WorldWideScience

Sample records for scripps research scientists

  1. The New Oceanographic Research Institution: Scripps in the ``Broader Impact'' Era

    Science.gov (United States)

    Kennel, C. F.; Orcutt, J. A.; Peach, C. L.; Franks, S. E.

    2004-12-01

    Things are changing at Scripps Institution of Oceanography. Long renowned for excellence in Earth, ocean, atmospheric and interdisciplinary research as well as graduate student training, the Institution is now being called upon to address a new set of challenges. Opportunities to address diverse societal needs abound, and we at Scripps are prepared to respond. As the problems facing the globe in reconciling human and economic development with the limitations of the Earth system become more and more pressing, the potential impact of Scripps research on society grows. The full value of our work cannot be realized unless we share it with established and future economists, international relations specialists, public policy experts, and business leaders. To help our scientists realize this goal while maintaining their research excellence, Scripps has committed to: 1) expanding its faculty's role in undergraduate teaching; 2) establishment of the Center for Educational Outreach Connections that will enable Scripps scientists to participate in educational outreach efforts locally, regionally, nationally and internationally; 3) pursuing joint education programs with other elements of the UCSD community; and 4) launching a new interdisciplinary Center for Earth Observations and Applications in which scholars from throughout the university will develop new collaborations, new technologies, and new knowledge in many fields affecting the environment. Our ambition is to generate a continuous awareness of how Earth is behaving - an awareness that could be an integral part of all kinds of decisions about the environment. Scripps is not alone in recognizing and responding to societal needs. Funding agencies are increasingly requiring scientists to articulate how their research has impact beyond the academic community. With the establishment of the Centers for Ocean Sciences Education Excellence, NSF has led the way in assembling and leveraging the intellectual and organizational

  2. In the Footsteps of Roger Revelle: A STEM Partnership Between Scripps Institution of Oceanography, Office of Naval Research and Middle School Science Students Bringing Next Generation Science Standards into the Classroom through Ocean Science

    Science.gov (United States)

    Brice, D.; Appelgate, B., Jr.; Mauricio, P.

    2014-12-01

    Now in its tenth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with Next Generation Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO),Office of Naval Research (ONR), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With a generous grant from ONR, students are able to tour the SIO Ships and spend a day at sea doing real oceanographic data collection and labs. Through real-time and near-realtime broadcasts and webcasts, students are able to share data with scientists and gain an appreciation for the value of Biogeochemical research in the field as it relates to their classroom studies. Interaction with scientists and researchers as well as crew members gives students insights into not only possible career paths, but the vital importance of cutting edge oceanographic research on our society. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, Skype, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum models the Next Generation Science Standards encouraging active inquiry and critical thinking with intellectually stimulating problem- solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as

  3. Scientists' coping strategies in an evolving research system: the case of life scientists in the UK

    NARCIS (Netherlands)

    Morris, Norma; Rip, Arie

    2006-01-01

    Scientists in academia have struggled to adjust to a policy climate of uncertain funding and loss of freedom from direction and control. How UK life scientists have negotiated this challenge, and with what consequences for their research and the research system, is the empirical entrance point of

  4. Developmental Scientist | Center for Cancer Research

    Science.gov (United States)

    blood diseases and conditions; parasitic infections; rheumatic and inflammatory diseases; and rare and neglected diseases. CMRP’s collaborative approach to clinical research and the expertise and dedication of staff to the continuation and success of the program’s mission has contributed to improving the overall standards of public health on a global scale. The Clinical Monitoring Research Program (CMRP) provides quality assurance and regulatory compliance support to the National Cancer Institute’s (NCI’s), Center for Cancer Research (CCR), Surgery Branch (SB). KEY ROLES/RESPONSIBILITIES - THIS POSITION IS CONTINGENT UPON FUNDING APPROVAL The Developmental Scientist will: Provide support and advisement to the development of the T Cell receptor gene therapy protocols. Establishes, implements and maintains standardized processes and assesses performance to make recommendations for improvement. Provides support and guidance to the cellular therapy or vector production facilities at the NIH Clinical Center engaged in the manufacture of patient-specific therapies. Manufactures cellular therapy products for human use. Develops and manufactures lentiviral and/or retroviral vectors. Prepares technical reports, abstracts, presentations and program correspondence concerning assigned projects through research and analysis of information relevant to government policy, regulations and other relevant data and monitor all assigned programs for compliance. Provides project management support with planning and development of project schedules and deliverables, tracking project milestones, managing timelines, preparing status reports and monitoring progress ensuring adherence to deadlines. Facilitates communication through all levels of staff by functioning as a liaison between internal departments, senior management, and the customer. Serves as a leader/mentor to administrative staff and prepares employee performance evaluations. Develops and implements procedures/programs to

  5. The Voice of Women Scientists in EU Research Policy (abstract)

    Science.gov (United States)

    Šatkovskienė, Dalia

    2009-04-01

    The European Platform of Women Scientists (www.epws.org) is an umbrella organization bringing together networks of women scientists and organisations committed to gender equality in research in all disciplines all over Europe and the countries associated to the European Union's Framework Programmes for Research and Technological Development. The goals of EPWS and its activities are presented.

  6. Managing scientists leadership strategies in research and development

    CERN Document Server

    Sapienza, Alice M

    1995-01-01

    Managing Scientists Leadership Strategies in Research and Development Alice M. Sapienza "I found ...this book to be exciting ...Speaking as someone who has spent 30 years grappling with these issues, I certainly would be a customer." -Robert I. Taber, PhD Senior Vice President of Research & Development Synaptic Pharmaceutical Corporation In today's climate of enormous scientific and technologic competition, it is more crucial than ever that scientists involved in research and development be managed well. Often trained as individual researchers, scientists can find integration into teams difficult. Managers, from both scientific and nonscientific backgrounds, who are responsible for these teams frequently find effective team building a long and challenging process. Managing Scientists offers strategies for fostering communication and collaboration among scientists. It shows how to build cohesive, productive, and focused teams to succeed in the competitive research and development marketplace. This book wil...

  7. Expedition Earth and Beyond: Student Scientist Guidebook. Model Research Investigation

    Science.gov (United States)

    Graff, Paige Valderrama

    2009-01-01

    The Expedition Earth and Beyond Student Scientist Guidebook is designed to help student researchers model the process of science and conduct a research investigation. The Table of Contents listed outlines the steps included in this guidebook

  8. Senior Computational Scientist | Center for Cancer Research

    Science.gov (United States)

    The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),

  9. Creatiing a Collaborative Research Network for Scientists

    Science.gov (United States)

    Gunn, W.

    2012-12-01

    This abstract proposes a discussion of how professional science communication and scientific cooperation can become more efficient through the use of modern social network technology, using the example of Mendeley. Mendeley is a research workflow and collaboration tool which crowdsources real-time research trend information and semantic annotations of research papers in a central data store, thereby creating a "social research network" that is emergent from the research data added to the platform. We describe how Mendeley's model can overcome barriers for collaboration by turning research papers into social objects, making academic data publicly available via an open API, and promoting more efficient collaboration. Central to the success of Mendeley has been the creation of a tool that works for the researcher without the requirement of being part of an explicit social network. Mendeley automatically extracts metadata from research papers, and allows a researcher to annotate, tag and organize their research collection. The tool integrates with the paper writing workflow and provides advanced collaboration options, thus significantly improving researchers' productivity. By anonymously aggregating usage data, Mendeley enables the emergence of social metrics and real-time usage stats on top of the articles' abstract metadata. In this way a social network of collaborators, and people genuinely interested in content, emerges. By building this research network around the article as the social object, a social layer of direct relevance to academia emerges. As science, particularly Earth sciences with their large shared resources, become more and more global, the management and coordination of research is more and more dependent on technology to support these distributed collaborations.

  10. Scripps Sediment Description File- OCSEAP Portion

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Scripps Institution of Oceanography compiled descriptions of sediment samples in the Alaskan Outer Continental Shelf area, funded through the NOAA Outer...

  11. Science experiences of citizen scientists in entomology research

    Science.gov (United States)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and

  12. Original Research Challenges facing young African scientists in ...

    African Journals Online (AJOL)

    This study aimed at identifying the challenges that young African scientists face in their career development. Methods ... The research profile of Africans is relatively new, and the .... outside the country because it will support my original ideas.”.

  13. Assessing the Job Satisfaction of Research Scientists: A Comparative Analysis.

    Science.gov (United States)

    Tuttle, Waneta C.; And Others

    1987-01-01

    The variables and management strategies influencing the job satisfaction of research scientists are examined. Emphasis is on defining satisfaction within the job context and the implications for managing the context to enhance satisfaction. (MSE)

  14. Challenges in translational research: the views of addiction scientists.

    Science.gov (United States)

    Ostergren, Jenny E; Hammer, Rachel R; Dingel, Molly J; Koenig, Barbara A; McCormick, Jennifer B

    2014-01-01

    To explore scientists' perspectives on the challenges and pressures of translating research findings into clinical practice and public health policy. We conducted semi-structured interviews with a purposive sample of 20 leading scientists engaged in genetic research on addiction. We asked participants for their views on how their own research translates, how genetic research addresses addiction as a public health problem and how it may affect the public's view of addiction. Most scientists described a direct translational route for their research, positing that their research will have significant societal benefits, leading to advances in treatment and novel prevention strategies. However, scientists also pointed to the inherent pressures they feel to quickly translate their research findings into actual clinical or public health use. They stressed the importance of allowing the scientific process to play out, voicing ambivalence about the recent push to speed translation. High expectations have been raised that biomedical science will lead to new prevention and treatment modalities, exerting pressure on scientists. Our data suggest that scientists feel caught in the push for immediate applications. This overemphasis on rapid translation can lead to technologies and applications being rushed into use without critical evaluation of ethical, policy, and social implications, and without balancing their value compared to public health policies and interventions currently in place.

  15. Scientists' perspectives on consent in the context of biobanking research.

    Science.gov (United States)

    Master, Zubin; Campo-Engelstein, Lisa; Caulfield, Timothy

    2015-05-01

    Most bioethics studies have focused on capturing the views of patients and the general public on research ethics issues related to informed consent for biobanking and only a handful of studies have examined the perceptions of scientists. Capturing the opinions of scientists is important because they are intimately involved with biobanks as collectors and users of samples and health information. In this study, we performed interviews with scientists followed by qualitative analysis to capture the diversity of perspectives on informed consent. We found that the majority of scientists in our study reported their preference for a general consent approach although they do not believe there to be a consensus on consent type. Despite their overall desire for a general consent model, many reported several concerns including donors needing some form of assurance that nothing unethical will be done with their samples and information. Finally, scientists reported mixed opinions about incorporating exclusion clauses in informed consent as a means of limiting some types of contentious research as a mechanism to assure donors that their samples and information are being handled appropriately. This study is one of the first to capture the views of scientists on informed consent in biobanking. Future studies should attempt to generalize findings on the perspectives of different scientists on informed consent for biobanking.

  16. A guide to understanding social science research for natural scientists.

    Science.gov (United States)

    Moon, Katie; Blackman, Deborah

    2014-10-01

    Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes. © 2014 Society for Conservation Biology.

  17. Scientists' Ethical Obligations and Social Responsibility for Nanotechnology Research.

    Science.gov (United States)

    Corley, Elizabeth A; Kim, Youngjae; Scheufele, Dietram A

    2016-02-01

    Scientists' sense of social responsibility is particularly relevant for emerging technologies. Since a regulatory vacuum can sometimes occur in the early stages of these technologies, individual scientists' social responsibility might be one of the most significant checks on the risks and negative consequences of this scientific research. In this article, we analyze data from a 2011 mail survey of leading U.S. nanoscientists to explore their perceptions the regarding social and ethical responsibilities for their nanotechnology research. Our analyses show that leading U.S. nanoscientists express a moderate level of social responsibility about their research. Yet, they have a strong sense of ethical obligation to protect laboratory workers (in both universities and industry) from unhealthy exposure to nanomaterials. We also find that there are significant differences in scientists' sense of social and ethical responsibility depending on their demographic characteristics, job affiliation, attention to media content, risk perceptions and benefit perceptions. We conclude with some implications for future research.

  18. Staff Scientist - RNA Bioinformatics | Center for Cancer Research

    Science.gov (United States)

    The newly established RNA Biology Laboratory (RBL) at the Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) in Frederick, Maryland is recruiting a Staff Scientist with strong expertise in RNA bioinformatics to join the Intramural Research Program’s mission of high impact, high reward science. The RBL is the equivalent of an

  19. Scientist, Single Cell Analysis Facility | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR).  The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and nextGen sequencing. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR).  CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES AND RESPONSIBILITIES We are seeking a highly motivated Scientist II to join the newly established Single Cell Analysis Facility (SCAF) of the Center for Cancer Research (CCR) at NCI. The SCAF will house state of the art single cell sequencing technologies including 10xGenomics Chromium, BD Genomics Rhapsody, DEPPArray, and other emerging single cell technologies. The Scientist: Will interact with close to 200 laboratories within the CCR to design and carry out single cell experiments for cancer research Will work on single cell isolation/preparation from various tissues and cells and related NexGen sequencing library preparation Is expected to author publications in peer reviewed scientific journals

  20. Gender differentials in ICT uptake rating among research scientists ...

    African Journals Online (AJOL)

    The study examined the challenge to ICT uptake rating among research scientists in the Nigerian Universities of Agriculture through gender inequality. Primary data were used for the study which was generated through the use of questionnaire. The study took a sample of 240 respondents from a population of 1758 from the ...

  1. Challenges facing young African scientists in their research careers ...

    African Journals Online (AJOL)

    Background: Africa accounts for 14% of world's population, and the economies of most African countries are considered to be growing, but this is not reflected in the amount of research published by Africans. This study aimed at identifying the challenges that young African scientists face in their career development.

  2. Disparate foundations of scientists' policy positions on contentious biomedical research.

    Science.gov (United States)

    Edelmann, Achim; Moody, James; Light, Ryan

    2017-06-13

    What drives scientists' position taking on matters where empirical answers are unavailable or contradictory? We examined the contentious debate on whether to limit experiments involving the creation of potentially pandemic pathogens. Hundreds of scientists, including Nobel laureates, have signed petitions on the debate, providing unique insights into how scientists take a public stand on important scientific policies. Using 19,257 papers published by participants, we reconstructed their collaboration networks and research specializations. Although we found significant peer associations overall, those opposing "gain-of-function" research are more sensitive to peers than are proponents. Conversely, specializing in fields directly related to gain-of-function research (immunology, virology) predicts public support better than specializing in fields related to potential pathogenic risks (such as public health) predicts opposition. These findings suggest that different social processes might drive support compared with opposition. Supporters are embedded in a tight-knit scholarly community that is likely both more familiar with and trusting of the relevant risk mitigation practices. Opponents, on the other hand, are embedded in a looser federation of widely varying academic specializations with cognate knowledge of disease and epidemics that seems to draw more heavily on peers. Understanding how scientists' social embeddedness shapes the policy actions they take is important for helping sides interpret each other's position accurately, avoiding echo-chamber effects, and protecting the role of scientific expertise in social policy.

  3. Indigenous Research and Academic Freedom: A View from Political Scientists

    Directory of Open Access Journals (Sweden)

    Christopher Alcantara

    2017-04-01

    Full Text Available Over the last several decades, scholars working on Indigenous topics have faced increasing pressure to engage in research that promotes social justice and results in formal partnerships with Indigenous communities. In this article, we argue that non-community-based research, in which the researcher exercises academic autonomy over the project, still has a role to play in Indigenous-focused research, depending on the research question, topic, and situation at hand. We explore this argument from the perspective of political scientists who study Indigenous–settler political relations in Canada.

  4. A Guide for Scientists Interested in Researching Student Outcomes

    Science.gov (United States)

    Buxner, Sanlyn R.; Anbar, Ariel; Semken, Steve; Mead, Chris; Horodyskyj, Lev; Perera, Viranga; Bruce, Geoffrey; Schönstein, David

    2015-11-01

    Scientists spend years training in their scientific discipline and are well versed the literature, methods, and innovations in their own field. Many scientists also take on teaching responsibilities with little formal training in how to implement their courses or assess their students. There is a growing body of literature of what students know in space science courses and the types of innovations that can work to increase student learning but scientists rarely have exposure to this body of literature. For scientists who are interested in more effectively understanding what their students know or investigating the impact their courses have on students, there is little guidance. Undertaking a more formal study of students poses more complexities including finding robust instruments and employing appropriate data analysis. Additionally, formal research with students involves issues of privacy and human subjects concerns, both regulated by federal laws.This poster details the important decisions and issues to consider for both course evaluation and more formal research using a course developed, facilitated, evaluated and researched by a hybrid team of scientists and science education researchers. HabWorlds, designed and implemented by a team of scientists and faculty at Arizona State University, has been using student data to continually improve the course as well as conduct formal research on students’ knowledge and attitudes in science. This ongoing project has had external funding sources to allow robust assessment not available to most instructors. This is a case study for discussing issues that are applicable to designing and assessing all science courses. Over the course of several years, instructors have refined course outcomes and learning objectives that are shared with students as a roadmap of instruction. The team has searched for appropriate tools for assessing student learning and attitudes, tested them and decided which have worked, or not, for

  5. The Internet: A productive research environment for social scientists

    Directory of Open Access Journals (Sweden)

    Tulbure, B.T.

    2011-01-01

    Full Text Available Since the first web-studies in 1995, scientists have investigated the major issues regarding the new Internet based research methods, study designs and on-line data collection techniques. New software programs and manuals make it easy for newcomers to implement simple experimental procedures in cyberspace. Despite their limits, most researchers consider the advantages of Internet research as greater comparing with their disadvantages. The Internet has changed the major aspects of social sciences – from how researchers communicate to how they publish their studies.

  6. ICTR-PHE: scientists engage with multidisciplinary research

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In 2016, the next edition of the unique conference that gathers scientists from a variety of fields will focus on many topics particularly dear to the heart of physicists, clinicians, biologists, and computer specialists. The call for abstracts is open until 16 October.   When detector physicists, radiochemists, nuclear-medicine physicians and other physicists, biologists, software developers, accelerator experts and oncologists think outside the box and get involved in multidisciplinary research, they create innovative healthcare. ICTR-PHE is a biennial event, co-organised by CERN, whose main aim is to foster multidisciplinary research by positioning itself at the crossing of physics, medicine and biology. At the ICTR-PHE conference, physicists, engineers, and computer scientists share their knowledge and technologies while doctors and biologists present their needs and vision for the medical tools of the future, thus triggering breakthrough ideas and technological developments in speci...

