WorldWideScience

Sample records for sdc conceptual design

  1. Constraining designs for synthesis and timing analysis a practical guide to synopsys design constraints (SDC)

    CERN Document Server

    Gangadharan, Sridhar

    2013-01-01

    This book serves as a hands-on guide to timing constraints in integrated circuit design.  Readers will learn to maximize performance of their IC designs, by specifying timing requirements correctly.  Coverage includes key aspects of the design flow impacted by timing constraints, including synthesis, static timing analysis and placement and routing.  Concepts needed for specifying timing requirements are explained in detail and then applied to specific stages in the design flow, all within the context of Synopsys Design Constraints (SDC), the industry-leading format for specifying constraints.  ·         Provides a hands-on guide to synthesis and timing analysis, using Synopsys Design Constraints (SDC), the industry-leading format for specifying constraints; ·         Includes key topics of interest to a synthesis, static timing analysis or  place and route engineer; ·         Explains which constraints command to use for ease of maintenance and reuse, given several options pos...

  2. Design Research as Conceptual Designing

    DEFF Research Database (Denmark)

    Ylirisku, Salu; Jacucci, Giulio; Sellen, Abigail

    2015-01-01

    define conceptual designing as a constructive framing and re-framing activity, which is mediated by and targeted at the creation of new design concepts. Conceptual designing as an approach is valuable for addressing the fuzziness and ambiguity typical of research that explores novel areas with new...... partners, methods and resources. It is by no means a new phenomenon, and the main contribution of the article is the clarification of conceptual designing as a particular approach to designing and researching. The approach embraces openness, resource-construction and collaboration. We conclude...... that conceptual designing can be especially useful in research and design projects that bring different kinds of people, organizations, technologies and domains together into the forming of new well-founded proposals for development. The presentation of conceptual designing in this paper is written...

  3. New Conceptual Design Tools

    DEFF Research Database (Denmark)

    Pugnale, Alberto; Holst, Malene; Kirkegaard, Poul Henning

    2010-01-01

    This paper aims to discuss recent approaches in using more and more frequently computer tools as supports for the conceptual design phase of the architectural project. The present state-of-the-art about software as conceptual design tool could be summarized in two parallel tendencies. On the one...... hand, the main software houses are trying to introduce powerful and effective user-friendly applications in the world of building designers, that are more and more able to fit their specific requirements; on the other hand, some groups of expert users with a basic programming knowledge seem to deal...... the most recent studies about digital conceptual design tools. The combined use of Rhinoceros™, a powerful threedimensional modeller diffused among designers, and Rhinoscript™, its implemented programming environment, is here presented as a possible effective way to deal with computer technologies...

  4. Teaching conceptual design

    NARCIS (Netherlands)

    Ferreira, J.; Christiaans, H.H.C.M.

    2012-01-01

    This paper presents the first observational study of an ongoing research project. The research focuses on ‘teaching conceptual design’ and on the investigation of new teaching methods and strategies. Presently, in the commonly established educational setting, students practice the role of designing

  5. Interior design conceptual basis

    CERN Document Server

    Sully, Anthony

    2015-01-01

    Maximizing reader insights into interior design as a conceptual way of thinking, which is about ideas and how they are formulated. The major themes of this book are the seven concepts of planning, circulation, 3D, construction, materials, colour and lighting, which covers the entire spectrum of a designer’s activity. Analysing design concepts from the view of the range of possibilities that the designer can examine and eventually decide by choice and conclusive belief the appropriate course of action to take in forming that particular concept, the formation and implementation of these concepts is taken in this book to aid the designer in his/her professional task of completing a design proposal to the client. The purpose of this book is to prepare designers to focus on each concept independently as much as possible, whilst acknowledging relative connections without unwarranted influences unfairly dictating a conceptual bias, and is about that part of the design process called conceptual analysis. It is assu...

  6. Shuttle freezer conceptual design

    Science.gov (United States)

    Proctor, B. W.; Russell, D. J.

    1975-01-01

    A conceptual design for a kit freezer for operation onboard shuttle was developed. The freezer features a self-contained unit which can be mounted in the orbiter crew compartment and is capable of storing food at launch and returning with medical samples. Packaging schemes were investigated to provide the optimum storage capacity with a minimum weight and volume penalty. Several types of refrigeration systems were evaluated to select one which would offer the most efficient performance and lowest hazard of safety to the crew. Detailed performance data on the selected, Stirling cycle principled refrigeration unit were developed to validate the feasibility of its application to this freezer. Thermal analyses were performed to determine the adequacy of the thermal insulation to maintain the desired storage temperature with the design cooling capacity. Stress analyses were made to insure the design structure integrity could be maintained over the shuttle flight regime. A proposed prototype freezer development plan is presented.

  7. CONCEPTUAL DESIGN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    ROBINSON,K.

    2006-12-31

    Brookhaven National Laboratory has prepared a conceptual design for a world class user facility for scientific research using synchrotron radiation. This facility, called the ''National Synchrotron Light Source II'' (NSLS-II), will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopy on a single atom. The overall objective of the NSLS-II project is to deliver a research facility to advance fundamental science and have the capability to characterize and understand physical properties at the nanoscale, the processes by which nanomaterials can be manipulated and assembled into more complex hierarchical structures, and the new phenomena resulting from such assemblages. It will also be a user facility made available to researchers engaged in a broad spectrum of disciplines from universities, industries, and other laboratories.

  8. PHENIX Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nagamiya, Shoji; Aronson, Samuel H.; Young, Glenn R.; Paffrath, Leo

    1993-01-29

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The e[mu] coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study [pi][sup 0] and [eta] production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the [phi] meson (via K[sup +]K[sup [minus

  9. Conceptual thermal design

    NARCIS (Netherlands)

    Strijk, R.

    2008-01-01

    Present thermal design tools and methods insufficiently support the development of structural concepts engaged by typical practicing designers. Research described in this thesis identifies the main thermal design problems in practice. In addition, models and methods are developed that support an

  10. IMPROVING CONCEPTUAL DESIGN QUALITY

    DEFF Research Database (Denmark)

    Bush, Stuart; Robotham, Antony John

    1999-01-01

    quality is maintained in design project work. The projects described have been carried out with products manufactured by small to medium sized enterprises (SME's), where we have found significant opportunities for product improvement. The quantitative nature of DFMA analysis results allows the novice...... developers, and the successes achieved using each have been widely reported. Here, though, we will share our experiences of using these tools with novice designers, i.e. student engineers.The use of both QFD and DFMA has proven to be a valuable approach for ensuring that a balanced consideration of design...

  11. MINIMARS conceptual design: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D. (ed.)

    1986-09-01

    This volume contains the following sections: (1) fueling systems; (2) blanket; (3) alternative blanket concepts; (4) halo scraper/direct converter system study and final conceptual design; (5) heat-transport and power-conversion systems; (6) tritium systems; (7) minimars air detritiation system; (8) appropriate radiological safety design criteria; and (9) cost estimate. (MOW)

  12. Conceptual Design capture

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup

    1998-01-01

    This paper presents a basic theory of mechanical systems design, the so-called domain theory. By a strict distinction between structural characteristics and behavioural properties, each domain becomes a strong view for synthesis of the artefact. The functional reasoning in each domain and between...

  13. PEP Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    1976-02-01

    The accelerator system design, the physical plant, the experimental areas, cost estimates, and schedules for PEP are discussed. The main component of the proposed facility is a storage ring in which beams of positrons and electrons circulate in opposite directions in a vacuum chamber embedded in a magnetic guide field having six bending arcs and six long straight sections. The electrons and positrons to be stored in it are produced in the SLAC linac and are introduced into the storage ring via two beam transport paths emanating from the end of the two-mile accelerator. Beams of energies up to 18 GeV can be stored, and, at a future date, components could be added to permit energies as high as 22 GeV. Provisions are also made in the design of the ring housing so that a synchrotron-radiation research facility could be added in the future. The energy lost from the beams by synchrotron radiation is restored by a high-power radio frequency accelerating system which employs klystrons to drive the accelerating structures at a frequency of 353 MHz. The system is capable of delivering five megawatts of power to the beams. Low pressures will be sustained by means of long, narrow sputter-ion pumps located in the vacuum chamber in the bending magnets directly alongside the beams. The proposed storage ring is designed to generate a luminosity (reaction rate per unit reaction cross section) of more than 10/sup 31/ cm/sup -2/sec/sup -1/ per interaction region at beam energies between 5 GeV and 18 GeV and a maximum luminosity of 10/sup 32/cm/sup -2/sec/sup -1/ per interaction region at a beam energy of 15 GeV.

  14. Use of models in conceptual design

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; van Houten, Frederikus J.A.M.

    2006-01-01

    This article investigates the use of product models by conceptual designers. After a short introduction, abstraction applied in conceptual design is described. A model that places conceptual design in a three-dimensional space is used. Applications of conceptual design from the literature are used

  15. Seismic Conceptual Design of Buildings

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 8. Seismic Conceptual Design of Buildings. K R Y Simha. Book Review Volume 12 Issue 8 August 2007 pp 82-84. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/012/08/0082-0084 ...

  16. KALIMER preliminary conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kim, Y. J.; Kim, Y. G. and others

    2000-08-01

    This report, which summarizes the result of preliminary conceptual design activities during Phase 1, follows the format of safety analysis report. The purpose of publishing this report is to gather all of the design information developed so far in a systematic way so that KALIMER designers have a common source of the consistent design information necessary for their future design activities. This report will be revised and updated as design changes occur and more detailed design specification is developed during Phase 2. Chapter 1 describes the KALIMER Project. Chapter 2 includes the top level design requirements of KALIMER and general plant description. Chapter 3 summarizes the design of structures, components, equipment and systems. Specific systems and safety analysis results are described in the remaining chapters. Appendix on the HCDA evaluation is attached at the end of this report.

  17. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  18. Research on conceptual design of mechatronic systems

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/sadh/031/06/0661-0669. Keywords. Conceptual design; interface matching; mechatronic system; cyclic feedback mapping. ... Finally, a computer-aided conceptual design automatic software system for mechatronic systems is developed and the conceptual design of a computerised ...

  19. Integrated Variable Fidelity Conceptual Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CADNexus proposes to develop an Integrated Variable Fidelity Conceptual Design tool. The application will enable design and analysis of unconventional and advanced...

  20. Product Conceptual Design Based on Agent Federation

    Science.gov (United States)

    Yuan, Minghai; Wang, Song; Huang, Jinting

    2017-10-01

    A cooperative Agent Federation was used in the complicated products conceptual design after studying the characteristics of the conceptual design. Each Agent Federation designed products cooperatively under the control of the chief Agent Federation. Thus, the mapping of ‘function-behaviour-structure’ was achieved, and the whole process of the conceptual design was accomplished. The functions, communications, cooperation and the theories about running of the key Agent Federation were discussed, and the frame of the conceptual design based on cooperative Agent Federation and work group was established in this paper.

  1. Finite-Element Software for Conceptual Design

    DEFF Research Database (Denmark)

    Lindemann, J.; Sandberg, G.; Damkilde, Lars

    2010-01-01

    Using finite-element analysis in conceptual design and teaching has quite different software requirements to that in engineering and research. In teaching and conceptual design the focus is on speed, interactivity and ease of use, whereas accuracy and precision are needed in engineering...... and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...... success in teaching as well as in conceptual design environments such as architecture, industrial design and engineering. The addition of an optimisation algorithm and tablet PC support makes the software even more interesting as a tool for conceptual design....

  2. Structural Analysis in a Conceptual Design Framework

    Science.gov (United States)

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.

    2012-01-01

    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  3. Conceptual Models Core to Good Design

    CERN Document Server

    Johnson, Jeff

    2011-01-01

    People make use of software applications in their activities, applying them as tools in carrying out tasks. That this use should be good for people--easy, effective, efficient, and enjoyable--is a principal goal of design. In this book, we present the notion of Conceptual Models, and argue that Conceptual Models are core to achieving good design. From years of helping companies create software applications, we have come to believe that building applications without Conceptual Models is just asking for designs that will be confusing and difficult to learn, remember, and use. We show how Concept

  4. CONCEPTUAL PRODUCT DESIGN IN VIRTUAL PROTOTYPING

    Directory of Open Access Journals (Sweden)

    Debeleac Carmen

    2009-07-01

    Full Text Available A conceptual model of the industrial design process for isolation against vibrations is proposed and described. This model can be used to design products subject to functional, manufacturing, ergonomic, aesthetic constraints. In this paper, the main stages of the model, such as component organization, conception shape, product detailing and graphical design are discussed. The work has confirmed the validity of proposed model for rapid generation of aesthetic preliminary product designs using the virtual prototyping technique, by one of its main component that is conceptual product design.

  5. KALIMER-600 Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kim, Yeong Il; Kim, Young Gyun (and others)

    2007-02-15

    This report, which summarizes the design concepts developed during Phase 4, follows the format of a safety analysis report. The purpose of publishing this report is to gather all of design information developed, so far in a systematic way, so that KALIMER-600 designers have a common and consistent source of for design information necessary for their future design and technology development activities on a SFR. Chapter 1 describes the KALIMER-600 Project. Chapter 2 includes the top-tier design requirements of KALIMER-600 and a general plant description. Chapter 3 summarizes the designs of the structures, components, equipment and systems. And the remaining chapters present the results of the design and safety analysis.

  6. Conceptual Design Tool for Concrete Shell Structures

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2011-01-01

    This paper focuses on conceptual tools for concrete shell structures when working within the span of performance-based design and computational morphogenesis. The designer, referred to as the Architect-Engineer, works through several iterations parallel with aesthetic, functional and technical...

  7. A conceptual toolbox for designing CSCW applications

    DEFF Research Database (Denmark)

    Bødker, Susanne; Christiansen, Ellen

    1995-01-01

    This paper presents a conceptual toolbox, developed to support the design of CSCW applications in a large Esprit project, EuroCODE. Here, several groups of designers work to investigate computer support for cooperative work in large use organizations, at the same time as they work to develop...

  8. Specifications in early conceptual design work

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Andreasen, Mogens Myrup

    2007-01-01

    In early conceptual design the design team is working in an uncertain situation, where the understanding of a need is limited and not much is known about the solution space. In this situation the design team has to both analyse need and explore solution space. Thus, the team has to formulate design...... the structure and content of design specifications during early ideation activities, where initial design specifications are formulated and a product idea is synthesised. We have analysed specification documents of 19 teams of novice designers. Our analysis indicates that a productive product design...

  9. Aircraft Conceptual Design Using Vehicle Sketch Pad

    Science.gov (United States)

    Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.

    2010-01-01

    Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.

  10. Conceptual Underpinnings for Innovation Policy Design

    DEFF Research Database (Denmark)

    Borrás, Susana; Edquist, Charles

    of innovation policy. This serves two important purposes. Firstly, it allows the identification of problems in an innovation system that require public policy intervention through the choice of appropriate policy instruments. Secondly, it allows a theoretically based identification of input indicators......In cases where innovation indicators and data fail to serve properly as a (necessary) basis for the design of innovation policies, it often has its roots in conceptual unclarities in the underlying concepts. The aim of this paper is to provide a theoretical and conceptual basis for the design...... as determinants of innovation system performance to be used in cross‐country analysis....

  11. A Methodical Approach on Conceptual Structural Design

    NARCIS (Netherlands)

    Horikx, M.P.

    2017-01-01

    The subject of this academic research thesis is a methodical approach on the complex problem-solving process of structural conceptual design.
    For this relatively unexplored problem, an exploratory research is conducted by systematically zooming in from the whole to the part and from coarse to

  12. Conceptual Design of a Prototype LSST Database

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, S; Huber, M E; Cook, K H; Abdulla, G; Brase, J

    2004-10-07

    This document describes a preliminary design for Prototype LSST Database (LSST DB). They identify key components and data structures and provide an expandable conceptual schema for the database. The authors discuss the potential user applications and post-processing algorithm to interact with the database, and give a set of example queries.

  13. Conceptual design of MCP based particle detector

    Science.gov (United States)

    Barnyakov, A. Yu.; Barnyakov, M. Yu.; Blinov, V. E.; Bobrovnikov, V. S.; Bykov, A. V.; Ivanov, V. Ya.; Katcin, A. A.; Mamoshkina, E. V.; Ovtin, I. V.; Pivovarov, S. G.; Prisekin, V. G.; Pyata, E. E.

    2017-08-01

    A time-of-flight detector based on microchannel plates (MCP) is under development. The main goal of this work is the creation of a radiation hard large area detector providing 10 ps time resolution in strong magnetic field. The conceptual detector design is described in details.

  14. Conceptual design of automated freight transport systems

    NARCIS (Netherlands)

    Pielage, B.A.

    2005-01-01

    The conceptual design of automated freight transport systems is a challenging matter. It involves many different parties, types of people and disciplines which all have to work together to develop a system which is often new and complex. Automated freight transport systems typically have a long

  15. Research on conceptual design of mechatronic systems

    Indian Academy of Sciences (India)

    phase of mechatronic systems, a conceptual design cyclic feedback solving model of a mechatronic ... Thus, research on matching of component interfaces is an indispensable base for mechatronic ..... 661). References. Bracewell R H, Sharpe J E E 1996 Functional descriptions used in computer support for qualitative.

  16. Conceptual Design of an APT Reusable Spaceplane

    Science.gov (United States)

    Corpino, S.; Viola, N.

    This paper concerns the conceptual design of an Aerial Propellant Transfer reusable spaceplane carried out during our PhD course under the supervision of prof. Chiesa. The new conceptual design methodology employed in order to develop the APT concept and the main characteristics of the spaceplane itself will be presented and discussed. The methodology for conceptual design has been worked out during the last three years. It was originally thought for atmospheric vehicle design but, thanks to its modular structure which makes it very flexible, it has been possible to convert it to space transportation systems design by adding and/or modifying a few modules. One of the major improvements has been for example the conception and development of the mission simulation and trajectory optimisation module. The methodology includes as main characteristics and innovations the latest techniques of geometric modelling and logistic, operational and cost aspects since the first stages of the project. Computer aided design techniques are used to obtain a better definition of the product at the end of the conceptual design phase and virtual reality concepts are employed to visualise three-dimensional installation and operational aspects, at least in part replacing full-scale mock- ups. The introduction of parametric three-dimensional CAD software integrated into the conceptual design methodology represents a great improvement because it allows to carry out different layouts and to assess them immediately. It is also possible to link the CAD system to a digital prototyping software which combines 3D visualisation and assembly analysis, useful to define the so-called Digital Mock-Up at Conceptual Level (DMUCL) which studies the integration between the on board systems, sized with simulation algorithms, and the airframe. DMUCL represents a very good means to integrate the conceptual design with a methodology turned towards dealing with Reliability, Availability, Maintainability and

  17. Controlled air incinerator conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location.

  18. Engineering report (conceptual design) PFP solution stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Witt, J.B.

    1997-07-17

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  19. Local Automation Model: Conceptual Design Document,

    Science.gov (United States)

    1983-04-01

    AD A144 383 LOCAL AUTOMATION MODEL CONCEPTA DA ESIG N DOCUMENTU 1/ LOGISTCS MANAGEMENT IN WASHINOTON DC W P HAMILTON ET AL. APR 83 LMI-DL302 MDA903...STATEMENT (of the abstract entered in Block 20, if different from Report) I8. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary...ABSTRACT (Continue on reverse side if necessary and identify by block number) This document contains a conceptual design for the Local Automation

  20. Conceptual design for PSP mounting bracket

    Energy Technology Data Exchange (ETDEWEB)

    Ransom, G.; Stein, R. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Protective structural packages (PSP`s or overpacks) used to ship 2 1/2-ton UF{sub 6} product cylinders are bolted to truck trailers. All bolts penetrate two longitudinal rows of wooden planks. Removal and replacement is required at various intervals for maintenance and routine testing. A conceptual design is presented for mounting brackets which would securely attach PSP`s to trailer frames, reduce removal and replacement time, and minimize risk of personnel injury.

  1. A Conceptual Framework for Circular Design

    Directory of Open Access Journals (Sweden)

    Mariale Moreno

    2016-09-01

    Full Text Available Design has been recognised in the literature as a catalyst to move away from the traditional model of take-make-dispose to achieve a more restorative, regenerative and circular economy. As such, for a circular economy to thrive, products need to be designed for closed loops, as well as be adapted to generate revenues. This should not only be at the point of purchase, but also during use, and be supported by low-cost return chains and reprocessing structures, as well as effective policy and regulation. To date, most academic and grey literature on the circular economy has focused primarily on the development of new business models, with some of the latter studies addressing design strategies for a circular economy, specifically in the area of resource cycles and design for product life extension. However, these studies primarily consider a limited spectrum of the technical and biological cycles where materials are recovered and restored and nutrients (e.g., materials, energy, water are regenerated. This provides little guidance or clarity for designers wishing to design for new circular business models in practice. As such, this paper aims to address this gap by systematically analysing previous literature on Design for Sustainability (DfX (e.g., design for resource conservation, design for slowing resource loops and whole systems design and links these approaches to the current literature on circular business models. A conceptual framework is developed for circular economy design strategies. From this conceptual framework, recommendations are made to enable designers to fully consider the holistic implications for design within a circular economy.

  2. A Preliminary study on the seismic conceptual design

    Science.gov (United States)

    Zhao, Zhen; Xie, Lili

    2014-08-01

    The seismic conceptual design is an essential part of seismic design codes. It points out that the term "seismic conceptual design" should imply three aspects, i.e., the given concept itself, the specific provisions related to the given concept and the designing following the provisions. Seismic conceptual design can be classified into two categories: the strict or traditional seismic conceptual design and the generalized seismic conceptual design. The authors are trying to define for both conceptual designs their connotations and study their characteristics, in particular, the differences between them. Authors emphasize that both conceptual designs sound very close, however, their differences are apparent. The strict conceptual designs are usually worked out directly from engineering practice and/or lessons learnt from earthquake damage, while the generalized conceptual designs are resulted in a series of visions aiming to realize the general objectives of the seismic codes. The strict conceptual designs, (traditional conceptual designs) are indispensable elements of seismic codes in assuring designed structures safer and the generalized conceptual designs are playing key roles in directing to a more advanced and effective seismic codes.

  3. ATA diagnostic beam dump conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    A diagnostic beam dump, able to withstand 72,000 pulses (10 kA, 50 MeV/pulse) per shift was designed and analyzed. The analysis shows that the conceptual beam dump design consisting of 80 vitreous carbon plate-foam elements is able to withstand the thermal and mechanical stresses generated. X-rays produced by bremsstrahlung are absorbed by a three element copper plate-foam x-ray absorber. Cooling between bursts of electron pulses is provided by pressurized helium.

  4. Conceptual design of a Disk Chopper Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Copley, J.R.D. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1997-09-01

    We describe methods that we have used for the conceptual design of the Disk Chopper Spectrometer at the Cold Neutron Research Facility, National Institute of Standards and Technology. Most of the discussion concerns the multiple chopper system. No single design method is best in every situation. We believe that an analytical approach is preferable, whenever possible. Graphical methods of expressing problems have been very instructive. We have also found it useful, and occasionally invaluable, to cross-check results obtained using different methods, such as analytical integration and ray-tracing.

  5. Structural analysis at aircraft conceptual design stage

    Science.gov (United States)

    Mansouri, Reza

    . Considering the strength and limitations of both methodologies, the question to be answered in this thesis is: How valuable and compatible are the classical analytical methods in today's conceptual design environment? And can these methods complement each other? To answer these questions, this thesis investigates the pros and cons of classical analytical structural analysis methods during the conceptual design stage through the following objectives: Illustrate structural design methodology of these methods within the framework of Aerospace Vehicle Design (AVD) lab's design lifecycle. Demonstrate the effectiveness of moment distribution method through four case studies. This will be done by considering and evaluating the strength and limitation of these methods. In order to objectively quantify the limitation and capabilities of the analytical method at the conceptual design stage, each case study becomes more complex than the one before.

  6. Deep Borehole Field Test Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  7. Conceptual Fuselage Design with Direct CAD Modeling

    Science.gov (United States)

    Anderson, Benjamin K.

    In today's day and age, the use of automated technology is becoming increasingly prevalent. Throughout the aerospace industry, we see the use of automated systems in manufacturing, testing, and, progressively, in design. This thesis focuses on the idea of automated structural design that can be directly coupled with parametric Computer-Aided Drafting (CAD) and used to support aircraft conceptual design. This idea has been around for many years; however, with the advancement of CAD technology, it is becoming more realistic. Having the ability to input design parameters, analyze the structure, and produce a basic CAD model not only saves time in the design process but provides an excellent platform to communicate ideas. The user has the ability to change parameters and quickly determine the effect on the structure. Coupling this idea with automated parametric CAD provides visual verification and a platform to export into Finite Element Analysis (FEA) for further verification.

  8. Design as intentional action: a conceptual analysis

    DEFF Research Database (Denmark)

    Galle, Per

    1999-01-01

    is analysed in the context of the artefact production process. The analysis is conducted in such a way as to keep the assumptions on which it is based explicit, plausible, and acceptable to common sense. The ‘obvious’ view of design representations as descriptions of possible or future things is rejected......Drawing on methods and literature from the field of philosophy, an account is given of the general nature of the artefact production process in order to provide a conceptual platform for design research. Designing itself is defined as the production of design representations; and the latter notion......, and so the major philosophical difficulty is to propose a reasonably precise definition of ‘design representation’ without implying the existence of such non-existent things. To overcome that difficulty, a definition is developed in terms of human agents, their actions and ideas (including intentions...

  9. Analysis of the TREAT LEU Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Kontogeorgakos, D. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Papadias, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Strons, P. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Fei, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, A. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Management and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.

  10. Conceptual design of inherently safe integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I.; Chang, M. H.; Lee, D. J. and others

    1999-03-01

    The design concept of a 300 MWt inherently safe integral reactor(ISIR) for the propulsion of extra large and superhigh speed container ship was developed in this report. The scope and contents of this report are as follows : 1. The state of the art of the technology for ship-mounted reactor 2. Design requirements for ISIR 3. Fuel and core design 4. Conceptual design of fluid system 5. Conceptual design of reactor vessel assembly and primary components 6. Performance analyses and safety analyses. Installation of two ISIRs with total thermal power of 600MWt and efficiency of 21% is capable of generating shaft power of 126,000kW which is sufficient to power a container ship of 8,000TEU with 30knot cruise speed. Larger and speedier ship can be considered by installing 4 ISIRs. Even though the ISIR was developed for ship propulsion, it can be used also for a multi-purpose nuclear power plant for electricity generation, local heating, or seawater desalination by mounting on a movable floating barge. (author)

  11. Mu2e Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, R. J.

    2012-03-01

    Mu2e at Fermilab will search for charged lepton flavor violation via the coherent conversion process μ- N → e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the conceptual design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-1 approval, which was granted July 11, 2012.

  12. Mu2e Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Ray, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Glenzinski, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2012-03-01

    Mu2e at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N → e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the conceptual design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-1 approval, which was granted July 11, 2012.

  13. Conceptual Design Plan SM-43 Replacement Project

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Los Alamos National Laboratory, SCC Project Office

    2000-11-01

    The Los Alamos National Laboratory Conceptual Design Plan for the SM-43 Replacement Project outlines plans for replacing the SM-43 Administration Building. Topics include the reasons that replacement is considered a necessity; the roles of the various project sponsors; and descriptions of the proposed site and facilities. Also covered in this proposal is preliminary information on the project schedule, cost estimates, acquisition strategy, risk assessment, NEPA strategy, safety strategy, and safeguards and security. Spreadsheets provide further detail on space requirements, project schedules, and cost estimates.

  14. LUX-ZEPLIN (LZ) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Akerib, D. S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2015-03-09

    The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experiment is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given.

  15. Conceptual design of a spaceborne lightning sensor

    Science.gov (United States)

    Wolfe, W. L.; Nagler, M.

    1980-01-01

    A conceptual design of a broad-area optical lightning telescope sensor (BOLTS) designed to provide full-time (day/night) coverage of the continental United States from a geosynchronous orbit is described. Variations are discussed that could cover the whole globe from four to five geosynchronous satellites or cover only smaller areas with a high (2.5 km) resolution. The design is based on research results of the initial phase of a NASA-sponsored program. The ground resolution will be 8 x 8 km. The focal plane is an 800 x 800 pixel CCD array, electronically subdivided to allow for the high data rates (1000 frames per sec) imposed by the characteristics of lightning flashes. It will detect lightning strokes whose optical power is greater than 10 million watts, with a probability of detection of 0.9, and a false alarm rate of 0.1.

  16. LUX-ZEPLIN (LZ) Conceptual Design Report

    CERN Document Server

    Akerib, D S; Akimov, D. Yu.; Alsum, S.K.; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Balashov, S.; Barry, M.J.; Bauer, P.; Beltrame, P.; Bernard, E.P.; Bernstein, A.; Biesiadzinski, T.P.; Boast, K.E.; Bolozdynya, A.I.; Boulton, E.M.; Bramante, R.; Buckley, J.H.; Bugaev, V.V.; Bunker, R.; Burdin, S.; Busenitz, J.K.; Carels, C.; Carlsmith, D.L.; Carlson, B.; Carmona-Benitez, M.C.; Cascella, M.; Chan, C.; Cherwinka, J.J.; Chiller, A.A.; Chiller, C.; Craddock, W.W.; Currie, A.; Cutter, J.E.; da Cunha, J.P.; Dahl, C.E.; Dasu, S.; Davison, T.J.R.; de Viveiros, L.; Dobi, A.; Dobson, J.E.Y.; Druszkiewicz, E.; Edberg, T.K.; Edwards, B.N.; Edwards, W.R.; Elnimr, M.M.; Emmet, W.T.; Faham, C.H.; Fiorucci, S.; Ford, P.; Francis, V.B.; Fu, C.; Gaitskell, R.J.; Gantos, N.J.; Gehman, V.M.; Gerhard, R.M.; Ghag, C.; Gilchriese, M.G.D.; Gomber, B.; Hall, C.R.; Harris, A.; Haselschwardt, S.J.; Hertel, S.A.; Hoff, M.D.; Holbrook, B.; Holtom, E.; Huang, D.Q.; Hurteau, T.W.; Ignarra, C.M.; Jacobsen, R.G.; Ji, W.; Ji, X.; Johnson, M.; Ju, Y.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Khazov, A.; Khromov, A.V.; Konovalov, A.M.; Korolkova, E.V.; Kraus, H.; Krebs, H.J.; Kudryavtsev, V.A.; Kumpan, A.V.; Kyre, S.; Larsen, N.A.; Lee, C.; Lenardo, B.G.; Lesko, K.T.; Liao, F. -T.; Lin, J.; Lindote, A.; Lippincott, W.H.; Liu, J.; Liu, X.; Lopes, M.I.; Lorenzon, W.; Luitz, S.; Majewski, P.; Malling, D.C.; Manalaysay, A.G.; Manenti, L.; Mannino, R.L.; Markley, D.J.; Martin, T.J.; Marzioni, M.F.; McKinsey, D.N.; Mei, D. -M.; Meng, Y.; Miller, E.H.; Mock, J.; Monzani, M.E.; Morad, J.A.; Murphy, A. St. J.; Nelson, H.N.; Neves, F.; Nikkel, J.A.; O'Neill, F.G.; O'Dell, J.; O'Sullivan, K.; Olevitch, M.A.; Oliver-Mallory, K.C.; Palladino, K.J.; Pangilinan, M.; Patton, S.J.; Pease, E.K.; Piepke, A.; Powell, S.; Preece, R.M.; Pushkin, K.; Ratcliff, B.N.; Reichenbacher, J.; Reichhart, L.; Rhyne, C.; Rodrigues, J.P.; Rose, H.J.; Rosero, R.; Saba, J.S.; Sarychev, M.; Schnee, R.W.; Schubnell, M.S.G.; Scovell, P.R.; Shaw, S.; Shutt, T.A.; Silva, C.; Skarpaas, K.; Skulski, W.; Solovov, V.N.; Sorensen, P.; Sosnovtsev, V.V.; Stancu, I.; Stark, M.R.; Stephenson, S.; Stiegler, T.M.; Sumner, T.J.; Sundarnath, K.; Szydagis, M.; Taylor, D.J.; Taylor, W.; Tennyson, B.P.; Terman, P.A.; Thomas, K.J.; Thomson, J.A.; Tiedt, D.R.; To, W.H.; Tomás, A.; Tripathi, M.; Tull, C.E.; Tvrznikova, L.; Uvarov, S.; Va'vra, J.; van der Grinten, M.G.D.; Verbus, J.R.; Vuosalo, C.O.; Waldron, W.L.; Wang, L.; Webb, R.C.; Wei, W. -Z.; While, M.; White, D.T.; Whitis, T.J.; Wisniewski, W.J.; Witherell, M.S.; Wolfs, F.L.H.; Woods, E.; Woodward, D.; Worm, S.D.; Yeh, M.; Yin, J.; Young, S.K.; Zhang, C.

    2015-01-01

    The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experiment is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given.

  17. Software for Evaluation of Conceptual Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1998-01-01

    by the prototype, it addresses the requirements that the methods imply, and it explains the actual implementation of the prototype. Finally it discusses what have been learned from developing and testing the prototype. In this paper it is suggested, that a software tool which supports evaluation of design can......This paper describes a prototype for evaluating design options. The prototype has been developed as part of a research project which sought to establish understanding of how evaluation of conceptual design can be improved. The paper describes the evaluation methods which are supported...... be developed with a limited effort, and that such tools could support a structured evaluation process as opposed to no evaluation. Compared to manual evaluation, the introduced software based evaluation tool offers automation of tasks, such as performing assessments, when they are based on prior evaluations...

  18. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  19. Conceptual Design For Interplanetary Spaceship Discovery

    Science.gov (United States)

    Benton, Mark G.

    2006-01-01

    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR

  20. EVAPORATIVE COOLING - CONCEPTUAL DESIGN FOR ATLAS SCT

    CERN Document Server

    Niinikoski, T O

    1998-01-01

    The conceptual design of an evaporative two-phase flow cooling system for the ATLAS SCT detector is described, using perfluorinated propane (C3F8) as a coolant. Comparison with perfluorinated butane (C4F10) is made, although the detailed design is presented only for C3F8. The two-phase pressure drop and heat transfer coefficient are calculated in order to determine the dimensions of the cooling pipes and module contacts for the Barrel SCT. The region in which the flow is homogeneous is determined. The cooling cycle, pipework, compressor, heat exchangers and other main elements of the system are calculated in order to be able to discuss the system control, safety and reliability. Evaporative cooling appears to be substantially better than the binary ice system from the point of view of safety, reliability, detector thickness, heat transfer coefficient, cost and simplicity.

  1. One-step synthesis and microstructure of CuO-SDC composites

    Energy Technology Data Exchange (ETDEWEB)

    Firmino, H.C.T.; Araujo, A.J.M.; Dutra, R.P.S.; Macedo, D.A., E-mail: hellentorrano@hotmail.com, E-mail: allanjp1993@hotmail.com, E-mail: ricardopsd@gmail.com, E-mail: damaced@gmail.com [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Nascimento, R.M., E-mail: rmaribondo@ufrnet.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Rajesh, S., E-mail: rajeshayr@gmail.com [University of Aveiro (Portugal)

    2017-01-15

    An in situ one step synthesis route based on the polymeric precursor method was used to produce dual phase CuO-samaria doped ceria (SDC) nanocomposite powders. This chemical route allowed to obtain composite powders with reduced particle size and uniform distribution of Cu, Ce and Sm elements. The particulate material was characterized by powder X-ray diffraction (XRD) combined with Rietveld refinement. CuO-SDC sintered in air between 950 to 1050 °C and subsequently reduced to Cu-SDC cermets were further characterized by XRD and scanning electron microscopy. The open porosity was measured using the Archimedes' principle. Suitable microstructures for both charge transfer and mass transport processes (30 to 45% porosity) were attained in Cu-SDC cermets previously fired at 1000 to 1050 °C. Overall results indicated that CuO-SDC composites and Cu-SDC cermets with potential application as anodes for solid oxide fuel cells (SOFCs) can be obtained by microstructural design. An anode supported half-cell was prepared by co-pressing and co-firing gadolinia doped ceria (CGO) and the herein synthesized CuO-SDC nanocomposite powder. (author)

  2. One-step synthesis and microstructure of CuO-SDC composites

    Directory of Open Access Journals (Sweden)

    H. C. T. Firmino

    Full Text Available Abstract An in situ one step synthesis route based on the polymeric precursor method was used to produce dual phase CuO-samaria doped ceria (SDC nanocomposite powders. This chemical route allowed to obtain composite powders with reduced particle size and uniform distribution of Cu, Ce and Sm elements. The particulate material was characterized by powder X-ray diffraction (XRD combined with Rietveld refinement. CuO-SDC sintered in air between 950 to 1050 °C and subsequently reduced to Cu-SDC cermets were further characterized by XRD and scanning electron microscopy. The open porosity was measured using the Archimedes’ principle. Suitable microstructures for both charge transfer and mass transport processes (30 to 45% porosity were attained in Cu-SDC cermets previously fired at 1000 to 1050 °C. Overall results indicated that CuO-SDC composites and Cu-SDC cermets with potential application as anodes for solid oxide fuel cells (SOFCs can be obtained by microstructural design. An anode supported half-cell was prepared by co-pressing and co-firing gadolinia doped ceria (CGO and the herein synthesized CuO-SDC nanocomposite powder.

  3. ITER TCWS Conceptual Design Chit Resolution Report

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Jan [ORNL

    2012-02-01

    Design Chits resulted from the External Conceptual Design Review (CDR) held at Cadarache on July 21-23, 2009 (Reference [5.1.3]). Those Chits were categorized into 3 categories in accordance with the following rules: Category 1 - Chits to be resolved before proceeding with preliminary design; Category 2 - Chits to be resolved during preliminary design; and Category 3 - Chits already resolved or covered by higher category Chits such that no further action is required. Prior to the preliminary design, all the category 1 chits were resolved and the category chit 1 resolution report was approved (Reference [5.1.4]). However, as the design has been evolving, one of the category 1 chits needs to be re-addressed. The purpose of this report is to present the resolutions to one CDR Category 1 Chit (Cat 1 Chit No.5) and twenty-three CDR Category 2 Chits. The Category 2 Chit resolutions presented are listed in order from item number one to item number twenty-three.

  4. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  5. Conceptual design report for site drainage control

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, M.R.

    1996-07-01

    The Mound Plant (Mound), located in Miamisburg, Ohio, is a Department of Energy (DOE) development and production facility performing support work for DOE`s weapons and energy-related programs. EG&G Mound Applied Technologies, Inc. (EG&G) is the Operating Contractor (OC) for this Government-Owned, Contractor-Operated (GOCO) facility. The work performed at Mound emphasizes nuclear energy and explosives technology. Mound is currently implementing an Environmental, Safety & Health (ES&H) Upgrades Program designed to protect its employees, the public, and the environment from adverse effects caused by facility activities. The first project of this multiphase program is now in the final stages of construction, and the second project is currently under design. Four additional projects, one of which is presented in this report, are in the conceptual design stage. At Mound, 22 soil zones have become contaminated with radioactive material. These zones cover approximately 20 percent of the total area of developed property at the site. During a storm event, the rainwater washes contaminated soil from these zones into the storm sewer system. These radioactive contaminants may then be discharged along with the stormwater into the Great Miami River via the Miami Erie Canal. This conceptual design report (CDR), Site Drainage Control, the fourth project in the ES&H program, describes a project that will provide improvements and much needed repairs to inadequate and deteriorating portions of the storm drainage system on the developed property. The project also will provide a stormwater retention facility capable of storing the stormwater runoff, from the developed property, resulting from a 100-year storm event. These improvements will permit the effective control and monitoring of stormwater to prevent the spread of radioactive contaminants from contaminated soil zones and will provide a means to collect and contain accidental spills of hazardous substances.

  6. StructuralComponents : A software system for conceptual structural design

    NARCIS (Netherlands)

    Van de Weerd, B.; Rolvink, A.; Coenders, J.L.

    2012-01-01

    Conceptual design is the starting point of the design process. The conceptual design stage comprises the formation of several ideas or design concepts to meet the imposed constraints. StructuralComponents is a software application that attempts to provide the designing engineer with a suitable set

  7. Conceptual Design - Polar Drive Ignition Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R

    2012-04-05

    The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design

  8. Conceptual design of rotary magnetostrictive energy harvester

    Science.gov (United States)

    Park, Young-Woo; Kang, Han-Sam; Wereley, Norman M.

    2014-05-01

    This paper presents the conceptual design of a rotary magnetostrictive energy harvester (RMEH), which consists of one coil-wound Galfenol cantilever, with two PMs adhered onto the each end, and one permanent magnet (PM) array sandwiched between two wheels. Modeling and simulation are used to validate the concept. The proof-of-concept RMEH is fabricated by using the simulation results, and subjected to the experimental characterization. The experimental setup for the simulated characterization uses the motor-driven PM array to induce a forced vibration. It can be concluded that the theoretical prediction on the induced voltage agrees well with the experimental results and that induced voltage increases with rpm and with number of PMs. Future work includes optimization of RMEH performance via PM array configuration and development of prototype.

  9. Evalution of BIM and Ecotect for Conceptual Architectural Design Analysis

    DEFF Research Database (Denmark)

    Thuesen, Niels; Kirkegaard, Poul Henning; Jensen, Rasmus Lund

    2010-01-01

    The main goal of the present paper is to investigate how BIM tools and Ecotect can be integrated as active part of an integrated design process for conceptual architectural design. The integrated design has an interaction between the skills of the architect and the engineer thought-out the process...... for sketching investigations during a conceptual architectural design process....

  10. Effectiveness of Persona with Personality Traits on Conceptual Design

    DEFF Research Database (Denmark)

    Anvari, Farshid; Richards, Deborah; Hitchens, Michael

    2015-01-01

    Conceptual design is an important skill in Software Engineering. Teaching conceptual design that can deliver a useful product is challenging, particularly when access to real users is limited. This study explores the effects of the use of Holistic Personas (i.e. a persona enriched with personality...... were tailored to meet the needs of the given personas’ personality traits. Results suggest that the Holistic Personas can help students to take into account personality traits in the conceptual design process. Further studies are warranted to assess the value of incorporating Holistic Personas...... in conceptual design training for imparting skills of producing in-depth design by taking personalities into account....

  11. Conceptual design of the SMART dosimeter

    Science.gov (United States)

    Johnson, Erik B.; Vogel, Sam; Frank, Rebecca; Stoddard, Graham; Vera, Alonzo; Alexander, David; Christian, James

    2017-08-01

    Active dosimeters for astronauts and space weather monitors are critical tools for mitigating radiation induced health issues or system failure on capital equipment. Commercial spaceflight, deep space flight, and satellites require smarter, smaller, and lower power dosimeters. There are a number of instruments with flight heritage, yet as identified in NASA's roadmaps, these technologies do not lend themselves to a viable solution for active dosimetry for an astronaut, particularly for deep space missions. For future missions, nano- and micro-satellites will require compact instruments that will accurately assess the radiation hazard without consuming major resources on the spacecraft. RMD has developed the methods for growing an advanced scintillation material called phenylcarbazole, which provides pulse shape discrimination between protons and electrons. When used in combination with an anti-coincidence detector system, an assessment of the dose from charged ions and neutral particles can be determined. This is valuable as damage on a system (such as silicon or tissue) is dependent on the particle species. Using this crystal with readout electronics developed in partnership with COSMIAC at the University of New Mexico, the design of the Small Mixed field Autonomous Radiation Tracker (SMART) Dosimeter consists of a low-power analog to digital conversion scheme with low-power digital signal processing algorithms, which are to be implemented within a compact system on a chip, such as the Xilinx Zynq series. A review of the conceptual design is presented.

  12. Conceptual design of the KSTAR Motor Generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan, E-mail: kch2004@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahangno, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Kong, Jong-Dea; Eom, Dae-Young; Joung, Nam-Young; Lee, Woo-Jin; Kim, Yang-Soo; Kwon, Myeun [National Fusion Research Institute, 169-148 Gwahangno, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Han, Chul-Woo; Lee, Sel-Ki [Vitzrotech Co. Ltd, 605-2 Seonggok-dong, Danwon-gu, Ansan, Gyeonggi-do 425-833 (Korea, Republic of); Parker, F.J.; Hopkinson, D.; Le Flem, G.D. [Converteam UK Ltd, Leicester Road, Rugby, Warwickshire CV21 1BD (United Kingdom)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The design of the MG which is required to allow the PF MPS to operate at its full power rating has been completed. Black-Right-Pointing-Pointer This system will increase the supply capability to the MPS to 200 MVA, 1.6 GJ and will supply reactive power to the MPS. Black-Right-Pointing-Pointer A VVVF of 12 MW will control the MG and will supply additional active power to the PF MPS in parallel with the MG. Black-Right-Pointing-Pointer The MG will be installed in August 2012. Black-Right-Pointing-Pointer The dummy coil testing will commence in December 2012 with superconducting coil testing scheduled for 2013. - Abstract: The Korean Superconducting Tokamak Advanced Research (KSTAR) superconducting magnet power supply is composed of a Poloidal Field Magnet Power Supply (PF MPS) and a Toroidal Field Magnet Power Supply (TF MPS). When the PF MPS is operated, it requires a large amount of power instantaneously from the KSTAR electric power system. To achieve the KSTAR operational goal, with a long pulse scenario, a peak power of 200 MVA is required and the total power demand for the KSTAR system can exceed 200 MVA. The available grid power is only 100 MVA at the KSTAR site. Increasing the available grid power was uneconomical and inefficient which is why NFRI are installing a Motor Generator (MG). National Fusion Research Institute (NFRI) has made a contract with Vitzrotech and Converteam to design, manufacture and install the MG. Converteam has designed the electromagnetic and mechanical specification of the MG and Variable Voltage Variable Frequency (VVVF) converter. In this paper we discuss the conceptual design, including energy saving and electrical capacity of the MG system and the performance of the MG to satisfy the KSTAR 300 s operation scenario. In addition, the manufacturing and installation plan for the KSTAR MG is discussed.

