keV). One of the possible reasons of observed regularities is that X-ray conductivity in investigated crystals, especially at comparatively low V a is due predominantly to radiation of thin layer of crystal. In this case with the rise of radiation intensity there have been started to prevail the mechanism of surface quadratic recombination which leads to observed decrease of X-ray conductivity. With the rise of accelerating potential 'effective hardness' is increased, as a result of which there

  7. Composition determination of CdSxSe1-x mixed crystals by optical dispersion

    International Nuclear Information System (INIS)

    Iliev, I.; Dimov, T.; Ribarov, D.; Lange, H.

    1989-01-01

    An optical dispersion method has been developed determining the CdS/CdSe ratio in CdS x Se 1-x mixed crystals from the relationship between position of the isotropic point (birefrigence becomes zero for a definite wavelength at the absorption edge) and chemical composition x. Birefrigence spectra and piezo-optic spectra of samples with x = 0.2, 0.6, and 0.875 give the spectral position of the isotropic point (ip). A curve of wavelength of ip versus x of CdS x Se 1-x is evaluated by the least-squares procedure and tested by X-ray fluorescence analysis

  8. Nanoscale nuclei in phase change materials: Origin of different crystallization mechanisms of Ge2Sb2Te5 and AgInSbTe

    International Nuclear Information System (INIS)

    Lee, Bong-Sub; Bogle, Stephanie N.; Darmawikarta, Kristof; Abelson, John R.; Shelby, Robert M.; Retter, Charles T.; Burr, Geoffrey W.; Raoux, Simone; Bishop, Stephen G.

    2014-01-01

    Phase change memory devices are based on the rapid and reversible amorphous-to-crystalline transformations of phase change materials, such as Ge 2 Sb 2 Te 5 and AgInSbTe. Since the maximum switching speed of these devices is typically limited by crystallization speed, understanding the crystallization process is of crucial importance. While Ge 2 Sb 2 Te 5 and AgInSbTe show very different crystallization mechanisms from their melt-quenched states, the nanostructural origin of this difference has not been clearly demonstrated. Here, we show that an amorphous state includes different sizes and number of nanoscale nuclei, after thermal treatment such as melt-quenching or furnace annealing is performed. We employ fluctuation transmission electron microscopy to detect nanoscale nuclei embedded in amorphous materials, and use a pump-probe laser technique and atomic force microscopy to study the kinetics of nucleation and growth. We confirm that melt-quenched amorphous Ge 2 Sb 2 Te 5 includes considerably larger and more quenched-in nuclei than its as-deposited state, while melt-quenched AgInSbTe does not, and explain this contrast by the different ratio between quenching time and nucleation time in these materials. In addition to providing insights to the crystallization process in these technologically important devices, this study presents experimental illustrations of temperature-dependence of nucleation rate and growth speed, which was predicted by theory of phase transformation but rarely demonstrated

  9. Synthesis, structure, and characterization of two new bismuth(III) selenite/tellurite nitrates: [(Bi3O2)(SeO3)2](NO3) and [Bi(TeO3)](NO3)

    Science.gov (United States)

    Meng, Chang-Yu; Wei, Ming-Fang; Geng, Lei; Hu, Pei-Qing; Yu, Meng-Xia; Cheng, Wen-Dan

    2016-07-01

    Two new bismuth(III) selenite/tellurite nitrates, [(Bi3O2)(SeO3)2](NO3) and [Bi(TeO3)](NO3), have been synthesized by conventional facile hydrothermal method at middle temperature 200 °C and characterized by single-crystal X-ray diffraction, powder diffraction, UV-vis-NIR optical absorption spectrum, infrared spectrum and thermal analylsis. Both [(Bi3O2)(SeO3)2](NO3) and [Bi(TeO3)](NO3) crystallize in the monoclinic centronsymmetric space group P21/c with a=9.9403(4) Å, b=9.6857(4) Å, c=10.6864(5) Å, β=93.1150(10)° for [(Bi3O2)(SeO3)2](NO3) and a=8.1489(3) Å, b=9.0663(4) Å, c=7.4729(3) Å, β=114.899(2)° for Bi(TeO3)(NO3), respectively. The two compounds, whose structures are composed of three different asymmetric building units, exhibit two different types of structures. The structure of [(Bi3O2)(SeO3)2](NO3) features a three-dimensional (3D) bismuth(III) selenite cationic tunnel structure [(Bi3O2)(SeO3)2] 3∞ with NO3- anion group filling in the 1D tunnel along b axis. The structure of [Bi(TeO3)](NO3) features 2D bismuth(III) tellurite [Bi(TeO3)2]2∞ layers separated by NO3- anion groups. The results of optical diffuse-reflectance spectrum measurements and electronic structure calculations based on density functional theory methods show that the two compounds are wide band-gap semiconductors.

  10. Thio-, selenido-, and telluridogermanates(III): K/sub 6/Ge/sub 2/S/sub 6/, K/sub 6/Ge/sub 2/Se/sub 6/, and Na/sub 6/Ge/sub 2/Te/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, B; Kieselbach, E; Schaefer, H; Schrod, H [Technische Hochschule Darmstadt (Germany, F.R.). Fachbereich Anorganische Chemie und Kernchemie

    1984-09-01

    The new compounds K/sub 6/Ge/sub 2/S/sub 6/ and K/sub 6/Ge/sub 2/Se/sub 6/ crystallize in the monoclinic system, space group C2/m (No 12). The compounds are isotypic and form the K/sub 6/Si/sub 2/Te/sub 6/ structure. Na/sub 6/Ge/sub 2/Te/sub 6/ crystallizes in the K/sub 6/Sn/sub 2/Te/sub 6/ structure, monoclinic, space group P2/sub 1//c (No 14). The lattice constants are given.

  11. Ligand mediated synthesis of AgInSe2 nanoparticles with tetragonal/orthorhombic crystal phases

    International Nuclear Information System (INIS)

    Abazović, Nadica D.; Čomor, Mirjana I.; Mitrić, Miodrag N.; Piscopiello, Emanuela; Radetić, Tamara; Janković, Ivana A.; Nedeljković, Jovan M.

    2012-01-01

    Nanosized AgInSe 2 particles (d ∼ 7–25 nm) were synthesized using colloidal chemistry method at 270 °C. As solvents/surface ligands 1-octadecene, trioctylphosphine, and oleylamine were used. It was shown that choice of ligand has crucial impact not only on final crystal phase of nanoparticles, but also at mechanism of crystal growth. X-ray diffraction and TEM/HRTEM techniques were used to identify obtained crystal phases and to measure average size and shape of nanoparticles. UV/Vis data were used to estimate band-gap energies of obtained samples. It was shown that presented routes can provide synthesis of nanoparticles with desired crystal phase (tetragonal and/or orthorhombic), with band-gap energies in the range from 1.25 to 1.53 eV.

  12. Heavy doping of CdTe single crystals by Cr ion implantation

    Science.gov (United States)

    Popovych, Volodymyr D.; Böttger, Roman; Heller, Rene; Zhou, Shengqiang; Bester, Mariusz; Cieniek, Bogumil; Mroczka, Robert; Lopucki, Rafal; Sagan, Piotr; Kuzma, Marian

    2018-03-01

    Implantation of bulk CdTe single crystals with high fluences of 500 keV Cr+ ions was performed to achieve Cr concentration above the equilibrium solubility limit of this element in CdTe lattice. The structure and composition of the implanted samples were studied using secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) to characterize the incorporation of chromium into the host lattice and to investigate irradiation-induced damage build-up. It was found that out-diffusion of Cr atoms and sputtering of the targets alter the depth distribution and limit concentration of the projectile ions in the as-implanted samples. Appearance of crystallographically oriented, metallic α-Cr nanoparticles inside CdTe matrix was found after implantation, as well as a strong disorder at the depth far beyond the projected range of the implanted ions.

  13. The microstructural changes of Ge2Sb2Te5 thin film during crystallization process

    Science.gov (United States)

    Xu, Jingbo; Qi, Chao; Chen, Limin; Zheng, Long; Xie, Qiyun

    2018-05-01

    Phase change memory is known as the most promising candidate for the next generation nonvolatile memory technology. In this paper, the microstructural changes of Ge2Sb2Te5 film, which is the most common choice of phase change memory material, has been carefully studied by the combination of several characterization techniques. The combination of resistance measurements, X-ray diffraction, Raman spectroscopy and X-ray reflectivity allows us to simultaneously extract the characteristics of microstructural changes during crystallization process. The existence of surface/interface Ge2Sb2Te5 layer has been proposed here based on X-ray reflectivity measurements. Although the total film thickness decreases, as a result of the phase transition from amorphous to metastable crystalline cubic and then to the stable hexagonal phase, the surface/interface thickness increases after crystallization. Moreover, the increase of average grain size, density and surface roughness has been confirmed during thermal annealing process.

  14. Tellurium sulfates from reactions in oleum and sulfur trioxide: syntheses and crystal structures of TeO(SO_4), Te_4O_3(SO_4)_5, and Te(S_2O_7)_2

    International Nuclear Information System (INIS)

    Logemann, Christian; Bruns, Joern; Schindler, Lisa Verena; Zimmermann, Vanessa; Wickleder, Mathias S.

    2015-01-01

    The reaction of K_2TeO_4 with fuming sulfuric acid (65 % SO_3) in sealed glass ampoules at 250 C led to colorless single crystals of TeO(SO_4) [triclinic, P anti 1, Z = 8, a = 819.89(3) pm, b = 836.95(4) pm, c = 1179.12(5) pm, α = 82.820(2) , β = 70.645(2) , γ = 81.897(2) , V = 753.11(6) x 10"6 pm"3]. A horseshoe type [Te_4O_3] fragment is the basic motif in the layer structure of the compound. The [Te_4O_3] moieties are linked to infinite chains by further oxide ions. Monomeric [Te_4O_3] horseshoes are found in the crystal structure of Te_4O_3(SO_4)_5 [trigonal, P3_221, Z = 3, a = 859.05(2) pm, c = 2230.66(7) pm, V = 1425.61(6) x 10"6 pm"3], which was obtained from TeO_2 and fuming sulfuric acid (65 % SO_3) at 200 C as colorless single crystals. By switching to neat SO_3 as reaction medium colorless crystals of Te(S_2O_7)_2 [P2_1/n, Z = 4, a = 1065.25(3) pm, b = 818.50(2) pm, c = 1206.27(3) pm, β = 102.097(1) , V = 1028.40(5) x 10"6 pm"3] form when ortho-telluric acid, H_6TeO_6, is used as the tellurium source. The compound was reported previously, however, obviously with a wrong crystallographic description. In the crystal structure the tellurium atoms are coordinated by two chelating disulfate ions. Further Te-O contacts link the [Te(S_2O_7)_2] units to an extended network. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Laser ablation in CdZnTe crystal due to thermal self-focusing: Secondary phase hydrodynamic expansion

    Energy Technology Data Exchange (ETDEWEB)

    Medvid’, A., E-mail: mychko@latnet.lv [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Mychko, A.; Dauksta, E. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Kosyak, V. [Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy (Ukraine); Grase, L. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia)

    2016-06-30

    Highlights: • We found two laser induced threshold intensity for CdZnTe crystal. • The laser beam self-focusing lead to increase of intensity of laser radiation at exit surface. • Laser ablation is a result of Te inclusion hydrodynamic expansion. - Abstract: The present paper deals with the laser ablation in CdZnTe crystal irradiated by pulsed infrared laser. Two values of threshold intensities of the laser ablation were determined, namely of about 8.5 and 6.2 MW/cm{sup 2} for the incident and the rear surfaces, correspondingly. Lower intensity of the laser ablation for the rear surface is explained by thermal self-focusing of the laser beam in the CdZnTe crystal due to heating of Te inclusions with a following hydrodynamic expansion.

  16. Crystal structure, Raman scattering and magnetic properties of CuCr2-xZrxSe4 and CuCr2-xSnxSe4 selenospinels

    Science.gov (United States)

    Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.

    2018-06-01

    Selenospinels, CuCr2-xMxSe4 (M = Zr and Sn), were synthesized via conventional solid-state reactions. The crystal structure of CuCr1.5Sn0.5Se4, CuCr1.7Sn0.3Se4, CuCr1.5Zr0.5Se4, and CuCr1.8Zr0.2Se4 were determined using single-crystal X-ray diffraction. All the phases crystallized in a cubic spinel-type structure. The chemical compositions of the single-crystals were examined using energy-dispersive X-ray analysis (EDS). Powder X-ray diffraction patterns of CuCr1.3Sn0.7Se4 and CuCr1.7Sn0.3Se4 were consistent with phases belonging to the Fd 3 bar m Space group. An analysis of the vibrational properties on the single-crystals was performed using Raman scattering measurements. The magnetic properties showed a spin glass behavior with increasing Sn content and ferromagnetic order for CuCr1.7Sn0.3Se4.

  17. Ultrafast crystallization and thermal stability of In-Ge doped eutectic Sb70Te30 phase change material

    International Nuclear Information System (INIS)

    Lee Meiling; Miao Xiangshui; Ting Leehou; Shi Luping

    2008-01-01

    Effect of In and Ge doping in the form of In 2 Ge 8 Sb 85 Te 5 on optical and thermal properties of eutectic Sb 70 Te 30 alloys was investigated. Crystalline structure of In 2 Ge 8 Sb 85 Te 5 phase change material consists of a mixture of phases. Thermal analysis shows higher crystallization temperature and activation energy for crystallization. Isothermal reflectivity-time measurement shows a growth-dominated crystallization mechanism. Ultrafast crystallization speed of 30 ns is realized upon irradiation by blue laser beam. The use of ultrafast and thermally stable In 2 Ge 8 Sb 85 Te 5 phase change material as mask layer in aperture-type super-resolution near-field phase change disk is realized to increase the carrier-to-noise ratio and thermal stability

  18. Cs7Sm11[TeO3]12Cl16 and Rb7Nd11[TeO3]12Br16, the new tellurite halides of the tetragonal Rb6LiNd11[SeO3]12Cl16 structure type

    Science.gov (United States)

    Charkin, Dmitri O.; Black, Cameron; Downie, Lewis J.; Sklovsky, Dmitry E.; Berdonosov, Peter S.; Olenev, Andrei V.; Zhou, Wuzong; Lightfoot, Philip; Dolgikh, Valery A.

    2015-12-01

    Two new rare-earth - alkali - tellurium oxide halides were synthesized by a salt flux technique and characterized by single-crystal X-ray diffraction. The structures of the new compounds Cs7Sm11[TeO3]12Cl16 (I) and Rb7Nd11[TeO3]12Br16 (II) (both tetragonal, space group I4/mcm) correspond to the sequence of [MLn11(TeO3)12] and [M6X16] layers and bear very strong similarities to those of known selenite analogs. We discuss the trends in similarities and differences in compositions and structural details between the Se and Te compounds; more members of the family are predicted.

  19. Synthesis, crystal structure and electrical properties of the tetrahedral quaternary chalcogenides CuM{sub 2}InTe{sub 4} (M=Zn, Cd)

    Energy Technology Data Exchange (ETDEWEB)

    Nolas, George S., E-mail: gnolas@usf.edu [Department of Physics, University of South Florida, Tampa, FL 33620 (United States); Hassan, M. Shafiq; Dong, Yongkwan [Department of Physics, University of South Florida, Tampa, FL 33620 (United States); Martin, Joshua [Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States)

    2016-10-15

    Quaternary chalcogenides form a large class of materials that continue to be of interest for energy-related applications. Certain compositions have recently been identified as possessing good thermoelectric properties however these materials typically have the kesterite structure type with limited variation in composition. In this study we report on the structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} which crystallize in the modified zinc-blende crystal structure, and compare their properties with that of CuZn{sub 2}InSe{sub 4}. These p-type semiconductors have direct band gaps of about 1 eV resulting in relatively high Seebeck coefficient and resistivity values. This work expands on the research into quaternary chalcogenides with new compositions and structure types in order to further the fundamental investigation of multinary chalcogenides for potential thermoelectrics applications. - Graphical abstract: The structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. The unique crystal structure allows for relatively good electrical transports and therefore potential for thermoelectric applications. - Highlights: • The physical properties of CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. • These materials have potential for thermoelectric applications. • Their direct band gaps also suggest potential for photovoltaics applications.

  20. A study of Sn addition on bonding arrangement of Se-Te alloys using far infrared transmission spectroscopy

    International Nuclear Information System (INIS)

    Kumar, Rajneesh; Rangra, V. S.; Sharma, Parikshit; Katyal, S. C.; Sharma, Pankaj

    2011-01-01

    Far infrared transmission spectra of Se 92 Te 8-x Sn x (x = 0, 1, 2, 3, 4, 5) glassy alloys are obtained in the spectral range 50-600 cm -1 at room temperature. The results are interpreted in terms of the vibrations of the isolated molecular units in such a way so as to preserve fourfold and twofold coordination for Sn and chalcogen atoms (Se,Te), respectively. With the addition of Sn, Far-IR spectra shift toward high frequency side and some new bands start appearing. Sn atoms appear to substitute for the selenium atoms in the outrigger sites due to large bond formation probability. Theoretical calculations of bond energy, relative probability of bond formation, force constant, and wave number were also made to justify the result.

  1. Electrodeposition and characterization of CdSe{sub x}Te{sub 1-x} semiconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Benamar, E.; Rami, M.; Fahoume, M.; Chraibi, F.; Ennaoui, A. [Faculty of Sciences, Laboratory of Materials Physics, Dept. of Physics, Rabat (Morocco)

    1999-07-01

    Thin polycrystalline films of cadmium chalcogenides CdSe{sub x}Te{sub 1-x} (0{<=}x{<=}1) can be used for various technical applications in particular for the conversion of solar energy in photoelectrochemical devices. They have been prepared by electrochemical plating on ITO (indium tin oxide) coated glass substrates from an acid sulfate solution at 90 deg. C. Structural, morphological and compositional studies of the deposited films are reported as a function of the x coefficient. XRD analysis shows that all deposits have a cubic structure with a preferred orientation along the (111) direction. The composition in the films is found to vary linearly with the composition in the solution. The increase in the selenium content x in the CdSe{sub x}Te{sub 1-x} films decreases the lattice constant and increases the band gap. Nevertheless this latter presents a minimum for x = 0.27.

  2. Single-mode molecular beam epitaxy grown PbEuSeTe/PbTe buried-heterostructure diode lasers for CO2 high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Feit, Z.; Kostyk, D.; Woods, R.J.; Mak, P.

    1991-01-01

    Buried-heterostructure tunable PbEuSeTe/PbTe lasers were fabricated using a two-stage molecular beam epitaxy growth procedure. Improvements in the processing technique yielded lasers that show performance characteristics significantly better than those reported previously. A continuous wave (cw) operating temperature of 203 K was realized, which is the highest cw operating temperature ever reported for lead-chalcogenides diode lasers. This laser exhibited exceptionally low-threshold currents of 1.4 mA at 90 K and 43 mA at 160 K with single-mode operation for injection currents up to 30I th and 0.18 mW power at 100 K. The usefulness of the laser, when operating cw at 200 K, was demonstrated by the ability to perform high-resolution spectroscopy of a low-pressure CO 2 gas sample

  3. Anomalous X-ray diffraction from self-assembled PbSe/PbEuTe quantum dots

    International Nuclear Information System (INIS)

    Holy, V.; Schuelli, T.U.; Lechner, R.T.; Springholz, G.; Bauer, G.

    2005-01-01

    Anomalous X-ray scattering from self-assembled PbSe quantum dots embedded in Pb 1-x Eu x Te was used for the study of their structure. The measured reciprocal-space distributions of diffracted intensity were compared with simulations based on kinematical scattering theory and continuum elasticity. From the comparison, the mean chemical composition of the dots and their aspect ratio (height/width) were estimated

  4. Magnetic and luminescent properties of vanadium-doped ZnSe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Radevici, Ivan, E-mail: ivarad@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Nedeoglo, Natalia; Sushkevich, Konstantin [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Huhtinen, Hannu [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Nedeoglo, Dmitrii [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Paturi, Petriina [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2016-12-15

    Magnetic and photoluminescence properties of vanadium-doped ZnSe crystals with impurity concentrations varied by changing the V amount in the source material from 0.03 to 0.30 at% are studied in 5–300 K temperature range. Investigation of magnetic properties shows that the studied concentrations of vanadium impurity that should not disturb crystal lattice are insignificant for observing ferromagnetic behaviour even at low temperatures. The contribution of V impurity to edge emission and its influence on infra-red emission are discussed. Similarities of magnetic and luminescent properties induced by vanadium and other transition metal impurities are discussed.

  5. Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis

    Science.gov (United States)

    Velmuzhov, A. P.; Shiryaev, V. S.; Sukhanov, M. V.; Kotereva, T. V.; Churbanov, M. F.; Zernova, N. S.; Plekhovich, A. D.

    2018-01-01

    The high-purity Ge26As17Se25Te32 glass sample was prepared by chemical distillation purification method. This glass is characterized by high value of glass transition temperature (263°С), high optical transparency in the spectral range of 2-10 μm, and low content of residual impurities. The Ge26As17Se25Te32 glass rods were drawn into single-index fibers using the "rod" method and the single crucible technique. The optical losses in the 400 μm diameter fiber, fabricated by the "rod" method, were within 0.3-1 dB/m in the spectral range 5.2-9.3 μm. The minimum optical losses in the 320 μm diameter fiber, fabricated by the "crucible" technique, were 1.6-1.7 dB/m in the spectral range 6-8.5 μm. Using these Ge26As17Se25Te32 glass fibers as a sensor, the aqueous solutions of acetone (0-20 mol.%) and ethanol (0-90 mol.%) were analyzed by fiber evanescent wave spectroscopy. Peculiarities in the change of the integrated intensity and spectral position of absorption bands of these organic substances in dependence on the analyte composition and the length of the sensitive zone were established.

  6. Solar-energy conversion by combined photovoltaic converters with CdTe and CuInSe2 base layers

    International Nuclear Information System (INIS)

    Khrypunov, G. S.; Sokol, E. I.; Yakimenko, Yu. I.; Meriuts, A. V.; Ivashuk, A. V.; Shelest, T. N.

    2014-01-01

    The possibility of the combined use of bifacial thin-film solar cells based on CdTe and frontal solar cells with a CuInSe 2 base layer in tandem structures is experimentally confirmed. It is found that, for the use of bifacial solar cells based on cadmium telluride in a tandem structure, the optimal thickness of their base layer should be 1 μm. The gain in the efficiency of the tandem structure, compared with an individual CuInSe 2 -based solar cell, is 1.8% in the case of series-connected solar cells and 1.3%, for parallel-connected

  7. Growth and photo-response of NbSe2 and NbS2 crystals

    Science.gov (United States)

    Patel, Kunjal; Solanki, G. K.; Pataniya, Pratik; Patel, K. D.

    2018-05-01

    Transition metal dichalcogenides(TMDCs) have attracted intense research efforts due to their drastic properties change as we move towards ultra-thin crystalline layers from their bulk counterparts. Many well studied members of this family such as MoS2, WS2, WSe2, WS2 etc. have shown potential for flexible electronic devices including photovoltaic applications. The TMDCs like NbSe2 and NbS2 are relatively less studied layered compounds consisting of staked sandwiches of Se-Nb-Se/S-Nb-Se tri-layers with strong covalent/ionic intra layer bonds and weak Van der Waals interlayer interactions. In the present work, author have grown the crystals of NbSe2 and NbS2 by Direct Vapour Transport (DVT) technique and the material composition is confirmed using EDAX data. Photoelectrochemical (PEC) solar cell measurements are performed under monochromatic light illumination at different intensities and various solar cell parameters are calculated. These crystalline semiconductor electrodes were also analysed by photocurrent-voltage characteristics in a PEC solar cell structure (Cu/NbSe2/(0.1M K4Fe(CN)6 + 0.1M K3Fe(CN)6) and Cu/NbS2/(0.1M K4Fe(CN)6 +0.1M K3Fe(CN)6)). Blue coloured light gave the maximum efficiency. For further analysis of photodetection properties of the grown crystals, Ag painted broad low contact resistance electrical contacts were drawn from the crystals and its transient photoresponse was studied to evaluate different detector parameters.

  8. Energy loss distributions of 7 TeV protons channeled in a bent silicon crystals

    Directory of Open Access Journals (Sweden)

    Stojanov Nace

    2013-01-01

    Full Text Available The energy loss distributions of relativistic protons axially channeled through the bent Si crystals, with the constant curvature radius, R = 50 m, are studied here. The proton energy is 7 TeV and the thickness of the crystal is varied from 1 mm to 5 mm, which corresponds to the reduced crystal thickness, L, from 2.1 to 10.6, respectively. The proton energy was chosen in accordance with the large hadron collider project, at the European Organization for Nuclear Research, in Geneva, Switzerland. The energy loss distributions of the channeled protons were generated by the computer simulation method using the numerical solution of the proton equations of motion in the transverse plane. Dispersion of the proton scattering angle caused by its collisions with the crystal’s electrons was taken into account. [Projekat Ministarstva nauke Republike Srbije, br. III 45006

  9. Ab initio calculations of half-metallic ferromagnetism in Cr-doped MgSe and MgTe semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Noor, N.A. [Department of Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore (Pakistan); Alay-e-Abbas, S.M. [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Department of Physics, GC University Faisalabad, Allama Iqbal Road, Faisalabad 38000 (Pakistan); Sohaib, M.U. [Lahore Development Authority, 54590 Lahore (Pakistan); Ghulam Abbas, S.M. [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Shaukat, A., E-mail: schaukat@gmail.com [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan)

    2015-01-15

    The full-potential linear-augmented-plane-waves plus local-orbitals (FP-LAPW+lo) method has been employed for investigation of half-metallic ferromagnetism in Cr-doped ordered zinc-blende MgSe and MgTe semiconductors. Calculations of exchange and correlation (XC) effects have been carried out using generalized gradient approximation (GGA) and orbital independent modified Becke–Johnson potential coupled with local (spin) density approximation (mBJLDA). The thermodynamic stability of the compounds and their preferred magnetic orders have been analyzed in terms of the heat of formation and minimum total energy difference in ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering, respectively. Calculated electronic properties reveal that the Cr-doping induces ferromagnetism in MgSe and MgTe which gives rise to a half-metallic (HM) gap at Fermi level (E{sub F}). Further, the electronic band structure is discussed in terms of s (p)–d exchange constants that are consistent with typical magneto-optical experiment and the behavior of charge spin densities is presented for understanding the bonding nature. Our results demonstrate that the higher effective potential for the spin-down case is responsible for p–d exchange splitting. Total magnetic moment (mainly due to Cr-d states) of these compounds is 4µ{sub B}. Importantly, the electronic properties and HM gap obtained using mBJLDA show remarkable improvement as compared to the results obtained using standard GGA functional. - Highlights: • Spin effect theoretical study on Cr-doped MgSe and MgTe is performed. • Half-metallic ferromagnetism in Cr{sub x}Mg{sub 1−x}Se and Cr{sub x}Mg{sub 1−x}Te is established. • Results of WC-GGA and mBJLDA are compared for performance. • HM gaps for Cr{sub x}Mg{sub 1−x}Se and Cr{sub x}Mg{sub 1−x}Te show nonlinear variation with x. • Important values of exchange splitting/constants and moments are reported.

  10. Scintillation properties of semiconducting {sup 6}LiInSe{sub 2} crystals to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Brenden [Y-12 National Security Complex, Oak Ridge, TN (United States); Vanderbilt University, Nashville, TN (United States); Groza, Michael; Tupitsyn, Eugene [Fisk University, Nashville, TN (United States); Lukosi, Eric [University of Tennessee, Knoxville, TN (United States); Stassun, Keivan; Burger, Arnold [Vanderbilt University, Nashville, TN (United States); Fisk University, Nashville, TN (United States); Stowe, Ashley [Y-12 National Security Complex, Oak Ridge, TN (United States); Vanderbilt University, Nashville, TN (United States); University of Tennessee, Knoxville, TN (United States)

    2015-11-21

    {sup 6}LiInSe{sub 2} has gained attention recently as a semiconducting thermal neutron detector. As presented herein, the chalcogenide compound semiconductor also detects incident neutrons via scintillation, making {sup 6}LiInSe{sub 2} the only lithium containing semiconductor to respond to neutrons via both detection mechanisms. Both yellow and red crystals, which appear in the literature, were investigated. Only the yellow crystal responded favorably to ionizing radiation, similar to the semiconducting operation utilizing electrodes. The obtained light yield for yellow crystals is 4400 photons/MeV, referenced to Bi{sub 4}Ge{sub 3}O{sub 12} (BGO).The estimated thermal neutron light yield was 21,000 photons/thermal neutron. The two measured decay time components were found to be 31±1 ns (49%) and 143±9 ns (51%).This crystal provides efficient, robust detection of neutrons via scintillation with respectable light yield and rapid response, enabling its use for a broad array of neutron detection applications.

  11. Order–disorder phenomena in layered CuCrSe2 crystals

    International Nuclear Information System (INIS)

    Gagor, A.; Gnida, D.; Pietraszko, A.

    2014-01-01

    The thermal motion of Cu + ions in a quasi-two dimensional copper ion conductor CuCrSe 2 is studied in the vicinity of the order-disorder phase transition to superionic phase, basing on a single-crystal and powder X-ray diffraction, specific heat and electrical resistivity measurements. The copper ions gradually migrate with temperature decrease to empty tetrahedral sites reaching occupancy equilibrium in the disordered high-temperature phase at T s  = 365 K. The copper migration between Cuα and Cuβ tetrahedral sites occurs through the neighboring, face-sharing octahedral holes. Disorder of Cu + ions brings perturbations in periodic potential of the crystal lattice providing additional scattering centers for electrons. - Graphical abstract: Copper migration within α and β sites. - Highlights: • Single crystals of CuCrSe 2 have been grown by vapor transport. • Thermally activated motion of Cu + ions is analyzed from T = 295 up to 420 K. • An order–disorder phase transition at T s  = 365 K leads to fast ion conducting state. • Interplay between lattice vibrations and Se polarizability accounts for Cu + hops. • Electrical resistivity near the T s shows two additional scattering centers

  12. Order–disorder phenomena in layered CuCrSe{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gagor, A., E-mail: a.gagor@int.pan.wroc.pl; Gnida, D.; Pietraszko, A.

    2014-08-01

    The thermal motion of Cu{sup +} ions in a quasi-two dimensional copper ion conductor CuCrSe{sub 2} is studied in the vicinity of the order-disorder phase transition to superionic phase, basing on a single-crystal and powder X-ray diffraction, specific heat and electrical resistivity measurements. The copper ions gradually migrate with temperature decrease to empty tetrahedral sites reaching occupancy equilibrium in the disordered high-temperature phase at T{sub s} = 365 K. The copper migration between Cuα and Cuβ tetrahedral sites occurs through the neighboring, face-sharing octahedral holes. Disorder of Cu{sup +} ions brings perturbations in periodic potential of the crystal lattice providing additional scattering centers for electrons. - Graphical abstract: Copper migration within α and β sites. - Highlights: • Single crystals of CuCrSe{sub 2} have been grown by vapor transport. • Thermally activated motion of Cu{sup +} ions is analyzed from T = 295 up to 420 K. • An order–disorder phase transition at T{sub s} = 365 K leads to fast ion conducting state. • Interplay between lattice vibrations and Se polarizability accounts for Cu{sup +} hops. • Electrical resistivity near the T{sub s} shows two additional scattering centers.

  13. Synthesis, crystal structure, optical, and electronic study of the new ternary thorium selenide Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai [Department of Chemistry, Northwestern University, Evanston, IL 60208-3113 (United States); Mesbah, Adel [Department of Chemistry, Northwestern University, Evanston, IL 60208-3113 (United States); ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule-Bât. 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Beard, Jessica [Department of Chemistry, Northwestern University, Evanston, IL 60208-3113 (United States); Lebègue, Sébastien [Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2, UMR CNRS 7036), Institut Jean Barriol, Université de Lorraine, BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy (France); Malliakas, Christos D. [Department of Chemistry, Northwestern University, Evanston, IL 60208-3113 (United States); Ibers, James A., E-mail: ibers@chem.northwestern.edu [Department of Chemistry, Northwestern University, Evanston, IL 60208-3113 (United States)

    2015-11-15

    The compound Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2} has been synthesized by solid-state methods at 1173 K. Its crystal structure features one-dimensional chains of {sup 1}{sub ∞}[Th(Se){sub 3}(Se{sub 2}){sub 2}{sup 6−}] separated by Ba{sup 2+} cations. Each Th atom in these chains is coordinated to two Se–Se single-bonded pairs and four Se atoms to give rise to a pseudooctahedral geometry around Th. The Th–Se distances are consistent with Th{sup 4+} and hence charge balance of Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2} is achieved as 3×Ba{sup 2+}, 1×Th{sup 4+}, 3×Se{sup 2−}, and 2×Se{sub 2}{sup 2−}. From optical measurements the band gap of Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2} is 1.96(2) eV. DFT calculations indicate that the compound is a semiconductor. - Graphical abstract: Local coordination environment of Th atoms in the Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2} structure. - Highlights: • Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2} has been synthesized by solid-state methods at 1173 K. • The structure features chains of {sup 1}{sub ∞}[Th(Se){sub 3}(Se{sub 2}){sub 2}{sup 6−}] separated by Ba{sup 2+} cations. • Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2} is a semiconductor with a band gap of 1.96(2) eV.