  7. The life-cycle research productivity of mathematicians and scientists.

    Science.gov (United States)

    Diamond, A M

    1986-07-01

    Declining research productivity with age is implied by economic models of life-cycle human capital investment but is denied by some recent empirical studies. The purpose of the present study is to provide new evidence on whether a scientist's output generally declines with advancing age. A longitudinal data set has been compiled for scientists and mathematicians at six major departments, including data on age, salaries, annual citations (stock of human capital), citations to current output (flow of human capital), and quantity of current output measured both in number of articles and in number of pages. Analysis of the data indicates that salaries peak from the early to mid-60s, whereas annual citations appear to peak from age 39 to 89 for different departments with a mean age of 59 for the 6 departments. The quantity and quality of current research output appear to decline continuously with age.

  8. Elementary School Children Contribute to Environmental Research as Citizen Scientists

    OpenAIRE

    Miczajka, Victoria L.; Klein, Alexandra-Maria; Pufal, Gesine

    2015-01-01

    Research benefits increasingly from valuable contributions by citizen scientists. Mostly, participating adults investigate specific species, ecosystems or phenology to address conservation issues, but ecosystem functions supporting ecosystem health are rarely addressed and other demographic groups rarely involved. As part of a project investigating seed predation and dispersal as ecosystem functions along an urban-rural gradient, we tested whether elementary school children can contribute to ...

  9. What scientists want from their research ethics committee.

    Science.gov (United States)

    Keith-Spiegel, Patricia; Tabachnick, Barbara

    2006-03-01

    Whereas investigators have directed considerable criticism against Institutional Review Boards (IRBs), the desirable characteristics of IRBs have not previously been empirically determined. A sample of 886 experienced biomedical and social and behavioral scientists rated 45 descriptors of IRB actions and functions as to their importance. Predictions derived from organizational justice research findings in other work settings were generally borne out. Investigators place high value on the fairness and respectful consideration of their IRBs. Expected differences between biomedical and social behavioral researchers and other variables were unfounded. Recommendations are offered for educating IRBs to accord researchers greater respect and fair treatment.

  10. The NASA Climate Change Research Initiative - A Scientist's Perspective

    Science.gov (United States)

    LeGrande, A. N.; Pearce, M. D.; Dulaney, N.; Kelly, S. M.

    2017-12-01

    For the last four years, I have been a lead mentor in the NASA GISS Climate Change Research Initiative (CCRI) program, a component in the NASA GSFC Office of Education portfolio. It creates a multidisciplinary; vertical research team including a NYC metropolitan teacher, graduate student, undergraduate student, and high school student. While the college and high school members of this research team function like a more traditional internship component, the teacher component provides a powerful, direct way to connect state-of-the art research with students in the classroom. Because the teacher internship lasts a full year, it affords a similar relationship with a teacher that normally only exists between a PhD student and scientist. It also provides an opportunity to train the teacher in using the extensive data archives and other information maintained on NASA's publicly available websites. This time and access provide PhD-level training in the techniques and tools used in my climate research to the high school teacher. The teacher then uses his/her own pedagogical expertise to translate these techniques into age/level appropriate lesson plans for the classroom aligned with current STEM education trends and expectations. Throughout the process, there is an exchange of knowledge between the teacher and scientist that is very similar to the training given to PhD level graduate students. The teacher's understanding of the topic and implementation of the tools is done under a very close collaboration with the scientist supervisor and the NASA Education Program Specialist. This vertical team model encourages collegial communication between teachers and learners from many different educational levels and capitalizes on the efficacy of near peer mentoring strategies. This relationship is important in building trust through the difficult, iterative process that results in the development of highly accurate and quality (continuously discussed and vetted) curriculum composed

  11. Bridging the practitioner-scientist gap in group psychotherapy research.

    Science.gov (United States)

    Lau, Mark A; Ogrodniczuk, John; Joyce, Anthony S; Sochting, Ingrid

    2010-04-01

    Bridging the practitioner-scientist gap requires a different clinical research paradigm: participatory research that encourages community agency-academic partnerships. In this context, clinicians help define priorities, determine the type of evidence that will have an impact on their practice (affecting the methods that are used to produce the evidence), and develop strategies for translating, implementing, and disseminating their findings into evidence-based practice. Within this paradigm, different roles are assumed by the partners, and sometimes these roles are blended. This paper will consider the perspectives of people who assume these different roles (clinician, researcher, and clinician-researcher) with group psychotherapy as the specific focus. Finally, the establishment of a practice-research network will be discussed as a potentially promising way to better engage group therapists in research.

  12. Tribute to a frontline scientist in marine pollution research

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A

    frontline scientist in marine pollution research Anupam Sarkar Accepted: 1 February 2006 / Published online: 4 May 2006 C211 Springer Science+Business Media, LLC 2006 Dr. Simao Nascimento de Sousa This special issue of Ecotoxicology is dedicated to a... stream_size 2562 stream_content_type text/plain stream_name Ecotoxicology_15_329.pdf.txt stream_source_info Ecotoxicology_15_329.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Tribute to a...

  13. Research project management 101: insiders' tips from Early Career Scientists

    Science.gov (United States)

    Cristini, Luisa; Pabortsava, Katsiaryna; Stichel, Torben

    2016-04-01

    From the very beginning of their career, it is important for Early Career Scientists (ECS) to develop project management skills to be able to organise their research efficiently. ECS are often in charge of specific tasks within their projects or for their teams. However, without specific training or tools, the successful completion of these assignments will depend entirely on the organisational skills of individual researchers. ECS are thus facing "sink-or-swim" situations, which can be either instructive or disastrous for their projects. Here we provide experience-based tips from fellow ECS that can help manage various project activities, including: 1. Communication with supervisors and peers 2. Lab management 3. Field trips (e.g., oceanographic campaigns) 4. Internships and collaborations with other institutions 5. Literature/background research 6. Conference convening These are potential "life buoys" for ECS, which will help them to carry out these tasks efficiently and successfully.

  14. Scientists' perspectives on the ethical issues of stem cell research.

    Science.gov (United States)

    Longstaff, Holly; Schuppli, Catherine A; Preto, Nina; Lafrenière, Darquise; McDonald, Michael

    2009-06-01

    This paper describes findings from an ethics education project funded by the Canadian Stem Cell Network (SCN). The project is part of a larger research initiative entitled "The Stem Cell Research Environment: Drawing the Evidence and Experience Together". The ethics education study began with a series of focus groups with SCN researchers and trainees as part of a "needs assessment" effort. The purpose of these discussions was to identify the main ethical issues associated with stem cell (SC) research from the perspective of the stem cell community. This paper will focus on five prominent themes that emerged from the focus group data including: (1) the source of stem cells; (2) the power of stem cells; (3) working within a charged research environment; (4) the regulatory context; and (5) ethics training for scientists. Additional discussions are planned with others involved in Canadian stem cell research (e.g., research ethics board members, policy makers) to supplement initial findings. These assessment results combined with existing bioethics literature will ultimately inform a web-based ethics education module for the SCN. We believe that our efforts are important for those analyzing the ethical, legal, and social issues (ELSI) in this area because our in depth understanding of stem cell researcher perspectives will enable us to develop more relevant and effective education material, which in turn should help SC researchers address the important ethical challenges in their area.

  15. Increasing both the public health potential of basic research and the scientist satisfaction. An international survey of bio-scientists.

    Science.gov (United States)

    Sorrentino, Carmen; Boggio, Andrea; Confalonieri, Stefano; Hemenway, David; Scita, Giorgio; Ballabeni, Andrea

    2016-01-01

    Basic scientific research generates knowledge that has intrinsic value which is independent of future applications. Basic research may also lead to practical benefits, such as a new drug or diagnostic method. Building on our previous study of basic biomedical and biological researchers at Harvard, we present findings from a new survey of similar scientists from three countries. The goal of this study was to design policies to enhance both the public health potential and the work satisfaction and test scientists' attitudes towards these factors. The present survey asked about the scientists' motivations, goals and perspectives along with their attitudes concerning  policies designed to increase both the practical (i.e. public health) benefits of basic research as well as their own personal satisfaction. Close to 900 basic investigators responded to the survey; results corroborate the main findings from the previous survey of Harvard scientists. In addition, we find that most bioscientists disfavor present policies that require a discussion of the public health potential of their proposals in grants but generally favor softer policies aimed at increasing the quality of work and the potential practical benefits of basic research. In particular, bioscientists are generally supportive of those policies entailing the organization of more meetings between scientists and the general public, the organization of more academic discussion about the role of scientists in the society, and the implementation of a "basic bibliography" for each new approved drug.

  16. From Research Scientist to Public Outreach: A Personal Journey

    Science.gov (United States)

    Stewart, R.

    2004-12-01

    Over the past six years I have made the transition from research oceanographer to an educator and public outreach specialist. The transition has been rewarding but difficult. On the way I had to learn the vocabulary and concepts of education (e.g. authentic assessment), effective web-page styles, and the difference between science and education--they are very different. I also met many enthusiastic and caring teachers who greatly eased my transition to educator. Some lessons learned. First, partner with experts. Successful outreach is a team effort. I was luck to have the opportunity to work closely with a great professor of education, Robert James, a wonderful middle-school teacher and Presidential Awardee, Margaret Hammer, and talented students, Jon Reisch and Don Johnson, from our School of ArchitectureAƒAøAøâ_sA¬Aøâ_zAøs Visualization Laboratory, who combined art and technology. Second, if you are a scientist, realize that scientists are too critical. We look for the one right answer, and for the flaws in data and theory. Educators look for the many ways to present ideas, all equally valid, and they value the worth of all students. AƒAøAøâ_sA¬A.â_oSo radical are the differences between the worlds of science and human affairs that their demands are sometimes in conflict.AƒAøAøâ_sA¬A_A¿A 1/2 -Philander: Our Affair With El Nino, p.5. Second, the web is a very efficient way of reaching many people. Thus, web skills are essential. Third, I am learning to be humble. There is much I need to learn. The skills necessary to be a successful research scientist are not sufficient for being a successful educator. Fourth, assess, assess, and assess. DonAƒAøAøâ_sA¬Aøâ_zAøt assume that what you create serves its purpose. Get feedback from educators, students, and scientists of all levels of experience.

  17. US and Cuban Scientists Forge Collaboration on Arbovirus Research.

    Science.gov (United States)

    Pérez-Ávila, Jorge; Guzmán-Tirado, Maria G; Fraga-Nodarse, Jorge; Handley, Gray; Meegan, James; Pelegrino-Martínez de la Cotera, Jose L; Fauci, Anthony S

    2018-04-01

    After December 17, 2014, when the US and Cuban governments announced their intent to restore relations, the two countries participated in various exchange activities in an effort to encourage cooperation in public health, health research and biomedical sciences. The conference entitled Exploring Opportunities for Arbovirus Research Collaboration, hosted at Havana's Hotel Nacional, was part of these efforts and was the first major US-Cuban scientific conference in over 50 years. Its purpose was to share information about current arbovirus research and recent findings, and to explore opportunities for future joint research. The nearly 100 participants included leading arbovirus and vector transmission experts from ten US academic institutions, NIH, CDC, FDA and the US Department of Defense. Cuban participants included researchers, clinicians and students from Cuba's Ministry of Public Health, Pedro Kourí Tropical Medicine Institute, Center for Genetic Engineering and Biotechnology, Center for State Control of Medicines and Medical Devices and other health research and regulatory organizations. Topics highlighted at the three-day meeting included surveillance, research and epidemiology; pathogenesis, immunology and virology; treatment and diagnosis; vector biology and control; vaccine development and clinical trials; and regulatory matters. Concurrent breakout discussions focused on novel vector control, nonvector transmission, community engagement, Zika in pregnancy, and workforce development. Following the conference, the Pedro Kourí Tropical Medicine Institute and the US National Institute of Allergic and Infectious Diseases have continued to explore ways to encourage and support scientists in Cuba and the USA who wish to pursue arbovirus research cooperation to advance scientific discovery to improve disease prevention and control. KEYWORDS Arboviruses, flavivirus, Zika virus, chikungunya virus, dengue virus, research, disease vectors, Cuba, USA.

  18. Engaging Scientists and Users in Climate Change Research and Results

    Science.gov (United States)

    Cloyd, E. T.; Reeves, K.; Shimamoto, M. M.; Zerbonne, S.

    2016-12-01

    The U.S. Global Change Research Program has a mandate to "consult with actual and potential users of the results of the program" in developing products that will support learning about and responding to climate change. USGCRP has sought to engage stakeholders throughout the development and dissemination of key products, such as the Third National Climate Assessment (NCA3, 2014) and the Climate and Health Assessment (CHA, 2016), in the strategic planning processes leading to the National Global Change Research Plan (2012) and Update to the Strategic Plan (2016), and through regular postings to social media that highlight research results and opportunities for engagement. Overall, USGCRP seeks to promote dialogue between scientific experts, stakeholders, and decision makers about information needs in regions or sectors, the potential impacts of climate change, and possible responses. This presentation will describe how USGCRP has implemented various stakeholder engagement measures during the planning, development, and release of products such as NCA3 and CHA. Through repeated opportunities for stakeholder input, USGCRP has promoted process transparency and inclusiveness in the framing of assessments and other products. In addition, USGCRP has supported scientists' engagement with a range of audiences and potential collaborators through a variety of mechanisms, including community-based meetings, deliberative forums, and identification of non-Federal speaking and knowledge co-production opportunities. We will discuss key lessons learned and successful approaches for engaging users as well as opportunities and challenges for future engagement.

  19. IT Tools for Teachers and Scientists, Created by Undergraduate Researchers

    Science.gov (United States)

    Millar, A. Z.; Perry, S.

    2007-12-01

    Interns in the Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT) program conduct computer science research for the benefit of earthquake scientists and have created products in growing use within the SCEC education and research communities. SCEC/UseIT comprises some twenty undergraduates who combine their varied talents and academic backgrounds to achieve a Grand Challenge that is formulated around needs of SCEC scientists and educators and that reflects the value SCEC places on the integration of computer science and the geosciences. In meeting the challenge, students learn to work on multidisciplinary teams and to tackle complex problems with no guaranteed solutions. Meantime, their efforts bring fresh perspectives and insight to the professionals with whom they collaborate, and consistently produces innovative, useful tools for research and education. The 2007 Grand Challenge was to design and prototype serious games to communicate important earthquake science concepts. Interns broke themselves into four game teams, the Educational Game, the Training Game, the Mitigation Game and the Decision-Making Game, and created four diverse games with topics from elementary plate tectonics to earthquake risk mitigation, with intended players ranging from elementary students to city planners. The games were designed to be versatile, to accommodate variation in the knowledge base of the player; and extensible, to accommodate future additions. The games are played on a web browser or from within SCEC-VDO (Virtual Display of Objects). SCEC-VDO, also engineered by UseIT interns, is a 4D, interactive, visualization software that enables integration and exploration of datasets and models such as faults, earthquake hypocenters and ruptures, digital elevation models, satellite imagery, global isochrons, and earthquake prediction schemes. SCEC-VDO enables the user to create animated movies during a session, and is now part

  20. Engaging Students in Space Research: Young Engineers and Scientists 2008

    Science.gov (United States)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  1. Expanding the Graduate Education Experience at Scripps Institution of Oceanography, UC San Diego

    Science.gov (United States)

    Peach, C. L.; Kilb, D. L.; Zmarzly, D.; Abeyta, E.

    2016-02-01

    Emerging career pathways for graduate students in earth, ocean and climate sciences increasingly require skills in teaching and communication. This is true of academic careers, in which demonstrated teaching skills make applicants for faculty positions far more competitive, and traditionally less conventional careers outside of academia that require cross-disciplinary collaboration and/or communication to audiences not directly involved in science research (e.g. policy makers, educators, the public). Yet most graduate education programs provide little to no opportunity or incentive for young investigators to develop and hone these skills, and graduate students are often discouraged from deviating from the traditional "research apprenticeship" model during their graduate education. At Scripps, the Birch Aquarium at Scripps, and UC San Diego Extension, we are developing new ways to integrate teaching, communication, and outreach into our graduate education program, thus broadening the scope of graduate training and better serving the needs and evolving career aspirations of our graduate students. This effort is an integral part of our overall outreach strategy a Scripps in which we seek to combine high quality STEM outreach and teaching with opportunities for Scripps graduate students to put their teaching and communications training into practice. The overall effort is a "win-win" both for our students and for the highly diverse K-16 community in San Diego County. In this talk we will summarize the programmatic efforts currently underway at Scripps, our strategic collaboration with UCSD Extension, which is expanding the capacity and reach of our integrated program, and our plans for sustaining these efforts for the long term.

  2. Criteria for Assessing Quality in Academic Research: The Views of Biomedical Scientists, Clinical Scientists and Social Scientists

    Science.gov (United States)

    Albert, Mathieu; Laberge, Suzanne; McGuire, Wendy

    2012-01-01

    This study empirically addresses the claim made by Gibbons et al ("The new production of knowledge: The dynamics of science and research in contemporary societies." Sage, Thousand Oaks, 1994) that a novel form of quality control (associated with Mode 2 knowledge production) is supplementing the "traditional" peer-review process…

  3. Young Engineers & Scientists (YES) - Engaging Teachers in Space Research

    Science.gov (United States)

    Boice, D. C.; Reiff, P. H.

    2011-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio. It provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences, information sciences, and engineering. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, C++ programming, the Internet, careers, science ethics, social impact of technology, and other topics; and select their individual research project with their mentor (SwRI staff member) to be completed during the academic year; and 2) A collegial mentorship where students complete individual research projects under the guidance of their mentors and teachers during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past nineteen (19) years. A total of 258 students have completed or are currently enrolled in YES. Of these students, 38% are females and 57% are ethnic minorities, reflecting the local diversity of the San Antonio area. All YES graduates have entered college, several work or have worked for SwRI, two businesses have formed, and three scientific publications have resulted. Sixteen (16) teacher participants have attended the YES workshop and have developed classroom materials based on their experiences in research at SwRI in the past three (3) years. In recognition of its excellence, YES received the Celebrate Success in 1996 and the Outstanding Campus Partner-of-the-Year Award in 2005, both from Northside Independent School District (San Antonio

  4. Intra-professional dynamics in translational health research: the perspective of social scientists.

    Science.gov (United States)

    Currie, Graeme; El Enany, Nellie; Lockett, Andy

    2014-08-01

    In contrast to previous studies, which focus upon the professional dynamics of translational health research between clinician scientists and social scientists (inter-professional contestation), we focus upon contestation within social science (intra-professional contestation). Drawing on the empirical context of Collaborations for Leadership in Applied Health Research and Care (CLAHRCs) in England, we highlight that although social scientists accept subordination to clinician scientists, health services researchers attempt to enhance their position in translational health research vis-à-vis organisation scientists, whom they perceive as relative newcomers to the research domain. Health services researchers do so through privileging the practical impact of their research, compared to organisation scientists' orientation towards development of theory, which health services researchers argue is decoupled from any concern with healthcare improvement. The concern of health services researchers lies with maintaining existing patterns of resource allocation to support their research endeavours, working alongside clinician scientists, in translational health research. The response of organisation scientists is one that might be considered ambivalent, since, unlike health services researchers, they do not rely upon a close relationship with clinician scientists to carry out research, or more generally, garner resource. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Recipe for an Eclectic Life as Research Scientist and Mom

    Science.gov (United States)

    Harden, J. W.