  13. Conceptual design of Indian molten salt breeder reactor

    Indian Academy of Sciences (India)

    2015-08-28

    Aug 28, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 85; Issue 3. Conceptual design of Indian molten salt breeder ... India has recently started carrying out fundamental studies so as to arrive at a conceptual design of Indian molten salt breeder reactor (IMSBR). Presently, various design options and ...

  14. CONCEPTUAL DESIGNS FOR A NEW HIGHWAY VEHICLE EMISSIONS ESTIMATION METHODOLOGY

    Science.gov (United States)

    The report discusses six conceptual designs for a new highway vehicle emissions estimation methodology and summarizes the recommendations of each design for improving the emissions and activity factors in the emissions estimation process. he complete design reports are included a...

  15. Conceptual design of jewellery: a space-based aesthetics approach

    Directory of Open Access Journals (Sweden)

    Tzintzi Vaia

    2017-01-01

    Full Text Available Conceptual design is a field that offers various aesthetic approaches to generation of nature-based product design concepts. Essentially, Conceptual Product Design (CPD uses similarities based on the geometrical forms and functionalities. Furthermore, the CAD-based freehand sketch is a primary conceptual tool in the early stages of the design process. The proposed Conceptual Product Design concept is dealing with jewelleries that are inspired from space. Specifically, a number of galaxy features, such as galaxy shapes, wormholes and graphical representation of planet magnetic field are used as inspirations. Those space-based design ideas at a conceptual level can lead to further opportunities for research and economic success of the jewellery industry. A number of illustrative case studies are presented and new opportunities can be derived for economic success.

  16. Current status and new directions in conceptual aircraft design

    Science.gov (United States)

    Kidwell, George H., Jr.

    1990-01-01

    The following topics are discussed: systems analysis branch questions; systems analysis; historical perspective; background technology; conceptual design/evaluation program organization; system integration/vehicle closure; conceptual design synthesis programs; numerical optimization/mathematical programming; and current R&D interests. The discussion is presented in viewgraph format.

  17. Block 2 SRM conceptual design studies. Volume 1, Book 1: Conceptual design package

    Science.gov (United States)

    Smith, Brad; Williams, Neal; Miller, John; Ralston, Joe; Richardson, Jennifer; Moore, Walt; Doll, Dan; Maughan, Jeff; Hayes, Fred

    1986-01-01

    The conceptual design studies of a Block 2 Solid Rocket Motor (SRM) require the elimination of asbestos-filled insulation and was open to alternate designs, such as case changes, different propellants, modified burn rate - to improve reliability and performance. Limitations were placed on SRM changes such that the outside geometry should not impact the physical interfaces with other Space Shuttle elements and should have minimum changes to the aerodynamic and dynamic characteristics of the Space Shuttle vehicle. Previous Space Shuttle SRM experience was assessed and new design concepts combined to define a valid approach to assured flight success and economic operation of the STS. Trade studies, preliminary designs, analyses, plans, and cost estimates are documented.

  18. Project W-420 Stack Monitoring system upgrades conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    TUCK, J.A.

    1998-11-06

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  19. Design and Validation of the Quantum Mechanics Conceptual Survey

    Science.gov (United States)

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…

  20. Analysis list: sdc-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available sdc-1 Embryo + ce10 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/sdc-1.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/sdc-1.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/sdc...-1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/sdc-1.Embryo.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/Embryo.gml ...

  1. Conceptual design of main coolant pump for integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Seok; Kim, Jong In; Kim, Min Hwan [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    The conceptual design for MCP to be installed in the integral reactor SMART was carried out. Canned motor pump was adopted in the conceptual design of MCP. Three-dimensional modeling was performed to visualize the conceptual design of the MCP and to check interferences between the parts. The theoretical design procedure for the impeller was developed. The procedures for the flow field and structural analysis of impeller was also developed to assess the design validity and to verify its structural integrity. A computer program to analyze the dynamic characteristics of the rotor shaft of MCP was developed. The rotational speed sensor was designed and its performance test was conducted to verify the possibility of operation. A prototypes of the canned motor was manufactured and tested to confirm the validity of the design concept. The MCP design concept was also investigated for fabricability by establishing the manufacturing procedures. 41 refs., 96 figs., 10 tabs. (Author)

  2. Conceptual Design Oriented Wing Structural Analysis and Optimization

    Science.gov (United States)

    Lau, May Yuen

    1996-01-01

    Airplane optimization has always been the goal of airplane designers. In the conceptual design phase, a designer's goal could be tradeoffs between maximum structural integrity, minimum aerodynamic drag, or maximum stability and control, many times achieved separately. Bringing all of these factors into an iterative preliminary design procedure was time consuming, tedious, and not always accurate. For example, the final weight estimate would often be based upon statistical data from past airplanes. The new design would be classified based on gross characteristics, such as number of engines, wingspan, etc., to see which airplanes of the past most closely resembled the new design. This procedure works well for conventional airplane designs, but not very well for new innovative designs. With the computing power of today, new methods are emerging for the conceptual design phase of airplanes. Using finite element methods, computational fluid dynamics, and other computer techniques, designers can make very accurate disciplinary-analyses of an airplane design. These tools are computationally intensive, and when used repeatedly, they consume a great deal of computing time. In order to reduce the time required to analyze a design and still bring together all of the disciplines (such as structures, aerodynamics, and controls) into the analysis, simplified design computer analyses are linked together into one computer program. These design codes are very efficient for conceptual design. The work in this thesis is focused on a finite element based conceptual design oriented structural synthesis capability (CDOSS) tailored to be linked into ACSYNT.

  3. Conceptual design study for a teleoperator visual system, phase 1

    Science.gov (United States)

    Adams, D.; Grant, C.; Johnson, C.; Meirick, R.; Polhemus, C.; Ray, A.; Rittenhouse, D.; Skidmore, R.

    1972-01-01

    Results are reported for work performed during the first phase of the conceptual design study for a teleoperator visual system. This phase consists of four tasks: General requirements, concept development, subsystem requirements and analysis, and concept evaluation.

  4. Conceptualizing Aesthetics in Design: A Phenomenological Framework

    DEFF Research Database (Denmark)

    Folkmann, Mads Nygaard

    2017-01-01

    The aim of this chapter is to introduce and discuss aesthetics as an approach to understand how design frames experience. In doing so, the chapter combines two philosophical interests in design, design phenomenology and design aesthetics, in order to promote a framework for discussing the impact...... of aesthetic meaning construction on experience. First, the chapter raises the phenomenological question of the relationship between design and experience, specifically, how design conditions experience. Second, in looking at aesthetics in terms of a) the sensual appeal of design, b) design objects...... as aesthetic media that frame modes of understanding, and c) contextual factors, such as media, influencing what is regarded as aesthetic, it is the thesis of the chapter that a reflective concept of design aesthetics can be employed to differentiate between three different ways in which design frame our...

  5. Conceptual design in a high-tech environment

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; van Houten, Frederikus J.A.M.

    2003-01-01

    This article will give an overview over design process models before concentrating on the main subject: Conceptual Design, which has had less academic attention than the detail design phases. In high-tech environments specific conditions apply. This article will deal with these conditions. Some

  6. AIDA. Artificial Intelligence supported conceptual Design of Aircraft

    NARCIS (Netherlands)

    Rentema, D.W.E.

    2004-01-01

    This thesis describes the development of a computer support tool that supports the initial, conceptual design process. In this first design phase one or more concepts are defined which are assumed to be able to comply with the design specifications. These concepts can be elaborated in more detail

  7. Evolution of property predictability during conceptual design

    DEFF Research Database (Denmark)

    Salonen, Mikko; Hansen, Claus Thorp; Perttula, Matti

    2005-01-01

    during the progression of the early phases of the design process, and properties of which predictability remains relatively low throughout the early phases of the design process. We believe that an awareness and understanding of such different behaviours of property predictability is important for both...... to the requirements set for the task. As a result, we identified three different patterns of property predictability behaviour. These patterns consist of properties of which predictability is relatively high throughout the early phases of the design process, properties of which predictability shows a high increase...... designers and design project leaders when determining a proper timing and criteria for selecting the design concept for further development....

  8. TFTR neutral beam systems conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    The functions, design requirements, and design descriptions of the injection system are described. Cost summaries are given for each system and subsystem. The costs presented are for: materials procurement; and shipping, assembly, and installation at the Princeton site. (MOW)

  9. Graphic Design in Libraries: A Conceptual Process

    Science.gov (United States)

    Ruiz, Miguel

    2014-01-01

    Providing successful library services requires efficient and effective communication with users; therefore, it is important that content creators who develop visual materials understand key components of design and, specifically, develop a holistic graphic design process. Graphic design, as a form of visual communication, is the process of…

  10. SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT

    Energy Technology Data Exchange (ETDEWEB)

    CARRO CA

    2010-03-09

    This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysis is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.

  11. Conceptual Design of Industrial Process Displays

    DEFF Research Database (Denmark)

    Pedersen, C.R.; Lind, Morten

    1999-01-01

    Today, process displays used in industry are often designed on the basis of piping and instrumentation diagrams without any method of ensuring that the needs of the operators are fulfilled. Therefore, a method for a systematic approach to the design of process displays is needed. This paper...... design method that matches the industrial practice of modular plant design and satisfies the needs of reusability of display design solutions. The main considerations in display design in the industry are to specify the operator's activities in detail, to extract the information the operators need from...... the plant design specification and documentation, and finally to present this information. The form of the display is selected from existing standardized display elements such as trend curves, mimic diagrams, ecological interfaces, etc. Further knowledge is required to invent new display elements. That is...

  12. Conceptual design of flapping-wing micro air vehicles.

    Science.gov (United States)

    Whitney, J P; Wood, R J

    2012-09-01

    Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail.

  13. Advanced Modeling Concepts for Conceptual Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Preliminary design of aircraft structures is multidisciplinary, involving knowledge of structural mechanics, aerodynamics, aeroelasticity, structural dynamics and...

  14. U10.0 Undulator conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, E.

    1994-06-01

    The U10.0 Undulator described here is a 43 period, 10 cm period, 4.5 meter long insertion device. Designed for the Advanced Light Source (ALS) storage ring at the Lawrence Berkeley Laboratory. This insertion device will provide high brightness, quasi-monochromatic radiation in the 5-950 eV energy range. This conceptual design report includes sections on: parameter development, spectral performance, and accelerator requirements, physics specifications and the detailed conceptual design of the magnetic structure, the support/drive systems, the insertion device control system, the vacuum system, and installation for the U10.0 Undulator.

  15. A conceptual framework to analyse supply chain designs

    Directory of Open Access Journals (Sweden)

    J. A. Badenhorst-Weiss

    2011-12-01

    Full Text Available Objectives: Supply chain design (SCD is a concept that forms an integral part of supply chain management (SCM. Effective SCD enhances supply chain integration (SCI which in turn contributes towards improved supply chain performance. Therefore, organisations' supply chain designs need to be analysed. This article proposes a conceptual framework to analyse organisations' supply chain designs. The objective of this article is to determine whether the proposed conceptual framework is a workable instrument with which organisations can analyse their supply chain designs. Problem investigated: Effective SCD is a complex and demanding undertaking and has become a major challenge for organisations. Moreover, the literature suggests that organisations allow their supply chains to evolve rather than consciously designing them. Although the importance of SCD is emphasised, very little attention is given to what it entails exactly. The problem statement of this article is thus: What are the elements of SCD and how can these elements be included in a conceptual framework to analyse organisations' supply chain designs? Methodology: The methodology used in this article comprised two phases. Firstly, a literature review was conducted to identify SCD elements. The elements were used to develop a conceptual framework with which organisations can analyse their supply chain designs. Secondly, the conceptual framework was tested in 13 organisations to determine whether it is a workable instrument to analyse supply chain designs. The respondents were selected by means of non-probability sampling. Purposive, judgmental and convenience sampling methods were used to select the sample. Findings and implications: As mentioned, the conceptual framework was tested empirically within 13 organisations. The findings show that the conceptual framework is in fact a workable instrument to analyse supply chain designs. Value of the research: The research will make a contribution in

  16. Conceptual design interpretations, mindset and models

    CERN Document Server

    Andreasen, Mogens Myrup; Cash, Philip

    2015-01-01

    Maximising reader insights into the theory, models, methods and fundamental reasoning of design, this book addresses design activities in industrial settings, as well as the actors involved. This approach offers readers a new understanding of design activities and related functions, properties and dispositions. Presenting a ‘design mindset’ that seeks to empower students, researchers, and practitioners alike, it features a strong focus on how designers create new concepts to be developed into products, and how they generate new business and satisfy human needs.   Employing a multi-faceted perspective, the book supplies the reader with a comprehensive worldview of design in the form of a proposed model that will empower their activities as student, researcher or practitioner. We draw the reader into the core role of design conceptualisation for society, for the development of industry, for users and buyers of products, and for citizens in relation to public systems. The book also features original con...

  17. Solar Orbit Transfer Vehicle Conceptual Design

    National Research Council Canada - National Science Library

    1999-01-01

    ... technologies that include solar thermal propulsion and solar thermionic based power systems. Efforts over the last ten years have focused on feasibility, design, and fabrication issues of the various components...

  18. Conceptual Model of Artifacts for Design Science Research

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2015-01-01

    We present a conceptual model of design science research artifacts. The model views an artifact at three levels. At the artifact level a selected artifact is viewed as a combination of material and immaterial aspects and a set of representations hereof. At the design level the selected artifact...

  19. Systems & design thinking: a conceptual framework for their integration

    OpenAIRE

    Pourdehnad, John; Wexler, Erica; Wilson, Dennis

    2012-01-01

    This paper explores the relationship between Systems and Design Thinking. It specifically looks into the role of Design in Systems Thinking and how looking at the world through a systems lens influences Design. Our intention is to show the critical concepts developed in the Systems and Design Thinking fields, their underlying assumptions, and the ways in which they can be integrated as a cohesive conceptual framework. While there are many important distinctions that must be considered to unde...

  20. Design-Only Conceptual Design Report: Plutonium Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    DiSabatino, A.; Loftus, D.

    1999-01-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant

  1. Conceptual Design for CLIC Gun Pulser

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Tao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-01-08

    The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.

  2. Conceptual frames for changing production system design

    DEFF Research Database (Denmark)

    Jensen, Per Langå; Broberg, Ole

    2003-01-01

    In order to integrate ergonomic aspects into the design of products and production systems many tools and procedures are available. For the ergonomists, however, it is a question of recognizing the organizational context and the role to play for making integration possible. Based on an understand......In order to integrate ergonomic aspects into the design of products and production systems many tools and procedures are available. For the ergonomists, however, it is a question of recognizing the organizational context and the role to play for making integration possible. Based...

  3. MINIMARS conceptual design: Report I. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D. (ed.)

    1985-12-01

    Engineering parameters and by features of MINIMARS are presented. Topics discussed are startup, halo physics, drift pumping, magnet design, shielding, injector systems, electrical systems, fueling systems, free electric laser, blankets, heat tansport, tritium systems, configuration, assembly and maintainence, and cost. 115 refs., 112 figs., 44 tabs. (WRF)

  4. Conceptual Design Scheme for Virtual Characters

    Science.gov (United States)

    Brunetti, Gino; Servidio, Rocco

    The aim of this paper is to describe some theoretical considerations about virtual character design. In recent years, many prototypes of cognitive and behavioral architectures have been developed to simulate human behavior in artificial agents. Analyzing recent studies, we assume that there exists a variety of computational models and methods in order to increase the cognitive abilities of the virtual characters. In our opinion, it is necessary to perform a synthesis of these approaches in order to improve the existing models and avoiding the application of new approaches. Considering these aspects, in this paper we describe a taxonomy that explores the principal cognitive and computational parameters involved in the design, development and evaluation of a virtual character.

  5. A conceptual design of circular Higgs factory

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai

    2016-11-30

    Similar to a super B-factory, a circular Higgs factory (CHF) will require strong focusing systems near the interaction points and a low-emittance lattice in the arcs to achieve a factory luminosity. At electron beam energy of 125 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at the 2% level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of a CHF. In this paper, an example will be provided to illustrate the beam dynamics in a CHF, emphasizing the chromatic optics. Basic optical modules and advanced analysis will be presented. Most importantly, we will show that 2% momentum aperture is achievable.

  6. Designing Cooperative Gamification: Conceptualization and Prototypical Implementation

    OpenAIRE

    Morschheuser, Benedikt; Maedche, Alexander; Walter, Dominic

    2017-01-01

    Organizations deploy gamification in CSCW systems to enhance motivation and behavioral outcomes of users. However, gamification approaches often cause competition between users, which might be inappropriate for working environments that seek cooperation. Drawing on the social interdependence theory, this paper provides a classification for gamification features and insights about the design of cooperative gamification. Using the example of an innovation community of a German engineering compa...

  7. Conceptual design studies for surface infrastructure

    Science.gov (United States)

    Bufkin, Ann L.; Jones, William R., II

    1986-01-01

    The utimate design of a manned Mars base will be the result of considerable engineering analysis and many trade studies to optimize the configuration. Many options and scenarios are available and all need to be considered at this time. Initial base elements, two base configuration concepts, internal space architectural concerns, and two base set-up scenarios are discussed. There are many variables as well as many unknowns to be reckoned with before people set foot on the red planet.

  8. WRAP 2A advanced conceptual design report comments

    Energy Technology Data Exchange (ETDEWEB)

    Lamberd, D.L.

    1994-10-04

    This report contains the compilation of the 393 comments that were submitted during the review of the Advanced Conceptual Design Report for the Waste Receiving and Processing Facility Module 2A. The report was prepared by Raytheon Engineers and Constructors, Inc. of Englewood, Colorado for the United States Department of Energy. The review was performed by a variety of organizations identified in the report. The comments were addressed first by the Westinghouse cognizant engineers and then by the Raytheon cognizant engineers, and incorporated into the final issue of the Advanced Conceptual Design Report.

  9. Conceptual design of a chickpea harvesting header

    Directory of Open Access Journals (Sweden)

    H. Golpira

    2013-07-01

    Full Text Available Interest in the development of stripper headers is growing owing to the excessive losses of combine harvesters and costs of manually harvesting for chickpeas. The design of a new concept can enhance the mechanized process for chickpea harvesting. A modified stripper platform was designed, in which passive fingers with V-shape slots removes the pods from the anchored plant. The floating platform was accompanied by a reel to complete the harvesting header. Black-box modeling was used to redesign the functional operators of the header followed by an investigation of the system behavior. Physical models of the platform and reel were modified to determine the crucial variables of the header arrangement during field trials. The slot width was fixed at 40 mm, finger length at 40 mm, keyhole diameter at 10 mm and entrance width at 6 mm; the batted reel at peripheral diameter of 700 mm and speed at 50 rpm. A tractor-mounted experimental harvester was built to evaluate the work quality of the stripper header. The performance of the prototype was tested with respect to losses and results confirmed the efficiency of the modified stripper header for chickpea harvesting. Furthermore, the header with a 1.4 m working width produced the spot work rates of 0.42 ha h-1.

  10. Transitioning from conceptual design to construction performance specification

    Science.gov (United States)

    Jeffers, Paul; Warner, Mark; Craig, Simon; Hubbard, Robert; Marshall, Heather

    2012-09-01

    On successful completion of a conceptual design review by a funding agency or customer, there is a transition phase before construction contracts can be placed. The nature of this transition phase depends on the Project's approach to construction and the particular subsystem being considered. There are generically two approaches; project retention of design authority and issuance of build to print contracts, or issuance of subsystem performance specifications with controlled interfaces. This paper relates to the latter where a proof of concept (conceptual or reference design) is translated into performance based sub-system specifications for competitive tender. This translation is not a straightforward process and there are a number of different issues to consider in the process. This paper deals with primarily the Telescope mount and Enclosure subsystems. The main subjects considered in this paper are: • Typical status of design at Conceptual Design Review compared with the desired status of Specifications and Interface Control Documents at Request for Quotation. • Options for capture and tracking of system requirements flow down from science / operating requirements and sub-system requirements, and functional requirements derived from reference design. • Requirements that may come specifically from the contracting approach. • Methods for effective use of reference design work without compromising a performance based specification. • Management of project team's expectation relating to design. • Effects on cost estimates from reference design to actual. This paper is based on experience and lessons learned through this process on both the VISTA and the ATST projects.

  11. Research on conceptual/innovative design for the life cycle

    Science.gov (United States)

    Cagan, Jonathan; Agogino, Alice M.

    1990-01-01

    The goal of this research is developing and integrating qualitative and quantitative methods for life cycle design. The definition of the problem includes formal computer-based methods limited to final detailing stages of design; CAD data bases do not capture design intent or design history; and life cycle issues were ignored during early stages of design. Viewgraphs outline research in conceptual design; the SYMON (SYmbolic MONotonicity analyzer) algorithm; multistart vector quantization optimization algorithm; intelligent manufacturing: IDES - Influence Diagram Architecture; and 1st PRINCE (FIRST PRINciple Computational Evaluator).

  12. Performance assessment strategies; a computational framework for conceptual design of large roofs

    NARCIS (Netherlands)

    Turrin, M.

    2014-01-01

    Using engineering performance evaluations to explore design alternatives during the conceptual phase of architectural design helps to understand the relationships between form and performance; and is crucial for developing well-performing final designs. Computer aided conceptual design has the

  13. The Elaboration Theory's Procedure for Designing Instruction: A Conceptual Approach.

    Science.gov (United States)

    Reigeluth, Charles M.; Darwazeh, Afnan

    1982-01-01

    Describes the use of elaboration theory in selecting, sequencing, synthesizing, and summarizing instructional content that is predominantly conceptual in nature. The elaboration theory is summarized and the instructional design process based upon it is outlined. Six figures, a glossary, and a 27-item reference list are included. (Author/JL)

  14. Conceptual design of the ECH upper launcher system for ITER

    NARCIS (Netherlands)

    Heidinger, R.; Bertizzolo, R.; Bruschi, A.; Chavan, R.; Cirant, S.; Collazos, A.; de M. Baar,; Elzendoorn, B.; Farina, D.; Fischer, U.; Gafert, J.; Gandini, F.; Gantenbein, G.; Goede, A.; Goodman, T.; Hailfinger, G.; Henderson, M.; Kasparek, W.; Kleefeldt, K.; Landis, J. D.; Meier, A.; Moro, A.; Platania, P.; Poli, E.; Ramponi, G.; Saibene, G.; Sanchez, F.; Sauter, O.; Scherer, T.; Serikov, A.; Shidara, H.; Sozzi, C.; Spaeh, P.; Strauss, D.; Udintsev, V.S.; Vaccaro, A.; Zohm, H.; Zucca, C.

    2009-01-01

    The challenge of developing the conceptual design of the ECH Upper Launcher system for MHD control in the ITER plasmas has been tackled by team of European Associations together with the European Domestic Agency ("F4E"). The launcher system has to meet the following requirements: (a) a

  15. Conceptual design of a mass parallelized PEF microreactor

    NARCIS (Netherlands)

    Fox, M.B.; Esveld, D.C.; Boom, R.M.

    2007-01-01

    This article describes the conceptual design of a mass parallelized pulsed electric field (PEF) microreactor, where microorganisms are inactivated by short, high electric field pulses. Since the advantages of a PEF microreactor are related to the small size, the throughput of a microreactor can only

  16. GridAPPS-D Conceptual Design v1.0

    Energy Technology Data Exchange (ETDEWEB)

    Melton, Ronald B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schneider, Kevin P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McDermott, Thomas E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vadari, Subramanian V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-31

    The purpose of this document is to provide a conceptual design of the distribution system application development platform being developed for the U.S. Department of Energy’s Advanced Distribution Management System (ADMS) Program by the Grid Modernization Laboratory Consortium project GM0063. The platform will be referred to as GridAPPS-D. This document provides a high level, conceptual view of the platform and provides related background and contextual information. This document is intended to both educate readers about the technical work of the project and to serve as a point of reference for the project team. The document will be updated as the project progresses.

  17. Scenario for concurrent conceptual assembly line design: A case study

    Science.gov (United States)

    Mas, F.; Ríos, J.; Menéndez, J. L.

    2012-04-01

    The decision to design and build a new aircraft is preceded by years of research and study. Different disciplines work together throughout the lifecycle to ensure not only a complete functional definition of the product, but also a complete industrialization, a marketing plan, a maintenance plan, etc. This case study focuses on the conceptual design phase. During this phase, the design solutions that will meet the functional and industrial requirements are defined, i.e.: the basic requirements of industrialization. During this phase, several alternatives are studied, and the most attractive in terms of performance and cost requirements is selected. As a result of the study of these alternatives, it is possible to define an early conceptual design of the assembly line and its basic parameters. The plant needs, long cycle jigs & tools or industrial means and human resources with the necessary skills can be determined in advance.

  18. Conceptual design and optimization methodology for box wing aircraft

    OpenAIRE

    Jemitola, Paul Olugbeji

    2012-01-01

    A conceptual design optimization methodology was developed for a medium range box wing aircraft. A baseline conventional cantilever wing aircraft designed for the same mis- sion and payload was also optimized alongside a baseline box wing aircraft. An empirical formula for the mass estimation of the fore and aft wings of the box wing aircraft was derived by relating conventional cantilever wings to box wing aircraft wings. The results indicate that the fore and aft wings would ...

  19. Spent nuclear fuel canister storage building conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  20. Genetic Algorithms with Niching for Conceptual Design Studies

    CERN Document Server

    Ramberger, S

    1998-01-01

    The paper describes the use of genetic algorithms with the concept of niching for the conceptual design of superconducting magnets for the Large Hadron Collider, LHC at CERN. The method provides the designer with a number of possible solutions which can then be further optimized for field quality and manufacturability. Two 6 block dipole coils were found and proved to have advantages compared to the standard 5 block version.

  1. Analysis list: sdc-3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available sdc-3 Embryo,Larvae + ce10 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/s...dc-3.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/sdc-3.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/ce10/target/sdc-3.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/sdc-3.Embryo.tsv,http://dbarchive.bioscien...cedbc.jp/kyushu-u/ce10/colo/sdc-3.Larvae.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/ce10/colo/Embryo.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/Larvae.gml ...

  2. SDC: a multistage coronagraphic platform at Palomar observatory

    Science.gov (United States)

    Bottom, Michael; Serabyn, Eugene; Shelton, Chris; Wallace, J. Kent; Bartos, Randall D.; Kuhn, Jonas; Mawet, Dimitri; Mennesson, Bertrand; Burruss, Rick

    2016-01-01

    Direct imaging of planets is challenging for two main reasons: first, stars are brighter than their planets by many orders of magnitude (requiring high contrast), and second, planets and their host stars are close to each other (require a low inner working angle instrument). Many exciting new technologies are attempting to address these challenges to enable imaging and spectroscopy of exoplanets. To this end, we present a new instrument, the "Stellar Double Coronagraph" (SDC), a flexible coronagraphic platform. Situated at Palomar Observatory's 200" Hale telescope, it supports a number of interchangeable observing configurations. These include multiple vortex coronagraphs in series, hybrid pupil/phase masks, and novel focal-plane wavefront sensing and control schemes for improved contrast and inner working angles. We describe the motivation, design, observing modes, wavefront control strategies, and data reduction pipeline. We also present early science results, demonstrating the capabilities and potential of these approaches.

  3. Conceptual Design of a Mobile Application for Geography Fieldwork Learning

    Directory of Open Access Journals (Sweden)

    Xiaoling Wang

    2017-11-01

    Full Text Available The use of mobile applications on smartphones has a vast potential to support learning in the field. However, all learning technologies should be properly designed. To this end, we adopt User-Centered Design (UCD to design a mobile application, called GeoFARA (Geography Fieldwork Augmented Reality Application, for university geography fieldwork. This paper is about the conceptual design of GeoFARA based on its use and user requirements. The paper first establishes a review of selected existing mobile AR applications for outdoor use, in order to identify the innovative aspects and the improvements of GeoFARA. Thereafter, we present the results of use and user requirements derived from (1 an online survey of the current use of tools in undergraduate geography fieldwork, (2 a field experiment in which the use of paper maps and a mobile mapping tool were compared, (3 investigations during a human geography fieldwork, (4 post-fieldwork surveys among undergraduates from two universities, (5 our use case, and (6 a use scenario. Based on these requirements, a conceptual design of GeoFARA is provided in terms of technical specifications, main contents, functionalities, as well as user interactions and interfaces. This conceptual design will guide the future prototype development of GeoFARA.

  4. Application of analytical target cascading method in multidisciplinary design optimization of ship conceptual design

    Directory of Open Access Journals (Sweden)

    WANG Jian

    2017-10-01

    Full Text Available [Objectives] Ship conceptual design requires the coordination of many different disciplines for comprehensive optimization, which presents a complicated system design problem affecting several fields of technology. However, the development of overall ship design is relatively slow compared with other subjects. [Methods] The decomposition and coordination strategy of ship design is presented, and the analytical target cascading (ATC method is applied to the multidisciplinary design optimization of the conceptual design phase of ships on this basis. A tank ship example covering the 5 disciplines of buoyancy and stability, rapidity, maneuverability, capacity and economy is established to illustrate the analysis process in the present study. [Results] The results demonstrate the stability, convergence and validity of the ATC method in dealing with the complex coupling effect occurring in ship conceptual design.[Conclusions] The proposed method provides an effective basis for optimization of ship conceptual design.

  5. Aesthetic, Functional and Conceptual Provocation in Research Through Design

    DEFF Research Database (Denmark)

    Raptis, Dimitrios; Jensen, Rikke Hagensby; Kjeldskov, Jesper

    2017-01-01

    how to use provocation in research through design. Towards this end, we report on a field study with four families that used an aesthetically, functionally and conceptually provocative future probe. The purpose of the probe was to challenge existing energy consuming practices through provocation...... and make its users reflect on them. The paper describes how all three provocative aspects were addressed, and our findings demonstrate how they were experienced in the real world, and how they impacted our research through design approach. We conclude by presenting reflections on how to design provocations......, and reflections on the impact of provocations for research through design in general....

  6. Outcomes of the DeepWind Conceptual Design

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Borg, Michael; Aagaard Madsen, Helge

    2015-01-01

    DeepWind has been presented as a novel floating offshore wind turbine concept with cost reduction potentials. Twelve international partners developed a Darrieus type floating turbine with new materials and technologies for deep-sea offshore environment. This paper summarizes results of the 5 MW...... DeepWind conceptual design. The concept was evaluated at the Hywind test site, described on its few components, in particular on the modified Troposkien blade shape and airfoil design. The feasibility of upscaling from 5 MW to 20 MW is discussed, taking into account the results from testing...... the Deepwind floating 1 kW demonstrator. The 5 MW simulation results, loading and performance are compared to the OC3-NREL 5 MW wind turbine. Finally the paper elaborates the conceptual design on cost modelling....

  7. Aesthetic, Functional and Conceptual Provocation in Research Through Design

    DEFF Research Database (Denmark)

    Raptis, Dimitrios; Jensen, Rikke Hagensby; Kjeldskov, Jesper

    2017-01-01

    how to use provocation in research through design. Towards this end, we report on a field study with four families that used an aesthetically, functionally and conceptually provocative future probe. The purpose of the probe was to challenge existing energy consuming practices through provocation...... and make its users reflect on them. The paper describes how all three provocative aspects were addressed, and our findings demonstrate how they were experienced in the real world, and how they impacted our research through design approach. We conclude by presenting reflections on how to design provocations...

  8. PEP-II: An asymmetric B factory. Conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    In this report, the authors have described an updated conceptual design for the high-luminosity Asymmetric B Factory (PEP-II) to be built in the PEP tunnel culmination of more than four years of effort aimed at the design and construction of an asymmetric e{sub +}e{sub {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. All aspects of the conceptual design were scrutinized in March 1991 by a DOE technical review committee chaired by Dr. L. Edward Temple. The design was deemed feasible and capable of achieving its physics goals. Furthermore, the cost estimate, schedule, and management plan for the project were fully endorsed by the committee. This updated conceptual design report captures the technical progress since the March 1991 review and reflects the lower cost estimate corresponding to the improved design. Although the PEP-II design has continued to evolve, no technical scope changes have been made that invalidate the conclusion of the DOE review. The configuration adopted utilizes two storage rings, an electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of PEP-II. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two PEP-II storage rings.

  9. Multistage aerospace craft. [perspective drawings of conceptual design

    Science.gov (United States)

    Kelly, D. L. (Inventor)

    1973-01-01

    A conceptual design of a multi-stage aerospace craft is presented. Two perspective views of the vehicle are developed to show the two component configuration with delta wing, four vertical tail surfaces, tricycle landing gear, and two rocket exhaust nozzles at the rear of the fuselage. Engines for propulsion in the atmosphere are mounted on the fuselage in front of the wing root attachment.

  10. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2014-01-01

    in topological optimization: Interactive control and continuous visualization; embedding flexible voids within the design space; consideration of distinct tension / compression properties; and optimization of dual material systems. In extension, optimization procedures for skeletal structures such as trusses...... and frames are implemented. The developed procedures allow for the exploration of new territories in optimization of architectural structures, and offer new methodological strategies for bridging conceptual gaps between optimization and architectural practice....

  11. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2015-01-01

    in topological optimization: Interactive control and continuous visualization; embedding flexible voids within the design space; consideration of distinct tension / compression properties; and optimization of dual material systems. In extension, optimization procedures for skeletal structures such as trusses...... and frames are implemented. The developed procedures allow for the exploration of new territories in optimization of architectural structures, and offer new methodological strategies for bridging conceptual gaps between optimization and architectural practice....

  12. Design games : A conceptual framework for dynamic evolutionary design

    NARCIS (Netherlands)

    Sönmez, N.O.; Erdem, A.

    2014-01-01

    Most evolutionary computation (EC) applications in design fields either assume simplified, static, performance-oriented procedures for design or focus on well-defined sub-problems, to be able to impose problem-solving and optimization schemes on design tasks, which render known EC techniques

  13. DDE-MURR Status Report of Conceptual Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; M.H. Sprenger; G.K. Housley

    2013-09-01

    The Design Demonstration Experiment for the University of Missouri Research Reactor (DDE-MURR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MURR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in a 200mm channel at the Belgium Reactor 2 (BR2). Revision 0 of this report was prepared at the end of government fiscal year 2012 when most of the resources for furthering DDE design work were expected to be postponed. Hence, the conceptual design efforts were summarized to provide the status of key objectives, notable results, and provisions for future design work. Revision 1 of this report was prepared at the end of fiscal year 2013 in order to include results from a neutronic study performed by BR2, to incorporate further details that had been achieved in the engineering sketches of the irradiation devices, and to provide an update of the DDE-MURR campaign in relation to program objectives and opportunities for its eventual irradiation. These updates were purposed to bring the DDE-MURR conceptual design to level of maturity similar to that of the other two DDE efforts (DDE-MITR and DDE-NBSR). This report demonstrates that the DDE-MURR design effort is well on the path to producing a suitable irradiation experiment, but also puts forth several recommendations in order to facilitate success of the irradiation campaign.

  14. Configuration management of the EU DEMO conceptual design data

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, Botond; Shannon, Mark [EUROfusion Consortium, PPPT Department, Garching, Boltzmannstr. 2 (Germany); Marzullo, Domenico [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Woodley, Colin; Rowe, Steve [CCFE, Culham Science Centre, Oxfordshire OX14 3DB, Abingdon (United Kingdom); Di Gironimo, Giuseppe [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy)

    2016-11-01

    Highlights: • Description of the selection of the DEMO Product Data Management tool. • Introduction of the DEMO configuration management philosophy for the CAD design data. • Description of the enabling tools and systems of the configuration management. - Abstract: The EUROfusion Consortium is setting up – as part of the EU Fusion Roadmap – the framework for the implementation of the (pre)conceptual design phase of the DEMO reactor. Configuration management needs have been identified as one of the key elements of this framework and is the topic of this paper, in particular the configuration of the CAD design data. The desire is to keep the definition and layout of the corresponding systems “light weight” and relatively easy to manage, whilst simultaneously providing a level of detail in the definition of the design configuration that is fit for the purpose of a conceptual design. This paper aims to describe the steps followed during the definition of the configuration management system of the DEMO design data in terms of (i) the identification of the appropriate product data management system, (ii) the description of the philosophy of the configuration management of the design data, and (iii) the introduction of the most important enabling processes.

  15. Conceptual space systems design using meta-heuristic algorithms

    Science.gov (United States)

    Kim, Byoungsoo

    A recent tendency in designing Space Systems for a specific mission can be described easily and explicitly by the new design-to-cost philosophy, "faster, better, cheaper" (fast-track, innovative, lower-cost, small-sat). This means that Space Systems engineers must do more with less and in less time. This new philosophy can result in space exploration programs with smaller spacecraft, more frequent flights at a remarkably lower cost per flight (cost first, performance second), shorter development schedules, and more focused missions. Some early attempts at "faster, better, cheaper" possibly moved too fast and eliminated critical tests or did not "space-qualify" the innovations, causing failure. A new discipline of Constrained Optimization must be employed. With this new philosophy, Space Systems Design becomes a difficult problem to model in the new, more challenging environment. The objective of Space Systems Design has moved from maximizing space mission performance under weak time and weak cost constraints (accepting schedule slippage and cost growth) but with technology risk constraints, to maximizing mission goals under firm cost and schedule constraints but with prudent technology risk constraints, or, equivalently maximizing "expected" space mission performance per unit cost. Within this mindset, a complex Conceptual Space Systems Design Model was formulated as a (simply bounded) Constrained Combinatorial Optimization Problem with Estimated Total Mission Cost (ETMC) as its objective function to be minimized and subsystems trade-offs and design parameters as the decision variables in its design space, using parametric estimating relationships (PERs) and cost estimating relationships (CERs). Here, given a complex Conceptual Space Systems Design Problem, a (simply bounded) Constrained Combinatorial Optimization "solution" is defined as the process of achieving the most favorable alternative for the system on the basis of objective decision-making evaluation

  16. High performance APCS conceptual design and evaluation scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.; Liekhus, K.; Chambers, A.; Anderson, G.

    1998-02-01

    This Air Pollution Control System (APCS) Conceptual Design and Evaluation study was conducted to evaluate a high-performance (APC) system for minimizing air emissions from mixed waste thermal treatment systems. Seven variations of high-performance APCS designs were conceptualized using several design objectives. One of the system designs was selected for detailed process simulation using ASPEN PLUS to determine material and energy balances and evaluate performance. Installed system capital costs were also estimated. Sensitivity studies were conducted to evaluate the incremental cost and benefit of added carbon adsorber beds for mercury control, specific catalytic reduction for NO{sub x} control, and offgas retention tanks for holding the offgas until sample analysis is conducted to verify that the offgas meets emission limits. Results show that the high-performance dry-wet APCS can easily meet all expected emission limits except for possibly mercury. The capability to achieve high levels of mercury control (potentially necessary for thermally treating some DOE mixed streams) could not be validated using current performance data for mercury control technologies. The engineering approach and ASPEN PLUS modeling tool developed and used in this study identified APC equipment and system performance, size, cost, and other issues that are not yet resolved. These issues need to be addressed in feasibility studies and conceptual designs for new facilities or for determining how to modify existing facilities to meet expected emission limits. The ASPEN PLUS process simulation with current and refined input assumptions and calculations can be used to provide system performance information for decision-making, identifying best options, estimating costs, reducing the potential for emission violations, providing information needed for waste flow analysis, incorporating new APCS technologies in existing designs, or performing facility design and permitting activities.

  17. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  18. DDE-NBSR Status Report of Conceptual Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; B.P. Durtschi; C.R. Glass; G.A. Roth; D.T. Clark

    2012-09-01

    The Design Demonstration Experiment for the National Bureau of Standard Reactor (DDE-NBSR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the NBSR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in the Advanced Test Reactor center flux trap. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-NBSR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the NBSR.

  19. DDE-MURR Status Report of Conceptual Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; M.H. Sprenger; G.K. Housley

    2012-09-01

    The Design Demonstration Experiment for the University of Missouri Research Reactor (DDE-MURR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MURR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in a 200mm channel at the Belgium Reactor 2. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-MURR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the MURR.

  20. DDE-MITR Status Report of Conceptual Design Activities

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; J.D. Wiest; J.W. Nielsen; G.A. Roth; S.D. Snow

    2012-09-01

    The Design Demonstration Experiment for the Massachusetts Institute of Technology Reactor (DDE-MITR) is intended to facilitate Low Enriched Uranium (LEU) conversion of the MITR by demonstrating the performance and fabrication of the LEU fuel element design through an irradiation test in the Advanced Test Reactor center flux trap. At the time this report was prepared the resources for furthering DDE design work were expected to be postponed. As such, the conceptual design effort to date is summarized herein in order to provide the status of key objectives, notable results, and provisions for future design work. These demonstrate that the DDE-MITR design effort is well on the path to producing a suitable irradiation experiment, but also exhibits several challenges for which timely resolution is recommend in order to facilitate success of the irradiation campaign and ultimate conversion of the MITR.

  1. Conceptual design of a large Spectral Shift Controlled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Matzie, R A; Menzel, G P

    1979-08-01

    Within the framework of the Nonproliferation Alternative Systems Assessment Program (NASAP), the US Department of Energy (DOE) has sponsored the development of a conceptual design of a large Spectral Shift Controlled Reactor (SSCR). This report describes the results of the development program and assesses the performance of the conceptual SSCR on the basis of fuel resource utilization and total power costs. The point of departure of the design study was a 1270 MW(e) PWR using Combustion Engineering's System 80/sup TM/ reactor and Stone and Webster's Reference Plant Design. The initial phase of the study consisted of establishing an optimal core design for both the once-through uranium cycle and the denatured U-235/thorium cycle with uranium recycle. The performance of the SSCR was then also assessed for the denatured U-233/thorium cycle with uranium recycle and for the plutonium/thorium cycle with plutonium recycle. After the optimal core design was established, the design of the NSSS and balance of plant was developed.

  2. A Reliability analysis on the applicability range of Caltrans-SDC method to address the P-Delta effects

    Science.gov (United States)

    Heydarpour, P.

    2017-06-01

    The main objective of this research is to investigate the applicability range on the Caltrans Seismic Design Criteria (SDC) to address the P-Delta effect. Caltrans SDC defines a maximum ratio for bending moment induced by P-Delta effects over the yielding moment capacity of the column. For columns satisfying this criterion predefined target ductility is used to design the columns. Columns with higher P-Delta induced bending moments should be subjected to nonlinear time history analysis to verify their performance. Typically, designers to prevent performing time consuming, nonlinear time history analyses resize the column to remain in the safe margin. This study through rigorous push over analyses identifies the applicability range for the Caltrans-SDC method.

  3. Exoskeleton for gait rehabilitation of children: Conceptual design.

    Science.gov (United States)

    Cornejo, Jorge L; Santana, Jesus F; Salinas, Sergio A

    2017-07-01

    This paper presents the conceptual design of an exoskeleton for gait rehabilitation of children. This system has electronics, mechanicals and software sections, which are implemented and tested using a mannequin of a child. The prototype uses servomotors to move robotic joints that are attached to simulated patient's legs. The design has 4 DOF (degrees of freedom) two for hip joints and other two for knee joints, in the sagittal plane. A microcontroller measures sensor signals, controls motors and exchanges data with a computer. The user interacts with a graphical interface to configure, control and monitor the exoskeleton activities. The laboratory tests show soften movements in joint angle tracking.

  4. Conceptual design of advanced central receiver power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tracey, T. R.

    1978-09-01

    The design of a 300 MWe tower focus power plant which uses molten salt heat transfer fluids and sensible heat storage is described in detail. The system consists of nine heliostat fields with 7711 heliostats in each. Four cavity receivers are located at the top of a 155-meter tower. Tasks include: (1) review and analysis of preliminary specification; (2) parametric analysis; (3) selection of preferred configuration; (4) commercial plant conceptual design; (5) assessment of commercial-sized advanced central power system; (6) development plan; (7) program plan; (8) reports and data; (9) program management; (10) safety analysis; and (11) material study and test program. (WHK)

  5. Conceptual design study of a scyllac fusion test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, K.I. (comp.)

    1975-07-01

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements.