  14. Growth of Cd0.96Zn0.04Te single crystals by vapor phase gas transport method

    Directory of Open Access Journals (Sweden)

    S. H. Tabatabai Yazdi

    2006-03-01

    Full Text Available   Cd0.96Zn0.04Te crystals were grown using vapor phase gas transport method (VPGT. The results show that dendritic crystals with grain size up to 3.5 mm can be grown with this technique. X-ray diffraction and Laue back-reflection patterns show that dendritic crystals are single-phase, whose single crystal grains are randomly oriented with respect to the gas-transport axis. Electrical measurements, carried out using Van der Pauw method, show that the as-grown crystals have resistivity of about 104 Ω cm and n-type conductivity.

  15. Analysis of Study Trend of Growth and Characterization of CdZnTe Single Crystal

    International Nuclear Information System (INIS)

    Lee, Kyu Hong; Ha, Jang Ho; Kim, Han Soo

    2011-05-01

    CdZnTe (CZT) alloys are very important semiconducting compounds due to their use in several strategic applications in medical, space, and security devices, especially, radiation detector. Specific problems of the bulk crystal growth are still to be solved. However, since industries require excellent bulk CZT crystals, a strong effort is being organized worldwide to optimize the growth process and obtain better material. This report presents the study trend of the bulk CZT crystal growth and characteristics. After the first section where the problems connected to the complicated phase diagram of CZT are presented, the second section describes the various general physical and chemical properties, together with the compensation problems of the CZT material. In the third section, various growth methods are described, paying attention to the defects generated in the different cases. Further, the annealing process which is an essential step for improving the crystal quality is described. In the last section, the general material characterization methods are presented, as a scientific approach for assessing the quality of the bulk crystal

  16. Syntheses and crystal structures of BaAgTbS{sub 3}, BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai; Beard, Jessica C.; Ibers, James A. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); Mesbah, Adel [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); ICSM-UMR 5257 CNRS/CEA/UM2/ENSCM, Bat 426, BP 17171, 30207 Bagnols/Ceze (France)

    2015-06-15

    Five new quaternary chalcogenides of the 1113 family, namely BaAgTbS{sub 3}, BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3}, were synthesized by the reactions of the elements at 1173-1273 K. For CsAgUTe{sub 3} CsCl flux was used. Their crystal structures were determined by single-crystal X-ray diffraction studies. The sulfide BaAgTbS{sub 3} crystallizes in the BaAgErS{sub 3} structure type in the monoclinic space group C{sup 3},{sub 2h}-C2/m, whereas the tellurides BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3} crystallize in the KCuZrS{sub 3} structure type in the orthorhombic space group D{sup 1},{sub 2}{sup 7},{sub h}-Cmcm. The BaAgTbS{sub 3} structure consists of edge-sharing [TbS{sub 6}{sup 9-}] octahedra and [AgS{sub 5}{sup 9-}] trigonal pyramids. The connectivity of these polyhedra creates channels that are occupied by Ba atoms. The telluride structure features {sup 2}{sub ∞}[MLnTe{sub 3}{sup 2-}] layers for BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and {sup 2}{sub ∞}[AgUTe{sub 3}{sup 1-}] layers for CsAgUTe{sub 3}. These layers comprise [MTe{sub 4}] tetrahedra and [LnTe{sub 6}] or [UTe{sub 6}] octahedra. Ba or Cs atoms separate these layers. As there are no short Q..Q (Q = S or Te) interactions these compounds achieve charge balance as Ba{sup 2+}M{sup +}Ln{sup 3+}(Q{sup 2-}){sub 3} (Q = S and Te) and Cs{sup +}Ag{sup +}U{sup 4+}(Te{sup 2-}){sub 3}. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The effect of substrate temperature upon the compositions of Mg and Se in Zn{sub 1-x}Mg{sub x}Se{sub y}Te{sub 1-y} layer grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, M.; Ito, R.; Tanaka, K.; Urata, K.; Nakamura, Y.; Tanaka, T. [Department of Electrical and Electronic Engineering, Graduate School of Science and Engineering, Saga University, 1 Honjo, Saga 840-8502 (Japan); Saito, K.; Guo, Q.X. [Synchrotron Light Application Center, Saga University, 1 Honjo, Saga 840-8502 (Japan)

    2014-07-15

    The growth of Zn{sub 1-x}Mg{sub x}Se{sub y}Te{sub 1-y} layers was performed on (100) ZnTe substrate by metalorganic vapour phase epitaxy using dimethylzinc, bis-methylcyclopentadienyl-magnesium, diethyltelluride and diethylselenide. The effects of substrate temperature upon the compositions of Mg and Se have been investigated. The Mg composition in Zn{sub 1-x}Mg{sub x}Se{sub y}Te{sub 1-y} layer is significantly enhanced at low substrate temperature. Although the Se composition decreases with decreasing the substrate temperature, Zn{sub 1-x}Mg{sub x}Se{sub y}Te{sub 1-y} layer with a relatively high Se composition of 0.3 is obtainable at a low substrate temperature as low as 380 C. For all the layers, a two-mode behaviour with ZnTe- and MgTe-like longitudinal optical phonon modes is confirmed by Raman scattering. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Fabrication of fluorescence-based biosensors from functionalized CdSe and CdTe quantum dots for pesticide detection

    International Nuclear Information System (INIS)

    Chi Tran, Thi Kim; Vu, Duc Chinh; Thuy Ung, Thi Dieu; Nguyen, Hai Yen; Nguyen, Ngoc Hai; Dao, Tran Cao; Pham, Thu Nga; Nguyen, Quang Liem

    2012-01-01

    This paper presents the results on the fabrication of highly sensitive fluorescence biosensors for pesticide detection. The biosensors are actually constructed from the complex of quantum dots (QDs), acetylcholinesterase (AChE) and acetylthiocholine (ATCh). The biosensor activity is based on the change of luminescence from CdSe and CdTe QDs with pH, while the pH is changed with the hydrolysis rate of ATCh catalyzed by the enzyme AChE, whose activity is specifically inhibited by pesticides. Two kinds of QDs were used to fabricate our biosensors: (i) CdSe QDs synthesized in high-boiling non-polar organic solvent and then functionalized by shelling with two monolayers (2-ML) of ZnSe and eight monolayers (8-ML) of ZnS and finally capped with 3-mercaptopropionic acid (MPA) to become water soluble; and (ii) CdTe QDs synthesized in aqueous phase then shelled with CdS. For normal checks the fabricated biosensors could detect parathion methyl (PM) pesticide at very low contents of ppm with the threshold as low as 0.05 ppm. The dynamic range from 0.05 ppm to 1 ppm for the pesticide detection could be expandable by increasing the AChE amount in the biosensor. (paper)

  19. Resonant optical alignment and orientation of Mn2+ spins in CdMnTe crystals

    Science.gov (United States)

    Baryshnikov, K. A.; Langer, L.; Akimov, I. A.; Korenev, V. L.; Kusrayev, Yu. G.; Averkiev, N. S.; Yakovlev, D. R.; Bayer, M.

    2015-11-01

    We report on spin orientation and alignment of Mn2 + ions in (Cd,Mn)Te diluted magnetic semiconductor crystals using resonant intracenter excitation with circular- and linear-polarized light. The resulting polarized emission of the magnetic ions is observed at low temperatures when the spin relaxation time of the Mn2 + ions is in the order of 1 ms , which considerably exceeds the photoluminescence decay time of 23 μ s . We demonstrate that the experimental data on optical orientation and alignment of Mn2 + ions can be explained using a phenomenological model that is based on the approximation of isolated centers.

  20. Structural and electronic properties of Cu2Q and CuQ (Q = O, S, Se, and Te) studied by first-principles calculations

    Science.gov (United States)

    Zhao, Ting; Wang, Yu-An; Zhao, Zong-Yan; Liu, Qiang; Liu, Qing-Ju

    2018-01-01

    In order to explore the similarity, difference, and tendency of binary copper-based chalcogenides, the crystal structure, electronic structure, and optical properties of eight compounds of Cu2Q and CuQ (Q = O, S, Se, and Te) have been calculated by density functional theory with HSE06 method. According to the calculated results, the electronic structure and optical properties of Cu2Q and CuQ present certain similarities and tendencies, with the increase of atomic number of Q elements: the interactions between Cu-Q, Cu-Cu, and Q-Q are gradually enhancing; the value of band gap is gradually decreasing, due to the down-shifting of Cu-4p states; the covalent feature of Cu atoms is gradually strengthening, while their ionic feature is gradually weakening; the absorption coefficient in the visible-light region is also increasing. On the other hand, some differences can be found, owing to the different crystal structure and component, for example: CuO presents the characteristics of multi-band gap, which is very favorable to absorb infrared-light; the electron transfer in CuQ is stronger than that in Cu2Q; the absorption peaks and intensity are very strong in the ultraviolet-light region and infrared-light region. The findings in the present work will help to understand the underlying physical mechanism of binary copper-based chalcogenides, and available to design novel copper-based chalcogenides photo-electronics materials and devices.

  1. Physical reasons of emission transformation in infrared CdSeTe/ZnS quantum dots at bioconjugation

    Science.gov (United States)

    Torchynska, T. V.

    2015-04-01

    The core/shell CdSeTe/ZnS quantum dots (QDs) with emission at 780-800 nm (1.55-1.60 eV) have been studied by means of photoluminescence (PL) and Raman scattering methods in the nonconjugated state and after conjugation to different antibodies (Ab): (i) mouse monoclonal [8C9] human papilloma virus Ab, anti-HPV 16-E7 Ab, (ii) mouse monoclonal [C1P5] human papilloma virus HPV16 E6+HPV18 E6 Ab, and (iii) pseudo rabies virus (PRV) Ab. The transformations of PL and Raman scattering spectra of QDs, stimulated by conjugated antibodies, have been revealed and discussed. The energy band diagram of core/shell CdSeTe/ZnS QDs has been designed that helps to analyze the PL spectra and their transformations at the bioconjugation. It is shown that the core in CdSeTe/ZnS QDs is complex and including the type II quantum well. The last fact permits to explain the nature of infrared (IR) optical transitions (1.55-1.60 eV) and the high energy PL band (1.88-1.94 eV) in the nonconjugated and bioconjugated QDs. A set of physical reasons has been analyzed with the aim to explain the transformation of PL spectra in bioconjugated QDs. Finally it is shown that two factors are responsible for the PL spectrum transformation at bioconjugation to charged antibodies: (i) the change of energy band profile in QDs and (ii) the shift of QD energy levels in the strong quantum confinement case. The effect of PL spectrum transformation is useful for the study of QD bioconjugation to specific antibodies and can be a powerful technique for early medical diagnostics.

  2. Syntheses and characterization of thin films of Te94Se6 nanoparticles for semiconducting and optical devices

    International Nuclear Information System (INIS)

    Salah, Numan; Habib, Sami S.; Memic, Adnan; Alharbi, Najlaa D.; Babkair, Saeed S.; Khan, Zishan H.

    2013-01-01

    Thin films of Te 94 Se 6 nanoparticles were synthesized using the physical vapor condensation technique at different argon (Ar) pressures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy, absorption spectrum, photoluminescence (PL) and Raman spectroscopy. XRD results show that the as-grown films have a polycrystalline structure. SEM images display uniform nanoparticles in these films where the size increases from ∼ 12 to about 60 nm by decreasing Ar pressure from 667 to 267 Pa. These as-grown thin films were found to have direct band gaps, whose value decreases with increasing particle size. The absorption and extinction coefficients for these films were also investigated. PL emission spectra exhibit three bands peaking at 666, 718 and 760 nm, while Raman spectra displayed three bands located at 123, 143 and 169 cm −1 . No significant changes are observed in positions or intensities of these bands by decreasing the Ar pressure, except that of the last band of PL; where the intensity increases. The obtained results on this Te 94 Se 6 nanomaterial especially its controlled direct bandgap might be useful for development of optical disks and other semiconducting devices. - Highlights: ► Thin films of Te 94 Se 6 nanoparticles were grown at different argon (Ar) pressures. ► Size of the nanoparticles increased by decreasing Ar pressure. ► They have direct band gap, whose value decreases by increasing the particle size. ► These nanomaterials might be useful for development of semiconducting devices

  3. Unprecedented Integral-Free Debye Temperature Formulas: Sample Applications to Heat Capacities of ZnSe and ZnTe

    Directory of Open Access Journals (Sweden)

    R. Pässler

    2017-01-01

    Full Text Available Detailed analytical and numerical analyses are performed for combinations of several complementary sets of measured heat capacities, for ZnSe and ZnTe, from the liquid-helium region up to 600 K. The isochoric (harmonic parts of heat capacities, CVh(T, are described within the frame of a properly devised four-oscillator hybrid model. Additional anharmonicity-related terms are included for comprehensive numerical fittings of the isobaric heat capacities, Cp(T. The contributions of Debye and non-Debye type due to the low-energy acoustical phonon sections are represented here for the first time by unprecedented, integral-free formulas. Indications for weak electronic contributions to the cryogenic heat capacities are found for both materials. A novel analytical framework has been constructed for high-accuracy evaluations of Debye function integrals via a couple of integral-free formulas, consisting of Debye’s conventional low-temperature series expansion in combination with an unprecedented high-temperature series representation for reciprocal values of the Debye function. The zero-temperature limits of Debye temperatures have been detected from published low-temperature Cp(T data sets to be significantly lower than previously estimated, namely, 270 (±3 K for ZnSe and 220 (±2 K for ZnTe. The high-temperature limits of the “true” (harmonic lattice Debye temperatures are found to be 317 K for ZnSe and 262 K for ZnTe.

  4. Fabrication of Fe1.1Se0.5Te0.5 bulk by a high energy ball milling technique

    Science.gov (United States)

    Liu, Jixing; Li, Chengshan; Zhang, Shengnan; Feng, Jianqing; Zhang, Pingxiang; Zhou, Lian

    2017-11-01

    Fe1.1Se0.5Te0.5 superconducting bulks were successfully synthesized by a high energy ball milling (HEBM) aided sintering technique. Two advantages of this new technique have been revealed compared with traditional solid state sintering method. One is greatly increased the density of sintered bulks. It is because the precursor powders with β-Fe(Se, Te) and δ-Fe(Se, Te) were obtained directly by the HEBM process and without formation of liquid Se (and Te), which could avoid the huge volume expansion. The other is the obvious decrease of sintering temperature and dwell time due to the effective shortened length of diffusion paths. The superconducting critical temperature Tc of 14.2 K in our sample is comparable with those in previous reports, and further optimization of chemical composition is on the way.

  5. Post-growth annealing of Bridgman-grown CdZnTe and CdMnTe crystals for room-temperature nuclear radiation detectors

    International Nuclear Information System (INIS)

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander A.; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Giuseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-01-01

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an order of 10 2 . During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10 −5 mbar, we observed the diffusion of Te from the sample, so causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10 −5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on the conditions in local regions, such as composition and structure, as well as on the annealing conditions

  6. The lanthanoid(III) chloride oxoselenates(IV) MCl[SeO3] (M = Sm - Lu) with HoCl[TeO3]- or B-type structure

    International Nuclear Information System (INIS)

    Lipp, C.; Schleid, T.

    2008-01-01

    The B-type lanthanoid(III) chloride oxoselenates(IV) MCl[SeO 3 ] (M = Sm - Lu) crystallize in the orthorhombic space group Pnma (no. 62) with Z = 4 in the structure type of HoCl[TeO 3 ]. Their lattice constants are decreasing following the lanthanoid contraction from a = 730.01(7), b = 707.90(7), c 895.64(9) pm for SmCl[SeO 3 ] to a = 714.63(7), b = 681.76(7), c = 864.05(9) pm for LuCl[SeO 3 ]. In contrast to NdCl[SeO 3 ], the only representative of the A-type structure, where the coordination numbers of the Nd 3+ cations are 7+2 and 8, the B-type structure is dominated by pentagonal bipyramids [MO 5 Cl 2 ] 9- (CN(M 3+ ) = 7), which are connected via trans-oriented O..O edges to ∞ 1 {[MO 4/2 e O 1/1 t Cl 2/1 t ] 5- } chains (e = edge-sharing, t = terminal) running parallel to the [010] direction. Their inclination relative to each other allows for an alternating interconnection of these chains via Cl - and ψ 1 -tetrahedral [SeO 3 ] 2- anions to form a three-dimensional structure. The distances within the [SeO 3 ] 2- groups are in the normal range (d(Se-O) = 165 - 172 pm), while those of the O 2- and Cl - anions to the central M 3+ cation diminish in dependence of the increasing atomic number (d(M-O) = 226 - 244 pm / 216 - 232 pm, d(M-Cl) 277 - 278 pm / 266 - 270 pm, M = Sm / Lu). For the synthesis of the chloride oxoselenates(IV) MCl[SeO 3 ] the respective lanthanoid sesquioxide (M 2 O 3 ) and selenium dioxide (SeO 2 ) were reacted with either an eutectic mixture of RbCl and LiCl or with the corresponding lanthanoid trichloride (MCl 3 ) in evacuated silica ampoules for either five weeks at 500 C or one week at 850 C. (orig.)

  7. Band alignment of two-dimensional metal monochalcogenides MXs (M=Ga,In; X=S,Se,Te

    Directory of Open Access Journals (Sweden)

    Huazheng Sun

    2017-09-01

    Full Text Available Monolayer metal monochalcogenides MXs (M=Ga,In; X=S,Se,Te form a new class of two-dimensional semiconductors with indirect band gaps, and their band alignment information is investigated via first principles calculations. The dependence of band gap, valence-band maximum, conduction band minimum, and charge transfer on the M or X element has been obtained and can be understood from the orbital analysis of the band edges. Potential applications of metal monochalcogenides to design van der Waals heterostructures and catalyse the photo-splitting reaction of water have been discussed.

  8. Electrical properties of Hg3In2Te6 crystals doped with gadolinium

    International Nuclear Information System (INIS)

    Gorlej, P.M.; Grushka, O.G.; Frasunyak, V.M.

    2002-01-01

    The temperature dependences of electrical conductivity, the Hall coefficient, thermoelectric power, and the transversal Nernst-Ettingshausen effect of Hg 3 In 2 Te 6 crystals doped with gadolinium are investigated. It is shown that, under strong doping, the Fermi level descends and remains in the upper half of the energy gap in the impurity miscibility range, while the transparency of crystals is decreasing essentially. It causes the impurity self-compensation and preservation of bipolar conductivity typical of intrinsic semiconductors. In this case, the band gap, mobility ratio b=μ n /μp, and effective mass ratio m p /m n (n -electrons, p-holes) are reduced. Experimental results are explained by using the model of disordered semiconductor, in which the borders between forbidden and allowed energy bands are blurred and the transfer of electrons and holes occurs on the corresponding percolation levels because of the presence of the large density of localized states

  9. Photonic-crystal switch divider based on Ge2Sb2Te5 thin films.

    Science.gov (United States)

    Ma, Beijiao; Zhang, Peiqing; Wang, Hui; Zhang, Tengyu; Zeng, Jianghui; Zhang, Qian; Wang, Guoxiang; Xu, Peipeng; Zhang, Wei; Dai, Shixun

    2016-11-10

    A three-port phase-change photonic-crystal switch divider based on Ge2Sb2Te5 chalcogenide thin film was proposed. The chalcogenide material used was determined to have a high refractive index and fast phase-change speed by using laser radiation. The structure with a T-junction cavity was used to achieve three switch functions: switching "ON" in only one output port, switching "OFF" in both output ports, and dividing signals into two output ports. The transmission properties of the designed device at 2.0 μm were studied by the finite difference time domain method, which showed that the switch divider can achieve very high switching efficiency by optimizing T-junction cavity parameters. The scaling laws of photonic crystals revealed that the operating wavelength of the designed structure can be easily extended to another wavelength in the midinfrared region.

  10. Photovoltaic effect in Bi{sub 2}TeO{sub 5} photorefractive crystal

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ivan de, E-mail: ivan@ft.unicamp.brg; Capovilla, Danilo Augusto [GOMNI-Faculdade de Tecnologia/UNICAMP, Limeira (Brazil); Carvalho, Jesiel F.; Montenegro, Renata; Fabris, Zanine V. [Instituto de Física/Universidade Federal de Goiás, Goiânia (Brazil); Frejlich, Jaime [Instituto de Física “Gleb Wataghin”/UNICAMP, Campinas (Brazil)

    2015-10-12

    We report on the presence of a strong photovoltaic effect on nominally undoped photorefractive Bi{sub 2}TeO{sub 5} crystals and estimated their Glass photovoltaic constant and photovoltaic field for λ = 532 nm illumination. We directly measured the photovoltaic-based photocurrent in this material under λ = 532 nm wavelength laser light illumination and compared its behavior with that of a well known photovoltaic Fe-doped Lithium Niobate crystal. We also show the photovoltaic current to strongly depend on the polarization direction of light. Holographic diffraction efficiency oscillation during recording and the behavior of fringe-locked running holograms in self-stabilized experiments are also demonstrated here as additional indirect proofs of the photovoltaic nature of this material.

  11. Photovoltaic effect in Bi2TeO5 photorefractive crystal

    International Nuclear Information System (INIS)

    Oliveira, Ivan de; Capovilla, Danilo Augusto; Carvalho, Jesiel F.; Montenegro, Renata; Fabris, Zanine V.; Frejlich, Jaime

    2015-01-01

    We report on the presence of a strong photovoltaic effect on nominally undoped photorefractive Bi 2 TeO 5 crystals and estimated their Glass photovoltaic constant and photovoltaic field for λ = 532 nm illumination. We directly measured the photovoltaic-based photocurrent in this material under λ = 532 nm wavelength laser light illumination and compared its behavior with that of a well known photovoltaic Fe-doped Lithium Niobate crystal. We also show the photovoltaic current to strongly depend on the polarization direction of light. Holographic diffraction efficiency oscillation during recording and the behavior of fringe-locked running holograms in self-stabilized experiments are also demonstrated here as additional indirect proofs of the photovoltaic nature of this material

  12. Temperature dependences of photoconductivity of CdHgTe crystals with photoactive inclusions

    International Nuclear Information System (INIS)

    Vlasenko, A.I.; Vlasenko, Z.K.

    1999-01-01

    Temperature dependences of life time τ and spectral characteristics of photoconductivity for Cd x Hg 1-x Te crystals (x = 0.2) with photoactive inclusions are investigated. It is shown that the N-type character of effective lifetime temperature dependences in nonhomogeneous crystals, in particular, its sharp temperature activation in the region of transition from the impurity to the intrinsic conductivity is determined by not the Shockley-Read mechanism, but by the interband impact mechanism with changing effective geometrical sizes of recombination active regions under temperature increase. Within the frames of this model the smoothing of the non-monotone character of the photoconductivity spectral characteristics in the region of fundamental absorption under the heating is explained. The calculation results that are in qualitative agreement with the experimental data are presented [ru

  13. Critical current density, vortex dynamics, and phase diagram of single-crystal FeSe

    Science.gov (United States)

    Sun, Yue; Pyon, Sunseng; Tamegai, Tsuyoshi; Kobayashi, Ryo; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2015-10-01

    We present a comprehensive study of the vortex pinning and dynamics in a high-quality FeSe single crystal which is free from doping-introduced inhomogeneities and charged quasiparticle scattering because of its innate superconductivity. The critical current density Jc is found to be almost isotropic and reaches a value of ˜3 ×104 A /cm2 at 2 K (self-field) for both H ∥c and a b . The normalized magnetic relaxation rate S (=∣d ln M /d ln t ∣ ) shows a temperature-insensitive plateau behavior in the intermediate temperature range with a relatively high creep rate (S ˜ 0.02 under zero field), which is interpreted in the framework of the collective creep theory. A crossover from the elastic to plastic creep is observed, while the fishtail effect is absent for both H ∥c and a b . Based on this observation, the origin of the fishtail effect is also discussed. Combining the results of Jc and S , the vortex motion in the FeSe single crystal is found to be dominated by sparse, strong pointlike pinning from nanometer-sized defects or imperfections. The weak collective pinning is also observed and proved in the form of large bundles. Besides, the vortex phase diagram of FeSe is also constructed and discussed.

  14. Electroluminescence and phototrigger effect in single crystals of GaSxSe1-x alloys

    International Nuclear Information System (INIS)

    Kyazym-Zade, A. G.; Salmanov, V. M.; Mokhtari, A. G.; Dadashova, V. V.; Agaeva, A. A.

    2008-01-01

    The effects of switching and electroluminescence as well as the interrelation between these effects in single crystals of GaS x Se 1-x alloys are detected and studied. It is established that the threshold voltage for switching depends on temperature, resistivity, and composition of alloys, and also on the intensity and spectrum of photoactive light. As a result, a phototrigger effect is observed; this effect arises under irradiation with light from the fundamental-absorption region. Electroluminescence is observed in the subthreshold region of the current-voltage characteristic; the electroluminescence intensity decreases drastically to zero as the sample is switched from a high-resistivity state to a low-resistivity state. Experimental data indicating that the electroluminescence and the switching effect are based on the injection mechanism (as it takes place in other layered crystals of the III-V type) are reported

  15. Crystal structure of HgGa{sub 2}Se{sub 4} under compression

    Energy Technology Data Exchange (ETDEWEB)

    Gomis, Oscar, E-mail: osgohi@fis.upv.es [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Vilaplana, Rosario [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Manjón, Francisco Javier [Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Santamaría-Pérez, David [Departamento de Química Física I, Universidad Complutense de Madrid, MALTA Consolider Team, Avenida Complutense s/n, 28040 Madrid (Spain); Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); Errandonea, Daniel [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); and others

    2013-06-01

    Highlights: ► Single crystals of HgGa{sub 2}Se{sub 4} with defect-chalcopyrite structure were synthesized. ► HgGa{sub 2}Se{sub 4} exhibits a phase transition to a disordered rock salt structure at 17 GPa. ► HgGa{sub 2}Se{sub 4} undergoes a phase transition below 2.1 GPa to a disordered zinc blende. - Abstract: We report on high-pressure x-ray diffraction measurements up to 17.2 GPa in mercury digallium selenide (HgGa{sub 2}Se{sub 4}). The equation of state and the axial compressibilities for the low-pressure tetragonal phase have been determined and compared to related compounds. HgGa{sub 2}Se{sub 4} exhibits a phase transition on upstroke toward a disordered rock-salt structure beyond 17 GPa, while on downstroke it undergoes a phase transition below 2.1 GPa to a phase that could be assigned to a metastable zinc-blende structure with a total cation-vacancy disorder. Thermal annealing at low- and high-pressure shows that kinetics plays an important role on pressure-driven transitions.

  16. Structural properties and spatial ordering in multilayered ZnMgTe/ZnSe type-II quantum dot structures

    International Nuclear Information System (INIS)

    Manna, U.; Noyan, I. C.; Neumark, G. F.; Zhang, Q.; Moug, R.; Salakhutdinov, I. F.; Dunn, K. A.; Novak, S. W.; Tamargo, M. C.; Kuskovsky, I. L.

    2012-01-01

    We report the structural properties and spatial ordering of multilayer ZnMgTe quantum dots (QDs) embedded in ZnSe, where sub-monolayer quantities of Mg were introduced periodically during growth in order to reduce the valence band offset of ZnTe QDs. The periodicity, period dispersion, individual layer thickness, and the composition of the multilayer structures were determined by comparing the experimental high resolution x-ray diffraction (HRXRD) spectra to simulated ones for the allowed (004) and quasi-forbidden (002) reflections in combination with transmission electron microscopy (TEM) results. Secondary ion mass spectroscopy (SIMS) profiles confirmed the incorporation of Mg inside the QD layers, and the HRXRD analysis revealed that there is approximately 32% Mg in the ZnMgTe QDs. The presence of Mg contributes to higher scattering intensity of the HRXRD, leading to the observation of higher order superlattice peaks in both the (004) and (002) reflections. The distribution of scattered intensity in the reciprocal space map (RSM) shows that the diffuse scattered intensity is elongated along the q x axis, indicating a vertical correlation of the dots, which is found to be less defined for the sample with larger periodicity. The diffuse scattered intensity is also found to be weakly correlated along the q z direction indicating a weak lateral correlation of the dots.

  17. Langmuir-Blodgett films of alkane chalcogenice (S, Se, Te) stabilized gold nanoparticles

    DEFF Research Database (Denmark)

    Brust, M.; Stuhr-Hansen, N.; Norgaard, K.

    2001-01-01

    Gold nanoparticles stabilized by alkanethiolates, alkaneselenides, and alkanetellurides have been prepared by analogous methods. Chloroform solutions of thiolate and selenide stabilized particles were spread and evaporated on the water/air interface where the particles formed well-defined Langmuir...... films. The films were transferred to solid supports of freshly cleaved mica and were studied by atomic force microscopy (AFM). The particles were found to have an average core diameter of 2 nm. The stability of the particles under ambient conditions increased in the order Te

  18. Atomic imaging of an InSe single-crystal surface with atomic force microscope

    OpenAIRE

    Uosaki, Kohei; Koinuma, Michio

    1993-01-01

    The atomic force microscope was employed to observed in air the surface atomic structure of InSe, one of III-VI compound semiconductors with layered structures. Atomic arrangements were observed in both n-type and p-type materials. The observed structures are in good agreement with those expected from bulk crystal structures. The atomic images became less clear by repeating the imaging process. Wide area imaging after the imaging of small area clearly showed that a mound was created at the sp...

  19. On the specific electrophysical properties of n-InSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Abdinov, A. Sh., E-mail: abdinov-axmed@yahoo.com [Baku State University (Azerbaijan); Babaeva, R. F., E-mail: babaeva-rena@yandex.ru; Rzaev, R. M., E-mail: abdinov-axmed@yandex.ru [Azerbaijan State Economic University (Azerbaijan); Ragimova, N. A.; Amirova, S. I. [Baku State University (Azerbaijan)

    2016-01-15

    The temperature dependences of physical parameters (the conductivity and the Hall constant) are experimentally investigated for pure indium-selenide (n-InSe) crystals and those lightly doped with rareearth elements (gadolinium, holmium, and dysprosium). It is established that the obtained results depend on the origin of the samples under investigation and prove to be contradictory for different samples. The obtained experimental results are treated taking into account the presence of chaotic large-scale defects and drift barriers caused by them in these samples.

  20. Low temperature ultrasonic investigation of ZnSe crystals doped with Ni

    Energy Technology Data Exchange (ETDEWEB)

    Gudkov, Vladimir [Institute for Metal Physics, Ural Department of the Russian Academy of Sciences, 18, Kovalevskaya st., 620219 Ekaterinburg (Russian Federation); Russian State Vocational Pedagogical University, 11, Mashinostroitelei st., 620012 Ekaterinburg (Russian Federation); Lonchakov, Alexander; Sokolov, Victor; Zhevstovskikh, Irina; Gruzdev, Nikita [Institute for Metal Physics, Ural Department of the Russian Academy of Sciences, 18, Kovalevskaya st., 620219 Ekaterinburg (Russian Federation)

    2005-03-01

    The peak of ultrasonic absorption observed at {approx}13 K in ZnSe:Ni crystals with dopant concentration of 5.5 x 10{sup 19} cm{sup -3} was interpreted as due to the Jahn-Teller effect. The dynamic contribution to the effective elastic modulus was accounted for and the temperature dependences of relaxation time, relaxed and unrelaxed modulus C{sub 44} were obtained. The procedure of accounting for the dynamic contribution resulted in a more accurate determination of the temperature of phase transition. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Galvanomagnetic effects in n-Hg1-x-yCdxMnyTe and n-Hg1-yMnyTe crystals with εg>0

    International Nuclear Information System (INIS)

    Gluzman, N.G.; Lerinman, N.K.; Sabirzyanova, L.D.; Bodnaruk, O.A.; Gorbatyuk, I.N.; Rarenko, I.M.

    1989-01-01

    Longitudinal ρ zz and transverse ρ xx magnetoresistances and R hall coefficient in H magnetic fields up to 100 kE at 1.2≤T≤300 K are measured at n-Hg 1-x-y Cd x Mn y Te and n-Hg 1-y Mn y Te crystals (100≤ε g ≤260 meV) with N D -N A ≅10 15 cm -3 . Shubnikov-de-Gaas (SG) oscillations were observed at all specimens. Maxima positions of SG oscillations depend on T. For Hg 1-y Mn y Te crystals the position of zero maximum is shifted to large H direction, it is caused by abrupt (as compared to zone one) reduction of summary g-factor. Magnetophonon oscillations are determined at longitudinal magnetoresistance. Transition from metal conductivity to activation one occuring in magnetic field is studied; activation energy in nonmetallic range is determined. Some peculiarities of galvanomagnetic phenomena in n-Hg 1-y Mn y Te specimens, which indicate presence of p-type inclusions in n-type crystals, are determined

  2. Cr 3d surface and bulk states in Sn1-xCrxTe/Cr crystals

    International Nuclear Information System (INIS)

    Guziewicz, E.; Szamota-Sadowska, K.; Kowalski, B.J.; Grodzicka, E.; Story, T.; Orlowski, B.A.; Johnson, R.L.