    2012-12-01

    Recipe for an Eclectic Life as Research Scientist and Mom Fresh ingredients: curiosity, conviction, who knows what else Spices: equal parts ambition, humility, risk Staples: Boundless energy! This recipe requires a lot of prep time. It makes a great first meal but also "keeps on giving" as leftovers for many meals. It can be set aside and rekindled at various stages but requires frequent touch-ups to stay fresh. This recipe is especially great for large gatherings, eclectic palettes, and it includes a mix of cultural opportunities (AGU council member for example!). First, shop for a graduate department as you might for a farmers' market that has a good feel and good mix of "customers" (grad students) who share your attitude and interests. Then seek out professors and later, career mentors, who not only have great methods and recipes but whose lifestyles seem like good examples. I like my mentors and advisees alike to be approachable, supportive, and dedicated to both problem solving and whole-life choices. For the cooking part of the recipe, you'll certainly need a great partner who is hungry for science and appreciative of those pairings between new discoveries and long-awaited accomplishments. My own husband is a geologist. My professors were in their "late career" stages (one had retired 25 years before; another retired within a year of my degree) and this seemed to foster a philosophical perspective rather than a competitive one. Advice? The keys to my child-rearing recipe were efficiency and concentration: I try to organize and sequence and to save the multi-tasking for cleanups and paperwork. Don't take yourself too seriously: we all think of ourselves as frauds and know-nothings; we all are stretched between worry and guilt when it comes to child rearing. Don't give up: who is to say whether your quest for science isn't as fundamental to your goodness as your maternal drive?

  6. Extending the Mertonian Norms: Scientists' Subscription to Norms of Research

    Science.gov (United States)

    Anderson, Melissa S.; Ronning, Emily A.; De Vries, Raymond; Martinson, Brian C.

    2010-01-01

    This analysis, based on focus groups and a national survey, assesses scientists' subscription to the Mertonian norms of science and associated counternorms. It also supports extension of these norms to governance (as opposed to administration), as a norm of decision-making, and quality (as opposed to quantity), as an evaluative norm. (Contains 1…

  7. Physician scientist research pathway leading to certification by the American Board of Pathology.

    Science.gov (United States)

    Weiss, Sharon W; Johnson, Rebecca L

    2016-06-01

    In 2014, the American Board of Pathology, in response to the pathology community, approved a physician scientist research pathway (PSRP). This brief report summarizes the history of and objectives for creating the physician scientist research pathway and the requirements of the American Board of Pathology for the certification of physician scientist research pathway trainees. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Scripps Institution of Oceanography Ferromanganese Nodule Analysis File - IDOE Portion

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Scripps Institution of Oceanography (SIO) compiled data on the geochemistry of marine ferromanganese nodules, funded by the U.S. National Science Foundation...

  9. Bridging the Research-to-Practice Gap: The Role of the Nurse Scientist.

    Science.gov (United States)

    Brant, Jeannine M

    2015-11-01

    To describe the emerging role of the nurse scientist in health care organizations. Historical perspectives of the role are explored along with the roles of the nurse scientist, facilitators, barriers, and future implications. Relevant literature on evidence-based practice and research in health care organizations; nurse scientist role; interview with University of Colorado nurse scientist. The nurse scientist role is integral for expanding evidence-based decisions and nursing research. A research mentor is considered the most important facilitator for a successful nursing research program. Organizations should consider including the nurse scientist role to facilitate evidence-based practice and expand opportunities for nursing research. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Geoscience Education Research: The Role of Collaborations with Education Researchers and Cognitive Scientists

    Science.gov (United States)

    Manduca, C. A.; Mogk, D. W.; Kastens, K. A.; Tikoff, B.; Shipley, T. F.; Ormand, C. J.; Mcconnell, D. A.

    2011-12-01

    Geoscience Education Research aims to improve geoscience teaching and learning by understanding clearly the characteristics of geoscience expertise, the path from novice to expert, and the educational practices that can speed students along this path. In addition to expertise in geoscience and education, this research requires an understanding of learning -the domain of cognitive scientists. Beginning in 2002, a series of workshops and events focused on bringing together geoscientists, education researchers, and cognitive scientists to facilitate productive geoscience education research collaborations. These activities produced reports, papers, books, websites and a blog developing a research agenda for geoscience education research at a variety of scales: articulating the nature of geoscience expertise, and the overall importance of observation and a systems approach; focusing attention on geologic time, spatial skills, field work, and complex systems; and identifying key research questions in areas where new technology is changing methods in geoscience research and education. Cognitive scientists and education researchers played critical roles in developing this agenda. Where geoscientists ask questions that spring from their rich understanding of the discipline, cognitive scientists and education researchers ask questions from their experience with teaching and learning in a wide variety of disciplines and settings. These interactions tend to crystallize the questions of highest importance in addressing challenges of geoscience learning and to identify productive targets for collaborative research. Further, they serve as effective mechanisms for bringing research techniques and results from other fields into geoscience education. Working productively at the intersection of these fields requires teams of cognitive scientists, geoscientists, and education reserachers who share enough knowledge of all three domains to have a common articulation of the research

  11. Cybercafés Use By The Research Scientists In Agricultural ...

    African Journals Online (AJOL)

    This study examined the use of internet by the research scientists in Agricultural research institutes in Ibadan. A descriptive survey design was adapted for the study. A purposeful sampling technique was also used to select the sample and the method produced 180 Research Scientists. A total of 162 cases were finally ...

  12. Values in environmental research: Citizens’ views of scientists who acknowledge values

    Science.gov (United States)

    McCright, Aaron M.; Allen, Summer; Dietz, Thomas

    2017-01-01

    Scientists who perform environmental research on policy-relevant topics face challenges when communicating about how values may have influenced their research. This study examines how citizens view scientists who publicly acknowledge values. Specifically, we investigate whether it matters: if citizens share or oppose a scientist’s values, if a scientist’s conclusions seem contrary to or consistent with the scientist’s values, and if a scientist is assessing the state of the science or making a policy recommendation. We conducted two 3x2 factorial design online experiments. Experiment 1 featured a hypothetical scientist assessing the state of the science on the public-health effects of exposure to Bisphenol A (BPA), and Experiment 2 featured a scientist making a policy recommendation on use of BPA. We manipulated whether or not the scientist expressed values and whether the scientist’s conclusion appeared contrary to or consistent with the scientist’s values, and we accounted for whether or not subjects’ values aligned with the scientist’s values. We analyzed our data with ordinary least squares (OLS) regression techniques. Our results provide at least preliminary evidence that acknowledging values may reduce the perceived credibility of scientists within the general public, but this effect differs depending on whether scientists and citizens share values, whether scientists draw conclusions that run contrary to their values, and whether scientists make policy recommendations. PMID:29069087

  13. Research ethics and integrity for social scientists beyond regulatory compliance

    CERN Document Server

    Israel, Mark

    2014-01-01

    This book explores recent developments and debates around researching ethically and with integrity, and complying with ethical requirements, and has been updated and expanded to now cover issues relating to international, indigenous, interdisciplinary and internet research.  

  14. Scientific misconduct and research integrity for the bench scientist.

    Science.gov (United States)

    Pascal, C B

    2000-09-01

    This paper describes the role of the Office of Research Integrity (ORI), a component of the Public Health Service (PHS), in defining scientific misconduct in research supported with PHS funds and in establishing standards for responding to allegations of misconduct. The principal methods by which ORI exercises its responsibilities in this area are defining what types of behaviors undertaken by research investigators constitute misconduct, overseeing institutional efforts to investigate and report misconduct, and recommending to the Assistant Secretary for Health (ASH) PHS administrative actions when misconduct is identified. ORI also takes affirmative steps to promote research integrity through education, training, and other initiatives. The role of the research institution in responding to misconduct and promoting research integrity is complementary and overlapping with ORI's efforts but, as the employer of research investigators and front-line manager of the research, the institution has a greater opportunity to promote the highest standards of integrity in the day-to-day conduct of research. Finally, legal precedent established through civil litigation has played an important role in defining the standards that apply in determining when a breach of research integrity has occurred.

  15. Otto Hahn - Research and responsibility. Conflicts of a scientist

    International Nuclear Information System (INIS)

    Hoffmann, K.

    2005-01-01

    The life of Otto Hahn is documented and the time where science started in the mysterious field of radioactivity. The main steps: Youth, studies, first practical experiences, research at Berlin university, first world war, success for atomic researchers, national socialism - night over Germany, fission of uranium atom, menace with the atomic bomb of Hitler, the American super explosive U235, hunting on atomic researchers, diplomacy with atomic bombs, in conflict with conscience and policy, against nuclear arm tests and atomic arm race. (GL)

  16. Many Scientists Welcome the Reluctance of Congress to Back Large Increases for "Star Wars" Research.

    Science.gov (United States)

    Cordes, Colleen

    1987-01-01

    Ronald Reagan's Strategic Defense Initiative (SDI) program has inspired heated debate on campuses, and many scientists have pledged not to accept federal money for SDI research, for a variety of political, economic, and scientific reasons. (MSE)

  17. Does Gender Affect a Scientist's Research Output in Evolutionary Ecology?

    Science.gov (United States)

    Bonnet, Xavier; Shine, Richard; Lourdais, Olivier

    To examine how an author's gender influences his or her research output, the authors analyzed (not simply scored) more than 900 published articles in nine leading scientific journals in the field of evolutionary ecology. Women were strongly underrepresented in all countries, but this bias is decreasing. Men and women differed significantly in their fields of research, with women preferentially conducting projects on behavior rather than evolution or ecology. Most aspects of the structure of published articles and the level of conceptual generality were unaffected by an author's gender. Because discriminatory practices by reviewers and editors can be manifested in attributes of the articles that survive the review process, the latter result suggests a lack of gender-based discrimination during the review process. Gender differences in research output presumably reflect a complex array of genetic and social influences; a clearer understanding of these causal factors may help identify (and thus reduce) gender-based discrimination.

  18. Impact of information on research and development activities of nuclear scientists in Ghana

    International Nuclear Information System (INIS)

    Agyeman, E.A.; Timpo, S.E.; Kisiedu, C.; Boye, M.

    2004-01-01

    This paper considers the relationship between nuclear information use and the professional development of nuclear scientists in Ghana with reference to some identified productivity and achievement indicators. The assumption is that, frequent use of library and information services results in higher productivity and achievement. A national survey of nuclear scientists was conducted resulting in a response rate of 92 percent. The analytical framework proposed by the International Development Research Centre (IDRC) for impact studies served as an appropriate guide for the study. The results indicate that information use leads to increase in the volume and quality of work output of nuclear scientists. Evidence is also found to support the claim that information use enhances contributions of scientists to their organisations. The study concludes with recommendations aimed at improving information delivery to nuclear scientists. (author)

  19. Should We All be Scientists? Re-thinking Laboratory Research as a Calling.

    Science.gov (United States)

    Bezuidenhout, Louise; Warne, Nathaniel A

    2017-07-19

    In recent years there have been major shifts in how the role of science-and scientists-are understood. The critical examination of scientific expertise within the field of Science and Technology Studies (STS) are increasingly eroding notions of the "otherness" of scientists. It would seem to suggest that anyone can be a scientist-when provided with the appropriate training and access to data. In contrast, however, ethnographic evidence from the scientific community tells a different story. Scientists are quick to recognize that not everyone can-or should-be a scientist. Appealing to notions such as "good hands" or "gut feelings", scientists narrate a distinction between good and bad scientists that cannot be reduced to education, access, or opportunity. The key to good science requires scientists to express an intuitive feeling for their discipline, but also that individuals derive considerable personal satisfaction from their work. Discussing this personal joy in-and "fittingness" of-scientific occupations using the fields of STS, ethics and science policy is highly problematic. In this paper we turn to theology discourse to analyze the notion of "callings" as a means of understanding this issue. Callings highlight the identification and examination of individual talents to determine fit occupations for specific persons. Framing science as a calling represents a novel view of research that places the talents and dispositions of individuals and their relationship to the community at the center of flourishing practices.

  20. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    Science.gov (United States)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  1. To Crowdfund Research, Scientists Must Build an Audience for Their Work.

    Directory of Open Access Journals (Sweden)

    Jarrett E K Byrnes

    Full Text Available As rates of traditional sources of scientific funding decline, scientists have become increasingly interested in crowdfunding as a means of bringing in new money for research. In fields where crowdfunding has become a major venue for fundraising such as the arts and technology, building an audience for one's work is key for successful crowdfunding. For science, to what extent does audience building, via engagement and outreach, increase a scientist's abilities to bring in money via crowdfunding? Here we report on an analysis of the #SciFund Challenge, a crowdfunding experiment in which 159 scientists attempted to crowdfund their research. Using data gathered from a survey of participants, internet metrics, and logs of project donations, we find that public engagement is the key to crowdfunding success. Building an audience or "fanbase" and actively engaging with that audience as well as seeking to broaden the reach of one's audience indirectly increases levels of funding. Audience size and effort interact to bring in more people to view a scientist's project proposal, leading to funding. We discuss how projects capable of raising levels of funds commensurate with traditional funding agencies will need to incorporate direct involvement of the public with science. We suggest that if scientists and research institutions wish to tap this new source of funds, they will need to encourage and reward activities that allow scientists to engage with the public.

  2. To Crowdfund Research, Scientists Must Build an Audience for Their Work.

    Science.gov (United States)

    Byrnes, Jarrett E K; Ranganathan, Jai; Walker, Barbara L E; Faulkes, Zen

    2014-01-01

    As rates of traditional sources of scientific funding decline, scientists have become increasingly interested in crowdfunding as a means of bringing in new money for research. In fields where crowdfunding has become a major venue for fundraising such as the arts and technology, building an audience for one's work is key for successful crowdfunding. For science, to what extent does audience building, via engagement and outreach, increase a scientist's abilities to bring in money via crowdfunding? Here we report on an analysis of the #SciFund Challenge, a crowdfunding experiment in which 159 scientists attempted to crowdfund their research. Using data gathered from a survey of participants, internet metrics, and logs of project donations, we find that public engagement is the key to crowdfunding success. Building an audience or "fanbase" and actively engaging with that audience as well as seeking to broaden the reach of one's audience indirectly increases levels of funding. Audience size and effort interact to bring in more people to view a scientist's project proposal, leading to funding. We discuss how projects capable of raising levels of funds commensurate with traditional funding agencies will need to incorporate direct involvement of the public with science. We suggest that if scientists and research institutions wish to tap this new source of funds, they will need to encourage and reward activities that allow scientists to engage with the public.

  3. Is there a glass ceiling for highly cited scientists at the top of research universities?

    Science.gov (United States)

    Ioannidis, John P A

    2010-12-01

    University leaders aim to protect, shape, and promote the missions of their institutions. I evaluated whether top highly cited scientists are likely to occupy these positions. Of the current leaders of 96 U.S. high research activity universities, only 6 presidents or chancellors were found among the 4009 U.S. scientists listed in the ISIHighlyCited.com database. Of the current leaders of 77 UK universities, only 2 vice-chancellors were found among the 483 UK scientists listed in the same database. In a sample of 100 top-cited clinical medicine scientists and 100 top-cited biology and biochemistry scientists, only 1 and 1, respectively, had served at any time as president of a university. Among the leaders of 25 U.S. universities with the highest citation volumes, only 12 had doctoral degrees in life, natural, physical or computer sciences, and 5 of these 12 had a Hirsch citation index m < 1.0. The participation of highly cited scientists in the top leadership of universities is limited. This could have consequences for the research and overall mission of universities.

  4. Quantifying the Burden of Writing Research Articles in a Second Language: Data from Mexican Scientists

    Science.gov (United States)

    Hanauer, David I.; Englander, Karen

    2011-01-01

    This article provides quantitative data to establish the relative, perceived burden of writing research articles in English as a second language. Previous qualitative research has shown that scientists writing English in a second language face difficulties but has not established parameters for the degree of this difficulty. A total of 141…

  5. A Teacher Research Experience: Immersion Into the World of Practicing Ocean Scientists

    Science.gov (United States)

    Payne, D. L.

    2006-12-01

    Professional development standards for science teachers encourage opportunities for intellectual professional growth, including participation in scientific research (NRC, 1996). Strategies to encourage the professional growth of teachers of mathematics and science include partnerships with scientists and immersion into the world of scientists and mathematicians (Loucks-Horsley, Love, Stiles, Mundry, & Hewson, 2003). A teacher research experience (TRE) can often offer a sustained relationship with scientists over a prolonged period of time. Research experiences are not a new method of professional development (Dubner, 2000; Fraser-Abder & Leonhardt, 1996; Melear, 1999; Raphael et al., 1999). Scientists serve as role models and "coaches" for teachers a practice which has been shown to dramatically increase the transfer of knowledge, skill and application to the classroom (Joyce & Showers, 2002). This study investigated if and how secondary teachers' beliefs about science, scientific research and science teaching changed as a result of participation in a TRE. Six secondary science teachers participated in a 12 day research cruise. Teachers worked with scientists, the ships' crew and other teachers conducting research and designing lessons for use in the classroom. Surveys were administered pre and post TRE to teachers and their students. Additionally, teachers were interviewed before, during and after the research experience, and following classroom observations before and after the research cruise. Teacher journals and emails, completed during the research cruise, were also analyzed. Results of the study highlight the use of authentic research experiences to retain and renew science teachers, the impact of the teachers' experience on students, and the successes and challenges of implementing a TRE during the academic year.

  6. From Local to EXtreme Environments (FLEXE) Student-Scientist Online Forums: hypothesis-based research examining ways to involve scientists in effective science education

    Science.gov (United States)

    Goehring, L.; Carlsen, W.; Fisher, C. R.; Kerlin, S.; Trautmann, N.; Petersen, W.