  6. Topology Optimization for Conceptual Design of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Amir, Oded; Bogomolny, Michael

    2011-01-01

    optimization with elasto-plastic material modeling. Concrete and steel are both considered as elasto-plastic materials, including the appropriate yield criteria and post-yielding response. The same approach can be applied also for topology optimization of other material compositions where nonlinear response......Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its dierent strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures, based on topology...

  7. Conceptual Design of the ITER ECE Diagnostic - An Update

    Science.gov (United States)

    Austin, M. E.; Pandya, H. K. B.; Beno, J.; Bryant, A. D.; Danani, S.; Ellis, R. F.; Feder, R.; Hubbard, A. E.; Kumar, S.; Ouroua, A.; Phillips, P. E.; Rowan, W. L.

    2012-09-01

    The ITER ECE diagnostic has recently been through a conceptual design review for the entire system including front end optics, transmission line, and back-end instruments. The basic design of two viewing lines, each with a single ellipsoidal mirror focussing into the plasma near the midplane of the typical operating scenarios is agreed upon. The location and design of the hot calibration source and the design of the shutter that directs its radiation to the transmission line are issues that need further investigation. In light of recent measurements and discussion, the design of the broadband transmission line is being revisited and new options contemplated. For the instruments, current systems for millimeter wave radiometers and broad-band spectrometers will be adequate for ITER, but the option for employing new state-of-the-art techniques will be left open.

  8. Conceptual Design of the ITER ECE Diagnostic – An Update

    Directory of Open Access Journals (Sweden)

    Ouroua A.

    2012-09-01

    Full Text Available The ITER ECE diagnostic has recently been through a conceptual design review for the entire system including front end optics, transmission line, and back-end instruments. The basic design of two viewing lines, each with a single ellipsoidal mirror focussing into the plasma near the midplane of the typical operating scenarios is agreed upon. The location and design of the hot calibration source and the design of the shutter that directs its radiation to the transmission line are issues that need further investigation. In light of recent measurements and discussion, the design of the broadband transmission line is being revisited and new options contemplated. For the instruments, current systems for millimeter wave radiometers and broad-band spectrometers will be adequate for ITER, but the option for employing new state-of-the-art techniques will be left open.

  9. Kilowatt isotope power system phase II plan. Volume II: flight System Conceptual Design (FSCD)

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    The Kilowatt Isotope Power System (KIPS) Flight System Conceptual Design (FSCD) is described. Included are a background, a description of the flight system conceptual design, configuration of components, flight system performance, Ground Demonstration System test results, and advanced development tests.

  10. QFD-based conceptual design of an autonomous underwater robot

    Directory of Open Access Journals (Sweden)

    Thip Pasawang

    2015-12-01

    Full Text Available Autonomous underwater robots in the past few years have been designed according to the individual concepts and experiences of the researchers. To design a robot, which meets all the requirements of potential users, is an advanced work. Hence, a systematic design method that could include users’ preferences and requirements is needed. This paper presents the quality function deployment (QFD technique to design an autonomous underwater robot focusing on the Thai Navy military mission. Important user requirements extracted from the QFD method are the ability to record videos, operating at depth up to 10 meters, the ability to operate remotely with cable and safety concerns related to water leakages. Less important user requirements include beauty, using renewable energy, operating remotely with radio and ability to work during night time. The important design parameters derived from the user requirements are a low cost-controller, an autonomous control algorithm, a compass sensor and vertical gyroscope, and a depth sensor. Of low-importance ranked design parameters include the module design, use clean energy, a low noise electric motor, remote surveillance design, a pressure hull, and a beautiful hull form design. The study results show the feasibility of using QFD techniques to systematically design the autonomous underwater robot to meet user requirements. Mapping between the design and expected parameters and a conceptual drafting design of an autonomous underwater robot are also presented.

  11. Conceptual design of the field-reversed mirror reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, G.A.; Condit, W.C.; Devoto, R.S.; Fink, J.H.; Hanson, J.D.; Neef, W.S.; Smith, A.C. Jr.

    1978-05-19

    For this reactor a reference case conceptual design was developed in some detail. The parameters of the design result partly from somewhat arbitrary physics assumptions and partly from optimization procedures. Two of the assumptions--that only 10% of the alpha-particle energy is deposited in the plasma and that particle confinement scales with the ion-ion collision time--may prove to be overly conservative. A number of possible start-up scenarios for the field-reversed plasmas were considered, but the choice of a specific start-up method for the conceptual design was deferred, pending experimental demonstration of one or more of the schemes in a mirror machine. Basic to our plasma model is the assumption that, once created, the plasma can be stably maintained by injection of a neutral-beam current sufficient to balance the particle-loss rate. The reference design is a multicell configuration with 11 field-reversed toroidal plasma layers arranged along the horizontal axis of a long-superconducting solenoid. Each plasma layer requires the injection of 3.6 MW of 200-keV deuterium and tritium, and produces 20 MW of fusion power. The reactor has a net electric output of 74 MWe. The preliminary estimate for the direct capital cost of the reference design is $1200/kWe. A balance-of-plant study is now underway and will result in a more accurate cost estimate.

  12. Conceptual design of safety injection tanks using saturated water

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Min; Jeong, Yong Hoon; Chang, Won Joon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-07-01

    Safety Injection Tanks (SITs) which is the one of Safety Injection System (SIS) play an important role in mitigating the Loss of Coolant Accidents (LOCAs) in Pressurized Water Reactor (PWR). APR1400 has the advanced 4 SITs directly connected to a reactor vessel. We expect the capacity of the SITs is getting more important since the coolant from SITs equipped with a FD during LBLOCA can replace the injection from low pressure safety injection pumps (LPSIPs). In designing a larger capacity SIT, we may have three problems; the excessively large volume for pressurized N{sub 2} gas, which is about 1/3 of the total volume, the difficulties controlling injection flowrate and the solubility of the non-condensable N{sub 2} gas in the coolant. In here, there is the contradiction which is 'there must be nitrogen gas for pressurization but there must not be nitrogen gas for more coolant.' For this problem, the axiomatic design (AD) theory enabled us to define or regularize the intrinsic problem which is termed the coupling and the contradiction. TRIZ facilitates creating solutions on the contradiction. This study proposes a conceptual design of SITs which are pressurized by steam from the saturated water as a demonstration of the conceptual design framework, AD theory and TRIZ. The purpose of this conceptual design is to increase coolant volume and to reduce N{sub 2} gas volume in SITs. In order to investigate the feasibility of the proposed design, we derived an analytical model to find the heat loss of saturated water and thermo-hydraulic safety analysis using MARS3.1. To confirm the safety and integrity of core, we conducted LBLOCA simulation to find peak cladding temperature (PCT) of design using the proposed SITs comparing with the conventional SITs. From the analysis results, the benefits of the new SIT design were observed in terms of the PCT, the quenching time and the size. And the new SIT design may enable emergency core cooling water to be injected

  13. Conceptual Design Report for the Extreme Ecosystems Test Chambers

    Energy Technology Data Exchange (ETDEWEB)

    C. Barnes; J. Beller; K. Caldwell; K. Croft; R. Cherry; W. Landman

    1998-12-01

    This conceptual design supports the creation of Extreme Ecosystems Test Chambers, which will replicate deep subsurface and subocean environments characterized by high pressure (2,000 psi) and subfreezing to high temperature (-4 to 300 degrees F) with differing chemical and saturation conditions. The design provides a system to support research and development that includes heat transfer, phase change issues in porous media, microbiology in extreme environments, and carbon sequestration and extraction. The initial system design is based on the research needs to support the commercial production of methane hydrates from subsurface sediments. The design provides for three pressure vessels: a Down Hole Test Vessel, a Vertical Multi-phase Test Vessel, and a Horizontal Multi-phase Test Vessel.

  14. Winged cargo return vehicle. Volume 1: Conceptual design

    Science.gov (United States)

    1990-01-01

    The Advanced Design Project (ADP) allows an opportunity for students to work in conjunction with NASA and other aerospace companies on NASA Advanced Design Projects. The following volumes represent the design report: Volume 1 Conceptual Design; Volume 2 Wind Tunnel Tests; Volume 3 Structural Analysis; and Volume 4 Water Tunnel Tests. The project chosen by the University of Minnesota in conjunction with NASA Marshall Space Flight Center for this year is a Cargo Return Vehicle (CRV) to support the Space Station Freedom. The vehicle is the third generation of vehicles to be built by NASA, the first two being the Apollo program, and the Space Shuttle program. The CRV is to work in conjunction with a personnel launch system (PLS) to further subdivide and specialize the vehicles that NASA will operate in the year 2000. The cargo return vehicle will carry payload to and from the Space Station Freedom (SSF).

  15. Conceptual design of CFETR divertor remote handling compatible structure

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Huaichu, E-mail: yaodm@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei (China); Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  16. Conceptual design of Blanket Remote Handling System for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jianghua, E-mail: weijh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  17. A Conceptual Design For A Spaceborne 3D Imaging Lidar

    Science.gov (United States)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2002-01-01

    First generation spaceborne altimetric approaches are not well-suited to generating the few meter level horizontal resolution and decimeter accuracy vertical (range) resolution on the global scale desired by many in the Earth and planetary science communities. The present paper discusses the major technological impediments to achieving few meter transverse resolutions globally using conventional approaches and offers a feasible conceptual design which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction.

  18. Conceptual design of the IFMIF Start-Up monitoring module

    Energy Technology Data Exchange (ETDEWEB)

    Gouat, Philippe, E-mail: philippe.gouat@sckcen.be [SCK-CEN – The Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Leysen, Willem; Goussarov, Andrei; Galledou, Papa Sally [SCK-CEN – The Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Rapisarda, David; Mota, Fernando; Garcia, Angela [CIEMAT – Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avda. Complutense 40, 28040 Madrid (Spain)

    2013-10-15

    Highlights: ► IFMIF test module conceptual design. ► IFMIF test module foreseen instrumentation. ► Cerenkov photon flux monitor. -- Abstract: The preliminary engineering design of the test facilities, including the various test modules to be used in the IFMIF plant is a part of the IFMIF/EVEDA (Engineering Validation and Engineering Design Activities) project from the Broader Approach to fusion. One presents the current status of the conceptual development of the IFMIF Start-Up Monitoring Module, a dedicated device used in the IFMIF test cell during the commissioning phase of the installation, in order to completely characterise the irradiation conditions behind the target on which the beam of deuterons will be focused. This STUMM embarks a lot of instrumentation to precisely characterise the neutron field, the nuclear heating and the temperatures in the test cell. One briefly describes the measuring instruments (including a specific radiation flux monitor under development), the possible layouts and the possible positioning. One also defines which types of measurements are expected by this especially dedicated commissioning module.

  19. Conceptual Design Report for the Irradiated Materials Characterization Laboratory (IMCL)

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie Austad

    2010-06-01

    This document describes the design at a conceptual level for the Irradiated Materials Characterization Laboratory (IMCL) to be located at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory (INL). The IMCL is an 11,000-ft2, Hazard Category-2 nuclear facility that is designed for use as a state of the-art nuclear facility for the purpose of hands-on and remote handling, characterization, and examination of irradiated and nonirradiated nuclear material samples. The IMCL will accommodate a series of future, modular, and reconfigurable instrument enclosures or caves. To provide a bounding design basis envelope for the facility-provided space and infrastructure, an instrument enclosure or cave configuration was developed and is described in some detail. However, the future instrument enclosures may be modular, integral with the instrument, or reconfigurable to enable various characterization environments to be configured as changes in demand occur. They are not provided as part of the facility.

  20. Developing a Conceptual Design Engineering Toolbox and its Tools

    Directory of Open Access Journals (Sweden)

    R. W. Vroom

    2004-01-01

    Full Text Available In order to develop a successful product, a design engineer needs to pay attention to all relevant aspects of that product. Many tools are available, software, books, websites, and commercial services. To unlock these potentially useful sources of knowledge, we are developing C-DET, a toolbox for conceptual design engineering. The idea of C-DET is that designers are supported by a system that provides them with a knowledge portal on one hand, and a system to store their current work on the other. The knowledge portal is to help the designer to find the most appropriate sites, experts, tools etc. at a short notice. Such a toolbox offers opportunities to incorporate extra functionalities to support the design engineering work. One of these functionalities could be to help the designer to reach a balanced comprehension in his work. Furthermore C-DET enables researchers in the area of design engineering and design engineers themselves to find each other or their work earlier and more easily. Newly developed design tools that can be used by design engineers but have not yet been developed up to a commercial level could be linked to by C-DET. In this way these tools can be evaluated in an early stage by design engineers who would like to use them. This paper describes the first prototypes of C-DET, an example of the development of a design tool that enables designers to forecast the use process and an example of the future functionalities of C-DET such as balanced comprehension.

  1. Conceptual design of ASTRID fuel sub-assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Thierry, E-mail: thierry.beck@cea.fr [CEA Cadarache, DEN, DEC, F-13108 Saint-Paul-lez-Durance (France); Blanc, Victor; Escleine, Jean-Michel [CEA Cadarache, DEN, DEC, F-13108 Saint-Paul-lez-Durance (France); Haubensack, David [CEA Cadarache, DEN, DER, F-13108 Saint-Paul-lez-Durance (France); Pelletier, Michel; Phelip, Mayeul [CEA Cadarache, DEN, DEC, F-13108 Saint-Paul-lez-Durance (France); Perrin, Benoît [AREVA-NP, 10 rue J. Récamier, 69456 Lyon Cedex 06 (France); Venard, Christophe [CEA Cadarache, DEN, DER, F-13108 Saint-Paul-lez-Durance (France)

    2017-04-15

    Highlights: • The fuel sub-assembly design for the ASTRID CFV core is described. • Innovative design choices have been made to comply with the GEN IV objectives. • The heterogeneous and the large fuel pins contribute to a low sodium void worth. • The upper neutron shielding is removable from the S/A head before washing. - Abstract: The French 600 MWe Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) project has reached the end of its Conceptual Design phase. The core design studies are being conducted by the CEA with support from AREVA and EDF. Innovative design choices for the core have been made to comply with the GEN IV reactor objectives, marking a break with the former Phénix and SuperPhénix Sodium Fast Reactors. The main objective to improve safety compared with current GEN II or III reactors led to a core design that demonstrates intrinsically safe behaviour. A negative sodium void worth is achieved thanks to a new fuel sub-assembly design including (U,Pu)O{sub 2} and UO{sub 2} axially heterogeneous fuel pins, a large cladding/small spacer wire bundle, a sodium plenum above the fuel pins, and upper neutron shielding with both enriched and natural boron carbide (B{sub 4}C) which also maintain a low secondary sodium activity level. As these Na-bonded B{sub 4}C pins can lead to the retention of unacceptable amounts of sodium, the whole upper neutron shielding has been made removable on-line through the sub-assembly head just before the washing operations. Finite elements calculations have been performed to increase the stiffness of the stamped spacer pads in order to analyse its effect on the core mechanical behaviour during hypothetical radial core flowering and compaction events. More generally, all design choices for ASTRID have been made with the permanent objective of minimising the sub-assembly height to decrease the overall costs of the reactor and the fuel cycle. This paper describes the fuel sub-assembly design for

  2. A Conceptual Culture Model for Design Science Research

    Directory of Open Access Journals (Sweden)

    Thomas Richter

    2016-03-01

    Full Text Available The aim of design science research (DSR in information systems is the user-centred creation of IT-artifacts with regard to specific social environments. For culture research in the field, which is necessary for a proper localization of IT-artifacts, models and research approaches from social sciences usually are adopted. Descriptive dimension-based culture models most commonly are applied for this purpose, which assume culture being a national phenomenon and tend to reduce it to basic values. Such models are useful for investigations in behavioural culture research because it aims to isolate, describe and explain culture-specific attitudes and characteristics within a selected society. In contrast, with the necessity to deduce concrete decisions for artifact-design, research results from DSR need to go beyond this aim. As hypothesis, this contribution generally questions the applicability of such generic culture dimensions’ models for DSR and focuses on their theoretical foundation, which goes back to Hofstede’s conceptual Onion Model of Culture. The herein applied literature-based analysis confirms the hypothesis. Consequently, an alternative conceptual culture model is being introduced and discussed as theoretical foundation for culture research in DSR.

  3. Equivalent plate modeling for conceptual design of aircraft wing structures

    Science.gov (United States)

    Giles, Gary L.

    1995-01-01

    This paper describes an analysis method that generates conceptual-level design data for aircraft wing structures. A key requirement is that this data must be produced in a timely manner so that is can be used effectively by multidisciplinary synthesis codes for performing systems studies. Such a capability is being developed by enhancing an equivalent plate structural analysis computer code to provide a more comprehensive, robust and user-friendly analysis tool. The paper focuses on recent enhancements to the Equivalent Laminated Plate Solution (ELAPS) analysis code that significantly expands the modeling capability and improves the accuracy of results. Modeling additions include use of out-of-plane plate segments for representing winglets and advanced wing concepts such as C-wings along with a new capability for modeling the internal rib and spar structure. The accuracy of calculated results is improved by including transverse shear effects in the formulation and by using multiple sets of assumed displacement functions in the analysis. Typical results are presented to demonstrate these new features. Example configurations include a C-wing transport aircraft, a representative fighter wing and a blended-wing-body transport. These applications are intended to demonstrate and quantify the benefits of using equivalent plate modeling of wing structures during conceptual design.

  4. Conceptual Design of the Linac4 Main Dump

    CERN Document Server

    Leitao, I V; Maglioni, C

    2012-01-01

    Linac4 is the new CERN linear accelerator intended to replace the ageing Linac2 as the injector to the Proton Synchrotron Booster (PSB) for increasing the luminosity of the Large Hadron Collider (LHC). By delivering a 160MeV H- beam, Linac4 will provide the necessary conditions to double the brightness and intensity of the beam extracted from the PSB. This paper describes the conceptual design of the Linac4 Main Dump, where two different concepts relying respectively on water and air cooling were compared and evaluated. Based on the application of analytical models for the energy deposited by the beam, heat conduction and cooling concepts, a parametric study was performed. This approach allowed the identification of the “optimal” configuration for these two conceptual geometries and their relative comparison. Besides giving the theoretical guidelines for the design of the new dump, this work also contributes to the development of analytical tools to allow a better understanding of the influence of the se...

  5. Conceptual design of a measurement network of the global change

    Directory of Open Access Journals (Sweden)

    P. Hari

    2016-01-01

    Full Text Available The global environment is changing rapidly due to anthropogenic emissions and actions. Such activities modify aerosol and greenhouse gas concentrations in the atmosphere, leading to regional and global climate change and affecting, e.g., food and fresh-water security, sustainable use of natural resources and even demography. Here we present a conceptual design of a global, hierarchical observation network that can provide tools and increased understanding to tackle the inter-connected environmental and societal challenges that we will face in the coming decades. The philosophy behind the conceptual design relies on physical conservation laws of mass, energy and momentum, as well as on concentration gradients that act as driving forces for the atmosphere-biosphere exchange. The network is composed of standard, flux and/or advanced and flagship stations, each of which having specific and identified tasks. Each ecosystem type on the globe has its own characteristic features that have to be taken into consideration. The hierarchical network as a whole is able to tackle problems related to large spatial scales, heterogeneity of ecosystems and their complexity. The most comprehensive observations are envisioned to occur in flagship stations, with which the process-level understanding can be expanded to continental and global scales together with advanced data analysis, Earth system modelling and satellite remote sensing. The denser network of the flux and standard stations allows application and up-scaling of the results obtained from flagship stations to the global level.

  6. Northeast Oregon Hatchery Project, Conceptual Design Report, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Montgomery (Montgomery Watson, Bellevue, WA)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  7. Umatilla Satellite and Release Sites Project : Final Conceptual Design Report.

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, James M.

    1992-03-01

    This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  8. Design and validation of the Quantum Mechanics Conceptual Survey

    Directory of Open Access Journals (Sweden)

    S. B. McKagan

    2010-11-01

    Full Text Available The Quantum Mechanics Conceptual Survey (QMCS is a 12-question survey of students’ conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included observations of students, a review of previous literature and textbooks and syllabi, faculty and student interviews, and statistical analysis. We also discuss issues in the development of specific questions, which may be useful both for instructors who wish to use the QMCS in their classes and for researchers who wish to conduct further research of student understanding of quantum mechanics. The QMCS has been most thoroughly tested in, and is most appropriate for assessment of (as a posttest only, sophomore-level modern physics courses. We also describe testing with students in junior quantum courses and graduate quantum courses, from which we conclude that the QMCS may be appropriate for assessing junior quantum courses, but is not appropriate for assessing graduate courses. One surprising result of our faculty interviews is a lack of faculty consensus on what topics should be taught in modern physics, which has made designing a test that is valued by a majority of physics faculty more difficult than expected.

  9. Towards a shared ontology: A generic classification of cognitive processes in conceptual design

    National Research Council Canada - National Science Library

    Laura Hay; Alex H B Duffy; Chris McTeague; Laura M Pidgeon; Tijana Vuletic; Madeleine Grealy

    2017-01-01

    Towards addressing ontological issues in design cognition research, this paper presents the first generic classification of cognitive processes investigated in protocol studies on conceptual design cognition...

  10. Developing Conceptual Hypersonic Airbreathing Engines Using Design of Experiments Methods

    Science.gov (United States)

    Ferlemann, Shelly M.; Robinson, Jeffrey S.; Martin, John G.; Leonard, Charles P.; Taylor, Lawrence W.; Kamhawi, Hilmi

    2000-01-01

    Designing a hypersonic vehicle is a complicated process due to the multi-disciplinary synergy that is required. The greatest challenge involves propulsion-airframe integration. In the past, a two-dimensional flowpath was generated based on the engine performance required for a proposed mission. A three-dimensional CAD geometry was produced from the two-dimensional flowpath for aerodynamic analysis, structural design, and packaging. The aerodynamics, engine performance, and mass properties arc inputs to the vehicle performance tool to determine if the mission goals were met. If the mission goals were not met, then a flowpath and vehicle redesign would begin. This design process might have to be performed several times to produce a "closed" vehicle. This paper will describe an attempt to design a hypersonic cruise vehicle propulsion flowpath using a Design of' Experiments method to reduce the resources necessary to produce a conceptual design with fewer iterations of the design cycle. These methods also allow for more flexible mission analysis and incorporation of additional design constraints at any point. A design system was developed using an object-based software package that would quickly generate each flowpath in the study given the values of the geometric independent variables. These flowpath geometries were put into a hypersonic propulsion code and the engine performance was generated. The propulsion results were loaded into statistical software to produce regression equations that were combined with an aerodynamic database to optimize the flowpath at the vehicle performance level. For this example, the design process was executed twice. The first pass was a cursory look at the independent variables selected to determine which variables are the most important and to test all of the inputs to the optimization process. The second cycle is a more in-depth study with more cases and higher order equations representing the design space.

  11. Conceptual design requirements for Korean Reference HLW disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Choi, Jong Won; Hahn, Pil Son; Lee, Jong Youl; Kim, Kyung Soo; Kim, Sung Ki; Cho, Dong Keun; Lee, Yang

    2005-05-15

    This report outlined the requirements for the conceptual design of KRS(Korean Reference HLW disposal System). The site for the disposal of high-level radioactive wastes has not yet been selected in Korea. Since the KRS should be designed under these circumstances, the necessary requirements which should be determined are studied in the report. The amounts of spent fuels from the nuclear power plants in the long-term national power development plan are projected. With this estimation the disposal rates of CANDU and PWR spent fuels are analyzed and determined. The national and international regulations regarding the disposal of HLW are summarized. The functions of the underground facilities are defined. The representative geological conditions are determined since no site is yet decided in Korea.

  12. Conceptual design of an emergency tritium clean-up system

    Energy Technology Data Exchange (ETDEWEB)

    Muller, M.E.

    1978-01-01

    The Los Alamos Scientific Laboratory (LASL) has been selected by the Department of Energy (DOE) to design, build, and operate a facility to demonstrate the operability of the tritium-related subsystems that would be required to successfully develop fusion reactor systems. An emergency tritium clean-up subsystem (ETC) for this facility will be designed to remove tritium from the cell atmosphere if an accident causes the primary and secondary tritium containment to be breached. Conceptually, the ETC will process cell air at the rate of 0.65 actual m/sup 3//s and will achieve an overall decontamination factor of 10/sup 6/ per tritium oxide (T/sub 2/O). Following the maximum credible release of 100 g of tritium, the ETC will restore the cell to opertional status within 24 h without a significant release of tritium to the environment.

  13. Seismic analysis for conceptual design of HCCR TBM-set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won, E-mail: dwlee@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Kim, Suk-Kwon; Yoon, Jae Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon, Republic of Korea (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The seismic analysis of KO HCCR TBM-set are performed. • The seismic envents like SL-1, SL-2, and SMHV are selected and evaluated with FEM code (ANSYS). • The results of the stresses and deformations are confirmed to meet the design criteria. - Abstract: Using the conceptual design of the Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) including the TBM-shield for testing in ITER, a seismic analysis is performed. According to the ITER TBM port plug (TBM PP) system load specifications, seismic events are selected as SL-1 (seismic level-1), SL-2 (seismic level-2), and SMHV (seismes maximaux historiquement vraisemblables, Maximum Histroically Probable Earthquakes). In a modal analysis a total of 50 modes are obtained. Then, a spectra response analysis for each seismic event is carried out using ANSYS based on the modal analysis results. For each event, the obtained Tresca stress is evaluated to confirm the design integrity, by comparing the resulting stress to the design criteria. The Tresca strain and displacement are also estimated for the HCCR TBM-set. From the analysis, it was concluded that the maximum stresses by the seismic events meet the design criteria, and the displacements are lower than the designed gap from the TBM PP frame. The results are provided to a load combination analysis.

  14. Conceptual design of a helium heater for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xue Zhou, E-mail: jin@kit.edu; Chen, Yuming; Ghidersa, Bradut-Eugen

    2014-10-15

    Highlights: •A special design of heater with two vessels is introduced for the operation at 10 MPa and 800 °C. •The additional coupling between the cold leg and the hot leg of the loop due to the heater design has an impact on the loop energy budget. •Reducing the heat transfer between the two flow channels inside the heater by means of a helium gap in the inlet nozzle is proven to be effective. -- Abstract: The Karlsruhe Advanced Technologies Helium Loop (KATHELO) has been designed for testing divertor modules as well as qualifying materials for high heat flux, high temperature (up to 800 °C) and high pressure (10 MPa) applications. The test section inlet temperature level is controlled using a process electrical heater. To cope with the extreme operating conditions, a special design of this unit has been proposed. In this paper the conceptual design of the unit will be presented and the impact of the coupling between the cold and hot helium gas on the overall efficiency of the loop will be investigated. The detailed thermal-hydraulic analysis of the feed through of the hot helium into the low temperature pressure vessel using ANSYS CFX will be presented. The impact of the design choices on the overall energy budget of the loop will be analyzed using RELAP5-3D.

  15. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  16. Scaling studies and conceptual experiment designs for NGNP CFD assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; G. E. McCreery

    2004-11-01

    The objective of this report is to document scaling studies and conceptual designs for flow and heat transfer experiments intended to assess CFD codes and their turbulence models proposed for application to prismatic NGNP concepts. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses have been applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant turbulent forced convection with slight transverse property variation. In a pressurized cooldown (LOFA) simulation, the flow quickly becomes laminar with some possible buoyancy influences. The flow in the lower plenum can locally be considered to be a situation of multiple hot jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentumdominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two types of heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary

  17. Engineering design activities and conceptual change in middle school science

    Science.gov (United States)

    Schnittka, Christine G.

    The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative groups. One eighth-grade physical science teacher and her students participated in a unit on heat transfer and thermal energy. One class served as the control while two others received variations of an engineering design treatment. Data were gathered from teacher and student entrance and exit interviews, audio recordings of student dialog during group work, video recordings and observations of all classes, pre- and posttests on science content and engineering attitudes, and artifacts and all assignments completed by students. Qualitative and quantitative data were collected concurrently, but analysis took place in two phases. Qualitative data were analyzed in an ongoing manner so that the researcher could explore emerging theories and trends as the study progressed. These results were compared to and combined with the results of the quantitative data analysis. Analysis of the data was carried out in the interpretive framework of analytic induction. Findings indicated that students overwhelmingly possessed alternative conceptions about heat transfer, thermal energy, and engineering prior to the interventions. While all three classes made statistically significant gains in their knowledge about heat and energy, students in the engineering design class with the targeted demonstrations made the most significant gains over the other two other classes. Engineering attitudes changed significantly in the two classes that received the engineering design intervention. Implications from this study can inform teachers' use of engineering design activities in science classrooms. These implications are: (1) Alternative conceptions will

  18. Capturing and Reuse of Design Knowledge during the Conceptual Design Process: Illustrated with a Snap-Fit Joint

    DEFF Research Database (Denmark)

    Jensen, Thomas Aakjær; Hansen, Claus Thorp

    1998-01-01

    In this paper a concept for a computer based system, a Designer’s Workbench (DWB), is presented, for supporting a designer during the conceptual design process. The DWB is based on design units, which are a clustering of design knowledge related to the conceptual design phase. It is shown, how th...... these design units can be created by the designer during the conceptual design process, and later reused in another design project. The design of a snap-fit joint, is used to illustrated this approach to design....

  19. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    Science.gov (United States)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  20. Pre-conceptual Design Assessment of DEMO Remote Maintenance

    CERN Document Server

    Loving, A; Sykes, N; Iglesias, D; Coleman, M; Thomas, J; Harman, J; Fischer, U; Sanz, J; Siuko, M; Mittwollen, M; others,

    2013-01-01

    EDFA, as part of the Power Plant Physics and Technology programme, has been working on the pre-conceptual design of a Demonstration Power Plant (DEMO). As part of this programme, a review of the remote maintenance strategy considered maintenance solutions compatible with expected environmental conditions, whilst showing potential for meeting the plant availability targets. A key finding was that, for practical purposes, the expected radiation levels prohibit the use of complex remote handling operations to replace the first wall. In 2012/13, these remote maintenance activities were further extended, providing an insight into the requirements, constraints and challenges. In particular, the assessment of blanket and divertor maintenance, in light of the expected radiation conditions and availability, has elaborated the need for a very different approach from that of ITER. This activity has produced some very informative virtual reality simulations of the blanket segments and pipe removal that are exceptionally ...

  1. Conceptual designs for in situ analysis of Mars soil

    Science.gov (United States)

    Mckay, C. P.; Zent, A. P.; Hartman, H.

    1991-01-01

    A goal of this research is to develop conceptual designs for instrumentation to perform in situ measurements of the Martian soil in order to determine the existence and nature of any reactive chemicals. Our approach involves assessment and critical review of the Viking biology results which indicated the presence of a soil oxidant, an investigation of the possible application of standard soil science techniques to the analysis of Martian soil, and a preliminary consideration of non-standard methods that may be necessary for use in the highly oxidizing Martian soil. Based on our preliminary analysis, we have developed strawman concepts for standard soil analysis on Mars, including pH, suitable for use on a Mars rover mission. In addition, we have devised a method for the determination of the possible strong oxidants on Mars.

  2. Conceptual design of industrial free electron laser using superconducting accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  3. Conceptual Design Optimization of TSTO Spaceplaneby ATREX Engine

    Science.gov (United States)

    Tsuchiya, Takeshi; Mori, Takashige

    Recently, two-stage-to-orbit (TSTO) spaceplane is regarded as one of candidates for fully reusable space transportation system. It consists of a hypersonic booster propelled by airbreathing engines and an orbiter by rocket engines. In many concepts of the airbreathing engines, ATREX engine has been developed in ISAS. The aim of this paper is to apply an optimization method to conceptual designs of TSTO spaceplane with the ATREX engines and to obtain necessary vehicle size and its optimal flight trajectory. First, analysis methods are integrated to define optimization problems. Then, the optimal solutions show that it is necessary to reduce each component weight in order to achieve the practicable vehicles. Especially, the boosters need the huge ATREX engines, which requires improving ATREX engine performance. In addition, it is demonstrated that, by using optimal control technique, the booster can fly back to a launch site by little propellant consumption.

  4. Conceptual design of cesium removal device for ITER NBI maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Shibanuma, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Cesium is required in order to generate a stable negative ion of hydrogen in an ion source of the neutral beam injector (NBI), which is one of the plasma-heating devices for International Thermonuclear Experimental Reactor (ITER). After long time operation of the NBI, the cesium deposits to the insulators supporting the electrode. Due to the deterioration of the insulation resistance, the continuous operation of the NBI will be difficult. In addition, the NBI device is activated by neutrons from D-T plasma, so that periodic removal and cleaning of the cesium on the insulators by remove handling is required. A study of the cesium removal scenario and the device is therefore required considering remote handling. In this report, a cesium removal procedure and conceptual design of the cesium removal device using laser ablation technique are studied, and the feasibility of the laser ablation method is shown. (author)

  5. Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.

    2009-01-01

    Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.

  6. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  7. Linac Coherent Light Source (LCLS) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    2002-11-25

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) R&D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiation to produce an intense, spatially coherent beam of x-rays, tunable in energy from 0.8 keV to 8 keV. The LCLS will include two experiment halls as well as x-ray optics and infrastructure necessary to make use of this x-ray beam for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac.

  8. A conceptual design and implementation of the Lunar Biosphere

    Science.gov (United States)

    Li, Leyuan; Hu, Enzhu; Hu, Yunping; Rong, Long; Liu, Hong

    It is necessary for human beings to establish a lunar biosphere on the moon similar to the biosphere on the earth in order to realize long-term human habitation, which will make it possible to exploit the resources there. This paper analyzes the environmental factors on the lunar surface; selects the appropriate location on the moon to set up the lunar biosphere; and designs two conceptual architecture configurations. Moreover, after comprehensively con-sidering the functions and running mechanism of lunar biosphere, we designed the internal configuration of the lunar biosphere and divided the whole system into several parallel sub-systems. Each subsystem was mainly composed of six parts: human habitation, cultivation, resource storage, food and water processing, wastes treatment and wastes storage; these parts are mutually connected through mass exchange and run circularly. Being one system, these subsystems possess independence, i.e. they can be individually isolated and run independently when accidents happen. In space distribution, the highest efficiency is achieved with the op-timization of the system structure. As for the function, the extensibility of the system's scale was also considered and the processing of lunar soil using earth worm was designed.

  9. Hyper Suprime-Cam: conceptual design to introduce spectroscopic mode

    Science.gov (United States)

    Komiyama, Yutaka; Tanaka, Yoko; Miyazaki, Satoshi; Kawanomoto, Satoshi; Kamata, Yukiko; Nakaya, Hidehiko; Obuchi, Yoshiyuki; Uraguchi, Fumihiro; Utsumi, Yousuke

    2012-09-01

    Hyper Suprime-Cam (HSC) is the wide-field CCD camera which is attached to the prime focus of Subaru Telescope. It covers the field of view of 1.5 degree in diameter by 116 2k x 4k fully-depleted CCDs. In this paper, we present the conceptual design of optics and mechanics how to introduce spectroscopic mode to this simple imager HSC. The design is based on the idea that the optical elements such as collimeter, grisms and camera lenses are integrated as a 'filter' of HSC. The incident light is folded by pickup mirror at filter layer and introduced to the filter space. After passing the slit, the incident light is collimated by the collimeter lens and divided into three wavelength ranges by dichroic mirrors. The collimated beam in each wavelength range is fed to the grism and dispersed. The dispersed beam is converged by the camera lens and folded by 45 degree mirror to the direction parallel to the optical axis. The resultant spectra are imaged on the main CCDs on the focal plane. The space allowed for filters is 600 mm in diameter and 42 mm thick, which is very tight but we are able to design spectroscopic optics with some difficulties. The spectral resolution is designed to be more than 1000 and the wavelength coverage is targeted to be 370-1050 nm to realize medium-resolution spectroscopy for various type of objects. We show the optical design of collimeter, grism and camera lenses together with the mechanical layout of the spectroscopic optics.

  10. The Conceptual Design of a Tidal Power Plant in Taiwan

    Directory of Open Access Journals (Sweden)

    Jia-Shiuan Tsai

    2014-06-01

    Full Text Available Located on the northwestern of Taiwan, the Matsu archipelago is near mainland China and comprises four islands: Nangan, Beigan, Juguang, and Dongyin. The population of Matsu totals 11,196 and is chiefly concentrated on Nangan and Beigan. From 1971 to 2000, Matsu built five oil-fired power plants with a total installed capacity of 47 MW. However, the emissions and noise generated by the oil-fired power plant has caused damage to Matsu’s environment, and the cost of fuel is high due to the long-distance shipping from Taiwan. Developing renewable energy in Matsu has therefore been a fervent topic for the Taiwan government, and tidal power is considered to be of the highest priority due to Matsu’s large tidal range (4.29 m in average and its semidiurnal tide. Moreover, the islands of Nangan and Beigan are composed of granite and have natural harbors, rendering them ideal places for coastal engineering of tidal power plants. This paper begins with a renewable energy reserves assessment in Matsu to determine the amount of tidal energy. Next, a tidal turbine type of the lowest cost is chosen, and then its dynamic characteristic, performance, and related design are analyzed. Finally, the coastal engineering condition was investigated, and a conceptual design for tidal power plant is proposed.

  11. LIGHT SOURCE: Conceptual design of Hefei advanced light source

    Science.gov (United States)

    Li, Wei-Min; Wang, Lin; Feng, Guang-Yao; Zhang, Shan-Cai; Wu, Cong-Feng; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The conceptual of Hefei Advanced Light Source, which is an advanced VUV and Soft X-ray source, was developed at NSRL of USTC. According to the synchrotron radiation user requirements and the trends of SR source development, some accelerator-based schemes were considered and compared; furthermore storage ring with ultra low emittance was adopted as the baseline scheme of HALS. To achieve ultra low emittance, some focusing structures were studied and optimized in the lattice design. Compromising of emittance, on-momentum and off-momentum dynamic aperture and ring scale, five bend acromat (FBA) was employed. In the preliminary design of HALS, the emittance was reduced to sub nm · rad, thus the radiation up to water window has full lateral coherence. The brilliance of undulator radiation covering several eVs to keVs range is higher than that of HLS by several orders. The HALS should be one of the most advanced synchrotron radiation light sources in the world.

  12. Retrievable surface storage facility conceptual system design description

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts.

  13. Conceptual design of an in-space cryogenic fluid management facility, executive summary

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.

  14. The effect of inoperative readout layers on SDC calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.

    1993-08-01

    The SDC calorimeter is to be constructed using Pb and Fe absorbers and scintillator active sampling using the tile/fiber technique. In this note, the effect of the inoperative readout of a single sampling layer is studied. The goal of this study is to inform on a cost/benefit analysis of the need to repair inoperative layers of the calorimetric readout.

  15. Conceptual Design of Oxygen-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer; Zhen Fan

    2005-09-01

    {sub 2} rich stream for sequestration. FW has developed a conceptual design of an O{sub 2} fired boiler to determine overall plant performance and economics. Five subtasks were conducted: (1) a literature review, (2) a system design and analysis, (3) a low NOx burner design and analysis, (4) a furnace and heat recovery area design analysis, and (5) an economic analysis. The objective of the literature search is to locate any data/information relevant to the Oxygen-Based PC Boiler conceptual design. The objective of the system design and analysis task is to optimize the PC boiler plant by maximizing system efficiency within practical considerations. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 MW plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.6% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 65% of the air-fired reference case. The objective of the low NOx burner design and analysis task is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent CFD computer program. Four burner designs were developed: (1) with no OFG and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was

  16. Advanced conceptual design report. Phase II. Liquid effluent treatment and disposal Project W-252

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-31

    This Advanced Conceptual Design Report (ACDR) provides a documented review and analysis of the Conceptual Design Report (CDR), WHC-SD-W252-CDR-001, June 30, 1993. The ACDR provides further design evaluation of the major design approaches and uncertainties identified in the original CDR. The ACDR will provide a firmer basis for the both the design approach and the associated planning for the performance of the Definitive Design phase of the project.

  17. Conceptual design of NBI beamline for VEST plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.S., E-mail: tskim@kaeri.re.kr; In, S.R.; Jeong, S.H.; Park, M.; Chang, D.H.; Jung, B.K.; Lee, K.W.

    2016-11-01

    Highlights: • VEST NBI injector is conceptually designed to support further VEST plasma experiment. • VEST NBI injector composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, electrostatic ion dumps, NB vessel with cryopump, and rotating calorimerter. • The vacuum vessel of the beamline is divided into two parts for high injection efficiency and different direction (co- and counter-current) of neutral beam injection. • An ion source for the VEST NBI system was also designed to deliver neutral hydrogen beams with a power of 0.3 MW. The plasma generator of the VEST NB ion source has modified TFTR bucket multi-cusp chamber. The plasma generator has twelve hair-pin shaped tungsten filaments used as a cathode and an arc chamber including a bucket and an electron dump which serve as anode. The accelerator system consists of three grids, each having extraction area of 100 mm × 320 mm and 64 shaped slits of 3 mm spacing. • The preliminary structure design and the layout of the main components of the injector have been completed. Simulation and calculation for optimization of the NB beamline design results prove that the parameters of ion source, neutralization efficiency (76%:95% equilibrium neutralization efficiency), and beam power transmission efficiency (higher than 90%) are in agreement with design targets of the VEST NB beamline. • This VEST NBI system will provide a neutral beam of ∼0.6 MW for both heating and current drive in torus plasma. - Abstract: A 10 m s-pulsed NBI (Neutral Beam Injection) system for VEST (Versatile Experiment Spherical Torus) plasma heating is designed to provide a beam power of more than 0.6 MW with 20 keV H° neutrals. The VEST NBI injector is composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, residual ion dump, NB vessel with a cryopump, and rotating calorimeter. The position and size of these beamline components are roughly determined with geometric

  18. Tank SY-102 remediation project: Flowsheet and conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, S.L.; Punjak, W.A.; Schreiber, S.B.; Dunn, S.L.; Jarvinen, G.D.; Marsh, S.F.; Pope, N.G.; Agnew, S.; Birnbaum, E.R.; Thomas, K.W.; Ortic, E.A.

    1994-01-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. A major program in TWRS is pretreatment which was established to process the waste prior to disposal. Pretreatment is needed to resolve tank safety issues and to separate wastes into high-level and low-level fractions for subsequent immobilization and disposal. There is a fixed inventory of actinides and fission products in the tank which must be prepared for disposal. By segregating the actinides and fission products from the bulk of the waste, the tank`s contents can be effectively managed. Due to the high public visibility and environmental sensitivity of this problem, real progress and demonstrated efforts toward addressing it must begin as soon as possible. As a part of this program, personnel at the Los Alamos National Laboratory (LANL) have developed and demonstrated a flowsheet to remediate tank SY-102 which is located in the 200 West Area and contains high-level radioactive waste. This report documents the results of the flowsheet demonstrations performed with simulated, but radioactive, wastes using an existing glovebox line at the Los Alamos Plutonium Facility. The tank waste was characterized using both a tank history approach and an exhaustive evaluation of the available core sample analyses. This report also presents a conceptual design complete with a working material flow model, a major equipment list, and cost estimates.

  19. Conceptual design of EAST multi-purpose maintenance deployer system

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hongtao [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui 230022 (China); He, Kaihui, E-mail: hekh@iterchina.cn [China International Nuclear Fusion Energy Program Execution Center, Beijing 100862 (China); Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui 230022 (China); Yang, Yang [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Villedieu, Eric [CEA-IRFM, F-13108 Saint-Paul-Lez-Durance (France); Shi, Shanshuang; Yang, Songzhu [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China)

    2017-05-15

    Highlights: • A redundant 11-DOF articulated robot for EAST in-vessel maintenance is presented. • A new modular joint developed to optimize the yaw joint actuator for the robot is described. • A 3-DOF gripper integrated with cameras and torque sensor is developed. - Abstract: EAST multi-purpose maintenance deployer (EMMD) system, being collaboratively developed by ASIPP and CEA-IRFM, is built as upgrades for EAMA. Updated kinematics parameters such as DOF distribution and joint angle for EMMD robot are performed and verified in a simulation platform. A new modular joint has been developed to optimize the yaw joint actuator for easy assembly and flexibility reduction. A 3-DOF gripper with cameras and torque sensor has been designed to provide inspection and dexterous handling of small fragments inside the EAST chamber. A conceptual upgrade for EAMA-CASK has been developed for the purpose of protecting the end-effector's sensors which do not have temperature-resistant qualification. The high temperature and vacuum compatible solutions and validation experiments have been presented in this paper.