    1997-01-01

    We report a new approach to investigate metal-semiconductor interface formation. Photoemission spectroscopy was applied in order to investigate the clean surface of a Sn 0.97 Cr 0.03 Te crystal and to observe its changes under sequential deposition of small amounts of Cr atoms. In order to analyse the Cr 3d contribution to the valence band, the Fano-type resonance tuned to the Cr 3p-3d transmission was used. The experiment was designed to follow the Sn 0.97 Cr 0.03 Te/Cr interface formation process. At the clean Sn 0.97 Cr 0.03 Te surface, the Cr 3d states contribution to the valence band was found to be positioned 0.8 eV below Fermi level. After the Cr deposition processes the contribution shifted to a higher binding energy and another contribution 5.8 eV below the Fermi level also observed. (author)

  3. Ultrabroadband, Midinfrared Supercontinuum Generation in Dispersion Engineered As2Se3-Based Chalcogenide Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    Rim Cherif

    2013-01-01

    Full Text Available Small core As2Se3-based photonic crystal fibers (PCFs are accurately characterized for compact, high power, ultrabroadband, and coherent supercontinuum generation within few millimeters fiber length. Bandwidths of ~5.3 μm, 5 μm, and 3.2 μm were calculated for hole-to-hole spacings Λ= 3.5 μm, 4.5 μm, and 5.5 μm, respectively. The spectral broadening in the chalcogenide PCF is mainly caused by self-phase modulation and Raman-induced soliton self-frequency shift. The results show that small core As2Se3 PCFs are a promising candidate for mid-IR SCG up to ~8 μm.

  4. Peculiar behavior of magnetoresistance in HgSe single crystal with low electron concentration

    Science.gov (United States)

    Lonchakov, A. T.; Bobin, S. B.; Deryushkin, V. V.; Okulov, V. I.; Govorkova, T. E.; Neverov, V. N.

    2018-02-01

    Magnetoresistive properties of the single crystal of HgSe with a low electron concentration were studied in a wide range of temperatures and magnetic fields. Some fundamental parameters of the spectrum and scattering of electrons were experimentally determined. Two important features of magnetic transport were found—strong transverse magnetoresistance (MR) and negative longitudinal MR, which can indicate the existence of the topological phase of the Weyl semimetal (WSM) in HgSe. Taking this hypothesis into account, we suggest a modified band diagram of mercury selenide at low electron energies. The obtained results are essential for the deeper understanding of both physics of gapless semiconductors and WSMs—promising materials for various applications in electronics, spintronics, computer, and laser technologies.

  5. Magnetotransport study of topological superconductor Cu0.10Bi2Se3 single crystal

    Science.gov (United States)

    Li, M. T.; Fang, Y. F.; Zhang, J. C.; Yi, H. M.; Zhou, X. J.; Lin, C. T.

    2018-03-01

    We report a magnetotransport study of vortex-pinning in Cu0.10Bi2Se3 single crystal. The sample is demonstrated to be in clean limit and absent of Pauli spin-limiting effect. Interestingly, the resistivity versus magnetic field shows an anomalously pronounced increase when approaching the superconducting-normal state boundary for both {{B}app}\\parallel ab and {{B}app}\\parallel c configurations. We have investigated the flux-flowing behavior under various magnetic fields and temperatures, enabling us to establish its anisotropic vortex phase diagram. Our results suggest the Cu0.10Bi2Se3 can be served as one unique material for exploring exotic surface vortex states in topological superconductors.

  6. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.

    Science.gov (United States)

    Jiao, Shuang; Shen, Qing; Mora-Seró, Iván; Wang, Jin; Pan, Zhenxiao; Zhao, Ke; Kuga, Yuki; Zhong, Xinhua; Bisquert, Juan

    2015-01-27

    Even though previously reported CdTe/CdSe type-II core/shell QD sensitizers possess intrinsic superior optoelectronic properties (such as wide absorption range, fast charge separation, and slow charge recombination) in serving as light absorbers, the efficiency of the resultant solar cell is still limited by the relatively low photovoltage. To further enhance photovoltage and cell efficiency accordingly, ZnTe/CdSe type-II core/shell QDs with much larger conduction band (CB) offset in comparison with that of CdTe/CdSe (1.22 eV vs 0.27 eV) are adopted as sensitizers in the construction of quantum dot sensitized solar cells (QDSCs). The augment of band offset produces an increase of the charge accumulation across the QD/TiO2 interface under illumination and induces stronger dipole effects, therefore bringing forward an upward shift of the TiO2 CB edge after sensitization and resulting in enhancement of the photovoltage of the resultant cell devices. The variation of relative chemical capacitance, Cμ, between ZnTe/CdSe and reference CdTe/CdSe cells extracted from impedance spectroscopy (IS) characterization under dark and illumination conditions clearly demonstrates that, under light irradiation conditions, the sensitization of ZnTe/CdSe QDs upshifts the CB edge of TiO2 by the level of ∼ 50 mV related to that in the reference cell and results in the enhancement of V(oc) of the corresponding cell devices. In addition, charge extraction measurements have also confirmed the photovoltage enhancement in the ZnTe/CdSe cell related to reference CdTe/CdSe cell. Furthermore, transient grating (TG) measurements have revealed a faster electron injection rate for the ZnTe/CdSe-based QDSCs in comparison with the CdSe cells. The resultant ZnTe/CdSe QD-based QDSCs exhibit a champion power conversion efficiency of 7.17% and a certified efficiency of 6.82% under AM 1.5 G full one sun illumination, which is, as far as we know, one of the highest efficiencies for liquid-junction QDSCs.

  7. On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI3 and CuI

    International Nuclear Information System (INIS)

    Kulbachinskii, Vladimir A.; Kytin, Vladimir G.; Kudryashov, Alexey A.; Kuznetsov, Alexei N.; Shevelkov, Andrei V.

    2012-01-01

    The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin–orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. The optimized crystal structures show a tendency for the Bi–X (X=Br, I) bond elongation compared to the Bi–Te one. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within the frames of the acoustic phonons scattering model. Because of larger thermopower BiTeBr exhibits a twice higher thermoelectric figure-of-merit near room temperature, ZT=0.17, compared to BiTeI. The addition of 1 mass% of BiI 3 or CuI to BiTeI decreases the mobility of electrons by two orders of magnitude, leading to significantly lower electrical conductivity, but at the same time effectively reduces the thermal conductivity. The prospects of further enhancing the thermoelectric efficiency are briefly discussed. - Graphical abstract: View of the crystal structure of BiTeBr is shown in the figure The optimized crystal structures show a tendency for the Bi–X (X=Br, I) bond elongation compared to the Bi–Te one. The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin–orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within the frames of the acoustic phonons scattering

  8. Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition

    International Nuclear Information System (INIS)

    Andrikopoulos, K S; Yannopoulos, S N; Voyiatzis, G A; Kolobov, A V; Ribes, M; Tominaga, J

    2006-01-01

    We report on an inelastic (Raman) light scattering study of the local structure of amorphous GeTe (a-GeTe) films. A detailed analysis of the temperature-reduced Raman spectra has shown that appreciable structural changes occur as a function of temperature. These changes involve modifications of atomic arrangements such as to facilitate the rapid amorphous to crystal transformation, which is the major advantage of phase-change materials used in optical data storage media. A particular structural model, supported by polarization analysis, is proposed which is compatible with the experimental data as regards both the structure of a-GeTe and the crystallization transition. The remarkable difference between the Raman spectrum of the crystal and the glass can thus naturally be accounted for

  9. Ab initio study of point defects in PbSe and PbTe: Bulk and nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Wrasse, E. O. [Instituto de Física, Universidade Federal de Uberlândia, 38408-100, Uberlândia, MG, Brazil and Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Venezuela, P. [Instituto de Física, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Baierle, R. J., E-mail: rbaierle@smail.ufsm.br [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil)

    2014-11-14

    First principles investigations, within the spin-polarized density functional theory, are performed to study energetic stability and electronic properties of point defects (vacancies and antisites) in PbSe and PbTe: bulk and nanowire (NW). Our results show that the energetic stability of these defects is ruled by relaxation process. These defects have lower formation energies in the nanowire structures as compared to the bulk, being more stable in the surface of the NWs. We also show that in the bulk system only one charge state is stable, otherwise, due to the larger band gaps, more than one charge state may be stable in the NWs. In addition, we have investigated how the presence of intrinsic defects affects the electronic properties of bulk and NW systems. Vacancies give rise to new electronic states near to the edges of the valence and conduction bands while the energetic position of the electronic states from antisites depends on the charge state, being localized inside the band gap or near the edges of the valence or conduction bands. We discuss how these changes in the electronic properties due to intrinsic defects may affect the thermoelectric properties of PbSe and PbTe NWs.

  10. Effect of temperature and pressure on non-linear conduction in GeTeSe chalcogenide glass

    International Nuclear Information System (INIS)

    El-Mansy, M.K.

    1998-01-01

    The I-V characteristic curves were studied in the temperature range 301-359 K and pressure range up to 7.15 x 10 9 Pa which illustrate a non-linear behaviour below (high-resistance region) and beyond (negative-resistance region) a breakdown point characterising Ge 27 Te 62 Se 11 chalcogenide glasses. The general behaviour is shifted towards lower voltage and higher current when the ambient temperature and/or the applied pressure were increased. The non-linear behaviour in the pre breakdown region is discussed according to the Poole-Frenkel field emission of electrons from deep traps located at a depth equal to 0.372eV. The analysis of the effect of field on the non-linear conduction in Ge 27 Te 62 Se 11 chalcogenide glass suggests a modification of the energy difference between filled and empty sites, where the effect of pressure suggests a reduction of the energy gap width. The analysis based on simple thermal effects in the region closer to the breakdown point implies the electrothermal process initiating the negative resistance region. The results of post breakdown region (negative-resistance region) imply the electron hopping between filled and empty localised states at Fermi level. The density of localised states is estimated which lies in the range 5.7 x 10 16 -1.84 x 10 18 cm -3 /eV

  11. Crystalline perfection and mechanical investigations on vertical Bridgman grown Bismuth telluride (Bi_2Te_3) single crystals for thermoelectric applications

    International Nuclear Information System (INIS)

    Krishna, Anuj; Vijayan, N.; Singh, Budhendra; Thukral, Kanika; Maurya, K.K.

    2016-01-01

    High efficiency thermoelectric materials plays a vital role in power generation and refrigeration applications. Bismuth telluride (Bi_2Te_3) is one among them. In the present work single crystal of bismuth telluride was grown using vertical Bridgman technique. The phase of grown crystals was analysed using a powder X-ray diffractometer. Quality of the grown crystal was assessed by using high resolution X-ray diffractometer and observed that it is fairly good. Further mechanical investigations on grown crystal was carried out using nano-indentation technique and various mechanical properties like hardness, stiffness and Young’s modulus were evaluated. Observed results clearly indicate its suitability for thermoelectric applications.

  12. Effect of the electronic structure of the etched CdTe single crystals on the exciton radiation processes

    International Nuclear Information System (INIS)

    Tkachuk, P.M.; Tkachuk, V.Yi.; Mel'nichuk, S.V.; Kurik, M.V.

    2005-01-01

    Under optical excitation the structure of the radiation beyond fundamental absorption of the orientated CdTe single crystals caused by LO-phonon scattering processes of the electron-hole states is observed. Crystals have been doped with impurity of Cl as a result of the surface preparing by etching in Br-methanol. Electronic structure of the single crystals surface layer is identified on the basis of two-phonon radiation absorption investigation. Taking into account the modes selection rules the one and two phonon scattering mechanisms for two crystals surface orientations are determined

  13. Large-scale synthesis and growth habit of 3-D flower-like crystal of PbTe

    Science.gov (United States)

    Zhou, Nan; Chen, Gang; Yang, Xi; Zhang, Xiaosong

    2012-02-01

    In this paper, 3-D flower-like crystal of PbTe was successfully synthesized using Pb(CH3COO)2·3H2O and Na2TeO3 as precursors under hydrothermal conditions, and characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction pattern (XRD). The reaction parameters that influenced the evolution of PbTe synthesis and morphology were investigated. It was shown that the flower-like crystal of PbTe was composed of a nucleus with eight pods. A possible growth mechanism was proposed based on the calculation of the surface energies of PbTe and the SEM observation. Furthermore, the temperature-dependent transport properties of 3-D flower-like crystal of PbTe specimen have been evaluated with an average thermoelectric power of 120 S cm-1 and electrical conductivity of 220 μV K-1 at 740 K.

  14. T-x-y diagrams for reciprocal systems PbX + CdI2 = CdX + PbI2 (X=S, Se, Te)

    International Nuclear Information System (INIS)

    Odin, I.N.

    2001-01-01

    The present research is undertaken in search of the new complex phases with interesting physical properties. The synthesized samples was analyzed by differential thermal, X-ray diffraction and microstructural methods. The diagonal cross-section CdTe - PbI 2 of the mutual PbTe + CdI 2 = CdTe + PbI 2 system is stable. The T-x phase diagram of the CdTe - PbI 2 system possess eutectic type, the coordinates of eutectic point is 657 ± 2 K, 15 ± 1 mol. % of CdTe. The lead iodide based solid solutions with the mixed structure and the CdTe based solid solutions take place in the equilibria. Solid CdTe dissolves 0.2 mol. % PbI 2 . The fields of the primary crystallization of the CdTe, Pb 1-x Cd x I 2 , PbTe based solid solutions are on the liquidus surface [ru

  15. High pressure effect on MoS2 and MoSe2 single crystals grown by ...

    Indian Academy of Sciences (India)

    Unknown

    tetrahedral anvil apparatus up to 5 GPa. In this paper we report room temperature resistance mea- surements as a function of pressure on MoS2 and MoSe2 single crystals. In each case the resistance decreases un- der pressure due to an increase in the carrier concentration. 2. Experimental. Single crystals of MoS2 and ...

  16. Temperature- and excitation intensity-dependent photoluminescence in TlInSeS single crystals

    International Nuclear Information System (INIS)

    Gasanly, N M; Aydinli, A; Yuksek, N S

    2002-01-01

    Photoluminescence (PL) spectra of TlInSeS layered single crystals were investigated in the wavelength region 460-800 nm and in the temperature range 10-65 K. We observed one wide PL band centred at 584 nm (2.122 eV) at T=10 K and an excitation intensity of 7.5 W cm -2 . We have also studied the variation of the PL intensity versus excitation laser intensity in the range from 0.023 to 7.5 W cm -2 . The red shift of this band with increasing temperature and blue shift with increasing laser excitation intensity was observed. The PL was found to be due to radiative transitions from the moderately deep donor level located at 0.243 eV below the bottom of the conduction band to the shallow acceptor level at 0.023 eV located above the top of the valence band. The proposed energy-level diagram permits us to interpret the recombination processes in TlInSeS layered single crystals

  17. Temperature- and excitation intensity-dependent photoluminescence in TlInSeS single crystals

    CERN Document Server

    Gasanly, N M; Yuksek, N S

    2002-01-01

    Photoluminescence (PL) spectra of TlInSeS layered single crystals were investigated in the wavelength region 460-800 nm and in the temperature range 10-65 K. We observed one wide PL band centred at 584 nm (2.122 eV) at T=10 K and an excitation intensity of 7.5 W cm sup - sup 2. We have also studied the variation of the PL intensity versus excitation laser intensity in the range from 0.023 to 7.5 W cm sup - sup 2. The red shift of this band with increasing temperature and blue shift with increasing laser excitation intensity was observed. The PL was found to be due to radiative transitions from the moderately deep donor level located at 0.243 eV below the bottom of the conduction band to the shallow acceptor level at 0.023 eV located above the top of the valence band. The proposed energy-level diagram permits us to interpret the recombination processes in TlInSeS layered single crystals.

  18. Nonlinear spectroscopy of the bound exciton states in CdSe single crystals

    International Nuclear Information System (INIS)

    Lisitsa, M.P.; Onishchenko, N.A.; Stolyarenko, A.V.; Ananchenko, V.V.; Polishchuk, S.V.

    1989-01-01

    The study is devoted to the pulsed laser radiation effect on the time-resolved variations of free and bound exciton bands region at the helium temperature. A gradual disappearance of the bound I 2 exciton state is observed with increase of the excitation intensity I in CdSe transmission spectra. This phenomenon is explained by the fact that despite of the shorter life of I 2 excitons as compared to the free ones, the concentration of the centres on which they localize is rather low (≤10 16 cm -3 ) while the evolution of the light-generated electron-hole pairs is such as the most probable recombination through the bound excitons. The transmission spectrum kinetics is studied. The intensity limitation of the laser pulse transmitted through the crystal in the region of the exciton ground state region is shown to be related with two-photon absorption (TPA) in which the exciton state is an intermediate level. The calculation results are in good agreement with the experiment. The estimations show the giant TPA coefficient of ∼10 3 cm/MW. The evolution of photoexcited nonequilibrium electron-hole pairs is studied. The possibility of using CdSe single crystals as spectrum-selective limiters of the laser pulses is shown. (author)

  19. Improvement of thermoelectric properties induced by uniquely ordered lattice field in Bi2Se0.5Te2.5 pillar array

    International Nuclear Information System (INIS)

    Tan, Ming; Hao, Yanming; Wang, Gangzhi

    2014-01-01

    In this study, it was found that uniquely ordered lattice field favors transport of carriers but hinder that of phonons. The n-Bi 2 Se 0.5 Te 2.5 pillar array film was successfully achieved by a simple ion beam assisted deposition technique. This oriented pillar array structure is clear with pillar diameter of about 30 nm, exhibiting a uniquely ordered lattice field. The properties of the ordered Bi 2 Se 0.5 Te 2.5 pillar array were greatly enhanced in comparison with those of the ordinary film. The Bi 2 Se 0.5 Te 2.5 pillar array with a thermoelectric dimensionless figure-of-merit ZT=1.28 was obtained at room temperature. The in-plane transport mechanisms of the ordered pillar array and the ordinary structures, lattice field model, are proposed and investigated. The specially ordered lattice field is the main reason for the properties enhancement observed in the Bi 2 Se 0.5 Te 2.5 film. Introduction of such ordered lattice field into TE films is therefore a very promising approach. - Graphical abstract: In this study, it was found that uniquely ordered lattice field favors transport of carriers but hinder that of phonons. The Bi 2 Se 0.5 Te 2.5 pillar array film with a thermoelectric dimensionless figure-of-merit ZT=1.28 was obtained at room temperature. The in-plane transport mechanisms of the ordered pillar array and the ordinary structures, the lattice field model, are proposed and investigated. The specially ordered lattice field is the main reason for the properties enhancement observed in the Bi 2 Se 0.5 Te 2.5 pillar array. Introduction of such uniquely ordered lattice field into TE films is therefore a very promising approach. In (a) TEM and (b) HRTEM images of the ordered Bi 2 Se 0.5 Te 2.5 column array. - Highlights: • Uniquely ordered Bi 2 Se 0.5 Te 2.5 pillar array was achieved by an IBAD method. • The pillar array with an ordered lattice field exhibits attractive TE property. • The transport mechanism of such ordered pillar array is proposed and

  20. Optical and electrical properties of ZrSe3 single crystals grown by chemical vapour transport technique

    International Nuclear Information System (INIS)

    Patel, Kaushik; Prajapati, Jagdish; Vaidya, Rajiv; Patel, S.G.

    2005-01-01

    Single crystals of the lamellar compound, ZrSe 3 , were grown by chemical vapour transport technique using iodine as a transporting agent. The grown crystals were characterized with the help of energy dispersive analysis by X-ray (EDAX), which gave confirmation about the stoichiometry. The optical band gap measurement of as grown crystals was carried out with the help of optical absorption spectra in the range 700-1450 nm. The indirect as well as direct band gap of ZrSe 3 were found to be 1.1 eV and 1.47 eV, respectively. The resistivity of the as grown crystals was measured using van der Pauw method. The Hall parameters of the grown crystals were determined at room temperature from Hall effect measurements. Electrical resistivity measurements were performed on this crystal in the temperature range 303-423 K. The crystals were found to exhibit semiconducting nature in this range. The activation energy and anisotropy measurements were carried out for this crystal. Pressure dependence of electrical resistance was studied using Bridgman opposed anvils set up up to 8 GPa. The semiconducting nature of ZrSe 3 single crystal was inferred from the graph of resistance vs pressure. The results obtained are discussed in detail. (author)

  1. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles

    Science.gov (United States)

    Chen, Bin; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2016-12-01

    Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations.

  2. Structural study of (CdS/ZnSe)/BeTe superlattices for λ=1.55 μm intersubband transition

    International Nuclear Information System (INIS)

    Li, B.S.; Akimoto, R.; Akita, K.; Hasama, H.

    2004-01-01

    A (CdS/ZnSe)/BeTe superlattice (SL), based on wide band gap II-VI compounds, with a large band offset of 3.1 eV was grown on a GaAs (001) substrate using molecular-beam epitaxy and an intersubband transition (ISB-T) of 0.78 eV (λ=1.58 μm) with a full width at half maximum (FWHM) of 96 meV observed. We studied structural properties using high-resolution x-ray diffraction combined with dynamic simulation and found through the strain state in samples that a ZnSe/BeTe interface having a quaternary interface layer (ZnTe) 0.45 (BeSe) 0.55 is preferentially formed despite the promotion of one molecular layer (ML) ZnTe interface formation. Be-Se bonds thus replace the Zn-Te bond in the transition region. For the CdS/ZnSe interface, an approximately 1 ML Zn 0.75 Cd 0.25 S ternary layer accompanied by ∼1 ML Zn 0.85 Cd 0.15 Se forms at the transition region due to Cd diffusion. X-ray (002) ω/2θ scan curves for (CdS/ZnSe)/BeTe SLs show sharp, intense satellite peaks exceeding ten orders, indicating high structure quality. We obtained excellent agreement between experimental diffraction patterns and the calculated curve via dynamic simulation for (CdS/ZnSe)/BeTe SLs. The good fits allows us to identify structure parameters in (CdS/ZnSe)/BeTe SLs, which are consistent with results of high-resolution transmission electron microscopy measurement. Based on dynamic simulated results, we obtained a structure of (CdS/ZnSe)/Be 1-x Mg x Te (x=1.2%) with an average lattice constant a SL matching the GaAs substrate. An ISB-T located at wavelength λ=1.55 μm with a narrow FWHM of 90 meV was thus realized at room temperature

  3. Crystal structure and dynamics of K2-x(NH4)xSeO4 mixed crystals studied by x-ray and neutron scattering

    International Nuclear Information System (INIS)

    Smirnov, L.S.; Natkaniec, I.; Loose, A.

    2006-01-01

    The K 2-x (NH 4 ) x SeO 4 mixed crystals have been studied by powder X-ray and neutron diffraction and inelastic incoherent neutron scattering in a wide temperature range from 300 to 16 K. No phase transition is observed in (NH 4 ) 2 SeO 4 in the range from room temperature to 20 K. The reorientation potential barriers of ammonium ions in the K 2-x (NH 4 ) x SeO 4 mixed crystals increase with the increasing concentration of ammonium ions

  4. Cuidado que el medicamento no se te salga por la nariz

    Directory of Open Access Journals (Sweden)

    Feijoo Calles D

    2017-12-01

    Full Text Available La enfermedad pulmonar obstructiva crónica (EPOC es una patología caracterizada por una reducción persistente del flujo de aire. Esta enfermedad pulmonar es progresiva y potencialmente mortal. Suele causar disnea y las exacerbaciones y comorbilidades asociadas hacen que el pronóstico sea peor. Se presenta un caso de seguimiento farmacoterapéutico realizado siguiendo la metodología del Foro de Atención Farmacéutica en Farmacia Comunitaria en el Aula de Práctica Farmacéutica “Paco Martínez” de la Universidad CEU Cardenal Herrera a un paciente real con EPOC y polimedicado, utilizando como método el “aprendizaje basado en problemas”. Como apoyo para la evaluación de la situación se realiza un análisis de las diferentes teorías publicadas sobre la ineficacia del tratamiento. Además, se expone el nuevo enfoque que se le quiere dar al tratamiento de los pacientes con EPOC, valorando la heterogeneidad de la enfermedad y la variabilidad clínica de cada paciente mediante la revisión bibliográfica en bases de datos científicas Pubmed/Medline y Google Académico, junto con la búsqueda de información en las diferentes páginas web de organismos oficiales, Organización Mundial de la Salud y Agencia Española de Medicamentos y Productos Sanitarios.

  5. Cuidado que el medicamento no se te salga por la nariz

    OpenAIRE

    Feijoo Calles, Daniela; Moreno Royo, Lucrecia; Salar Ibáñez, Luis

    2017-01-01

    La enfermedad pulmonar obstructiva crónica (EPOC) es una patología caracterizada por una reducción persistente del flujo de aire. Esta enfermedad pulmonar es progresiva y potencialmente mortal. Suele causar disnea y las exacerbaciones y comorbilidades asociadas hacen que el pronóstico sea peor. Se presenta un caso de seguimiento farmacoterapéutico realizado siguiendo la metodología del Foro de Atención Farmacéutica en Farmacia Comunitaria en el Aula de Práctica Farmacéutica “Paco Martínez...

  6. Electrochemical lithium and sodium intercalation into the tantalum-rich layered chalcogenides Ta2Se and Ta2Te3

    International Nuclear Information System (INIS)

    Lavela, P.; Tirado, J.L.

    1999-01-01

    Two-layered tantalum chalcogenides are evaluated as alkali metal intercalation hosts in lithium and sodium electrochemical cells. The metal-rich pseudo-two-dimensional solid Ta 2 Se shows a poor intercalation behaviour. Lithium reacts with the selenide by deintercalating selenium from the blocks of Ta-related b.c.c. structure leading to a collapse of the structure and the formation of tantalum metal. Sodium is reversibly intercalated to a limited extent leading to complex structural changes in the selenide, as revealed by electron diffraction. The two-dimensional telluride Ta 2 Te 3 allows a topotactic intercalation of lithium below 1 F/mol, while a more extended reaction leads to sample amorphization. The better intercalation behaviour of this solid can be related with the one-atom thick metal layer and the van der Waals gap separating tellurium atoms of successive layers. Sodium can be reversibly intercalated into Ta 2 Te 3 in sodium cells which show a good cycling behaviour. Exposure of the intercalated solid to water vapour allows the preparation of hydrated products with a monolayer or a bilayer of water molecules solvating sodium in the interlayer space. (orig.)

  7. Nonlinear optical diagnostic of semimagnetic semiconductors Pb1-xYb xX (X = S, Se, Te)

    International Nuclear Information System (INIS)

    Nouneh, K.; Kityk, I.V.; Viennois, R.; Benet, S.; Charar, S.; Plucinski, K.J.

    2007-01-01

    Nonlinear optical measurements were performed to elucidate the influence of magnetic ions on the behavior of charge carriers in magnetic semiconductors-Pb 1-x Yb x X (X = S, Se, Te at x = 1-3%). It was shown that nonlinear optical methods could be used as sensitive tools for investigations of electron-phonon anharmonicity near low-temperature semiconductor-insulator phase transitions. There exists a difference between surface and bulk-like contributions to the nonlinear optical effects. It was shown that only low-temperature Two Photon Absorption (TPA) oscillator may be related to the number of the electron-phonon anharmonic modes responsible for the observed phase transformation. The explanation of the anomalous temperature dependences is given in accordance with dipole momentum's behaviors determined by low-temperature spin-spin interactions and by electron-phonon anharmonic interactions. We have discovered that low-temperature dependence of specific heat of Pb 1-x R x Te (R = Yb, Pr with x = 3% and 1.6%, respectively) exhibits a non-magnetic order caused by large electron-phonon contributions and structural disorder effects

  8. Effect of substrate temperature on the optical parameters of thermally evaporated Ge-Se-Te thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Pankaj, E-mail: pks_phy@yahoo.co.i [Department of Physics, Jaypee University of Information Technology, Waknaghat, Solan, H.P. 173215 India (India); Katyal, S.C. [Department of Physics, Jaypee University of Information Technology, Waknaghat, Solan, H.P. 173215 India (India)

    2009-05-01

    Thin films of Ge{sub 10}Se{sub 90-x}Te{sub x} (x = 0, 10, 20, 30, 40, 50) glassy alloys were deposited at three substrate temperatures (303 K, 363 K and 423 K) using conventional thermal evaporation technique at base pressure of {approx} 10{sup -4} Pa. X-ray diffraction results show that films deposited at 303 K are of amorphous nature while films deposited at 363 K and 423 K are of polycrystalline nature. The optical parameters, refractive index and optical gap have been derived from the transmission spectra (using UV-Vis-NIR spectrophotometer) of the thin films in the spectral region 400-1500 nm. This has been observed that refractive index values remain almost constant while the optical gap is found to decrease considerably with the increase of substrate temperature. The decrease in optical gap is explained on the basis of change in nature of films, from amorphous to polycrystalline state, with the increase of substrate temperature. The optical gap has also been observed to decrease with the increase of Te content.

  9. Pb1–xMnxTe single crystals and their structural properties

    Directory of Open Access Journals (Sweden)

    NEBOJSA ROMCEVIC

    2004-12-01

    Full Text Available Pb1-xMnxTe crystals were grown by the vertical Bridgman method. Their structural properties were observed both by optical microscopy after chemical polishing and ething, and by X-ray powder diffraction analysis. A solution of 5 vol. % Br2 in HBr at room temperatur, for an exposure of 2 min was determined for chemical polishing. A solution of 20 g KOH in 1 ml H2O2, 2 ml glycerol (C3H8O3, and 20 ml H2O at room temperature for an exposure for 6 min was found to be a suitable etching solution. The obtained results are discussed and compared with published data.

  10. Field analysis of TE and TM modes in photonic crystal Bragg fibers by transmission matrix method

    Directory of Open Access Journals (Sweden)

    M Hosseini Farzad

    2010-03-01

    Full Text Available In this article, we considered the field analysis in photonic crystal Bragg fibers. We apply the method of transmission matrix to calculater the dispersion curves, the longitudinal wave number over wave number versus incident wavelength, and the field distributions of TE and TM modes in the Bragg fiber. Our analysis shows that the field of guided modes is confined in the core and can exist only in particular wavelength bands corresponding to the band-gap of the periodic structure of the clad. From another point of view, light confinement is due to Bragg reflection from high-and low-refractive index layers of the clad. Also, the diagram of average angular frequency with respect to average longitudinal wave number is plotted so that the band gap regions of the clad are clearly observed.

  11. Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering

    International Nuclear Information System (INIS)

    Jiang Jun; Chen Lidong; Bai Shengqiang; Yao Qin; Wang Qun

    2005-01-01

    The n-type Bi 2 (Te,Se) 3 thermoelectric materials with preferred grain orientation have been fabricated through the spark plasma sintering (SPS) technique. The c-axis of the grains in the sintered samples were preferentially oriented parallel to the pressing direction, the orientation factor of the (0 0 l) planes changed from 0.4 to 0.85 with the sintering conditions. The anisotropy was investigated by measuring the electrical conductivities in the two directions perpendicular and parallel to the pressing direction. The optimal figure of merit ZT (ZT = α 2 σT/κ) of the sintered materials in the direction perpendicular to the pressing direction was comparative to that of the zone-melted materials in the same crystallographic direction, while the bending strength reached about 80 MPa, which is 7-8 times of that of the zone-melted materials

  12. Extension of Mediema's Macroscopic Atom Model to the Elements of Group 16 (O, S, Se, Te ,Po)

    CERN Document Server

    Neuhausen, J

    2003-01-01

    A consistent set of Miedema-parameters has been developed for the elements of the chalcogen group (Group 16 of the periodic table of the elements: 0, S, Se, Te, Po) from ab-initio quantum-mechanical calculations as weIl as empirical correlations. Using this parameter set thermochemical properties such as enthalpies of formation of solid metal chalcogenides, partial molar enthalpies of solution of chalcogens in liquid and solid metaIs, partial molar enthalpies of evaporation of the chalcogens from liquid metal solution into the monoatomic gaseous state, partial molar enthalpies of adsorption of chalcogenides on metal surfaces at zero coverage and partial molar enthalpies of segregation of the chalcogens in trace amounts within solid metal matrices have been calculated. These properties are compared with available experimental data and discussed with an emphasis on the periodic behaviour of the elements. The model calculations show that a description of the thermochemical properties of the chalcogens using the ...

  13. Dynamical control of Mn spin-system cooling by photogenerated carriers in a (Zn,Mn)Se/BeTe heterostructure

    Science.gov (United States)

    Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.

    2010-08-01

    The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.

  14. Thermoelectric Transport Properties of Cu Nanoprecipitates Embedded Bi2Te2.7Se0.3

    Directory of Open Access Journals (Sweden)

    Eunsil Lee

    2015-01-01

    Full Text Available We suggest a simple and scalable synthesis to prepare Cu-Bi2Te2.7Se0.3 (Cu-BTS nanocomposites. By precipitating Cu nanoparticle (NP in colloidal suspension of as-exfoliated BTS, homogeneous mixtures of Cu NP and BTS nanosheet were readily achieved, and then the sintered nanocomposites were fabricated by spark plasma sintering technique using the mixed powder as a raw material. The precipitated Cu NPs in the BTS matrix effectively generated nanograin (BTS and heterointerface (Cu/BTS structures. The maximum ZT of 0.90 at 400 K, which is 15% higher compared to that of pristine BTS, was obtained in 3 vol% Cu-BTS nanocomposite. The enhancement of ZT resulted from improved power factor by carrier filtering effect due to the Cu nanoprecipitates in the BTS matrix.