    2011-12-01

    Science education reform since the mid-1990's has called for a "new way of teaching and learning about science that reflects how science itself is done, emphasizing inquiry as a way of achieving knowledge and understanding about the world" (NRC, 1996). Scientists and engineers, experts in inquiry thinking, have been called to help model these practices for students and demonstrate scientific habits of mind. The question, however, is "how best to involve these experts?" given the very real challenges of limited availability of scientists, varying experience with effective pedagogy, widespread geographic distribution of schools, and the sheer number of students involved. Technology offers partial solutions to enable Student-Scientist Interactions (SSI). The FLEXE Project has developed online FLEXE Forums to support efficient, effective SSIs, making use of web-based and database technology to facilitate communication between students and scientists. More importantly, the FLEXE project has approached this question of "how best to do this?" scientifically, combining program evaluation with hypothesis-based research explicitly testing the effects of such SSIs on student learning and attitudes towards science. FLEXE Forums are designed to showcase scientific practices and habits of mind through facilitated interaction between students and scientists. Through these Forums, students "meet" working scientists and learn about their research and the environments in which they work. Scientists provide students with intriguing "real-life" datasets and challenge students to analyze and interpret the data through guiding questions. Students submit their analyses to the Forum, and scientists provide feedback and connect the instructional activity with real-life practice, showcasing their activities in the field. In the FLEXE project, Forums are embedded within inquiry-based instructional units focused on essential learning concepts, and feature the deep-sea environment in contrast

  7. Hidden concerns of sharing research data by low/middle-income country scientists.

    Science.gov (United States)

    Bezuidenhout, Louise; Chakauya, Ereck

    2018-01-01

    There has considerable interest in bringing low/middle-income countries (LMIC) scientists into discussions on Open Data - both as contributors and users. The establishment of in situ data sharing practices within LMIC research institutions is vital for the development of an Open Data landscape in the Global South. Nonetheless, many LMICs have significant challenges - resource provision, research support and extra-laboratory infrastructures. These low-resourced environments shape data sharing activities, but are rarely examined within Open Data discourse. In particular, little attention is given to how these research environments shape scientists' perceptions of data sharing (dis)incentives. This paper expands on these issues of incentivizing data sharing, using data from a quantitative survey disseminated to life scientists in 13 countries in sub-Saharan Africa. This interrogated not only perceptions of data sharing amongst LMIC scientists, but also how these are connected to the research environments and daily challenges experienced by them. The paper offers a series of analysis around commonly cited (dis)incentives such as data sharing as a means of improving research visibility; sharing and funding; and online connectivity. It identifies key areas that the Open Data community need to consider if true openness in research is to be established in the Global South.

  8. How Work Positions Affect the Research Activity and Information Behaviour of Laboratory Scientists in the Research Lifecycle: Applying Activity Theory

    Science.gov (United States)

    Kwon, Nahyun

    2017-01-01

    Introduction: This study was conducted to investigate the characteristics of research and information activities of laboratory scientists in different work positions throughout a research lifecycle. Activity theory was applied as the conceptual and analytical framework. Method: Taking a qualitative research approach, in-depth interviews and field…

  9. A Community of Practice among Educators, Researchers and Scientists for Improving Science Teaching in Southern Mexico

    Science.gov (United States)

    Cisneros-Cohernour, Edith J.; Lopez-Avila, Maria T.; Barrera-Bustillos, Maria E.

    2007-01-01

    This paper presents findings of a project aimed to improve the quality of science education in Southeast Mexico by the creation of a community of practice among scientists, researchers and teachers, involved in the design, implementation and evaluation of a professional development program for mathematics, chemistry, biology and physics secondary…

  10. Promoting an Inclusive Image of Scientists among Students: Towards Research Evidence-Based Practice

    Science.gov (United States)

    Cakmakci, Gultekin; Tosun, Ozge; Turgut, Sebnem; Orenler, Sefika; Sengul, Kubra; Top, Gokce

    2011-01-01

    This study aims at investigating the effects of a teaching intervention, the design of which is informed by evidence from educational theories and research data, on students' images of scientists. A quasi-experimental design with a non-equivalent pre-test-post-test control group (CG) was used to compare the outcomes of the intervention. The…

  11. Young Researchers Advancing Computational Science: Perspectives of the Young Scientists Conference 2015

    NARCIS (Netherlands)

    Boukhanovsky, A.V.; Ilyin, V.A; Krzhizhanovskaya, V.V.; Athanassoulis, G.A.; Klimentov, A.A.; Sloot, P.M.A.

    2015-01-01

    We present an annual international Young Scientists Conference (YSC) on computational science http://ysc.escience.ifmo.ru/, which brings together renowned experts and young researchers working in high-performance computing, data-driven modeling, and simulation of large-scale complex systems. The

  12. The human fallibility of scientists : Dealing with error and bias in academic research

    NARCIS (Netherlands)

    Veldkamp, Coosje

    2017-01-01

    THE HUMAN FALLIBILITY OF SCIENTISTS Dealing with error and bias in academic research Recent studies have highlighted that not all published findings in the scientific lit¬erature are trustworthy, suggesting that currently implemented control mechanisms such as high standards for the reporting of

  13. Young Researchers Advancing Computational Science: Perspectives of the Young Scientists Conference 2015

    CERN Document Server

    Boukhanovsky, Alexander V; Krzhizhanovskaya, Valeria V; Athanassoulis, Gerassimos A; Klimentov, Alexei A; Sloot, Peter M A

    2015-01-01

    We present an annual international Young Scientists Conference (YSC) on computational science http://ysc.escience.ifmo.ru/, which brings together renowned experts and young researchers working in high-performance computing, data-driven modeling, and simulation of large-scale complex systems. The first YSC event was organized in 2012 by the University of Amsterdam, the Netherlands and ITMO University, Russia with the goal of opening a dialogue on the present and the future of computational science and its applications. We believe that the YSC conferences will strengthen the ties between young scientists in different countries, thus promoting future collaboration. In this paper we briefly introduce the challenges the millennial generation is facing; describe the YSC conference history and topics; and list the keynote speakers and program committee members. This volume of Procedia Computer Science presents selected papers from the 4th International Young Scientists Conference on Computational Science held on 25 ...

  14. Want to Inspire Science Students to Consider a Research Career? Host a Scientist in Your Classroom

    OpenAIRE

    Baynham, Patricia J.

    2010-01-01

    Most biology students have limited exposure to research since this is not a public activity and the pace of science does not lend itself to television dramatization. In contrast, medicine is the subject of numerous TV shows, and students’ experience visiting doctors may lead them to think they want to become physicians. One effective way to encourage these students to consider a research career is to invite engaging scientists to speak about their career paths and lives during class. S...

  15. Communication among scientists, decision makers and society: Developing policy-relevant global climate change research

    International Nuclear Information System (INIS)

    Bernabo, J.C.

    1995-01-01

    Defining the research most relevant to policy is not simply a technical task that can be answered by scientists. Decision makers need and value information differently than curiosity-driven scientists. In order to link science more effectively to policy, the two communities must gain a greater mutual understanding. Decision makers must define their needs so that scientists can determine how, and by when, research can address these needs. This vital dialogue between communities typically has been more ad hoc than systematic. The complexity and urgency of the global climate change issue necessitate ongoing communication between scientists and decision makers on the information needed for policy development and what research can provide The results of relevant science policy dialogues are discussed herein. Effective communication between researchers and decision makers is a crucial ingredient for successfully addressing society's pressing environmental concerns. The increase in policy makers' demands for research that is relevant to solving societal issues highlights the communication gap between the technical and policy communities. The gap, largely caused by lack of mutual understanding, results in flawed and inadequate communication that hinders decision making and confuses the public. This paper examines the cause of this communication gap and describes the significance of recent efforts to develop more fruitful science-policy dialogues on the issue of global climate change. First, the post-Cold War shift in government priorities for research funding is described; then the underlying relationship between science and policy is explored to identify key sources of ongoing mis-communication. The paper then explains the importance of defining policy-relevant science questions that research can address. Finally, three projects are described involving the elicitation of decision makers' information needs in The United States, The Netherlands, and internationally

  16. Scientist-Teacher Partnerships as Professional Development: An Action Research Study

    Energy Technology Data Exchange (ETDEWEB)

    Willcuts, Meredith H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-04-01

    The overall purpose of this action research study was to explore the experiences of ten middle school science teachers involved in a three-year partnership program between scientists and teachers at a Department of Energy national laboratory, including the impact of the program on their professional development, and to improve the partnership program by developing a set of recommendations based on the study’s findings. This action research study relied on qualitative data including field notes recorded at the summer academies and data from two focus groups with teachers and scientists. Additionally, the participating teachers submitted written reflections in science notebooks, participated in open-ended telephone interviews that were transcribed verbatim, and wrote journal summaries to the Department of Energy at the end of the summer academy. The analysis of the data, collaboratively examined by the teachers, the scientists, and the science education specialist acting as co-researchers on the project, revealed five elements critical to the success of the professional development of science teachers. First, scientist-teacher partnerships are a unique contribution to the professional development of teachers of science that is not replicated in other forms of teacher training. Second, the role of the science education specialist as a bridge between the scientists and teachers is a unique and vital one, impacting all aspects of the professional development. Third, there is a paradox for classroom teachers as they view the professional development experience from two different lenses – that of learner and that of teacher. Fourth, learning for science teachers must be designed to be constructivist in nature. Fifth, the principles of the nature of science must be explicitly showcased to be seen and understood by the classroom teacher.

  17. Ethical Justification of Moral Norms in Scientific Research: Scientists' External Responsibilities

    Directory of Open Access Journals (Sweden)

    Mehmet AKÖZER

    2015-09-01

    Full Text Available Scientists' moral responsibilities have become a focus for the scientific community over the postwar decades. International and regional networks of leading academic bodies have responded to a widely perceived increase in scientific fraud and the ensued loss of public trust in science during the 1980s, and initiated a discussion with a view to codifying good practice in research. While scientists' “external” responsibilities towards society and the humankind have been variously addressed, codes drafted since then mainly dwell on problems of misconduct concerning scientists' “internal” responsibilities towards science and to the scientific community. They also reflect an ethical pluralism, which declines justifying moral standards in research with reference to universal ethical principles. However, the need for such justification has been first recognized decades ago, during the Doctor's Trial in Nuremberg, where the shortcomings of the established ethos of science and the inadequacy of the Hippocratic ethics in safeguarding human rights in research had become flagrant, with the resultant Nuremberg Code of 1947 introducing a human rights perspective into Hippocratic ethics. This paper argues for the necessity of an integral ethical justification of scientists' both external and inner responsibilities, as put down or assumed by internationally acclaimed codes of conduct. Such necessity is validated by the evidence that a historical current to monopolize ethical thinking in the name of science and nullify philosophical ethics lies at the root of an anti–morality that relativized human worth and virtually legitimized human rights violations in scientific practice. Kantian ethics based on humans' absolute inner worth, and Popperian epistemology rooted in respect for truth and for humans as rational beings, pledge an ethical justification of moral norms in science so as to reinforce the latter against intrusions of anti–morality. The paper

  18. Proceedings of the young scientist research awardee's meet: pre-proceedings volume

    International Nuclear Information System (INIS)

    2012-01-01

    Youth is the life line for the progress of any nation, be it science, academics, industry or enterpreneurship. In scientific research, it is always interesting to enumerate the ideas that are created by young minds. It is important to identify bright ideas and nurture the young scientists so that the promise shown through bright ideas will be directed towards logical execution. It is crucial for the funding agencies to be proactive to convert potential into performance. Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), India supports extra mural research in nuclear and allied sciences, engineering and technology. With an aim to accomplish this objective, BRNS has been continuously encouraging and supporting scientists and engineers to pursue excellence in R and D programmes of interest and relevance to DAE. Papers relevant to INIS are indexed separately

  19. Crocodile years: the traditional image of science and physical scientists' participation in weapons research

    Energy Technology Data Exchange (ETDEWEB)

    Crews, R.J.

    1985-01-01

    This thesis examines one dimension of the relationship between science and the arms race. More specifically, it develops and empirically examines a theoretical model of the relationship between the social demand for defense-related and weapons research, traditional scientific values related to the worldview of classical physics, and differential participation by physical scientists in such research. The theoretical model suggests that an antiquated traditional image of science exists, and that it may explain, in part, participation by physical scientists in defense-related or weapons research. Two major hypotheses are suggested by the model: first, that a constellation of values representing a traditional image of science obtains today among young physical scientists; and second, that those who currently engage (or are willing to engage) in defense-related or weapons research are more likely to agree with the values implicit in the traditional image of science than those who do not (or would not) engage in such research. The theoretical model is located within the sociologies of knowledge and science. This study includes chapters that provide an overview of the literature of these subdisciplines. This investigation concludes with an empirical examination of the model and hypotheses.

  20. Research fellowship programs as a pathway for training independent clinical pharmacy scientists.

    Science.gov (United States)

    Mueller, Eric W; Bishop, Jeffrey R; Kanaan, Abir O; Kiser, Tyree H; Phan, Hanna; Yang, Katherine Y

    2015-03-01

    The American College of Clinical Pharmacy (ACCP) Research Affairs Committee published a commentary in 2013 on training clinical pharmacy scientists in the context of changes in economic, professional, political, and research environments. The commentary centered on the opportunities for pharmacists in clinical/translational research including strategies for ACCP, colleges of pharmacy, and the profession to increase the number and impact of clinical pharmacy scientists. A postdoctoral fellowship is cited as a current training pathway, capable of producing independent and productive pharmacy researchers. However, a decline in the number of programs, decreased funding availability, and variability in fellowship program activities and research focus have brought into question the relevance of this research training pathway to meet demand and opportunities. In response to these points, this commentary examines the state of research fellowship training including the current ACCP research fellowship review process, the need for standardization of research fellowship programs, and strategies to strengthen and promote research fellowships as relevant researcher training pathways. © 2015 Pharmacotherapy Publications, Inc.

  1. Literature search strategies for interdisciplinary research a sourcebook for scientists and engineers

    CERN Document Server

    Ackerson, Linda G

    2006-01-01

    The amount of published literature can be overwhelming for scientists and researchers moving from a broad disciplinary research area to a more specialized one, particularly in fields that use information from more than one discipline. Without a focused inquiry, the researcher may find too little information or may be overcome by too much. Striking the correct balance of information is the focus of Literature Search Strategies for Interdisciplinary Research. This useful reference tool studies diverse interdisciplinary areas revealing the general and individual qualities that dictate the strateg

  2. Development of Teachers as Scientists in Research Experiences for Teachers Programs

    Science.gov (United States)

    Faber, Courtney; Hardin, Emily; Klein-Gardner, Stacy; Benson, Lisa

    2014-11-01

    This study examined the teachers' development as scientists for participants in three National Science Foundation Research Experiences for Teachers. Participants included secondary science and math teachers with varying levels of education and experience who were immersed in research environments related to engineering and science topics. Teachers' functionality as scientists was assessed in terms of independence, focus, relationships with mentors, structure, and ability to create new concepts. Hierarchies developed within these constructs allowed tracking of changes in functionality throughout the 6-week programs. Themes were further identified in teachers' weekly journal entries and exit interviews through inductive coding. Increases in functionality as scientists were observed for all teachers who completed both the program and exit interview ( n = 27). Seven of the 27 teachers reached high science functionality; however, three of the teachers did not reach high functionality in any of the constructs during the program. No differences were observed in demographics or teaching experience between those who did and did not reach high functionality levels. Inductive coding revealed themes such as teachers' interactions with mentors and connections made between research and teaching, which allowed for descriptions of experiences for teachers at high and low levels of functionality. Teachers at high functionality levels adjusted to open-ended environments, transitioned from a guided experience to freedom, felt useful in the laboratory, and were self-motivated. In contrast, teachers at low functionality levels did not have a true research project, primarily focused on teaching aspects of the program, and did not display a transition of responsibilities.

  3. Implementing 'translational' biomedical research: convergence and divergence among clinical and basic scientists.

    Science.gov (United States)

    Morgan, Myfanwy; Barry, Christine A; Donovan, Jenny L; Sandall, Jane; Wolfe, Charles D A; Boaz, Annette

    2011-10-01

    Universities are increasingly regarded as key actors in the new 'knowledge economy', with requirements to produce market-oriented knowledge and engage in commercialization. This is of particular significance in the biomedical field, reflecting the perceived gap between success in terms of scientific discoveries and its transformation into products. The dominant discourse attributes this situation to 'blocks' in the translational pathway from 'bench to bedside', leading to policies to 'reengineer' the research enterprise. This study examines a pilot initiative established by the UK's Medical Research Council (MRC). This involved employing a change agent (Research Translator) supported by a small amount of translational funding to promote the culture and practice of translational research at a university/hospital site in England. An ethnographically informed case study involving semi-structured and open exploratory interviews, observation and document review, was conducted in 2008. Analysis and interpretation were informed by Bourdieu's logic of practice applied to science. The requirements of translational research promoted by the Research Translator and its sources of capital (authority, prestige etc) were largely congruent with the 'field' of clinical science. In contrast, translational research diverged from perceptions of 'legitimate' science and requirements for capital accumulation held by the majority of basic scientists who often described this research as 'high risk' and were resistant to the Research Translator's advice. However some differences in motivations and practices were identified within groups of scientists associated with career stage, work environment and specialty. We argue that there are convergent and divergent forces that influence scientists' readiness to adopt a market-oriented translational research model and in turn facilitate or constrain the effectiveness of a knowledge broker. We also identify ways in which current structures and

  4. Evaluating Student Success and Outcomes in the Scripps Institution of Oceanography REU Program

    Science.gov (United States)

    Teranes, J. L.; Kohne, L.