  20. Interactive flutter analysis and parametric study for conceptual wing design

    Science.gov (United States)

    Mukhopadhyay, Vivek

    1995-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed on MathCad (trademark) platform for Macintosh, with integrated documentation, graphics, database and symbolic mathematics. The analysis method was based on nondimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The plots were compiled in a Vaught Corporation report from a vast database of past experiments and wind tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended Wing Body concept, proposed by McDonnell Douglas Corporation. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  1. Global shutdown dose rate maps for a DEMO conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Leichtle, D., E-mail: dieter.leichtle@f4e.europa.eu [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pereslavtsev, P. [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sanz, J.; Catalan, J.P.; Juarez, R. [Universidad Nacional de Educación a Distancia(UNED), E.T.S. Ingenieros Industriales, C/ Juan del Rosal 12, 28040 Madrid (Spain)

    2015-10-15

    Highlights: • Application of R2S-method on high-resolution full torus sector mesh for DEMO. • Absorbed dose rates after shutdown for a variely of RH equipment at typical locations. • Idenification of radiation levels at several port based locations. - Abstract: For the calculations of highly reliable shutdown dose rate (SDR) maps in fusion devices like a DEMO plant, the Rigorous-2-step (R2S) method is nowadays routinely applied using high-resolution decay gamma sources from initial high-resolution neutron flux meshes activating all materials in the system. This approach has been utilized in the present paper with the objective to provide SDR results relevant for RH systems of a conceptual DEMO design developed in the EU. The primary objective was to assess specific locations of interest for RH equipment inside the vessel and along the extension of maintenance ports. To this end, a provisional DEMO MCNP model has been used, featuring HCLL-type blankets, tungsten/copper divertor, manifolds, vacuum vessel with ports and toroidal field coils. The operational scenario assumed 2.1 GW fusion power and a life-time of 20 years with plant availability of 30%, where removable parts will be extracted after 5.2 years. Results of absorbed dose rate distributions for several relevant materials are presented and discussed in terms of the different contributions from the various activated components.

  2. Tokamak experimental power reactor conceptual design. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 years. The EPR operates in a pulsed mode at a frequency of approximately 1/min., with an approximate 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2-cm thick stainless steel, and has 2-cm thick detachable, beryllium-coated coolant panels mounted on the interior. An 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H/sub 2/O. Sixteen niobium-titanium superconducting toroidal-field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic-heating and equilibrium-field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam-injectors, which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-converters.

  3. Conceptual Design of the International Axion Observatory (IAXO)

    CERN Document Server

    Armengaud, E; Betz, M; Brax, P; Brun, P; Cantatore, G; Carmona, J M; Carosi, G P; Caspers, F; Caspi, S; Cetin, S A; Chelouche, D; Christensen, F E; Dael, A; Dafni, T; Davenport, M; Derbin, A V; Desch, K; Diago, A; Döbrich, B; Dratchnev, I; Dudarev, A; Eleftheriadis, C; Fanourakis, G; Ferrer-Ribas, E; Galán, J; García, J A; Garza, J G; Geralis, T; Gimeno, B; Giomataris, I; Gninenko, S; Gómez, H; González-Díaz, D; Guendelman, E; Hailey, C J; Hiramatsu, T; Hoffmann, D H H; Horns, D; Iguaz, F J; Irastorza, I G; Isern, J; Imai, K; Jakobsen, A C; Jaeckel, J; Jakovčić, K; Kaminski, J; Kawasaki, M; Karuza, M; Krčmar, M; Kousouris, K; Krieger, C; Lakić, B; Limousin, O; Lindner, A; Liolios, A; Luzón, G; Matsuki, S; Muratova, V N; Nones, C; Ortega, I; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Redondo, J; Ringwald, A; Russenschuck, S; Ruz, J; Saikawa, K; Savvidis, I; Sekiguchi, T; Semertzidis, Y K; Shilon, I; Sikivie, P; Silva, H; Kate, H ten; Tomas, A; Troitsky, S; Vafeiadis, T; Bibber, K van; Vedrine, P; Villar, J A; Vogel, J K; Walckiers, L; Weltman, A; Wester, W; Yildiz, S C; Zioutas, K

    2014-01-01

    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{ae}$ with sensitivity $-$for the first time$-$ to values of $g_{ae}$ not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, w...

  4. Augmenting Conceptual Design Trajectory Tradespace Exploration with Graph Theory

    Science.gov (United States)

    Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen

    2016-01-01

    Within conceptual design changes occur rapidly due to a combination of uncertainty and shifting requirements. To stay relevant in this fluid time, trade studies must also be performed rapidly. In order to drive down analysis time while improving the information gained by these studies, surrogate models can be created to represent the complex output of a tool or tools within a specified tradespace. In order to create this model however, a large amount of data must be collected in a short amount of time. By this method, the historical approach of relying on subject matter experts to generate the data required is schedule infeasible. However, by implementing automation and distributed analysis the required data can be generated in a fraction of the time. Previous work focused on setting up a tool called multiPOST capable of orchestrating many simultaneous runs of an analysis tool assessing these automated analyses utilizing heuristics gleaned from the best practices of current subject matter experts. In this update to the previous work, elements of graph theory are included to further drive down analysis time by leveraging data previously gathered. It is shown to outperform the previous method in both time required, and the quantity and quality of data produced.

  5. Conceptual Design of a Small Hybrid Unmanned Aircraft System

    Directory of Open Access Journals (Sweden)

    Umberto Papa

    2017-01-01

    Full Text Available UAS (Unmanned Aircraft System technologies are today extremely required in various fields of interest, from military to civil (search and rescue, environmental surveillance and monitoring, and entertainment. Besides safety and legislative issues, the main obstacle to civilian applications of UAS systems is the short time of flight (endurance, which depends on the equipped power system (battery pack and the flight mission (low/high speed or altitude. Long flight duration is fundamental, especially with tasks that require hovering capability (e.g., river flow monitoring, earthquakes, devastated areas, city traffic monitoring, and archeological sites inspection. This work presents the conceptual design of a Hybrid Unmanned Aircraft System (HUAS, merging a commercial off-the-shelf quadrotor and a balloon in order to obtain a good compromise between endurance and weight. The mathematical models for weights estimation and balloon static performance analysis are presented, together with experimental results in different testing scenarios and complex environments, which show 50% improvement of the flight duration.

  6. Conceptual design of a compact positron tomograph for prostateimaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J.S.; Derenzo, S.E.; Qi, J.; Moses, W.W.; Huesman, R.H.; Budinger, T.F.

    2000-11-04

    We present a conceptual design of a compact positron tomograph for prostate imaging using a pair of external curved detector banks, one placed above and one below the patient. The lower detector bank is fixed below the patient bed, and the top bank adjusts vertically for maximum sensitivity and patient access. Each bank is composed of 40conventional block detectors, forming two arcs (44 cm minor, 60 cm major axis) that are tilted to minimize attenuation and positioned as close as possible to the patient to improve sensitivity. The individual detectors are angled to point towards the prostate to minimize resolution degradation in that region. Inter-plane septa extend 5 cm beyond the scintillator crystals to reduce random and scatter backgrounds. A patient is not fully encircled by detector rings in order to minimize cost,causing incomplete sampling due to the side gaps. Monte Carlo simulation (including random and scatter) demonstrates the feasibility of detecting a spherical tumor of 2.5 cm diameter with a tumor to background ratio of2:1, utilizing the number of events that should be achievable with a6-minute scan after a 10 mCi injection (e.g., carbon-11 choline or fluorine-18 fluorocholine).

  7. Linac Coherent Light Source (LCLS) Conceptual Design Report

    CERN Document Server

    Nuhn, H D

    2002-01-01

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) RandD facility operating in the wavelength range 1.5-15 (angstrom). This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiatio...

  8. Conceptual Design of a Nano-Networking Device

    Directory of Open Access Journals (Sweden)

    Sebastian Canovas-Carrasco

    2016-12-01

    Full Text Available Nanotechnology is an emerging scientific area whose advances, among many others, have a positive direct impact on the miniaturization of electronics. This unique technology enables the possibility to design and build electronic components as well as complete devices (called nanomachines or nanodevices at the nano scale. A nanodevice is expected to be an essential element able to operate in a nanonetwork, where a huge number of them would coordinate to acquire data, process the information gathered, and wirelessly transmit those data to end-points providing innovative services in many key scenarios, such as the human body or the environment. This paper is aimed at studying the feasibility of this type of device by carefully examining their main component parts, namely the nanoprocessor, nanomemory, nanoantenna, and nanogenerator. To this end, a thorough state-of-the-art review is conveyed to discuss, substantiate, and select the most suitable current technology (commercial or pre-commercial for each component. Then, we further contribute by developing a complete conceptual nanodevice layout taking into consideration its ultra-small size (similar to a blood cell and its very restricted capabilities (e.g., processing, memory storage, telecommunication, and energy management. The required resources as well as the power consumption are realistically estimated.

  9. File list: Oth.Lar.20.sdc-3.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.20.sdc-3.AllCell ce10 TFs and others sdc-3 Larvae SRX657409,SRX059243,SRX05...9242 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.20.sdc-3.AllCell.bed ...

  10. File list: Oth.ALL.05.sdc-3.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.sdc-3.AllCell ce10 TFs and others sdc-3 All cell types SRX657409,SRX0592...43,SRX657411,SRX059242 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.05.sdc-3.AllCell.bed ...

  11. File list: Oth.Lar.50.sdc-3.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.50.sdc-3.AllCell ce10 TFs and others sdc-3 Larvae SRX657409,SRX059243,SRX05...9242 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.50.sdc-3.AllCell.bed ...

  12. File list: Oth.Lar.05.sdc-3.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.05.sdc-3.AllCell ce10 TFs and others sdc-3 Larvae SRX657409,SRX059243,SRX05...9242 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.05.sdc-3.AllCell.bed ...

  13. File list: Oth.ALL.20.sdc-3.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.sdc-3.AllCell ce10 TFs and others sdc-3 All cell types SRX657409,SRX0592...43,SRX657411,SRX059242 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.20.sdc-3.AllCell.bed ...

  14. File list: Oth.ALL.50.sdc-3.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.sdc-3.AllCell ce10 TFs and others sdc-3 All cell types SRX657409,SRX0592...43,SRX657411,SRX059242 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.50.sdc-3.AllCell.bed ...

  15. File list: Oth.Lar.10.sdc-3.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.10.sdc-3.AllCell ce10 TFs and others sdc-3 Larvae SRX657409,SRX059243,SRX05...9242 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.10.sdc-3.AllCell.bed ...

  16. File list: Oth.ALL.10.sdc-3.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.sdc-3.AllCell ce10 TFs and others sdc-3 All cell types SRX657409,SRX0592...43,SRX657411,SRX059242 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.10.sdc-3.AllCell.bed ...

  17. LCLS Ultrafast Science Instruments:Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, J.; Boutet, S.; Castagna, J-C.; Chapman, H.; Feng, Y.; Foyt, W.; Fritz, D.M.; Gaffney, K.J.; Gr|bel, G.; Hajdu, J.; Hastings, J.B.; Kurita, N.; Larsson, J.; Ludwig, K.; Messerschmidt, M.; Miao, J.; Reis, D.A.; Robert, A.; Stephenson, G.B.; Tschentscher, Th.; van Bakel, N.; /SLAC /LLNL, Livermore /DESY /Lund Inst. Tech. /Boston U. /UCLA /Michigan U. /Argonne

    2007-10-16

    The Stanford Linear Accelerator Center (SLAC), along with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) facility, which will operate in the wavelength range 1.5 nm - 0.15 nm. This FEL, the Linac Coherent Light Source (LCLS), utilizes the SLAC linac and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac will be used as the source of electrons for the LCLS. The high energy electrons will be transported across the SLAC Research Yard, into a tunnel which will house a long undulator. In passing through the undulator, the electrons will be bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength will be tunable from 1.5 nm to 0.15 nm. The LCLS will include two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing three X-ray instruments in order to exploit the unique scientific capability of this new LCLS facility. The technical objective of the LCLS Ultrafast Science Instruments (LUSI) project is to design, build, and install at the LCLS three hard X-ray instruments that will complement the initial instrument included in the LCLS construction. As the science programs advance and new technological challenges appear, instrumentation needs to be developed and ready to conquer these new opportunities. The LCLS instrument concepts have been developed in close consultation with the scientific community through a

  18. A micrometeoroid deceleration and capture experiment: Conceptual experiment design description

    Science.gov (United States)

    Wolfe, J. H.; Ballard, R. W.; Carle, G. C.; Bunch, T. E.

    1986-01-01

    The preliminary conceptual design for a cosmic dust collector is described. For the case of low Earth orbit (LEO), dust particles enter the collector through the collimator at a few volts negative potential due to charging in the ionosphere, at a velocity of 1 to 50 km/sec. The particles then pass through an electron stream and are charged to about 1 KV negative (regardless of incoming polarity). The 1 KV negatively charged particle then passes through three sensing grids coupled to charge sensitive preamps (CSP). The comparison of the two pulses provided by S(1) and S(2) are utilized by the microprocessor to determine the charge, q, on the particle (pulse amplitude) and its velocity, v (by time of flight). The third sensing grid, S(3), is kept at about 20 KV negative so that the dust particle will now be decelerated in passing from S(2) (zero potential) to S(3). S(3) is capacitively coupled to its CSP and the pulse from S(3) is utilized by the microprocessor to determine the particle's energy, E, and therefore its mass, m (again by time of flight) by comparison with the pulses from S(1) and S(2). The microprocessor can now precisely program the high-voltage switching network for the proper timing in the grounding of the successive deceleration grids. As determined by the microprocessor, each successive deceleration grid is grounded just after the dust particle passes, thus reducing the particle's energy by the amount q*100 KV at each stage. The microprocessor also determines at which stage the particle will fall below a certain critical energy where all remaining grids remain unswitched so that the particle will drift to the collector. The collector is kept at about 100V positive and is covered with gold foil to eliminate contamination and is removable for subsequent return to earth for detailed analysis.

  19. Whole-arm obstacle avoidance system conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Wintenberg, A.L.; Butler, P.L.; Babcock, S.M.; Ericson, M.N.; Britton, C.L. Jr.

    1993-04-01

    Whole-arm obstacle avoidance is needed for a variety of robotic applications in the Environmental Restoration and Waste Management (ER&WM) Program. Typical industrial applications of robotics involve well-defined workspaces, allowing a predetermined knowledge of collision-free paths for manipulator motion. In the unstructured or poorly defined hazardous environments of the ER&WM Program, the potential for significant problems resulting from collisions between manipulators and the environment in which they are utilized is great. The conceptual design for a sensing system that will provide protection against such collisions is described herein. The whole-arm obstacle avoidance system consists of a set of sensor ``bracelets,`` which cover the surface area of the manipulator links to the maximum extent practical, and a host processor. The host processor accepts commands from the robot control system, controls the operation of the sensors, manipulates data received from the bracelets, and makes the data available to the manipulator control system. The bracelets consist of a subset of the sensors, associated sensor interface electronics, and a bracelet interface. Redundant communications links between the host processor and the bracelets are provided, allowing single-point failure protection. The system allows reporting of 8-bit data from up to 1000 sensors at a minimum of 50 Hz. While the initial prototype implementation of the system utilizes capacitance proximity sensor, the system concept allows multiple types of sensors. These sensors are uniquely addressable, allowing remote calibration, thresholding at the bracelet, and correlation of a sensor measurement with the associated sensor and its location on the manipulator. Variable resolution allows high-speed, single-bit sensing as well as lower-speed higher-resolution sensing, which is necessary for sensor calibration and potentially useful in control.

  20. Whole-arm obstacle avoidance system conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Wintenberg, A.L.; Butler, P.L.; Babcock, S.M.; Ericson, M.N.; Britton, C.L. Jr.

    1993-04-01

    Whole-arm obstacle avoidance is needed for a variety of robotic applications in the Environmental Restoration and Waste Management (ER WM) Program. Typical industrial applications of robotics involve well-defined workspaces, allowing a predetermined knowledge of collision-free paths for manipulator motion. In the unstructured or poorly defined hazardous environments of the ER WM Program, the potential for significant problems resulting from collisions between manipulators and the environment in which they are utilized is great. The conceptual design for a sensing system that will provide protection against such collisions is described herein. The whole-arm obstacle avoidance system consists of a set of sensor bracelets,'' which cover the surface area of the manipulator links to the maximum extent practical, and a host processor. The host processor accepts commands from the robot control system, controls the operation of the sensors, manipulates data received from the bracelets, and makes the data available to the manipulator control system. The bracelets consist of a subset of the sensors, associated sensor interface electronics, and a bracelet interface. Redundant communications links between the host processor and the bracelets are provided, allowing single-point failure protection. The system allows reporting of 8-bit data from up to 1000 sensors at a minimum of 50 Hz. While the initial prototype implementation of the system utilizes capacitance proximity sensor, the system concept allows multiple types of sensors. These sensors are uniquely addressable, allowing remote calibration, thresholding at the bracelet, and correlation of a sensor measurement with the associated sensor and its location on the manipulator. Variable resolution allows high-speed, single-bit sensing as well as lower-speed higher-resolution sensing, which is necessary for sensor calibration and potentially useful in control.

  1. Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design

    Science.gov (United States)

    Iqbal, Liaquat Ullah

    An integrated design and optimization methodology has been developed for the conceptual design of an aircraft. The methodology brings higher fidelity Computer Aided Design, Engineering and Manufacturing (CAD, CAE and CAM) Tools such as CATIA, FLUENT, ANSYS and SURFCAM into the conceptual design by utilizing Excel as the integrator and controller. The approach is demonstrated to integrate with many of the existing low to medium fidelity codes such as the aerodynamic panel code called CMARC and sizing and constraint analysis codes, thus providing the multi-fidelity capabilities to the aircraft designer. The higher fidelity design information from the CAD and CAE tools for the geometry, aerodynamics, structural and environmental performance is provided for the application of the structured design methods such as the Quality Function Deployment (QFD) and the Pugh's Method. The higher fidelity tools bring the quantitative aspects of a design such as precise measurements of weight, volume, surface areas, center of gravity (CG) location, lift over drag ratio, and structural weight, as well as the qualitative aspects such as external geometry definition, internal layout, and coloring scheme early in the design process. The performance and safety risks involved with the new technologies can be reduced by modeling and assessing their impact more accurately on the performance of the aircraft. The methodology also enables the design and evaluation of the novel concepts such as the blended (BWB) and the hybrid wing body (HWB) concepts. Higher fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) allow verification of the claims for the performance gains in aerodynamics and ascertain risks of structural failure due to different pressure distribution in the fuselage as compared with the tube and wing design. The higher fidelity aerodynamics and structural models can lead to better cost estimates that help reduce the financial risks as well. This helps in

  2. CONCEPTUAL DESIGN REPORT FOR A FAST MUON TRIGGER

    Energy Technology Data Exchange (ETDEWEB)

    OBRIEN,E.; BASYE, A.; ISENHOWER, D.; JUMPER, D.; SPARKS, N.; TOWELL, R.; WATTS, C.; WOOD, J.; WRIGHT, R.; HAGGERTY, J.; LYNCH, D.; BARISH, K.; EYSER, K.O.; SETO, R.; HU, S.; LI, X.; ZHOU, S.; GLENN, A.; KINNEY, E.; KIRILUK, K.; NAGLE, J.; CHI, C.Y.; SIPPACH, W.; ZAJC. W.; BUTLER, C.; HE, X.; OAKLEY, C.; YING, J.; BLACKBURN, J.; CHIU, M.; PERDEKAMP, M.G.; KIM, Y.J.; KOSTER, J.; LAYTON, D.; MAKINS, N.; MEREDITH, B.; NORTHACKER, D.; PENG, J.-C.; SEIDL, R.; THORSLAND, E.; WADHAMS, S.; WILLIAMSON, S.; YANG, R.; HILL, J.; KEMPEL, T.; LAJOIE, J.; SLEEGE, G.; VALE, C.; WEI, F.; SAITO, N.; HONG, B.; KIM, B.; LEE, K.; LEE, K.S.; PARK, S.; SIM, K.-S.; AOKI, K.; DAIRAKU, S.; IMAI, K.; KARATSU, K.; MURAKAMI, T.; SATO, A.; SENZAKA, K.; SHOJI, K.; TANIDA, K.; BROOKS, M.; LEITCH, M.; ADAMS, J.; CARINGI, A.; FADEM, B.; IDE, J.; LICHTENWALNER, P.; FIELDS, D.; MAO, Y.; HAN, R.; BUNCE, G.; XIE, W.; FUKAO, Y.; TAKETANI, A.; KURITA, K.; MURATA, J.; (PHENIX COLLABORATION)

    2007-08-01

    This document is a Conceptual Design Report for a fast muon trigger for the PHENIX experiment that will enable the study of flavor separated quark and anti-quark spin polarizations in the proton. A powerful way of measuring these polarizations is via single spin asymmetries for W boson production in polarized proton-proton reactions. The measurement is done by tagging W{sup +} and W{sup -} via their decay into high transverse momentum leptons in the forward directions. The PHENIX experiment is capable of measuring high momentum muons at forward rapidity, but the current online trigger does not have sufficient rejection to sample the rare leptons fromW decay at the highest luminosities at the Relativistic Heavy Ion Collider (RHIC). This Report details the goals, design, R&D, and schedule for building new detectors and trigger electronics to use the full RHIC luminosity to make this critical measurement. The idea for W boson measurements in polarized proton-proton collisions at RHIC was first suggested by Jacques Soffer and Claude Bourrely in 1995. This prompted the RIKEN institute in Japan to supply funds to build a second muon arm for PHENIX (south muon arm). The existence of both a north and south muon arm makes it possible to utilize a Z{sup 0} sample to study and control systematic uncertainties which arise in the reconstruction of high momentum muons. This document has its origins in recommendations made by a NSAC Subcommittee that reviewed the U.S. Heavy Ion Physics Program in June 2004. Part of their Recommendation 1 was to 'Invest in near-term detector upgrades of the two large experiments, PHENIX and STAR'. In Recommendation 2 the subcommittee stated '- detector improvements proceed at a rate that allows a timely determination of the flavor dependence of the quark-antiquark sea polarization through W-asymmetry measurements' as we are proposing here. On September 13, 2004 DOE requested from BNL a report articulating a research plan for

  3. Conceptual design of superconducting magnet systems for the Argonne Tokamak Experimental Power Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T.; Turner, L.R.; Mills, F.E.; DeMichele, D.W.; Smelser, P.; Kim, S.H.

    1976-01-01

    As an integral effort in the Argonne Tokamak Experimental Power Reactor Conceptual Design, the conceptual design of a 10-tesla, pure-tension superconducting toroidal-field (TF) coil system has been developed in sufficient detail to define a realistic design for the TF coil system that could be built based upon the current state of technology with minimum technological extrapolations. A conceptual design study on the superconducting ohmic-heating (OH) coils and the superconducting equilibrium-field (EF) coils were also completed. These conceptual designs are developed in sufficient detail with clear information on high current ac conductor design, cooling, venting provision, coil structural support and zero loss poloidal coil cryostat design. Also investigated is the EF penetration into the blanket and shield.

  4. Active cooling for downhole instrumentation: design criteria and conceptual design summary

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, G.A.

    1986-05-01

    This report summarizes the results of a literature survey that describes successful tests of geophysical instruments and their thermal protection systems. The conditions to which an instrument is subjected are formulated into relevant thermal and mechanical design criteria that have proved useful for improving passive thermal protection systems and selecting the preliminary feasibility of active refrigeration systems. A brief summary of the results of a series of conceptual designs on seven different active refrigeration systems is given. The systems are ranked according to feasibility for use in downhole active cooling applications.

  5. SDC: Scalable description coding for adaptive streaming media

    OpenAIRE

    Quinlan, Jason J.; Zahran, Ahmed H.; Sreenan, Cormac J.

    2012-01-01

    Video compression techniques enable adaptive media streaming over heterogeneous links to end-devices. Scalable Video Coding (SVC) and Multiple Description Coding (MDC) represent well-known techniques for video compression with distinct characteristics in terms of bandwidth efficiency and resiliency to packet loss. In this paper, we present Scalable Description Coding (SDC), a technique to compromise the tradeoff between bandwidth efficiency and error resiliency without sacrificing user-percei...

  6. CLIC CDR - physics and detectors: CLIC conceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Demarteau, M.; Repond, J.; Xia, L.; Weerts, H. (High Energy Physics); (Many)

    2012-02-10

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximize the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but

  7. Conceptual Type - a commentary on the Internet’s design development?

    DEFF Research Database (Denmark)

    Engholm, Ida

    2013-01-01

    of introduction, it seems relevant to look at how the term “concept” is being used within cognate specialized fields like “conceptual art” and “conceptual design”. Thereafter, the term will be discussed in its relation to the Internet which, as a new medium for design, has served as the jumping-off point...... for conceptual type and for discussions centered on the relationship between typefaces and the underlying ideas. Within the realm of art history, conceptual art has been the object of various definitions, although this category is based primarily on the viewpoint that art exists first and foremost as idea...

  8. Conceptual Nuclear Design of a 20 MW Multipurpose Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, Hak Sung; Park, Cheol [KAERI, Daejeon (Korea, Republic of); Nghiem, Huynh Ton; Vinh, Le Vinh; Dang, Vo Doan Hai [Dalat Nuclear Research Reactor, Hanoi (Viet Nam)

    2007-08-15

    A conceptual nuclear design of a 20 MW multi-purpose research reactor for Vietnam has been jointly done by the KAERI and the DNRI (VAEC). The AHR reference core in this report is a right water cooled and a heavy water reflected open-tank-in-pool type multipurpose research reactor with 20 MW. The rod type fuel of a dispersed U{sub 3}Si{sub 2}-Al with a density of 4.0 gU/cc is used as a fuel. The core consists of fourteen 36-element assemblies, four 18-element assemblies and has three in-core irradiation sites. The reflector tank filled with heavy water surrounds the core and provides rooms for various irradiation holes. Major analyses have been done for the relevant nuclear design parameters such as the neutron flux and power distributions, reactivity coefficients, control rod worths, etc. For the analysis, the MCNP, MVP, and HELIOS codes were used by KAERI and DNRI (VAEC). The results by MCNP (KAERI) and MVP (DNRI) showed good agreements and can be summarized as followings. For a clean, unperturbed core condition such that the fuels are all fresh and there are no irradiation holes in the reflector region, the fast neutron flux (E{sub n}{>=}1.0 MeV) reaches 1.47x10{sup 14} n/cm{sup 2}s and the maximum thermal neutron flux (E{sub n}{<=}0.625 eV) reaches 4.43x10{sup 14} n/cm{sup 2}s in the core region. In the reflector region, the thermal neutron peak occurs about 28 cm far from the core center and the maximum thermal neutron flux is estimated to be 4.09x10{sup 14} n/cm{sup 2}s. For the analysis of the equilibrium cycle core, the irradiation facilities in the reflector region were considered. The cycle length was estimated as 38 days long with a refueling scheme of replacing three 36-element fuel assemblies or replacing two 36-element and one 18-element fuel assemblies. The excess reactivity at a BOC was 103.4 mk, and 24.6 mk at a minimum was reserved at an EOC. The assembly average discharge burnup was 54.6% of initial U-235 loading. For the proposed fuel management

  9. Nanoscale Manipulators: Review of Conceptual Designs Through Recent Patents.

    Science.gov (United States)

    Mekid, Samir; Bashmal, Salem; Ouakad, Hassen M

    2016-01-01

    Nanomanipulation techniques have gone through several phases to be used in scientific explorations not only to reveal more characteristics of nano, micro and mesoscopic phenomena but also to build functional nano-devices useful for specific applications. The nano-manipulator becomes a key instrument for technology bridging between sub-nano and mesoscale. The recent patents have exhibited integration of various functions in the nano-devices requiring sub-nanometer precision and highly stable manipulator with substantial pulling/pushing forces. This work reviews patents and works on conceptual designs of existing nanomanipulators with specific features. This includes design analysis leading to ultra-precision motion and stability with discussion of enabling technology. A novel integrated and numerically controlled instrument for nanomanipulation, visualization and inspection/characterization of materials at sub-nanoscale will be presented with a feature to keep the same datum for all operation and hence improve accuracy of samples. This paper has undertaken a review search in a structured examination of bibliographic databases for published and issued patents using a focused review keyword of nano-manipulation. The quality of selected patents was appraised using standard tools. The characteristics of screened patents were described, and a deductive qualitative content analysis methodology was applied to understand the modeling and testing of nanomachining process, the exact construction of nanostructure arrays and the inspection of devices with complex features. The paper encompassed forty patents. Fourteen patents exhibited the manipulation at the micro scale (MEMS manipulations), others outlined systems with sub-micron resolution and workspace range in mesoscale. Standard scale manipulation were described in 13 patents assuming only systems comprising positioning stages, arms and end-effectors where positioners are a few centimeters in size with workspace higher

  10. Conceptual design study of 1985 commercial tilt rotor transports. Volume 3. STOL design summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sambell, K.W.

    1976-04-01

    A conceptual design study is presented of 1,985 commercial tilt rotor STOL transports for a NASA 200 n. mi. (370 km) STOL Mission. A 100-passenger STOL Variant (Bell D313) of the Phase I VTOL Tilt Rotor Aircraft is defined. Aircraft characteristics are given; with the aircraft redesigned to meet 2,000-foot (610 m) field criteria, with emphasis on low fuel consumption and low direct operating cost. The 100-passenger STOL Tilt Rotor Aircraft was analyzed for performance, weights, economics, handling qualities, noise footprint and aeroelastic stability. (GRA)

  11. A Conceptual Design and Analysis Method for Conventional and Unconventional Airplanes

    NARCIS (Netherlands)

    Elmendorp, R.J.M.; Vos, R.; La Rocca, G.

    2014-01-01

    A design method is presented that has been implemented in a software program to investigate the merits of conventional and unconventional transport airplanes. Design and analysis methods are implemented in a design tool capable of creating a conceptual design based on a set of toplevel requirements.

  12. Fifth Graders as App Designers: How Diverse Learners Conceptualize Educational Apps

    Science.gov (United States)

    Israel, Maya; Marino, Matthew T.; Basham, James D.; Spivak, Wenonoa

    2013-01-01

    Instructional designers are increasingly considering how to include students as participants in the design of instructional technologies. This study provides a lens into participatory design with students by examining how students conceptualized learning applications in science, technology, engineering, and mathematics (STEM) by designing paper…

  13. High-Order Aeromechanics Model Support for Rotorcraft Conceptual Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Conceptual design tools for rotorcraft are used to size vehicles for intended flight operations, as well as reveal trends on the relative benefits certain...

  14. Matter in Extreme Conditions Instrument - Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; /SLAC; Lee, R.W.; /LLNL, Livermore; Nagler, B.; /Rutherford; Scharfenstein, M.; Marsh, D.; White, W.E.; /SLAC

    2009-12-09

    The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is

  15. Comparative evaluation of structural integrity for ITER blanket shield block based on SDC-IC and ASME code

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hee-Jin [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Ha, Min-Su, E-mail: msha12@nfri.re.kr [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Kim, Sa-Woong; Jung, Hun-Chea [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Kim, Duck-Hoi [ITER Organization, Route de Vinon sur Verdon - CS 90046, 13067 Sant Paul Lez Durance (France)

    2016-11-01

    Highlights: • The procedure of structural integrity and fatigue assessment was described. • Case studies were performed according to both SDC-IC and ASME Sec. • III codes The conservatism of the ASME code was demonstrated. • The study only covers the specifically comparable case about fatigue usage factor. - Abstract: The ITER blanket Shield Block is a bulk structure to absorb radiation and to provide thermal shielding to vacuum vessel and external vessel components, therefore the most significant load for Shield Block is the thermal load. In the previous study, the thermo-mechanical analysis has been performed under the inductive operation as representative loading condition. And the fatigue evaluations were conducted to assure structural integrity for Shield Block according to Structural Design Criteria for In-vessel Components (SDC-IC) which provided by ITER Organization (IO) based on the code of RCC-MR. Generally, ASME code (especially, B&PV Sec. III) is widely applied for design of nuclear components, and is usually well known as more conservative than other specific codes. For the view point of the fatigue assessment, ASME code is very conservative compared with SDC-IC in terms of the reflected K{sub e} factor, design fatigue curve and other factors. Therefore, an accurate fatigue assessment comparison is needed to measure of conservatism. The purpose of this study is to provide the fatigue usage comparison resulting from the specified operating conditions shall be evaluated for Shield Block based on both SDC-IC and ASME code, and to discuss the conservatism of the results.

  16. Conceptual framework for the design and conception of an electronic trade platform in agribusiness

    OpenAIRE

    Hausen, Tobias; Helbig, Ralf; Schiefer, Gerhard

    2002-01-01

    This article gives an overview of a conceptual framework for the designing and implementation of an electronic trade platform. The trade platform prototype is the basis of a general conception for the design and implementation of internet-based trade platforms in agribusiness. The main platform focus related to the concept are to convert traditional business relationships and transactions into an electronic system. The conceptual framework provides clarification with regard to the benefit of ...

  17. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-02-14

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  18. Conceptual design report for tank farm restoration and safe operations, project W-314

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  19. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    Science.gov (United States)

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  20. Conceptual design study of the GSI electron-nucleon collider

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    Design concepts, beam-beam instability, ion bunch cooling, intrabeam scattering, conventional collective effects, lattice design, polarization control, injection chain, basic technical systems, cost estimations, time schedule.

  1. A conceptual high flux reactor design with scope for use in ADS ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 68; Issue 2. A conceptual high flux reactor design with scope for use in ADS applications. Usha Pal V Jagannathan ... A 100 MWt reactor design has been conceived to support flux level of the order of 1015 n/cm2/s in selected flux trap zones. The physics design ...

  2. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Zygmunt, S.; Christensen, L.; Richardson, C.

    1997-12-12

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation`s inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned.

  3. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  4. Real-time measurement of perceptual qualities in conceptual design

    NARCIS (Netherlands)

    Bittermann, M.; Ciftcioglu, O.

    2006-01-01

    Implications of design decisions are hard to oversee for designers. This is the case in particular with respect to decisions, which influence perception related qualities of designs. Such qualities are for example visual openness, visual privacy, and spatial intimacy. They are difficult to measure

  5. Conceptual design based on scale laws and algorithms for sub-critical transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making for both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors. 6 refs., 5 figs., 1 tab. (Author)

  6. Conceptual Design of a Floating Support Structure and Mooring System for a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Berthelsen, Petter Andreas; Fylling, Ivar; Vita, Luca

    2012-01-01

    This paper deals with the conceptual design of a floating support structure and mooring system for a 5MW vertical axis offshore wind turbine. The work is carried out as part of the DeepWind project, where the main objective is to investigate the feasibility of a floating vertical axis offshore wind...... turbine. The DeepWind concept consists of a Darrieus rotor mounted on a spar buoy support structure. The conceptual design is carried out in an iterative process, involving the different subcomponents. The present work is part of the first design iteration and the objective is to find a feasible floating...... support structure and mooring system for the DeepWind concept. The conceptual design is formulated as an optimization problem: Starting with an initial configuration, the optimization procedure tries to find a cheaper solution while satisfying a set of design requirements. This approach utilizes available...

  7. Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design

    Science.gov (United States)

    Ordaz, Irian; Li, Wu

    2013-01-01

    Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.

  8. Process of establishing design requirements and selecting alternative configurations for conceptual design of a VLA

    Directory of Open Access Journals (Sweden)

    Bo-Young Bae

    2017-04-01

    Full Text Available In this study, a process for establishing design requirements and selecting alternative configurations for the conceptual phase of aircraft design has been proposed. The proposed process uses system-engineering-based requirement-analysis techniques such as objective tree, analytic hierarchy process, and quality function deployment to establish logical and quantitative standards. Moreover, in order to perform a logical selection of alternative aircraft configurations, it uses advanced decision-making methods such as morphological matrix and technique for order preference by similarity to the ideal solution. In addition, a preliminary sizing tool has been developed to check the feasibility of the established performance requirements and to evaluate the flight performance of the selected configurations. The present process has been applied for a two-seater very light aircraft (VLA, resulting in a set of tentative design requirements and two families of VLA configurations: a high-wing configuration and a low-wing configuration. The resulting set of design requirements consists of three categories: customer requirements, certification requirements, and performance requirements. The performance requirements include two mission requirements for the flight range and the endurance by reflecting the customer requirements. The flight performances of the two configuration families were evaluated using the sizing tool developed and the low-wing configuration with conventional tails was selected as the best baseline configuration for the VLA.

  9. SYSTEM DESIGN AND ANALYSIS FOR CONCEPTUAL DESIGN OF OXYGEN-BASED PC BOILER

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan; Andrew Seltzer

    2003-11-01

    The objective of the system design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the PC boiler plant by maximizing system efficiency. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 Mw plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.1% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 44% of the air-fired reference case. Compared to other CO{sub 2} sequestration technologies, the O{sub 2}-fired PC is substantially better than both natural gas combined cycles and post CO{sub 2} removal PCs and is slightly better than integrated gasification combined cycles.

  10. New evaluation methods for conceptual design selection using computational intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong Zhong; Liu, Yu; Li, Yanfeng; Wang, Zhonglai [University of Electronic Science and Technology of China, Chengdu (China); Xue, Lihua [Higher Education Press, Beijing (China)

    2013-03-15

    The conceptual design selection, which aims at choosing the best or most desirable design scheme among several candidates for the subsequent detailed design stage, oftentimes requires a set of tools to conduct design evaluation. Using computational intelligence techniques, such as fuzzy logic, neural network, genetic algorithm, and physical programming, several design evaluation methods are put forth in this paper to realize the conceptual design selection under different scenarios. Depending on whether an evaluation criterion can be quantified or not, the linear physical programming (LPP) model and the RAOGA-based fuzzy neural network (FNN) model can be utilized to evaluate design alternatives in conceptual design stage. Furthermore, on the basis of Vanegas and Labib's work, a multi-level conceptual design evaluation model based on the new fuzzy weighted average (NFWA) and the fuzzy compromise decision-making method is developed to solve the design evaluation problem consisting of many hierarchical criteria. The effectiveness of the proposed methods is demonstrated via several illustrative examples.

  11. Conceptual design of the INTOR first-wall system

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Majumdar, S.; Mattas, R.F.; Turner, L.; Jung, J.; Abdou, M.A.; Bowers, D.; Trachsel, C.; Merrill, B.

    1981-10-01

    The design concept and performance characteristics of the first-wall design for the phase-1 INTOR (International Tokamak Reactor) study is described. The reference design consists of a water-cooled stainless steel panel. The major uncertainty regarding the performance of the bare stainless steel wall relates to the response of a thin-melt layer predicted to form on limited regions during a plasma disruption. A more-complex backup design, which incorporates radiatively cooled graphite tiles on the inboard wall, is briefly described.

  12. On the optimal design of experiments for conceptual and predictive discrimination of hydrologic system models

    Science.gov (United States)

    Kikuchi, C. P.; Ferré, T. P. A.; Vrugt, J. A.

    2015-06-01

    Experimental design and data collection constitute two main steps of the iterative research cycle (aka the scientific method). To help evaluate competing hypotheses, it is critical to ensure that the experimental design is appropriate and maximizes information retrieval from the system of interest. Scientific hypothesis testing is implemented by comparing plausible model structures (conceptual discrimination) and sets of predictions (predictive discrimination). This research presents a new Discrimination-Inference (DI) methodology to identify prospective data sets highly suitable for either conceptual or predictive discrimination. The DI methodology uses preposterior estimation techniques to evaluate the expected change in the conceptual or predictive probabilities, as measured by the Kullback-Leibler divergence. We present two case studies with increasing complexity to illustrate implementation of the DI for maximizing information withdrawal from a system of interest. The case studies show that highly informative data sets for conceptual discrimination are in general those for which between-model (conceptual) uncertainty is large relative to the within-model (parameter) uncertainty, and the redundancy between individual measurements in the set is minimized. The optimal data set differs if predictive, rather than conceptual, discrimination is the experimental design objective. Our results show that DI analyses highlight measurements that can be used to address critical uncertainties related to the prediction of interest. Finally, we find that the optimal data set for predictive discrimination is sensitive to the predictive grouping definition in ways that are not immediately apparent from inspection of the model structure and parameter values.

  13. Conceptual design of the Topaz II anticriticality device

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, D.; Bultman, D.; Potter, R.C.; Sanchez, L. [Los Alamos National Lab., NM (United States); Skobelev, V.E. [CDBMB, St. Petersburg (Russian Federation)

    1993-10-01

    The Topaz II Flight Safety team requires that the hardware for the Rusian-built reactor be modified to ensure that the reactor remains subcritical in the event of an inadvertent accident in which the reactor is submersed in wet sand or water. In April 1993, the American Flight safety team chose the fuel-out anticriticality device as the baseline for the hardware design. We describe the initial stages of the hardware design; show how the mechanism works; and describe its function, the functional and operational requirements, and the difficult design problems encountered. Also described, are the initial interactions between the Russian and American design teams. Because the effort is to add an American modification to a Russian flight reactor, this project has required unusual technical cooperation and consultation with the Russian design team.

  14. Conceptual design of a telecommunications equipment container for humanitarian logistics

    Directory of Open Access Journals (Sweden)

    Stella Parisi

    2017-05-01

    Full Text Available Preparedness addresses the strategy in disaster management that allows the implementation of successful operational response immediately after a disaster. With speed as the main driver, product design for humanitarian aid purposes is a key factor of success in situations of high uncertainty and urgency. Within this context, a telecommunications container (TC has been designed that belongs to a group of containers that serve the purpose of immediate response to global disasters. The TC includes all the necessary equipment to establish a telecommunication centre in the destroyed area within the first 72 hours of humanitarian operations. The design focuses on defining the topology of the various parts of equipment by taking into consideration factors of serviceability, functionality, human-product interaction, universal design language, energy consumption, sustainability and the interrelationship with the other containers. The concept parametric design has been implemented with SolidWorks® CAD system.

  15. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    IJ van Rooyen; SR Morrell; AE Wright; E. P Luther; K Jamison; AL Crawford; HT III Hartman

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizes that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.

  16. Rapid Prediction of Configuration Aerodynamics in the ConceptualDesign Phase

    Directory of Open Access Journals (Sweden)

    C. Munro

    2001-01-01

    Full Text Available Conceptual aircraft design is characterised by the requirement to analyse a large number of configurations rapidly and cost effectively. For unusual configurations such as those typified by unmanned combat air vehicles (UCAVs adequately predicting their aerodynamic characteristics through existing empirical methods is fraught with uncertainty. By utilising rapid and low cost experimental tools such as the water tunnel and subscale flight testing it is proposed that the required aerodynamic characteristics can rapidly be acquired with sufficient fidelity for the conceptual design phase. Furthermore, the initial design predictions can to some extent be validated using flight-derived aerodynamic data from subscale flight testing.

  17. Conceptual Launch Vehicle and Spacecraft Design for Risk Assessment

    Science.gov (United States)

    Motiwala, Samira A.; Mathias, Donovan L.; Mattenberger, Christopher J.

    2014-01-01

    One of the most challenging aspects of developing human space launch and exploration systems is minimizing and mitigating the many potential risk factors to ensure the safest possible design while also meeting the required cost, weight, and performance criteria. In order to accomplish this, effective risk analyses and trade studies are needed to identify key risk drivers, dependencies, and sensitivities as the design evolves. The Engineering Risk Assessment (ERA) team at NASA Ames Research Center (ARC) develops advanced risk analysis approaches, models, and tools to provide such meaningful risk and reliability data throughout vehicle development. The goal of the project presented in this memorandum is to design a generic launch 7 vehicle and spacecraft architecture that can be used to develop and demonstrate these new risk analysis techniques without relying on other proprietary or sensitive vehicle designs. To accomplish this, initial spacecraft and launch vehicle (LV) designs were established using historical sizing relationships for a mission delivering four crewmembers and equipment to the International Space Station (ISS). Mass-estimating relationships (MERs) were used to size the crew capsule and launch vehicle, and a combination of optimization techniques and iterative design processes were employed to determine a possible two-stage-to-orbit (TSTO) launch trajectory into a 350-kilometer orbit. Primary subsystems were also designed for the crewed capsule architecture, based on a 24-hour on-orbit mission with a 7-day contingency. Safety analysis was also performed to identify major risks to crew survivability and assess the system's overall reliability. These procedures and analyses validate that the architecture's basic design and performance are reasonable to be used for risk trade studies. While the vehicle designs presented are not intended to represent a viable architecture, they will provide a valuable initial platform for developing and demonstrating

  18. Conceptual design of a manned orbital transfer vehicle

    Science.gov (United States)

    Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark

    1988-01-01

    With the advent of the manned space station, man now requires a spacecraft based on the space station with the ability to deploy, recover, and repair satellites quickly and economically. Such a craft would prolong and enhance the life and performance of many satellites. A basic design was developed for an orbital tansfer vehicle (OTV). The basic design criteria are discussed. The design of the OTV and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures. The basic concepts in each of the areas are summarized.

  19. Conceptual Design and Numerical Simulations of Hypersonic Waverider Vehicle

    Science.gov (United States)

    Cao, D. Y.; Zhang, J. B.; Lee, C. H.

    A modularized airframe/propulsion integrated model is established by oblique shock wave theory, engineering method and method of characteristics(MOC). Based on this method, a new design methodology for hypersonic waverider vehicle which integrated scramjets with waverider airframe derived from cone-wedge flow field is presented. Integrated aero-propulsion performance of the waverider vehicle under on-design and off-design conditions is predicted using Euler equations discretized by Harten-Yee non-MUSCL TVD scheme and the combustor flow field is approximated by a quasi-ID cycle analysis, skin friction of vehicle is calculated by reference temperature method.