  15. Visible-active photocatalytic behaviors observed in nanostructured lead chalcogenides PbX (X = S, Se, Te)

    International Nuclear Information System (INIS)

    Qiao, Li-Na; Wang, H.C.; Shen, Y.; Lin, Yuan-Hua; Nan, Ce-Wen

    2016-01-01

    Nanostructured lead chalcogenides (PbX, X = Te, Se, S) were prepared via a simple hydrothermal method. The powder samples were characterized by XRD, SEM, SAED and DRS. Phase composition and microstructure analysis indicate that these samples are pure lead chalcogenides phases and have similar morphologies. These lead chalcogenides display efficient absorption in the UV-visible light range. The photocatalytic properties of lead chalcogenides nanoparticles were evaluated by the photodegradation of Congo red under UV-visible light irradiation in air atmosphere. The Congo red solution can be efficiently degraded under visible light in the presence of lead chalcogenides nanoparticles. The photocatalytic activities of lead chalcogenides generally increase with increasing their band gaps and shows no appreciable loss after repeated cycles. Our results may be useful for developing new photocatalyst systems responsive to visible light among narrow band gap semiconductors

  16. Growth and characterization of indium-doped Cd1−xZnxTe crystal by traveling heater method

    International Nuclear Information System (INIS)

    Wei, Gaoli; Wang, Linjun; Zhang, Jijun; Yuan, Zhenwen; Qin, Kaifeng; Min, Jiahua; Liang, Xiaoyan; Xia, Yiben

    2013-01-01

    An indium-doped detector grade Cd 0.9 Zn 0.1 Te crystal was grown by the THM technique from Te-rich solution. The as-grown crystal showed the dark resistivity of (1–3)×10 10 Ω cm. Through IR transmission microscopy Te inclusion with regular triangular or circular shapes could be observed, and the size of Te inclusion was around 7 μm and the concentration was ∼10 5 cm −3 . The impurity concentrations were greatly reduced for the THM grown CZT, as compared to the Bridgman method grown CZT. A resolution of 8.5% was achieved under the 662 keV 137 Cs gamma ray radiation at room temperature for the as-grown CZT samples. -- Highlights: ► Detector grade Cd 1−x Zn x Te has been successfully grown by the THM technique. ► The as-grown CZT has a resistivity of ∼10 10 Ω cm. ► Te inclusions' size and concentration were comparable to the commercial CZT. ► A resolution of 8.5% was achieved for the 137 Cs 662 keVgamma line

  17. Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals

    International Nuclear Information System (INIS)

    León, M.; Lopez, N.; Merino, J. M.; Caballero, R.; Levcenko, S.; Gurieva, G.; Serna, R.; Bodnar, I. V.; Nateprov, A.; Guc, M.; Arushanov, E.; Schorr, S.; Perez-Rodriguez, A.

    2014-01-01

    Using spectroscopic ellipsometry we investigated and analyzed the pseudo-optical constants of Cu 2 ZnSnSe 4 bulk crystals, grown by the Bridgman method, over 0.8–4.5 eV photon energy range. The structures found in the spectra of the complex pseudodielectric functions were associated to E 0 , E 1A , and E 1B interband transitions and were analyzed in frame of the Adachi's model. The interband transition parameters such as strength, threshold energy, and broadening were evaluated by using the simulated annealing algorithm. In addition, the pseudo-complex refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity were derived over 0.8–4.5 eV photon energy range

  18. Spectroscopic ellipsometry study of Cu{sub 2}ZnSnSe{sub 4} bulk crystals

    Energy Technology Data Exchange (ETDEWEB)

    León, M., E-mail: maximo.leon@uam.es; Lopez, N.; Merino, J. M.; Caballero, R. [Department of Applied Physics M12, Universidad Autónoma de Madrid, Madrid (Spain); Levcenko, S.; Gurieva, G. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Serna, R. [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain); Bodnar, I. V. [Department of Chemistry, Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus); Nateprov, A.; Guc, M.; Arushanov, E. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau MD 2028 (Moldova, Republic of); Schorr, S. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Institute of Geological Sciences, Free University Berlin, Malteserstr. 74-100, Berlin (Germany); Perez-Rodriguez, A. [IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs (Barcelona) (Spain); IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain)

    2014-08-11

    Using spectroscopic ellipsometry we investigated and analyzed the pseudo-optical constants of Cu{sub 2}ZnSnSe{sub 4} bulk crystals, grown by the Bridgman method, over 0.8–4.5 eV photon energy range. The structures found in the spectra of the complex pseudodielectric functions were associated to E{sub 0}, E{sub 1A}, and E{sub 1B} interband transitions and were analyzed in frame of the Adachi's model. The interband transition parameters such as strength, threshold energy, and broadening were evaluated by using the simulated annealing algorithm. In addition, the pseudo-complex refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity were derived over 0.8–4.5 eV photon energy range.

  19. Effects of high-energy proton irradiation on the superconducting properties of Fe(Se,Te) thin films

    Science.gov (United States)

    Sylva, G.; Bellingeri, E.; Ferdeghini, C.; Martinelli, A.; Pallecchi, I.; Pellegrino, L.; Putti, M.; Ghigo, G.; Gozzelino, L.; Torsello, D.; Grimaldi, G.; Leo, A.; Nigro, A.; Braccini, V.

    2018-05-01

    In this paper we explore the effects of 3.5 MeV proton irradiation on Fe(Se,Te) thin films grown on CaF2. In particular, we carry out an experimental investigation with different irradiation fluences up to 7.30 · 1016 cm‑2 and different proton implantation depths, in order to clarify whether and to what extent the critical current is enhanced or suppressed, what are the effects of irradiation on the critical temperature, resistivity, and critical magnetic fields, and finally what is the role played by the substrate in this context. We find that the effect of irradiation on superconducting properties is generally small compared to the case of other iron-based superconductors. The irradiation effect is more evident on the critical current density Jc, while it is minor on the transition temperature Tc, normal state resistivity ρ, and on the upper critical field Hc2 up to the highest fluences explored in this work. In more detail, our analysis shows that when protons implant in the substrate far from the superconducting film, the critical current can be enhanced up to 50% of the pristine value at 7 T and 12 K; meanwhile, there is no appreciable effect on critical temperature and critical fields together with a slight decrease in resistivity. On the contrary, when the implantation layer is closer to the film–substrate interface, both critical current and temperature show a decrease accompanied by an enhancement of the resistivity and lattice strain. This result evidences that possible modifications induced by irradiation in the substrate may affect the superconducting properties of the film via lattice strain. The robustness of the Fe(Se,Te) system to irradiation-induced damage makes it a promising compound for the fabrication of magnets in high-energy accelerators.

  20. Optical characterization of bulk Zn1-xBexTe crystals

    International Nuclear Information System (INIS)

    Shih, Y C; Huang, Y S; Firszt, F; Legowski, S; Meczynska, H; Tiong, K K

    2008-01-01

    This paper presents an optical characterization of three bulk sphalerite Zn 1-x Be x Te crystals grown by the modified high pressure Bridgman method. The study was conducted in the near-band-edge interband transition regime using low temperature photoluminescence (PL), temperature-dependent contactless electroreflectance (CER) and/or photoreflectance (PR) in the temperature range of 15-400 K, and surface photovoltage spectroscopy (SPS) at room temperature. PL spectra at low temperatures of the samples investigated consist of an excitonic line, a band due to recombination of free electrons with holes located at shallow acceptors and a broad band related to recombination through deeper level defects. The band-edge excitonic transitions have been observed in the CER/PR spectra. The fundamental transition energies E 0 are determined via lineshape fits to the CER/PR spectra. The values of E 0 at room temperature obtained from CER/PR spectra correspond well to that determined from SPS measurements, and the Be contents x of the samples are determined using a linear equation which describes the room temperature band gap dependence on composition for the Zn 1-x Be x Te alloy system. The parameters describing the temperature dependence of the band-edge excitonic transition energies are evaluated and discussed

  1. First-principles estimation of electronic structure of uranium oxychalcogenides UOY, Y = S, Se, Te. Application to the INS spectra of UOS

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z. [Instytut Niskich Temperatur i Badan Strukturalnych, Polska Akademia Nauk, Skr. Poczt. 1410, 50-950 Wroclaw 2 (Poland). E-mail: gajek at int.pan.wroc.pl

    2000-01-31

    A consistent description of the electronic structure of the U{sup 4+} (5f{sup 2}) ion in the UOY (Y = S, Se, Te) compounds derived on the basis of a model first-principles calculation is presented. The crystal field potential is discussed in detail. Special attention is paid to contributions of non-equivalent ligand groups. Their competition and variation along the series explain apparently random total values of the crystal field parameters (CFPs). Discussion of an interplay of factors dependent on the coordination geometry and so called 'intrinsic parameters' describing the separated metal-ligand (ML) linear ligators points to presumably rational ranges of actual values of CFP. Contrary to some earlier findings, the calculations evidence an approximate axial character of the crystal field potential. A dependence of the intrinsic parameters on the ML distance is examined thoroughly. The new numerical data show a dependence weaker than that reported before. At small ML distances, the intrinsic parameters behave in a manner characteristic of the metallic state. Some simplifications of the common phenomenological models suggested on the basis of the ab initio calculations open new possibilities of interpretation of complex magnetic and other properties of UOY. The obtained eigenstates of the uranium ion and simulated temperature characteristics of such quantities as the magnetic susceptibility or heat capacity may serve as good reference data. The crystal field (CF) parameters estimated from first principles have been used as starting data in the conventional phenomenological description of the recent inelastic neutron scattering (INS) data reported for UOS by Amoretti et al. In contrast to the earlier phenomenological approaches the effect of the term mixing has been taken into account. In initial steps of the fitting of the INS transition energies, a variation of the CF parameters has been restricted by using the angular overlap model. Then, the CF

  2. First-principles estimation of electronic structure of uranium oxychalcogenides UOY, Y = S, Se, Te. Application to the INS spectra of UOS

    International Nuclear Information System (INIS)

    Gajek, Z.

    2000-01-01

    A consistent description of the electronic structure of the U 4+ (5f 2 ) ion in the UOY (Y = S, Se, Te) compounds derived on the basis of a model first-principles calculation is presented. The crystal field potential is discussed in detail. Special attention is paid to contributions of non-equivalent ligand groups. Their competition and variation along the series explain apparently random total values of the crystal field parameters (CFPs). Discussion of an interplay of factors dependent on the coordination geometry and so called 'intrinsic parameters' describing the separated metal-ligand (ML) linear ligators points to presumably rational ranges of actual values of CFP. Contrary to some earlier findings, the calculations evidence an approximate axial character of the crystal field potential. A dependence of the intrinsic parameters on the ML distance is examined thoroughly. The new numerical data show a dependence weaker than that reported before. At small ML distances, the intrinsic parameters behave in a manner characteristic of the metallic state. Some simplifications of the common phenomenological models suggested on the basis of the ab initio calculations open new possibilities of interpretation of complex magnetic and other properties of UOY. The obtained eigenstates of the uranium ion and simulated temperature characteristics of such quantities as the magnetic susceptibility or heat capacity may serve as good reference data. The crystal field (CF) parameters estimated from first principles have been used as starting data in the conventional phenomenological description of the recent inelastic neutron scattering (INS) data reported for UOS by Amoretti et al. In contrast to the earlier phenomenological approaches the effect of the term mixing has been taken into account. In initial steps of the fitting of the INS transition energies, a variation of the CF parameters has been restricted by using the angular overlap model. Then, the CF parameters have been

  3. Crystal structure and magnetic properties of the Ba3TeCo3P2O14, Pb3TeCo3P2O14, and Pb3TeCo3V2O14 langasites

    DEFF Research Database (Denmark)

    Krizan, J.W.; de la Cruz, C.; Andersen, Niels Hessel

    2013-01-01

    We report the structural and magnetic characterizations of Ba3TeCo3P2O14, Pb3TeCo3P2O14, and Pb3TeCo3V2O14, compounds that are based on the mineral dugganite, which is isostructural to langasites. The magnetic part of the structure consists of layers of Co2+ triangles. Nuclear and magnetic...... structures were determined through a co-refinement of synchrotron and neutron powder diffraction data. In contrast to the undistorted P321 langasite structure of Ba3TeCo3P2O14, a complex structural distortion yielding a large supercell is found for both Pb3TeCo3P2O14 and Pb3TeCo3V2O14. Comparison...... of the three compounds studied along with the zinc analog Pb3TeZn3P2O14, also characterized here, suggests that the distortion is driven by Pb2+ lone pairs; as such, the Pb compounds crystallize in a pyroelectric space group, P2. Magnetic susceptibility, magnetization, and heat capacity measurements were...

  4. Chevrel-phase solid solution Mo 6Se 8- xTe x. Study of its superconducting, magnetic and NMR properties

    Science.gov (United States)

    Hamard1a, C.; Auffret, V.; Peña, O.; Le Floch, M.; Nowak, B.; Wojakowski, A.

    2000-09-01

    The Chevrel-phase solid solution Mo 6Se 8-Mo 6Te 8 was studied by X-ray diffraction, AC and DC magnetic susceptibility and 77Se and 125Te NMR spectroscopy. From the smooth evolution of the lattice parameters and superconducting critical temperatures, a progressive substitution of selenium atoms by tellurium is shown, on the whole range of composition 0⩽ x⩽8, in the formulation Mo 6Se 8- xTe x: the unit-cell volume increases linearly because of the larger ionic size of tellurium, while Tc decreases rapidly (from 6.45 down to 0 K) because of the different formal oxidation states of the anions and a probable evolution of the Fermi level in the density of states. Results of magnetic susceptibility support this model and suggest the inhibition of the intrinsic metallic behavior with increasing x. The NMR spectra of the binaries Mo 6Se 8 and Mo 6Te 8 reveal two significant features, attributed to two different chalcogen positions in the R 3¯ symmetry. At low Se contents in Mo 6Se 8- xTe x ( x=7.5, 7 and 6), selenium first fills the two X(2) sites along the three-fold axis (2c positions), and then it becomes statistically distributed over the general 6f positions, leading to broad 77Se NMR lines. On the other hand, substitution of Te atoms in Mo 6Se 8 seems to occur in a random way, creating large perturbations on the 125Te NMR spectra, over the whole range of x. Theoretical analysis based on the presence of two anisotropic lines (of axial and non-axial symmetries, respectively) allowed us to estimate their anisotropy factors and to perfectly simulate the frequency response of both Mo 6Se 8 and Mo 6Te 8 binaries. Analysis of the Knight shift anisotropy leads us to conclude about the importance of the molybdenum z 2 molecular orbital contribution which controls the Mo-X dipolar interactions.

  5. Effect of the external electric field on the kinetics of recombination of photoexcited carriers in a ZnSe/BeTe type II heterostructure

    Science.gov (United States)

    Filatov, E. V.; Maksimov, A. A.; Tartakovskii, I. I.; Yakovlev, D. R.; Waag, A.

    2012-02-01

    The kinetics of the radiative recombination of photoexcited electrons and holes for a spatially direct transition in a ZnSe/BeTe type II heterostructure in an external electric field has been analyzed. A strong decrease (more than two orders of magnitude) in the photoluminescence intensity, as well as a decrease in the duration of the relaxation of the direct transition, is observed when the electric field is applied. The energy levels and wavefunctions of electrons and holes in the ZnSe/BeTe heterostructure subjected to the electric field have been numerically calculated. It has been shown that the observed decrease in the photoluminescence intensity and duration of the relaxation of the direct transition is due to both an increase in the radiative recombination time and an increase in the rate of escape of photoexcited holes from the above-barrier level in the ZnSe layer to the BeTe layer.

  6. Ab-initio study of pure sup 7 sup 7 Se and sup 1 sup 2 sup 5 Te systems and of the sup 7 sup 7 Se nuclear quadrupole interaction in tellurium

    CERN Document Server

    Oh, Y K; Cho, H S

    1999-01-01

    Using the Hartree-Fock cluster procedure, we have studied the electric-field gradient tensors at the nuclear sites of sup 7 sup 7 Se and sup 1 sup 2 sup 5 Te in pure sup 1 sup 2 sup 5 Te systems and in tellurium crystalline system's with a sup 7 sup 7 Se impurity. From the results for the pure systems, sup 7 sup 7 Se in selenium and sup 1 sup 2 sup 5 Te in tellurium, using the observed quadrupole moments: Q( sup 7 sup 7 Se) 0.75 +- 0.07 barns and Q( sup 1 sup 2 sup 5 Te) = 0.35 +- 0.04 barns. Comparison is made with earlier values obtained by different methods. Using our calculated values of Q and the results of a study of the field-gradient tensors for sup 7 sup 7 Se in tellurium, the theoretical values of the quadrupole coupling constants are found to agree, within about 7 percent, with experiment. The calculated asymmetry parameters are also found to be in reasonable agreement with the experiment values, although the agreement not as close as in the case of the quadrupole -coupling constants. Directions fo...

  7. Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x (x=1,2,3) phase change material

    NARCIS (Netherlands)

    Kooi, B.J.; de Hosson, J.T.M.

    2002-01-01

    The crystal structures of GeSb2Te4, Ge2Sb2Te5, and Ge3Sb2Te6 were determined using electron diffraction and high-resolution transmission electron microscopy. The structure determined for the former two crystals deviates from the ones proposed in the literature. These crystal structures were

  8. Aqueous-Processed Inorganic Thin-Film Solar Cells Based on CdSe(x)Te(1-x) Nanocrystals: The Impact of Composition on Photovoltaic Performance.

    Science.gov (United States)

    Zeng, Qingsen; Chen, Zhaolai; Zhao, Yue; Du, Xiaohang; Liu, Fangyuan; Jin, Gan; Dong, Fengxia; Zhang, Hao; Yang, Bai

    2015-10-21

    Aqueous processed nanocrystal (NC) solar cells are attractive due to their environmental friendliness and cost effectiveness. Controlling the bandgap of absorbing layers is critical for achieving high efficiency for single and multijunction solar cells. Herein, we tune the bandgap of CdTe through the incorporation of Se via aqueous process. The photovoltaic performance of aqueous CdSexTe1-x NCs is systematically investigated, and the impacts of charge generation, transport, and injection on device performance for different compositions are deeply discussed. We discover that the performance degrades with the increasing Se content from CdTe to CdSe. This is mainly ascribed to the lower conduction band (CB) of CdSexTe1-x with higher Se content, which reduces the driving force for electron injection into TiO2. Finally, the performance is improved by mixing CdSexTe1-x NCs with conjugated polymer poly(p-phenylenevinylene) (PPV), and power conversion efficiency (PCE) of 3.35% is achieved based on ternary NCs. This work may provide some information to further optimize the aqueous-processed NC and hybrid solar cells.

  9. Effect of vacancies on the structure and properties of Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Abdul-Jabbar, N. M. [Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Materials Department, University of California, Santa Barbara, California 93106 (United States); Forrest, T. R. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Department of Physics, University of California, Berkeley, California 94720 (United States); Gronsky, R. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Bourret-Courchesne, E. D. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Wirth, B. D. [Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States); Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-08-28

    Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3} belongs to a family of materials with large intrinsic vacancy concentrations that are being actively studied due to their potential for diverse applications that include thermoelectrics and phase-change memory. In this article, the Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3} structure is investigated via synchrotron x-ray diffraction, electron microscopy, and x-ray absorption experiments. Diffraction and microscopy measurements showed that the extent of vacancy ordering in Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3} is highly dependent on thermal annealing. It is posited that stoichiometric vacancies play a role in local atomic distortions in Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3} (based on the fine structure signals in the collected x-ray absorption spectra). The effect of vacancy ordering on Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3} material properties is also examined through band gap and Hall effect measurements, which reveal that the Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3} band gap redshifts by ≈0.05 eV as the vacancies order and accompanied by gains in charge carrier mobility. The results serve as an encouraging example of altering material properties via intrinsic structural rearrangement as opposed to extrinsic means, such as doping.

  10. Batch and column adsorption behaviors of Se(IV) and Te(IV) on organic and inorganic ion exchangers from HCl solutions

    Energy Technology Data Exchange (ETDEWEB)

    El-Sweify, Fatma H.; Abdel-Fattah, Alaa El-Din A.; Aly, Shorouk M.; Ghamry, Mohamed A. [Atomic Energy Authority, Cairo (Egypt). Hot Laboratories Center; El-Sheikh, Ragaa [Zagazig Univ. (Egypt). Chemistry Dept.

    2017-07-01

    Adsorption behaviors of Se(IV) and Te(IV) on the inorganic ion exchanger ceric tungstate (CeW) was studied under static and dynamic conditions and compared with the adsorption on the organic cation and anion exchangers Dowex-50X8 and AG-2X8, respectively. The radioactive isotopes {sup 75}Se and {sup 123m}Te were used to trace the respective elements. Some parameters affecting the adsorption were investigated under static conditions. In the case of batch technique the adsorption was studied from slightly acidic HCl as well as slightly alkaline media, i.e. at two pH-ranges. Se(IV) and Te(IV) were adsorbed on both the inorganic ion exchanger (CeW) and on AG-2X8, from slightly alkaline solutions. From the similarity of adsorption on both ion exchangers it was clear that (CeW) acts as an anion exchanger. Moreover, the obtained K{sub d}-values for the adsorption on (CeW) were much higher than those for the adsorption on the organic anion exchanger AG-2X8. Se(IV) was not adsorbed on Dowex-50X8 all over the studied pH-range whereas Te(IV) was slightly adsorbed. Loading and elution behaviors of Se(IV) and Te(IV) on columns of AG-2X8 and (CeW) were studied using solutions of HCl of different concentrations. Some good separation alternatives of Se(IV) and Te(IV) under certain conditions were achieved.

  11. Theoretical Determination of Optimal Material Parameters for ZnCdTe/ZnCdSe Quantum Dot Intermediate Band Solar Cells

    Science.gov (United States)

    Imperato, C. M.; Ranepura, G. A.; Deych, L. I.; Kuskovsky, I. L.

    2018-03-01

    Intermediate band solar cells (IBSCs) are designed to enhance the photovoltaic efficiency significantly over that of a single-junction solar cell as determined by the Shockley-Queisser limit. In this work we present calculations to determine parameters of type-II Zn1-xCdxTe/Zn1-yCdySe quantum dots (QDs) grown on the InP substrate suitable for IBSCs. The calculations are done via the self-consistent variational method, accounting for the disk form of the QDs, presence of the strained ZnSe interfacial layer, and under conditions of a strain-free device structure. We show that to achieve the required parameters relatively thick QDs are required. Barriers must contain Cd concentration in the range of 35-44%, while Cd concentration in QD can vary widely from 0% to 70%, depending on their thickness to achieve the intermediate band energies in the range of 0.50-0.73 eV. It is also shown that the results are weakly dependent on the barrier thickness.

  12. Structural phase transition and erasable optically memorized effect in layered γ-In2Se3 crystals

    International Nuclear Information System (INIS)

    Ho, Ching-Hwa; Chen, Ying-Cen; Pan, Chia-Chi

    2014-01-01

    We have grown In 2 Se 3 layered-type crystals using chemical vapor transport method with ICl 3 as the transport agent. The as-grown crystals show two different color groups of black shiny for α-phase In 2 Se 3 and red to yellow for γ-phase In 2 Se 3 . High-resolution transmission electron micro scopy verifies crystalline state and structural polytype of the as-grown In 2 Se 3 . The results indicate that the α-In 2 Se 3 crystals present more crystalline states than those of the other amorphous γ-In 2 Se 3 . The amorphous effect on the advancing of optoelectronic property of γ-In 2 Se 3 shows erasable optical-memorized effect in the disordered and polycrystalline γ-In 2 Se 3 layers. Laser-induced photodarkening and annealed-recovery test verified that a reversible structural-phase transition of γ↔α can occur inside the γ-In 2 Se 3 . Thermoreflectance and Raman scattering measurements are carried out to identify the inter-phase transformation of the γ-In 2 Se 3 polycrystals using different heat treatments. Direct band gaps and Raman vibration modes for the γ- and α-In 2 Se 3 crystalline phases are, respectively, characterized and identified. The character of γ↔α inter-phase transition promotes feasible optical and optoelectronic applications of the γ-In 2 Se 3 material in optical memory, optics, and solar-energy devices

  13. Structural phase transition and erasable optically memorized effect in layered γ-In2Se3 crystals

    Science.gov (United States)

    Ho, Ching-Hwa; Chen, Ying-Cen; Pan, Chia-Chi

    2014-01-01

    We have grown In2Se3 layered-type crystals using chemical vapor transport method with ICl3 as the transport agent. The as-grown crystals show two different color groups of black shiny for α-phase In2Se3 and red to yellow for γ-phase In2Se3. High-resolution transmission electron micro scopy verifies crystalline state and structural polytype of the as-grown In2Se3. The results indicate that the α-In2Se3 crystals present more crystalline states than those of the other amorphous γ-In2Se3. The amorphous effect on the advancing of optoelectronic property of γ-In2Se3 shows erasable optical-memorized effect in the disordered and polycrystalline γ-In2Se3 layers. Laser-induced photodarkening and annealed-recovery test verified that a reversible structural-phase transition of γ↔α can occur inside the γ-In2Se3. Thermoreflectance and Raman scattering measurements are carried out to identify the inter-phase transformation of the γ-In2Se3 polycrystals using different heat treatments. Direct band gaps and Raman vibration modes for the γ- and α-In2Se3 crystalline phases are, respectively, characterized and identified. The character of γ↔α inter-phase transition promotes feasible optical and optoelectronic applications of the γ-In2Se3 material in optical memory, optics, and solar-energy devices.

  14. Electrochemical preparation and characterization of n-CdSe sub 0. 65 Te sub 0. 35 polycrystalline thin films: Influence of annealing

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M T; Ortega, J [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain). Inst. de Energias Renovables

    1989-12-01

    CdSe{sub 0.65}Te{sub 0.35} thin films have been prepared by electrodeposition. The films were characterized by X-ray diffraction, optical and photoelectrochemical methods. The influence of annealing treatments on the physical parameters (grain size, d, donor concentration, N{sub D}, and hole diffusion length, L{sub P}) determining the photoelectrochemical behaviour of electrodeposited CdSe{sub 0.65}Te{sub 0.35} thin films in contact with sulfide/polysulfide electrolytes have been systematically studied. (orig.).

  15. Crystal growth and mechanical hardness of In{sub 2}Se{sub 2.7}Sb{sub 0.3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Piyush, E-mail: piyush-patel130@yahoo.com; Vyas, S. M., E-mail: s-m-vyas-gu@hotmail.com; Patel, Vimal; Pavagadhi, Himanshu [Department of Physics, School of Science, Gujarat University, Ahmedabad, Gujarat, India-380009 (India); Solanki, Mitesh [panditdindayal Petroleum University, Gandhinagar. Gujarat (India); Jani, Maunik P. [BITS Edu Campus, Varnama, Vadodara, Gujarat (India)

    2015-08-28

    The III-VI compound semiconductors is important for the fabrication of ionizing radiation detectors, solid-state electrodes, and photosensitive heterostructures, solar cell and ionic batteries. In this paper, In{sub 2}Se{sub 2.7} Sb{sub 0.3} single crystals were grown by the Bridgman method with temperature gradient of 60 °C/cm and the growth velocity 0.5cm/hr. The as-grown crystals were examined under the optical microscope for surface study, a various growth features observed on top free surface of the single crystal which is predominant of layers growth mechanism. The lattice parameters of as-grown crystal was determined by the XRD analysis. A Vickers’ projection microscope were used for the study of microhardness on the as-cleaved, cold-worked and annealed samples of the crystals, the results were discussed, and reported in detail.

  16. Controllable Growth of Monolayer MoS2 and MoSe2 Crystals Using Three-temperature-zone Furnace

    Science.gov (United States)

    Zheng, Binjie; Chen, Yuanfu

    2017-12-01

    Monolayer molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) have attracted a great attention for their exceptional electronic and optoelectronic properties among the two dimensional family. However, controllable synthesis of monolayer crystals with high quality needs to be improved urgently. Here we demonstrate a chemical vapor deposition (CVD) growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace. Systematical study of the effects of growth pressure, temperature and time on the thickness, morphology and grain size of crystals shows the good controllability. The photoluminescence (PL) characterizations indicate that the as-grown monolayer MoS2 and MoSe2 crystals possess excellent optical qualities with very small full-width-half-maximum (FWHM) of 96 me V and 57 me V, respectively. It is comparable to that of exfoliated monolayers and reveals their high crystal quality. It is promising that our strategy should be applicable for the growth of other transition metal dichalcogenides (TMDs) monolayer crystals.

  17. Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites

    Energy Technology Data Exchange (ETDEWEB)

    Singh, U. B.; Pandey, M. B., E-mail: mbpandey@gmail.com [Department of Physics, Vikramajit Singh Sanatan Dharama College, Kanpur-208002 (India); Dhar, R; Pandey, A. S. [Centre of Material Sciences, Institute of Interdisciplinary Studies, University of Allahabad, Allahabad-211002 (India); Kumar, S. [Raman Research Institute, C. V. Raman Avenue, Bangalore-560080 (India); Dabrowski, R. [Institute of Applied Sciences and Chemistry, Military University of Technology, 00-908-Warswa (Poland)

    2014-11-15

    We have prepared the composites of a room temperature nematic liquid crystal namely 4-(trans-4-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) and Cadmium Selenide Quantum Dots (CdSe-QDs) and investigated their electro-optical and dielectric properties. Effect of dispersion of CdSe-QDs on various electro-optical and display parameters of host liquid crystalline material have been studied. Physical parameters, such as switching threshold voltage and splay elastic constant have been altered drastically for composites. Dispersion of QDs in a liquid crystals medium destabilizes nematic ordering of the host and decreases the nematic-to-isotropic transition temperature.

  18. Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites

    International Nuclear Information System (INIS)

    Singh, U. B.; Pandey, M. B.; Dhar, R; Pandey, A. S.; Kumar, S.; Dabrowski, R.

    2014-01-01

    We have prepared the composites of a room temperature nematic liquid crystal namely 4-(trans-4-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) and Cadmium Selenide Quantum Dots (CdSe-QDs) and investigated their electro-optical and dielectric properties. Effect of dispersion of CdSe-QDs on various electro-optical and display parameters of host liquid crystalline material have been studied. Physical parameters, such as switching threshold voltage and splay elastic constant have been altered drastically for composites. Dispersion of QDs in a liquid crystals medium destabilizes nematic ordering of the host and decreases the nematic-to-isotropic transition temperature

  19. Surface composition of Cd{sub 1–x}Fe(Mn){sub x}Te{sub 1–y}Se{sub y} systems exposed to air

    Energy Technology Data Exchange (ETDEWEB)

    Bundaleski, Nenad [University of Belgrade–Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Universidade Nova de Lisboa–Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829–516 Caparica (Portugal); Radisavljević, Ivana, E-mail: iva@vin.bg.ac.rs [University of Belgrade–Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Trigueiro, João [Universidade Nova de Lisboa–Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829–516 Caparica (Portugal); Tolstogouzov, Alexander [Universidade Nova de Lisboa–Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829–516 Caparica (Portugal); Ryazan State Radio Engineering University, Gagarin 59/1, 390005 Ryazan (Russian Federation); Rakočević, Zlatko; Medić, Mirjana [University of Belgrade–Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Teodoro, Orlando M.N.D. [Universidade Nova de Lisboa–Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829–516 Caparica (Portugal); Romčević, Nebojša [University of Belgrade–Institute of Physics, Pregrevica 118, 11000 Belgrade (Serbia); Ivanović, Nenad [University of Belgrade–Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia)

    2017-03-01

    Using X–ray induced Photoelectron Spectroscopy, Time–of–Flight Secondary Ion Mass Spectrometry and Atomic Force Microscopy we have investigated elemental composition, structure and oxidation process taking place at the surfaces of polycrystalline Cd{sub 0.99}Fe{sub 0.01}Te{sub 0.97}Se{sub 0.03} and Cd{sub 0.95}Mn{sub 0.05}Te{sub 0.97}Se{sub 0.03} systems stored in ambient conditions. The surface oxidation destroys the native CdTe matrix and provokes substantial atomic rearrangement in the first few atomic layers. The near–surface region of both systems is enriched in Cd and to some extent Te–deficient, but the surface structure, morphology and the native oxide composition are all found to be considerably different. In Cd{sub 0.99}Fe{sub 0.01}Te{sub 0.97}Se{sub 0.03} system both Fe and Se dopants diffuse into the bulk and oxidation of its surface results in formation of a thin CdTeO{sub 3} layer which covers the CdTe matrix. In Cd{sub 0.95}Mn{sub 0.05}Te{sub 0.97}Se{sub 0.03} system oxygen–rich atmosphere triggers Mn and Se out–diffusion and the nonuniform oxide layer predominantly consists of MnO and a small amount of Te–oxide which both lay underneath a thin layer of metallic Cd segregated at the top of the surface. - Highlights: • Nature of the CdFe(Mn)TeSe surfaces exposed to air is substantially different. • Near–surface region is enriched in Cd and to some extent Te–deficient. • Presence of Mn drastically changes the surface oxidation conditions. • The surface oxidation in ambient conditions undergoes different mechanisms. • Oxygen triggers Mn out–diffusion, while Fe diffuses into the bulk.

  20. Single crystal growth and structure refinements of CsMxTe2-xO6 (M = Al, Ga, Ge, In) pyrochlores

    International Nuclear Information System (INIS)

    Siritanon, Theeranun; Sleight, A.W.; Subramanian, M.A.

    2011-01-01

    Graphical abstract: Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown and structure refinements indicate deviations from ideal stoichiometry presumably related to mixed valency of tellurium. Highlights: → Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown. → Structure refinements from single crystal X-ray diffraction data confirm e structure. → Deviations from ideal stoichiometry suggest mixed valency of tellurium and hence conductivity. -- Abstract: Single crystals of CsM x Te 2-x O 6 pyrochlores with M = Al, Ga, Ge, and In have been grown from a TeO 2 flux. Structure refinements from single crystal X-ray diffraction data are reported. These results are used to discuss deviations from ideal stoichiometry that result in electronic conductivity presumably related to mixed valency of tellurium.