    2013-12-01

    The NSF foundation-wide REU program exists to help attract and retain a diverse pool of talented undergraduate students in STEM fields. These goals are particularly relevant in earth and marine sciences because relatively few minority students traditionally seek careers in these fields and only account for an extremely small percentage of Ph.D. degrees earned. The Scripps Undergraduate Research Fellowship (SURF) REU program is a 10-week summer program currently in its third year of funding. The SURF program invites 10-15 undergraduate students from across the country to Scripps to participate in high quality collaborative research with Scripps faculty and researchers. Program components also include research seminars, career and graduate school preparation, GRE-prep courses, field trips and social activities. The project's goal, broadly, is to increase the participation of underrepresented minorities in marine science and related disciplines at a national level. Our program includes a comprehensive evaluation and assessment plan to help us understand the impact of this REU experience on the student participant. Our assessment consists of paired pre- and post-survey questions to estimate student growth in the following areas as related to earth and marine sciences: (1) increased knowledge and skills (2) increased confidence in ability to conduct research (3) improved attitudes and interest in the field and (4) more ambitious career goals. Assessment results from the last two cohorts have helped refine our recruitment and selection strategies. In the first year of our program, we focused almost exclusively on recruiting underrepresented minority students; over of the participants represented ethic groups considered to be underrepresented in STEM fields. However, participants did not demonstrate overall significant pre/post gains in any of the goal areas, mostly because pre-survey scores indicated that the students were already very strong in all goal areas. In years

  5. CosmoQuest - Scientist Engagement with the Public and Schools via a Virtual Research Facility

    Science.gov (United States)

    Noel-Storr, Jacob; Buxner, Sanlyn; Gay, Pamela L.; Grier, Jennifer A.; Lehan, Cory; CosmoQuest Team

    2016-06-01

    CosmoQuest is a virtual research facility where science data can be analyzed by teams of interested citizen scientists from across the world. Scientists can apply to have their data analyzed through crowdsourcing in our online observatory, which generates validated and publishable results (Robbins et al 2014). Scientists have the opportunity to provide connections to teachers in classrooms so that students can analyze original data and understand the process that astronomers go through from image to result. Scientists can also teach online classes for different audiences including formal classroom teachers, informal educators, and lifelong learners to further the broader impacts of their work and increase engagement in their scientific endeavors. We provide training, through online and in-person workshops, on how to incorporate your datasets into the observatory and how to deliver online classes through our CosmoAcademy. This work is funded in part by NASA Cooperative Agreement Notice number NNX16AC68A. For more information, visit http://cosmoquest.org/.

  6. Want to Inspire Science Students to Consider a Research Career? Host a Scientist in Your Classroom

    Directory of Open Access Journals (Sweden)

    Patricia J. Baynham

    2010-04-01

    Full Text Available Most biology students have limited exposure to research since this is not a public activity and the pace of science does not lend itself to television dramatization. In contrast, medicine is the subject of numerous TV shows, and students’ experience visiting doctors may lead them to think they want to become physicians. One effective way to encourage these students to consider a research career is to invite engaging scientists to speak about their career paths and lives during class. Students are most likely to be influenced by people they consider to be like themselves. While this method is well-suited to a lecture format where the scientist can address a larger audience, the laboratory would also be appropriate.

  7. A trans-disciplinary review of deep learning research for water resources scientists

    OpenAIRE

    Shen, Chaopeng

    2017-01-01

    Deep learning (DL), a new-generation artificial neural network research, has made profound strides in recent years. This review paper is intended to provide water resources scientists with a simple technical overview, trans-disciplinary progress update, and potentially inspirations about DL. Effective architectures, more accessible data, advances in regularization, and new computing power enabled the success of DL. A trans-disciplinary review reveals that DL is rapidly transforming myriad sci...

  8. Learning, teaching and researching on the internet a practical guide for social scientists

    CERN Document Server

    Stein, S D

    2014-01-01

    Learning, Teaching and Researching on the Internet: A Practical Guide for Social Scientists is directed at students and academic staff who want to be able to access Internet resources quickly and efficiently without needing to become IT experts. The emphasis throughout is on the harnessing of the large volume of potentially useful Internet resources to everyday requirements, whether these be focused on learning, teaching or research. The Internet is a significantly rich information, communication and research resource for all those involved in higher education, whether they be students, academ

  9. Improving adolescent and young adult health - training the next generation of physician scientists in transdisciplinary research.

    Science.gov (United States)

    Emans, S Jean; Austin, S Bryn; Goodman, Elizabeth; Orr, Donald P; Freeman, Robert; Stoff, David; Litt, Iris F; Schuster, Mark A; Haggerty, Robert; Granger, Robert; Irwin, Charles E

    2010-02-01

    To address the critical shortage of physician scientists in the field of adolescent medicine, a conference of academic leaders and representatives from foundations, National Institutes of Health, Maternal and Child Health Bureau, and the American Board of Pediatrics was convened to discuss training in transdisciplinary research, facilitators and barriers of successful career trajectories, models of training, and mentorship. The following eight recommendations were made to improve training and career development: incorporate more teaching and mentoring on adolescent health research in medical schools; explore opportunities and electives to enhance clinical and research training of residents in adolescent health; broaden educational goals for Adolescent Medicine fellowship research training and develop an intensive transdisciplinary research track; redesign the career pathway for the development of faculty physician scientists transitioning from fellowship to faculty positions; expand formal collaborations between Leadership Education in Adolescent Health/other Adolescent Medicine Fellowship Programs and federal, foundation, and institutional programs; develop research forums at national meetings and opportunities for critical feedback and mentoring across programs; educate Institutional Review Boards about special requirements for high quality adolescent health research; and address the trainee and faculty career development issues specific to women and minorities to enhance opportunities for academic success. Copyright 2010 Society for Adolescent Medicine. All rights reserved.

  10. Leading US nano-scientists' perceptions about media coverage and the public communication of scientific research findings

    Science.gov (United States)

    Corley, Elizabeth A.; Kim, Youngjae; Scheufele, Dietram A.

    2011-12-01

    Despite the significant increase in the use of nanotechnology in academic research and commercial products over the past decade, there have been few studies that have explored scientists' perceptions and attitudes about the technology. In this article, we use survey data from the leading U.S. nano-scientists to explore their perceptions about two issues: the public communication of research findings and media coverage of nanotechnology, which serves as one relatively rapid outlet for public communication. We find that leading U.S. nano-scientists do see an important connection between the public communication of research findings and public attitudes about science. Also, there is a connection between the scientists' perceptions about media coverage and their views on the timing of public communication; scientists with positive attitudes about the media are more likely to support immediate public communication of research findings, while others believe that communication should take place only after research findings have been published through a peer-review process. We also demonstrate that journalists might have a more challenging time getting scientists to talk with them about nanotechnology news stories because nano-scientists tend to view media coverage of nanotechnology as less credible and less accurate than general science media coverage. We conclude that leading U.S. nano-scientists do feel a sense of responsibility for communicating their research findings to the public, but attitudes about the timing and the pathway of that communication vary across the group.

  11. Personality Traits Are Associated with Research Misbehavior in Dutch Scientists: A Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Joeri K Tijdink

    Full Text Available Personality influences decision making and ethical considerations. Its influence on the occurrence of research misbehavior has never been studied. This study aims to determine the association between personality traits and self-reported questionable research practices and research misconduct. We hypothesized that narcissistic, Machiavellianistic and psychopathic traits as well as self-esteem are associated with research misbehavior.Included in this cross-sectional study design were 535 Dutch biomedical scientists (response rate 65% from all hierarchical layers of 4 university medical centers in the Netherlands. We used validated personality questionnaires such as the Dark Triad (narcissism, psychopathy, and Machiavellianism, Rosenberg's Self-Esteem Scale, the Publication Pressure Questionnaire (PPQ, and also demographic and job-specific characteristics to investigate the association of personality traits with a composite research misbehavior severity score.Machiavellianism was positively associated (beta 1.28, CI 1.06-1.53 with self-reported research misbehavior, while narcissism, psychopathy and self-esteem were not. Exploratory analysis revealed that narcissism and research misconduct were more severe among persons in higher academic ranks (i.e., professors (p<0.01 and p<0.001, respectively, and self-esteem scores and publication pressure were lower (p<0.001 and p<0.01, respectively as compared to postgraduate PhD fellows.Machiavellianism may be a risk factor for research misbehaviour. Narcissism and research misbehaviour were more prevalent among biomedical scientists in higher academic positions. These results suggest that personality has an impact on research behavior and should be taken into account in fostering responsible conduct of research.

  12. Being a Scientist While Teaching Science: Implementing Undergraduate Research Opportunities for Elementary Educators

    Science.gov (United States)

    Hock, Emily; Sharp, Zoe

    2016-03-01

    Aspiring teachers and current teachers can gain insight about the scientific community through hands-on experience. As America's standards for elementary school and middle school become more advanced, future and current teachers must gain hands-on experience in the scientific community. For a teacher to be fully capable of teaching all subjects, they must be comfortable in the content areas, equipped to answer questions, and able to pass on their knowledge. Hands-on research experiences, like the Summer Astronomy Research Experience at California Polytechnic University, pair liberal studies students with a cooperative group of science students and instructors with the goal of doing research that benefits the scientific community and deepens the team members' perception of the scientific community. Teachers are then able to apply the basic research process in their classrooms, inspire students to do real life science, and understand the processes scientists' undergo in their workplace.

  13. Connections, Productivity and Funding: An Examination of Factors Influencing Scientists' Perspectives on the Market Orientation of Academic Research

    Science.gov (United States)

    Ronning, Emily Anne

    2012-01-01

    This study examines scientists' perceptions of the environment in which they do their work. Specifically, this study examines how academic and professional factors such as research productivity, funding levels for science, connections to industry, type of academic appointment, and funding sources influence scientists' perceptions of the…

  14. "A good personal scientific relationship": Philip Morris scientists and the Chulabhorn Research Institute, Bangkok.

    Science.gov (United States)

    Mackenzie, Ross; Collin, Jeff

    2008-12-23

    This paper examines the efforts of consultants affiliated with Philip Morris (PM), the world's leading transnational tobacco corporation, to influence scientific research and training in Thailand via the Chulabhorn Research Institute (CRI). A leading Southeast Asian institute for environmental health science, the CRI is headed by Professor Dr. Her Royal Highness Princess Chulabhorn, the daughter of the King of Thailand, and it has assumed international significance via its designation as a World Health Organization (WHO) Collaborating Centre in December 2005. This paper analyses previously confidential tobacco industry documents that were made publicly available following litigation in the United States. PM documents reveal that ostensibly independent overseas scientists, now identified as industry consultants, were able to gain access to the Thai scientific community. Most significantly, PM scientist Roger Walk has established close connections with the CRI. Documents indicate that Walk was able to use such links to influence the study and teaching of environmental toxicology in the institute and to develop relations with key officials and local scientists so as to advance the interests of PM within Thailand and across Asia. While sensitivities surrounding royal patronage of the CRI make public criticism extremely difficult, indications of ongoing involvement by tobacco industry consultants suggest the need for detailed scrutiny of such relationships. The establishment of close links with the CRI advances industry strategies to influence scientific research and debate around tobacco and health, particularly regarding secondhand smoke, to link with academic institutions, and to build relationships with national elites. Such strategies assume particular significance in the national and regional contexts presented here amid the globalisation of the tobacco pandemic. From an international perspective, particular concern is raised by the CRI's recently awarded status

  15. Earth2Class Overview: An Innovative Program Linking Classroom Educators and Research Scientists

    Science.gov (United States)

    Passow, M.; Iturrino, G. J.; Baggio, F. D.; Assumpcao, C. M.

    2005-12-01

    The Earth2Class (E2C) workshops, held at the Lamont-Doherty Earth Observatory (LDEO), provide an effective model for improving knowledge, teaching, and technology skills of middle and high school science educators through ongoing interactions with research scientists and educational technology. With support from an NSF GeoEd grant, E2C has developed monthly workshops, web-based resources, and summer institutes in which classroom teachers and research scientists have produced exemplar curriculum materials about a wide variety of cutting-edge geoscience investigations suitable for dissemination to teachers and students. Some of the goals of this program are focused to address questions such as: (1) What aspects of the E2C format and educational technology most effectively connect research discoveries with classroom teachers and their students? (2) What benefits result through interactions among teachers from highly diverse districts and backgrounds with research scientists, and what benefits do the scientists gain from participation? (3) How can the E2C format serve as a model for other research institution-school district partnerships as a mechanism for broader dissemination of scientific discoveries? E2C workshops have linked LDEO scientists from diverse research specialties-seismology, marine geology, paleoclimatology, ocean drilling, dendrochronology, remote sensing, impact craters, and others-with teachers from schools in the New York metropolitan area. Through the workshops, we have trained teachers to enhance content knowledge in the Earth Sciences and develop skills to incorporate new technologies. We have made a special effort to increase the teaching competency of K-12 Earth Sciences educators serving in schools with high numbers of students from underrepresented groups, thereby providing greater role models to attract students into science and math careers. E2C sponsored Earth Science Teachers Conferences, bringing together educators from New York and New

  16. THEORETICAL AND APPLIED ANALYSIS OF CULTURAL POLICY IN RESEARCH OF DOMESTIC AND FOREIGN SCIENTISTS

    Directory of Open Access Journals (Sweden)

    Iryna Kinash

    2016-03-01

    Full Text Available The article analyses the cultural policies in research of domestic and foreign scientists. It was found that around the world it is a part of social policy and an important tool for development. The role of culture as a powerful means of consolidation of society, strengthening of national identity and patriotism is being determined. Implementation of cultural policy of Ukraine through the idea of national cultural revival and restoration of the unity of the state has been suggested. Keywords: cultural policy models, spirituality, society values, unity, national identity. JEL: Z 10

  17. The talent process of successful academic women scientists at elite research universities in New York state

    Science.gov (United States)

    Kaenzig, Lisa M.

    women scientists at elite research universities in New York. A criterion sample (n=94) was selected resulting in forty-one successful academic women scientists as the study participants, representing a response rate of 43.6%. Findings include the important roles of parents, teachers, mentors and collaborators on the talent development process of the participants. The perception of the study participants was that there were multiple facilitators to their talent development process, while few barriers were acknowledged. The most important barriers cited by participants were perceptions of institutional culture and sexism. Implications for practice in both gifted and higher education are suggested, based on the findings of the study. For gifted education, these suggestions include the need to provide parental education programs emphasizing the importance of intellectual engagement at home, providing dedicated time for science in primary education, and fostering science and mathematics opportunities, particularly for girls and young women. Stressing the importance of hard work, persistence and intelligent risk-taking are also important for encouraging girls in science. For higher education, the study provides models of success of academic women scientists, outlines the importance of mentors and collaborators, and emphasizes the critical role that institutions and departments play in facilitating or impeding women's career development as academics. The current study suggests several areas for further research to continue the exploration of the talent development influences on academic women scientists. Based on the findings of this study, recommended studies include examining the differences of generational cohorts; probing the roles of collaborators/mentor colleagues; exploring differences for women from various ethnic and racial backgrounds; replicating the current study with larger populations of women scientists; investigating the role of facilitative school environments

  18. Connecting Alaskan Youth, Elders, and Scientists in Climate Change Research and Community Resilience

    Science.gov (United States)

    Spellman, K.; Sparrow, E.

    2017-12-01

    Integrated science, technology, engineering and math (STEM) solutions and effective, relevant learning processes are required to address the challenges that a changing climate presents to many Arctic communities. Learning that can both enhance a community's understanding and generate new knowledge about climate change impacts at both local and continental scales are needed to efficiently build the capacity to navigate these changes. The Arctic and Earth STEM Integrating GLOBE and NASA (SIGNs) program is developing a learning model to engage Alaskan rural and indigenous communities in climate change learning, research and action. Youth, elders, educators, community leaders and scientists collaborate to address a pressing local climate change concern. The program trains teams of educators and long-time community members on climate change concepts and environmental observing protocols in face-to-face or online workshops together with Arctic and NASA subject matter experts. Community teams return to their community to identify local data or information needs that align with their student's interests and the observations of local elders. They deepen their understanding of the subject through culturally responsive curriculum materials, and collaborate with a scientist to develop an investigation with their students to address the identified need. Youth make observations using GLOBE (Global Learning and Observations to Benefit the Environment) protocols that best fit the issue, analyze the data they have collected, and utilize indigenous or knowledge, and NASA data to address the issue. The use of GLOBE protocols allow for communities to engage in climate change research at both local and global scales, as over 110 nations worldwide are using these standardized protocols. Teams work to communicate their investigation results back to their community and other scientists, and apply their results to local stewardship action or climate adaptation projects. In this

  19. Outcomes from the NIH Clinical Research Training Program: A Mentored Research Experience to Enhance Career Development of Clinician–Scientists

    Science.gov (United States)

    Ognibene, Frederick P.; Gallin, John I.; Baum, Bruce J.; Wyatt, Richard G.; Gottesman, Michael M.

    2017-01-01

    Purpose Clinician-scientists are considered an endangered species for many reasons, including challenges with establishing and maintaining a career pipeline. Career outcomes from year-long medical and dental students’ research enrichment programs have not been well determined. Therefore, the authors assessed career and research outcome data from a cohort of participants in the National Institutes of Health (NIH) Clinical Research Training Program (CRTP). Method The CRTP provided a year-long mentored clinical or translational research opportunity for 340 medical and dental students. Of these, 135 completed their training, including fellowships, from 1997 to January 2014. Data for 130 of 135 were analyzed, including time conducting research, types of public funding (NIH grants), and publications from self-reported surveys that were verified via NIH RePORT and PUBMED. Results Nearly two-thirds (84 of 130) indicated that they were conducting research, and over half of the 84 (approximately one-third of the total cohort) spent more than 25% of time devoted to research. Of those 84, over 25% received grant support from the NIH, and those further in their careers published more scholarly manuscripts. Conclusions Data suggest that the CRTP helped foster the careers of research-oriented medical and dental students as measured by time conducting research, successful competition for federal funding, and the publication of their research. Longer follow-up is warranted to assess the impact of these mentored research experiences. Investments in mentored research programs for health professional students are invaluable to support the dwindling pipeline of biomedical researchers and clinician-scientists. PMID:27224296

  20. FNL Scientists Introduce Concept That Could Help the Immune System Respond to Vaccines | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Scientists have discovered an efficient and straightforward model to manipulate RNA nanoparticles, a new concept that could help trigger desirable activation of the immune system with vaccines and therapies. A multi-institutional team of researchers

  1. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  2. STRATEGIES OF COPING WITH DIFFICULTIES DURING RESEARCH PERFORMED BY YOUNG SCIENTISTS

    Directory of Open Access Journals (Sweden)

    Tatiana G. Bokhan

    2017-03-01

    Full Text Available Introduction: young scientists engaged in creative activities face difficulties during scientific research, implementation and commercialisation of the results. The impossibility of coping with obstacles leads to the impairment of motivational and creative activity. The problem of studying the main semantic contents of difficult situations and strategies to cope with them becomes relevant as it is conducive to the process of personal development of young scientists. Materials and Methods: the authors used a questionnaire with open-ended questions for revealing the main difficulties and coping strategies in the process of research activity; COPE questionnaire adapted by E. Rasskazova, T. Gordeyeva, E. Osin; Style of Self-Regulation of Behaviour technique by V. I. Morosanova. Statistical data processing was carried out with descriptive statistics methods, analysis of frequencies, factor analysis (Varimax rotation with Kaiser normalisation, cluster analysis (furthest neighbour method and Ward’s method. Results: eight main semantic categories related to difficulties experienced in the process of performing the research work have been detected. The main ways of coping with arising difficulties have been identified. Types of respondents different in terms of coping strategies and regulatory-behavioural characteristics have been distinguished. Discussion and Conclusions: difficulties of self-organisation in time for realisation of new meanings, difficulties in structuring the research work and search for information act as psychological barriers provoking mental stress. The most efficient coping strategies in respondents are strategies Active coping and search for positive meaning and personal development. The inefficient coping strategy with difficulties complicating the process of self-development is Avoiding problems strategies.