  20. Conceptual design of SMART computerized operator support system

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Y. R.; Go, J. H.; Sung, D. H.; Kim, J. S. [Samchang Co., Ulsan (Korea, Republic of); Lee, J. B.; Park, K. O. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Since the mid-1980, Computerized Operator Support System (COSS) has been developed in the world to support monitoring and diagnosing of NPP. This research provides design concept for the SMART (System-integrated Modular Advanced ReacTor) COSS by reviewing the state-of-the-art of COSS and its application. Specially, it is derived from design considerations such as range of computer-based procedure, the role of operator, display devices of procedure, function allocation, prioritizing of procedures actions and the scope of hard-copied procedures as a backup. This thesis provides plan of SMART COSS development and design concept to function, display design, man-machine interfaces, and computer-based procedure supporting COSS.

  1. Development of a System Level Tool for Conceptual Design of Small Satellites

    NARCIS (Netherlands)

    Aas, C.L.O.; Zandbergen, B.T.C.; Hamann, R.J.; Gill, E.K.A.

    2009-01-01

    The process of developing a tool aiming for conceptual design of nano- and microsatellites is described. The various challenges and derived solutions are discussed. The final product offers systems engineers a fast way to analyze the feasibility of a particular design concept. The tool differs from

  2. Paper-based mixed reality sketch augmentation as a conceptual design support tool

    NARCIS (Netherlands)

    dos Santos, G.J.D.; van Dijk, Elisabeth M.A.G.; Vyas, Dhaval; Backwell, A.

    2009-01-01

    This undergraduate student paper explores usage of mixed reality techniques as support tools for conceptual design. A proof-of-concept was developed to illustrate this principle. Using this as an example, a small group of designers was interviewed to determine their views on the use of this

  3. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical power generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)

  4. Paper-based Mixed Reality Sketch Augmentation as a Conceptual Design Support Tool

    NARCIS (Netherlands)

    Backwell, A.; dos Santos, G.J.D.; van Dijk, Elisabeth M.A.G.; Vyas, Dhaval

    2009-01-01

    This undergraduate student paper explores usage of mixed reality techniques as support tools for conceptual design. A proof-of-concept was developed to illustrate this principle. Using this as an example, a small group of designers was interviewed to determine their views on the use of this

  5. An exploratory study on the use of digital sculpting in conceptual product design

    NARCIS (Netherlands)

    Alcaide-Marzal, J.; Diego-Más, J.A.; Asensio-Cuesta, S.; Piqueras Fiszman, B.

    2013-01-01

    The product design process involves intensive manipulation of graphical data, from pencil sketches to CAD files. The use of graphic software is common among professionals in this field. Despite this, the conceptual design stage remains intensive in paper and pencil work, as CAD systems are still too

  6. Capturing Design : Improving conceptual ship design through the capture of design rationale

    NARCIS (Netherlands)

    DeNucci, T.W.

    2012-01-01

    As the complexity of ship design increases, the knowledge used to resolve these complexities is decreasing due to a loss of intellectual resources. In order to remedy these losses, Naval Architects must capitalize on the knowledge available in design teams. The solution to this quandary involves the

  7. Development of a CAD system for automated conceptual design of supersonic aitcraft

    OpenAIRE

    Wampler, Steven Glenn

    1988-01-01

    Development of a conceptual aircraft design system based on ACSYNT, an aircraft synthesis program written by the NASA Ames Research Center; is discussed. The system, named ACSYNT/VPI, was written using the PHIGS graphics standard for machine independence and designed based on top·down principles and standards. A functional description of ACSYNT is presented as well as detailed software requirements for ACSYNT/VPI. The softwareâ s design is covered in depth including design ph...

  8. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  9. LBNF 1.2 MW Target: Conceptual Design & Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, C. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-01

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  10. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Cory F. [Fermilab; Ammigan, K. [Fermilab; Anderson, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Zwaska, R. [Fermilab

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield. Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.

  11. State of the Art in the Conceptual Design of Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2000-01-01

    Design and construction of coastal structures have always been a challenge as engineers are working in still more exposed locations, and the former acceptance of some failures caused by the inpredictable sea is no more valid . Today it is generally expected that the coastal engineer can cope...... with the vagaries of nature and produce structures which will survive and function for several generations. The design tools available to us are better than ever and we can, in a rational way, deal with the uncertainties inherent in sea states and structural responses. Provided no failure mode is overlooked we can...... in fact design on the basis of target probability of specific damage within structure lifetime, identified by economic optimization....

  12. Conceptual design of KALIMER uranium metallic fueled core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Kim, Sang Ji; Kim, Young Gyun; Kim, Young Jin

    1999-03-15

    As a part of the core design development of KALIMER(150 MWe), the KALIMER core design which uses U-Zr binary fuel not in excess of 20% enrichment was performed. Starting from the former uranium metallic fueled core design, a more economic and safer equilibrium core design was first established based on extensive researches for the possible enrichment gains over various design options and in-core fuel management strategies. Further optimization to extend fuel discharge burnup has been achieved by employing strategic loading schemes for initial and transition cycles to reach the equilibrium cycle early. The core performance analysis based on a once-through equilibrium fuel cycle scenario shows that the core has an average breeding ratio of 0.67 and core average discharge burnup of 61.6 MWD/kg. The negative sodium void reactivity over the core shows a beneficial potential to assure inherent safety characteristics. When comparing with conventional plutonium metallic fueled cores of the same power level, the present KALIMER uranium metallic fueled core has an increased physical core size to meet the enrichment restriction, and, as a result, a lower power density to realize the minimum one-year cycle operation. The KALIMER uranium metallic fueled core characterized by its negative sodium void reactivity and low power density can be operated with maximizing its core safety characteristics as a first generation LMR. The present uranium metallic fueled core allows an easy replacement with different fuel compositions by its demands, with the accumulation of operation experience and design data verification. (author). 34 refs., 34 tabs., 12 figs.

  13. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  14. Conceptual design of an astronaut hand anthropometry device

    Science.gov (United States)

    Mcmahan, Robert

    1993-01-01

    In a microgravity environment, fluid equalizes throughout the body, causing the upper body to swell. This causes the hands to swell which can cause problems for astronauts trying to do work in pressurized EVA (extravehicular activity) gloves. To better design these gloves, accurate measurements of the astronauts swollen hands are needed. Five concepts were developed in this report from an original field of 972 possible concepts. These five concepts were based on mold impression, ultrasound, laser topography, white light photography, and video imaging. From a decision matrix based on nine weighted criteria, the video imaging technique was found to be the best design to pursue.

  15. ALICE Muon Arm Dipole Magnet - Conceptual Design Report

    CERN Document Server

    Swoboda, D; CERN. Geneva

    1998-01-01

    A large Dipole Magnet is required for the Muon Arm spectrometer of the ALICE experiment 1,2[Figure 1]. The main parameters and basic design options of the dipole magnet have been described in 3. The absence of criteria for the necessary symmetry and homogeneity of the magnetic field has lead to a design dominated by economical and feasibility considerations. List of Figures: Figure 1 ALICE Experiment. Figure 2 Dipole Magnet Assembly. Figure 3 Dipole Magnet Yoke. Figure 4 Dipole Magnet Coil System. Figure 5 Schematic of Heat Screen. Figure 6 Dipole Magnet Moving Base.

  16. 18T resistive magnet development. Conceptual design second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, K.L.; Burgeson, J.E.; Gurol, H.; Mancuso, A.; Michels, P.H.

    1985-10-01

    This report documents the work performed on a normal conducting magnet during fiscal year 1985. Emphasis, during the study, was on refinement of the structural design and optimization of the coil current density distribution for either maximum field generation or minimum power consumption. The results have shown that one can generate a 4.4 tesla field using 6.14 megawatts or 3.1 tesla at 1.43 megawatts. The structural design has been modified to stiffen the outer turn of the conductor. The modification was confirmed to be structurally adequate by both analysis and test. 37 figs., 21 tabs.

  17. QFD-ANP Approach for the Conceptual Design of Research Vessels: A Case Study

    Science.gov (United States)

    Venkata Subbaiah, Kambagowni; Yeshwanth Sai, Koneru; Suresh, Challa

    2016-10-01

    Conceptual design is a subset of concept art wherein a new idea of product is created instead of a visual representation which would directly be used in a final product. The purpose is to understand the needs of conceptual design which are being used in engineering designs and to clarify the current conceptual design practice. Quality function deployment (QFD) is a customer oriented design approach for developing new or improved products and services to enhance customer satisfaction. House of quality (HOQ) has been traditionally used as planning tool of QFD which translates customer requirements (CRs) into design requirements (DRs). Factor analysis is carried out in order to reduce the CR portions of HOQ. The analytical hierarchical process is employed to obtain the priority ratings of CR's which are used in constructing HOQ. This paper mainly discusses about the conceptual design of an oceanographic research vessel using analytical network process (ANP) technique. Finally the QFD-ANP integrated methodology helps to establish the importance ratings of DRs.

  18. Organic, bionics & blob design - conceptual and methodological clarification

    DEFF Research Database (Denmark)

    Thomsen, Bente Dahl

    2015-01-01

    approach as a possible method to clarify meaning and as an aid to students' development of a technical terminology. The concepts must be used in the same context, in this example the context is Natural Design, and represent different analytical angles on scientific issues. The three concepts of Organic...

  19. Systems Engineering Approach for Conceptual Design of Frigate

    Science.gov (United States)

    2015-09-01

    Requirement √ 25 Shielding /Ground Planes i) EMI/ EMC Shielding and Isolation Purposes √ 26 Compartment i) Requirement of Blast-Off...System DOD Department of Defense DOE Design of Experiments EEZ Exclusive Economic Zone EM Electromagnetic xiv EMI/ EMC Electromagnetic...Electromagnetic interference/electromagnetic compatibility (EMI/ EMC ) trial 8. Sea Acceptance Test (SAT) 9. Live Firing Test (LFT), if part of the

  20. Conceptual functional-to-form mapping for green design

    Science.gov (United States)

    Xu, Z. G.; Liu, W. M.; Shen, W. D.; Yang, D. Y.; Liu, T. T.

    2017-10-01

    Design for dis-assembly (DFD for short) is the key issue for green design automation. In this paper an assembly-level function-to-form mapping CAD system is reported for green design computing. The research work mainly includes: the assembly-level function definitions, product network model, two-step mapping mechanisms, dis-assembly sequencing based on graph theory, dis-assembly analysis etc. The function-to-form mapping is divided into two steps,i.e. mapping of function-to-behavior, called the first-step mapping, and the mapping of behavior-to-structure, called the second-step mapping. After the first step mapping, the three dimensional transmission chain (or 3D sketch) is established, and the product network model is created, on the basis of which the assembly/dis-assembly analysis and sequencing of the whole mechanism could be fulfilled. A mechanical hand is illustrated to verify the feasibility of the design methodologies.

  1. Kacang Cerdik: A Conceptual Design of an Idea Management System

    Science.gov (United States)

    Murah, Mohd Zamri; Abdullah, Zuraidah; Hassan, Rosilah; Bakar, Marini Abu; Mohamed, Ibrahim; Amin, Hazilah Mohd

    2013-01-01

    An idea management system is where ideas are stored and then can be evaluated and analyzed. It provides the structure and the platform for users to contribute ideas for innovation and creativity. Designing and developing an idea management system is a complex task because it involves many users and lot of ideas. Some of the critical features for…

  2. Conceptual design of Remote Control System for EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.Y., E-mail: xysun@ipp.ac.cn; Wang, F.; Wang, Y.; Li, S.

    2014-05-15

    Highlights: • A new design conception for remote control for EAST tokamak is proposed. • Rich Internet application (RIA) was selected to implement the user interface. • Some security mechanism was used to fulfill security requirement. - Abstract: The international collaboration becomes popular in tokamak research like in many other fields of science, because the experiment facilities become larger and more expensive. The traditional On-site collaboration Model that has to spend much money and time on international travel is not fit for the more frequent international collaboration. The Remote Control System (RCS), as an extension of the Central Control System for the EAST tokamak, is designed to provide an efficient and economical way to international collaboration. As a remote user interface, the RCS must integrate with the Central Control System for EAST tokamak to perform discharge control function. This paper presents a design concept delineating a few key technical issues and addressing all significant details in the system architecture design. With the aim of satisfying system requirements, the RCS will select rich Internet application (RIA) as a user interface, Java as a back-end service and Secure Socket Layer Virtual Private Network (SSL VPN) for securable Internet communication.

  3. Conceptual Design for the New RPI 2020 Linac

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, C.; Bane, K.; Dolgashev, V.; Jensen, A.; Haase, A.; Jongewaard, E.; Kemp, M.; Krasnykh, A.; Lewandowski, J.; Li, Z.; Neilson, J.; Pearson, C.; Tantawi, S.; Wang, J.; Yeremian, A.D.; /SLAC; Brand, P.; Danon, Y.; /Rensselaer Polytech. Inst.; Epping, B.; Donovan, T.; Block, R.; Leinweber, G.; /Knolls Atomic Power Lab.

    2014-10-29

    The Rensselaer Polytechnic Institute (RPI) spectrometer is an installation based on an L-band linear accelerator designed and installed many decades ago. While this installation has served many important experiments over the decades, a new more powerful and more flexible linac to serve a wider range of experiments is envisioned as an upgrade to the existing installation by 2020.

  4. Conceptual Design of the FAST-D Formation Flying Spacecraft

    NARCIS (Netherlands)

    Maessen, D.C.; Guo, J.; Gill, E.; Gunter, B.; Chu, Q.P.; Bakker, G.; Laan, E.; Moon, S.; Kruijff, M.; Zheng, G.T.

    2009-01-01

    The paper presents the latest results in the design of FAST-D, the Dutch micro-satellite for the Dutch–Chinese FAST (Formation for Atmospheric Science and Technology demonstration) formation flying mission. Over the course of the 2.5 year mission, the two satellites, FAST-D and FAST-T, will

  5. Microcomputer Software Support for Classes in Aircraft Conceptual Design.

    Science.gov (United States)

    1987-03-01

    definition that was 29 programmed for analysis was developed by Jan Roskam 4. This procedure assumes a particular ratio of ground roll to total landing...Training Division, January 1985. 4. Roskam , Jan , Airplane Design, p. 106, Roskam Aviation and Engineering Corporations, 1985. 5. Shevel, Richard S

  6. Advanced wind turbine design studies: Advanced conceptual study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P; Sherwin, R [Atlantic Orient Corp., Norwich, VT (United States)

    1994-08-01

    In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

  7. Tokamak experimental power reactor conceptual design. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    Volume II contains the following appendices: (1) summary of EPR design parameters, (2) impurity control, (3) plasma computational models, (4) structural support system, (5) materials considerations for the primary energy conversion system, (6) magnetics, (7) neutronics penetration analysis, (8) first wall stress analysis, (9) enrichment of isotopes of hydrogen by cryogenic distillation, and (10) noncircular plasma considerations. (MOW)

  8. Conceptual design of the AGATA 1 π array at GANIL

    Science.gov (United States)

    Clément, E.; Michelagnoli, C.; de France, G.; Li, H. J.; Lemasson, A.; Barthe Dejean, C.; Beuzard, M.; Bougault, P.; Cacitti, J.; Foucher, J.-L.; Fremont, G.; Gangnant, P.; Goupil, J.; Houarner, C.; Jean, M.; Lefevre, A.; Legeard, L.; Legruel, F.; Maugeais, C.; Ménager, L.; Ménard, N.; Munoz, H.; Ozille, M.; Raine, B.; Ropert, J. A.; Saillant, F.; Spitaels, C.; Tripon, M.; Vallerand, Ph.; Voltolini, G.; Korten, W.; Salsac, M.-D.; Theisen, Ch.; Zielińska, M.; Joannem, T.; Karolak, M.; Kebbiri, M.; Lotode, A.; Touzery, R.; Walter, Ch.; Korichi, A.; Ljungvall, J.; Lopez-Martens, A.; Ralet, D.; Dosme, N.; Grave, X.; Karkour, N.; Lafay, X.; Legay, E.; Kojouharov, I.; Domingo-Pardo, C.; Gadea, A.; Pérez-Vidal, R. M.; Civera, J. V.; Birkenbach, B.; Eberth, J.; Hess, H.; Lewandowski, L.; Reiter, P.; Nannini, A.; De Angelis, G.; Jaworski, G.; John, P.; Napoli, D. R.; Valiente-Dobón, J. J.; Barrientos, D.; Bortolato, D.; Benzoni, G.; Bracco, A.; Brambilla, S.; Camera, F.; Crespi, F. C. L.; Leoni, S.; Million, B.; Pullia, A.; Wieland, O.; Bazzacco, D.; Lenzi, S. M.; Lunardi, S.; Menegazzo, R.; Mengoni, D.; Recchia, F.; Bellato, M.; Isocrate, R.; Egea Canet, F. J.; Didierjean, F.; Duchêne, G.; Baumann, R.; Brucker, M.; Dangelser, E.; Filliger, M.; Friedmann, H.; Gaudiot, G.; Grapton, J.-N.; Kocher, H.; Mathieu, C.; Sigward, M.-H.; Thomas, D.; Veeramootoo, S.; Dudouet, J.; Stézowski, O.; Aufranc, C.; Aubert, Y.; Labiche, M.; Simpson, J.; Burrows, I.; Coleman-Smith, P. J.; Grant, A.; Lazarus, I. H.; Morrall, P. S.; Pucknell, V. F. E.; Boston, A.; Judson, D. S.; Lalović, N.; Nyberg, J.; Collado, J.; González, V.; Kuti, I.; Nyakó, B. M.; Maj, A.; Rudigier, M.

    2017-05-01

    The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This set-up exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam γ-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy γ rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA 1 π array are presented.

  9. Sanitary Landfill Simulation - Test Parameters and a Simulator Conceptual Design

    Science.gov (United States)

    1976-08-01

    ACSM -1~ for Nils ........... By L:R-yo/VAILaiL;1I CODES Library card Civil Engineering Laboratory SANITARY LANDFILL SIMULATION - TEST PARAMETERS AND...these landfills comply only marginally with Navy mandatory guidelines [2]. In a FY-74 report on this project [3], CEL presented the results of a...landfills are presently designed for burying solid waste in compliance with Environmental Protection Agency (EPA) operational guidelines . These

  10. Conceptual design of the TPF-O SC buses

    Science.gov (United States)

    Purves, Lloyd R.

    2007-09-01

    The Terrestrial Planet Finder - Occulter (TPF-O) mission has two Spacecraft (SC) buses, one for a formation-flying occulter and the other for a space telescope. These buses supply the utilities (support structures, propulsion, attitude control, power, communications, etc) required by the payloads: a deployable shade for the occulter and a telescope with instruments for the space telescope. Significant requirements for the occulter SC bus are to provide the large delta V required for the slewing maneuvers of the occulter and communications for formation flying. The TPF-O telescope SC bus shares some key features of the one for the Hubble Space Telescope (HST) in that both support space telescopes designed to observe in the visible to near infrared range of wavelengths with comparable primary mirror apertures (2.4 m for HST, 2.4 - 4.0 m for TPF-O). Significant differences from HST are that 1) the TPF-O telescope is expected to have a Wide Field Camera (WFC) that will have a Field of View (FOV) large enough to provide fine guidance, 2) TPF-O is designed to operate in an orbit around the Sun-Earth Lagrange 2 (SEL2) point which requires TPF-O (unlike HST) to have a propulsion system, and 3) the velocity required for reaching SEL2 and the limited capabilities of affordable launch vehicles require both TPF-O elements to have compact, low-mass designs. Additionally, it is possible that TPF-O may utilize a modular design derived from that of HST to allow robotic servicing in the SEL2 orbit.

  11. Conceptual Design of the Harbin Reconnection eXperiment (HRX)

    Science.gov (United States)

    Mao, Aohua; E, Peng; Wang, Xiaogang; Ji, Hantao; Ren, Yang

    2015-11-01

    A new terrella device, called the Space Environment Simulation and Research Infrastructure or SESRI, is under construction at Harbin Institute of Technology, in which the Harbin Reconnection eXperiment (HRX) system is one of the most important components. The goal of HRX reconnection experiment design is to provide a unique platform for studying reconnections relevant to those in magnetopause and magnetotail. Most of the currently existing terrella experiments have been focusing on global phenomena, e.g. bow shock, in either linear or toroidal geometry, which are typically very different in magnetosphere plasmas. The new HRX regimes explores both local and global reconnection dynamics by driving reconnection with a unique set of coils in a dipole magnetic field configuration which will be able to investigate a range of important reconnection issues in magnetosphere geometry. The design of the HRX device approximately follows the Vlasov similarity laws between the laboratory plasma of the device and the magnetosphere plasma to match local reconnection dynamics. Motivation, design criteria for the HRX experiments, and the preliminary experiment proposal will be discussed.

  12. Conceptual design study of an improved automotive gas turbine powertrain

    Science.gov (United States)

    Wagner, C. E. (Editor); Pampreen, R. C. (Editor)

    1979-01-01

    Automotive gas turbine concepts with significant technological advantages over the spark ignition (SI) engine were assessed. Possible design concepts were rated with respect to fuel economy and near-term application. A program plan which outlines the development of the improved gas turbine (IGT) concept that best met the goals and objectives of the study identifies the research and development work needed to meet the goal of entering a production engineering phase by 1983. The fuel economy goal is to show at least a 20% improvement over a conventional 1976 SI engine/vehicle system. On the basis of achieving the fuel economy goal, of overall suitability to mechanical design, and of automotive mass production cost, the powertrain selected was a single-shaft engine with a radial turbine and a continuously variable transmission (CVT). Design turbine inlet temperature was 1150 C. Reflecting near-term technology, the turbine rotor would be made of an advanced superalloy, and the transmission would be a hydromechanical CVT. With successful progress in long-lead R&D in ceramic technology and the belt-drive CVT, the turbine inlet temperature would be 1350 C to achieve near-maximum fuel economy.

  13. 7-GeV Advanced Photon Source Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  14. Selection of an aircraft engine for conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Turan, O.; Karakoc, T.H. [Anadolu Univ., Eskisehir (Turkey). School of Civil Aviation

    2008-07-01

    There has been significant pressure placed on engine manufacturers to produce more efficient and low cost aircraft since deregulation of the airline market in 1978. Increased competition in conjunction with environmental concerns has changed market drivers, such as life cycle cost (acquisition, fuel burn, maintenance); environmental impact (pollutants emissions, noise); and performance (thrust, weight, specific fuel consumption). This paper presented a performance comparison of aircraft engines used in aircraft based on the GAZTUSIM software program. Aircraft propulsion systems that were selected in this program included the afterburning and nonafterburning turbojet; separate flow turbofan; mixed flow and afterburning turbofan; high bypass turbofan; and turboprop engines. Their performances were calculated at some design point. Engines were then compared favourably to each engine performance parameters, such as specific fuel consumption; specific thrust; thermal propulsion; and overall efficiency. These were compared under different flight Mach numbers, flight altitude and some design criteria. It was concluded that on-design cycle analysis curves are very important for the cycle analysis of objective engine research. 11 refs., 10 figs.

  15. Conceptual Design for a High-Temperature Gas Loop Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    James B. Kesseli

    2006-08-01

    This report documents an early-stage conceptual design for a high-temperature gas test loop. The objectives accomplished by the study include, (1) investigation of existing gas test loops to determine ther capabilities and how the proposed system might best complement them, (2) development of a preliminary test plan to help identify the performance characteristics required of the test unit, (3) development of test loop requirements, (4) development of a conceptual design including process flow sheet, mechanical layout, and equipment specifications and costs, and (5) development of a preliminary test loop safety plan.

  16. Conceptual design report, plutonium stabilization and handling,project W-460

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, E.V.

    1997-03-06

    Project W-460, Plutonium Stabilization and Handling, encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. This Conceptual Design Report (CDR) provides conceptual design details for the vault modification, site preparation and site interface with the purchased SPS. Two concepts are described for vault configuration; acceleration of this phase of the project did not allow completion of analysis which would clearly identify a preferred approach.

  17. A Conceptual Design for a Small Deployer Satellite

    Science.gov (United States)

    Zumbo, S.

    2002-01-01

    In the last few years, the space scientific and industrial communities have demonstrated a renewed interest for small missions based on new categories of space platforms: micro &nano satellites. The cost reduction w.r.t. larger satellite missions, the shorter time from concept to launch, the risk distribution and the possibility to use this kind of bus both for stand-alone projects and as complementary to larger programs, are key factors that make this new kind of technology suitable for a wide range of space related activities. In particular it is now possible to conceive new mission philosophy implying the realisation of micro satellite constellations, with S/C flying in close formation to form a network of distributed sensors either for near-real time telecommunication or Earth remote sensing and disaster monitoring systems or physics and astronomical researches for Earth-Sun dynamics and high energy radiation studies. At the same time micro satellite are becoming important test- beds for new technologies that will eventually be used on larger missions, with relevant spin-offs potentialities towards other industrial fields. The foreseen social and economical direct benefits, the reduced mission costs and the possibility even for a small skilled team to manage all the project, represent very attractive arguments for universities and research institutes to invest funds and human resources to get first order technical and theoretical skills in the field of micro satellite design, with important influences on the training programs of motivated students that are directly involved in all the project's phases. In consideration of these space market important new trends and of the academic benefits that could be guaranteed by undertaking a micro satellite mission project, basing on its long space activities heritage, University of Rome "La Sapienza" - Aerospace and Astronautics Department, with the support of the Italian Space Agency, Alenia Spazio and of important

  18. Conceptual design report for the spent fuel management technology research and test (SMATER) facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.W.; Ro, S.G.; Lee, J.S.; Min, D.K.; Shin, Y.J. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    This study was intended to develop concept for a pilot-scale remote operation facility for longer term management of spent fuel and therefrom to provide technical requirement for later basic design of the facility. Main scope of work for the study was to revise the past (1990) conceptual design in functions, scale, hot cell layout etc. based on user requirements. Technical reference was made to the PKA facility in Germany, through collaboration with appropriate partner, to elaborate the design and requirements. The study was focused on establishing design criteria and conceptual design of the SMATER facility. The results of this study should be an essential and useful basis upon optimization for further work to basic design of the facility. (author). 17 figs., 12 tabs.

  19. Conceptual design of coal-fueled diesel system for stationary power applications

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-01

    A preliminary conceptual design of a coal-fueled diesel system was prepared as part of a previous systems study. Since then, our team has accumulated extensive results from testing coal-water slurry on the 13-inch bore JS engine (400 rpm) in 1987 and 1988. These results provided new insights into preferred design concepts for engine components. One objective, therefore, was to revise the preliminary design to incorporate these preferred design concepts. In addition there were certain areas where additional, more detailed analysis was required as a result of the previous conceptual design. Another objective, therefore was to perform additional detailed design efforts, such as: (1) market applications and engine sizes, (2) coal-water slurry cleaning and grinding processes, (3) emission controls and hot gas contaminant controls, (4) component durability, (5) cost and performance assessments. (VC)

  20. Data base architecture for instrument characteristics critical to spacecraft conceptual design

    Science.gov (United States)

    Rowell, Lawrence F.; Allen, Cheryl L.

    1990-01-01

    Spacecraft designs are driven by the payloads and mission requirements that they support. Many of the payload characteristics, such as mass, power requirements, communication requirements, moving parts, and so forth directly affect the choices for the spacecraft structural configuration and its subsystem design and component selection. The conceptual design process, which translates mission requirements into early spacecraft concepts, must be tolerant of frequent changes in the payload complement and resource requirements. A computer data base was designed and implemented for the purposes of containing the payload characteristics pertinent for spacecraft conceptual design, tracking the evolution of these payloads over time, and enabling the integration of the payload data with engineering analysis programs for improving the efficiency in producing spacecraft designs. In-house tools were used for constructing the data base and for performing the actual integration with an existing program for optimizing payload mass locations on the spacecraft.

  1. Conceptual design of hybrid-electric transport aircraft

    Science.gov (United States)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  2. Conceptual design of a Commercial Tokamak Hybrid Reactor (CTHR)

    Science.gov (United States)

    1980-12-01

    This design was developed as a first generation commercial plant for the production of fissile fuel to support a significant number of client light water reactor (LWR) plants. The study was carried out in sufficient depth of indicate no insurmountable technical problems exist, assuming the physics of the fusion driver is verified, and has provided a basis for deriving cost estimates of the hybrid plant as well as estimates of the hybrid/LWR symbiotic system busbar electricity costs. This energy system has the potential to be optimized such that the net cost of electricity becomes competitive with conventional LWR plants as the price of U308 exceeds $100 per pound.

  3. Conceptual design of a quadrupole magnet for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  4. Conceptual Designs for Berthing Pier Galleries and Deck Lighting.

    Science.gov (United States)

    1983-06-01

    CONCEI’FS I Ie ~ L ),I Ic L’ Outs(’I it S f0 to - h~o 1 11 t ’ p) i lI-s Hiypo r t ed )i p L, r :1i,1 1 0 1 t Ilt’ 1’jIL i llj, p1it’ tnt’ il is d tipo )01...minimum of tops ide interference. Additionally, thle use Of computer software in l ight ing system design has a broad appl icat ion as an analytical

  5. Conceptualization and design of a variable-gravity research facility

    Science.gov (United States)

    1987-01-01

    The goal is to provide facilities for the study of the effects of variable-gravity levels in reducing the physiological stresses upon the humans of long-term stay time in zero-g. The designs studied include: twin-tethered two module system with a central despun module with docking port and winch gear; and rigid arm tube facility using shuttle external tanks. Topics examined included: despun central capsule configuration, docking clearances, EVA requirements, crew selection, crew scheduling, food supply and preparation, waste handling, leisure use, biomedical issues, and psycho-social issues.

  6. Data management in an object-oriented distributed aircraft conceptual design environment

    Science.gov (United States)

    Lu, Zhijie

    In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the

  7. Conceptual design report for the Solenoidal Tracker at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    The STAR Collaboration

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it`s experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  8. MEDIATING COGNITIVE TRANSFORMATION WITH VR 3D SKETCHING DURING CONCEPTUAL ARCHITECTURAL DESIGN PROCESS

    Directory of Open Access Journals (Sweden)

    Farzad Pour Rahimian

    2011-03-01

    Full Text Available Communications for information synchronization during the conceptual design phase require designers to employ more intuitive digital design tools. This paper presents findings of a feasibility study for using VR 3D sketching interface in order to replace current non-intuitive CAD tools. We used a sequential mixed method research methodology including a qualitative case study and a cognitive-based quantitative protocol analysis experiment. Foremost, the case study research was conducted in order to understand how novice designers make intuitive decisions. The case study documented the failure of conventional sketching methods in articulating complicated design ideas and shortcomings of current CAD tools in intuitive ideation. The case study’s findings then became the theoretical foundations for testing the feasibility of using VR 3D sketching interface during design. The latter phase of study evaluated the designers’ spatial cognition and collaboration at six different levels: "physical-actions", "perceptualactions", "functional-actions", "conceptual-actions", "cognitive synchronizations", and "gestures". The results and confirmed hypotheses showed that the utilized tangible 3D sketching interface improved novice designers’ cognitive and collaborative design activities. In summary this paper presents the influences of current external representation tools on designers’ cognition and collaboration as well as providing the necessary theoretical foundations for implementing VR 3D sketching interface. It contributes towards transforming conceptual architectural design phase from analogue to digital by proposing a new VR design interface. The paper proposes this transformation to fill in the existing gap between analogue conceptual architectural design process and remaining digital engineering parts of building design process hence expediting digital design process.

  9. Conceptual design report for the ICPP spent nuclear fuel dry storage project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

  10. Conceptual Kinematic Design and Performance Evaluation of a Chameleon-Like Service Robot for Space Stations

    Directory of Open Access Journals (Sweden)

    Marco Ceccarelli

    2015-03-01

    Full Text Available In this paper a conceptual kinematic design of a chameleon-like robot with proper mobility capacity is presented for service applications in space stations as result of design considerations with biomimetic inspiration by looking at chameleons. Requirements and characteristics are discussed with the aim to identify design problems and operation features. A study of feasibility is described through performance evaluation by using simulations for a basic operation characterization.

  11. Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT

    Science.gov (United States)

    Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.

    1988-01-01

    A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.

  12. Applying conceptual design to B2B sales negotiations

    DEFF Research Database (Denmark)

    Illi, Mikko; Ylirisku, Salu

    This paper addresses the challenge of perceiving B2B sales negotiation in a manner that would open up new possibilities for the improvement of the practice. B2B sales agents work under high pressure in developing relevant and appealing proposals when negotiating for a deal with a customer. The key...... problem that will be addressed is the building of understanding of a customer’s current needs and requirements, and then trying to devise an appropriate proposal to match these. The work of the sales agents in B2B sales negotiations is highly complex, as they need to understand both the modular machinery...... on the ways in which design sense making artefacts may drive also B2B sales agents’ work....

  13. Preliminary conceptual design of a medium sized tokamak (IST-1)

    Science.gov (United States)

    Bagerpour, M.; Alinejad, N.; Sobhanian, S.

    2015-08-01

    In this paper an attempt is made to estimate the main parameters of the Iranian superconducting tokamak as a medium sized tokamak. In the first stage, the production and confinement of ohmically heated plasma is considered. Considering the aim of the design and the kink stability limit, three main parameters are assumed to be known. Using the known theoretical, empirical scale laws and numerical solution of Grad-Shafranov equation for a D-shaped plasmas and also considering the correction terms due to triangularity of the torus cross section, other physical and geometrical parameters have been estimated. The magnetic flux surfaces, plasma pressure and toroidal current density profiles are found by solving of Grad-Shafranov equation as an eigenvalue problem using finite element method. The preliminary results are compared with some recent tokamaks now in operation in different research centers.

  14. Simulation Assisted Risk Assessment Applied to Launch Vehicle Conceptual Design

    Science.gov (United States)

    Mathias, Donovan L.; Go, Susie; Gee, Ken; Lawrence, Scott

    2008-01-01

    A simulation-based risk assessment approach is presented and is applied to the analysis of abort during the ascent phase of a space exploration mission. The approach utilizes groupings of launch vehicle failures, referred to as failure bins, which are mapped to corresponding failure environments. Physical models are used to characterize the failure environments in terms of the risk due to blast overpressure, resulting debris field, and the thermal radiation due to a fireball. The resulting risk to the crew is dynamically modeled by combining the likelihood of each failure, the severity of the failure environments as a function of initiator and time of the failure, the robustness of the crew module, and the warning time available due to early detection. The approach is shown to support the launch vehicle design process by characterizing the risk drivers and identifying regions where failure detection would significantly reduce the risk to the crew.

  15. Conceptualizing, Designing, and Investigating Locative Media Use in Urban Space

    Science.gov (United States)

    Diamantaki, Katerina; Rizopoulos, Charalampos; Charitos, Dimitris; Kaimakamis, Nikos

    This chapter investigates the social implications of locative media (LM) use and attempts to outline a theoretical framework that may support the design and implementation of location-based applications. Furthermore, it stresses the significance of physical space and location awareness as important factors that influence both human-computer interaction and computer-mediated communication. The chapter documents part of the theoretical aspect of the research undertaken as part of LOcation-based Communication Urban NETwork (LOCUNET), a project that aims to investigate the way users interact with one another (human-computer-human interaction aspect) and with the location-based system itself (human-computer interaction aspect). A number of relevant theoretical approaches are discussed in an attempt to provide a holistic theoretical background for LM use. Additionally, the actual implementation of the LOCUNET system is described and some of the findings are discussed.

  16. Automated Work Package: Conceptual Design and Data Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Al Rashdan, Ahmad [Idaho National Lab. (INL), Idaho Falls, ID (United States); Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-05-26

    frontend aspects of the AWP, the backend data architecture was researched and developed in this effort. The backend design involved data architecture aspects. It was realized through this effort that the key aspects of this design are hierarchy, data configuration and live information, data templates and instances, the flow of work package execution, the introduction of properties, and the means to interface the backend to the frontend. After the backend design was developed, a data structure was built to reflect the developed data architecture. The data structure was developed to accommodate the fifty functionalities identified by the envisioned scenario development. The data structure was evaluated by incorporating an example work order from the nuclear power industry. The implementation resulted in several optimization iterations of the data structure. In addition, the rearrangement of the work order information to fit the data structure highlighted several possibilities for improvement in the current work order design, and significantly reduced the size of the work order.

  17. Conceptual design of the W7-X port liners

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Reinhold J., E-mail: reinhold.stadler@ipp.mpg.de [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Peacock, A.; Boscary, J.; Mendelevitch, B [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Scholz, P. [Max Planck Institute for Plasma Physics, 17491 Greifswald (Germany); Schubert, W. [Max Planck Institute for Plasma Physics, 85748 Garching (Germany)

    2016-11-15

    The experimental stellarator Wendelstein 7-X has a large variety of ports for plasma diagnostics. For the steady-state operation with 10 MW input power and a plasma pulse length of up to 30 min, 101 diagnostics ports need to be shielded with actively cooled port liners made of stainless steel. A total of 41 variants of port liners taking into account the various port geometries and the interfaces with different types of diagnostics have to be installed. Before starting the production, different concepts have been studied. Five full-scale demonstrators and three different technologies representative of the port liner variety have been designed and are being produced. Results of this fabrication will serve as a basis for the procurement of the 101 port liners.

  18. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  19. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    Science.gov (United States)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  20. Advanced Turbine Systems (ATS) program conceptual design and product development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-31

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  1. Conceptual design report for the Solenoidal Tracker at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it's experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  2. Complex multidisciplinary systems decomposition for aerospace vehicle conceptual design and technology acquisition

    Science.gov (United States)

    Omoragbon, Amen

    Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.

  3. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    Energy Technology Data Exchange (ETDEWEB)

    MacDonnell, B.A.; Obenauf, K.S. [Golder Associates, Inc., Alameda, CA (United States)

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  4. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  5. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Samios, Nicholas P.

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan. (LEW)

  6. Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Brown, N. R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Baek, J. S [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Hanson, A. L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Cuadra, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Cheng, L. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.

    2014-04-30

    It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-Enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size-Plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). A summary of the methodology to obtain these results is presented. Fuel element tolerance assumptions and hot channel factors used in the safety analysis are also given.

  7. Conceptual design of the JT-60SA cryogenic system

    Science.gov (United States)

    Lamaison, V.; Beauvisage, J.; Fejoz, P.; Girard, S.; Gonvalves, R.; Gondé, R.; Heloin, V.; Michel, F.; Hoa, C.; Kamiya, K.; Roussel, P.; Vallet, J.-C.; Wanner, M.; Yoshida, K.

    2014-01-01

    The superconducting tokamak JT-60 Super Advanced (JT-60SA) is part of the Broader Approach Programme agreed between Europe and Japan. Among other in kind contributions, CEA is in charge of supplying the Cryogenic System which includes a Warm Compression Station, the Refrigerator Cold Box, the Auxiliary Cold Box, a compressed air station and the vacuum systems. The cryogenic system requires a refrigeration capacity of about 8 kW equivalent at 4.5 K. It will supply cryopump panels at 3.7 K, superconducting magnets and cold structures at 4.4 K, HTS current leads at 50 K, and thermal shields between 80 K and 100 K. The contract for design, manufacture, installation and commissioning was signed between CEA and Air Liquide Advanced Technologies (AL-AT) in November 2012. The Cryogenic System shall be operational in 2016. The paper presents the main technical requirements and the limit of supply, the description of the process proposed by AL-AT, the main components, the preliminary layout and the interfaces at the JT-60SA Naka site.

  8. Solar-C Conceptual Spacecraft Design Study: Final Review. Release 2

    Science.gov (United States)

    Hopkins, Randall; Baysinger, Mike; Thomas, Dan; Heaton, Andy; Stough, Rob; Hill, Spencer; Owens, Jerry; Young, Roy; Fabisinski, Leo; Thomas, Scott; hide

    2010-01-01

    This briefing package contains the conceptual spacecraft design completed by the Advanced Concepts Office (ED04) in support of the Solar-C Study. The mission is to succeed Hinode (Solar B), and is designed to study the polar regions of the sun. Included in the slide presentation are sections that review the payload data, and overall ground rules and assumptions, mission analysis and trajectory design, the conceptual spacecraft design section includes: (1) Integrated Systems Design, (2) Mass Properties (3) Cost, (4) Solar Sail Systems, (6) Propulsion, (7) Structures, (8) Thermal (9) Power (10) Avionics / GN&C. There are also conclusions and follow-up work that must be done. In the Back-up section there is information about the JAXA H-11A Launch Vehicle, scalability and spiral development, Mass Projections, a comparison of the TRL assessment for two potential vendors of solar sails, and a chart with the mass properties,

  9. Finalization of the conceptual design of the auxiliary circuits for the European test blanket systems

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, A., E-mail: antonio.aiello@enea.it [ENEA UTIS – C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Ghidersa, B.E. [Karlsruher Institut für Technologie (KIT) – Institut für Neutronenphysik und Reaktortechnik (INR), D-76021 Karlsruhe (Germany); Utili, M. [ENEA UTIS – C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Vala, L. [Sustainable Energy (SUSEN), Technological Experimental Circuits, Centrum vyzkumu Rez s.r.o. (CV Rez), Hlavni c.p. 130, CZ-250 68 Husinec-Rez (Czech Republic); Ilkei, T. [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest H-1525 (Hungary); Di Gironimo, G.; Mozzillo, R.; Tarallo, A. [CREATE/University of Naples Federico II, Department of Industrial Engineering, P.le Tecchio 80, 80125 Naples (Italy); Ricapito, I.; Calderoni, P. [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Building B3, 08019 Barcelona (Spain)

    2015-10-15

    In view of the ITER conceptual design review, the design of the ancillary systems of the European test blanket systems presented in [1] has been updated and made consistent with the ITER requirements for the present design phase. Europe is developing two concepts of TBM, the helium cooled lithium lead (HCLL) and the helium cooled pebble bed (HCPB) one, having in common the cooling media, pressurized helium at 8 MPa [2]. TBS, namely helium cooling system (HCS), coolant purification system (CPS), lead lithium loop and tritium extraction/removal system (TES–TRS) have the purpose to cool down the TBM and to remove tritium to be driven to TEP from breeder and coolant. These systems are placed in port cell 16 (PC#16), chemical and volume control system (CVCS) area and tritium building. Starting from the pre-conceptual design developed in the past, more mature technical interfaces with the ITER facility have been consolidated and iterative design activities were performed to comply with design requirements/specifications requested by IO to conclude the conceptual design phase. In this paper the present status of design of the TBS is presented together with the preliminary integration in ITER areas.

  10. Conceptual design of a laser wakefield acceleration experiment with external bunch injection

    NARCIS (Netherlands)

    Khachatryan, A.G.; Luttikhof, M.J.H.; Irman, A.; van Goor, F.A.; Verschuur, Jeroen W.J.; Bastiaens, Hubertus M.J.; Boller, Klaus J.

    2006-01-01

    We present a conceptual design of a laser wakefield acceleration experiment where a sub-picosecond electron bunch from a photo-cathode RF linac is injected into a plasma channel just before a laser pulse. The pulse overtakes the bunch which is then trapped, compressed and accelerated in the laser

  11. A Conceptual Design Model for CBT Development: A NATO Case Study

    Science.gov (United States)

    Kok, Ayse

    2014-01-01

    CBT (computer-based training) can benefit from the modern multimedia tools combined with network capabilities to overcame traditional education. The objective of this paper is focused on CBT development to improve strategic decision-making with regard to air command and control system for NATO staff in virtual environment. A conceptual design for…

  12. Forest Fire Advanced System Technology (FFAST): A Conceptual Design for Detection and Mapping

    Science.gov (United States)

    J. David Nichols; John R. Warren

    1987-01-01

    The Forest Fire Advanced System Technology (FFAST) project is developing a data system to provide near-real-time forest fire information to fire management at the fire Incident Command Post (ICP). The completed conceptual design defined an integrated forest fire detection and mapping system that is based upon technology available in the 1990's. System component...

  13. A Conceptual Design and Optimization Method for Blended-Wing-Body Aircraft

    NARCIS (Netherlands)

    Vos, R.; Van Dommelen, J.

    2012-01-01

    This paper details a new software tool to aid in the conceptual design of blended-wingbody aircraft. The tool consists of four main modules. In the preliminary sizing model a class I estimate of the maximum take-off weight, wing loading, and thrust-to-weight ratio is calculated. This information is

  14. Responsible design : a conceptual look at interdependent design–use dynamics

    NARCIS (Netherlands)

    Kiran, Asle

    2011-01-01

    This article investigates the conceptual foundations of technological innovation and development projects that aim to bring ethical and social issues into the design stage. Focusing on the ethics and social impact of technological innovation and development has been somewhat of a trend lately, for

  15. A Conceptual Framework for Educational Design at Modular Level to Promote Transfer of Learning

    Science.gov (United States)

    Botma, Yvonne; Van Rensburg, G. H.; Coetzee, I. M.; Heyns, T.