  1. Characterization of Electronic Materials HgZnSe and HgZnTe Using Innovative and Conventional Techniques

    Science.gov (United States)

    Tanton, George; Kesmodel, Roy; Burden, Judy; Su, Ching-Hua; Cobb, Sharon D.; Lehoczky, S. L.

    2000-01-01

    HgZnSe and HgZnTe are electronic materials of interest for potential IR detector and focal plane array applications due to their improved strength and compositional stability over HgCdTe, but they are difficult to grow on Earth and to fully characterize. Conventional contact methods of characterization, such as Hall and van der Paw, although adequate for many situations are typically labor intensive and not entirely suitable where only very small samples are available. To adequately characterize and compare properties of electronic materials grown in low earth orbit with those grown on Earth, innovative techniques are needed that complement existing methods. This paper describes the implementation and test results of a unique non-contact method of characterizing uniformity, mobility, and carrier concentration together with results from conventional methods applied to HgZnSe and HgZnTe. The innovative method has advantages over conventional contact methods since it circumvents problems of possible contamination from alloying electrical contacts to a sample and also has the capability to map a sample. Non- destructive mapping, the determination of the carrier concentration and mobility at each place on a sample, provides a means to quantitatively compare, at high spatial resolution, effects of microgravity on electronic properties and uniformity of electronic materials grown in low-Earth orbit with Earth grown materials. The mapping technique described here uses a 1mm diameter polarized beam of radiation to probe the sample. Activation of a magnetic field, in which the sample is placed, causes the plane of polarization of the probe beam to rotate. This Faraday rotation is a function of the free carrier concentration and the band parameters of the material. Maps of carrier concentration, mobility, and transmission generated from measurements of the Faraday rotation angles over the temperature range from 300K to 77K will be presented. New information on band parameters

  2. Crystallization characteristics of Mg-doped Ge2Sb2Te5 films for phase change memory applications

    International Nuclear Information System (INIS)

    Fu Jing; Shen Xiang; Nie Qiuhua; Wang Guoxiang; Wu Liangcai; Dai Shixun; Xu Tiefeng; Wang, R.P.

    2013-01-01

    Highlights: ► Mg-doped Ge 2 Sb 2 Te 5 (GST) phase change films with higher resistance and better thermal stability have been proposed. ► The increase of Mg content result in an enhancement in crystallization temperature, activation energy and electrical resistance. ► The proper Mg addition in GST can lead to a one-step crystallization process from amorphous to faced-centered cubic (fcc) phase. ► The formation of covalent Mg-Sb and Mg-Te bonds contribute to the enhancement thermal stability in Mg-doped GST films. - Abstract: Mg-doped Ge 2 Sb 2 Te 5 (GST) films with different Mg doping concentrations have been prepared, and their crystallization behavior, structure and electrical properties have been systematically investigated for phase-change memory applications. The results show that the addition of Mg into GST films could result in an enhancement in crystallization temperature, activation energy and electrical resistance compared with the conventional GST films, indicating that a good amorphous thermal stability. On the other hand, the proper Mg concentration ranging from 13.6 to 31.1 at.% can lead to a one-step crystallization process from amorphous to faced-centered cubic (fcc) phase and suppress the formation of the hexagonal close-packed (hcp) crystalline phase. X-ray photoelectron spectra (XPS) further confirm that the formation of covalent Mg-Sb and Mg-Te bonds contribute to the enhanced thermal stability in Mg-doped GST films.

  3. Deformed lattice states in a Zn{sub 0.9}V{sub 0.1}Se cubic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Maksimov, V. I., E-mail: kokailo@rambler.ru; Dubinin, S. F.; Surkova, T. P.; Parkhomenko, V. D. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-01-15

    Neutron scattering patterns have been recorded for a bulk Zn{sub 0.9}V{sub 0.1}Se cubic crystal at room temperature; they are indicative of macroscopic deformation in the material and its significant inhomogeneity. Specific features of the previously found state, preceding the fcc ↔ hcp structural transformation of the sphalerite lattice upon strong destabilization induced by vanadium ions in the doped ZnSe matrix, are discussed taking into account the data obtained.

  4. Pool-Frenkel thermoelectric modulation of exciton photoluminescence in GaSe crystals

    International Nuclear Information System (INIS)

    Ertap, H.; Mamedov, G.M.; Karabulut, M.; Bacioglu, A.

    2011-01-01

    Effect of external field on the exciton photoluminescence of GaSe crystals has been investigated and it has been observed that the PL is quenched with the applied field. The changes observed in the PL spectra have been analyzed with impact exciton, Franz-Keldysh and Pool-Frenkel effects. From the analyses of the experimental data, it has been found that the intensity of direct free, indirect free and bound exciton peaks decreased exponentially with the square root of applied field as I∼exp-β√E. The energy positions of emission peaks were found to shift to longer wavelength with the applied field as ΔE∼β√E. From these findings, the Pool-Frenkel thermoelectric field effect is seen to be the dominant mechanism in the variation of exciton PL with the applied field even though the impact exciton and Franz-Keldysh effects contribute. - Highlights: → Exciton PL intensity varies with the applied field. It decreases with the square root of E in accordance with Pool-Frenkel effect. → In the intrinsic region of PL spectrum, lines belonging to direct and indirect free/bound excitons were observed. → Line positions shifted to longer wavelengths with the applied field. → It was shown that amplitude modulation of exciton PL with electric field was possible.

  5. Electronic structure of Fe1.08Te bulk crystals and epitaxial FeTe thin films on Bi2Te3

    Science.gov (United States)

    Arnold, Fabian; Warmuth, Jonas; Michiardi, Matteo; Fikáček, Jan; Bianchi, Marco; Hu, Jin; Mao, Zhiqiang; Miwa, Jill; Singh, Udai Raj; Bremholm, Martin; Wiesendanger, Roland; Honolka, Jan; Wehling, Tim; Wiebe, Jens; Hofmann, Philip

    2018-02-01

    The electronic structure of thin films of FeTe grown on Bi2Te3 is investigated using angle-resolved photoemission spectroscopy, scanning tunneling microscopy and first principles calculations. As a comparison, data from cleaved bulk Fe1.08Te taken under the same experimental conditions is also presented. Due to the substrate and thin film symmetry, FeTe thin films grow on Bi2Te3 in three domains, rotated by 0°, 120°, and 240°. This results in a superposition of photoemission intensity from the domains, complicating the analysis. However, by combining bulk and thin film data, it is possible to partly disentangle the contributions from three domains. We find a close similarity between thin film and bulk electronic structure and an overall good agreement with first principles calculations, assuming a p-doping shift of 65 meV for the bulk and a renormalization factor of around two. By tracking the change of substrate electronic structure upon film growth, we find indications of an electron transfer from the FeTe film to the substrate. No significant change of the film’s electronic structure or doping is observed when alkali atoms are dosed onto the surface. This is ascribed to the film’s high density of states at the Fermi energy. This behavior is also supported by the ab initio calculations.

  6. The half-metallic ferromagnetism character in Be1−xVxY (Y=Se and Te) alloys: An ab-initio study

    International Nuclear Information System (INIS)

    Sajjad, M.; Manzoor, Sadia; Zhang, H.X.; Noor, N.A.; Alay-e-Abbas, S.M.; Shaukat, A.; Khenata, R.

    2015-01-01

    Ab-initio calculations for V-doped BeSe and BeTe semiconductors are performed by means of all-electrons full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method. The structural properties are optimized using the Wu-Cohen generalized gradient approximation functional, whereas modified Becke and Jhonson local density approximation functional has been employed for evaluating the spin-polarized electronic and magnetic properties. Magnetic stability at various doping concentrations in ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering is investigated by comparing the minimum total energies and enthalpies of formation (ΔH). Studied band structures, density of states, total energy, exchange interactions and magnetic moments manifest both alloys with half-metallic ferromagnetic behavior. Moreover, their valance bands are found to be paired ferromagnetically with V atoms. Furthermore, it was observed that the magnetic moment of vanadium atom reduces from free space charge value due to p–d hybridization which yields small magnetic moments on the Be, Se and Te sites. - Highlights: • Density functional calculations for V-doped BeSe and BeTe are performed. • V-doped BeSe and BeTe are found to be stable half-metallic ferromagnetism. • Improved electronic properties are achieved using mBJLDA which confirm HMF. • The half-metallic gaps show non-linear variation with increasing dopant concentration

  7. TeSeR – Technology for Self-Removal – First results of an H2020 Project to develop a Post-Mission-Disposal Module

    DEFF Research Database (Denmark)

    Voigt, p.; Vogt, C.; Schubert, R.

    2017-01-01

    The goal of TeSeR (Technology for Self-Removal) is to take the first step towards the development of a scalable, flexible, cost-efficient, but highly reliable Post-Mission-Disposal (PMD) module. This module is to be attached to the spacecraft (S/C) on ground and it shall ensure the PMD of the S/C...

  8. Determination of total Sb,Se Te, and Bi and evaluation of their inorganic species in garlic by hydride-generation-atomic-fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matos Reyes, M.N.; Cervera, M.L.; Guardia, M. de la [University of Valencia, Department of Analytical Chemistry, Burjassot, Valencia (Spain)

    2009-07-15

    A sensitive and simple analytical method has been developed for determination of Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), Te(VI), and Bi(III) in garlic samples by using hydride-generation-atomic-fluorescence spectrometry (HG-AFS). The method is based on a single extraction of the inorganic species by sonication at room temperature with 1 mol L{sup -1} H{sub 2}SO{sub 4} and washing of the solid phase with 0.1% (w/v) EDTA, followed by measurement of the corresponding hydrides generated under two different experimental conditions directly and after a pre-reduction step. The limit of detection of the method was 0.7 ng g{sup -1} for Sb(III), 1.0 ng g{sup -1} for Sb(V), 1.3 ng g{sup -1} for Se(IV), 1.0 ng g{sup -1} for Se(VI), 1.1 ng g{sup -1} for Te(IV), 0.5 ng g{sup -1} for Te(VI), and 0.9 ng g{sup -1} for Bi(III), in all cases expressed in terms of sample dry weight. (orig.)

  9. Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: Band structure and pressure coefficients

    DEFF Research Database (Denmark)

    Svane, Axel; Christensen, Niels Egede; Cardona,, M.

    2010-01-01

    The electronic band structures of PbS, PbSe, and PbTe in the rocksalt structure are calculated with the quasiparticle self-consistent GW (QSGW) approach with spin-orbit coupling included. The semiconducting gaps and their deformation potentials as well as the effective masses are obtained. The GW...

  10. Benchmark assessment of density functional methods on group II-VI MX (M = Zn, Cd; X = S, Se, Te) quantum dots

    NARCIS (Netherlands)

    Azpiroz, Jon M.; Ugalde, Jesus M.; Infante, Ivan

    2014-01-01

    In this work, we build a benchmark data set of geometrical parameters, vibrational normal modes, and low-lying excitation energies for MX quantum dots, with M = Cd, Zn, and X = S, Se, Te. The reference database has been constructed by ab initio resolution-of-identity second-order approximate coupled

  11. Interaction between counter-propagating quantum Hall edge channels in the 3D topological insulator BiSbTeSe2

    NARCIS (Netherlands)

    Li, C.; De Ronde, B.; Nikitin, A.; Huang, Y.; Golden, M.S.; De Visser, A.; Brinkman, A.

    2017-01-01

    The quantum Hall effect is studied in the topological insulator BiSbTeSe2. By employing top- and back-gate electric fields at high magnetic field, the Landau levels of the Dirac cones in the top and bottom topological surface states can be tuned independently. When one surface is tuned to the

  12. The Structural, Dielectric, Lattice Dynamical and Thermodynamic Properties of Zinc-Blende CdX (X=S, Se, Te) from First-Principles Analysis

    International Nuclear Information System (INIS)

    Feng Shi-Quan; Li Jun-Yu; Cheng Xin-Lu

    2015-01-01

    The structural, dielectric, lattice dynamical and thermodynamic properties of zinc-blende CdX (X=S, Se, Te) are studied by using a plane-wave pseudopotential method within the density-functional theory. Our calculated lattice constants and bulk modulus are compared with the published experimental and theoretical data. In addition, the Born effective charges, electronic dielectric tensors, phonon frequencies, and longitudinal optical-transverse optical splitting are calculated by the linear-response approach. Some of the characteristics of the phonon-dispersion curves for zinc-blende CdX (X=S, Se, Te) are summarized. What is more, based on the lattice dynamical properties, we investigate the thermodynamic properties of CdX (X=S, Se, Te) and analyze the temperature dependences of the Helmholtz free energy F, the internal energy E, the entropy S and the constant-volume specific heat C_v. The results show that the heat capacities for CdTe, CdSe, and CdS approach approximately to the Petit-Dulong limit 6R. (paper)

  13. Ab-initio calculations of Co-based diluted magnetic semiconductors Cd 1-xCoxX (X=S, Se, Te)

    KAUST Repository

    Saeed, Yasir; Nazir, Safdar; Shaukat, Ali; Reshak, A. H.

    2010-01-01

    Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic semiconductors composed of IIVI compounds Cd1-xCoxX (X=S, Se, Te) at x=0.25. From the calculated results

  14. Influence of secondary phases during annealing on re-crystallization of CuInSe{sub 2} electrodeposited films

    Energy Technology Data Exchange (ETDEWEB)

    Gobeaut, A. [Laboratoire de Reactivite et Chimie des Solides, 33 rue St Leu, 80039 Amiens (France); Laffont, L., E-mail: lydia.laffont@u-picardie.f [Laboratoire de Reactivite et Chimie des Solides, 33 rue St Leu, 80039 Amiens (France); Tarascon, J.-M. [Laboratoire de Reactivite et Chimie des Solides, 33 rue St Leu, 80039 Amiens (France); Parissi, L.; Kerrec, O. [Institut de Recherche et de Developpement de l' Energie Photovoltaique, 6 quai Watier, 78401 Chatou cedex (France)

    2009-06-01

    Electrodeposited CuInSe{sub 2} thin films are of potential importance, as light absorber material, in the next generation of photovoltaic cells as long as we can optimize their annealing process to obtain dense and highly crystalline films. The intent of this study was to gain a basic understanding of the key experimental parameters governing the structural-textural-composition evolution of thin films as function of the annealing temperature via X-ray diffraction, scanning/transmission electron microscopy and thermal analysis measurements. The crystallization of the electrodeposited CuInSe{sub 2} films, with the presence of Se and orthorhombic Cu{sub 2} {sub -} {sub x}Se (o-Cu{sub 2} {sub -} {sub x}Se) phases, occurs over two distinct temperature ranges, between 220 {sup o}C and 250 {sup o}C and beyond 520 {sup o}C. Such domains of temperature are consistent with the melting of elemental Se and the binary CuSe phase, respectively. The CuSe phase forming during annealing results from the reaction between the two secondary species o-Cu{sub 2} {sub -} {sub x}Se and Se (o-Cu{sub 2} {sub -} {sub x}Se + Se {yields} 2 CuSe) but can be decomposed into the cubic {beta}-Cu{sub 2} {sub -} {sub x}Se phase by slowing down the heating rate. Formation of liquid CuSe beyond 520{sup o}C seems to govern both the grain size of the films and the porosity of the substrate-CuInSe{sub 2} film interface. A simple model explaining the competitive interplay between the film crystallinity and the interface porosity is proposed, aiming at an improved protocol based on temperature range, which will enable to enhance the film crystalline nature while limiting the interface porosity.

  15. Structure of Profiled Crystals Based on Solid Solutions of Bi2Te3 and Their X-Ray Diagnostics

    Science.gov (United States)

    Voronin, A. I.; Bublik, V. T.; Tabachkova, N. Yu.; Belov, Yu. M.

    2011-05-01

    In this work, we used x-ray structural diagnostic data to reveal the formation of structural regularities in profiled polycrystalline ingots based on Bi and Sb chalcogenide solid solutions. In Bi2Te3 lattice crystals, the solid phase grows such that the cleavage surfaces are perpendicular to the crystallization front. The crystallization singularity determines the nature of the growth texture. Because texture is an important factor determining the anisotropy of properties, which in turn determines the suitability of an ingot for production of modules and the possibility of figure of merit improvement, its diagnostics is an important issue for technology testing. Examples of texture analysis using the method of straight pole figure (SPF) construction for profiled crystals are provided. The structure of the surface layers in the profiled ingots was studied after electroerosion cutting. In addition, the method of estimation of the disturbed layer depth based on the nature of texture changes was used.

  16. Theoretical investigation of lithium adsorption, diffusion and coverage on MX2 (M = Mo, W; X = O, S, Se, Te) monolayers

    Science.gov (United States)

    Ersan, F.; Ozaydin, H. D.; Gökoğlu, G.; Aktürk, E.

    2017-12-01

    It is important to improve the high-efficient anode materials for Li batteries, which require the large capacity, high stability and mobility. In this work, we present the adsorption and diffusion properties of lithium atom on MX2 (M = Mo, W; X = O, S, Se, Te) transition metal dichalcogenide structures using first principles calculations within density functional theory. All the MX2 systems considered are semiconductor in bare state with band gaps between 0.93 eV (MoO2) and 1.79 eV (WS2). They turn into metal upon single Li adsorption. Li atom is adsorbed on MoO2 and WO2 rather stronger than other systems. The energy barrier for diffusion of single Li on MX2 varies between 0.15 eV and 0.28 eV which are lower or comparable to that of graphene or silicene. Two Li atoms are preferably adsorbed on MX2 monolayer symmetrically at opposite sides with high adsorption energy. The increasing number of Li atoms does not remarkably affect the adsorption energy per Li atom. This can be attributed to that Li atoms do not accumulate on certain regions of the surface. The systems under investigation provide insights into exploring electronic properties which are rather adequate for possible applications in Li-ion batteries.

  17. Extension of Mediema's Macroscopic Atom Model to the Elements of Group 16 (O, S, Se, Te ,Po)

    Energy Technology Data Exchange (ETDEWEB)

    Neuhausen, J.; Eichler, B

    2003-09-01

    A consistent set of Miedema-parameters has been developed for the elements of the chalcogen group (Group 16 of the periodic table of the elements: 0, S, Se, Te, Po) from ab-initio quantum-mechanical calculations as weIl as empirical correlations. Using this parameter set thermochemical properties such as enthalpies of formation of solid metal chalcogenides, partial molar enthalpies of solution of chalcogens in liquid and solid metaIs, partial molar enthalpies of evaporation of the chalcogens from liquid metal solution into the monoatomic gaseous state, partial molar enthalpies of adsorption of chalcogenides on metal surfaces at zero coverage and partial molar enthalpies of segregation of the chalcogens in trace amounts within solid metal matrices have been calculated. These properties are compared with available experimental data and discussed with an emphasis on the periodic behaviour of the elements. The model calculations show that a description of the thermochemical properties of the chalcogens using the semi-empirical Miedema approach is possible. The calculated properties can serve as a basis for the prediction of the chemical interactions for metal-chalcogen combinations that have not been studied experimentally so far. (author)

  18. Extension of Mediema's Macroscopic Atom Model to the Elements of Group 16 (O, S, Se, Te ,Po)

    International Nuclear Information System (INIS)

    Neuhausen, J.; Eichler, B.

    2003-09-01

    A consistent set of Miedema-parameters has been developed for the elements of the chalcogen group (Group 16 of the periodic table of the elements: 0, S, Se, Te, Po) from ab-initio quantum-mechanical calculations as weIl as empirical correlations. Using this parameter set thermochemical properties such as enthalpies of formation of solid metal chalcogenides, partial molar enthalpies of solution of chalcogens in liquid and solid metaIs, partial molar enthalpies of evaporation of the chalcogens from liquid metal solution into the monoatomic gaseous state, partial molar enthalpies of adsorption of chalcogenides on metal surfaces at zero coverage and partial molar enthalpies of segregation of the chalcogens in trace amounts within solid metal matrices have been calculated. These properties are compared with available experimental data and discussed with an emphasis on the periodic behaviour of the elements. The model calculations show that a description of the thermochemical properties of the chalcogens using the semi-empirical Miedema approach is possible. The calculated properties can serve as a basis for the prediction of the chemical interactions for metal-chalcogen combinations that have not been studied experimentally so far. (author)

  19. ac conductivity and dielectric properties of amorphous Se80Te20-xGex chalcogenide glass film compositions

    International Nuclear Information System (INIS)

    Hegab, N.A.; Afifi, M.A.; Atyia, H.E.; Farid, A.S.

    2009-01-01

    Thin films of the prepared Se 80 Te 20-x Ge x (x = 5, 7 and 10 at.%) were prepared by thermal evaporation technique. X-ray diffraction patterns showed that the films were in amorphous state. The ac conductivity and dielectric properties of the investigated film compositions were studied in the frequency range 0.1-100 kHz and in temperature range (303-373 K). The experimental results indicated that the ac conductivity and the dielectric properties depended on the temperature and frequency. The ac conductivity is found to obey the ω s law, in accordance with the hopping model, s is found to be temperature dependent (s 1 and dielectric loss ε 2 were found to decrease with frequency and increase with temperature. The maximum barrier height W m , calculated from dielectric measurements according to Guintini equation, agrees with that proposed by the theory of hopping over potential barrier as suggested by Elliott in case of chalcogenide glasses. The density of localized states was estimated for the studied film compositions. The variation of the studied properties with Ge content was also investigated.

  20. A comparison investigation of optical, structural and luminescence properties of CdOxTe1-x and CdTexSe1-x nanoparticles prepared by a simple one pot method

    Science.gov (United States)

    Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.

    2018-04-01

    We present L-cysteine capped CdOXTe1-X and CdTeXSe1-X nanoparticles (NPs) prepared in one pot. The as-prepared CdOXTe1-X NPs were found to have a hexagonal crystal structure of CdTe with a cubic phase of CdO. There was, however, change in phase to cubic type when 2 mM of Se was introduced into the CdTe at 60 min of reaction time. The average crystallite sizes obtained from X-ray diffraction analysis for CdOXTe1-X and CdTeXSe1-X NPs were in the range of 10-36 nm. The diffraction peaks shifted to higher diffraction angle with longer growth time. Scanning electron microscope images display change in shape and size as reaction progress. Photoluminescence (PL) emission was observed to shift from 510-566 nm and 620-653 nm for CdOXTe1-X and CdTeXSe1-X NPs respectively followed by variation in the peak intensities. The emission spectra displayed a good symmetry and a narrow full width at half maximum ranging from 41 to 100 nm in both cases. The absorbance analysis of the as-prepared NPs displayed well-resolved absorption bands. The optical band gaps of the as-prepared NPs were found to decrease with increase in reaction time. Reaction parameters such as pH, reaction time, reaction temperature and the molar concentration could have major effects on the optical properties of the as-prepared nanoparticles hence their need to control them.

  1. Cs_7Sm_1_1[TeO_3]_1_2Cl_1_6 and Rb_7Nd_1_1[TeO_3]_1_2Br_1_6, the new tellurite halides of the tetragonal Rb_6LiNd_1_1[SeO_3]_1_2Cl_1_6 structure type

    International Nuclear Information System (INIS)

    Charkin, Dmitri O.; Black, Cameron; Downie, Lewis J.; Sklovsky, Dmitry E.; Berdonosov, Peter S.; Olenev, Andrei V.; Zhou, Wuzong; Lightfoot, Philip; Dolgikh, Valery A.

    2015-01-01

    Two new rare-earth – alkali – tellurium oxide halides were synthesized by a salt flux technique and characterized by single-crystal X-ray diffraction. The structures of the new compounds Cs_7Sm_1_1[TeO_3]_1_2Cl_1_6 (I) and Rb_7Nd_1_1[TeO_3]_1_2Br_1_6 (II) (both tetragonal, space group I4/mcm) correspond to the sequence of [MLn_1_1(TeO_3)_1_2] and [M_6X_1_6] layers and bear very strong similarities to those of known selenite analogs. We discuss the trends in similarities and differences in compositions and structural details between the Se and Te compounds; more members of the family are predicted. - Graphical abstract: Two new rare-earth – alkali – tellurium oxide halides were predicted and synthesized. - Highlights: • Two new rare-earth – alkali – tellurium oxide halides were synthesized. • They adopt slab structure of rare earth-tellurium-oxygen and CsCl-like slabs. • The Br-based CsCl-like slabs have been observed first in this layered family.

  2. X-ray photoelectron spectra and electronic structure of quasi-one-dimensional SbSeI crystals

    Directory of Open Access Journals (Sweden)

    J.Grigas

    2007-01-01

    Full Text Available The paper presents the X-ray photoelectron spectra (XPS of the valence band (VB and of the principal core levels from the (110 and (001 crystal surfaces for the quasi-one-dimensional high permittivity SbSeI single crystal isostructural to ferroelectric SbSI. The XPS were measured with monochromatized Al Ka radiation in the energy range of 0-1400 eV at room temperature. The VB is located from 1.6 to 20 eV below the Fermi level. Experimental energies of the VB and core levels are compared with the results of theoretical ab initio calculations of the molecular model of the SbSeI crystal. The electronic structure of the VB is revealed. Shifts in the core-level binding energies of surface atoms relative to bulk ones, which show a dependency on surface crystallography, have been observed. The chemical shifts of the core levels (CL in the SbSeI crystal for the Sb, I and Se states are obtained.

  3. Crystal structure of the new diamond-like semiconductor CuMn2InSe4

    Indian Academy of Sciences (India)

    Abstract. The crystal structure of the semiconductor compound CuMn2InSe4 was analysed using X-ray powder ... properties arising from the presence of magnetic ions in the ... by SEM technique, using a Hitachi S2500 microscope equip-.

  4. Random lasing of microporous surface of Cr{sup 2+}:ZnSe crystal induced by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xianheng; Feng, Guoying, E-mail: guoing-feng@scu.edu.cn, E-mail: zhoush@scu.edu.cn; Yao, Ke; Yi, Jiayu; Zhang, Hong [College of Electronics and Information Engineering, Sichuan University, Chengdu 610065 (China); Zhou, Shouhuan, E-mail: guoing-feng@scu.edu.cn, E-mail: zhoush@scu.edu.cn [College of Electronics and Information Engineering, Sichuan University, Chengdu 610065 (China); North China Research Institute of Electro-Optics, Beijing 100015 (China)

    2015-06-15

    We demonstrate a random lasing emission based on microporous surface of Cr{sup 2+}:ZnSe crystal prepared by femtosecond pulsed laser ablation in high vacuum (below 5 × 10{sup −4} Pa). The scanning electron microscope results show that there are a mass of micropores with an average size of ∼13 μm and smaller ones with ∼1.2 μm on the surface of Cr{sup 2+}:ZnSe crystal. The adjacent micropore spacing of the smaller micropores ranges from 1 μm to 5 μm. Under 1750 nm excitation of Nd:YAG (355 nm) pumped optical parametric oscillator, a random lasing emission with center wavelength of 2350 nm and laser-like threshold of 0.3 mJ/pulse is observed. The emission lifetime of 2350 nm laser reduces from 800 ns to 30 ns as the pump energy increases above threshold. The emission spectra and decay time of smooth surface, groove and microporous surface of Cr{sup 2+}:ZnSe crystal are contrasted. The optional pump wavelength range is from 1500 nm to 1950 nm, which in accordance with the optical absorption property of Cr{sup 2+}:ZnSe crystal. The peak position of excitation spectra is almost identical to the strongest absorption wavelength.

  5. Laser parameters of a Fe : ZnSe crystal in the 85-255-K temperature range

    NARCIS (Netherlands)

    Voronov, AA; Kozlovskii, [No Value; Korostelin, YV; Podmar'kov, YP; Frolov, MP

    The temperature dependence of the efficiency of a laser based on a Fe:ZnSe crystal grown from the vapour phase by the free-growth method is studied in the 85-255-K temperature range. As the temperature was increased, the slope efficiency of the laser with respect to absorbed energy decreased from

  6. Controlled synthesis of multi-morphology Te crystals by a convenient Lewis acid/base-assisted solvothermal method

    International Nuclear Information System (INIS)

    Wu Xiaoping; Yuan Lin; Zhou Shaomin; Lou Shiyun; Wang Yongqiang; Gao Tao; Liu YuBiao; Shi Xiaojing

    2012-01-01

    This paper reports on the controlled growth of multi-morphology Te crystals by a convenient Lewis acid/base-assisted solvothermal method for the first time. The morphological transformation from one-dimension (1D) nanostructures to 2D hierarchical flowerlike microarchitecture has been observed. The nanorods and nanowires with a well-defined crystallographical structure and the hierarchical flowers microarchitecture were obtained by changing the Lewis acids/bases. Lewis acids/bases were found to be crucial for the formation of the products by not only acting as the pH regulator but also as the shape controller, owing to their hydrolysis in the solvent to in situ form H + /OH − and hydrates. The results suggest that this should be an effective approach to the control the growth of t-Te crystals with interesting multiple morphologies, which are of interest for both theoretical investigations and practical applications.

  7. Effect of microwave (24 GHz) radiation treatment on impurity photoluminescence of CdTe:Cl single crystals

    International Nuclear Information System (INIS)

    Red'ko, R.A.; Budzulyak, S.I.; Vakhnyak, N.D.; Demchina, L.A.; Korbutyak, D.V.; Konakova, R.V.; Lotsko, A.P.; Okhrimenko, O.B.; Berezovskaya, N.I.; Bykov, Yu.V.; Egorov, S.V.; Eremeev, A.G.

    2016-01-01

    Effect of microwave radiation (24 GHz) on transformation of impurity-defect complexes in CdTe:Cl single crystals within the spectral range 1.3–1.5 eV was studied using the low-temperature (T=2 K) photoluminescence (PL) technique. The shapes of donor–acceptor pairs (DAP) and Y PL bands were studied in detail. The Huang–Rhys factor was calculated for the DAP luminescence depending on microwave radiation treatment. The increase of the distance between the DAP components responsible for emission at 1.455 eV and the quenching of Y-band due to microwave irradiation were observed. The method to decrease the amount of extended defects in near-surface layers of CdTe:Cl single crystals has been proposed.

  8. Non-isothermal crystallization kinetics of As{sub 30}Te{sub 60}Ga{sub 10} glass

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Mansour; Abd-Elnaiem, Alaa M.; Abdel-Rahim, M.A.; Hafiz, M.M. [Assiut University, Physics Department, Faculty of Science, Assiut (Egypt); Hassan, R.M. [Assiut University, Physics Department, Faculty of Science, Assiut (Egypt); Aden University, Physics Department, Faculty of Education-Zingiber, Aden (Yemen)

    2017-08-15

    The crystallization study under non-isothermal conditions of As{sub 30}Te{sub 60}Ga{sub 10} glass was investigated. The studied composition was synthesized by melt-quenching technique and characterized by different techniques such as X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The XRD analysis revealed that the as-prepared and annealed bulk glass of As{sub 30}Te{sub 60}Ga{sub 10} exhibit the amorphous, and polycrystalline nature, respectively. The DSC results showed that the heating rate affects the characteristic temperatures, for instance, the glass transition, onset, and peak crystallization temperatures. Furthermore, some thermal analysis methods such as the Kissinger and Matusita et al., approximations were employed to determine the crystallization parameters: for example Avrami exponent and the activation energies for glass transition and crystallization process. In addition, we have compared the experimental DSC data with the calculated ones based on the Johnson-Mehl-Avrami (JMA) and Sestak-Berggren SB(M,N) models. The results indicated that the SB(M,N) model is more suitable for describing the non-isothermal crystallization kinetics of the investigated composition. (orig.)

  9. Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Thorhauge, Morten

    2003-01-01

    We have investigated the properties of TM polarized light in planar photonic crystal waveguide structures, which exhibit photonic band gaps for TE polarized light. Straight and bent photonic crystal waveguides and couplers have been fabricated in silicon-on-insulator material and modelled using a 3......D finite-difference-time-domain method. The simulated spectra are in excellent agreement with the experimental results, which show a propagation loss as low as 2.5±4 dB/mm around 1525 nm and bend losses at 2.9±0.2 dB for TM polarized light. We demonstrate a high coupling for TM polarized light...

  10. Dislocation-free etching figures in crystals of CdxHg1-xTe solid solutions

    International Nuclear Information System (INIS)

    Kholina, E.N.; Khazieva, R.A.; Bursak, S.S.; Nevskij, O.B.; Filatov, A.V.; Popovyan, G.Eh.; Suslov, E.V.; Prijmak, A.N.

    1988-01-01

    Using the method of chemical etching, etching figures formed in areas distributed over Cd x Hg 1-x Te crystal with increased content of impurities consisting of Si,Al,Na,K,Cl,Fe,Ti,Mg and S mainly are revealed. The size of impurity inclusions is >1μm, that is why they cannot be detected either by optical microscopy or local microroentgenospectral analysis. Formation and distribution of impurity inclusions are obviously defined by only the concentration of impurity atoms in the melt. The shape of etching figures does not depend on crystallographical orientation of the crystal-matrix

  11. Variation in the defect structure of p-CdTe single crystals at the passage of the laser shock wave

    International Nuclear Information System (INIS)

    Baidullaeva, A.; Vlasenko, A.I.; Gorkovenko, B.L.; Lomovtsev, A.V.; Mozol', P.E.