  3. Quality assurance and quality control of geochemical data—A primer for the research scientist

    Science.gov (United States)

    Geboy, Nicholas J.; Engle, Mark A.

    2011-01-01

    Geochemistry is a constantly expanding science. More and more, scientists are employing geochemical tools to help answer questions about the Earth and earth system processes. Scientists may assume that the responsibility of examining and assessing the quality of the geochemical data they generate is not theirs but rather that of the analytical laboratories to which their samples have been submitted. This assumption may be partially based on knowledge about internal and external quality assurance and quality control (QA/QC) programs in which analytical laboratories typically participate. Or there may be a perceived lack of time or resources to adequately examine data quality. Regardless of the reason, the lack of QA/QC protocols can lead to the generation and publication of erroneous data. Because the interpretations drawn from the data are primary products to U.S. Geological Survey (USGS) stakeholders, the consequences of publishing erroneous results can be significant. The principal investigator of a scientific study ultimately is responsible for the quality and interpretation of the project's findings, and thus must also play a role in the understanding, implementation, and presentation of QA/QC information about the data. Although occasionally ignored, QA/QC protocols apply not only to procedures in the laboratory but also in the initial planning of a research study and throughout the life of the project. Many of the tenets of developing a sound QA/QC program or protocols also parallel the core concepts of developing a good study: What is the main objective of the study? Will the methods selected provide data of enough resolution to answer the hypothesis? How should samples be collected? Are there known or unknown artifacts or contamination sources in the sampling and analysis methods? Assessing data quality requires communication between the scientists responsible for designing the study and those collecting samples, analyzing samples, treating data, and

  4. "A good personal scientific relationship": Philip Morris scientists and the Chulabhorn Research Institute, Bangkok.

    Directory of Open Access Journals (Sweden)

    Ross Mackenzie

    2008-12-01

    Full Text Available This paper examines the efforts of consultants affiliated with Philip Morris (PM, the world's leading transnational tobacco corporation, to influence scientific research and training in Thailand via the Chulabhorn Research Institute (CRI. A leading Southeast Asian institute for environmental health science, the CRI is headed by Professor Dr. Her Royal Highness Princess Chulabhorn, the daughter of the King of Thailand, and it has assumed international significance via its designation as a World Health Organization (WHO Collaborating Centre in December 2005.This paper analyses previously confidential tobacco industry documents that were made publicly available following litigation in the United States. PM documents reveal that ostensibly independent overseas scientists, now identified as industry consultants, were able to gain access to the Thai scientific community. Most significantly, PM scientist Roger Walk has established close connections with the CRI. Documents indicate that Walk was able to use such links to influence the study and teaching of environmental toxicology in the institute and to develop relations with key officials and local scientists so as to advance the interests of PM within Thailand and across Asia. While sensitivities surrounding royal patronage of the CRI make public criticism extremely difficult, indications of ongoing involvement by tobacco industry consultants suggest the need for detailed scrutiny of such relationships.The establishment of close links with the CRI advances industry strategies to influence scientific research and debate around tobacco and health, particularly regarding secondhand smoke, to link with academic institutions, and to build relationships with national elites. Such strategies assume particular significance in the national and regional contexts presented here amid the globalisation of the tobacco pandemic. From an international perspective, particular concern is raised by the CRI's recently

  5. PREFACE: 2nd International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research''

    Science.gov (United States)

    Naumova, A. V.; Khodanovich, M. Y.; Yarnykh, V. L.

    2016-02-01

    The Second International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research'' was held on the campus of the National Research Tomsk State University (Tomsk, Russia) on September 7-9, 2015. The conference was focused on magnetic resonance imaging (MRI) applications for biomedical research. The main goal was to bring together basic scientists, clinical researchers and developers of new MRI techniques to bridge the gap between clinical/research needs and advanced technological solutions. The conference fostered research and development in basic and clinical MR science and its application to health care. It also had an educational purpose to promote understanding of cutting-edge MR developments. The conference provided an opportunity for researchers and clinicians to present their recent theoretical developments, practical applications, and to discuss unsolved problems. The program of the conference was divided into three main topics. First day of the conference was devoted to educational lectures on the fundamentals of MRI physics and image acquisition/reconstruction techniques, including recent developments in quantitative MRI. The second day was focused on developments and applications of new contrast agents. Multinuclear and spectroscopic acquisitions as well as functional MRI were presented during the third day of the conference. We would like to highlight the main developments presented at the conference and introduce the prominent speakers. The keynote speaker of the conference Dr. Vasily Yarnykh (University of Washington, Seattle, USA) presented a recently developed MRI method, macromolecular proton fraction (MPF) mapping, as a unique tool for modifying image contrast and a unique tool for quantification of the myelin content in neural tissues. Professor Yury Pirogov (Lomonosov Moscow State University) described development of new fluorocarbon compounds and applications for biomedicine. Drs. Julia Velikina and Alexey

  6. Archive of Geosample Data and Information from the Scripps Institution of Oceanography (SIO) Geological Collections

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of California San Diego (UCSD) Scripps Institution of Oceanography (SIO) is a partner in the Index to Marine and Lacustrine Geological Samples (IMLGS)...

  7. Teaching research ethics better: focus on excellent science, not bad scientists.

    Science.gov (United States)

    Yarborough, Mark; Hunter, Lawrence

    2013-06-01

    A recent report of the United States' Presidential Commission for the Study of Bioethical Issues highlights how important it is for the research community to enjoy the "earned confidence" of the public and how creating a "culture of responsibility" can contribute to that confidence. It identifies a major role for "creative, flexible, and innovative" ethics education in creating such a culture. Other recent governmental reports from various nations similarly call for a renewed emphasis on ethics education in the sciences. We discuss why some common approaches to ethics education in the graduate sciences fail to meet the goals envisioned in the reports and we describe an approach, animated by primary attention on excellent science as opposed to bad scientists, that we have employed in our ethics teaching that we think is better suited for inspiring and sustaining responsible, trustworthy science. © 2013 Wiley Periodicals, Inc.

  8. Engaging Scientists with the CosmoQuest Citizen Science Virtual Research Facility

    Science.gov (United States)

    Grier, Jennifer A.; Gay, Pamela L.; Buxner, Sanlyn; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    NASA Science Mission Directorate missions and research return more data than subject matter experts (SMEs - scientists and engineers) can effectively utilize. Citizen scientist volunteers represent a robust pool of energy and talent that SMEs can draw upon to advance projects that require the processing of large quantities of images, and other data. The CosmoQuest Virtual Research Facility has developed roles and pathways to engage SMEs in ways that advance the education of the general public while producing science results publishable in peer-reviewed journals, including through the CosmoQuest Facility Small Grants Program and CosmoAcademy. Our Facility Small Grants Program is open to SMEs to fund them to work with CosmoQuest and engage the public in analysis. Ideal projects have a specific and well-defined need for additional eyes and minds to conduct basic analysis and data collection (such as crater counting, identifying lineaments, etc.) Projects selected will undergo design and implementation as Citizen Science Portals, and citizen scientists will be recruited and trained to complete the project. Users regularly receive feedback on the quality of their data. Data returned will be analyzed by the SME and the CQ Science Team for joint publication in a peer-reviewed journal. SMEs are also invited to consider presenting virtual learning courses in the subjects of their choice in CosmoAcademy. The audience for CosmoAcademy are lifelong-learners and education professionals. Classes are capped at 10, 15, or 20 students. CosmoAcademy can also produce video material to archive seminars long-term. SMEs function as advisors in many other areas of CosmoQuest, including the Educator's Zone (curricular materials for K-12 teachers), Science Fair Projects, and programs that partner to produce material for podcasts and planetaria. Visit the CosmoQuest website at cosmoquest.org to learn more, and to investigate current opportunities to engage with us. CosmoQuest is funded

  9. Promoting seismology education through collaboration between university research scientists and school teachers

    Science.gov (United States)

    Brunt, M. R.; Ellins, K. K.; Boyd, D.; Mote, A. S.; Pulliam, J.; Frohlich, C. A.

    2012-12-01

    Participation in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development project paved the way for several teachers to receive educational seismometers and join the IRIS Seismograph in Schools program. This, in turn, has led to secondary school teachers working with university seismologists on research projects. Examples are the NSF-EarthScope SIEDCAR (Seismic Investigation of Edge Driven Convection Associated with the Rio Grande Rift) project; field studies to compile felt-reports for Texas earthquakes, some which may have been induced by human activities; and a seismic study of the Texas Gulf Coast to investigate ocean-continent transition processes along a passive margin. Such collaborations are mutually beneficial in nature. They help scientists to accomplish their research objectives, involve teachers and their students in the authentic, inquiry-based science, promote public awareness of such projects, and open the doors to advancement opportunities for those teachers involved. In some cases, bringing together research scientists and teachers results in collaborations that produce publishable research. In order to effectively integrate seismology research into 7-12 grade education, one of us (Brunt) established the Eagle Pass Junior High Seismology Team in connection with IRIS Seismograph in Schools, station EPTX (AS-1 seismograph), to teach students about earthquakes using authentic real-time data. The concept has sparked interest among other secondary teachers, leading to the creation of two similarly organized seismology teams: WPTX (Boyd, Williams Preparatory School, Dallas) and THTX (Mote, Ann Richards School for Young Women Leaders, Austin). Although the educational seismometers are basic instruments, they are effective educational tools. Seismographs in schools offer students opportunities to learn how earthquakes are recorded and how modern seismometers work, to collect and interpret seismic data, and to

  10. Perspectives of Academic Social Scientists on Knowledge Transfer and Research Collaborations: A Cross-Sectional Survey of Australian Academics

    Science.gov (United States)

    Cherney, Adrian; Head, Brian; Boreham, Paul; Povey, Jenny; Ferguson, Michele

    2012-01-01

    This paper reports results from a survey of academic social scientists in Australian universities on their research engagement experience with industry and government partners and end-users of research. The results highlight that while academics report a range of benefits arising from research collaborations, there are also significant impediments…

  11. Stakeholder Participation in Research Design and Decisions: Scientists, Fishers, and Mercury in Saltwater Fish

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael; Fote, Tom

    2015-01-01

    Individuals who fish and eat self-caught fish make decisions about where to fish, the type to eat, and the quantity to eat. Federal and state agencies often issue consumption advisories for some fish with high mercury (Hg) concentrations, but seldom provide either the actual metal levels to the general public, or identify the fish that have low contaminant levels. Community participatory research is of growing importance in defining, studying, and resolving complex exposure and risk issues, and this paper is at the intersection of traditional stakeholder approaches and community-based participatory research. The objective of this paper is to describe the process whereby stakeholders (fishers), were involved in directing and refining research questions to address their particular informational needs about mercury levels in fish, potential risks, and methods to maintain health, by balancing the risks and benefits of fish consumption. A range of stakeholders, mainly individual fishers, fishing organizations, and other scientists, were involved at nearly every stage. Community participants influenced many aspects of the design and implementation of the research, in the determination of which fish species to sample, in the collection of the samples, and in the final analyses and synthesis, as well as the communication of results and implications of the research through their fishing club publications, talks and gatherings. By involving the most interested and affected communities, the data and conclusions are relevant to their needs because the fish examined were those they ate and wanted information about, and directly address concerns about the risk from consuming self-caught fish. Although mercury levels in fish presumed to be high in mercury are known, little information was available to the fishermen on mercury levels in fish that were low and thus provided little risk to their families. While community participatory research is more time-consuming and expensive

  12. Is gender mainstreaming helping women scientists? Evidences from research policies in Spain

    Directory of Open Access Journals (Sweden)

    Alba Alonso

    2016-12-01

    Full Text Available Literature has repeatedly shown that gender mainstreaming is far from being transformative and smoothly introduced. It is rather a contested strategy, leading to steady impacts on changing routines and gendering policy outcomes. However, research policies have appeared to be one of the issues areas where a gender perspective has been introduced. This is the case for Spanish research policies, which have been assessed to promote the inclusion of women in the R&D system. This article explores these emerging shifts in order to explore the problem for women in science and the solutions proposed to solve it. In addition, it seeks to examine whether these measures can potentially help women to get an equal position in science or whether they are addressing the wrong targets. To do so, this work draws on a survey of doctoral and postdoctoral researchers carried out in Spain, covering 350 respondents. It captures the necessities, wills and obstacles for women scientists, and while doing that, it allows us to assess whether gender mainstreaming is likely to be effective for bringing more women to the academia.

  13. 1990 National Compensation Survey of Research and Development Scientists and Engineers

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    This report presents the results of the fourth in a new series of surveys of compensation and benefits for research and development (R D) scientists and engineers (S Es). The 1990 Survey represents the largest nationwide database of its kind, covering 104 establishments which provided data on almost 41,000 degreed researchers in the hard'' sciences. The fundamental nature of the survey has not changed: the focus is still on medium- and large-sized establishments which employ at least 100 degreed S Es in R D. The 1990 Survey contains data which cover about 18% of all establishments eligible to participate, encompassing approximately 18% of all eligible employees. As in the last three years, the survey sample constitutes a fairly good representation of the entire population of eligible establishments on the basis of business sector, geographic location, and size. Maturity-based analyses of salaries for some 34,000 nonsupervisory researchers are provided, as are job content-based analyses of more than 27,000 individual contributors and almost 5000 first level supervisors and division directors. Compensation policies and practices data are provided for 102 establishments, and benefits plans for 62 establishments are analyzed.

  14. Cultivating Native American scientists: an application of an Indigenous model to an undergraduate research experience

    Science.gov (United States)

    McMahon, Tracey R.; Griese, Emily R.; Kenyon, DenYelle Baete

    2018-03-01

    of a research team, developed a greater understanding and appreciation for the role of science in education and its various applications to socially relevant health issues, made more informed decisions about a career in research and the health sciences, and worked toward improving the health and well-being of others while also inspiring hope among their people back home. This study represents an extension of the application of the Circle of Courage to an undergraduate research experience and provides evidence of its ability to be used as a framework for cultivating Native scientists.

  15. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    Science.gov (United States)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  16. SpaceScience@Home: Authentic Research Projects that Use Citizen Scientists

    Science.gov (United States)

    Méndez, B. J. H.

    2008-06-01

    In recent years, several space science research projects have enlisted the help of large numbers of non-professional volunteers, ``citizen scientists'', to aid in performing tasks that are critical to a project, but require more person-time (or computing time) than a small professional research team can practically perform themselves. Examples of such projects include SETI@home, which uses time from volunteers computers to process radio-telescope observation looking for signals originating from extra-terrestrial intelligences; Clickworkers, which asks volunteers to review images of the surface of Mars to identify craters; Spacewatch, which used volunteers to review astronomical telescopic images of the sky to identify streaks made by possible Near Earth Asteroids; and Stardust@home, which asks volunteers to review ``focus movies'' taken of the Stardust interstellar dust aerogel collector to search for possible impacts from interstellar dust particles. We shall describe these and other similar projects and discuss lessons learned from carrying out such projects, including the educational opportunities they create.

  17. Perspective: Transforming science into medicine: how clinician-scientists can build bridges across research's "valley of death".

    Science.gov (United States)

    Roberts, Scott F; Fischhoff, Martin A; Sakowski, Stacey A; Feldman, Eva L

    2012-03-01

    Significant increases in National Institutes of Health (NIH) spending on medical research have not produced corresponding increases in new treatments and cures. Instead, laboratory discoveries remain in what has been termed the "valley of death," the gap between bench research and clinical application. Recently, there has been considerable discussion in the literature and scientific community about the causes of this phenomenon and how to bridge the abyss. In this article, the authors examine one possible explanation: Clinician-scientists' declining role in the medical research enterprise has had a dilatory effect on the successful translation of laboratory breakthroughs into new clinical applications. In recent decades, the percentage of MDs receiving NIH funding has drastically decreased compared with PhDs. The growing gap between the research and clinical enterprises has resulted in fewer scientists with a true understanding of clinical problems as well as scientists who are unable to or uninterested in gleaning new basic research hypotheses from failed clinical trials. The NIH and many U.S. medical schools have recognized the decline of the clinician-scientist as a major problem and adopted innovative programs to reverse the trend. However, more radical action may be required, including major changes to the NIH peer-review process, greater funding for translational research, and significantly more resources for the training, debt relief, and early career support of potential clinician-scientists. Such improvements are required for clinician-scientists to conduct translational research that bridges the valley of death and transforms biomedical research discoveries into tangible clinical treatments and technologies.

  18. Inspiring Students to be Scientists: Oceanographic Research Journeys of a Middle School Teacher

    Science.gov (United States)

    Paulishak, E.

    2006-12-01

    I will present my research and educational experiences with two professional development programs in which I practiced scientific research. Real world applications of scientific principles cause science to be less abstract and allow the students to be involved in genuine science in the field. Students view teachers differently as a teacher brings her/his experience and enthusiasm for learning into the classroom environment. Furthermore, by developing activities around those experiences, the teacher may permit the students to have some direct involvement with scientific research. One of the common goals of these programs is for teachers to understand the research process and the science involved with it. My goal is to remain a teacher and use these valuable experiences to inspire my students. My job, after completing the research experience and doing investigations in the field, becomes one of "translator" taking the content and process knowledge and making it understandable and authentic for the advancement of my students. It also becomes one of "mentor" when helping to develop the skills of new teachers. Both of my experiences included seagoing expeditions. The REVEL program was my first experience in the summer of 2000. It gave me an immense opportunity to become part of a research team studying the underwater volcanic environment of the Juan de Fuca Ridge in the Northeast Pacific Ocean. With the ARMADA project (2006), I learned about SONAR as we traveled via NOAA ship along the Aleutian Islands of Alaska. Using examples from both of these highly valuable programs, I will be presenting my ideas about how to prepare teachers for their research experience, how to make the transition from research experience to practical classroom application, and how these experiences play a role in retaining the best science teachers and developing new science teachers for the future. Research programs such as these, furnish me with an added sense of confidence as I facilitate

  19. Young Engineers and Scientists (YES) 2009 - Engaging Students and Teachers in Space Research

    Science.gov (United States)

    Boice, D. C.; Reiff, P. H.