    2015-01-01

    Students bridge the theory-practice gap when they apply in practice what they have learned in class. A conceptual framework was developed that can serve as foundation to design for learning transfer at modular level. The framework is based on an adopted and adapted systemic model of transfer of learning, existing learning theories, constructive…

  16. A Warm Magnet for the ALICE Muon Arm - Conceptual Design Report

    CERN Document Server

    Swoboda, Detlef; CERN. Geneva

    1996-01-01

    The ALICE detector is extended in the forward direction by a large dipole magnet of Å 4 x 4 m2 aperture. This report describes the conceptual design of this magnet with resistive coils under the assumption that part of the UA1 - NOMAD magnet can be re-used. A first cost optimization for the coils is also included.

  17. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Burgard, K.C.

    1998-04-09

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  18. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Burgard, K.C.

    1998-06-02

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  19. FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT

    Science.gov (United States)

    The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....

  20. Ocean Thermal Energy Conversion (OTEC) platform configuration and integration. Volume II. Conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The purpose of this project is to evaluate six candidate hullforms as candidates for the OTEC commercial plant. This volume is a summary of the conceptual design including facility requirements, cost, schedule, and site sensitivity. Two OTEC commercial plant configurations are considered in this study: the ship and the semi-submersible. Engineering drawings are presented. (WHR)

  1. Move-tecture: A Conceptual Framework for Designing Movement in Architecture

    Science.gov (United States)

    Yilmaz, Irem

    2017-10-01

    Along with the technological improvements in our age, it is now possible for the movement to become one of the basic components of the architectural space. Accordingly, architectural construction of movement changes both our architectural production practices and our understanding of architectural space. However, existing design concepts and approaches are insufficient to discuss and understand this change. In this respect, this study aims to form a conceptual framework on the relationship of architecture and movement. In this sense, the conceptualization of move-tecture is developed to research on the architectural construction of movement and the potentials of spatial creation through architecturally constructed movement. Move-tecture, is a conceptualization that treats movement as a basic component of spatial creation. It presents the framework of a qualitative categorization on the design of moving architectural structures. However, this categorization is a flexible one that can evolve in the direction of the expanding possibilities of the architectural design and the changing living conditions. With this understanding, six categories have been defined within the context of the article: Topological Organization, Choreographic Formation, Kinetic Structuring, Corporeal Constitution, Technological Configuration and Interactional Patterning. In line with these categories, a multifaceted perspective on the moving architectural structures is promoted. It is aimed that such an understanding constitutes a new initiative in the design practices carried out in this area and provides a conceptual basis for the discussions to be developed.

  2. Conceptual design report for the mechanical disassembly of Fort St. Vrain fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Lord, D.L. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Wadsworth, D.C.; Sekot, J.P.; Skinner, K.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1993-04-01

    A conceptual design study was prepared that: (1) reviewed the operations necessary to perform the mechanical disassembly of Fort St. Vrain fuel elements; (2) contained a description and survey of equipment capable of performing the necessary functions; and (3) performed a tradeoff study for determining the preferred concepts and equipment specifications. A preferred system was recommended and engineering specifications for this system were developed.

  3. An Expert System-Driven Method for Parametric Trajectory Optimization During Conceptual Design

    Science.gov (United States)

    Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen; Diaz, Manuel J.; Holt, James B.

    2015-01-01

    During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle cost. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult in both cost and schedule to enact. The current capability-based paradigm, which has emerged because of the constrained economic environment, calls for the infusion of knowledge usually acquired during later design phases into earlier design phases, i.e. bringing knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture yet little of the information required to successfully optimize a trajectory is known early in the design phase. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. When these obstacles are coupled with the Program to Optimize Simulated Trajectories (POST), an industry standard program to optimize ascent trajectories that is difficult to use, expert trajectory analysts are required to effectively optimize a vehicle's ascent trajectory. Over the course of this paper, the authors discuss a methodology developed at NASA Marshall's Advanced Concepts Office to address these issues

  4. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 4: Conceptual design report

    Science.gov (United States)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. In the first step of this task, a methodology was developed to ensure that all relevant design dimensions were addressed, and that all feasible designs could be considered. The development effort yielded the following method for generating and comparing designs in task 4: (1) Extract SCS system requirements (functions) from the system specification; (2) Develop design evaluation criteria; (3) Identify system architectural dimensions relevant to SCS system designs; (4) Develop conceptual designs based on the system requirements and architectural dimensions identified in step 1 and step 3 above; (5) Evaluate the designs with respect to the design evaluation criteria developed in step 2 above. The results of the method detailed in the above 5 steps are discussed. The results of the task 4 work provide the set of designs which two or three candidate designs are to be selected by MSFC as input to task 5-refine SCS conceptual designs. The designs selected for refinement will be developed to a lower level of detail, and further analyses will be done to begin to determine the size and speed of the components required to implement these designs.

  5. The potential of genetic algorithms for conceptual design of rotor systems

    Science.gov (United States)

    Crossley, William A.; Wells, Valana L.; Laananen, David H.

    1993-01-01

    The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.

  6. Annex to 7-GeV Advanced Photon Source Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The Annex to the 7-GeV Advanced Photon Source Conceptual Design Report updates the Conceptual Design Report of 1987 (CDR-87) to include the results of further optimization and changes of the design during the past year. The design changes can be summarized as affecting three areas: the accelerator system, conventional facilities, and experimental systems. Most of the changes in the accelerator system result from inclusion of a positron accumulator ring (PAR), which was added at the suggestion of the 1987 DOE Review Committee, to speed up the filling rate of the storage ring. The addition of the PAR necessitates many minor changes in the linac system, the injector synchrotron, and the low-energy beam transport lines. 63 figs., 18 tabs.

  7. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  8. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  9. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  10. Preclosure analysis of conceptual waste package designs for a nuclear waste repository in tuff

    Energy Technology Data Exchange (ETDEWEB)

    O`Neal, W.C.; Gregg, D.W.; Hockman, J.N.; Russell, E.W.; Stein, W.

    1984-11-01

    This report discusses the selection and analysis of conceptual waste package developed by the Nevada Nuclear Waste Storage Investigations (NNWSI) project for possible disposal of high-level nuclear waste at a candidate site at Yucca Mountain, Nevada. The design requirements that the waste package must conform to are listed, as are several desirable design considerations. Illustrations of the reference and alternative designs are shown. Four austenitic stainless steels (316L SS, 321 SS, 304L SS and Incoloy 825 high nickel alloy) have been selected for candidate canister/overpack materials, and 1020 carbon steel has been selected as the reference metal for the borehole liners. A summary of the results of technical and ecnonmic analyses supporting the selection of the conceptual waste package designs is included. Postclosure containment and release rates are not analyzed in this report.

  11. Loop-Mediated Isothermal Amplification (LAMP) for Rapid Detection and Quantification of Dehalococcoides Biomarker Genes in Commercial Reductive Dechlorinating Cultures KB-1 and SDC-9.

    Science.gov (United States)

    Kanitkar, Yogendra H; Stedtfeld, Robert D; Steffan, Robert J; Hashsham, Syed A; Cupples, Alison M

    2016-01-08

    Real-time quantitative PCR (qPCR) protocols specific to the reductive dehalogenase (RDase) genes vcrA, bvcA, and tceA are commonly used to quantify Dehalococcoides spp. in groundwater from chlorinated solvent-contaminated sites. In this study, loop-mediated isothermal amplification (LAMP) was developed as an alternative approach for the quantification of these genes. LAMP does not require a real-time thermal cycler (i.e., amplification is isothermal), allowing the method to be performed using less-expensive and potentially field-deployable detection devices. Six LAMP primers were designed for each of three RDase genes (vcrA, bvcA, and tceA) using Primer Explorer V4. The LAMP assays were compared to conventional qPCR approaches using plasmid standards, two commercially available bioaugmentation cultures, KB-1 and SDC-9 (both contain Dehalococcoides species). DNA was extracted over a growth cycle from KB-1 and SDC-9 cultures amended with trichloroethene and vinyl chloride, respectively. All three genes were quantified for KB-1, whereas only vcrA was quantified for SDC-9. A comparison of LAMP and qPCR using standard plasmids indicated that quantification results were similar over a large range of gene concentrations. In addition, the quantitative increase in gene concentrations over one growth cycle of KB-1 and SDC-9 using LAMP was comparable to that of qPCR. The developed LAMP assays for vcrA and tceA genes were validated by comparing quantification on the Gene-Z handheld platform and a real-time thermal cycler using DNA isolated from eight groundwater samples obtained from an SDC-9-bioaugmented site (Tulsa, OK). These assays will be particularly useful at sites subject to bioaugmentation with these two commonly used Dehalococcoides species-containing cultures. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Compositional gossip : a conceptual architecture for designing gossip-based applications

    OpenAIRE

    Rivière, Étienne; Baldoni, Roberto; Li, Harry; Pereira, José

    2007-01-01

    Most proposed gossip-based systems use an ad-hoc design. We observe a low degree of reutilization among this proposals. We present how this limits both the systematic development of gossip-based applications and the number of applications that can benefit from gossip-based construction. We posit that these reinvent-the-wheel approaches poses a significant barrier to the spread and usability of gossip protocols. This paper advocates a conceptual design framework based upon aggregating basic an...

  13. Conceptual Design and Access Assessment for In-Service Inspection and Repair of KALIMER-600

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young-Sang; Park, Chang-Gyu; Kim, Seok-Hun; Lee, Jae-Han

    2007-02-15

    The conceptual design of in-service inspection (ISI) and repair for KALIMER-600 reactor system and components has been performed. The basic concept and strategy of ISI and repair has been described for considering the design characteristics of KALIMER-600 and the intents of the ASME XI Division 3. The postulated failure defects for main components and structures are estimated and evaluated for KALIMER-600 safety and reliability. The assessment of the ISI performance, accessibility and maintainability has been analyzed and reviewed.

  14. SuperB A High-Luminosity Asymmetric $e^+ e^-$ Super Flavour Factory : Conceptual Design Report

    CERN Document Server

    Bona, M.; Grauges Pous, E.; Colangelo, P.; De Fazio, F.; Palano, A.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Venturini, M.; Soni, N.; Bruschi, M.; De Castro, S.; Faccioli, P.; Gabrieli, A.; Giacobbe, B.; Semprini Cesare, N.; Spighi, R.; Villa, M.; Zoccoli, A.; Hearty, C.; McKenna, J.; Soni, A.; Khan, A.; Barniakov, A.Y.; Barniakov, M.Y.; Blinov, V.E.; Druzhinin, V.P.; Golubev, V.B.; Kononov, S.A.; Koop, I.A.; Kravchenko, E.A.; Levichev, E.B.; Nikitin, S.A.; Onuchin, A.P.; Piminov, P.A.; Serednyakov, S.I.; Shatilov, D.N.; Skovpen, Y.I.; Solodov, E.A.; Cheng, C.H.; Echenard, B.; Fang, F.; Hitlin, D.J.; Porter, F.C.; Asner, D.M.; Pham, T.N.; Fleischer, R.; Giudice, G.F.; Hurth, T.; Mangano, M.; Mancinelli, G.; Meadows, B.T.; Schwartz, A.J.; Sokoloff, M.D.; Soffer, A.; Beard, C.D.; Haas, T.; Mankel, R.; Hiller, G.; Ball, P.; Pappagallo, M.; Pennington, M.R.; Gradl, W.; Playfer, S.; Abada, A.; Becirevic, D.; Descotes-Genon, S.; Pene, O.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabresi, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Stancari, G.; Anulli, F.; Baldini-Ferroli, R.; Biagini, M.E.; Boscolo, M.; Calcaterra, A.; Drago, A.; Finocchiaro, G.; Guiducci, S.; Isidori, G.; Pacetti, S.; Patteri, P.; Peruzzi, I.M.; Piccolo, M.; Preger, M.A.; Raimondi, P.; Rama, M.; Vaccarezza, C.; Zallo, A.; Zobov, M.; De Sangro, R.; Buzzo, A.; Lo Vetere, M.; Macri, M.; Monge, M.R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Matias, J.; Panduro Vazquez, W.; Borzumati, F.; Eyges, V.; Prell, S.A.; Pedlar, T.K.; Korpar, S.; Pestonik, R.; Staric, M.; Neubert, M.; Denig, A.G.; Nierste, U.; Agoh, T.; Ohmi, K.; Ohnishi, Y.; Fry, J.R.; Touramanis, C.; Wolski, A.; Golob, B.; Krizan, P.; Flaecher, H.; Bevan, A.J.; Di Lodovico, F.; George, K.A.; Barlow, R.; Lafferty, G.; Jawahery, A.; Roberts, D.A.; Simi, G.; Patel, P.M.; Robertson, S.H.; Lazzaro, A.; Palombo, F.; Kaidalov, A.; Buras, A.J.; Tarantino, C.; Buchalla, G.; Sanda, A.I.; D'Ambrosio, G.; Ricciardi, G.; Bigi, I.; Jessop, C.P.; Losecco, J.M.; Honscheid, K.; Arnaud, N.; Chehab, R.; Fedala, Y.; Polci, F.; Roudeau, P.; Sordini, V.; Soskov, V.; Stocchi, A.; Variola, A.; Vivoli, A.; Wormser, G.; Zomer, F.; Bertolin, A.; Brugnera, R.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Bonneaud, G.R.; Lombardo, V.; Calderini, G.; Ratti, L.; Speziali, V.; Biasini, M.; Covarelli, R.; Manoni, E.; Servoli, L.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Dell'Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.; Lusiani, A.; Marchiori, G.; Massa, M.; Mazur, M.A.; Morsani, F.; Neri, N.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Walsh, J.; Braun, V.; Lenz, A.; Adams, G.S.; Danko, I.Z.; Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Gaspero, Mario; Jackson, P.; Martinelli, G.; Mazzoni, M.A.; Morganti, Silvio; Piredda, G.; Renga, F.; Silvestrini, L.; Voena, C.; Catani, L.; Di Ciaccio, A.; Messi, R.; Santovetti, E.; Satta, A.; Ciuchini, M.; Lubicz, V.; Wilson, F.F.; Godang, R.; Chen, X.; Liu, H.; Park, W.; Purohit, M.; Trivedi, A.; White, R.M.; Wilson, J.R.; Allen, M.T.; Aston, D.; Bartoldus, R.; Brodsky, S.J.; Cai, Y.; Coleman, J.; Convery, M.R.; DeBarger, S.; Dingfelder, J.C.; Dubois-Felsmann, G.P.; Ecklund, S.; Fisher, A.S.; Haller, G.; Heifets, S.A.; Kaminski, J.; Kelsey, M.H.; Kocian, M.L.; Leith, D.W.G.S.; Li, N.; Luitz, S.; Luth, V.; MacFarlane, D.; Messner, R.; Muller, D.R.; Nosochkov, Y.; Novokhatski, A.; Pivi, M.; Ratcliff, B.N.; Roodman, A.; Schwiening, J.; Seeman, J.; Snyder, A.; Sullivan, M.; Va'Vra, J.; Wienands, U.; Wisniewski, W.; Stoeck, H.; Cheng, H.Y.; Li, H.N.; Keum, Y.Y.; Gronau, M.; Grossman, Y.; Bianchi, F.; Gamba, D.; Gambino, P.; Marchetto, F.; Menichetti, Ezio A.; Mussa, R.; Pelliccioni, M.; Dalla Betta, G.F.; Bomben, M.; Bosisio, L.; Cartaro, C.; Lanceri, L.; Vitale, L.; Azzolini, V.; Bernabeu, J.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.; Paradisi, P.; Pich, A.; Sanchis-Lozano, M.A.; Kowalewski, Robert V.; Roney, J.M.; Back, J.J.; Gershon, T.J.; Harrison, P.F.; Latham, T.E.; Mohanty, G.B.; Petrov, A.A.; Pierini, M.; INFN

    2007-01-01

    The physics objectives of SuperB, an asymmetric electron-positron collider with a luminosity above 10^36/cm^2/s are described, together with the conceptual design of a novel low emittance design that achieves this performance with wallplug power comparable to that of the current B Factories, and an upgraded detector capable of doing the physics in the SuperB environment.

  15. Conceptual design report, TWRS Privatization phase I, raw and potable water, subproject W-504

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G.

    1997-06-05

    This document includes Conceptual Design Report (CDR) for extension of existing Raw and Potable systems from 200-East Area systems to two new private contractor facilities for immobilization and disposal of low-activity waste (LAW). The work will include design and installation of almost 3400 m (11,200 ft) of raw water pipe and 2200 in (7,300 ft) of potable water pipe.

  16. Development of a conceptual flight vehicle design weight estimation method library and documentation

    Science.gov (United States)

    Walker, Andrew S.

    The state of the art in estimating the volumetric size and mass of flight vehicles is held today by an elite group of engineers in the Aerospace Conceptual Design Industry. This is not a skill readily accessible or taught in academia. To estimate flight vehicle mass properties, many aerospace engineering students are encouraged to read the latest design textbooks, learn how to use a few basic statistical equations, and plunge into the details of parametric mass properties analysis. Specifications for and a prototype of a standardized engineering "tool-box" of conceptual and preliminary design weight estimation methods were developed to manage the growing and ever-changing body of weight estimation knowledge. This also bridges the gap in Mass Properties education for aerospace engineering students. The Weight Method Library will also be used as a living document for use by future aerospace students. This "tool-box" consists of a weight estimation method bibliography containing unclassified, open-source literature for conceptual and preliminary flight vehicle design phases. Transport aircraft validation cases have been applied to each entry in the AVD Weight Method Library in order to provide a sense of context and applicability to each method. The weight methodology validation results indicate consensus and agreement of the individual methods. This generic specification of a method library will be applicable for use by other disciplines within the AVD Lab, Post-Graduate design labs, or engineering design professionals.

  17. System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO

    Science.gov (United States)

    Olds, John R.

    1994-01-01

    This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.

  18. Large scale breeder reactor plant prototype mechanical pump conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    This final report is a complete conceptual design study of a mechanical pump for a large scale breeder reactor plant. The pumps are located in the cold leg side of the loops. This makes the net positive suction head available - NPSHA - low, and is, in fact, a major influencing factor in the design. Where possible, experience gained from the Clinch River Project and the FFTF is used in this study. Experience gained in the design, manufacturer, and testing of pumps in general and sodium pumps in particular is reflected in this report. The report includes estimated cost and time schedule for design, manufacture, and testing. It also includes a recommendation for development needs.

  19. Planning for a data base system to support satellite conceptual design

    Science.gov (United States)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  20. Conceptual design of solar central-receiver hybrid power system: sodium-cooled-receiver concept. Volume I of II. Conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    A market analysis is reported consisting of estimates of overall market size derived from projections of electric power growth, examination of utility plans, and projections of potential regulatory action. Market share is projected by comparisons of the levelized costs of busbar power produced by hybrid coal solar units with costs of other electric power producers such as coal only, nuclear and solar only units. Parametric analyses of the major subsystems, consisting of the collector, receiver, storage, non-solar, electric power generation, and master control subsystems were conducted over a wide range of independent parameters in order to define subsystem operation and interfaces for use in the preferred system selection studies. The selection of the system, subsystems, and components of the 0.8 and 1.4 solar multiple sodium-cooled hybrid central receiver configurations were done. Technically feasible alternatives were compared on an economic basis. Detailed conceptual designs of the selected system concepts for the 0.8 and 1.4 solar multiple plants are presented. Cost estimates are also presented for both plants based on the conceptual designs. (LEW)

  1. The Atomic Intrinsic Integration Approach: A Structured Methodology for the Design of Games for the Conceptual Understanding of Physics

    Science.gov (United States)

    Echeverria, Alejandro; Barrios, Enrique; Nussbaum, Miguel; Amestica, Matias; Leclerc, Sandra

    2012-01-01

    Computer simulations combined with games have been successfully used to teach conceptual physics. However, there is no clear methodology for guiding the design of these types of games. To remedy this, we propose a structured methodology for the design of conceptual physics games that explicitly integrates the principles of the intrinsic…

  2. Preliminary designs for ocean thermal energy conversion (OTEC) stationkeeping subsystems (SKSS). Task II. Conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-27

    The study is presented in five sections: design loads, conceptual designs, trade studies, cost analysis and concept evaluation and ranking. Extensive appendixes provide back up calculations and data to support the results. Environmental forces and yaw moments acting on the barge and spar in the various design sea states are presented including wave, wind and current effects. A parametric analysis illustrates the impact on holding power requirement of varying the return periods for operational and extreme sea state. The conceptual designs are presented for the barge followed by those for the spar, including configuration definition, performance characteristics, interfaces, areas for development, and deployment scenarios for selected concepts. The concept definition is followed by a set of trade studies that were performed to evaluate candidate anchor types and anchor leg materials. Parametric variations in anchor leg characteristics, wire-rope-to-chain length ratio for example, illustrate the influence of the significant design parameters on performance. An extensive cost analysis of the candidate SKSS concepts is presented, including cost estimates, life cycle cost scenarios leading to expected value of life cycle cost, and cost equivalence of operational failures. An evaluation of the eight SKSS concepts is presented, including assessment of performance and rankings based on risk versus cost and technology development. The appendixes include a report on the Electrical Transmission System interface, wave drift force, typical cost disbursement schedule and computer program listing, the IMODCO conceptual design report, and static configuration results.

  3. Conceptual phase A design of a cryogenic shutter mechanism for the SAFARI flight instrument

    Science.gov (United States)

    Eigenmann, Max; Wehmeier, Udo J.; Vuilleumier, Aurèle; Messina, Gabriele; Meyer, Michael R.

    2012-09-01

    We present a conceptual design for a cryogenic optical mechanism for the SAFARI instrument. SAFARI is a long wavelength (34-210 micron) Imaging Fourier Transform Spectrometer (FTS) to fly as an ESA instrument on the JAXA SPICA mission projected to launch in 2021. SPICA is a large 3m class space telescope which will have an operating temperature of less than 7K. The SAFARI shutter is a single point of failure flight mechanism designed to operate in space at a temperature of 4K which meets redundancy and reliability requirements of this challenging mission. The conceptual design is part of a phase A study led by ETH Institute for Astronomy and conducted by RUAG Space AG.

  4. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  5. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    Science.gov (United States)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  6. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process.

  7. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    Science.gov (United States)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  8. THERMAL EVALUATION OF THE CONCEPTUAL 24 BWR UCF TUBE BASKET DESIGN DISPOSAL CONTAINER

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Lotz

    1995-12-18

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24,5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: (1) Characterize the conceptual 24 boiling water reactor (BWR) uncanistered fuel (UCF) waste package (WP) to show that the design is feasible for use in the MGDS environment. The purpose of this analysis is to respond to a concern that the long-term disposal thermal issues for the UCF waste package do not preclude UCF waste package compatibility with the MGDS. The objective of this analysis is to provide thermal parameter information for the conceptual UCF WP design under nominal MGDS repository conditions. The results are intended to show that the design has a reasonable chance to meet the MGDS design requirements for normal MGDS operation and to provide the required guidance to determining the major design issues for future design efforts. Future design efforts will focus on UCF design changes as further design and operations information becomes available.

  9. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER) supplement. Magnet system special investigations

    Science.gov (United States)

    1981-01-01

    The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.

  10. Conceptual design of the liquid metal laboratory of the TECHNOFUSION facility

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A. [Institute of Nuclear Fusion, Universidad Politecnica de Madrid, c/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Garcia, A.; Casal, N. [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Centro de Investigaciones Medioambientales y Tecnologicas (CIEMAT). Avda. Complutense, 22, Ed. 17, 28040 Madrid (Spain); Perlado, J.M. [Institute of Nuclear Fusion, Universidad Politecnica de Madrid, c/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Ibarra, A. [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Centro de Investigaciones Medioambientales y Tecnologicas (CIEMAT). Avda. Complutense, 22, Ed. 17, 28040 Madrid (Spain)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Conceptual design of a liquid Li facility. Black-Right-Pointing-Pointer Components and cost estimation. Black-Right-Pointing-Pointer Liquid metal laboratory into TEHNOFUSION proposal. - Abstract: The application of liquid metal technology in fusion devices requires R and D related to many phenomena: interaction between liquid metals and structural material as corrosion, erosion and passivation techniques; magneto-hydrodynamics; free surface fluid-dynamics and any other physical aspect that will be needed for their safe reliable operation. In particular, there is a significant shortage of experimental facilities dedicated to the development of the lithium technology. In the framework of the TECHNOFUSION project, an experimental laboratory devoted to the lithium technology development is proposed, in order to shed some light in the path to IFMIF and the design of chamber's first wall and divertors. The conceptual design foresee a development in two stages, the first one consisting on a material testing loop. The second stage proposes the construction of a mock-up of the IFMIF target that will allow to assess the behaviour of a free-surface lithium target under vacuum conditions. In this paper, such conceptual design is addressed.

  11. Conceptual design of closed Brayton cycle for coal-fired power generation

    Science.gov (United States)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The objectives to be realized in developing a closed cycle gas turbine are (1) to exploit high temperature gas turbine technology while maintaining a working fluid which is free from combustion gas contamination, (2) to achieve compact turbo-equipment designs through pressurization of the working fluid, and (3) to obtain relatively simple cycle configurations. The technical/economic performance of a specific closed cycle gas turbine system was evaluated through the development of a conceptual plant and system design. This energy conversion system is designed for electric utility service and to utilize coal directly in an environmentally acceptable manner.

  12. Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab

    Science.gov (United States)

    North, B. F.; Hill, M. E.

    1980-01-01

    Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.

  13. A camuflagem térmica no design de moda conceptual

    OpenAIRE

    Pimenta, Catarina Sofia Rego

    2013-01-01

    Pretendeu-se com esta dissertação efetuar uma abordagem mais conceptual do design de moda, tal como evidenciar o papel do designer com a tecnologia no mundo da moda e, ainda como este se manifesta na contemporaneidade. Assim, o objetivo desta dissertação remete para a investigação da temática da camuflagem térmica na área têxtil e do design de moda. Como tal, procurou-se neste trabalho desenvolver um coordenado com propriedades de camuflagem térmica, com base em materiais e ...

  14. Conceptual design and systems analysis of photovoltaic power systems. Volume III(1). Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pittman, P.F.

    1977-05-01

    Conceptual designs were made and analyses were performed on three types of solar photovoltaic power systems. Included were Residential (1 to 10 kW), Intermediate (0.1 to 10 MW), and Central (50 to 1000 MW) Power Systems to be installed in the 1985 to 2000 time period. Subsystem technology presented here includes: insolation, concentration, silicon solar cell modules, CdS solar cell module, array structure, battery energy storage, power conditioning, residential power system architectural designs, intermediate power system structural design, and central power system facilities and site survey.

  15. Flood Adaptation Measures Applicable in the Design of Urban Public Spaces: Proposal for a Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Maria Matos Silva

    2016-07-01

    Full Text Available Assuming the importance of public space design in the implementation of effective adaptation action towards urban flooding, this paper identifies and systematizes a wide range of flood adaptation measures pertinent to the design of public spaces. It presents findings from both a systematic literature review and an empirical analysis retrieved from concrete public space design precedents. It concludes with the presentation of a conceptual framework that organizes the identified measures in accordance to their main, and secondary, infrastructural strategies. The intention behind the disclosed framework is to aid a multitude of professionals during the initial exploratory phases of public space projects that incorporate flooding adaptation capacities.

  16. Conceptual design of BNCT facility based on the TRR medical room

    Science.gov (United States)

    Golshanian, M.; Rajabi, A. A.; Kasesaz, Y.

    2017-10-01

    This paper presents a conceptual design of the Boron Neutron Capture Therapy (BNCT) facility based on the medical room of Tehran Research Reactor (TRR). The medical room is located behind the east wall of the reactor pool. The designed beam line is an in-pool Beam Shaping Assembly (BSA) which is considered between the reactor core and the medical room wall. The final designed BSA can provide 2.96× 109 n/cm2ṡs epithermal neutron flux at the irradiation position with acceptable beam contamination to use as a clinical BNCT.

  17. The Caenorhabditis Elegans Gene Sdc-2 Controls Sex Determination and Dosage Compensation in Xx Animals

    Science.gov (United States)

    Nusbaum, C.; Meyer, B. J.

    1989-01-01

    We have identified a new X-linked gene, sdc-2, that controls the hermaphrodite (XX) modes of both sex determination and X chromosome dosage compensation in Caenorhabditis elegans. Mutations in sdc-2 cause phenotypes that appear to result from a shift of both the sex determination and dosage compensation processes in XX animals to the XO modes of expression. Twenty-eight independent sdc-2 mutations have no apparent effect in XO animals, but cause two distinct phenotypes in XX animals: masculinization, reflecting a defect in sex determination, and lethality or dumpiness, reflecting a disruption in dosage compensation. The dosage compensation defect can be demonstrated directly by showing that sdc-2 mutations cause elevated levels of several X-linked transcripts in XX but not XO animals. While the masculinization is blocked by mutations in sex determining genes required for male development (her-1 and fem-3), the lethality, dumpiness and overexpression of X-linked genes are not, indicating that the effect of sdc-2 mutations on sex determination and dosage compensation are ultimately implemented by two independent pathways. We propose a model in which sdc-2 is involved in the coordinate control of both sex determination and dosage compensation in XX animals and acts in the regulatory hierarchy at a step prior to the divergence of the two pathways. PMID:2759421

  18. An Automated BIM Model to Conceptually Design, Analyze, Simulate, and Assess Sustainable Building Projects

    Directory of Open Access Journals (Sweden)

    Farzad Jalaei

    2014-01-01

    Full Text Available Quantifying the environmental impacts and simulating the energy consumption of building’s components at the conceptual design stage are very helpful for designers needing to make decisions related to the selection of the best design alternative that would lead to a more energy efficient building. Building Information Modeling (BIM offers designers the ability to assess different design alternatives at the conceptual stage of the project so that energy and life cycle assessment (LCA strategies and systems are attained. This paper proposes an automated model that links BIM, LCA, energy analysis, and lighting simulation tools with green building certification systems. The implementation is within developing plug-ins on BIM tool capable of measuring the environmental impacts (EI and embodied energy of building components. Using this method, designers will be provided with a new way to visualize and to identify the potential gain or loss of energy for the building as a whole and for each of its associated components. Furthermore, designers will be able to detect and evaluate the sustainability of the proposed buildings based on Leadership in Energy and Environmental Design (LEED rating system. An actual building project will be used to illustrate the workability of the proposed methodology.

  19. Lower central combined cycle project: Conceptual design. Volume 3. Export trade information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This study, conducted by Black & Veatch International, was funded by the U.S. Trade and Development Agency. The report addresses various technical, environmental, and economic aspects of developing eight 600 MW blocks of combined cycle electric generating facilities at a site located northeast of Ratchaburi. The study contains a detailed environmental assessment, as well as fueling options and cost estimates. The report consists of 5 volumes, a Feasibility Study report and four Conceptual Design studies. This volume is the Conceptual Design-Volume 3 and is divided as follows: (1) Auxiliary Power Supply; (2) Buildings and Structures; (3) Compressed Air; (4) Control; (5) Cycle Heat Rejection; (6) Electrical; (7) Equipment Cooling; (8) Feedwater; (9) Fire Protection; (10) Fual Gas.

  20. Performance Assessment Strategies: A computational framework for conceptual design of large roofs

    Directory of Open Access Journals (Sweden)

    Michela Turrin

    2014-01-01

    Full Text Available Using engineering performance evaluations to explore design alternatives during the conceptual phase of architectural design helps to understand the relationships between form and performance; and is crucial for developing well-performing final designs. Computer aided conceptual design has the potential to aid the design team in discovering and highlighting these relationships; especially by means of procedural and parametric geometry to support the generation of geometric design, and building performance simulation tools to support performance assessments. However, current tools and methods for computer aided conceptual design in architecture do not explicitly reveal nor allow for backtracking the relationships between performance and geometry of the design. They currently support post-engineering, rather than the early design decisions and the design exploration process. Focusing on large roofs, this research aims at developing a computational design approach to support designers in performance driven explorations. The approach is meant to facilitate the multidisciplinary integration and the learning process of the designer; and not to constrain the process in precompiled procedures or in hard engineering formulations, nor to automatize it by delegating the design creativity to computational procedures. PAS (Performance Assessment Strategies as a method is the main output of the research. It consists of a framework including guidelines and an extensible library of procedures for parametric modelling. It is structured on three parts. Pre-PAS provides guidelines for a design strategy-definition, toward the parameterization process. Model-PAS provides guidelines, procedures and scripts for building the parametric models. Explore-PAS supports the solutions-assessment based on numeric evaluations and performance simulations, until the identification of a suitable design solution. PAS has been developed based on action research. Several case studies

  1. Performance Assessment Strategies: A computational framework for conceptual design of large roofs

    Directory of Open Access Journals (Sweden)

    Michela Turrin

    2013-12-01

    Full Text Available Using engineering performance evaluations to explore design alternatives during the conceptual phase of architectural design helps to understand the relationships between form and performance; and is crucial for developing well-performing final designs. Computer aided conceptual design has the potential to aid the design team in discovering and highlighting these relationships; especially by means of procedural and parametric geometry to support the generation of geometric design, and building performance simulation tools to support performance assessments. However, current tools and methods for computer aided conceptual design in architecture do not explicitly reveal nor allow for backtracking the relationships between performance and geometry of the design. They currently support post-engineering, rather than the early design decisions and the design exploration process.Focusing on large roofs, this research aims at developing a computational design approach to support designers in performance driven explorations. The approach is meant to facilitate the multidisciplinary integration and the learning process of the designer; and not to constrain the process in precompiled procedures or in hard engineering formulations, nor to automatize it by delegating the design creativity to computational procedures. PAS (Performance Assessment Strategies as a method is the main output of the research. It consists of a framework including guidelines and an extensible library of procedures for parametric modelling. It is structured on three parts.Pre-PAS provides guidelines for a design strategy-definition, toward the parameterization process. Model-PAS provides guidelines, procedures and scripts for building the parametric models. Explore-PAS supports the solutions-assessment based on numeric evaluations and performance simulations, until the identification of a suitable design solution. PAS has been developed based on action research. Several case studies

  2. Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis

    Science.gov (United States)

    Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee

    2016-01-01

    The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.

  3. Conceptual design of an integrated technology model for carbon policy assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Dimotakes, Paul E. (NASA Jet Propulsion Laboratory, Pasadena, CA)

    2011-01-01

    This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.

  4. Features of economic indicators calculation for high speed pilot boat on stage of conceptual design

    OpenAIRE

    Kleva, Yana A.

    2017-01-01

    During the last decades a vast amount of research has been focused on the issues of design, operations, and development of more optimized structures of high-speed craft. The right choice of the criterion function is crucial. Fundamentally, efficiency can be increased with the reduction of production costs, operational costs, and environmental impact, while maintaining or improving craft performance, reliability, and safety. The estimation of economic performances of pilot boats in conceptual ...

  5. SPf66 vaccine trial in Brazil: conceptual framework study design and analytical approach

    Directory of Open Access Journals (Sweden)

    M. Urdaneta

    1996-06-01

    Full Text Available This paper describes the study population and the study design of the phase III field trial of the SPf66 vaccine in Brazil. Assessment of validity and precision principles necessary for the appropriate evaluation of the protective effect of the vaccine are discussed, as well as the results of the preliminary analyses of the gathered data. The analytical approach for the estimation of the protective effect of the vaccine is presented. This paper provides the conceptual framework for future publications.

  6. Conceptual design of fuel transfer cask for Reactor TRIGA PUSPATI (RTP)

    Science.gov (United States)

    Muhamad, Shalina Sheik; Hamzah, Mohd Arif Arif B.

    2014-02-01

    Spent fuel transfer cask is used to transfer a spent fuel from the reactor tank to the spent fuel storage or for spent fuel inspection. Typically, the cask made from steel cylinders that are either welded or bolted closed. The cylinder is enclosed with additional steel, concrete, or other material to provide radiation shielding and containment of the spent fuel. This paper will discuss the Conceptual Design of fuel transfer cask for Reactor TRIGA Puspati (RTP).

  7. Conceptual Design and Structural Analysis of an Open Rotor Hybrid Wing Body Aircraft

    Science.gov (United States)

    Gern, Frank H.

    2013-01-01

    Through a recent NASA contract, Boeing Research and Technology in Huntington Beach, CA developed and optimized a conceptual design of an open rotor hybrid wing body aircraft (HWB). Open rotor engines offer a significant potential for fuel burn savings over turbofan engines, while the HWB configuration potentially allows to offset noise penalties through possible engine shielding. Researchers at NASA Langley converted the Boeing design to a FLOPS model which will be used to develop take-off and landing trajectories for community noise analyses. The FLOPS model was calibrated using Boeing data and shows good agreement with the original Boeing design. To complement Boeing s detailed aerodynamics and propulsion airframe integration work, a newly developed and validated conceptual structural analysis and optimization tool was used for a conceptual loads analysis and structural weights estimate. Structural optimization and weight calculation are based on a Nastran finite element model of the primary HWB structure, featuring centerbody, mid section, outboard wing, and aft body. Results for flight loads, deformations, wing weight, and centerbody weight are presented and compared to Boeing and FLOPS analyses.

  8. Guidelines for conceptual design and evaluation of aquifer thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.F.; Hauz, W.

    1980-10-01

    Guidelines are presented for use as a tool by those considering application of a new technology, aquifer thermal energy storage (ATES). The guidelines will assist utilities, municipalities, industries, and other entities in the conceptual design and evaluation of systems employing ATES. The potential benefits of ATES are described, an overview is presented of the technology and its applications, and rules of thumb are provided for quickly judging whether a proposed project has sufficient promise to warrant detailed conceptual design and evaluation. The characteristics of sources and end uses of heat and chill which are seasonally mismatched and may benefit from ATES (industrial waste heat, cogeneration, solar heat, and winter chill, for space heating and air conditioning) are discussed. Storage and transport subsystems and their expected performance and cost are described. A 10-step methodology is presented for conceptual design of an ATES system and evaluation of its technical and economic feasibility in terms of energy conservation, cost savings, fuel substitution, improved dependability of supply, and abatement of pollution, with examples, and the methodology is applied to a hypothetical proposed ATES system, to illustrate its use.

  9. Artificial neural networks aided conceptual stage design of water harvesting structures

    Directory of Open Access Journals (Sweden)

    Vinay Chandwani

    2016-09-01

    Full Text Available The paper presents artificial neural networks (ANNs based methodology for ascertaining the structural parameters of water harvesting structures (WHS at the conceptual stage of design. The ANN is trained using exemplar patterns generated using an in-house MSExcel based design program, to draw a functional relationship between the five inputs design parameters namely, peak flood discharge, safe bearing capacity of strata, length of structure, height of structure and silt factor and four outputs namely, top width, bottom width, foundation depth and flood lift representing the structural parameters of WHS. The results of the study show that, the structural parameters of the WHS predicted using ANN model are in close agreement with the actual field parameters. The versatility of ANN to map complex or complex unknown relationships has been proven in the study. A parametric sensitivity study is also performed to assess the most significant design parameter. The study holistically presents a neural network based decision support tool that can be used to accurately estimate the major design parameters of the WHS at the conceptual stage of design in quick time, aiding the engineer-in-charge to conveniently forecast the budget requirements and minimize the labor involved during the subsequent phases of analysis and design.

  10. Conceptual design study of the moderate size superconducting spherical tokamak power plant

    Science.gov (United States)

    Gi, Keii; Ono, Yasushi; Nakamura, Makoto; Someya, Youji; Utoh, Hiroyasu; Tobita, Kenji; Ono, Masayuki

    2015-06-01

    A new conceptual design of the superconducting spherical tokamak (ST) power plant was proposed as an attractive choice for tokamak fusion reactors. We reassessed a possibility of the ST as a power plant using the conservative reactor engineering constraints often used for the conventional tokamak reactor design. An extensive parameters scan which covers all ranges of feasible superconducting ST reactors was completed, and five constraints which include already achieved plasma magnetohydrodynamic (MHD) and confinement parameters in ST experiments were established for the purpose of choosing the optimum operation point. Based on comparison with the estimated future energy costs of electricity (COEs) in Japan, cost-effective ST reactors can be designed if their COEs are smaller than 120 mills kW-1 h-1 (2013). We selected the optimized design point: A = 2.0 and Rp = 5.4 m after considering the maintenance scheme and TF ripple. A self-consistent free-boundary MHD equilibrium and poloidal field coil configuration of the ST reactor were designed by modifying the neutral beam injection system and plasma profiles. The MHD stability of the equilibrium was analysed and a ramp-up scenario was considered for ensuring the new ST design. The optimized moderate-size ST power plant conceptual design realizes realistic plasma and fusion engineering parameters keeping its economic competitiveness against existing energy sources in Japan.

  11. Conceptualization and application of an approach for designing healthcare software interfaces.

    Science.gov (United States)

    Kumar, Ajit; Maskara, Reena; Maskara, Sanjeev; Chiang, I-Jen

    2014-06-01

    The aim of this study is to conceptualize a novel approach, which facilitates us to design prototype interfaces for healthcare software. Concepts and techniques from various disciplines were used to conceptualize an interface design approach named MORTARS (Map Original Rhetorical To Adapted Rhetorical Situation). The concepts and techniques included in this approach are (1) rhetorical situation - a concept of philosophy provided by Bitzer (1968); (2) move analysis - an applied linguistic technique provided by Swales (1990) and Bhatia (1993); (3) interface design guidelines - a cognitive and computer science concept provided by Johnson (2010); (4) usability evaluation instrument - an interface evaluation questionnaire provided by Lund (2001); (5) user modeling via stereotyping - a cognitive and computer science concept provided by Rich (1979). A prototype interface for outpatient clinic software was designed to introduce the underlying concepts of MORTARS. The prototype interface was evaluated by thirty-two medical informaticians. The medical informaticians found the designed prototype interface to be useful (73.3%), easy to use (71.9%), easy to learn (93.1%), and satisfactory (53.2%). MORTARS approach was found to be effective in designing the prototype user interface for the outpatient clinic software. This approach might be further used to design interfaces for various software pertaining to healthcare and other domains. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Measurement error in the assessment of radiographic progression in rheumatoid arthritis (RA) clinical trials: the smallest detectable change (SDC) revisited.

    Science.gov (United States)

    Navarro-Compán, V; van der Heijde, D; Ahmad, Harris A; Miller, Colin G; Wolterbeek, R; Landewé, R

    2014-06-01

    To evaluate if the mean smallest detectable change (SDC) of multiple time intervals using the Bland & Altman (B&A) levels of agreement (LoA) method is an appropriate surrogate for the generalisability analysis method for estimating the overall SDC of radiological progression in rheumatoid arthritis (RA) trials. Secondly, to compare the SDC based on 95% LoA with the SDC based on 80% LoA, and to investigate the association between SDC and baseline damage and progression. Fifteen datasets from randomised controlled trials in RA were scored by 13 experienced readers as pairs according to the modified Sharp/van der Heijde method. The SDC using the 95% and 80% LoA and the generalisability methods was calculated. 21 295 radiographic time points from 7643 patients were included. The mean (range) SDC for the LoA and the generalisability methods was 3.1 (2.3-4.3) and 3.2 (2.3-4.6) units, respectively. The mean ± SD difference between the two methods was -0.13 ± 0.28. The mean SDC including all intervals (n=31) was 3.0 ± 0.7 for 95% LoA and 2.0 ± 0.4 for 80% LoA. No relationship was observed between baseline damage and the SDC, whereas the SDC increased with increasing radiological progression. The mean of the interval SDCs obtained by the simple LoA method is a valid surrogate for the SDC obtained by complex generalisability methods. The SDC depends on the level of radiographic progression rather than on the level of absolute damage. In addition, the use of an SDC based on 80% rather than on 95% LoA is proposed.