    2000-01-01

    Variations in the minority-carrier lifetime, photoluminescence spectra, dark current and photocurrent temperature dependences of high-resistivity p-CdTe crystals under the action of the laser shock wave are investigated. It is shown that the variations in the aforementioned characteristics during the passage of the shock wave are defined by the generation of the nonequilibrium carriers from deep centers, and, after that, the variations are defined by the formation of intrinsic defects and their subsequent interaction with the defects existing in the initial crystals

  12. Effect of microwave treatment on the luminescence properties of CdS and CdTe:Cl Single Crystals

    International Nuclear Information System (INIS)

    Red’ko, R. A.; Budzulyak, S. I.; Korbutyak, D. V.; Lotsko, A. P.; Vakhnyak, N. D.; Demchyna, L. A.; Kalytchuk, S. M.; Konakova, R. V.; Milenin, V. V.; Bykov, Yu. V.; Egorov, S. V.; Eremeev, A. G.

    2015-01-01

    The effect of microwave radiation on the luminescence properties of CdS and CdTe:Cl single crystals is studied. It is established that the exposure of these semiconductors to short-term (≤30 s) microwave radiation substantially modifies their impurity and defect structure. The mechanisms of transformation of the defect subsystem of II–VI single crystals upon microwave treatment are discussed. It is shown that the experimentally observed changes are defined by the nonthermal effects of microwave radiation at a power density of 7.5 W cm –2 ; at 90 W cm –2 , nonthermal effects are prevailing

  13. Superconducting, magnetic and magnetotransport properties of FeTe1-xSex single crystals

    Science.gov (United States)

    Kumar, Rohit; Sudesh, Varma, G. D.

    2018-05-01

    The single crystalline samples with compositions FeTe1-xSex (0.25 ≤ x ≤ 0.50) have been prepared via self-flux method and the superconducting, magnetic and magnetotransport properties of the grown crystals were investigated. The superconducting onset temperatures have been determined from the measurements of zero field cooled magnetization and resistance with temperatures. In the present case, highest superconducting transition temperature TC (onset) ˜ 15 K has been obtained for x=0.5. The HC2 (T=0 K) values have been estimated by fitting the experimental HC2 - T plots with WHH model. The highest HC2(0) has been obtained for x=0.5. The activation energy of the thermally activated flux flow has been found from the broadening of superconducting transition in an applied magnetic field using the Arrhenius law. Our results show that the activation energy (U0) decreases with the increasing magnetic field. Furthermore, the magnetization measurements for x=0.4 and 0.5 samples have been performed at T=5 K in the magnetic field range ±7 T to estimate critical current density at different applied magnetic fields using Bean formula. We see that the sample x=0.5 has higher values of JC as compared to that of x=0.4 at all magnetic fields. This is in conformity with the behavior of U0-H plots.

  14. Crystal structure of the Hg4SiS6 and Hg4SiSe6 compounds

    International Nuclear Information System (INIS)

    Gulay, L.D.; Olekseyuk, I.D.; Parasyuk, O.V.

    2002-01-01

    The crystal structures of Hg 4 SiS 6 and Hg 4 SiSe 6 compounds were investigated using X-ray powder diffraction. These compounds crystallize in the monoclinic Cc space group with the lattice parameters a=1.23020(5), b=0.71031(4), c=1.22791(4) nm, β=109.721(3) deg. for Hg 4 SiS 6 and a=1.28110(4), b=0.74034(4), c=1.27471(1) nm, β=109.605(3) deg. for Hg 4 SiSe 6 . Atomic parameters were refined in the isotropic approximation (R I =0.0571 and R I =0.0555 for the Hg 4 SiS 6 and Hg 4 SiSe 6 , respectively)

  15. Formation of a crystalline InSe phase from a quaternary single crystal of the Cu-Ag-In-Se system by massive ion motion

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, R., E-mail: raquel.diaz@uam.es [Departamento de Fisica Aplicada, M12, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Rueda, F. [Departamento de Fisica Aplicada, M12, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-08-15

    The composition and structural properties of a single crystal of the Cu-Ag-In-Se system are analyzed. Laue diffraction shows a single crystal while XRD diffraction and EDAX composition indicate two crystalline phases and two compositions close to Cu{sub 0.97}Ag{sub 0.03}In{sub 1.75}Se{sub 2.84} and Cu{sub 0.95}Ag{sub 0.05}In{sub 2}Se{sub 3.5} with lattice parameter, a = 5.770 Angstrom-Sign and a = 5.790 Angstrom-Sign and c/a {approx_equal} 2.0 respectively. Impedance spectroscopy is carried out at temperatures up to 120 Degree-Sign C in a sequential annealing in order to obtain the electrical properties. A motion of two ions is observed and two ionic resistances and activation energies are computed in the 0.15-0.17 eV range and 0.52 eV, respectively. In the successive annealing, the impedance spectra change, probably due to a non-reversible process in the sample. After the impedance analysis, composition measurements and the structural analysis show a massive motion of Ag + Cu and In ions in the slice. These motions produce different phases with very different compositions in different regions. Due to the high disorder in Cu and In sublattices and to the high number of (2V{sub Cu} + In{sub Cu}) defect pairs, these ions are easily moved, leading to the formation of an InSe crystalline phase. Ions are rearranged in the chalcopyrite phase region, along with the transformation of In{sup 3+} into In{sup 2+} chemical species accompanied by the corresponding electron conduction capture. These changes are responsible of the non-reversibility of the process. These results would allow to understand the highest solar energy conversion efficiencies of up to 20.3% observed in CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS) thin films obtained using a three-stage co-evaporation process. In these films, the CIGS layer reaches a copper rich composition and a quasi-liquid Cu{sub 2-y}Se phase is formed which enhances crystallization of the absorber layer and also affects the distribution of

  16. CdSe/CdTe interface band gaps and band offsets calculated using spin-orbit and self-energy corrections

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M. [Centro de Pesquisas Avancadas Wernher von Braun, Av. Alice de Castro P.N. Mattosinho 301, CEP 13098-392 Campinas, SP (Brazil); Ferreira, L.G. [Departamento de Fisica dos Materiais e Mecanica, Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil); Fonseca, L.R.C. [Center for Semiconductor Components, State University of Campinas, R. Pandia Calogeras 90, 13083-870 Campinas, SP (Brazil); Ramprasad, R. [Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 (United States)

    2012-09-20

    We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications.

  17. Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA

    Directory of Open Access Journals (Sweden)

    Moulick A

    2017-02-01

    Full Text Available Amitava Moulick,1,2 Vedran Milosavljevic,1,2 Jana Vlachova,1,2 Robert Podgajny,3 David Hynek,1,2 Pavel Kopel,1,2 Vojtech Adam1,2 1Department of Chemistry and Biochemistry, Mendel University, 2Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic; 3Faculty of Chemistry, Jagiellonian University, Krakow, Poland Abstract: CdTe/ZnSe core/shell quantum dot (QD, one of the strongest and most highly luminescent nanoparticles, was directly synthesized in an aqueous medium to study its individual interactions with important nucleobases (adenine, guanine, cytosine, and thymine in detail. The results obtained from the optical analyses indicated that the interactions of the QDs with different nucleobases were different, which reflected in different fluorescent emission maxima and intensities. The difference in the interaction was found due to the different chemical behavior and different sizes of the formed nanoconjugates. An electrochemical study also confirmed that the purines and pyrimidines show different interactions with the core/shell QDs. Based on these phenomena, a novel QD-based method is developed to detect the presence of the DNA, damage to DNA, and mutation. The QDs were successfully applied very easily to detect any change in the sequence (mutation of DNA. The QDs also showed their ability to detect DNAs directly from the extracts of human cancer (PC3 and normal (PNT1A cells (detection limit of 500 pM of DNA, which indicates the possibilities to use this easy assay technique to confirm the presence of living organisms in extreme environments. Keywords: nanoparticles, nucleobases, biosensor, fluorescence, mutation

  18. Crystal and magnetic structures of Cr{sub 1∕3}NbSe{sub 2} from neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gubkin, A. F., E-mail: agubkin@imp.uran.ru; Baranov, N. V. [M.N. Miheev Institute of Metal Physics, Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Natural Sciences, Ural Federal University, 620083 Yekaterinburg (Russian Federation); Proskurina, E. P.; Sherokalova, E. M.; Selezneva, N. V. [Institute of Natural Sciences, Ural Federal University, 620083 Yekaterinburg (Russian Federation); Kousaka, Y.; Akimitsu, J. [Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Center for Chiral Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Miao, P.; Lee, S.; Ishikawa, Y.; Torii, S. [Institute of Materials Structure Science, KEK, Tokai, Ibaragi 319-1106 (Japan); Zhang, J. [Institute of Materials Structure Science, KEK, Tokai, Ibaragi 319-1106 (Japan); China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803, Guangdong (China); Kamiyama, T. [Institute of Materials Structure Science, KEK, Tokai, Ibaragi 319-1106 (Japan); Sokendai (Graduate University for Advanced Studies), KEK, Tokai, Ibaragi 319-1106 (Japan); Campo, J. [Aragón Materials Science Institute (CSIC - University of Zaragoza), 50009 Zaragoza (Spain)

    2016-01-07

    Neutron diffraction measurements of the Cr intercalated niobium diselenide Cr{sub 1∕3}NbSe{sub 2} together with magnetization measurements have revealed that this compound exhibits ferromagnetic ordering below T{sub C} = 96 K unlike a chiral helimagnetic order observed in the sulfide compound Cr{sub 1∕3}NbS{sub 2}. As derived from neutron diffraction data, the Cr magnetic moments μ{sub Cr} = 2.83 ± 0.03 μ{sub B} in Cr{sub 1∕3}NbSe{sub 2} are aligned within basal plane. The discrepancy in the magnetic states of Cr{sub 1∕3}NbS{sub 2} and Cr{sub 1∕3}NbSe{sub 2} is ascribed to the difference in the preferential site occupation of Cr ions in crystal lattices. In Cr{sub 1∕3}NbSe{sub 2}, the Cr ions are predominantly distributed over 2b Wyckoff site, which determines a centrosymmetric character of the crystal structure unlike Cr{sub 1∕3}NbS{sub 2}, where the Cr ions are mainly located in 2c position and the crystal structure is non-centrosymmetric.

  19. New quaternary oxides with both families of second-order Jahn–Teller (SOJT) distortive cations: Solid-state synthesis, structure determination, and characterization of YNbTe{sub 2}O{sub 8} and YNbSe{sub 2}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Hun [Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Jeon, Beom-Yong; You, Tae-Soo [Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Ok, Kang Min, E-mail: kmok@cau.ac.kr [Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756 (Korea, Republic of)

    2015-07-15

    Graphical abstract: Ball-and-stick representation of YNbTe{sub 2}O{sub 8} composed of polyhedra of SOJT distortive cations, i.e., NbO{sub 6} and TeO{sub 3}, in the ac-plane. - Highlights: • Two novel tellurite and selenite (YNbQ{sub 2}O{sub 8}; Q = Te and Se) are synthesized. • YNbQ{sub 2}O{sub 8} possess both families of second-order Jahn–Teller distortive cations. • The distortive environments and bonding nature are supported by electronic structure calculations. - Abstract: Two novel quaternary mixed metal tellurite and selenite, YNbTe{sub 2}O{sub 8} and YNbSe{sub 2}O{sub 8}, respectively, have been synthesized through standard solid-state reactions using Y{sub 2}O{sub 3}, Nb{sub 2}O{sub 5}, TeO{sub 2} or SeO{sub 2} as reagents. Single crystal X-ray and powder neutron diffraction analyses have been utilized to determine the structures of the reported materials. YNbTe{sub 2}O{sub 8} and YNbSe{sub 2}O{sub 8} are isostructural to each other and crystallize in the monoclinic centrosymmetric space group, C2/m (No. 12). Due to the two families of constituent second-order Jahn–Teller (SOJT) distortive cations, i.e., Nb{sup 5+} and Te{sup 4+}/Se{sup 4+}, local asymmetric environments occur from the three-dimensional frameworks. Intra-octahedral distortions along the local C{sub 4} direction and asymmetric trigonal pyramidal coordination moieties generated by stereoactive lone pairs are observed from the NbO{sub 6} octahedra and TeO{sub 3} (or SeO{sub 3}) polyhedra, respectively. Thermogravimetric analysis, infrared and UV–vis diffuse reflectance spectroscopies, elemental analysis, out-of-center distortions, dipole moment calculations, and electronic structure calculations for the reported materials are presented.

  20. Thermoelectric properties, crystal and electronic structure of semiconducting RECuSe{sub 2} (RE = Pr, Sm, Gd, Dy and Er)

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili, Mehdi [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Tseng, Yu-Chih [CANMET Materials, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Mozharivskyj, Yurij, E-mail: mozhar@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2014-10-15

    Highlights: • Crystal and electronic structure of monoclinic and trigonal RECuSe{sub 2} phases. • Thermoelectric properties of the RECuSe{sub 2} phases. • Temperature stability of the RECuSe{sub 2} phases. - Abstract: The ternary RECuSe{sub 2} phases have been prepared and structurally characterized. They adopt either a monoclinic structure (P2{sub 1}/c, z = 4) for lighter rare earths (RE = Pr, Sm and Gd) or Cu-disordered trigonal structure for heavier rare-earths (P3{sup ¯}m1, z = 1, RE = Dy and Er). The resistivity and Seebeck coefficient measurements on GdCuSe{sub 2}, DyCuSe{sub 2} and ErCuSe{sub 2} indicate that the studied phases are p-type semiconductors with relatively small activation energies (0.045–0.11 eV). However, their electrical resistivities are too high (0.45–220 Ω cm at room temperature) to make them competitive thermoelectric materials. Electronic structure calculations indicate presence of a band gap in the RECuSe{sub 2} phases.

  1. Thermoelectric properties, crystal and electronic structure of semiconducting RECuSe2 (RE = Pr, Sm, Gd, Dy and Er)

    International Nuclear Information System (INIS)

    Esmaeili, Mehdi; Tseng, Yu-Chih; Mozharivskyj, Yurij

    2014-01-01

    Highlights: • Crystal and electronic structure of monoclinic and trigonal RECuSe 2 phases. • Thermoelectric properties of the RECuSe 2 phases. • Temperature stability of the RECuSe 2 phases. - Abstract: The ternary RECuSe 2 phases have been prepared and structurally characterized. They adopt either a monoclinic structure (P2 1 /c, z = 4) for lighter rare earths (RE = Pr, Sm and Gd) or Cu-disordered trigonal structure for heavier rare-earths (P3 ¯ m1, z = 1, RE = Dy and Er). The resistivity and Seebeck coefficient measurements on GdCuSe 2 , DyCuSe 2 and ErCuSe 2 indicate that the studied phases are p-type semiconductors with relatively small activation energies (0.045–0.11 eV). However, their electrical resistivities are too high (0.45–220 Ω cm at room temperature) to make them competitive thermoelectric materials. Electronic structure calculations indicate presence of a band gap in the RECuSe 2 phases

  2. Origin of localized states in zinc-blende ZnCdSe thin films and the influence on carrier relaxation of self-assembled ZnTe/ZnCdSe quantum dots

    International Nuclear Information System (INIS)

    Lee, Ling; Dai, Yue-Ru; Yang, Chu-Shou; Fan, Wen-Chung; Chou, Wu-Ching

    2015-01-01

    Highlights: • The localized emission in zinc-blende ZnCdSe is induced by excess selenium. • An optimized growth is demonstrated as the VI/II ratio approaches unity. • Size-independent lifetimes are observed in ZnTe/ZnCdSe quantum dots. • Localized electrons in the capping layer dominate size-independent lifetimes. - Abstract: This study discovered the origin of deep level emission in zinc-blende ZnCdSe thin films grown by molecular beam epitaxy, in which a localization behavior was noticed. Pronounced deep level emission observed in films grown under a VI/II ratio of 1.74 (Se-accumulated regime) could be suppressed by a lower VI/II ratio of 1.04 (intermediate regime) and 0.74 (metal-rich regime). Hence the localized states could be correlated to excess selenium accumulated at the growth surface. The localized states also influence the carrier relaxation process of self-assembled ZnTe quantum dots embedded in a ZnCdSe matrix. Once quantum dots surmount the wetting layer, localized electrons in the capping layer dominate the type-II transition and exhibit size-independent lifetimes

  3. Flux synthesis, modulated crystal structures, and physical properties of REMn0.5SeO (RE = La, Ce)

    International Nuclear Information System (INIS)

    Peschke, Simon; Johrendt, Dirk; Nitsche, Fabian

    2015-01-01

    The selenide oxides REMn 0.5 SeO (RE = La, Ce) were synthesized by heating RE 2 O 3 , RE, Mn, and Se in a NaI/KI flux at 800 C, and their modulated crystal structures determined by X-ray single crystal and powder diffraction {P 1 1 2/n(αβ1/2)0s, Z = 2, LaMn 0.5 SeO: a = 405.7(1), b = 405.7(1), c = 915.2(1) pm, γ = 90 , q = [1/10, -1/10, 1/2]; CeMn 0.5 SeO: a = 402.0(1), b = 401.8(1), c = 910.7(1) pm, γ = 90.000(4) , q = [0.0789(2), -0.0783(2), 1/2]}. The structures are related to the ZrCuSiAs-type structure with ordered vacancies at the manganese sites. The resulting modulations of the checkerboard pattern in the [Mn 0.5 Se] layers can be approximated by 10a x 10b x 2c and 51a x 51b x 2c supercells in LaMn 0.5 SeO and CeMn 0.5 SeO, respectively. Both compounds are insulators. The optical bandgap of LaMn 0.5 SeO was determined to 2.13 eV from the Kubelka-Munk function. Magnetic measurements indicate antiferromagnetic ordering of the Mn 2+ moments with Neel points well above room temperature, as known from related manganese compounds. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. The influence of capping thioalkyl acid on the growth and photoluminescence efficiency of CdTe and CdSe quantum dots

    International Nuclear Information System (INIS)

    Aldeek, Fadi; Lambert, Jacques; Balan, Lavinia; Schneider, Raphael

    2008-01-01

    The influence of thioalkyl acid ligand was evaluated during aqueous synthesis at 100 deg. C and under hydrothermal conditions (150 deg. C) of CdTe and CdSe quantum dots (QDs). Experiments performed with 3-mercaptopropionic acid (MPA), 6-mercaptohexanoic acid (MHA) and 11-mercaptoundecanoic acid (MUA) demonstrated that the use of MHA and MUA allowed for the preparation of very small nanoparticles (0.6-2.5 nm) in carrying out the reaction under atmospheric pressure or in an autoclave and that the photophysical properties of QDs were dependent on the ligand and on the synthesis conditions. The influence of various experimental conditions, including the Te-to-Cd ratio, temperature, and precursor concentration, on the growth rate of CdTe or CdSe QDs has been systematically investigated. The fluorescence intensities of CdTe QDs capped with MPA, MHA, or MUA versus pH were also found to be related to the surface coverage of the nanoparticles.

  5. Size-selective precipitation in colloidal semiconductor nanocrystals of CdTe and CdSe: a study by UV-VIS spectroscopy; Precipitacao seletiva de tamanhos em nanoparticulas semicondutoras coloidais de CdTe e CdSe: um estudo por espectroscopia UV-VIS

    Energy Technology Data Exchange (ETDEWEB)

    Viol, Livia Cristina de Souza; Silva, Fernanda Oliveira; Ferreira, Diego Lourenconi; Alves, Jose Luiz Aarestrup; Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.b [Universidade Federal de Sao Joao del Rei, MG (Brazil). Dept. de Ciencias Naturais

    2011-07-01

    The post-preparative size-selective precipitation technique was applied in CdTe and CdSe semiconductor nanocrystals prepared via colloidal route in water. The synthesis of CdTe and CdSe nanoparticles and the effect of the post-preparative size-selective precipitation have been characterized mainly by mean of ultraviolet and visible absorption spectroscopy (UV-Vis). It was demonstrated that the size-selective precipitation are able to isolate particles of different sizes and purify the nanoparticles as well. (author)

  6. The effect of doped zinc on the structural properties of nano-crystalline (Se{sub 0.8}Te{sub 0.2}){sub 100-x}Zn{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arun, E-mail: arunkumar82@pu.ac.in [Department of Physics, Panjab University, Chandigarh, INDIA-160014. (India); Guru Nanak National College, Doraha, Panjab, INDIA-141421. (India); Singh, Harkawal; Gill, P. S. [Sri Guru Gobind Singh College, Sector-26, Chandigarh, INDIA-160026. (India); Goyal, Navdeep, E-mail: n.goyal@pu.ac.in [Department of Physics, Panjab University, Chandigarh, INDIA-160014. (India)

    2016-05-06

    The effect of metallic zinc (Zn) on the structural properties of (Se{sub 0.8}Te{sub 0.2}){sub 1-X}Zn{sub X} (x=0, 2, 6, 8, 10) samples analyzed by X-ray Diffraction (XRD). The presence of sharp peaks in XRD patterns confirmed the crystalline nature of the samples and is indexed in orthorhombic crystal structure. XRD studies predicts that the average particle size of all the samples are about 46.29 nm, which is less than 100 nm and hence have strong tendency of agglomeration. Williamson-Hall plot method was used to evaluate the lattice strain. The dislocation density and no. of unit cells of the samples were calculated which show the inverse relation with each other. Morphology index derived from FWHM of XRD data explains the direct relationship with the particle size.

  7. Thermoelectric properties of unoxidized graphene/Bi{sub 2}Te{sub 2.7}Se{sub 0.3} composites synthesized by exfoliation/re-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Il; Lee, Eun Sil; Kim, Jong-Young [Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Gyeonggi-do (Korea, Republic of); Choi, Soon-Mok [School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of); Lee, Kyu Hyoung [Materials R and D Center, Samsung Advanced Institute of Technology, Yongin (Korea, Republic of); Seo, Won-Seon [Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology, Seoul (Korea, Republic of)

    2014-04-15

    Nanocomposites of n-type thermoelectric Bi{sub 2}Te{sub 2.7}Se{sub 0.3} (BTS) and unoxidized graphene (UG) were prepared from the exfoliated BTS and UG nanoplatelets. Polycrystalline BTS ingots were exfoliated into nanoscroll-type crystals by chemical exfoliation, and were re-assembled with UG nanoplatelets. The composites were chemically reduced by hydrazine hydrate and sintered by a spark-plasma-sintering method. The thermoelectric properties of the sintered composites were evaluated and exhibited decreased carrier concentration and increased thermal conductivity due to the embedded graphene. The peak ZT values for the UG/BTS-US and UG/BTS-EX composites were ∝0.8 at the UG concentration of 0.05 wt%. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Development of a computer model for polycrystalline thin-film CuInSe sub 2 and CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.L.; Schwartz, R.J.; Lee, Y.J. (Purdue Univ., Lafayette, IN (United States))

    1992-09-01

    This report describes work to develop an accurate numerical model for CuInSe{sub 2} (CIS) and CdTe-based solar cells capable of running on a personal computer. Such a model will aid researchers in designing and analyzing CIS- and CdTe-based solar cells. ADEPT (A Device Emulation Pregrain and Tool) was used as the basis for this model. An additional objective of this research was to use the models developed to analyze the performance of existing and proposed CIS- and CdTe-based solar cells. The development of accurate numerical models for CIS- and CdTe-based solar cells required the compilation of cell performance data (for use in model verification) and the compilation of measurements of material parameters. The development of the numerical models involved implementing the various physical models appropriate to CIS and CdTe, as well as some common window. A version of the model capable of running on an IBM-comparable personal computer was developed (primary code development is on a SUN workstation). A user-friendly interface with pop-up menus is continuing to be developed for release with the IBM-compatible model.

  9. Assembly of cerium(III)-stabilized polyoxotungstate nanoclusters with SeO{sub 3}{sup 2-}/TeO{sub 3}{sup 2-} templates. From single polyoxoanions to inorganic hollow spheres in dilute solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Chao; Wang, Xin-Long; Shao, Kui-Zhan; Su, Zhong-Min; Wang, En-Bo [Institute of Functional Materials Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun (China); Li, Hao-Long [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University. Changchun (China)

    2013-08-12

    A versatile one-pot strategy was employed to synthesize three cerium(III)-stabilized polyoxotungstates nanoclusters by combining cerium linkers and SeO{sub 3}{sup 2-}/TeO{sub 3}{sup 2-} heteroanion templates: K{sub 32}Na{sub 16}[{(XO_3)W_1_0O_3_4}{sub 8}{Ce_8(H_2O)_2_0}(WO{sub 2}){sub 4}-(W{sub 4}O{sub 12})].n H{sub 2}O [X=Se, n=81 (1); X=Te, n=114 (2)] and K{sub 12}Na{sub 22}[{(SeO_3)W_1_0O_3_4}{sub 8}{Ce_8(H_2O)_2_0}(WO{sub 2}){sub 4}-{(W_4O_6)Ce_4(H_2O)_1_4(SeO_3)_4(NO_3)_2}] . 79 H{sub 2}O (3), which are the first lanthanide-containing polyoxotungstates with selenium or tellurium heteroatoms. The three clusters were characterized by single-crystal X-ray structure analysis, IR spectroscopy, thermogravimetric/differential thermal analysis, UV/Vis spectroscopy, ESI-MS, and X-ray photoelectron spectroscopy. Their electrochemical, photoluminescence, and magnetic properties were investigated. Their behavior in solution was studied by transmission electron microscopy, which showed that their single polyoxoanions assemble into intact, uniform-sized, purely inorganic hollow spheres in dilute water/acetone solution. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Anisotropy of the optical absorption in layered single crystals of MoRe0.001Se1.999

    International Nuclear Information System (INIS)

    Vora, Mihir M.; Vora, Aditya M.

    2007-01-01

    Energy gap of MoRe 0.001 Se 1.999 single crystal has been determined by fundamental absorption methods. The incident light was polarized along c-axis of the crystals. The interpretion of the data is given within frameworks of two and three dimensional models. Both direct and indirect transitions are involved in the absorption process. The indirect transition was found to be allowed with two phonons participating in the process. The three dimensional model could be used to describe the optical properties of the single crystal. The energy gaps depend upon the amount of the intercalating Re material, which show the anisotropy of the chemical bonds. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals

    Science.gov (United States)

    Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah; Scarpulla, Michael A.

    2018-05-01

    Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 1016 and 1020 cm-3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 1017 cm-3 is presented, while for higher-doped samples, precipitation of a second phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20-30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm2/Vs at room temperature. A doping limit in the low 1017/cm3 range is observed for samples quenched at 200-300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 1016 cm-3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 1018 cm-3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.

  12. Mechanism of conductivity type conversion in p-Hg1-xCdxTe crystals under low energy ion bombardment

    International Nuclear Information System (INIS)

    Bogoboyashchij, V.V.; Izhnin, I.I.

    2000-01-01

    Conditions giving rise to accelerated diffusion of Hg under bombardment of p-Hg 1-x Cd x Te by low-energy particles are analyzed and probable mechanisms of the phenomenon are suggested, permitting qualitative and quantitative agreement with experimental data. Analysis indicates that basic regularities of p-n-conversion during Hg 0.8 Cd 0.2 Te crystal bombardment by neutralized ions can be easily explained in the framework of traditional notions of mercury chemical diffusion in this material. The regularities stem from specific features of defect formation in Hg 0.8 Cd 0.2 Te, on the one hand, and from a high concentration of intrinsic electrons and holes, screening effectively the defective layer electric field, on the other hand. The high rate of conversion during ion bombardment compared with the rate of conversion during annealing in mercury vapors can be explained by the fact that a great number of nonequilibrium interstitial atoms of mercury, by far exceeding the value during thermal annealing, is crated near the surface of the crystal bombarded [ru

  13. Terahertz conductivity measurement of FeSe0.5Te0.5 and Co-doped BaFe2As2 thin films

    International Nuclear Information System (INIS)

    Nakamura, D.; Akiike, T.; Takahashi, H.; Nabeshima, F.; Imai, Y.; Maeda, A.; Katase, T.; Hiramatsu, H.; Hosono, H.; Komiya, S.; Tsukada, I.

    2011-01-01

    We investigated the THz conductivity of FeSe 0.5 Te 0.5 and Ba (Fe 2-x Co x )As 2 thin films. We estimated the superconducting gap energy values. We found anomolous conductivity spectrum in the antiferromagnetic phase. The terahertz (THz) conductivity of FeSe 0.5 Te 0.5 ('11'-type) and Co-doped BaFe 2 As 2 ('122'-type) thin films are investigated. For '11'-type, the frequency dependence of the complex conductivity can be understood as that of BCS-type superconductor near the superconducting gap energy, and we estimated the superconducting gap energy to be 0.6 meV. For '122'-type, we estimated the superconducting gap energy to be 2.8 meV, which is considered to be the superconducting gap opened at the electron-type Fermi surface near the M point.

  14. Influence of Ga-doping on the thermoelectric properties of Bi(2−xGaxTe2.7Se0.3 alloy

    Directory of Open Access Journals (Sweden)

    Xingkai Duan

    2015-02-01

    Full Text Available Bi(2−xGaxTe2.7Se0.3 (x=0, 0.04, 0.08, 0.12 alloys were fabricated by vacuum melting and hot pressing technique. The structure of the samples was evaluated by means of X-ray diffraction. The peak shift toward higher angle can be observed by Ga-doping. The effects of Ga substitution for Bi on the electrical and thermal transport properties were investigated in the temperature range of 300–500 K. The power factor values of the Ga-doped samples are obviously improved in the temperature range of 300–440 K. Among all the samples, the Bi(2−xGaxTe2.7Se0.3 (x=0.04 sample showed the lowest thermal conductivity near room temperature and the maximum ZT value reached 0.82 at 400 K.

  15. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe

    Energy Technology Data Exchange (ETDEWEB)

    Parker, David S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large Tc value is unlikely.

  16. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe.

    Science.gov (United States)

    Parker, David S

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large T c value is unlikely.

  17. Dielectric and photo-dielectric properties of TlGaSeS crystals

    Indian Academy of Sciences (India)

    Administrator

    cDepartment of Physics, Middle East Technical University, 06800 Ankara, Turkey. MS received ... The crystals are observed to exhibit a dark high frequency effective dielectric constant value of ~ 10\\65 x ... communication systems. Keywords.

  18. Doping properties of cadmium-rich arsenic-doped CdTe single crystals: Evidence of metastable AX behavior

    Science.gov (United States)

    Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.

    2017-12-01

    Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 ± 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 1016 to 1017/cm3 range is achieved for measured As concentrations between 1016 and 1020/cm3 with the highest doping efficiency of 40% occurring near 1017 As/cm3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.

  19. Characterization of etch pit formation via the Everson-etching method on CdZnTe crystal surfaces from the bulk to the nanoscale

    International Nuclear Information System (INIS)

    Teague, Lucile C.; Duff, Martine C.; Cadieux, James R.; Soundararajan, Raji; Shick, Charles R.; Lynn, Kelvin G.

    2011-01-01

    A combination of atomic force microscopy, optical microscopy, and mass spectrometry was employed to study CdZnTe crystal surface and used etchant solution following exposure of the CdZnTe crystal to the Everson etch solution. We discuss the results of these studies in relationship to the initial surface preparation methods, the performance of the crystals as radiation spectrometers, the observed etch pit densities, and the chemical mechanism of surface etching. Our results show that the surface features that are exposed to etchants result from interactions with the chemical components of the etchants as well as pre-existing mechanical polishing.