    2009-12-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 218 students have completed YES or are currently enrolled. Of these students, 37% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 20 students and 3 teachers enrolled in the YES 2009/2010 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Teachers participate in an in-service workshop to share classroom materials and spread awareness of space-related research. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was NASA's MMS Mission) and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with

  20. Young Engineers and Scientists (YES) 2010 - Engaging Teachers in Space Research

    Science.gov (United States)

    Boice, D. C.; Reiff, P. H.

    2010-12-01

    During the past 18 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 239 students have completed YES or are currently enrolled. Of these students, 38% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 21 students and 9 secondary school teachers enrolled in the YES 2010/2011 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was ESA's Rosetta Mission) and high school STEM teachers develop space-related lessons for classroom presentation. Teachers participate in an in-service workshop to share their developed classroom materials and spread awareness of space-related research. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real

  1. Scientists: Engage the Public!

    OpenAIRE

    Shugart, Erika C.; Racaniello, Vincent R.

    2015-01-01

    ABSTRACT Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or ?Sagan effect? associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist?s career. There are a varie...

  2. Big Data Science Cafés: High School Students Experiencing Real Research with Scientists

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2017-12-01

    The Education and Public Outreach group at the National Optical Astronomy Observatory has designed an outside-of-school education program to excite the interest of talented youth in future projects like the Large Synoptic Survey Telescope (LSST) and the NOAO (archival) Data Lab - their data approaches and key science projects. Originally funded by the LSST Corporation, the program cultivates talented youth to enter STEM disciplines and serves as a model to disseminate to the 40+ institutions involved in LSST. One Saturday a month during the academic year, high school students have the opportunity to interact with expert astronomers who work with large astronomical data sets in their scientific work. Students learn about killer asteroids, the birth and death of stars, colliding galaxies, the structure of the universe, gravitational waves, dark energy, dark matter, and more. The format for the Saturday science cafés has been a short presentation, discussion (plus food), computer lab activity and more discussion. They last about 2.5 hours and have been planned by a group of interested local high school students, an undergraduate student coordinator, the presenting astronomers, the program director and an evaluator. High school youth leaders help ensure an enjoyable and successful program for fellow students. They help their fellow students with the activities and help evaluate how well the science café went. Their remarks shape the next science café and improve the program. The experience offers youth leaders ownership of the program, opportunities to take on responsibilities and learn leadership and communication skills, as well as foster their continued interests in STEM. The prototype Big Data Science Academy was implemented successfully in the Spring 2017 and engaged almost 40 teens from greater Tucson in the fundamentals of astronomy concepts and research. As with any first implementation there were bumps. However, staff, scientists, and student leaders all

  3. Conducting research in risk communication that is both beneficial for stakeholders and scientists

    Science.gov (United States)

    Charrière, Marie; Bogaard, Thom; Junier, Sandra; Malet, Jean-Philippe; Mostert, Erik

    2015-04-01

    the lead in advertising the activity, gathering participants and they helped designing the scientific survey. The benefits of this exhibition for the community included triggering memories, encouraging exchanges, especially inter-generational, reinforcing stakeholders-to-stakeholders relationships and promote further communication on the topic. The scientific benefits are that we have an experiment that allows us to measure the impact of a communication effort, not in a laboratory setting but in real life. But more importantly this research highlights the responsibility of scientists that are researching in the disaster risk reduction field to involve the stakeholders in order to produce results that not only improve scientific knowledge but also have a social impact in the case studies they choose.

  4. Networks of Collaboration among Scientists in a Center for Diabetes Translation Research

    Science.gov (United States)

    Harris, Jenine K.; Wong, Roger; Thompson, Kellie; Haire-Joshu, Debra; Hipp, J. Aaron

    2015-01-01

    Background Transdisciplinary collaboration is essential in addressing the translation gap between scientific discovery and delivery of evidence-based interventions to prevent and treat diabetes. We examined patterns of collaboration among scientists at the Washington University Center for Diabetes Translation Research. Methods Members (n = 56) of the Washington University Center for Diabetes Translation Research were surveyed about collaboration overall and on publications, presentations, and grants; 87.5% responded (n = 49). We used traditional and network descriptive statistics and visualization to examine the networks and exponential random graph modeling to identify predictors of collaboration. Results The 56 network members represented nine disciplines. On average, network members had been affiliated with the center for 3.86 years (s.d. = 1.41). The director was by far the most central in all networks. The overall and publication networks were the densest, while the overall and grant networks were the most centralized. The grant network was the most transdisciplinary. The presentation network was the least dense, least centralized, and least transdisciplinary. For every year of center affiliation, network members were 10% more likely to collaborate (OR: 1.10; 95% CI: 1.00–1.21) and 13% more likely to write a paper together (OR: 1.13; 95% CI: 1.02–1.25). Network members in the same discipline were over twice as likely to collaborate in the overall network (OR: 2.10; 95% CI: 1.40–3.15); however, discipline was not associated with collaboration in the other networks. Rank was not associated with collaboration in any network. Conclusions As transdisciplinary centers become more common, it is important to identify structural features, such as a central leader and ongoing collaboration over time, associated with scholarly productivity and, ultimately, with advancing science and practice. PMID:26301873

  5. World climate research: an (un)comfortable coexistence among science and scientists' opinion

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    2007-01-01

    Full text: Full text: My hypothesis is that the effective global governance so urgently needed in relation to greenhouse climate change is not developing, in part, because climate research scientists are failing to communicate well. This is, I believe, because traditionally science has informed society through a sequence of steps moving from facts, through assessment, projection, risk evaluation to policy for changed governance. Any prioritisation, facilitation, and co-ordination activity (such as the World Climate Research Programme) has to be concerned about the way in which science participates in policy. The range of options encompasses: Hands off: it is the job of policy, not science to make decisions; Recognise risk: provide credible and defensible information to help deal with risk; Inform people: because the ultimate policy-maker is the public. Good global governance of common resource, the climate, uses risk management to avoid free riding. History teaches that international cooperation can be successful, e.g. protection of the ozone layer. Some international collective moves towards global carbon governance are occurring: multilateral frameworks such as the UNFCCC, Kyoto Protocol and its follow-up (endorsed by the G8 in June) and domestic mandatory goals set by the EU, UK, China, California and other US states. It is very clear that the world must move from actuarial style climate risk management strategy (history as a good predictor of future) to a dynamically-based prediction and management regime. The urgency of this includes that while mitigation costs are high, delaying action increases them (e.g. Stern 2006; IPCC 2007); that atmospheric concentration of C02 is 380 ppmv (up from the pre-industrial 270 ppmv); current emissions are already higher than the 1990s IPCC scenarios; positive feedbacks seem to predominate; and finally social and climate systems inertias of decades mean that the world is already committed to unrealised warming. Stronger and

  6. The communications gap between scientists and public: More scientists and their institutions feel a need to communicate the results and nature of research with the public

    OpenAIRE

    Hunter, Philip

    2016-01-01

    Scientists and scientific institutions see an increasing need for outreach and communication to counter potentially dangerous misconceptions about science, or misinformation by lobbying groups. Along these lines, communication from scientists to the public is becoming more professional and better targeted to the audience.

  7. A gender gap in the next generation of physician-scientists: medical student interest and participation in research.

    Science.gov (United States)

    Guelich, Jill M; Singer, Burton H; Castro, Marcia C; Rosenberg, Leon E

    2002-11-01

    For 2 decades, the number of physician-scientists has not kept pace with the overall growth of the medical research community. Concomitantly, the number of women entering medical schools has increased markedly. We have explored the effect of the changing gender composition of medical schools on the present and future pipeline of young physician-scientists. We analyzed data obtained from the Association of American Medical Colleges, the National Institutes of Health, and the Howard Hughes Medical Institute pertaining to the expressed research intentions or research participation of male and female medical students in the United States. A statistically significant decline in the percentage of matriculating and graduating medical students--both men and women-who expressed strong research career intentions occurred during the decade between 1987 and 1997. Moreover, matriculating and graduating women were significantly less likely than men to indicate strong research career intentions. Each of these trends has been observed for medical schools overall and for research-intensive ones. Cohort data obtained by tracking individuals from matriculation to graduation revealed that women who expressed strong research career intentions upon matriculation were more likely than men to decrease their research career intentions during medical school. Medical student participation in research supported the gender gap identified by assessing research intentions. Female medical student participation in the Medical Scientist Training Program and the Howard Hughes Medical Institute/National Institutes of Health-sponsored Cloisters Program has increased but lags far behind the growth in the female population in medical schools. Three worrisome trends in the research career intentions and participation of the nation's medical students (a decade-long decline for both men and women, a large and persistent gender gap, and a negative effect of the medical school experience for women) presage a

  8. Content of Future Economists' Professional Mobility in Researches of Foreign Scientists

    Science.gov (United States)

    Chorna, Iryna

    2017-01-01

    The content of professional mobility of future economists in the writings of foreign scientists have been presented. The components of future economists' professional mobility formation have been considered. It has been established that the possession of a combination of these components enables future specialists to achieve a high level of…

  9. Profile Building, Research Sharing and Data Proliferation using Social Media Tools for Scientists (RTI presentation)

    Science.gov (United States)

    Many of us nowadays invest significant amounts of time in sharing our activities and opinions with friends and family via social networking tools such as Facebook, Twitter or other related websites. However, despite the availability of many platforms for scientists to connect and...

  10. Creating Science Education Specialists and Scientific Literacy in Students through a Successful Partnership among Scientists, Science Teachers, and Education Researchers

    Science.gov (United States)

    Metoyer, S.; Prouhet, T.; Radencic, S.

    2007-12-01

    The nature of science and the nature of learning are often assumed to have little practical relationship to each other. Scientists conduct research and science teachers teach. Rarely do the scientist and the science teacher have an opportunity to learn from each other. Here we describe results from a program funded by NSF, the Information Technology in Science (ITS) Center for Teaching and Learning. The ITS Center provided the support and structure necessary for successful long-term collaboration among scientists, science teachers, and education researchers that has resulted in the creation of new science education specialists. These specialists are not only among the science teachers, but also include avid recruits to science education from the scientists themselves. Science teachers returned to their classrooms armed with new knowledge of content, inquiry, and ideas for technology tools that could support and enhance students' scientific literacy. Teachers developed and implemented action research plans as a means of exploring educational outcomes of their use and understanding of new technologies and inquiry applied to the classroom. In other words, they tried something different in the class related to authentic inquiry and technology. They then assessed the students' to determine if there was an impact to the students in some way. Many of the scientists, on the other hand, report that they have modified their instructional practices for undergraduate courses based on their experiences with the teachers and the ITS Center. Some joined other collaborative projects pairing scientists and educators. And, many of the scientists continue on-going communication with the science teachers serving as mentors, collaborators, and as an "expert" source for the students to ask questions to. In order to convey the success of this partnership, we illustrate and discuss four interdependent components. First, costs and benefits to the science teacher are discussed through case

  11. Genomic research with human samples. Points of view from scientists and research subjects about disclosure of results and risks of genomic research. Ethical and empirical approach.

    Science.gov (United States)

    Valle Mansilla, José Ignacio

    2011-01-01

    Biomedical researchers often now ask subjects to donate samples to be deposited in biobanks. This is not only of interest to researchers, patients and society as a whole can benefit from the improvements in diagnosis, treatment, and prevention that the advent of genomic medicine portends. However, there is a growing debate regarding the social and ethical implications of creating biobanks and using stored human tissue samples for genomic research. Our aim was to identify factors related to both scientists and patients' preferences regarding the sort of information to convey to subjects about the results of the study and the risks related to genomic research. The method used was a survey addressed to 204 scientists and 279 donors from the U.S. and Spain. In this sample, researchers had already published genomic epidemiology studies; and research subjects had actually volunteered to donate a human sample for genomic research. Concerning the results, patients supported more frequently than scientists their right to know individual results from future genomic research. These differences were statistically significant after adjusting by the opportunity to receive genetic research results from the research they had previously participated and their perception of risks regarding genetic information compared to other clinical data. A slight majority of researchers supported informing participants about individual genomic results only if the reliability and clinical validity of the information had been established. Men were more likely than women to believe that patients should be informed of research results even if these conditions were not met. Also among patients, almost half of them would always prefer to be informed about individual results from future genomic research. The three main factors associated to a higher support of a non-limited access to individual results were: being from the US, having previously been offered individual information and considering

  12. Entrepreneurship for Creative Scientists

    Science.gov (United States)

    Parker, Dawood; Raghu, Surya; Brooks, Richard

    2018-05-01

    Through patenting and commercialization, scientists today can develop their work beyond a publication in a learned journal. Indeed, universities and governments are encouraging today's scientists and engineers to break their research out of the laboratory and into the commercial world. However, doing so is complicated and can be daunting for those more used to a research seminar than a board room. This book, written by experienced scientists and entrepreneurs, deals with businesses started by scientists based on innovation and sets out to clarify for scientists and engineers the steps necessary to take an idea along the path to commercialization and maximise the potential for success, regardless of the path taken.

  13. How do scientists perceive the current publication culture? A qualitative focus group interview study among Dutch biomedical researchers.

    Science.gov (United States)

    Tijdink, J K; Schipper, K; Bouter, L M; Maclaine Pont, P; de Jonge, J; Smulders, Y M

    2016-02-17

    To investigate the biomedical scientist's perception of the prevailing publication culture. Qualitative focus group interview study. Four university medical centres in the Netherlands. Three randomly selected groups of biomedical scientists (PhD, postdoctoral staff members and full professors). Main themes for discussion were selected by participants. Frequently perceived detrimental effects of contemporary publication culture were the strong focus on citation measures (like the Journal Impact Factor and the H-index), gift and ghost authorships and the order of authors, the peer review process, competition, the funding system and publication bias. These themes were generally associated with detrimental and undesirable effects on publication practices and on the validity of reported results. Furthermore, senior scientists tended to display a more cynical perception of the publication culture than their junior colleagues. However, even among the PhD students and the postdoctoral fellows, the sentiment was quite negative. Positive perceptions of specific features of contemporary scientific and publication culture were rare. Our findings suggest that the current publication culture leads to negative sentiments, counterproductive stress levels and, most importantly, to questionable research practices among junior and senior biomedical scientists. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Confined to a tokenistic status: Social scientists in leadership roles in a national health research funding agency.

    Science.gov (United States)

    Albert, Mathieu; Laberge, Suzanne

    2017-07-01

    The idea of interdisciplinarity has been taken up by academic and governmental organisations around the world and enacted through science policies, funding programs and higher education institutions. In Canada, interdisciplinarity led to a major transformation in health research funding. In 2000, the federal government closed the Medical Research Council (MRC) and created the Canadian Institutes of Health Research (CIHR). From the outset, CIHR's vision and goals were innovative, as it sought to include the social sciences within its purview alongside more traditional health research sectors. The extent to which it has been successful in this endeavour, however, remains unknown. The aim of our study was to examine how CIHR's intentions to foster inclusiveness and cooperation across disciplines were implemented in the agency's own organisational structure. We focused on social scientists' representation on committees and among decision-makers between 2000 and 2015, one of the key mandates of CIHR being to include the social sciences within its remit and support research in this area. We examined the composition of the Governing Council, the Institute Scientific Directors, the Chairs of the College of Reviewers, and two International Review Panels invited by CIHR. We targeted these committees and decision-makers since they hold the power to influence the field of Canadian health research through the decisions they make. Our findings show that, while CIHR was created with the mandate to support the entire spectrum of health-related research-including the social sciences-this call for inclusiveness has not yet been materialized in the agency's organisational structure. Social scientists, as well as researchers from neighbouring disciplines such as social epidemiology, health promotion and the humanities, are still confined to low levels of representation within CIHR's highest echelons. This imbalance limits social scientists' input into health research in Canada and

  15. Exploring intentions of physician-scientist trainees: factors influencing MD and MD/PhD interest in research careers.

    Science.gov (United States)

    Kwan, Jennifer M; Daye, Dania; Schmidt, Mary Lou; Conlon, Claudia Morrissey; Kim, Hajwa; Gaonkar, Bilwaj; Payne, Aimee S; Riddle, Megan; Madera, Sharline; Adami, Alexander J; Winter, Kate Quinn

    2017-07-11

    Prior studies have described the career paths of physician-scientist candidates after graduation, but the factors that influence career choices at the candidate stage remain unclear. Additionally, previous work has focused on MD/PhDs, despite many physician-scientists being MDs. This study sought to identify career sector intentions, important factors in career selection, and experienced and predicted obstacles to career success that influence the career choices of MD candidates, MD candidates with research-intense career intentions (MD-RI), and MD/PhD candidates. A 70-question survey was administered to students at 5 academic medical centers with Medical Scientist Training Programs (MSTPs) and Clinical and Translational Science Awards (CTSA) from the NIH. Data were analyzed using bivariate or multivariate analyses. More MD/PhD and MD-RI candidates anticipated or had experienced obstacles related to balancing academic and family responsibilities and to balancing clinical, research, and education responsibilities, whereas more MD candidates indicated experienced and predicted obstacles related to loan repayment. MD/PhD candidates expressed higher interest in basic and translational research compared to MD-RI candidates, who indicated more interest in clinical research. Overall, MD-RI candidates displayed a profile distinct from both MD/PhD and MD candidates. MD/PhD and MD-RI candidates experience obstacles that influence their intentions to pursue academic medical careers from the earliest training stage, obstacles which differ from those of their MD peers. The differences between the aspirations of and challenges facing MD, MD-RI and MD/PhD candidates present opportunities for training programs to target curricula and support services to ensure the career development of successful physician-scientists.

  16. Modeling the Skills and Practices of Scientists through an “All-Inclusive” Comparative Planetology Student Research Investigation

    Science.gov (United States)

    Graff, Paige; Bandfield, J.; Stefanov, W.; Vanderbloemen, L.; Willis, K.; Runco, S.

    2013-01-01

    To effectively prepare the nation's future Science, Technology, Engineering, and Mathematics (STEM) workforce, students in today's classrooms need opportunities to engage in authentic experiences that model skills and practices used by STEM professionals. Relevant, real-world authentic research experiences allow students to behave as scientists as they model the process of science. This enables students to get a true sense of STEM-related professions and also allows them to develop the requisite knowledge, skills, curiosity, and creativity necessary for success in STEM careers. Providing professional development and opportunities to help teachers infuse research in the classroom is one of the primary goals of the Expedition Earth and Beyond (EEAB) program. EEAB, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students in grades 5-12 by getting them actively involved with exploration, discovery, and the process of science. The program combines the expertise of scientists and educators to ensure the professional development provided to classroom teachers is scientifically valid and also recognizes classroom constraints. For many teachers, facilitating research in the classroom can be challenging. In addition to addressing required academic standards and dealing with time constraints, challenges include structuring a research investigation the entire class can successfully complete. To build educator confidence, foster positive classroom research experiences, and enable teachers to help students model the skills and practices of scientists, EEAB has created an "allinclusive" comparative planetology research investigation activity. This activity addresses academic standards while recognizing students (and teachers) potentially lack experience with scientific practices involved in conducting

  17. Modeling the Skills and Practices of Scientists through an 'All-Inclusive' Comparative Planetology Student Research Investigation

    Science.gov (United States)

    Graff, P. V.; Bandfield, J. L.; Stefanov, W. L.; Vanderbloemen, L.; Willis, K. J.; Runco, S.