  13. A methodology for aeroelastic constraint analysis in a conceptual design environment

    Science.gov (United States)

    de Baets, Peter Wilfried Gaston

    The objective of this study is the infusion of aeroelastic constraint knowledge into the design space. The mapping of such aeroelastic information in the conceptual design space has long been a desire of the design community. The conceptual design phase of an aircraft is a multidisciplinary environment and has the most influence on the future design of the vehicle. However, sufficient results cannot he obtained in a timely enough manner to materially contribute to early design decisions. Furthermore, the natural division of the engineering team into specialty groups is not well supported by the monolithic aerodynamic-structures codes typically used in modern aeroelastic analysis. The research examines how the Bi-Level Integrated System Synthesis decomposition technique can be adapted to perform as the conceptual aeroelastic design tool. The study describes a comprehensive solution of the aeroelastic coupled problem cast in this decomposition format and implemented in an integrated framework. The method is supported by application details of a proof of concept high speed vehicle. Physics-based codes such as finite element and an aerodynamic panel method are used to model the high-definition geometric characteristics of the vehicle. A synthesis and sizing code was added to referee the conflicts that arise between the two disciplines. This research's novelty lies in four points. First is the use of physics-based tools at the conceptual design phase to calculate the aeroelastic properties. Second is the projection of flutter and divergence velocity constraint lines in a power loading versus wing loading graph. Third is the aeroelastic assessment time reduction, which has moved from a matter of years to months. Lastly, this assessment allowed verification of the impact of changing velocity, altitude, and angle of attack on the aeroelastic properties. This then allowed identification of robust design space with respect to these three mission properties. The method

  14. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    Science.gov (United States)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  15. Conceptual design of once-through helical steam generator for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Wan; Kim, J. I.; Kim, J. H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    Conceptual design of once-through helical steam generator for the integral reactor SMART is developed. The once-through helical steam generator requires quite different design concepts from the steam generators used in loop type commercial reactors. In this study the design requirements satisfying the operating conditions of the steam generator are derived, and the arrangements and the dimensions of the major parts are determined. By describing the design procedure, the cost of redesign and the costs of developments of similar new steam generators are minimized. The three dimensional models developed make it possible to preview the interferences of the steam generator components and to minimize the possibility of significant design changes in the next design stage by the preliminary strength analysis of the major parts. A methodology for evaluation of flow induced vibration of steam generator tubes has been developed and a preliminary flow induced vibration analysis has been performed. 24 refs., 54 figs., 9 tabs. (Author)

  16. Parameter space discretization and exploration for conceptual design of Mars in-situ instruments

    Science.gov (United States)

    Rademacher, Joel David

    New system design processes are changing the way space instrument conceptual designs are generated. Processes are developed for concurrent engineering, and optimizing instrument mass, cost, and volume. However, it is often the case that using these processes generates only point designs, or a fraction of possible design solutions within the parameter space. Parameter space includes design and performance spaces. Design space is the decomposition of a product design into tasks and options. Design parameters of interest constitute the performance space. Furthermore, although the point designs are valid solutions, there are often viable solutions that have not been considered, which may better solve the optimization problem. The hypothesis of this research is that designers exploring the parameter space will find solutions that may not have otherwise been considered. These previously unconsidered solutions may better optimize design parameters than the point designs found with other methods. Current design approaches are summarized, and a GENEration of Space Instrument Systems (GENESIS) parameter space discretization and exploration conceptual design process is described that expands on these approaches. GENESIS combines design approaches, parametric models, database tools, and intelligent agents in a unique manner to discretize and explore instrument parameter space. While generic enough to apply to wide ranges of problems, this research focuses on application to Mars in-situ instruments. In-situ instruments are those that take measurements in contact with or close proximity to the object being measured. These instruments are interesting because they are often under strict mass, cost, and volume constraints, and require unique design solutions to meet these constraints. An instrument design model built around existing Mars in-situ instruments supports GENESIS. Case studies of existing instruments are examined to answer the question, 'Where do existing Mars in

  17. The Effects of Classic and Web-Designed Conceptual Change Texts on the Subject of Water Chemistry

    Science.gov (United States)

    Tas, Erol; Gülen, Salih; Öner, Zeynep; Özyürek, Cengiz

    2015-01-01

    The purpose of this study is to research the effects of traditional and web-assisted conceptual change texts for the subject of water chemistry on the success, conceptual errors and permanent learning of students. A total of 37 8th graders in a secondary school of Samsun participated in this study which had a random experimental design with…

  18. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  19. Nevada Nuclear Waste Storage Investigations: exploratory shaft. Phase I. Conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D.C.; Merson, T.J.; McGuire, P.L.; Sibbitt, W.L.

    1982-06-01

    It is proposed that an Exploratory Shaft (ES) be constructed in Yucca Mountain on or near the southwest portion of the Nevada Test Site (NTS) as part of the Nevada Nuclear Waste Storage Investigations. This document describes a conceptual design for an ES and a cost estimate based on a set of construction assumptions. Included in this document are appendixes consisting of supporting studies done at NTS by Fenix and Scisson, Inc. and Holmes and Narver, Inc. These appendixes constitute a history of the development of the design and are included as part of the record.

  20. Lunar in-core thermionic nuclear reactor power system conceptual design

    Science.gov (United States)

    Mason, Lee S.; Schmitz, Paul C.; Gallup, Donald R.

    1991-01-01

    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Exploration Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  1. Design of A Sustainable Building: A Conceptual Framework for Implementing Sustainability in the Building Sector

    Directory of Open Access Journals (Sweden)

    Paul O. Olomolaiye

    2012-05-01

    Full Text Available This paper presents a conceptual framework aimed at implementing sustainability principles in the building industry. The proposed framework based on the sustainable triple bottom line principle, includes resource conservation, cost efficiency and design for human adaptation. Following a thorough literature review, each principle involving strategies and methods to be applied during the life cycle of building projects is explained and a few case studies are presented for clarity on the methods. The framework will allow design teams to have an appropriate balance between economic, social and environmental issues, changing the way construction practitioners think about the information they use when assessing building projects, thereby facilitating the sustainability of building industry.

  2. Improving Conceptual Design for Launch Vehicles. The Bimese Concept: A Study of Mission and Economic Options

    Science.gov (United States)

    Olds, John R.; Tooley, Jeffrey

    1999-01-01

    This report summarizes key activities conducted in the third and final year of the cooperative agreement NCC1-229 entitled "Improving Conceptual Design for Launch Vehicles." This project has been funded by the Vehicle Analysis Branch at NASA's Langley Research Center in Hampton, VA. Work has been performed by the Space Systems Design Lab (SSDL) at the Georgia Institute of Technology, Atlanta, GA. Accomplishments during the first and second years of this project have been previously reported in annual progress reports. This report will focus on the third and final year of the three year activity.

  3. Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Amir, Oded

    2012-01-01

    of topology optimization with elastoplastic material modeling. Concrete and steel are both considered as elastoplastic materials, including the appropriate yield criteria and post‐yielding response. The same approach can be applied also for topology optimization of other material compositions where nonlinear......Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its different strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures on the basis...

  4. [Design of a conceptual model on the transference of public health research results in Honduras].

    Science.gov (United States)

    Macías-Chapula, César A

    2012-01-01

    To design a conceptual model on the transference of public health research results at the local, context level. Using systems thinking concepts, a soft systems approach (SSM) was used to analyse and solve what was perceived as a problem situation related to the transference of research results within Honduras public health system. A bibliometric analysis was also conducted to enrich the problem situation. Six root definitions were defined and modeled as relevant to the expressed problem situation. This led to the development of the conceptual model. The model obtained identified four levels of resolution as derived from the human activities involved in the transference of research results: 1) those of the researchers; 2) the information/documentation professionals; 3) health staff; and 4) the population/society. These actors/ clients and their activities were essential to the functioning of the model since they represent what the model is and does. SSM helped to design the conceptual model. The bibliometric analysis was relevant to construct the rich image of the problem situation.

  5. Conceptual design of a noncontacting power transfer device for the ASPS Vernier system

    Science.gov (United States)

    Kroeger, J.; Drilling, J.; Gunderman, T.

    1984-01-01

    The conceptual of electrical power transfer across a magnetically controlled gap as discussed for several years. The design represents the culmination of the first serious attempt to design a very low force, noncontracting power transfer mechanism. The electromagnetic device advanced herein is an ironless, translatable secondary transformer in which one of the two coils is fixed to the entire magnetic core. The second coil is free to move within the core over the full range of motions required. The specific application considered for this design was the Vernier subsystem of the Annular Suspension and Pointing System (ASPS). The development of and rationale for the electromagnetics design is presented. Similar documentation is provided for the Electronics Design. The Appendices detail the results of small scale model tests, disturbance force calculations, the baseline transformer fabrication drawings, the AVS Converter Parts List, and model schematic diagrams.

  6. Conceptual Design of the LHC Interaction Region Upgrade Phase-I

    CERN Document Server

    Ostojic, R; Baglin, V; Ballarino, A; Cerutti, F; Denz, R; Fartoukh, S; Fessia, P; Foraz, K; Fürstner, M; Herr, Werner; Karppinen, M; Kos, N; Mainaud-Durand, H; Mereghetti, A; Muttoni, Y; Nisbet, D; Prin, H; Tock, J P; Van Weelderen, R; Wildner, E

    2008-01-01

    The LHC is starting operation with beam. The primary goal of CERN and the LHC community is to ensure that the collider is operated efficiently and that it achieves nominal performance in the shortest term. Since several years the community has been discussing the directions for maximizing the physics reach of the LHC by upgrading the experiments, in particular ATLAS and CMS, the LHC machine and the CERN proton injector complex, in a phased approach. The first phase of the LHC interaction region upgrade was approved by Council in December 2007. This phase relies on the mature Nb-Ti superconducting magnet technology with the target of increasing the LHC luminosity to 2 to 3 10^34 cm^-2s^-1, while maximising the use of the existing infrastructure. In this report, we present the goals and the proposed conceptual solutions for the LHC IR Upgrade Phase-I which include the recommendations of the conceptual design review.

  7. Conceptual Design Gamma-Ray Large Area Space Telescope (GLAST) Tower Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Chad

    2002-07-18

    The main objective of this work was to develop a conceptual design and engineering prototype for the Gamma-ray Large Area Space Telescope (GLAST) tower structure. This thesis describes the conceptual design of a GLAST tower and the fabrication and testing of a prototype tower tray. The requirements were that the structure had to support GLAST's delicate silicon strip detector array through ground handling, launch and in orbit operations as well as provide for thermal and electrical pathways. From the desired function and the given launch vehicle for the spacecraft that carries the GLAST detector, an efficient structure was designed which met the requirements. This thesis developed in three stages: design, fabrication, and testing. During the first stage, a general set of specifications was used to develop the initial design, which was then analyzed and shown to meet or exceed the requirements. The second stage called for the fabrication of prototypes to prove manufacturability and gauge cost and time estimates for the total project. The last step called for testing the prototypes to show that they performed as the analysis had shown and prove that the design met the requirements. As a spacecraft engineering exercise, this project required formulating a solution based on engineering judgment, analyzing the solution using advanced engineering techniques, then proving the validity of the design and analysis by the manufacturing and testing of prototypes. The design described here met all the requirements set out by the needs of the experiment and operating concerns. This strawman design is not intended to be the complete or final design for the GLAST instrument structure, but instead examines some of the main challenges involved and demonstrates that there are solutions to them. The purpose of these tests was to prove that there are solutions to the basic mechanical, electrical and thermal problems presented with the GLAST project.

  8. Postclosure performance assessment of the SCP (Site Characterization Plan) conceptual design for horizontal emplacement: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report is a preliminary postclosure performance assessment of the repository design specified in the Site Characterization Plan Conceptual Design Report (SCP-CDR) for horizontal emplacement of high-level nuclear waste. At the time that these analyses were done, horizontal emplacement was the preferred orientation for the waste packages but vertical emplacement is now the reference design. This assessment consists of (1) a review of the regulatory requirements and strategy to demonstrate compliance with these requirements, (2) an analysis of the performance of the total repository system, (3) an analysis of the thermomechanical behavior of the repository, (4) an analysis of brine mobility in the repository, (5) an analysis of the waste package performance, (6) an analysis of the performance of seals, and (7) comments on the sensitivity of the various performance measures to uncertainties in the data and models. These are preliminary analyses and, in most cases, involve bounding calculations of the repository behavior. They have several purposes including (1) assessing how well this conceptual design ''measures up'' against requirements, (2) gaining experience in implementing the performance assessment strategy and tools and thereby learning where improvements are needed, (3) helping to identify needed data, and (4) helping to indicate required design modifications. 26 refs., 40 figs., 20 tabs.

  9. Conceptual design of a water treatment system to support a manned Mars colony

    Science.gov (United States)

    1988-01-01

    The initial tasks addressed by the Prairie View A&M University team were the conceptual design of a breathable-air manufacturing system, a means of drilling for underground water, and a method for storing water for future use. Subsequently, the design objective of the team for the 1987-1988 academic year was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use. The source of water for these applications is assumed to be artesian or subsurface. The first step of the project was to establish design criteria and major assumptions. The second step of the effort was to generate a block diagram of the expected treatment system and assign tasks to individual students. The list of processes for water purification and wastewater treatment given above suggests that there will be a need for on-site chemicals manufacturing for ion-exchange regeneration and disinfection. The third step of the project was to establish a basis for the design capacity of the system. A total need of 10,000 gal/day was assumed to be required. It was also assumed that 30,000 gallon raw-water intake volume is needed to produce the desired effluent volume.

  10. Conceptual design of the integral test loop (I): Reactor coolant system and secondary system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Lee, Seong Je; Kwon, Tae Soon; Moon, Sang Ki [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    This report describes the conceptual design of the primary coolant system and the secondary system of the Integral Test Loop (ITL) which simulates overall thermal hydraulic phenomena of the primary system of a nuclear power plant during postulated accidents or transients. The design basis for the primary coolant system and secondary system is as follows ; Reference plant: Korean Standard Nuclear Plant (KSNP), Height ratio : 1/1, Volume ratio : 1/200, Power scale : Max. 15% of the scaled nominal power, Temperature, Pressure : Real plant conditions. The primary coolant system includes a reactor vessel, which contains a core simulator, a steam generator, a reactor coolant pump simulator, a pressurizer and piping, which consists of two hot legs, four cold legs and four intermediate legs. The secondary system consists of s steam discharge system, a feedwater supply system and a steam condensing system. This conceptual design report describes general configuration of the reference plant, and major function and operation of each system of the plant. Also described is the design philosophy of each component and system of the ITL, and specified are the design criteria and technical specifications of each component and system of the ITL in the report. 17 refs., 43 figs., 51 tabs. (Author)

  11. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations. (DLC)

  12. A Systematic Approach for Conceptual and Sustainable Process Design: Production of Methylamines From Methanol and Ammonia

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Ismail, Muhammad Imran Bin; Almoor, Karim

    2012-01-01

    Methylamines are very important chemicals as they are commonly used as intermediates for a wide range of agricultural chemicals, animal nutrients, catalysts, electronics, explosives, fuel additives as well as gas and oil treatments. A systematic method is applied to design a sustainable and envir......Methylamines are very important chemicals as they are commonly used as intermediates for a wide range of agricultural chemicals, animal nutrients, catalysts, electronics, explosives, fuel additives as well as gas and oil treatments. A systematic method is applied to design a sustainable...... and environmentally acceptable plant for producing mono-methylamines, di-methylamines and tri-methylamines from methanol and ammonia. The systematic method divides the process design work into 12 sequential tasks that covers all stages of conceptual design, starting from the consideration of qualitative aspects...

  13. Conceptual design of a process plant for the production of plantain flour

    Directory of Open Access Journals (Sweden)

    Sesan Peter Ayodeji

    2016-05-01

    Full Text Available Plantain has become an essential source of food in the Nigerian market today and to this effect, it is fast becoming a sought after fruit, especially for persons diagnosed with diabetics. Being a perishable fruit, plantain is usually processed into flour to extend its shelf life. Hence, there is a need to improve on the quantity and quality of the flour produced from it. This paper presents the conceptual design of a process plant for plantain flour production from green plantain pulp. The process plant consists of washing, slicing, drying, milling and sieving machines. The design analysis of constituent machines and its performance evaluation were carried out using SolidWorks and other appropriate design equations. The designed process plant was simulated to ensure its functionality. The results of its performance were analyzed and estimated cost of production presented.

  14. Research on Preference Polyhedron Model Based Evolutionary Multiobjective Optimization Method for Multilink Transmission Mechanism Conceptual Design

    Directory of Open Access Journals (Sweden)

    Haihua Zhu

    2016-01-01

    Full Text Available To make the optimal design of the multilink transmission mechanism applied in mechanical press, the intelligent optimization techniques are explored in this paper. A preference polyhedron model and new domination relationships evaluation methodology are proposed for the purpose of reaching balance among kinematic performance, dynamic performance, and other performances of the multilink transmission mechanism during the conceptual design phase. Based on the traditional evaluation index of single target of multicriteria design optimization, the robust metrics of the mechanism system and preference metrics of decision-maker are taken into consideration in this preference polyhedron model and reflected by geometrical characteristic of the model. At last, two optimized multilink transmission mechanisms are designed based on the proposed preference polyhedron model with different evolutionary algorithms, and the result verifies the validity of the proposed optimization method.

  15. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.E.

    1994-03-21

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

  16. Conceptual design of a hybrid parallel mechanism for mask exchanging of TMT

    Science.gov (United States)

    Wang, Jianping; Zhou, Hongfei; Li, Kexuan; Zhou, Zengxiang; Zhai, Chao

    2015-10-01

    Mask exchange system is an important part of the Multi-Object Broadband Imaging Echellette (MOBIE) on the Thirty Meter Telescope (TMT). To solve the problem of stiffness changing with the gravity vector of the mask exchange system in the MOBIE, the hybrid parallel mechanism design method was introduced into the whole research. By using the characteristics of high stiffness and precision of parallel structure, combined with large moving range of serial structure, a conceptual design of a hybrid parallel mask exchange system based on 3-RPS parallel mechanism was presented. According to the position requirements of the MOBIE, the SolidWorks structure model of the hybrid parallel mask exchange robot was established and the appropriate installation position without interfering with the related components and light path in the MOBIE of TMT was analyzed. Simulation results in SolidWorks suggested that 3-RPS parallel platform had good stiffness property in different gravity vector directions. Furthermore, through the research of the mechanism theory, the inverse kinematics solution of the 3-RPS parallel platform was calculated and the mathematical relationship between the attitude angle of moving platform and the angle of ball-hinges on the moving platform was established, in order to analyze the attitude adjustment ability of the hybrid parallel mask exchange robot. The proposed conceptual design has some guiding significance for the design of mask exchange system of the MOBIE on TMT.

  17. Conceptual design studies of the Electron Cyclotron launcher for DEMO reactor

    Science.gov (United States)

    Moro, Alessandro; Bruschi, Alex; Franke, Thomas; Garavaglia, Saul; Granucci, Gustavo; Grossetti, Giovanni; Hizanidis, Kyriakos; Tigelis, Ioannis; Tran, Minh-Quang; Tsironis, Christos

    2017-10-01

    A demonstration fusion power plant (DEMO) producing electricity for the grid at the level of a few hundred megawatts is included in the European Roadmap [1]. The engineering design and R&D for the electron cyclotron (EC), ion cyclotron and neutral beam systems for the DEMO reactor is being performed by Work Package Heating and Current Drive (WPHCD) in the framework of EUROfusion Consortium activities. The EC target power to the plasma is about 50 MW, in which the required power for NTM control and burn control is included. EC launcher conceptual design studies are here presented, showing how the main design drivers of the system have been taken into account (physics requirements, reactor relevant operations, issues related to its integration as in-vessel components). Different options for the antenna are studied in a parameters space including a selection of frequencies, injection angles and launch points to get the best performances for the antenna configuration, using beam tracing calculations to evaluate plasma accessibility and deposited power. This conceptual design studies comes up with the identification of possible limits, constraints and critical issues, essential in the selection process of launcher setup solution.

  18. Conceptual design studies of the Electron Cyclotron launcher for DEMO reactor

    Directory of Open Access Journals (Sweden)

    Moro Alessandro

    2017-01-01

    Full Text Available A demonstration fusion power plant (DEMO producing electricity for the grid at the level of a few hundred megawatts is included in the European Roadmap [1]. The engineering design and R&D for the electron cyclotron (EC, ion cyclotron and neutral beam systems for the DEMO reactor is being performed by Work Package Heating and Current Drive (WPHCD in the framework of EUROfusion Consortium activities. The EC target power to the plasma is about 50 MW, in which the required power for NTM control and burn control is included. EC launcher conceptual design studies are here presented, showing how the main design drivers of the system have been taken into account (physics requirements, reactor relevant operations, issues related to its integration as in-vessel components. Different options for the antenna are studied in a parameters space including a selection of frequencies, injection angles and launch points to get the best performances for the antenna configuration, using beam tracing calculations to evaluate plasma accessibility and deposited power. This conceptual design studies comes up with the identification of possible limits, constraints and critical issues, essential in the selection process of launcher setup solution.

  19. Conceptual design of the blanket mechanical attachment for the helium-cooled lithium-lead reactor

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, G. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Branas, B. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: beatriz.branas@ciemat.es; Lucas, J. [Elytt Energy, Po Castellana 114, 3, 7 28046 Madrid (Spain); Doncel, J.; Medrano, M.; Garcia, A. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Giancarli, L. [CEA/Saclay, DEN/CPT, 91191 Gif-sur-Yvette (France); Ibarra, A. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Li Puma, A. [CEA/Saclay, DEN/CPT, 91191 Gif-sur-Yvette (France); Maisonnier, D.; Sardain, P. [EFDA-Close Support Unit Garching, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2008-01-15

    The conceptual design of a new type of fusion reactor based on the helium-cooled lithium-lead (HCLL) blanket has been performed within the European Power Plant Conceptual Studies. As part of this activity, a new attachment system suitable for the HCLL blanket modules had to be developed. This attachment is composed of two parts. The first one is the connection between module and the first part of a shield, called high temperature shield, which operates at a temperature around 500 deg. C, close to that of the blanket module. This connection must be made at the lateral walls, in order to avoid openings through the first wall and breeding zone thus avoiding complex design and fabrication issues of the module. The second connection is the one between the high temperature shield and a second shield called low temperature shield, which has a temperature during reactor operation around 150 deg. C. The design of this connection is complex because it must allow the large differential thermal expansion (up to 30 mm) between the two components. Design proposals for both connections are presented, together with the results of finite element mechanical analyses which demonstrate the feasibility to support the blanket and shield modules during normal and accidental operation conditions.

  20. Conceptual design of an extraction system for cryogenic hydrogen isotopes distillation

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirache, M.; Stefanescu, I.; Bornea, A.; Balteanu, O.; Bidica, N.

    2007-07-01

    One of the main problems of the hydrogen isotopes separation by cryogenic distillation is represented by the extraction of the heavy fraction from a distillation column. This can be achieved by an optimal design of the cycle scheme. The main problem consist of the possibility to make an extraction from a distillation column when the mixture that feed the column is made from one prevalent isotope as hydrogen and small amounts of other two isotopes (deuterium and/or tritium). Another problem that affects the design of the extraction system is the relation between the hold-up of the cryogenic distillation column and the extraction flow rate. The present study is focused on the realization of the conceptual design for the extraction system from a cryogenic distillation column used in the hydrogen isotopes separation process. In the hydrogen distillation process by cryogenic distillation, the heavy fraction (DT,T{sub 2}) is separated and increase in the bottom of the distillation column. The extraction will be made in gas phase in the bottom of the column. The extraction system from a cryogenic column is used for the temporary extraction inside a vessel filled with adsorption material, and also the system has the possibility to provide samples to a gas chromatographer. The paper presents the conceptual design of the extraction system, and also the connection to all the process systems as automatization, gas analysis devices and storage. (orig.)

  1. Conceptual Design Approach to Implementing Hardware-based Security Controls in Data Communication Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Ahmad Salah; Jung, Jaecheon [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    In the Korean Advanced Power Reactor (APR1400), safety control systems network is electrically isolated and physically separated from non-safety systems data network. Unidirectional gateways, include data diode fiber-optic cabling and computer-based servers, transmit the plant safety critical parameters to the main control room (MCR) for control and monitoring processes. The data transmission is only one-way from safety to non-safety. Reverse communication is blocked so that safety systems network is protected from potential cyberattacks or intrusions from non-safety side. Most of commercials off-the-shelf (COTS) security devices are software-based solutions that require operating systems and processors to perform its functions. Field Programmable Gate Arrays (FPGAs) offer digital hardware solutions to implement security controls such as data packet filtering and deep data packet inspection. This paper presents a conceptual design to implement hardware-based network security controls for maintaining the availability of gateway servers. A conceptual design of hardware-based network security controls was discussed in this paper. The proposed design is aiming at utilizing the hardware-based capabilities of FPGAs together with filtering and DPI functions of COTS software-based firewalls and intrusion detection and prevention systems (IDPS). The proposed design implemented a network security perimeter between the DCN-I zone and gateway servers zone. Security control functions are to protect the gateway servers from potential DoS attacks that could affect the data availability and integrity.

  2. New Incremental Actuators based on Electro-active Polymer: Conceptual, Control, and Driver Design Considerations

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Zhang, Zhe

    2016-01-01

    This paper presents an overview of the widely usedconventional linear actuator technologies and existing electroactivepolymer based linear and rotary actuators. It also providesthe conceptual, control and driver design considerations for anew dielectric electro-active polymer (DEAP) based...

  3. Sublimator Driven Coldplate Engineering Development Unit Test Results and Development of Second Generation SDC

    Science.gov (United States)

    Stephan, Ryan A.; Sheth, Rubik B.

    2009-01-01

    The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a traditional thermal control scheme. The principal advantage is the possible elimination of a pumped fluid loop, potentially increasing reliability and reducing complexity while saving both mass and power. Furthermore, the Integrated Sublimator Driven Coldplate (ISDC) concept couples a coolant loop with the previously described SDC hardware. This combination allows the SDC to be used as a traditional coldplate during long mission phases. The previously developed SDC technology cannot be used for long mission phases due to the fact that it requires a consumable feedwater for heat rejection. Adding a coolant loop also provides for dissimilar redundancy on the Altair Lander ascent module thermal control system, which is the target application for this technology. Tests were performed on an Engineering Development Unit at NASA s Johnson Space Center to quantify and assess the performance of the SDC. Correlated thermal math models were developed to help explain the test data. The paper also outlines the preliminary results of an ISDC concept being developed.

  4. Design activities toward the achievement of the conceptual phase of the EU-TBM sets

    Energy Technology Data Exchange (ETDEWEB)

    Vallory, J., E-mail: Joelle.vallory@f4e.europa.eu [Fusion for Energy—F4E, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Panayotov, D.; Zmitko, M.; Poitevin, Y. [Fusion for Energy—F4E, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Plaza, F.J. Calvo; Sadaba, S.; Gil, A. [Idom, Avda. Monasterio de El Escorial, 4, 28049 Madrid (Spain)

    2016-11-01

    Europe is developing two reference tritium breeder blanket concepts that will be tested in ITER under the form of Test Blanket Modules (TBMs): the helium–cooled lithium–lead (HCLL) which uses the liquid Pb–16Li as both breeder and neutron multiplier and the helium–cooled pebble-bed (HCPB) with lithiated ceramic pebbles as breeder and beryllium pebbles as neutron multiplier. Both concepts are using the EUROFER reduced activation ferritic–martensitic steel as structural material and pressurized helium technology for heat extraction. In view of the conceptual design review, design activities of the TBM sets have been focused on specific areas. The convergence of TBMs design, developed in their pre-conceptual phase by different European Fusion laboratories, has been sought in order to optimize fabrication and maintenance in ITER port #16. The structural strength of the helium back manifold of both TBMs is now based on the HCLL stiffening rod concept proposed in 2010. Through iterations between the nuclear analyses and design, the radiation shield design reaches a good compromise between its shielding performances versus manufacturing. A shield-to-TBM attachment has been implemented which complies with constraints related to thermal expansion under operating conditions and mechanical strength to handle dynamic loads such as major disruptions and seismic event. A full set of thermomechanical, hydraulic and structural analysis of the TBM sets has been carried out. They cover the loads selected as design drivers in the conceptual phase along with exploration of operational domain in terms of helium cooling conditions versus RCC-MRx code criteria compliance. The analysis results show that thermal loads are the main design driver for most of TBM sub-components. Pressure loads are also a design driver for the TBM stiffening grids under in-TBM loss of coolant accident. From the analyses carried out for the shields, the most demanding scenario has been demonstrated to

  5. Evidence-Based Design and Research-Informed Design: What's the Difference? Conceptual Definitions and Comparative Analysis.

    Science.gov (United States)

    Peavey, Erin; Vander Wyst, Kiley B

    2017-10-01

    This article provides critical examination and comparison of the conceptual meaning and underlying assumptions of the concepts evidence-based design (EBD) and research-informed design (RID) in order to facilitate practical use and theoretical development. In recent years, EBD has experienced broad adoption, yet it has been simultaneously critiqued for rigidity and misapplication. Many practitioners are gravitating to the term RID to describe their method of integrating knowledge into the design process. However, the term RID lacks a clear definition and the blurring of terms has the potential to weaken advances made integrating research into practice. Concept analysis methods from Walker and Avant were used to define the concepts for comparison. Conceptual definitions, process descriptions, examples (i.e., model cases), and methods of evaluation are offered for EBD and RID. Although EBD and RID share similarities in meaning, the two terms are distinct. When comparing evidence based (EB) and research informed, EB is a broad base of information types (evidence) that are narrowly applied (based), while the latter references a narrow slice of information (research) that is broadly applied (informed) to create an end product of design. Much of the confusion between the use of the concepts EBD and RID arises out of differing perspectives between the way practitioners and academics understand the underlying terms. The authors hope this article serves to generate thoughtful dialogue, which is essential to the development of a discipline, and look forward to the contribution of the readership.

  6. Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-05

    This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

  7. Mechanical conceptual design of 6.5 meter telescope: Telescopio San Pedro Mártir (TSPM)

    Science.gov (United States)

    Uribe, Jorge; Bringas, Vicente; Reyes, Noe; Tovar, Carlos; López, Aldo; Caballero, Xóchitl; Martínez, César; Toledo, Gengis; Lee, William; Carramiñana, Alberto; González, Jesús; Richer, Michael; Sánchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Rubio, Saúl; González, Germán.; Hernández, Obed; Segura, José; Macias, Eduardo; García, Mary; Lazaro, José; Rosales, Fabián.; del Llano, Luis

    2016-07-01

    Telescopio San Pedro Mártir (TSPM) project intends to build a 6.5 meters telescope with alt-azimuth design, currently at the conceptual design. The project is an association between Instituto de Astronomía de la Universidad Nacional Autónoma de México (IA-UNAM) and the Instituto Nacional de Astrofísica, Óptica Electrónica (INAOE) in partnership with department of Astronomy and Steward Observatory of University of Arizona and Smithsonian Astrophysical Observatory of Harvard University. Conceptual design of the telescope is lead and developed by the Centro de Ingeniería y Desarrollo Industrial (CIDESI). An overview of the feasibility study and the structural conceptual design are summarized in this paper. The telescope concept is based on telescopes already commissioned such as MMT and the Baade and Clay Magellan telescopes, building up on these proven concepts. The main differences relative to the Magellan pair are; the elevation axis is located 1 meter above the primary mirror vertex, allowing for a similar field of view at the Cassegrain and both Nasmyth focal stations; instead of using a vane ends to position the secondary mirror TSPM considers an Steward platform like MMT; finally TSPM has a larger floor distance to m1 cell than Magellans and MMT. Initially TSPM will operate with an f/5 Cassegrain station, but the design considers further Nasmyth configurations from a Cassegrain f/5 up to a Gregorian f/11. The telescope design includes 7 focal stations: 1 Cassegrain; 2 Nasmyth; and 4 folded-Cassegrain. The telescope will be designed and manufactured in Mexico, will be design in Queretaro by CIDESI and built between Queretaro and Michoacán manufacturing facilities; it will be preassembled in these facilities and disassembled to send it to the San Pedro Mártir Observatory for final integration. The azimuth and altitude structure is planned to be constructed in modules and transported by truck and shipped to Ensenada and finally to the OAN where is going

  8. LMFBR spent fuel transport: conceptual design and partial safety analysis of a sodium-cooled cask

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, A.R.; Shappert, L.B.; Evans, J.H.; Canonico, D.A.

    1972-02-01

    Conceptual designs for 6- and 18-subassembly casks are presented. The casks are intended for transport of LMFBR spent fuel which has decayed a minimum of 30 days. These casks use sodium as the primary coolant, an auxiliary shield coolant system in normal operation, heavy steel members as both gamma shield and structure, and a eutectic mixture of LiOH and NaOH as a neutron shield. The analysis indicates that there will be no leakage of coolant or fission products under normal or hypothetical accident conditions.

  9. Conceptual design and systems analysis of photovoltaic power systems. Final report. Volume III(2). Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pittman, P.F.

    1977-05-01

    Conceptual designs were made and analyses were performed on three types of solar photovoltaic power systems. Included were Residential (1 to 10 kW), Intermediate (0.1 to 10 MW), and Central (50 to 1000 MW) Power Systems to be installed in the 1985 to 2000 time period. The following analyses and simulations are covered: residential power system computer simulations, intermediate power systems computer simulation, central power systems computer simulation, array comparative performance, utility economic and margin analyses, and financial analysis methodology.

  10. Data on conceptual design of cryogenic energy storage system combined with liquefied natural gas regasification process

    Directory of Open Access Journals (Sweden)

    Inkyu Lee

    2017-12-01

    Full Text Available This paper describes data of an integrated process, cryogenic energy storage system combined with liquefied natural gas (LNG regasification process. The data in this paper is associated with the article entitled “Conceptual Design and Exergy Analysis of Combined Cryogenic Energy Storage and LNG Regasification Processes: Cold and Power Integration” (Lee et al., 2017 [1]. The data includes the sensitivity case study dataset of the air flow rate and the heat exchanging feasibility data by composite curves. The data is expected to be helpful to the cryogenic energy process development.

  11. Data on conceptual design of cryogenic energy storage system combined with liquefied natural gas regasification process.

    Science.gov (United States)

    Lee, Inkyu; Park, Jinwoo; Moon, Il

    2017-12-01

    This paper describes data of an integrated process, cryogenic energy storage system combined with liquefied natural gas (LNG) regasification process. The data in this paper is associated with the article entitled "Conceptual Design and Exergy Analysis of Combined Cryogenic Energy Storage and LNG Regasification Processes: Cold and Power Integration" (Lee et al., 2017) [1]. The data includes the sensitivity case study dataset of the air flow rate and the heat exchanging feasibility data by composite curves. The data is expected to be helpful to the cryogenic energy process development.

  12. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  13. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martone, M. [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  14. Conceptual design of experimental equipment for large-diameter NTD-Si

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, M. [Development of Research Reactor and Tandem Accelerator, Nuclear Science Research Institute, Tokai Research and Development Center, Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)], E-mail: yagi.masahiro@jaea.go.jp; Watanabe, M.; Ohyama, K.; Yamamoto, K.; Komeda, M.; Kashima, Y.; Yamashita, K. [Development of Research Reactor and Tandem Accelerator, Nuclear Science Research Institute, Tokai Research and Development Center, Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2009-07-15

    An irradiation-experimental equipment for 12 in neutron transmutation doping silicon (NTD-Si) was designed conceptually by using MCNP5 in order to improve the neutron flux distribution of the radial direction. As a result of the calculations, the neutron absorption reaction ratio of the circumference to the center could be limited within 1.09 using a thermal neutron filter that covers the surface of the silicon ingot. The uniformity of the {sup 30}Si neutron absorption was less than 5.3%.

  15. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    Energy Technology Data Exchange (ETDEWEB)

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  16. Program Suite for Conceptual Designing of Parallel Mechanism-Based Robots and Machine Tools

    Directory of Open Access Journals (Sweden)

    Slobodan Tabaković

    2013-06-01

    Full Text Available In the development of robots and machine tools, in addition to conventional and serial structures, parallel mechanism-based kinematic structures have been used over a longer period of time. Aside from a number of advantages, the irregular shape and relatively small dimensions of the workspace formed by parallel mechanisms rank among the major weaknesses of their application. Accordingly, this fact has to be taken into consideration in the process of designing parallel mechanism-based robots or machine tools. This paper describes the categorization of criteria for the conceptual design of parallel mechanism-based robots or machine tools, resulting from workspace analysis as well as the procedure of their defining. Furthermore, it also presents the designing methodology that was implemented into the program for the creation of a robot or machine tool space model and the optimization of the resulting solution. For verification of the criteria and the programme suite, three common (conceptually different mechanisms with a similar mechanical structure and kinematic characteristics were used.

  17. Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant

    Energy Technology Data Exchange (ETDEWEB)

    James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

    2011-09-20

    A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers and towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.

  18. Lunar base Controlled Ecological Life Support System (LCELSS): Preliminary conceptual design study

    Science.gov (United States)

    Schwartzkopf, Steven H.

    1991-01-01

    The objective of this study was to develop a conceptual design for a self-sufficient LCELSS. The mission need is for a CELSS with a capacity to supply the life support needs for a nominal crew of 30, and a capability for accommodating a range of crew sizes from 4 to 100 people. The work performed in this study was nominally divided into two parts. In the first part, relevant literature was assembled and reviewed. This review identified LCELSS performance requirements and the constraints and advantages confronting the design. It also collected information on the environment of the lunar surface and identified candidate technologies for the life support subsystems and the systems with which the LCELSS interfaced. Information on the operation and performance of these technologies was collected, along with concepts of how they might be incorporated into the LCELSS conceptual design. The data collected on these technologies was stored for incorporation into the study database. Also during part one, the study database structure was formulated and implemented, and an overall systems engineering methodology was developed for carrying out the study.

  19. A conceptual framework for designing micro electrical connectors for hearing aid instruments

    DEFF Research Database (Denmark)

    Doagou Rad, Saeed; Islam, Aminul; Fuglsang-Philip, M.

    2016-01-01

    Electrical connectors play vital roles in modern electronic instruments. Hearing aid devices as advanced combinations of micro mechanics and electronics comprise various electrical connectors for different purposes. However, the current trend in the miniaturization along with the sharp...... technological advancements have urged them to incorporate increased number of electrical contacts. The current paper presents a conceptual framework for designing and manufacturing novel plug and socket systems for hearing aid instruments by using the state of art manufacturing technologies for micro components...... computer simulations and experiments on the 3-D printed prototypes. In fact, the presented designs not only are able to provide a range of functions for other similar micro products, but also depict an outline for the challenges in this area and the possible approach and solutions in the design of micro...

  20. INVESTIGATING PECTORAL SHAPES AND LOCOMOTIVE STRATEGIES FOR CONCEPTUAL DESIGNING BIO-INSPIRED ROBOTIC FISH

    Directory of Open Access Journals (Sweden)

    A. I. MAINONG

    2017-01-01

    Full Text Available This paper describes the performance analysis of a conceptual bio-inspired robotic fish design, which is based on the morphology similar to the boxfish (Ostracion melagris. The robotic fish prototype is driven by three micro servos; two on the pectoral fins, and one on the caudal fin. Two electronic rapid prototyping boards were employed; one for the movement of robotic fish, and one for the force sensors measurements. The robotic fish were built using fused deposition modeling (FDM, more popularly known as the 3D printing method. Several designs of pectoral fins (rectangular, triangular and quarter-ellipse with unchanging the value of aspect ratio (AR employed to measure the performance of the prototype robotic fish in terms of hydrodynamics, thrust and maneuvering characteristics. The analysis of the unmanned robotic system performance is made experimentally and the results show that the proposed bioinspired robotic prototype opens up the possibility of design optimization research for future work.

  1. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  2. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  3. The Innovative Bike Conceptual Design by Using Modified Functional Element Design Method

    Directory of Open Access Journals (Sweden)

    Nien-Te Liu

    2016-11-01

    Full Text Available The purpose of the study is to propose a new design process by modifying functional element design approach which can commence a large amount of innovative concepts within a short period of time. Firstly, the original creative functional elements design method is analyzed and the drawbacks are discussed. Then, the modified is proposed and is divided into 6 steps. The creative functional element representations, generalization, specialization, and particularization are used in this method. Every step is described clearly, and users could design by following the process easily. In this paper, a clear and accurate design process is proposed based on the creative functional element design method. By following this method, a lot of innovative bicycles will be created quickly.

  4. Multidisciplinary Design Techniques Applied to Conceptual Aerospace Vehicle Design. Ph.D. Thesis Final Technical Report

    Science.gov (United States)

    Olds, John Robert; Walberg, Gerald D.

    1993-01-01

    Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are

  5. Modeling safety in a distributed technology management environment for more cost-effective conceptual design of chemical process plants

    NARCIS (Netherlands)

    Schupp, B.A.; Lemkowitz, S.M.; Goossens, L.H.J.; Hale, A.R.; Pasman, H.J.

    2002-01-01

    Profitability of the CPI can improve by better integrating safety into the design process. At present, conceptual desgners lack means to design safety. This paper discusses a methodology, Design for Safety (DFS), that strives to provide these. It consists of two major concepts. A technology

  6. Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft

    Science.gov (United States)

    Wells, Valana L.

    1996-01-01

    This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.

  7. A knowledge management methodology for the integrated assessment of WWTP configurations during conceptual design.

    Science.gov (United States)

    Garrido-Baserba, M; Reif, R; Rodriguez-Roda, I; Poch, M

    2012-01-01

    The current complexity involved in wastewater management projects is arising as the XXI century sets new challenges leading towards a more integrated plant design. In this context, the growing number of innovative technologies, stricter legislation and the development of new methodological approaches make it difficult to design appropriate flow schemes for new wastewater projects. Thus, new tools are needed for the wastewater treatment plant (WWTP) conceptual design using integrated assessment methods in order to include different types of objectives at the same time i.e. environmental, economical, technical, and legal. Previous experiences used the decision support system (DSS) methodology to handle the specific issues related to wastewater management, for example, the design of treatment facilities for small communities. However, tools developed for addressing the whole treatment process independently of the plant size, capable of integrating knowledge from many different areas, including both conventional and innovative technologies are not available. Therefore, the aim of this paper is to present and describe an innovative knowledge-based methodology that handles the conceptual design of WWTP process flow-diagrams (PFDs), satisfying a vast number of different criteria. This global approach is based on a hierarchy of decisions that uses the information contained in knowledge bases (KBs) with the aim of automating the generation of suitable WWTP configurations for a specific scenario. Expert interviews, legislation, specialized literature and engineering experience have been integrated within the different KBs, which indeed constitute one of the main highlights of this work. Therefore, the methodology is presented as a valuable tool which provides customized PFD for each specific case, taking into account process unit interactions and the user specified requirements and objectives.

  8. Embedded Sensors and Controls to Improve Component Performance and Reliability Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, R.; Melin, A.; Burress, T.; Fugate, D.; Holcomb, D.; Wilgen, J.; Miller, J.; Wilson, D.; Silva, P.; Whitlow, L.; Peretz, F.

    2012-09-15

    The objective of this project is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant (NPP) components and systems. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration platform. I&C is intimately part of the basic millisecond-by-millisecond functioning of the system; treating I&C as an integral part of the system design is innovative and will allow significant improvement in capabilities and performance. As systems become more complex and greater performance is required, traditional I&C design techniques become inadequate and more advanced I&C needs to be applied. New I&C techniques enable optimal and reliable performance and tolerance of noise and uncertainties in the system rather than merely monitoring quasistable performance. Traditionally, I&C has been incorporated in NPP components after the design is nearly complete; adequate performance was obtained through over-design. By incorporating I&C at the beginning of the design phase, the control system can provide superior performance and reliability and enable designs that are otherwise impossible. This report describes the progress and status of the project and provides a conceptual design overview for the platform to demonstrate the performance and reliability improvements enabled by advanced embedded I&C.

  9. The Conceptual Design for a Fuel Assembly of a New Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, J-S.; Cho, Y-G.; Yoon, D-B.; Dan, H-J.; Chae, H-T.; Park, C.

    2004-10-06

    A new Research Reactor (ARR) has been under design by KAERI since 2002. In this work, as a first step for the design of the fuel assembly of the ARR, the conceptual design has been carried out. The vibration characteristics of the tubular fuel model and the locking performance of the preliminary designed locking devices were investigated. In order to investigate the effects of the stiffener on the vibration characteristics of the tubular fuel, a modal analysis was performed for the finite element models of the tubular fuels with stiffeners and without stiffeners. The analysis results show that the vibration characteristics of the tubular fuel with stiffeners are better than those of the tubular fuel without stiffeners. To investigate the locking performance of the preliminary designed locking devices for the fuel assembly of the ARR, the elements of the locking devices were fabricated. Then the torsional resistance, fixing status and vibration characteristics of the locking devices were tested. The test results show that using the locking device with fins on the bottom guide can prevent the torsional motion of the fuel assembly, and that additional springs or guides on the top of the fuel assembly are needed to suppress the lateral motion of the fuel assembly. Based on the modal analysis and experimental results, the fuel assembly and locking devices of the ARR were designed and its prototype was fabricated. The locking performance, pressure drop characteristics and vibration characteristics of the newly designed fuel assembly will be tested in the near future.

  10. Ontologies and Formation Spaces for Conceptual ReDesign of Systems

    Directory of Open Access Journals (Sweden)

    J. Bíla

    2005-01-01

    Full Text Available This paper discusses ontologies, methods for developing them and languages for representing them. A special ontology for computational support of the Conceptual ReDesign Process (CRDP is introduced with a simple illustrative example of an application. The ontology denoted as Global context (GLB combines features of general semantic networks and features of UML language. The ontology is task-oriented and domain-oriented, and contains three basic strata – GLBExpl(stratum of Explanation, GLBFAct (stratum of Fields of Activities and GLBEnv (stratum of Environment, with their sub-strata. The ontology has been developed to represent functions of systems and their components in CRDP. The main difference between this ontology and ontologies which have been developed to identify functions (the semantic details in those ontologies must be as deep as possible is in the style of the description of the functions. In the proposed ontology, Formation Spaces were used as lower semantic categories the semantic deepness of which is variable and depends on the actual solution approach of a specialised Conceptual Designer.