  20. Electrical conduction studies of hot wall deposited CdSe{sub x}Te{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumarasamy, N. [Department of Physics, Coimbatore Institute of Technology, Coimbatore 641014 (India); Balasundaraprabhu, R.; Jayakumar, S.; Kannan, M.D. [Department of Physics, PSG College of Technology, Coimbatore (India)

    2008-08-15

    CdSe{sub x}Te{sub 1-x} thin films of different compositions have been deposited on cleaned glass substrates using the hot wall deposition technique under conditions very close to thermodynamical equilibrium with minimum loss of material. The electrical conductivity of the deposited films has been studied as a function of temperature. All the films showed a transition from phonon-assisted hopping conduction through the impurity band to grain-boundary-limited conduction in the conduction/valence band at temperature around 325 K. The conductivity has been found to vary with composition; it varied from 0.0027 to 0.0198 {omega}{sup -1} cm{sup -1} when x changed from 0 to 1. The activation energies of the films of different compositions determined at 225 and 400 K have been observed to lie in the range 0.0031-0.0098 and 0.0285-0.0750 eV, respectively. The Hall-effect studies carried out on the deposited films revealed that the nature of conductivity (p or n-type) was dependent on film composition; films with composition x=0 and 0.15 have been found to be p-type and the ones with composition x=0.4, 0.6, 0.7, 0.85 and 1 have been observed to exhibit n-type conductivity. The carrier concentration has been determined and is of the order of 10{sup 17} cm{sup -3}. The majority of carrier mobilities of the films have been observed to vary from 0.032 to 0.183 cm{sup 2} V{sup -1} s{sup -1} depending on film composition. The study of the mobility of the charge carriers with temperature in the range of 300-450 K showed that the mobility increased with 3/2 power of temperature indicating that the type of scattering mechanism in the studied temperature range is the ionized impurity scattering mechanism. (author)

  1. Influence of substrate type on transport properties of superconducting FeSe0.5Te0.5 thin films

    International Nuclear Information System (INIS)

    Yuan, Feifei; Shi, Zhixiang; Iida, Kazumasa; Langer, Marco; Hänisch, Jens; Hühne, Ruben; Schultz, Ludwig; Ichinose, Ataru; Tsukada, Ichiro; Sala, Alberto; Putti, Marina

    2015-01-01

    FeSe 0.5 Te 0.5 thin films were grown by pulsed laser deposition on CaF 2 , LaAlO 3 and MgO substrates and structurally and electro-magnetically characterized in order to study the influence of the substrate on their transport properties. The in-plane lattice mismatch between FeSe 0.5 Te 0.5 bulk and the substrate shows no influence on the lattice parameters of the films, whereas the type of substrate affects the crystalline quality of the films and, therefore, the superconducting properties. The film on MgO showed an extra peak in the angular dependence of critical current density J c (θ) at θ = 180° (H||c), which arises from c-axis defects as confirmed by transmission electron microscopy. In contrast, no J c (θ) peaks for H||c were observed in films on CaF 2 and LaAlO 3 . J c (θ) can be scaled successfully for both films without c-axis correlated defects by the anisotropic Ginzburg–Landau approach with appropriate anisotropy ratio γ J . The scaling parameter γ J is decreasing with decreasing temperature, which is different from what we observed in FeSe 0.5 Te 0.5 films on Fe-buffered MgO substrates. (paper)

  2. Effect of O- and Mn-doping on superconductivity in FeTe{sub 0.5}Se{sub 0.5} superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Gohil S.; Haque, Zeba; Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, New Delhi (India); Neha, Prakriti; Patnaik, Satyabrata [School of Physical Science, Jawaharlal Nehru University, New Delhi (India); Gupta, Laxmi C. [Department of Chemistry, Indian Institute of Technology, New Delhi (India); Visiting project scientist at the:Solid State and Nanomaterials Research Laboratory, Department of Chemistry, IIT Delhi (India)

    2014-05-15

    The effect of oxygen substitution at the selenium site and manganese substitution at the iron site in FeTe{sub 0.5}Se{sub 0.5} superconductor was investigated. It was found that upon partial O substitution, T{sub c} marginally decreases as seen in both resistivity and magnetization experiments. T{sub c} decreases even by a small amount of oxygen concentration (as low as 1 %). This observation is in contrast against an earlier work on Fe(Te/Se) samples,1 wherein T{sub c} as well as superconducting volume fraction were reported to increase in the samples annealed in air. Mn-doping leads to a decrease in T{sub c} in FeTe{sub 0.5}Se{sub 0.5}, which one would expect considering pair-breaking due to Mn{sup 2+}-ions. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Luminescence of polyethylene glycol coated CdSeTe/ZnS and InP/ZnS nanoparticles in the presence of copper cations.

    Science.gov (United States)

    Beaune, Grégory; Tamang, Sudarsan; Bernardin, Aude; Bayle-Guillemaud, Pascale; Fenel, Daphna; Schoehn, Guy; Vinet, Françoise; Reiss, Peter; Texier, Isabelle

    2011-08-22

    The use of click chemistry for quantum dot (QD) functionalization could be very promising for the development of bioconjugates dedicated to in vivo applications. Alkyne-azide ligation usually requires copper(I) catalysis. The luminescence response of CdSeTe/ZnS nanoparticles coated with polyethylene glycol (PEG) is studied in the presence of copper cations, and compared to that of InP/ZnS QDs coated with mercaptoundecanoic acid (MUA). The quenching mechanisms appear different. Luminescence quenching occurs without any wavelength shift in the absorption and emission spectra for the CdSeTe/ZnS/PEG nanocrystals. In this case, the presence of copper in the ZnS shell is evidenced by energy-filtered transmission electron microscopy (EF-TEM). By contrast, in the case of InP/ZnS/MUA nanocrystals, a redshift of the excitation and emission spectra, accompanied by an increase in absorbance and a decrease in photoluminescence, is observed. For CdSeTe/ZnS/PEG nanocrystals, PL quenching is enhanced for QDs with 1) smaller inorganic-core diameter, 2) thinner PEG shell, and 3) hydroxyl terminal groups. Whereas copper-induced PL quenching can be interesting for the design of sensitive cation sensors, copper-free click reactions should be used for the efficient functionalization of nanocrystals dedicated to bioapplications, in order to achieve highly luminescent QD bioconjugates. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Observation of an electron band above the Fermi level in FeTe0.55Se0.45 from in-situ surface doping

    International Nuclear Information System (INIS)

    Zhang, P.; Ma, J.; Qian, T.; Richard, P.; Ding, H.; Xu, N.; Xu, Y.-M.; Fedorov, A. V.; Denlinger, J. D.; Gu, G. D.

    2014-01-01

    We used in-situ potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe 0.55 Se 0.45 . The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily electron-doped KFe 2−x Se 2 compound.

  5. New quaternary thallium indium germanium selenide TlInGe2Se6: Crystal and electronic structure

    Science.gov (United States)

    Khyzhun, O. Y.; Parasyuk, O. V.; Tsisar, O. V.; Piskach, L. V.; Myronchuk, G. L.; Levytskyy, V. O.; Babizhetskyy, V. S.

    2017-10-01

    Crystal structure of a novel quaternary thallium indium germanium selenide TlInGe2Se6 was investigated by means of powder X-ray diffraction method. It was determined that the compound crystallizes in the trigonal space group R3 with the unit cell parameters a = 10.1798(2) Å, c = 9.2872(3) Å. The relationship with similar structures was discussed. The as-synthesized TlInGe2Se6 ingot was tested with X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). In particular, the XPS valence-band and core-level spectra were recorded for initial and Ar+ ion-bombarded surfaces of the sample under consideration. The XPS data allow for statement that the TlInGe2Se6 surface is rigid with respect to Ar+ ion-bombardment. Particularly, Ar+ ion-bombardment (3.0 keV, 5 min duration, ion current density fixed at 14 μA/cm2) did not cause substantial modifications of stoichiometry in topmost surface layers. Furthermore, comparison on a common energy scale of the XES Se Kβ2 and Ge Kβ2 bands and the XPS valence-band spectrum reveals that the principal contributions of the Se 4p and Ge 4p states occur in the upper and central portions of the valence band of TlInGe2Se6, respectively, with also their substantial contributions in other portions of the band. The bandgap energy of TlInGe2Se6 at the level of αg=103 cm-1 is equal to 2.38 eV at room temperature.

  6. Effect of surface states on the electrochemical behaviour of single crystal n-ZnSe photoelectrode

    International Nuclear Information System (INIS)

    El-Dessouki, M.S.

    1987-10-01

    Surface Photovoltage Spectroscopy (SPS) technique has been used to detect the surface states of ZnSe (110) surfaces. Aqueous electrolyte/ZnSe junction has been electrochemically investigated in dark and under illumination. The effect of surface states on the kinetics of charge transfer through the semiconductor-electrolyte (S/E) junction has been discussed. The low leakage and photocurrents measured by the application of DC bias were referred to the blocking nature of S/E interface, in which the localized and induced surface states play an important role. (author). 19 refs, 4 figs

  7. Optical and structural characterization of GaSb and Te-doped GaSb single crystals

    International Nuclear Information System (INIS)

    Tirado-Mejia, L.; Villada, J.A.; Rios, M. de los; Penafiel, J.A.; Fonthal, G.; Espinosa-Arbelaez, D.G.; Ariza-Calderon, H.; Rodriguez-Garcia, M.E.

    2008-01-01

    Optical and structural properties of GaSb and Te-doped GaSb single crystals are reported herein. Utilizing the photoreflectance technique, the band gap energy for doped samples was obtained at 0.814 eV. Photoluminescence (PL) spectra showed a peak at 0.748 eV that according to this research, belongs to electronic states of pure GaSb and not to the longitudinal optical (LO) phonon replica as has been reported by other authors. Analysis of the full width at half maximum (FWHM) values of X-ray diffraction, as well as micro-Raman peaks showed that the inclusion of Te decreases the crystalline quality

  8. Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes

    International Nuclear Information System (INIS)

    Yu Tianbao; Jiang Xiaoqing; Yang Jianyi; Zhou Haifeng; Liao Qinghua; Wang Minghua

    2007-01-01

    This Letter presents the properties of transverse-magnetic (TM) modes in multimode photonic crystal waveguides (PCWs), which only exhibit photonic band gaps for transverse-electric (TE) modes. A good equivalent model is applied to analysis the designed structures on the basis of multimode interference effect and self-imaging principle. The performance shows that the TM modes can also be propagated with high efficiency, and resemble index-guided modes owing to the combination of total internal reflection (TIR) and distribution Bragg reflection. It provides a novel way to realize the components for both TM and TE polarizations by combining PBG and TIR effect in PCWs. As one of potential applications, polarization-insensitive power splitter based on the proposed structures can be designed

  9. Laser ablation and photostimulated passivation of the surface of Cd1–хZnхTe crystals

    Directory of Open Access Journals (Sweden)

    Zagoruiko Yu. A.

    2011-06-01

    Full Text Available A new physical method of Cd1–хZnхTe-detectors passivation is proposed — the treatment of crystal surface by a laser ablation (LA with subsequent photostimulated passivation (PhSP, during wich a high-resistance oxide layer is formed on it’s surface after the surface cleaning under intensive light irradiation effect. It is shown that the method of LA+PhSP is manufacturable and in comparison with PhSP and PhESP methods developed earlier provides a thick, homogeneous and high-oxide films, which significantly increases the surface resistivity of Cd1–хZnхTe samples and reduces leakage currents in them.

  10. High absorption coefficients of the CuSb(Se,Te2 and CuBi(S,Se2 alloys enable high-efficient 100 nm thin-film photovoltaics

    Directory of Open Access Journals (Sweden)

    Chen Rongzhen

    2017-01-01

    Full Text Available We demonstrate that the band-gap energies Eg of CuSb(Se,Te2 and CuBi(S,Se2 can be optimized for high energy conversion in very thin photovoltaic devices, and that the alloys then exhibit excellent optical properties, especially for tellurium rich CuSb(Se1−xTex2. This is explained by multi-valley band structure with flat energy dispersions, mainly due to the localized character of the Sb/Bi p-like conduction band states. Still the effective electron mass is reasonable small: mc ≈ 0.25m0 for CuSbTe2. The absorption coefficient α(ω for CuSb(Se1−xTex2 is at ħω = Eg + 1 eV as much as 5–7 times larger than α(ω for traditional thin-film absorber materials. Auger recombination does limit the efficiency if the carrier concentration becomes too high, and this effect needs to be suppressed. However with high absorptivity, the alloys can be utilized for extremely thin inorganic solar cells with the maximum efficiency ηmax ≈ 25% even for film thicknesses d ≈ 50 − 150 nm, and the efficiency increases to ∼30% if the Auger effect is diminished.

  11. High absorption coefficients of the CuSb(Se,Te)2 and CuBi(S,Se)2 alloys enable high-efficient 100 nm thin-film photovoltaics

    Science.gov (United States)

    Chen, Rongzhen; Persson, Clas

    2017-06-01

    We demonstrate that the band-gap energies Eg of CuSb(Se,Te)2 and CuBi(S,Se)2 can be optimized for high energy conversion in very thin photovoltaic devices, and that the alloys then exhibit excellent optical properties, especially for tellurium rich CuSb(Se1-xTex)2. This is explained by multi-valley band structure with flat energy dispersions, mainly due to the localized character of the Sb/Bi p-like conduction band states. Still the effective electron mass is reasonable small: mc ≈ 0.25m0 for CuSbTe2. The absorption coefficient α(ω) for CuSb(Se1-xTex)2 is at ħω = Eg + 1 eV as much as 5-7 times larger than α(ω) for traditional thin-film absorber materials. Auger recombination does limit the efficiency if the carrier concentration becomes too high, and this effect needs to be suppressed. However with high absorptivity, the alloys can be utilized for extremely thin inorganic solar cells with the maximum efficiency ηmax ≈ 25% even for film thicknesses d ≈ 50 - 150 nm, and the efficiency increases to ˜30% if the Auger effect is diminished.

  12. Crystal Chemistry and Photocatalytic Properties of RE4S4Te3 (RE = Gd, Ho, Er, Tm): Experimental and Theoretical Investigations.

    Science.gov (United States)

    Chi, Yang; Rong, Liang-Zhen; Suen, Nian-Tzu; Xue, Huai-Guo; Guo, Sheng-Ping

    2018-04-25

    Reported are the synthesis and structural characterization of a new series of ternary rare-earth mix-chalcogenides RE 4 S 4 Te 3 (RE = Gd, Ho, Er, Tm) that have been obtained from high-temperature solid state reactions. These compounds crystallize in Ho 4 S 4 Te 2.68 structure types with monoclinic C2/ m and/or orthorhombic Immm space groups. The space group variation within this series is due to the position disorder along the Te plane (Te to TeA and TeB). The structural relationship and change between these two space groups are analyzed. It is realized that these compounds are all photocatalytic active under simulated sunlight. The trend of their photocatalytic activities and photocurrent responses is well-explained by using theoretical calculation as well as dipole moment analysis.

  13. Substrate-Dependent Differences in the Crystal Structures and Optical Properties of ZnSe Nanowires

    Directory of Open Access Journals (Sweden)

    Keumyoung Seo

    2015-01-01

    Full Text Available The optical and structural properties of ZnSe nanowires directly grown on three different substrates, SiO2, ITO, and graphene, were investigated. ZnSe nanowires grown on graphene and SiO2 were found to have cubic structures, while ZnSe nanowires grown on ITO had a mixed cubic and hexagonal structure. The main peaks in the photoluminescence spectra of ZnSe nanowires grown on SiO2, ITO, and graphene were located at 459, 627, and 627/460 nm, respectively. In addition, a field-emission light-emitting device was fabricated using ZnSe nanowires as a phosphor and graphene as an electrode. The device showed a red emission peak with Commission Internationale de L’Eclairage coordinates of (0.621, 0.315.

  14. Composition determination of CdS sub x Se sub 1-x mixed crystals by optical dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Iliev, I; Dimov, T; Ribarov, D [Pedagogical High School, Schumen (Bulgaria); Lange, H [Akademie der Wissenschaften der DDR, Berlin (German Democratic Republic). Zentralinstitut fuer Elektronenphysik

    1989-10-16

    An optical dispersion method has been developed determining the CdS/CdSe ratio in CdS{sub x}Se{sub 1-x} mixed crystals from the relationship between position of the isotropic point (birefrigence becomes zero for a definite wavelength at the absorption edge) and chemical composition x. Birefrigence spectra and piezo-optic spectra of samples with x = 0.2, 0.6, and 0.875 give the spectral position of the isotropic point (ip). A curve of wavelength of ip versus x of CdS{sub x}Se{sub 1-x} is evaluated by the least-squares procedure and tested by X-ray fluorescence analysis.

  15. Facile synthesis of red- to near-infrared-emitting CdTe{sub x}Se{sub 1-x} alloyed quantum dots via a noninjection one-pot route

    Energy Technology Data Exchange (ETDEWEB)

    Liao Lifang; Zhang Hua [Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology, Shanghai 200237 (China); Zhong Xinhua, E-mail: zhongxh@ecust.edu.c [Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology, Shanghai 200237 (China)

    2011-02-15

    High-quality CdTeSe colloidal nanocrystals with gradient distribution of components, consisting of Te-rich inner cores and Se-rich outer shells, were synthesized in a 'green' solvent paraffin via a noninjection one-pot approach with the use of cadmium oxide (CdO), elemental tellurium, and elemental selenium as Cd, Te, and Se sources, respectively. All of these reactants were loaded at room temperature. This features synthetic reproducibility and large-scale capability. The bandgap engineering of the obtained CdTeSe QDs can be conveniently realized through the variation of growth temperature. Red- to near-infrared-emitting (620-780 nm) QDs with nearly identical particle sizes can be obtained when the reaction temperature was changed from 180 to 280 {sup o}C with the fixation of precursor feed ratio at 5Cd-0.5Te-0.5Se. The as-prepared CdTeSe QDs exhibit PL QY as high as 53%. The resulting CdTeSe QDs were characterized by UV-vis and photoluminescence spectroscopy, powder X-ray diffraction, transmission electron microscopy, and inductively coupled plasma atomic emission spectroscopy.

  16. Synthesis and crystal structure of tischendorfite, Pd8Hg3Se9

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Vymazalová, A.; Drábek, J.; Navrátil, Jiří; Drahokoupil, Jan

    2014-01-01

    Roč. 26, č. 1 (2014), s. 157-162 ISSN 0935-1221 Institutional support: RVO:68378271 Keywords : tischendorfite * crystal structure * Pd-Hg selenides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.483, year: 2014

  17. Effect of surface treatment of thermoelectric materials on the properties of thermoelements made from solid solutions of Bi/sub 2/Te/sub 3/-Bi/sub 2/Se/sub 3/ and Bi/sub 2/Te/sub 3/-Sb/sub 2/Te/sub 3/ systems

    Energy Technology Data Exchange (ETDEWEB)

    Alieva, T.D.; Abdinov, D.Sh.; Salaev, Eh.Yu.

    1981-10-01

    Effect of surface treatment technology of samples of solid solutions of Ei/sub 2/Te/sub 3/-Bi/sub 2/Se/sub 3/ and Bi/sub 2/Te/sub 3/-Sb/sub 2/Te/sub 3/ systems on their thermoelectric efficiency is studied. Branches of thermoelements have been produced with the help of electroerosion or mechanical cutting of monocrystal ingots of semiconducting solid Bi/sub 2/Te/sub 3/-base solutions. It is shown that in case of the treatment of side surfaces of branches of thermoelements produced of monocrystals of Bi/sub 2/Te/sub 3/ base solid solutions their thermoelectrical efficiency grows considerably. Maximum growth of efficiency (approximately 20%) is observed during mechanical grinding of branches surfaces with diamond paste with the following chemical or electrochemical etching.

  18. Synthesis and temperature dependent Raman studies of large crystalline faces topological GeBi4Te7 single crystal

    Science.gov (United States)

    Mal, Priyanath; Bera, G.; Turpu, G. R.; Srivastava, Sunil K.; Das, Pradip

    2018-05-01

    We present a study of structural and vibrational properties of topological insulator GeBi4Te7. Modified Bridgeman technique is employed to synthesize the single crystal with relatively large crystalline faces. Sharp (0 0 l) reflection confirms the high crystallinity of the single crystal. We have performed temperature dependent Raman measurement for both parallel and perpendicular to crystallographic c axis geometry. In parallel configuration we have observed seven Raman modes whereas in perpendicular geometry only four of these are identified. Appearance and disappearance of Raman modes having different intensities for parallel and perpendicular to c measurement attribute to the mode polarization. Progressive blue shift is observed with lowering temperature, reflects the increase in internal stress.

  19. Analysis of glow curve of GaS{sub 0.5}Se{sub 0.5} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Mehmet, E-mail: mehmet.isik@atilim.edu.tr [Department of Electrical and Electronics Engineering, Atilim University, 06836 Ankara (Turkey); Delice, Serdar [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey); Gasanly, Nizami [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey); Virtual International Scientific Research Centre, Baku State University, 1148 Baku (Azerbaijan)

    2015-12-15

    Characterization of shallow trapping centers in GaS{sub 0.5}Se{sub 0.5} crystals grown by a Bridgman method was carried out in the present work using thermoluminescence (TL) measurements performed in the low temperature range of 10–300 K. The activation energies of the trapping centers were obtained under the light of results of various analysis methods. The presence of three trapping centers located at 6, 30 and 72 meV was revealed. The analysis of the experimental glow curve gave reasonable results under the model that assumes slow retrapping which states the order of kinetics as b=1. Heating rate dependence of the observed TL peaks was studied for the rates between 0.4 and 1.0 K/s. Distribution of the traps was also investigated using an experimental technique based on the thermal cleaning of centers giving emission at lower temperatures. The distributed levels with activation energies increasing from 6 to 136 meV were revealed by increasing the stopping temperature from 10 to 52 K. - Highlights: • TL measurements were performed in the 10–300 K range on GaS{sub 0.5}Se{sub 0.5} crystals. • Atomic composition ratio of the elements was found. • Three trapping centers located at 6, 30 and 72 meV were revealed. • Distribution of trapping centers was studied on as-grown crystal.

  20. Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte

    Science.gov (United States)

    Wu, Yueshen; Lian, Hailong; He, Jiaming; Liu, Jinyu; Wang, Shun; Xing, Hui; Mao, Zhiqiang; Liu, Ying

    2018-01-01

    Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.

  1. Synthesis and crystal structure of three new quaternary compounds in the system (Cu-III-Se{sub 2}){sub 1-x}ZnSe{sub x} (III = Al, Ga, In), formed by Zn incorporation in Cu-III-Se{sub 2} chalcopyrite s

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, G. E. [Universidad de Los Andes, Facultad de Ciencias, Departamento de Quimica, Laboratorio de Cristalografia, 5101 Merida (Venezuela, Bolivarian Republic of); Grima G, P.; Quintero, M., E-mail: gerzon@ula.ve [Universidad de Los Andes, Facultad de Ciencias, Departamento de Fisica, Centro de Estudios de Semiconductores, 5101 Merida (Venezuela, Bolivarian Republic of)

    2016-11-01

    The crystal structure of the chalcogenide alloys CuZnAlSe{sub 3}, CuZnCaSe{sub 3} and CuZnInSe{sub 3}, new members of the system I-II-III-VI{sub 3}, were characterized using X-ray powder diffraction data. All materials crystallize in the tetragonal space group P{sub -4} 2{sub c} (N 112) with a CuFeInSe{sub 3}- type structure. (Author)

  2. N and Si Implantation Effect on Structural and Electrical Properties of Bridgman grown GaSe Single Crystal

    International Nuclear Information System (INIS)

    Karabulut, O.

    2004-01-01

    N and Si implantation to GaSe single crystals were carried out parallel to c-axis with ion beam of about 10 1 6 ions/cm 2 dose having energy values 30, 60 and 100 keV. Ion implantation modifications on Bridgman grown GaSe single crystals have been investigated by means of XRD, electrical conductivity, absorption and photoconductivity measurements. XRD measurements revealed that annealing results in a complete recovery of the crystalline nature that was moderately reduced upon implantation. It was observed that both N- and Siimplantation followed by annealing process decreased the resistivity values from 10 7 to 10 3 .-cm. The analysis of temperature dependent conductivity showed that at high temperature region above 200 K, the transport mechanism is dominated by thermal excitation in the doped and undoped GaSe samples. At lower temperatures, the conduction of carriers is dominated by variable range hopping mechanism in the implanted samples. Absorption and spectral photoconductivity measurements showed that the band edge is shifted in the implanted sample. All these modifications were attributed to the structural modifications and continuous shallow trap levels introduced upon implantation and annealing

  3. High-pressure single-crystal X-ray diffraction of Tl2SeO4

    International Nuclear Information System (INIS)

    Grzechnik, Andrzej; Breczewski, Tomasz; Friese, Karen

    2008-01-01

    The effect of pressure on the crystal structure of thallium selenate (Tl 2 SeO 4 ) (Pmcn, Z=4), containing the Tl + cations with electron lone pairs, has been studied with single-crystal X-ray diffraction in a diamond anvil cell up to 3.64 GPa at room temperature. No phase transition has been observed. The compressibility data are fitted by a Murnaghan equation of state with the zero-pressure bulk modulus B 0 =29(1) GPa and the unit-cell volume at ambient pressure V 0 =529.6(8) A 3 (B'=4.00). Tl 2 SeO 4 is the least compressible in the c direction, while the pressure-induced changes of the a and b lattice parameters are quite similar. These observations can be explained by different pressure effects on the nine- and 11-fold coordination polyhedra around the two non-equivalent Tl atoms. The SeO 4 2- tetrahedra are not rigid units and become more distorted. Their contribution to the compressibility is small. The effect of pressure on the isotypical oxide materials A 2 TO 4 with the β-K 2 SO 4 structure is discussed. It appears that the presence of electron lone pairs on the Tl + cation does not seem to influence the compressibility of Tl 2 SeO 4 . - Graphical abstract: Pressure dependence of normalized lattice parameters and unit-cell volumes in Tl 2 SeO 4 (Pmcn, Z=4). The solid line is the Murnaghan equation of state

  4. Ab initio calculations of the electron spectrum and density of states of TlFeS{sub 2} and TlFeSe{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ismayilova, N. A., E-mail: ismayilova-narmin-84@mail.ru; Orudjev, H. S.; Jabarov, S. H. [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan)

    2017-04-15

    The results of ab initio calculations of the electron spectrum of TlFeS{sub 2} and TlFeSe{sub 2} crystals in the antiferromagnetic phase are reported. Calculations are carried out in the context of the density functional theory. The origin of the bands of s, p, and d electron states of Tl, Fe, S, and Se atoms is studied. It is established that, in the antiferromagnetic phase, the crystals possess semiconductor properties. The band gaps are found to be 0.05 and 0.34 eV for TlFeS{sub 2} and TlFeSe{sub 2} crystals, respectively.

  5. Growth, morphological properties and pulsed photo response of MoTe2 single crystal synthesized by DVT technique

    Science.gov (United States)

    Dixit, Vijay; Vyas, Chirag; Patel, Abhishek; Pathak, V. M.; Solanki, G. K.; Patel, K. D.

    2018-05-01

    Molybednum Di Telluride of group VI belongs to the family of layered transition metal di-chalcogenides (TMDCs). These TMDCs show good potential for applications in the field of optoelectronic devices as they are chemically inert trilayered structure of MX2 type. In the present investigation crystals of MoTe2 are grown by direct vapor transport technique in a dual zone horizontal furnace. The grown crystals were characterized by Energy Dispersive Analysis of X-rays (EDAX) to study its elemental and stoichiometric composition, Selected Area Electron Diffraction (SAED) confirms the hexagonal structure. Spot pattern of electron diffraction shows formation of single phase. Scanning Electron Microscope (SEM) shows the layer by layer growth of the crystals, Thermo Electric Power (TEP) reflects the p-type semiconducting nature of the grown crystals. As this material is photosensitive material having band gap of approximately 1.0 eV, a transient photo response against polychromatic radiation (40 mW/cm2) of photodetector is also measured which showed slow decay in generated photocurrent due to low trapping density within the active area of the prepared device. Thus, it shows that this material can be a good photovoltaic material for constructing a solar cell also.

  6. In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Naohiko [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)]. E-mail: e0957@mosk.tytlabs.co.jp; Konomi, Ichiro [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Seno, Yoshiki [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Motohiro, Tomoyoshi [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2005-05-15

    The crystallization processes of the Ge{sub 2}Sb{sub 2}Te{sub 5} thin film used for PD and DVD-RAM were studied in its realistic optical disk film configurations for the first time by X-ray diffraction using an intense X-ray beam of a synchrotron orbital radiation facility (SPring-8) and in situ quick detection with a Position-Sensitive-Proportional-Counter. The dependence of the amorphous-to-fcc phase-change temperature T{sub 1} on the rate of temperature elevation R{sub et} gave an activation energy E{sub a}: 0.93 eV much less than previously reported 2.2 eV obtained from a model sample 25-45 times thicker than in the real optical disks. The similar measurement on the Ge{sub 4}Sb{sub 1}Te{sub 5} film whose large reflectance change attains the readability by CD-ROM drives gave E{sub a}: 1.13 eV with larger T{sub 1} than Ge{sub 2}Sb{sub 2}Te{sub 5} thin films at any R{sub et} implying a lower sensitivity in erasing as well as a better data stability of the phase-change disk.

  7. In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment

    International Nuclear Information System (INIS)

    Kato, Naohiko; Konomi, Ichiro; Seno, Yoshiki; Motohiro, Tomoyoshi

    2005-01-01

    The crystallization processes of the Ge 2 Sb 2 Te 5 thin film used for PD and DVD-RAM were studied in its realistic optical disk film configurations for the first time by X-ray diffraction using an intense X-ray beam of a synchrotron orbital radiation facility (SPring-8) and in situ quick detection with a Position-Sensitive-Proportional-Counter. The dependence of the amorphous-to-fcc phase-change temperature T 1 on the rate of temperature elevation R et gave an activation energy E a : 0.93 eV much less than previously reported 2.2 eV obtained from a model sample 25-45 times thicker than in the real optical disks. The similar measurement on the Ge 4 Sb 1 Te 5 film whose large reflectance change attains the readability by CD-ROM drives gave E a : 1.13 eV with larger T 1 than Ge 2 Sb 2 Te 5 thin films at any R et implying a lower sensitivity in erasing as well as a better data stability of the phase-change disk

  8. The relationship between anisotropic magnetoresistance and topology of Fermi surface in Td-MoTe2 crystal

    Science.gov (United States)

    Lv, Yang-Yang; Li, Xiao; Pang, Bin; Cao, Lin; Lin, Dajun; Zhang, Bin-Bin; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Dong, Song-Tao; Zhang, Shan-Tao; Lu, Ming-Hui; Chen, Yan-Feng

    2017-07-01

    Layered transition-metal dichalcogenides have been recently attracted a lot of attention because of their unique physical properties, such as extremely large and anisotropic magnetoresistance (MR) in WTe2. In this work, we observed the abnormally anisotropic MR on Td-MoTe2 crystal that is strongly dependent on the temperature, as well as the orientations of both magnetic field B and electric field E with respect to crystallographic axes of Td-MoTe2. When E//a-axis and B//c-axis, MR is parabolically dependent on B and is as high as 520% under 9 T and 2 K conditions; the MR is quasi-linearly dependent on B when E//a-axis and B//b-axis (E//b-axis and B//c-axis), and the corresponding MR is only 130% (220%); MR is initially parabolically dependent on B, then linearly on B, and finally shows a saturate trend under E//B//a-axis (or E//B//b-axis) conditions, and the MR is about 16% (30%). These anisotropic MR behaviors can be qualitatively explained by the features of the Fermi surface of Td-MoTe2. This work may demonstrate the rich anisotropic physical behavior in layered transition-metal dichalcognides.

  9. Energy resolution of the CdTe-XPAD detector:calibration and potential for Laue diffractionmeasurements on protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Medjoubi K.; Idir M.; Thompson, A.; Berar, J-F.; Clemens, J-C.; Delpierre, P.; Da Silva, P.; Dinkespiler, B.; Itie, J-P.; Legrand, P.; Menneglier, C.; Mercere, P.; Picca, F.; Samama J-P.

    2012-02-02

    The XPAD3S-CdTe, a CdTe photon-counting pixel array detector, has been used to measure the energy and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140 eV), opening up new possibilities in energy-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging-plate detector and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.

  10. Vanadium doped Sb2Te3 material with modified crystallization mechanism for phase-change memory application

    International Nuclear Information System (INIS)

    Ji, Xinglong; Zheng, Yonghui; Zhou, Wangyang; Wu, Liangcai; Cao, Liangliang; Zhu, Min; Rao, Feng; Song, Zhitang; Feng, Songlin

    2015-01-01

    In this paper, V 0.21 Sb 2 Te 3 (VST) has been proposed for phase-change memory applications. With vanadium incorporating, VST has better thermal stability than Sb 2 Te 3 and can maintain in amorphous phase at room temperature. Two resistance steps were observed in temperature dependent resistance measurements. By real-time observing the temperature dependent lattice structure evolution, VST presents as a homogenous phase throughout the whole thermal process. Combining Hall measurement and transmission electron microscopy results, we can ascribe the two resistance steps to the unique crystallization mechanism of VST material. Then, the amorphous thermal stability enhancement can also be rooted in the suppression of the fast growth crystallization mechanism. Furthermore, the applicability of VST is demonstrated by resistance-voltage measurement, and the phase transition of VST can be triggered by a 15 ns electric pulse. In addition, endurance up to 2.7×10 4 cycles makes VST a promising candidate for phase-change memory applications

  11. Photoinduced Optical Properties Of Tl1−xIn1−xSixSe2 Single Crystals

    Directory of Open Access Journals (Sweden)

    Myronchuk G.L.

    2015-06-01

    Full Text Available The influence of temperature on electroconductivity and photoinduced changes of the absorption at 0.15 eV under influence of the second harmonic generation of CO2 laser for the two type of single crystals were investigated. The single crystals Tl1−xIn1−xSixSe2 (x=0.1 and 0.2 have been grown by the two-zone Bridgaman-Stockbarger method. The temperature studies of electroconductivity were done in cryostat with thermoregulation in the temperature 77 - 300 K, with stabilization ±0.1 K. Photoinduced treatment of the investigated single crystals were performed using the 180 ns pulses second harmonic generation of the CO2 laser operating at 5.3 μm. Experimental studies have shown that for the Tl1−xIn1−xSixSe2 single crystals with decreasing temperature from 300 up to 240 K and from 315 up to 270 K the conductivity is realized by thermally excited impurities with activation energies equal to about 0.24 eV and 0.22 eV for x= 0.1 and 0.2, respectively. Photoinduced absorption achieves its maximum at a power density below 100 mJ/cm2. Has been shown that the samples with x=0.2 demonstrated higher changes of the photoinduced absorption with respect to the x=0.1. With further decreasing temperature is observed monotonic decrease in the activation energy of conductivity. The origin of these effects is caused by the excitations of both the electronic as well as phonon subsystem. At some power densities the anharmonic excitations become dominant and as a consequence the photoinduced absorption dependence is saturated what were observed. Additionally, we were evaluated at given temperature the average jump length of R for localized states near Fermi level.