  11. Conceptual Design and Feasibility Analyses of a Robotic System for Automated Exterior Wall Painting

    Directory of Open Access Journals (Sweden)

    Young S. Kim

    2008-11-01

    Full Text Available There are approximately 6,677,000 apartment housing units in South Korea. Exterior wall painting for such multi-dwelling apartment housings in South Korea represents a typical area to which construction automation technology can be applied for improvement in safety, productivity, quality, and cost over the conventional method. The conventional exterior wall painting is costly and labor-intensive, and it especially exposes workers to significant health and safety risks. The primary objective of this study is to design a conceptual model of an exterior wall painting robot which is applicable to apartment housing construction and maintenance, and to conduct its technical?economical feasibility analyses. In this study, a design concept using a high ladder truck is proposed as the best alternative for automation of the exterior wall painting. Conclusions made in this study show that the proposed exterior wall painting robot is technically and economically feasible, and can greatly enhance safety, productivity, and quality compared to the conventional method. Finally, it is expected that the conceptual model of the exterior wall painting robot would be efficiently used in various applications in exterior wall finishing and maintenance of other architectural and civil structures such as commercial buildings, towers, and high-rise storage tanks.

  12. Conceptual design of the DEMO neutral beam injectors: main developments and R&D achievements

    Science.gov (United States)

    Sonato, P.; Agostinetti, P.; Bolzonella, T.; Cismondi, F.; Fantz, U.; Fassina, A.; Franke, T.; Furno, I.; Hopf, C.; Jenkins, I.; Sartori, E.; Tran, M. Q.; Varje, J.; Vincenzi, P.; Zanotto, L.

    2017-05-01

    The objectives of the nuclear fusion power plant DEMO, to be built after the ITER experimental reactor, are usually understood to lie somewhere between those of ITER and a ‘first of a kind’ commercial plant. Hence, in DEMO the issues related to efficiency and RAMI (reliability, availability, maintainability and inspectability) are among the most important drivers for the design, as the cost of the electricity produced by this power plant will strongly depend on these aspects. In the framework of the EUROfusion Work Package Heating and Current Drive within the Power Plant Physics and Development activities, a conceptual design of the neutral beam injector (NBI) for the DEMO fusion reactor has been developed by Consorzio RFX in collaboration with other European research institutes. In order to improve efficiency and RAMI aspects, several innovative solutions have been introduced in comparison to the ITER NBI, mainly regarding the beam source, neutralizer and vacuum pumping systems.

  13. Conceptual design and economic analysis of a solar metal melting furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sungu, S.; Villacorta, E.H.

    1983-06-01

    This paper presents the conceptual design, construction details, economic analysis of a solar metal melting furnace consisting of multiple axi-symmetrical paraboloids. An axi-symmetric telescoping arrangement was chosen because it does allow the receiver (the metal melting crucible) to be located at the lower end of the paraboloids. In this position the crucible faces the sun, and is readily accessible from the ground. By this choice, the handling of the molten metal is made easier and safer. The solar furnace is designed and sized to melt 10 kg of aluminum per hour. Three concentric paraboloid sections of the furnace are mounted on a platform which tracks the sun by a simple and reliable solar tracking system. The economic analysis shows that the proposed solar metal melting furnace is cost effective and suitable for small batch high purity metal melting.

  14. Conceptual radiometer design studies for Earth observations from low Earth orbit

    Science.gov (United States)

    Harrington, Richard F.

    1994-01-01

    A conceptual radiometer design study was performed to determine the optimum design approach for spaceborne radiometers in low Earth orbit. Radiometric system configurations which included total power radiometers, unbalanced Dicke radiometers, and balanced Dicke, or as known as noise injection, radiometers were studied. Radiometer receiver configurations which were analyzed included the direct detection radiometer receiver, the double sideband homodyne radiometer receiver, and the single sideband heterodyne radiometer receiver. Radiometer system performance was also studied. This included radiometric sensitivity analysis of the three different radiometer system configurations studied. Both external and internal calibration techniques were analyzed. An accuracy analysis with and without mismatch losses was performed. It was determined that the balanced Dicke radiometer system configuration with direct detection receivers and external calibrations was optimum where frequent calibration such as once per minute were not feasible.

  15. A conceptual design of main components sizing for UMT PHEV powertrain

    Science.gov (United States)

    Haezah, M. N.; Norbakyah, J. S.; Atiq, W. H.; Salisa, A. R.

    2015-12-01

    This paper presents a conceptual design of main components sizing for Universiti Malaysia Terengganu plug-in hybrid electric vehicle (UMT PHEV) powertrain. In the design of hybrid vehicles, it is important to identify a proper component sizes. Component sizing significantly affects vehicle performance, fuel economy and emissions. The proposed UMT PHEV has only one electric machine (EM) which functions as either a motor or generator at a time and using batteries and ultracapacitors as an energy storage system (ESS). In this work, firstly, energy and power requirements based on parameters, specifications and performance requirements of vehicle are calculated. Then, the parameters for internal combustion engine, EM and ESS are selected based on the developed Kuala Terengganu drive cycle. The results obtained from this analysis are within reasonable range and satisfactory.

  16. Conceptual Design Standards for eXternal Visibility System (XVS) Sensor and Display Resolution

    Science.gov (United States)

    Bailey, Randall E.; Wilz, Susan J.; Arthur, Jarvis J, III

    2012-01-01

    NASA is investigating eXternal Visibility Systems (XVS) concepts which are a combination of sensor and display technologies designed to achieve an equivalent level of safety and performance to that provided by forward-facing windows in today s subsonic aircraft. This report provides the background for conceptual XVS design standards for display and sensor resolution. XVS resolution requirements were derived from the basis of equivalent performance. Three measures were investigated: a) human vision performance; b) see-and-avoid performance and safety; and c) see-to-follow performance. From these three factors, a minimum but perhaps not sufficient resolution requirement of 60 pixels per degree was shown for human vision equivalence. However, see-and-avoid and see-to-follow performance requirements are nearly double. This report also reviewed historical XVS testing.

  17. Comparative analysis of the conceptual design studies of potential early commercial MHD power plants (CSPEC)

    Science.gov (United States)

    Sovie, R. J.; Winter, J. M.; Juhasz, A. J.; Berg, R. D.

    1982-01-01

    A conceptual design study of the MHD/steam plant that incorporates the use of oxygen enriched air preheated in a metallic heat exchanger as the combustor oxidant showed that this plant is the most attractive for early commercial applications. The variation of performance and cost was investigated as a function of plant size. The contractors' results for the overall efficiencies are in reasonable agreement considering the slight differences in their plant designs. NASA LeRC is reviewing cost and performance results for consistency with those of previous studies, including studies of conventional steam plants. LeRC in house efforts show that there are still many tradeoffs to be considered for these oxygen enriched plants and considerable variations can be made in channel length and level of oxygen enrichment with little change in overall plant efficiency.

  18. Embedded Sensors and Controls to Improve Component Performance and Reliability: Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Burress, Timothy A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL; Wilgen, John B [ORNL; Miller, John M [ORNL; Wilson, Dane F [ORNL; Silva, Pamela C [ORNL; Whitlow, Lynsie J [ORNL; Peretz, Fred J [ORNL

    2012-10-01

    The overall project objective is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant components. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration vehicle. The project s focus is not primarily on pump design, but instead is on methods to deeply embed I&C within a pump system. However, because the I&C is intimately part of the basic millisecond-by-millisecond functioning of the pump, the I&C design cannot proceed in isolation from the other aspects of the pump. The pump will not function if the characteristics of the I&C are not embedded within the design because the I&C enables performance of the basic function rather than merely monitoring quasi-stable performance. Traditionally, I&C has been incorporated in nuclear power plant (NPP) components after their design is nearly complete; adequate performance was obtained through over-design. This report describes the progress and status of the project and provides a conceptual design overview for the embedded I&C pump.

  19. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    Science.gov (United States)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  20. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    Science.gov (United States)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  1. Conceptual design of the beam source for the DEMO Neutral Beam Injectors

    Science.gov (United States)

    Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.

    2016-12-01

    DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.

  2. Measurement error in the assessment of radiographic progression in rheumatoid arthritis (RA) clinical trials: the smallest detectable change (SDC) revisited

    NARCIS (Netherlands)

    Navarro-Compán, V.; van der Heijde, D.; Ahmad, Harris A.; Miller, Colin G.; Wolterbeek, R.; Landewé, R.

    2014-01-01

    To evaluate if the mean smallest detectable change (SDC) of multiple time intervals using the Bland & Altman (B&A) levels of agreement (LoA) method is an appropriate surrogate for the generalisability analysis method for estimating the overall SDC of radiological progression in rheumatoid arthritis

  3. Conceptual designs for utility load-leveling battery with Li/FeS cells

    Energy Technology Data Exchange (ETDEWEB)

    Zivi, S. M.; Kacinskas, H.; Pollack, I.; Chilenskas, A. A.; Grieve, W.; McFarland, B. L.; Sudar, S.

    1980-07-01

    In 1978, a conceptual design of a 100 MW-h load-leveling battery system having Li alloy/FeS cells was developed as a result of a joint effort between ANL and Rockwell International. In this conceptual design, the submodule, which was the basic replaceable unit for the system, had a capacity of 240 kW-h and consisted of ninety-six 2.5 kW-h cells. However, a study by Rockwell indicated that the cost for battery hardware, $60 to 80/kW-h (cells and converters not included), was too high. Most of this cost was contributed by the submodule structure and the charge equalization scheme, which was the same as that developed for electric-vehicle batteries. In 1979, subsequent efforts were concentrated on lowering these hardware costs and resulted in the development of three modified designs, which are presented in this report. The first, developed at ANL, consisted of a 30 kW-h cell/submodule and the electric-vehicle equalization scheme. The hardware cost for this modified design was quite low, about $25/kW-h; however, this design was eventually rejected owing to the apparent impracticality of such a large cell. The two other modified designs had more conservative cell designs. One of them, developed at ANL, consisted of a 120 kW-h submodule consisting of one hundred 1.2 kW-h cells; the other, developed at Rockwell, consisted of a 1020 kW-h submodule consisting of four hundred and eight 2.5 kW-h cells. For both of these designs, an alternative method of equalization, in which fixed resistance shunts are used on each cell, was proposed; this equalization method adds little equipment cost to the system and only sacrifices about 4% of the coulombic and energy efficiencies. The cost of battery hardware for these two designs was estimated to be acceptable, about $22 to 60/kW-h. Some questions remain on the assumed capabilities of the cells and the feasibility of the battery hardware.

  4. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: lijia@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Nie, Xingchen [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Zhu, Qinjun; Liu, Songlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2016-12-15

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  5. Pipe stress analysis on HCCR-TBS ancillary systems in conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Mu-Young, E-mail: myahn74@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Eo Hwak [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • Pipe stress is performed on Korean HCCR-TBS for the load combinations including seismic events. • The resultant stress meets the requirement of the design code & standard except one position where modification is needed. • The results gives useful information for the design evolution in the next desgin phase. - Abstract: Korean Helium Cooled Ceramic Reflector (HCCR) Test Blanket System (TBS) will be tested in ITER to demonstrate feasibility of the breeding blanket concept. The HCCR-TBS comprises Test Blanket Module (TBM) with associated shield, and ancillary systems located in various positions of ITER building. Currently, conceptual design for the HCCR-TBS is in progress. This paper presents pipe stress analysis results for the HCCR-TBS ancillary systems. The pipe stress analysis was performed in accordance with ASME B31.3 for major pipes of the Helium Cooling System (HCS) and the Coolant Purification System (CPS), which are operated in high pressure and temperature. The pipe stress for various load cases and load combinations were calculated. Operational pressure and temperature during plasma operation are applied as pressure load and thermal load, respectively. In addition seismic events were combined to investigate the code compliance for sustained load case and occasional load case. It was confirmed that the resultant stress meets the requirements of ASME B31.3 except one position in which it needs modification. These results give useful information for the next design phase, for example, nozzle loads for the component selection, the support design parameters, etc.

  6. Conceptual design of a KrF scaling module. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    A conceptual design of an angular multiplexed 50 kJ KrF laser module for Inertial Confinement Fusion is presented. Optical designs for encoding, beam packing and beam transfer between amplifier stages are developed; emphasis is placed on reducing prepulse problems and achieving acceptable optical quality. An axisymmetric optical design is identified as optimum in terms of simplicity, optical quality, cost and alignment. A kinetic code model was developed for the KrF amplifier and was used to derive scaling maps for the 50 kJ module. Attention was given to reducing parasitics, achieving acceptable extraction efficiency and accounting for amplified spontaneous emission effects. The size of the module is constrained by parasitic suppression and damage thresholds; the power gain is constrained by demanding 40% extraction efficiency in a double pass extraction geometry; and, the run time is constrained by the pulsed power technology (PFN or PFL) and acceptable values of g/sub 0/L. The bounds imposed on the design by the pulsed power technology were examined. Both PFLs and PFNs were considered along with their associated diode, hibachi and guide field requirements. A base line design for a 50 kJ module including amplifier staging, layout and overall size is discussed. Cost analysis and scaling for optical components, pulsed power technology and the guide field are also presented.

  7. IPMC-driven thrust generation: a new conceptual design (Conference Presentation)

    Science.gov (United States)

    Olsen, Zakai; Kim, Kwang Jin

    2017-04-01

    Ionic Polymer-Metal Composites (IPMC) are highly functional actuators that find many uses in the field of soft robotics due to their low actuation voltage and ability to operate in aquatic environments. The actuation of an IPMC relies on the swelling of the negatively charged side when a potential is applied, due to the free-moving cations and water molecules migrating to that half. While this bending type actuation can be utilized to perform many tasks, it is ill suited for the primary propulsion mechanism in certain soft robotic applications. Here, a new conceptual design is presented which utilizes the bending of IPMC materials to achieve complex actuation motion in an attempt to generate a non-zero net thrust for propulsion of soft robots. The design capitalizes on advances in the manufacturing processes of electroactive polymer materials, which now allow for more complex shapes and thus new and unique modes of actuation. By utilizing the consistent bending deformation of IPMC actuators, in conjunction with carefully considered geometry, an IPMC driven body may serve as a primary mode of propulsion through a positive net thrust generation. This work consists of the initial feasibility study, concept testing, and optimization for such an actuator through computer modeling and simulation. COMSOL will be used for the finite element analysis to design the most efficient and optimized design for a positive net thrust generation. Such an IPMC design may find a great deal of applications, and the potential of future integration into other soft robotic systems is considered.

  8. Conceptual design of semi-automatic wheelbarrow to overcome ergonomics problems among palm oil plantation workers

    Science.gov (United States)

    Nawik, N. S. M.; Deros, B. M.; Rahman, M. N. A.; Sukadarin, E. H.; Nordin, N.; Tamrin, S. B. M.; Bakar, S. A.; Norzan, M. L.

    2015-12-01

    An ergonomics problem is one of the main issues faced by palm oil plantation workers especially during harvesting and collecting of fresh fruit bunches (FFB). Intensive manual handling and labor activities involved have been associated with high prevalence of musculoskeletal disorders (MSDs) among palm oil plantation workers. New and safe technology on machines and equipment in palm oil plantation are very important in order to help workers reduce risks and injuries while working. The aim of this research is to improve the design of a wheelbarrow, which is suitable for workers and a small size oil palm plantation. The wheelbarrow design was drawn using CATIA ergonomic features. The characteristic of ergonomics assessment is performed by comparing the existing design of wheelbarrow. Conceptual design was developed based on the problems that have been reported by workers. From the analysis of the problem, finally have resulting concept design the ergonomic quality of semi-automatic wheelbarrow with safe and suitable used for palm oil plantation workers.

  9. Conceptual design main progress of EAST Articulated Maintenance Arm (EAMA) system

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Shanshuang, E-mail: shiss@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Song, Yuntao; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Villedieu, Eric; Bruno, Vincent [CEA-IRFM, F-13108 Saint-Paul-Lez-Durance (France); Feng, Hansheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Huapeng [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Wang, Peng [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Hao, Zhiwei; Li, Yang; Wang, Kun; Pan, Hongtao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-03-15

    Highlights: • EAST Articulated Maintenance Arm (EAMA) system is being collaboratively developed by ASIPP and CEA-IRFM. • Conceptual design for a 3-DOF wrist end effector with gripper has been finished. • Kinematic design can reach 90% of the workspace inside EAST tokamak vessel. • A prototype of EAMA arm segment has been built to validate the design. - Abstract: EAST articulated maintenance arm (EAMA) system is being collaboratively developed by ASIPP and CEA-IRFM for the purpose of remote inspection and simple maintenance operations in EAST vacuum vessel during physical experiments without breaking the ultra-high vacuum condition. The EAMA system design is based on a similar articulated inspection arm robot successfully demonstrated in Tore Supra in 2008. In order to better meet EAST configurations and maintenance requirements, optimized mechanisms and dimensions are considered for EAMA robot as upgrades. Besides, the segmented arm is equipped with a 3-DOF wrist end effector and gripper for gripping operation as well as inspection. Some calculations and simulations on statics, kinematics and workspace of EAMA have been presented to validate the feasibility. This paper introduces the overall design of the EAMA robot and presents implementation progress.

  10. Pre-conceptual design activities for the materials plasma exposure experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, Arnold, E-mail: lumsdainea@ornl.gov; Rapp, Juergen; Varma, Venugopal; Bjorholm, Thomas; Bradley, Craig; Caughman, John; Duckworth, Robert; Goulding, Richard; Graves, Van; Giuliano, Dominic; Lessard, Timothy; McGinnis, Dean; Meitner, Steven

    2016-11-01

    Highlights: • The development of long-pulse nuclear fusion devices requires testing plasma facing components at reactor relevant conditions. • The pre-conceptual design of a proposed linear plasma facility is presented. • Engineering considerations for multiple systems—plasma source and heating, magnet, vacuum, water cooling, and target, are presented. - Abstract: The development of next step fusion facilities such as DEMO or a Fusion Nuclear Science Facility (FNSF) requires first closing technology gaps in some critical areas. Understanding the material-plasma interface is necessary to enable the development of divertors for long-pulse plasma facilities. A pre-conceptual design for a proposed steady-state linear plasma device, the Materials Plasma Exposure Experiment (MPEX), is underway. A helicon plasma source along with ion cyclotron and electron Bernstein wave heating systems will produce ITER divertor relevant plasma conditions with steady-state parallel heat fluxes of up to 40 MW/m{sup 2} with ion fluxes up to 10{sup 24}/m{sup 2} s on target. Current plans are for the device to use superconducting magnets to produce 1–2 T fields. As a steady-state device, active cooling will be required for components that interact with the plasma (targets, limiters, etc.), as well as for other plasma facing components (transport regions, vacuum tanks, diagnostic ports). Design concepts for the vacuum system, the cooling system, and the plasma heating systems have been completed. The device will include the capability for handling samples that have been neutron irradiated in order to consider the multivariate effects of neutrons, plasma, and high heat-flux on the microstructure of divertor candidate materials. A vacuum cask, which can be disconnected from the high field environment in order to perform in-vacuo diagnosis of the surface evolution is also planned for the facility.

  11. Conceptual Design of Simulated Radiation Detector for Nuclear Forensics Exercise Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwang; Baek, Ye Ji; Lee, Seung Min [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    A site associated with an illicit trafficking or security event may contain trace evidence of criminal or malicious acts involving radioactive material. Such a site is called a radiological crime scene. Management of a radiological crime scene requires a process of ensuring an orderly accurate and effective collection and preservation of evidence. In order to effectively address such a security event, first responders and/or on-scene investigators need to exercise detecting, locating and recovering materials at the scene of the incident. During such the exercise, a sealed source can be used. This source is allowed to be a very small amount for exercises as there is the limit on the amount of radioactive material that causes no harm. So it is typically difficult to be found by some radiation detectors that the exercises have little effect on improving the ability of trainees. Therefore, we developed a conceptual design of a simulation radiation detector coupled with simulation sources which are designed to imitate a significant amount radioactive material for the purpose of a nuclear forensics exercise. With the potential of a terrorist attack using radioactive materials, the first responders should regularly perform the nuclear forensics exercise in order to prepare for a recovery operation. In this regard, some devices such as simulated detector, coupled with a virtual source, can replace a real detector and a surrogate source of material in field exercises. BLE technology could be applied to create similar environments to that of an actual radiological attack. The detector coupled with the simulated sources could be very helpful for first responders in testing and improving their ability in the case of a nuclear security event. In addition, this conceptual design could be extended to develop a simulated dosimeter coupled with a beacon signal emitters. The dosimeter is a personal device used for indicating the cumulated exposure of radiation in real time in the

  12. Reactive silence design: conceptual design study of silencer with perforated tube bundle. Rev.1

    NARCIS (Netherlands)

    Swamy, M.; Buijs, L.J.; Smeulers, J.P.M.

    2015-01-01

    Two screw compressors used for the recycling of waste gas showed high vibration in the discharge piping. To mitigate the vibration problems new silencers had to be designed. A great challenge was the large variation in operating conditions, especially the variation of the molecular weight of the

  13. Primary dermal fibroblasts derived from sdc-1 deficient mice migrate faster and have altered alphav integrin function.

    Science.gov (United States)

    Jurjus, Rosalyn A; Liu, Yueyuan; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Stepp, Mary Ann

    2008-01-01

    ABSTRACT The goal of this study is to determine whether dermal fibroblasts lacking syndecan-1 (sdc1) show differences in integrin expression and function that could contribute to the delayed skin and corneal wound healing phenotypes seen in sdc-1 null mice. Using primary dermal fibroblasts, we show that after 3 days in culture no differences in alpha-smooth muscle actin were detected but sdc-1 null cells expressed significantly more alphav and beta1 integrin than wildtype (wt) cells. Transforming growth factor beta1 (TGFbeta1) treatment at day 3 increased alphav- and beta1-integrin expression in sdc-1 null cells at day 5 whereas wt cells showed increased expression only of alphav-integrin. Using time-lapse studies, we showed that the sdc-1 null fibroblasts migrate faster than wt fibroblasts, treatment with TGFbeta1 increased these migration differences, and treatment with a TGFbeta1 antagonist caused sdc-1 null fibroblasts to slow down and migrate at the same rate as untreated wt cells. Cell spreading studies on replated fibroblasts showed altered cell spreading and focal adhesion formation on vitronectin and fibronectin-coated surfaces. Additional time lapse studies with beta1- and alphav-integrin antibody antagonists, showed that wt fibroblasts expressing sdc-1 had activated integrins on their surface that impeded their migration whereas the null cells expressed alphav-containing integrins which were less adhesive and enhanced cell migration. Surface expression studies showed increased surface expression of alpha2beta1 and alpha3beta1 on the sdc-1 null fibroblasts compared with wt fibroblasts but no significant differences in surface expression of alpha5beta1, alphavbeta3, or alphavbeta5. Taken together, our data indicates that sdc-1 functions in the activation of alphav-containing integrins and support the hypothesis that impaired wound healing phenotypes seen in sdc-1 null mice could be due to integrin-mediated defects in fibroblast migration after injury.

  14. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [570 MWe plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The design, arrangement, thermodynamics, and economics of a 578 MW(e) (nominal gross) electric power generating plant equipped with a Foster Wheeler Energy Corporation (FWEC) atmospheric fluidized bed (AFB) boiler are described. Information is included on capital and operating costs, process systems, electrical systems, control and instrumentation, and environmental systems. This document represents a portion of an overall report describing the conceptual designs of two atmospheric fluidized bed boilers and balance of plants for the generation of electric power and the analysis and comparison of these conceptual designs to a conventional pulverized coal-fired electric power generation plant equipped with a wet limestone flue gas desulfurization system.

  15. Conceptual design and issues of the laser inertial fusion test (LIFT) reactor—targets and chamber systems

    Science.gov (United States)

    Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team

    2017-11-01

    We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.

  16. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [570 MWe plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The design, arrangement, thermodynamics, and economics of a 592 MW(e) (nominal gross) electric power generating plant equipped with a Babcock and Wilcox Company (B and W) atmospheric fluidized bed (AFB) boiler are described. Information is included on capital and operating costs, process systems, electrical systems, control and instrumentation, and environmental systems. This document represents a portion of an overall report describing the conceptual designs of two atmospheric fluidized bed boilers and balance of plants for the generation of electric power and the analysis and comparison of these conceptual designs to a conventional pulverized coal-fired electric power generation plant equipped with a wet limestone flue gas desulfurization system.

  17. Therapeutic effect of Lactobacillus acidophilus-SDC 2012, 2013 in patients with irritable bowel syndrome.

    Science.gov (United States)

    Sinn, Dong Hyun; Song, Ji Hyun; Kim, Hoi Jin; Lee, Jun Haeng; Son, Hee Jung; Chang, Dong Kyung; Kim, Young-Ho; Kim, Jae J; Rhee, Jong Chul; Rhee, Poong-Lyul

    2008-10-01

    Probiotic bacteria exhibit a variety of properties, which are unique to a particular strain. Lactobacillus acidophilus-SDC 2012, 2013 are new strains isolated from Korean infants' feces. The potential utility of Lactobacillus acidophilus-SDC 2012, 2013 in irritable bowel syndrome (IBS) was studied. Forty IBS patients were randomized into a placebo (n = 20) and probiotics group (n = 20). Four weeks of treatment with L. acidophilus-SDC 2012, 2013 was associated with a reduced score for abdominal pain or discomfort compared to the baseline (P = 0.011). The percent reduction in abdominal pain or discomfort exceeded the placebo scores by more than 20% (23.8 and 0.2% for probiotics and placebo, respectively, P = 0.003). There was a significant difference in the proportion of responders between the probiotics and placebo groups (P = 0.011). There was no drop out or adverse events for either group during the study period. Lactobacillus acidophilus-SDC 2012, 2013 appeared to have a beneficial effect in patients with IBS. Further studies are warranted.

  18. Evaluation of Phase II of the SDC/IDRC/GEH Research Matters ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Helen

    2009-05-11

    May 11, 2009 ... SDC/IDRC/GEH Research Matters Project. Final Report authors: Andrew Barnett. Christina Wille. Anna Khakee. Gareth Williams project no: 104024 ..... The Phase II RM Project appears to have been guided by the plan only in a general way. 12 ...... RM technical and financial reports over the active period.

  19. A SYSTEMATIC APPROACH SUPPORTED BY ARTIFICIAL INTELLIGENCE TECHNIQUES TO SPECIFICATION STAGE IN CONCEPTUAL DESIGN OF MECHANICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    İhsan TOKTAŞ

    2002-03-01

    Full Text Available Conceptual design is a process progressing from a description of needs and functions to one or more abstract models, and finally to the prediction of the actual behavior and performance of the object being designed. In this paper, a methodology for the specification stage in conceptual design is presented. The specification stage provides requirements and transforms them into functions of the designed object. It occurs at the highest level of abstraction and it must provide enough information for the synthesis process where functions are transformed into design components that are further synthesized into the designed object. Methodology allows for problem solving in an active interaction with the designer. An important part of the proposed methodology is the requiremental and functional tree representing the overall logic and structure at the design problem. The methodology presented is illustrated with an example.

  20. Nuclear design and analysis report for KALIMER breakeven core conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ji; Song, Hoon; Lee, Ki Bog; Chang, Jin Wook; Hong, Ser Gi; Kim, Young Gyun; Kim, Yeong Il

    2002-04-15

    During the phase 2 of LMR design technology development project, the breakeven core configuration was developed with the aim of the KALIMER self-sustaining with regard to the fissile material. The excess fissile material production is limited only to the extent of its own requirement for sustaining its planned power operation. The average breeding ratio is estimated to be 1.05 for the equilibrium core and the fissile plutonium gain per cycle is 13.9 kg. The nuclear performance characteristics as well as the reactivity coefficients have been analyzed so that the design evaluation in other activity areas can be made. In order to find out a realistic heavy metal flow evolution and investigate cycle-dependent nuclear performance parameter behaviors, the startup and transition cycle loading strategies are developed, followed by the startup core physics analysis. Driver fuel and blankets are assumed to be shuffled at the time of each reload. The startup core physics analysis has shown that the burnup reactivity swing, effective delayed neutron fraction, conversion ratio and peak linear heat generation rate at the startup core lead to an extreme of bounding physics data for safety analysis. As an outcome of this study, a whole spectrum of reactor life is first analyzed in detail for the KALIMER core. It is experienced that the startup core analysis deserves more attention than the current design practice, before the core configuration is finalized based on the equilibrium cycle analysis alone.

  1. Conceptual design study of $Nb_{3} Sn$ low-beta quadrupoles for 2nd generation LHC IRs

    CERN Document Server

    Zlobin, A V; Andreev, N; Barzi, E; Bauer, P; Chichili, D R; Huang, Y; Imbasciati, L; Kashikhin, V V; Lamm, M J; Limon, P; Novitski, I; Peterson, T; Strait, J B; Yadav, S; Yamada, R

    2003-01-01

    Conceptual designs of 90-mm aperture high-gradient quadrupoles based on the Nb/sub 3/Sn superconductor, are being developed at Fermilab for possible 2nd generation IRs with the similar optics as in the current low-beta insertions. Magnet designs and results of magnetic, mechanical, thermal and quench protection analysis for these magnets are presented and discussed. (10 refs).

  2. A Strategic Approach to Curriculum Design for Information Literacy in Teacher Education--Implementing an Information Literacy Conceptual Framework

    Science.gov (United States)

    Klebansky, Anna; Fraser, Sharon P.

    2013-01-01

    This paper details a conceptual framework that situates curriculum design for information literacy and lifelong learning, through a cohesive developmental information literacy based model for learning, at the core of teacher education courses at UTAS. The implementation of the framework facilitates curriculum design that systematically,…

  3. IFMIF, International Fusion Materials Irradiation Facility conceptual design activity cost report

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J. [comp.

    1996-12-01

    This report documents the cost estimate for the International Fusion Materials Irradiation Facility (IFMIF) at the completion of the Conceptual Design Activity (CDA). The estimate corresponds to the design documented in the Final IFMIF CDA Report. In order to effectively involve all the collaborating parties in the development of the estimate, a preparatory meeting was held at Oak Ridge National Laboratory in March 1996 to jointly establish guidelines to insure that the estimate was uniformly prepared while still permitting each country to use customary costing techniques. These guidelines are described in Section 4. A preliminary cost estimate was issued in July 1996 based on the results of the Second Design Integration Meeting, May 20--27, 1996 at JAERI, Tokai, Japan. This document served as the basis for the final costing and review efforts culminating in a final review during the Third IFMIF Design Integration Meeting, October 14--25, 1996, ENEA, Frascati, Italy. The present estimate is a baseline cost estimate which does not apply to a specific site. A revised cost estimate will be prepared following the assignment of both the site and all the facility responsibilities.

  4. Preliminary Study on Kano Model in the Conceptual Design Activities for Product Lifecycle Improvement

    Science.gov (United States)

    Fahrul Hassan, Mohd; Rahman, M. R. A.; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.; Fauzi Ahmad, Md

    2017-08-01

    Product manufactured with short life cycle had only one major issue, it can lead to increasing volume of waste. Day by day, this untreated waste had consumed many landfill spaces, waiting for any possible alternatives. Lack of product recovery knowledge and recyclability features imprinted into product design are one of the main reason behind all this. Sustainable awareness aspect should not just be implied into people’s mind, but also onto product design. This paper presents a preliminary study on Kano model method in the conceptual design activities to improve product lifecycle. Kano model is a survey-type method, used to analyze and distinguished product qualities or features, also how the customers may have perceived them. Three important attributes of Kano model are performance, attractive and must-be. The proposed approach enables better understanding of customer requirements while providing a way for Kano model to be integrated into engineering design to improve product’s end-of-life. Further works will be continued to provide a better lifecycle option (increase percentage of reuse, remanufacture or recycle, whereby decrease percentage of waste) of a product using Kano model approach.

  5. Detailed conceptual designs and economic analyses of a reference Photovoltaic Central Power Station

    Science.gov (United States)

    Hughes, D. J.; Heller, B. W.; Stephenson, J. E.

    Detailed conceptual designs and economic analyses of a reference 100MWe Photovoltaic Central Power Station (PV CPS) have been completed. Both flat plate dendritic WEB and point focus fresnel concentrator (100X concentration) arrays were used to develop two individual central station reference designs. Design requirements, detailed drawings and system, subsystem and component specifications form the basis for a plant construction cost estimate. The flat plate array PV CPS costs range from $179M to $483M (1982 U.S. Dollars) for array costs ranging from $1/Wp to $3.50/Wp and power conditioning unit (PCU) costs from $.05/Wp to $.50/Wp. Similar costs for the concentrator PV CPS range from $201M to $505M, respectively. Using representative utility financial parameters, in-house economic models, and a plant performance estimate, levelized busbar energy costs (BBEC) are derived for both flat plate and concentrator designs. BBEC range from $.15/kWh to $.41/kWh for the flat plate PV CPS from $.15/kWh to $.37/kWh for the concentrator PV CPS.

  6. The Metacity: A Conceptual Framework for Integrating Ecology and Urban Design

    Directory of Open Access Journals (Sweden)

    S. T. A. Pickett

    2011-10-01

    Full Text Available We introduce the term metacity as a conceptual framework that can be shared by ecologists and designers and applied across the wide variety of urban habitats found around the world. While the term metacity was introduced by UN-HABITAT to designate hyper cities of over twenty million people, for us it is not limited to large urban agglomerations, but rather refers to the proliferation of new forms of urbanization, each with distinct ecological and social attributes. These various urban configurations when combined with new digital sensing, communication and social networking technologies constitute a virtual meta-infrastructure, present in all cities today. This new metacity has the potential to integrate new activist forms of ecological and urban design research and practice in making the transition from sanitary to sustainable city models globally. The city of Baltimore, Maryland will be used both as a site to illustrate these recent urban trends, and also as an example of the integration of ecology and urban design pursued by the two authors over the past seven years [1,2]. Metacity theory is drawn from both an architectural analysis of contemporary forms of urbanism, new forms of digital monitoring and communication technologies, as well as metapopulation and metacommunity theories in ecology. We seek to provide tools and lessons from our experiences for realizing an integrated metacity approach to achieving social sustainability and ecological resilience on an increasingly urbanized planet.

  7. Conceptual design of a sodium sulfur cell for US electric van batteries

    Science.gov (United States)

    Binden, Peter J.

    1993-05-01

    A conceptual design of an advanced sodium/sulfur cell for US electric-van applications has been completed. The important design factors included specific physical and electrical requirements, service life, manufacturability, thermal management, and safety. The capacity of this cell is approximately the same as that for the PB cell being developed by Silent Power Limited (10 Ah). The new cell offers a 50% improvement in energy capacity and nearly a 100% improvement in peak power over the existing PB cells. A battery constructed with such cells would significantly exceed the USABC's mid-term performance specifications. In addition, a similar cell and battery design effort was completed for an advanced passenger car application. A battery using the van cell would have nearly 3 times the energy compared to lead-acid batteries, yet weigh 40% less; a present-day battery using a cell specifically designed for this car would provide 50% more energy in a package 60% smaller and 50% lighter.

  8. Structural analysis by electro-magnetic loads for conceptual design of HCCR TBM-set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won, E-mail: dwlee@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Kim, Suk-Kwon; Yoon, Jae Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Park, Jai Hak [Chungbuk National University, Cheongju (Korea, Republic of); Lee, Youngmin; Ku, Duck Young; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • Using the results of EM analysis on the magnetization and the major disruption such as MD-1, MD-2, and MD-IV events, structural analyses are performed with the conventional FEM code (ANSYS). • The obtained stresses and deformations are confirmed to meet the design criteria. • We found that the magnetization effect is dominant compared to the major disruptions. - Abstract: Using a conceptual design of the Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) including the TBM-shield for testing in ITER, a structural analysis with electro-magnetic (EM) loads is performed. From a previous analysis of the material magnetization due to the use of reduced activation ferritic-martensitic (RAFM) steel as the TBM structure material and EM analysis considering the major disruption of MD-I, MD-II, and MD-IV, the forces are obtained and used for the current structural analysis. The results indicate that the maximum stress occurs at the He purge line at the upper and lower region of the breeding zone (BZ) box including the graphite reflector region, which meets the design requirement. In addition, displacements are lower than the designed gaps from the TBM port plug (PP) frame. The results are provided to the load combination analysis.

  9. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  10. Cost estimates and economic evaluations for conceptual LLRW disposal facility designs

    Energy Technology Data Exchange (ETDEWEB)

    Baird, R.D.; Chau, N. [Rogers & Associates Engineering Corp., Salt Lake City, UT (United States); Breeds, C.D. [SubTerra, Inc., Redmond, WA (United States)

    1995-12-31

    Total life-cycle costs were estimated in support of the New York LLRW Siting Commission`s project to select a disposal method from four near-surface LLRW disposal methods (namely, uncovered above-grade vaults, covered above-grade vaults, below-grade vaults, and augered holes) and two mined methods (namely, vertical shaft mines and drift mines). Conceptual designs for the disposal methods were prepared and used as the basis for the cost estimates. Typical economic performance of each disposal method was assessed. Life-cycle costs expressed in 1994 dollars ranged from $ 1,100 million (for below-grade vaults and both mined disposal methods) to $2,000 million (for augered holes). Present values ranged from $620 million (for below-grade vaults) to $ 1,100 million (for augered holes).

  11. Multi-objective optimization approach for cost management during product design at the conceptual phase

    Science.gov (United States)

    Durga Prasad, K. G.; Venkata Subbaiah, K.; Narayana Rao, K.

    2014-03-01

    The effective cost management during the conceptual design phase of a product is essential to develop a product with minimum cost and desired quality. The integration of the methodologies of quality function deployment (QFD), value engineering (VE) and target costing (TC) could be applied to the continuous improvement of any product during product development. To optimize customer satisfaction and total cost of a product, a mathematical model is established in this paper. This model integrates QFD, VE and TC under multi-objective optimization frame work. A case study on domestic refrigerator is presented to show the performance of the proposed model. Goal programming is adopted to attain the goals of maximum customer satisfaction and minimum cost of the product.

  12. Development of an Expert Judgement Elicitation and Calibration Methodology for Risk Analysis in Conceptual Vehicle Design

    Science.gov (United States)

    Unal, Resit; Keating, Charles; Conway, Bruce; Chytka, Trina

    2004-01-01

    A comprehensive expert-judgment elicitation methodology to quantify input parameter uncertainty and analysis tool uncertainty in a conceptual launch vehicle design analysis has been developed. The ten-phase methodology seeks to obtain expert judgment opinion for quantifying uncertainties as a probability distribution so that multidisciplinary risk analysis studies can be performed. The calibration and aggregation techniques presented as part of the methodology are aimed at improving individual expert estimates, and provide an approach to aggregate multiple expert judgments into a single probability distribution. The purpose of this report is to document the methodology development and its validation through application to a reference aerospace vehicle. A detailed summary of the application exercise, including calibration and aggregation results is presented. A discussion of possible future steps in this research area is given.

  13. Advanced conceptual design report: T Plant secondary containment and leak detection upgrades. Project W-259

    Energy Technology Data Exchange (ETDEWEB)

    Hookfin, J.D.

    1995-05-12

    The T Plant facilities in the 200-West Area of the Hanford site were constructed in the early 1940s to produce nuclear materials in support of national defense activities. T Plant includes the 271-T facility, the 221-T facility, and several support facilities (eg, 2706-T), utilities, and tanks/piping systems. T Plant has been recommended as the primary interim decontamination facility for the Hanford site. Project W-259 will provide capital upgrades to the T Plant facilities to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. This document provides an advanced conceptual design concept that complies with functional requirements for the T Plant Secondary Containment and Leak Detection upgrades.

  14. Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This report summarizes the tasks completed under this project during the period from August 1, 1994 through July 31, 1994. The objective of the study is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized by the year 2000. The tasks completed include a market study for the advanced turbine system; definition of an optimized recuperated gas turbine as the prime mover meeting the requirements of the market study and whose characteristics were, in turn, used for forecasting the total advanced turbine system (ATS) future demand; development of a program plan for bringing the ATS to a state of readiness for field test; and demonstration of the primary surface recuperator ability to provide the high thermal effectiveness and low pressure loss required to support the proposed ATS cycle.

  15. Conceptual design for remote handling methods using the HIP process in the Calcine Immobilization Program

    Energy Technology Data Exchange (ETDEWEB)

    Berry, S.M.; Cox, C.G.; Hoover, M.A.

    1994-03-01

    This report recommends the remote conceptual design philosophy for calcine immobilization using the hot isostatic press (HIP) process. Areas of remote handling operations discussed in this report include: (1) introducing the process can into the front end of the HIP process, (2) filling and compacting the calcine/frit mixture into the process can, (3) evacuating and sealing the process can, (4) non-destructive testing of the seal on the process can, (5) decontamination of the process can, (6) HIP furnace loading and unloading the process can for the HIPing operation, (7) loading an overpack canister with processed HIP cans, (8) sealing the canister, with associated non-destructive examination (NDE) and decontamination, and (9) handling canisters for interim storage at the Idaho Chemical Processing Plant (ICPP) located on the Idaho National Engineering Laboratory (INEL) site.

  16. Objectives, physics requirements and conceptual design of an ECRH system for JET

    Science.gov (United States)

    Giruzzi, G.; Lennholm, M.; Parkin, A.; Aiello, G.; Bellinger, M.; Bird, J.; Bouquey, F.; Braune, H.; Bruschi, A.; Butcher, P.; Clay, R.; de la Luna, E.; Denisov, G.; Edlington, T.; Fanthome, J.; Farina, D.; Farthing, J.; Figini, L.; Garavaglia, S.; Garcia, J.; Gardener, M.; Gerbaud, T.; Granucci, G.; Hay, J.; Henderson, M.; Hotchin, S.; Ilyin, V. N.; Jennison, M.; Kasparek, W.; Khilar, P.; Kirneva, N.; Kislov, D.; Knipe, S.; Kuyanov, A.; Litaudon, X.; Litvak, A. G.; Moro, A.; Nowak, S.; Parail, V.; Plaum, B.; Saibene, G.; Sozzi, C.; Späh, P.; Strauss, D.; Trukhina, E.; Vaccaro, A.; Vagdama, A.; Vdovin, V.; EFDA Contributors, JET

    2011-06-01

    A study has been conducted to evaluate the feasibility of installing an electron cyclotron resonance heating (ECRH) and current drive system on the JET tokamak. The main functions of this system would be electron heating, sawtooth control, neoclassical tearing mode control to access high beta regimes and current profile control to access and maintain advanced plasma scenarios. This paper presents an overview of the studies performed in this framework by an EU-Russia project team. The motivations for this major upgrade of the JET heating systems and the required functions are discussed. The main results of the study are summarized. The usefulness of a 10 MW level EC system for JET is definitely confirmed by the physics studies. Neither feasibility issues nor strong limitations for any of the functions envisaged have been found. This has led to a preliminary conceptual design of the system.

  17. Development the conceptual design of Knowledge Based System for Integrated Maintenance Strategy and Operation

    Science.gov (United States)

    Milana; Khan, M. K.; Munive, J. E.

    2014-07-01

    The importance of maintenance has escalated significantly by the increasing of automation in manufacturing process. This condition switches traditional maintenance perspective of inevitable cost into the business competitive driver. Consequently, maintenance strategy and operation decision needs to be synchronized to business and manufacturing concerns. This paper shows the development of conceptual design of Knowledge Based System for Integrated Maintenance Strategy and Operation (KBIMSO). The framework of KBIMSO is elaborated to show the process of how the KBIMSO works to reach the maintenance decision. By considering the multi-criteria of maintenance decision making, the KB system embedded with GAP and AHP to support integrated maintenance strategy and operation which is novel in this area. The KBIMSO is useful to review the existing maintenance system and give reasonable recommendation of maintenance decisions in respect to business and manufacturing perspective.

  18. Conceptual design and systems analysis of photovoltaic systems. Volume II. Study results. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kirpich, A.

    1977-03-19

    This investigation of terrestrial PV systems considered the technical and economic feasibility for systems in three size categories: a small system of about 12 kW peak output for on-site residential use; a large 1500 MW central power plant contributing to the bulk energy of a utility system power grid; and an intermediate size system of about 250 kW for use on public or commercial buildings. In each category, conceptual designs were developed, performance was analyzed for a range of climatic regions, economic analyses were performed, and assessments were made of pertinent institutional issues. The report consists of three volumes. Volume I contains a Study Summary of the major study results. This volume contains the detailed results pertaining to on-site residential photovoltaic systems, central power plant photovoltaic systems, and intermediate size systems applied to commercial and public buildings. Volume III contains supporting appendix material. (WHK)

  19. Conceptual design and development of GEM based detecting system for tomographic tungsten focused transport monitoring

    Science.gov (United States)

    Chernyshova, M.; Czarski, T.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Kolasiński, P.; Mazon, D.; Malard, P.

    2015-10-01

    Implementing tungsten as a plasma facing material in ITER and future fusion reactors will require effective monitoring of not just its level in the plasma but also its distribution. That can be successfully achieved using detectors based on Gas Electron Multiplier (GEM) technology. This work presents the conceptual design of the detecting unit for poloidal tomography to be tested at the WEST project tokamak. The current stage of the development is discussed covering aspects which include detector's spatial dimensions, gas mixtures, window materials and arrangements inside and outside the tokamak ports, details of detector's structure itself and details of the detecting module electronics. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing the creation of sustainable nuclear fusion reactors a step closer. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  20. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    Science.gov (United States)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.