  12. Atomistic tight-binding theory of excitonic splitting energies in CdX(X = Se, S and Te)/ZnS core/shell nanocrystals

    Science.gov (United States)

    Sukkabot, Worasak; Pinsook, Udomsilp

    2017-01-01

    Using the atomistic tight-binding theory (TB) and a configuration interaction description (CI), we numerically compute the excitonic splitting of CdX(X = Se, S and Te)/ZnS core/shell nanocrystals with the objective to explain how types of the core materials and growth shell thickness can provide the detailed manipulation of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting, beneficial for the active application of quantum information. To analyze the splitting of the excitonic states, the optical band gaps, ground-state wave function overlaps and atomistic electron-hole interactions tend to be numerically demonstrated. Based on the atomistic computations, the single-particle and excitonic gaps are mainly reduced with the increasing ZnS shell thickness owing to the quantum confinement. In the range of the higher to lower energies, the order of the single-particle gaps is CdSe/ZnS, CdS/ZnS and CdTe/ZnS core/shell nanocrystals, while one of the excitonic gaps is CdS/ZnS, CdSe/ZnS and CdTe/ZnS core/shell nanocrystals because of the atomistic electron-hole interaction. The strongest electron-hole interactions are mainly observed in CdSe/ZnS core/shell nanocrystals. In addition, the computational results underline that the energies of the dark-dark (DD), dark-bright (DB) and bright-bright (BB) excitonic splitting are generally reduced with the increasing ZnS growth shell thickness as described by the trend of the electron-hole exchange interaction. The high-to-low splitting of the excitonic states is demonstrated in CdSe/ZnS, CdTe/ZnS and CdS/ZnS core/shell nanocrystals because of the fashion in the electron-hole exchange interaction and overlaps of the electron-hole wave functions. As the resulting calculations, it is expected that CdS/ZnS core/shell nanocrystals are the best candidates to be the source of entangled photons. Finally, the comprehensive information on the excitonic splitting can enable the use of suitable core

  13. Heterojunctions of oxide-p-InSe on oriented (110) crystal substrate

    CERN Document Server

    Katerinchuk, V N; Betsa, T V; Kaminskij, V M; Netyaga, V V

    2001-01-01

    The photoelectric properties of the oxide-p-InSe heterotransition, formed in the plane, parallel to the C crystallographic axis, are studied. The heterotransitions are formed through the thermal oxidation of the InSe crystalline sublattice. The influence of the surface recombination effects on the heterotransition properties is not determined. It is established from the volt-farad characteristics, that the p-n-transition type is sharp, and the energy barrier value constitutes 0.17 V. It is determined also, that the current flow through the heterotransition barrier is described within the frames of the diode theory

  14. Crystal structure of NaPr(SeO4)2

    International Nuclear Information System (INIS)

    Ovanisyan, S.M.; Iskhakova, L.D.

    1989-01-01

    NaPr(SeO 4 ) 2 structure is decoded (autodiffractometer CAD-4). Triclinic cell parameters are as follows: a=6.639(2), b=7.118(1), c=7.36(1) A, α=99.16(2) deg, β=96.93(2) deg, γ=89.77 (3) deg, p.gr. P1-bar, Z=2. Structure is of carcass type, built on CaSO 4 anhydride structure base with 2Ca→TR 3+ +Na + -type ordered substitution. Structural comparative crystallochemical analysis of anhydride and NaPr(SeO 4 ) 2 and NaNd(SO 4 ) 2 isostructural double salts is carried out

  15. Synthesis of metals chalcogenides nano-particles from H{sub 2}X (X=S, Se, Te) produced electrochemically; Synthese de nanoparticules de chalcogenures de metaux a partir de H{sub 2}X (X=S, Se, Te) produit electrochimiquement

    Energy Technology Data Exchange (ETDEWEB)

    Bastide, S.; Tena-Zaera, R.; Alleno, E.; Godart, C.; Levy-Clement, C. [Centre National de la Recherche Scientifique (CNRS), Lab. de Chimie Metallurgique des Terres Rares, 94 - Thiais (France); Hodes, G. [Weizmann Institute of Science, Rehovot (Israel)

    2006-07-01

    In this work, an electrochemical method to produce H{sub 2}X (X=S, Se, Te) hydrides in a controlled way (without being able to store them) and to transfer them directly in the synthesis reactor has been perfected. By this method, the use of H{sub 2}Te has been possible. The method uses the reduction of the elementary chalcogenide in acid medium. The Te being conductor, it can be directly used as electrode, on the other hand S and Se are insulators. Nevertheless, graphite-S or Se conducing composite electrodes can also be used. When the electrolyte composition (pH, salts presence) is well adjusted, the essential of the cathodic current is consumed by the chalcogenide reduction (low evolution of H{sub 2}) with faradic yields of about 100% for H{sub 2}S and H{sub 2}Se and 40% for HeTe. The use of H{sub 2}X allows the synthesis of nano-particles of metals chalcogenides directly by reaction with dissolved metallic salts in aqueous or organic medium and precipitation. Thus it has been possible to prepare all the CdX compounds under the form of nano-particles of diameter between 3 and 5 nm by bubbling of the gaseous hydrides in aqueous acetate solutions of Cd. In producing concomitantly H{sub 2}S and H{sub 2}Se, nano-particles of solid solutions CdS{sub x}Se{sub 1-x} have been synthesized too. (O.M.)

  16. High p-Type Doping, Mobility, and Photocarrier Lifetime in Arsenic-Doped CdTe Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kuciauskas, Darius [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagaoka, Akira [Kyoto University; University of Utah; McCoy, Jedidiah [Washington State University; Scarpulla, Michael A. [University of Utah

    2018-05-08

    Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 10^16 and 10^20 cm-3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 10^17 cm-3 is presented, while for higher-doped samples, precipitation of a second phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20-30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm2/Vs at room temperature. A doping limit in the low 10^17/cm3 range is observed for samples quenched at 200-300 degrees C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 10^16 cm-3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 10^18 cm-3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.

  17. Defect structure of TiS{sub 3} single crystals of the A-ZrSe{sub 3} type

    Energy Technology Data Exchange (ETDEWEB)

    Bolotina, N. B., E-mail: nb-bolotina@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Gorlova, I. G. [Russian Academy of Sciences, Kotel’nikov Institute of Radioengineering and Electronics (Russian Federation); Verin, I. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Titov, A. N. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation); Arakcheeva, A. V. [Phase Solutions, Co Ltd. (Switzerland)

    2016-11-15

    The defect structure of TiS{sub 3} single crystals of the A-ZrSe{sub 3} type has been determined based on X-ray diffraction data. Shear defects manifest themselves as displacements of ab layers (which can imitate a twin) by ∼0.5a. Regular shears facilitate the formation of a superstructure along the c axis. A model of defect in the layer structure is proposed to explain the atomic displacements at an angle to the layer plane.

  18. Zn2(TeO3Br2

    Directory of Open Access Journals (Sweden)

    Mats Johnsson

    2008-05-01

    Full Text Available Single crystals of dizinc tellurium dibromide trioxide, Zn2(TeO3Br2, were synthesized via a transport reaction in sealed evacuated silica tubes. The compound has a layered crystal structure in which the building units are [ZnO4Br] distorted square pyramids, [ZnO2Br2] distorted tetrahedra, and [TeO3E] tetrahedra (E being the 5s2 lone pair of Te4+ joined through sharing of edges and corners to form layers of no net charge. Bromine atoms and tellurium lone pairs protrude from the surfaces of each layer towards adjacent layers. This new compound Zn2(TeO3Br2 is isostructural with the synthetic compounds Zn2(TeO3Cl2, CuZn(TeO32, Co2(TeO3Br2 and the mineral sophiite, Zn2(SeO3Cl2.

  19. Defect characterization of Ga4Se3S layered single crystals by ...

    Indian Academy of Sciences (India)

    GaSe and GaS belonging to III–VI group of semiconducting compounds are effective materials to be used in optoelectronic devices in red and blue regions. These compounds .... or fractures on the surface. Therefore, there is no need of further ...

  20. Accumulation of weak optical signals and spectral memory in InSe single crystals

    International Nuclear Information System (INIS)

    Abdinov, A.Shj.; Babaeva, R.F.

    1995-01-01

    Dysprosium alloying effect on the electron and physico-chemical properties of InSe monocrystals is studied. Accumulation of low light signals and spectral or color memory is shown to be observed under certain conditions (temperature, content of admitted impurity, wave length and light intensity)

  1. Contrastive thermoelectric properties of strained SnSe crystals from the first-principles calculations

    Science.gov (United States)

    Tang, Yu; Cheng, Feng; Li, Decong; Deng, Shuping; Chen, Zhong; Sun, Luqi; Liu, Wenting; Shen, Lanxian; Deng, Shukang

    2018-06-01

    SnSe is a promising thermoelectric material with a record high dimensionless figure of merit ZT at high temperature ∼923 K. However, the ZT values for low-Temperature Pnma phase SnSe are just 0.1-0.9. Here, we use First-principle combine with Boltzmann transport theory methods to study the effect of tensile and compressible strain on the thermoelectric transport properties. The power factor of SnSe with -4% strain have a large boost along b and c directions of 7.7 and 3.9 μW cm-1 K-2, respectively, which are 2.5 and 2 times as large as those pristine SnSe. The charge density distributions reveal that the overlap of wave function has significant change due to the changed bond lengths and bond angles under different strain, which lead to the change of band gap and band dispersion. Our work provides a new effective strategy to enhance the thermoelectric properties of materials.

  2. Analysis of the electrical conduction in CdHgTe crystals

    International Nuclear Information System (INIS)

    Dziuba, Z.

    1987-01-01

    The electrical conduction versus magnetic field in p-like CdHgTe samples at 77 K is investigated by analysing the conductivity tensor components. The electrical conduction is mainly due to electrons in the conduction band and low-mobility carriers in an impurity band. In the investigated samples Cd/sub x/Hg/sub 1-x/Te with the composition x approximately 0.17 the concentration of electrons in the conduction band is higher than the intrinsic one and in samples with the composition close to HgTe the concentration of electrons in the conduction band is equal to or lower than the intrinsic one. The model of a half-filled impurity band situated close to the bottom of the conduction band is proposed to account for the concentration of electrons in the conduction band. (author)

  3. Synthesis and characterization of Cu{sub 3}TaIn{sub 3}Se{sub 7} and CuTa{sub 2}InTe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, E.; Munoz-Pinto, M.; Duran-Pina, S.; Quintero, M.; Quintero, E.; Morocoima, M. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela); Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela); Romero, H. [Laboratorio de Magnetismo, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela); Briceno, J.M.; Fernandez, J. [Laboratorio de Analisis Quimico y Estructural (LAQUEM), Departamento de Fisica, Facultad de Ciencias, Merida (Venezuela); Grima-Gallardo, P.

    2008-07-15

    Polycrystalline samples of Cu{sub 3}TaIn{sub 3}Se{sub 7} and CuTa{sub 2}InTe{sub 4} were synthesized by the usual melt and anneal technique. X-ray powder diffraction showed a single phase behavior for both samples with tetragonal symmetry and unit cell parameter values a=5.794{+-}0.002 A, c=11.66{+-}0.01 A, c/a=2.01, V=391{+-}1 A{sup 3} and a=6.193{+-}0.001 A, c=12.400 {+-}0.002A, c/a=2.00, V=475{+-}1 A{sup 3}, respectively. Differential thermal analysis (DTA) measurements suggested a complicated behavior near the melting point with several thermal transitions observed in the heating and cooling runs. From the shape of the DTA peaks it was deduced that the melting is incongruent for both materials. Magnetic susceptibility measurements (zero-field cooling and field cooling) indicated an antiferromagnetic character with transition temperatures of T=70 K (Cu{sub 3}TaIn{sub 3}Se{sub 7}) and 42 K (CuTa{sub 2}InTe{sub 4}). A spin-glass transition was observed in Cu{sub 3}TaIn{sub 3}Se{sub 7} with T{sub f}{approx}50 K. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Synthesis and characterization of Cu3TaIn3Se7 and CuTa2InTe4

    International Nuclear Information System (INIS)

    Calderon, E.; Munoz-Pinto, M.; Duran-Pina, S.; Quintero, M.; Quintero, E.; Morocoima, M.; Delgado, G.E.; Romero, H.; Briceno, J.M.; Fernandez, J.; Grima-Gallardo, P.

    2008-01-01

    Polycrystalline samples of Cu 3 TaIn 3 Se 7 and CuTa 2 InTe 4 were synthesized by the usual melt and anneal technique. X-ray powder diffraction showed a single phase behavior for both samples with tetragonal symmetry and unit cell parameter values a=5.794±0.002 A, c=11.66±0.01 A, c/a=2.01, V=391±1 A 3 and a=6.193±0.001 A, c=12.400 ±0.002A, c/a=2.00, V=475±1 A 3 , respectively. Differential thermal analysis (DTA) measurements suggested a complicated behavior near the melting point with several thermal transitions observed in the heating and cooling runs. From the shape of the DTA peaks it was deduced that the melting is incongruent for both materials. Magnetic susceptibility measurements (zero-field cooling and field cooling) indicated an antiferromagnetic character with transition temperatures of T=70 K (Cu 3 TaIn 3 Se 7 ) and 42 K (CuTa 2 InTe 4 ). A spin-glass transition was observed in Cu 3 TaIn 3 Se 7 with T f ∼50 K. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Critical thickness and strain relaxation in high-misfit heteroepitaxial systems: PbTe1-xSex on PbSe (001)

    International Nuclear Information System (INIS)

    Wiesauer, Karin; Springholz, G.

    2004-01-01

    Strain relaxation and misfit dislocation formation is investigated for the high-misfit PbTe 1-x Se x /PbSe (001) heteroepitaxial system in which the lattice mismatch varies from 0% to 5.5%. Because a two-dimensional (2D) layer growth prevails for all PbTe 1-x Se x ternary compositions, the lattice mismatch is relaxed purely by misfit dislocations. In addition, it is found that strain relaxation is not hindered by dislocation kinetics. Therefore, this material combination is an ideal model system for testing the equilibrium Frank-van der Merwe and Matthews-Blakeslee strain relaxation models. In our experiments, we find significantly lower values of the critical layer thickness as compared to the model predictions. This discrepancy is caused by the inappropriate description of the dislocation self-energies when the layer thickness becomes comparable to the dislocation core radius. To resolve this problem, a modified expression for the dislocation self-energy is proposed. The resulting theoretical critical thicknesses are in excellent agreement with the experimental data. In addition, a remarkable universal scaling behavior is found for the strain relaxation data. This underlines the breakdown of the current strain relaxation models

  6. Bond-equilibrium theory of liquid Se-Te alloys. II. Effect of singly attached ring molecules

    Science.gov (United States)

    Cutler, Melvin; Bez, Wolfgang G.

    1981-06-01

    A statistical-mechanical theory for bond equilibrium of chain polymers containing threefold (3F) and onefold (1F) bond defects is extended to include the effects of free ring molecules and ring molecules attached to chains by a single 3F atom. Positively charged singly attached rings are shown to play a key role in bond equilibrium in liquid Sex Te1-x by permitting the formation of ion pairs in which both constituents are effectively chain terminators, thus decreasing the average polymer size. The theory is applied to explain the behavior of the paramagnetic susceptibility, χp, and electronic transport as affected by the Fermi energy EF. It is found that the increase in χp with the concentration of Te is primarily the result of the smaller energy for breaking Te bonds. In addition, attached rings play an important role in determining the effect of temperature on χp. At x<~0.5, the concentrations of both free and attached rings becomes small at high T because of the high concentration of bond defects.

  7. RBS-channeling study of radiation damage in Ar{sup +} implanted CuInSe{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yakushev, Michael V., E-mail: michael.yakushev@strath.ac.uk [Department of Physics, SUPA, Strathclyde University, Glasgow G4 0NG (United Kingdom); Ural Federal University, Ekaterinburg 620002 (Russian Federation); Institute of Solid State Chemistry of the Urals Branch of RAS, Ekaterinburg 620990 (Russian Federation); Volkov, Vladimir A. [Ural Federal University, Ekaterinburg 620002 (Russian Federation); Mursakulov, Niyazi N.; Sabzaliyeva, Chimnaz E. [Institute of Physics, National Academy of Sciences of Azerbaijan, H.Cavid ave., 33, AZ-1143 Baku (Azerbaijan); Martin, Robert W. [Department of Physics, SUPA, Strathclyde University, Glasgow G4 0NG (United Kingdom)

    2016-09-15

    Chalcopyrite solar cells are reported to have a high tolerance to irradiation by high energy electrons or ions, but the origin of this is not well understood. This work studies the evolution of damage in Ar{sup +}-bombarded CuInSe{sub 2} single crystal using Rutherford backscattering/channeling analysis. Ar{sup +} ions of 30 keV were implanted with doses in the range from 10{sup 12} to 3 × 10{sup 16} cm{sup −2} at room temperature. Implantation was found to create two layers of damage: (1) on the surface, caused by preferential sputtering of Se and Cu atoms; (2) at the layer of implanted Ar, possibly consisting of stacking faults and dislocation loops. The damage in the second layer was estimated to be less than 2% of the theoretical prediction suggesting efficient healing of primary implantation defects.

  8. X-ray diffraction studies of NbTe 2 single crystal

    Indian Academy of Sciences (India)

    The composition of the grown crystals was confirmed on the basis of energy dispersive analysis by X-ray (EDAX) and remaining structural characterization was also accomplished by X-ray diffraction (XRD) studies. Lattice parameters, volume and X-ray density have been carried out for the grown crystals. The particle size ...

  9. Syntheses and characterization of thin films of Te{sub 94}Se{sub 6} nanoparticles for semiconducting and optical devices

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Numan, E-mail: nsalah@kau.edu.sa [Center of Nanotechnology, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Habib, Sami S.; Memic, Adnan [Center of Nanotechnology, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Alharbi, Najlaa D. [Center of Nanotechnology, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Sciences Faculty for Girls, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Babkair, Saeed S. [Center of Nanotechnology, Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Khan, Zishan H. [Department of Applied Sciences and Humanities, Jamia Millia Islamia (Central University), New Delhi-110025 (India)

    2013-03-01

    Thin films of Te{sub 94}Se{sub 6} nanoparticles were synthesized using the physical vapor condensation technique at different argon (Ar) pressures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy, absorption spectrum, photoluminescence (PL) and Raman spectroscopy. XRD results show that the as-grown films have a polycrystalline structure. SEM images display uniform nanoparticles in these films where the size increases from ∼ 12 to about 60 nm by decreasing Ar pressure from 667 to 267 Pa. These as-grown thin films were found to have direct band gaps, whose value decreases with increasing particle size. The absorption and extinction coefficients for these films were also investigated. PL emission spectra exhibit three bands peaking at 666, 718 and 760 nm, while Raman spectra displayed three bands located at 123, 143 and 169 cm{sup −1}. No significant changes are observed in positions or intensities of these bands by decreasing the Ar pressure, except that of the last band of PL; where the intensity increases. The obtained results on this Te{sub 94}Se{sub 6} nanomaterial especially its controlled direct bandgap might be useful for development of optical disks and other semiconducting devices. - Highlights: ► Thin films of Te{sub 94}Se{sub 6} nanoparticles were grown at different argon (Ar) pressures. ► Size of the nanoparticles increased by decreasing Ar pressure. ► They have direct band gap, whose value decreases by increasing the particle size. ► These nanomaterials might be useful for development of semiconducting devices.

  10. Comparison of optical transients during the picosecond laser pulse-induced crystallization of GeSbTe and AgInSbTe phase-change thin films: Nucleation-driven versus growth-driven processes

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Guangfei [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Simian [State Key Laboratory of Optoelectronic Materials and Technology, Department of Physics, Sun Yat-Sen University, Guangzhou 510275 (China); Huang, Huan [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Wang, Yang, E-mail: ywang@siom.ac.cn [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Lai, Tianshu, E-mail: stslts@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technology, Department of Physics, Sun Yat-Sen University, Guangzhou 510275 (China); Wu, Yiqun [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2013-09-01

    Direct comparison of the real-time in-situ crystallization behavior of as-deposited amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} (GeSbTe) and Ag{sub 8}In{sub 14}Sb{sub 55}Te{sub 23} (AgInSbTe) phase-change thin films driven by picosecond laser pulses was performed by a time-resolved optical pump-probe technique with nanosecond resolution. Different optical transients showed various crystallization processes because of the dissimilar nucleation- and growth-dominated mechanisms of the two materials. The effects of laser pulse fluence, thermal conductive structure, and successive pulse irradiation on their crystallization dynamics were also discussed. A schematic was then established to describe the different crystallization processes beginning from the as-deposited amorphous state. The results may provide further insight into the phase-change mechanism under extra-non-equilibrium conditions and aid the development of ultrafast phase-change memory materials.

  11. Manifestation of Crystal Lattice Distortions in the IR Reflection Spectra of Abrasion-Treated ZnSe Ceramics

    Science.gov (United States)

    Sitnikova, V. E.; Dunaev, A. A.; Mamalimov, R. I.; Pakhomov, P. M.; Khizhnyak, S. D.; Chmel, A. E.

    2017-07-01

    The Fourier IR reflection spectra of ZnSe ceramics prepared by hot pressing (HP), physical vapor deposition (PVD), and PVD combined with hot isostatic pressing (HIP) are presented. The optical constants of polished and dry-ground specimens were used for comparison. The grinding treatment simulated the erosion of the outer surface of optical elements made of zinc selenide under the influence of solid dust particles and deposits. In the polished specimens residual stresses showed up in the IR reflection spectra of the ZnSePVD and ZnSeHIP ceramics, which had well-defined orientation of grains, but were not present in the spectra of the ZnSeHIP ceramics as a result of mutual compensation of the stresses in the randomly oriented grains of the material. The stresses, which appeared as a shift of the absorption bands calculated by the Kramers-Kronig method, increased significantly after abrasive treatment of the specimens. For all the treated ceramics the intensity of the absorption bands resulting from the anharmonicity of the vibrations in the distorted crystal lattice increased by several times. The last effect also depends on the production prehistory of the ceramics.

  12. Thermoelectric Properties of Li-Intercalated ZrSe2 Single Crystals

    DEFF Research Database (Denmark)

    Holgate, Tim; Liu, Yufei; Hitchcock, Dale

    2013-01-01

    Zirconium diselenide (ZrSe2) is one of many members of the layer-structured transition-metal dichalcogenide family. The structure of these materials features a weakly bonded van der Waals gap between covalently bonded CdI2-type atomic layers that may host a wide range of intercalants. Intercalation......, and low cost of such materials, merit further thermoelectric investigations of intercalated zirconium diselenide, especially in conjunction with a substitutional doping approach....

  13. X-ray diffraction studies of NbTe2 single crystal

    Indian Academy of Sciences (India)

    Unknown

    X-ray (EDAX) and remaining structural characterization was also accomplished by X-ray diffraction (XRD) studies. Lattice parameters, volume and ... The layered structure compound, NbTe2, is one of the typical materials which lead to charge .... financial assistance to carry out this work. References. Brown B E 1966 Acta ...

  14. Composition-tuned band gap energy and refractive index in GaS{sub x}Se{sub 1−x} layered mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Mehmet, E-mail: mehmet.isik@atilim.edu.tr [Department of Electrical and Electronics Engineering, Atilim University, 06836, Ankara (Turkey); Gasanly, Nizami [Department of Physics, Middle East Technical University, 06800, Ankara (Turkey); Virtual International Scientific Research Centre, Baku State University, 1148, Baku (Azerbaijan)

    2017-04-01

    Transmission and reflection measurements on GaS{sub x}Se{sub 1−x} mixed crystals (0 ≤ x ≤ 1) were carried out in the 400–1000 nm spectral range. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance and reflectance. The compositional dependence of band gap energy revealed that as sulfur (selenium) composition is increased (decreased) in the mixed crystals, band gap energy increases quadratically from 1.99 eV (GaSe) to 2.55 eV (GaS). Spectral dependencies of refractive indices of the mixed crystals were plotted using the reflectance spectra. It was observed that refractive index decreases nearly in a linear behavior with increasing band gap energy for GaS{sub x}Se{sub 1−x} mixed crystals. Moreover, the composition ratio of the mixed crystals was obtained from the energy dispersive spectroscopy measurements. The atomic compositions of the studied crystals are well-matched with composition x increasing from 0 to 1 by intervals of 0.25. - Highlights: • Transmission and reflection experiments were performed on GaS{sub x}Se{sub 1−x} mixed crystals. • Derivative spectra of transmittance and reflectance were used for analyses. • Compositional dependence of band gap energy and refractive index were reported.

  15. Crystal structure across the β to α phase transition in thermoelectric Cu2−xSe

    Directory of Open Access Journals (Sweden)

    Espen Eikeland

    2017-07-01

    Full Text Available The crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu2−xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu2−xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to the transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.

  16. Optical properties and crystallization kinetics of (TeO{sub 2})(ZnO)(TiO{sub 2}) glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kabalci, Idris [Department of Physics Education, Education Faculty, Harran University, Sanliurfa (Turkey); Koerpe, Nese Oeztuerk [Department of Materials Science, Eskisehir, Osmangazi University, Eskisehir (Turkey); Duran, Tugba; Oezdemir, Mustafa [Department of Physics, Science and Arts Faculty, Marmara University, Istanbul (Turkey)

    2011-09-15

    Ternary tellurite based glasses in the (TeO{sub 2})(ZnO)(TiO{sub 2}) system were prepared and its optical properties and crystallization kinetics investigated by using UV-VIS spectrophotometer and differential thermal analyzer (DTA). All the glasses were transparent from visible to near infrared region for different ZnO glass compositions (x=0.05, 0.10, 0.20, and 0.30 mol). In the experiment, optical band gap and Urbach energies were estimated from the optical absorption spectra between 400 and 800 nm wavelength region. The observed results confirm that the addition of ZnO glass composition from 0.05 to 0.30 mol increases the optical band gap energy from 2.94 to 3.0 eV. In addition, glass transition (T{sub g}), crystallization (T{sub p}) and melting temperature (T{sub m}) were determined by using the DTA plots. Finally, DTA results obtained with a heating rate of 20 C/min show that the peak crystallization temperature increases from 463 to 533 C as the ZnO content increases from 0.05 to 0.30 mol (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Influence of substitution, nonstoichiometry and annealing-conditions on superconductivity and normal conductivity of Fe1+δ (Te1‑x Xx ) (X=Se, S)

    Science.gov (United States)

    Lima, M. S. L.; ElMassalami, M.; Deguchi, K.; Takeya, H.; Takano, Y.

    2018-03-01

    Thermal evolution of resistivity, ρ(T, x), of as-prepared samples of Fe1+δ Te1‑x S x (δ ≈ 0, x ≤ 0.2 = solubility limit) demonstrate a granular log-in-T character within Ts < T <300K, a Kondo-like resistive contribution within Tc < T < Ts and granular superconductivity at low temperature (Ts = structural transition point of Fe1+δ Te, Tc =superconducting transition point). We attribute the log-in-T character as well as the nonbulk superconducting features of as-prepared samples to their granular superconductor nature. Annealing in oxygen removes Kondo-like contribution, annihilates pair-breaking centres and establishes bulk superconductivity but, in contrast, the high-temperature granular log-in-T character is hardly influenced. This analysis was successfully extended to the isomorphous Fe1+δ Te1‑x Se x as well as to other types of post-synthesis sample-treatment (e.g. annealing in different gas ambient or soaking in particular liquids).

  18. Study of crystallization kinetics and structural relaxation behavior in phase separated Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: prafiziks@gmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005 (India); Nanotechnology Research Centre, DAV Institute of Engineering and Technology, Kabir Nagar, Jalandhar 144008 (India); Yannopoulos, S.N. [Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), P.O. Box 1414, GR-26 504, Rio-Patras (Greece); Sathiaraj, T.S. [Department of Physics, University of Botswana, Gaborone (Botswana); Thangaraj, R., E-mail: rthangaraj@rediffmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005 (India)

    2012-07-16

    We report on the crystallization processes and structure (crystal phases) of Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloy using differential scanning calorimetry and x-ray diffraction techniques, respectively. The devitrification that gives rise to the first exothermic peak results in the crystallization of Ag{sub 2}Se and Ag{sub 8}GeSe{sub 6} phases, while the growth of GeSe{sub 2} accompanied by the transformation of Ag{sub 8}GeSe{sub 6} to Ag{sub 2}Se phase occurs during the second crystallization process. Different theoretical models are used to elucidate various kinetic parameters for the crystallization transformation process in this phase separated system. With annealing below the glass transition temperature, an inverse behavior between the variation of the optical gap and the band tailing parameter is observed for the thermally evaporated films. These results are explained as the mixing of different clusters/species in the amorphous state and/or changes caused by structural relaxation of the glassy network for the thermally evaporated films. - Highlights: Black-Right-Pointing-Pointer Phase separation in Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloy bordering two glass forming regions. Black-Right-Pointing-Pointer Transformation of Ag{sub 8}GeSe{sub 6} {yields} Ag{sub 2}Se along with crystallization GeSe{sub 2} phase. Black-Right-Pointing-Pointer Elucidation of various kinetic parameters for the crystalline transformation. Black-Right-Pointing-Pointer Structural relaxation in thermally evaporated films by optical spectroscopy.

  19. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models

    International Nuclear Information System (INIS)

    Liu, Jing; Hu, Rui; Liu, Jianwei; Zhang, Butian; Wang, Yucheng; Liu, Xin; Law, Wing-Cheung; Liu, Liwei; Ye, Ling; Yong, Ken-Tye

    2015-01-01

    The toxicity of quantum dots (QDs) has been extensively studied over the past decade. Some common factors that originate the QD toxicity include releasing of heavy metal ions from degraded QDs and the generation of reactive oxygen species on the QD surface. In addition to these factors, we should also carefully examine other potential QD toxicity causes that will play crucial roles in impacting the overall biological system. In this contribution, we have performed cytotoxicity assessment of four types of QD formulations in two different human cancer cell models. The four types of QD formulations, namely, mercaptopropionic acid modified CdSe/CdS/ZnS QDs (CdSe-MPA), PEGylated phospholipid encapsulated CdSe/CdS/ZnS QDs (CdSe-Phos), PEGylated phospholipid encapsulated InP/ZnS QDs (InP-Phos) and Pluronic F127 encapsulated CdTe/ZnS QDs (CdTe-F127), are representatives for the commonly used QD formulations in biomedical applications. Both the core materials and the surface modifications have been taken into consideration as the key factors for the cytotoxicity assessment. Through side-by-side comparison and careful evaluations, we have found that the toxicity of QDs does not solely depend on a single factor in initiating the toxicity in biological system but rather it depends on a combination of elements from the particle formulations. More importantly, our toxicity assessment shows different cytotoxicity trend for all the prepared formulations tested on gastric adenocarcinoma (BGC-823) and neuroblastoma (SH-SY5Y) cell lines. We have further proposed that the cellular uptake of these nanocrystals plays an important role in determining the final faith of the toxicity impact of the formulation. The result here suggests that the toxicity of QDs is rather complex and it cannot be generalized under a few assumptions reported previously. We suggest that one have to evaluate the QD toxicity on a case to case basis and this indicates that standard procedures and comprehensive

  20. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [Institute of Gerontology and Geriatrics & Beijing Key Lab of Aging and Geriatrics, Chinese PLA General Hospital, Beijing 100853 (China); Hu, Rui [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Jianwei [Institute of Gerontology and Geriatrics & Beijing Key Lab of Aging and Geriatrics, Chinese PLA General Hospital, Beijing 100853 (China); Zhang, Butian; Wang, Yucheng [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, Xin [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Law, Wing-Cheung [Department of Industrial and System Engineering, The Hang Kong Polytechnic University, Hung Hom (Hong Kong); Liu, Liwei [School of Science, Changchun University of Science and Technology, Changchun 130022 (China); Ye, Ling, E-mail: lye_301@163.com [Institute of Gerontology and Geriatrics & Beijing Key Lab of Aging and Geriatrics, Chinese PLA General Hospital, Beijing 100853 (China); Yong, Ken-Tye, E-mail: ktyong@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2015-12-01

    The toxicity of quantum dots (QDs) has been extensively studied over the past decade. Some common factors that originate the QD toxicity include releasing of heavy metal ions from degraded QDs and the generation of reactive oxygen species on the QD surface. In addition to these factors, we should also carefully examine other potential QD toxicity causes that will play crucial roles in impacting the overall biological system. In this contribution, we have performed cytotoxicity assessment of four types of QD formulations in two different human cancer cell models. The four types of QD formulations, namely, mercaptopropionic acid modified CdSe/CdS/ZnS QDs (CdSe-MPA), PEGylated phospholipid encapsulated CdSe/CdS/ZnS QDs (CdSe-Phos), PEGylated phospholipid encapsulated InP/ZnS QDs (InP-Phos) and Pluronic F127 encapsulated CdTe/ZnS QDs (CdTe-F127), are representatives for the commonly used QD formulations in biomedical applications. Both the core materials and the surface modifications have been taken into consideration as the key factors for the cytotoxicity assessment. Through side-by-side comparison and careful evaluations, we have found that the toxicity of QDs does not solely depend on a single factor in initiating the toxicity in biological system but rather it depends on a combination of elements from the particle formulations. More importantly, our toxicity assessment shows different cytotoxicity trend for all the prepared formulations tested on gastric adenocarcinoma (BGC-823) and neuroblastoma (SH-SY5Y) cell lines. We have further proposed that the cellular uptake of these nanocrystals plays an important role in determining the final faith of the toxicity impact of the formulation. The result here suggests that the toxicity of QDs is rather complex and it cannot be generalized under a few assumptions reported previously. We suggest that one have to evaluate the QD toxicity on a case to case basis and this indicates that standard procedures and comprehensive