    2013-12-01

    To effectively prepare the nation's future Science, Technology, Engineering, and Mathematics (STEM) workforce, students in today's classrooms need opportunities to engage in authentic experiences that model skills and practices used by STEM professionals. Relevant, real-world authentic research experiences allow students to behave as scientists as they model the process of science. This enables students to get a true sense of STEM-related professions and also allows them to develop the requisite knowledge, skills, curiosity, and creativity necessary for success in STEM careers. Providing professional development and opportunities to help teachers infuse research in the classroom is one of the primary goals of the Expedition Earth and Beyond (EEAB) program. EEAB, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students in grades 5-12 by getting them actively involved with exploration, discovery, and the process of science. The program combines the expertise of scientists and educators to ensure the professional development provided to classroom teachers is scientifically valid and also recognizes classroom constraints. For many teachers, facilitating research in the classroom can be challenging. In addition to addressing required academic standards and dealing with time constraints, challenges include structuring a research investigation the entire class can successfully complete. To build educator confidence, foster positive classroom research experiences, and enable teachers to help students model the skills and practices of scientists, EEAB has created an 'all-inclusive' comparative planetology research investigation activity. This activity addresses academic standards while recognizing students (and teachers) potentially lack experience with scientific practices involved in conducting

  18. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A Call for Scientist-Science Teacher Partnerships to Promote Inquiry-Based Learning

    Science.gov (United States)

    Mansour, Nasser

    2015-01-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better…

  19. Earth2Class: Bringing the Earth to the Classroom-Innovative Connections between Research Scientists, Teachers, and Students

    Science.gov (United States)

    Passow, M. J.

    2017-12-01

    "Earth2Class" (E2C) is a unique program offered through the Lamont-Doherty Earth Observatory of Columbia University. It connects research scientists, classroom teachers, middle and high school students, and others in ways that foster broader outreach of cutting-edge discoveries. One key component are Saturday workshops offered during the school year. These provide investigators with a tested format for sharing research methods and results. Teachers and students learn more about "real"science than what is found in textbooks. They discover that Science is exciting, uncertain, and done by people not very different from themselves. Since 1998, we have offered more than 170 workshops, partnering with more than 90 LDEO scientists. E2C teachers establishe links with scientists that have led to participation in research projects, the LDEO Open House, and other programs. Connections developed between high school students and scientists resulted in authentic science research experiences. A second key component of the project is the E2C website, https://earth2class.org/site/. We provide archived versions of monthly workshops. The website hosts a vast array of resources geared to support learning Earth Science and other subjects. Resources created through an NSF grant to explore strategies which enhance Spatial Thinking in the NYS Regents Earth Science curriculum are found at https://earth2class.org/site/?page_id=2957. The site is well-used by K-12 Earth Science educators, averaging nearly 70k hits per month. A third component of the E2C program are week-long summer institutes offering opportunities to enhance content knowledge in weather and climate; minerals, rocks, and resources; and astronomy. These include exploration of strategies to implement NGSS-based approaches within the school curriculum. Participants can visit LDEO lab facilities and interact with scientists to learn about their research. In the past year, we have begun to create a "satellite" E2C program at UFVJM

  20. Preparing the Next Generation of Environmental Scientists to Work at the Frontier of Data-Intensive Research

    Science.gov (United States)

    Hampton, S. E.

    2015-12-01

    The science necessary to unravel complex environmental problems confronts severe computational challenges - coping with huge volumes of heterogeneous data, spanning vast spatial scales at high resolution, and requiring integration of disparate measurements from multiple disciplines. But as cyberinfrastructure advances to support such work, scientists in many fields lack sufficient computational skills to participate in interdisciplinary, data-intensive research. In response, we developed innovative training workshops for early-career scientists, in order to explore both the needs and solutions for training next-generation scientists in skills for data-intensive environmental research. In 2013 and 2014 we ran intensive 3-week training workshops for early-career researchers. One of the workshops was run concurrently in California and North Carolina, connected by virtual technologies and coordinated schedules. We attracted applicants to the workshop with the opportunity to pursue data-intensive small-group research projects that they proposed. This approach presented a realistic possibility that publishable products could result from 3 weeks of focused hands-on classroom instruction combined with self-directed group research in which instructors were present to assist trainees. Instruction addressed 1) collaboration modes and technologies, 2) data management, preservation, and sharing, 3) preparing data for analysis using scripting, 4) reproducible research, 5) sustainable software practices, 6) data analysis and modeling, and 7) communicating results to broad communities. The most dramatic improvements in technical skills were in data management, version control, and working with spatial data outside of proprietary software. In addition, participants built strong networks and collaborative skills that later resulted in a successful student-led grant proposal, published manuscripts, and participants reported that the training was a highly influential experience.

  1. Becoming an International Scientist in South Korea: Ho Wang Lee’s Research Activity about Epidemic Hemorrhagic Fever

    Directory of Open Access Journals (Sweden)

    Miyoung SHIN

    2017-04-01

    Full Text Available In the 1960-70s, South Korea was still in the position of a science latecomer. Although the scientific research environment in South Korea at that time was insufficient, there was a scientist who achieved outcomes that could be recognized internationally while acting in South Korea. He was Ho Wang Lee(1928~ who found Hantann Virus that causes epidemic hemorrhagic fever for the first time in the world. It became a clue to identify causative viruses of hemorrhagic diseases that were scattered here and there throughout the world. In addition, these outcomes put Ho Wang Lee on the global center of research into epidemic hemorrhagic fever. This paper examines how a Korean scientist who was in the periphery of virology could go into the central area of virology. Also this article shows the process through which the virus found by Ho Wang Lee was registered with the international academia and he proceeded with follow-up research based on this progress to reach the level at which he generalized epidemic hemorrhagic fever related studies throughout the world. While he was conducting the studies, experimental methods that he had never experienced encountered him as new difficulties. He tried to solve the new difficulties faced in his changed status through devices of cooperation and connection. Ho Wang Lee’s growth as a researcher can be seen as well as a view of a researcher that grew from a regional level to an international level and could advance from the area of non-mainstream into the mainstream. This analytic tool is meaningful in that it can be another method of examining the growth process of scientists in South Korea or developing countries.

  2. Personality traits are associated with research misbehavior in Dutch scientists : A cross-sectional study

    NARCIS (Netherlands)

    Tijdink, Joeri; Bouter, Lex; Veldkamp, C.L.S.; van de Ven, Peter; Wicherts, J.M.; Smulders, Yvo; Dorta-González, Pablo

    2016-01-01

    Background Personality influences decision making and ethical considerations. Its influence on the occurrence of research misbehavior has never been studied. This study aims to determine the association between personality traits and self-reported questionable research practices and research

  3. How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data.

    Directory of Open Access Journals (Sweden)

    Daniele Fanelli

    Full Text Available The frequency with which scientists fabricate and falsify data, or commit other forms of scientific misconduct is a matter of controversy. Many surveys have asked scientists directly whether they have committed or know of a colleague who committed research misconduct, but their results appeared difficult to compare and synthesize. This is the first meta-analysis of these surveys. To standardize outcomes, the number of respondents who recalled at least one incident of misconduct was calculated for each question, and the analysis was limited to behaviours that distort scientific knowledge: fabrication, falsification, "cooking" of data, etc... Survey questions on plagiarism and other forms of professional misconduct were excluded. The final sample consisted of 21 surveys that were included in the systematic review, and 18 in the meta-analysis. A pooled weighted average of 1.97% (N = 7, 95%CI: 0.86-4.45 of scientists admitted to have fabricated, falsified or modified data or results at least once--a serious form of misconduct by any standard--and up to 33.7% admitted other questionable research practices. In surveys asking about the behaviour of colleagues, admission rates were 14.12% (N = 12, 95% CI: 9.91-19.72 for falsification, and up to 72% for other questionable research practices. Meta-regression showed that self reports surveys, surveys using the words "falsification" or "fabrication", and mailed surveys yielded lower percentages of misconduct. When these factors were controlled for, misconduct was reported more frequently by medical/pharmacological researchers than others. Considering that these surveys ask sensitive questions and have other limitations, it appears likely that this is a conservative estimate of the true prevalence of scientific misconduct.

  4. How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data.

    Science.gov (United States)

    Fanelli, Daniele

    2009-05-29

    The frequency with which scientists fabricate and falsify data, or commit other forms of scientific misconduct is a matter of controversy. Many surveys have asked scientists directly whether they have committed or know of a colleague who committed research misconduct, but their results appeared difficult to compare and synthesize. This is the first meta-analysis of these surveys. To standardize outcomes, the number of respondents who recalled at least one incident of misconduct was calculated for each question, and the analysis was limited to behaviours that distort scientific knowledge: fabrication, falsification, "cooking" of data, etc... Survey questions on plagiarism and other forms of professional misconduct were excluded. The final sample consisted of 21 surveys that were included in the systematic review, and 18 in the meta-analysis. A pooled weighted average of 1.97% (N = 7, 95%CI: 0.86-4.45) of scientists admitted to have fabricated, falsified or modified data or results at least once--a serious form of misconduct by any standard--and up to 33.7% admitted other questionable research practices. In surveys asking about the behaviour of colleagues, admission rates were 14.12% (N = 12, 95% CI: 9.91-19.72) for falsification, and up to 72% for other questionable research practices. Meta-regression showed that self reports surveys, surveys using the words "falsification" or "fabrication", and mailed surveys yielded lower percentages of misconduct. When these factors were controlled for, misconduct was reported more frequently by medical/pharmacological researchers than others. Considering that these surveys ask sensitive questions and have other limitations, it appears likely that this is a conservative estimate of the true prevalence of scientific misconduct.

  5. "Who's gonna plant the trees?!?": Creating effective synergies between community and research goals in scientist-community partnerships

    Science.gov (United States)

    Declet-Barreto, J.; Johnson, C.

    2017-12-01

    Harnessing science into effective, community-focused action requires ongoing partnerships that increase both understanding and trust between communities and scientists. One hurdle to overcome is that often, research questions and goals do not line up with the most pressing perceived or objective issues that a partner community faces. Another barrier is that community members often do not have a clear idea of how communities could benefit from the research, an issue that can create confusion and undermine community support for a partnership. In this session, we will discuss some of our successes and misses in developing research partnerships and actionable science for the benefit of communities. We will share stories on how we crafted effective actionable research products in partnership with Environmental Justice and other vulnerable communities.

  6. DOE Network 2025: Network Research Problems and Challenges for DOE Scientists. Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The growing investments in large science instruments and supercomputers by the US Department of Energy (DOE) hold enormous promise for accelerating the scientific discovery process. They facilitate unprecedented collaborations of geographically dispersed teams of scientists that use these resources. These collaborations critically depend on the production, sharing, moving, and management of, as well as interactive access to, large, complex data sets at sites dispersed across the country and around the globe. In particular, they call for significant enhancements in network capacities to sustain large data volumes and, equally important, the capabilities to collaboratively access the data across computing, storage, and instrument facilities by science users and automated scripts and systems. Improvements in network backbone capacities of several orders of magnitude are essential to meet these challenges, in particular, to support exascale initiatives. Yet, raw network speed represents only a part of the solution. Indeed, the speed must be matched by network and transport layer protocols and higher layer tools that scale in ways that aggregate, compose, and integrate the disparate subsystems into a complete science ecosystem. Just as important, agile monitoring and management services need to be developed to operate the network at peak performance levels. Finally, these solutions must be made an integral part of the production facilities by using sound approaches to develop, deploy, diagnose, operate, and maintain them over the science infrastructure.

  7. Biomedical scientists' perceptions of ethical and social implications: is there a role for research ethics consultation?

    Directory of Open Access Journals (Sweden)

    Jennifer B McCormick

    Full Text Available Research ethics consultation programs are being established with a goal of addressing the ethical, societal, and policy considerations associated with biomedical research. A number of these programs are modelled after clinical ethics consultation services that began to be institutionalized in the 1980s. Our objective was to determine biomedical science researchers' perceived need for and utility of research ethics consultation, through examination of their perceptions of whether they and their institutions faced ethical, social or policy issues (outside those mandated by regulation and examination of willingness to seek advice in addressing these issues. We conducted telephone interviews and focus groups in 2006 with researchers from Stanford University and a mailed survey in December 2006 to 7 research universities in the U.S.A total of 16 researchers were interviewed (75% response rate, 29 participated in focus groups, and 856 responded to the survey (50% response rate. Approximately half of researchers surveyed (51% reported that they would find a research ethics consultation service at their institution moderately, very or extremely useful, while over a third (36% reported that such a service would be useful to them personally. Respondents conducting human subjects research were more likely to find such a service very to extremely useful to them personally than respondents not conducting human subjects research (20% vs 10%; chi(2 p<0.001.Our findings indicate that biomedical researchers do encounter and anticipate encountering ethical and societal questions and concerns and a substantial proportion, especially clinical researchers, would likely use a consultation service if they were aware of it. These findings provide data to inform the development of such consultation programs in general.

  8. Multifarious networks in climate change research: scientists, policy makers and the public

    OpenAIRE

    Delicado, Ana

    2011-01-01

    This paper explores the networks of collaborations that are formed in climate change research, both within the scientific community and with the political and social spheres. It draws on the case of climate change research in a particular national setting, Portugal.

  9. Federal research natural areas in Oregon and Washington: a guidebook for scientists and educators.

    Science.gov (United States)

    Jerry F. Franklin; Fredrick C. Hall; C. T. Dyrness; Chris. Maser

    1972-01-01

    A guide to the use of natural scientific preserves, Research Natural Areas, on Federal lands in Oregon and Washington. Detailed descriptions of physical and biological features, maps and photographs are provided for each of the 45 tracts presently reserved. Indices to Research Natural Areas by vegetation type and plant and mammalian species are included.

  10. An analysis of scientific poverty line of Iranian researchers and compared with top scientists of Islamic countries

    Directory of Open Access Journals (Sweden)

    Faramarz Soheili

    2014-02-01

    Full Text Available To study the scholarly production of Iran in the basic sciences and identify the place of the country among Islamic countries and the world, and also comparing the different disciplines in this field of knowledge, help to plan properly to provide necessary facilities for the advancement in these areas. The purpose of this study is the analysis of scientific poverty line of Iranian scientists and comparing them to the scientists of the superior Islamic countries. This is an applied research. Data were gathered and analyzed with the descriptive approach. In this study data collected from ISI during 1990 to 2011. Five disciplines of basic sciences, including mathematics, physics, chemistry, biology and earth science were studied. Yi and Xi and Sx scientometrics indicators were used. Based on the findings of this research, Iran with 35542 documents, academic ability 0.509 % and the relative performance of 0.468% is in the first place among the Islamic countries. Iran also is in the first place in physics, chemistry, earth science and mathematics and in second place in biology among the Islamic countries. Despite Iran's ranking first among Muslim countries, it is below the scientific poverty line in terms of Xi and Sx indicators. So it seems necessary to pay more attention to production and distribution of basic science especially in biology. The weaknesses and barriers also should be recognized.

  11. Things That Scientists Don't Understand About NASA Spaceflight Research

    Science.gov (United States)

    Platts, S. H.; Bauer, Terri; Rogers, Shanna

    2017-01-01

    So you want to conduct human spaceflight research aboard the International Space Station (ISS)? Once your spaceflight research aboard the ISS is proposal is funded.... the real work begins. Because resources are so limited for ISS research, it is necessary to maximize the work being done, while at the same time, minimizing the resources spent. Astronauts may be presented with over 30 human research experiments and select, on average approximately 15 in which to participate. In order to conduct this many studies, ISSMP uses the study requirements provided by the principle investigator to integrate all of this work into the astronauts' complement. The most important thing for investigators to convey to the ISSMP team is their RESEARCH REQUIREMENTS. Requirements are captured in the Experiment document. This document is the official record of how, what, where and when data will be collected. One common mistake that investigators make is not taking this document seriously, but when push comes to shove, if a research requirement is not in this document....it will not get done. The research requirements are then integrated to form a complement of research for each astronaut. What do we mean by integration? Many experiments have overlapping requirements; blood draws, behavioral surveys, heart rate measurement. Where possible, these measures are combined to reduce redundancy and save crew time. Investigators can access these data via data sharing agreements. More examples of how ISS research is integrated will be presented. There are additional limitations commonly associated with human spaceflight research that will also be discussed. Large/heavy hardware, invasive procedures, and toxic reagents are extremely difficult to implement on the ISS. There are strict limits placed on the amount of blood that can be drawn from crew members during (and immediately after) spaceflight. These limits are based on 30-day rolling accumulations. We have recently had to start restricting

  12. Conducting Research as a Visiting Scientist in a Women’s Prison

    Science.gov (United States)

    Byrne, Mary Woods

    2006-01-01

    Incarcerated populations have disparities in health risks and illness conditions meriting study, but the history of prison research is marred by unethical conduct. Ethical participation strategies are discussed in the context of studies implemented by the author in a state prison system. This study used ethnographic approaches, observed adherence to federal and institutional review board regulations and corrections department directives, and maintained continuous communication with vested interests to provide entry and long-term access for studies on female prisoners and their civilian infants. A culture clash between the punitive restrictive environment that serves the custody–control–care mission of corrections systems and the open inquiry environment needed for conduct of health research exists. Federal regulations protect prisoners as human subjects but additional vigilance and communication by researchers are required. Gaining and maintaining access to prison inmates for nursing research are leadership challenges that can be met within the caring and collaborative paradigm of nursing. PMID:16061169

  13. Sir Edward Mellanby (1884-1955) GBE KCB FRCP FRS: nutrition scientist and medical research mandarin.

    Science.gov (United States)

    Hawgood, Barbara J

    2010-08-01

    Edward Mellanby used the experimental method to investigate medical problems. In 1918, working at King's College for Women, London, he provided conclusive evidence that rickets is a dietary deficiency disease due to lack of a fat-soluble vitamin [D]. In Sheffield he demonstrated that cereals, in an unbalanced diet, produced rickets due to the phytic acid content reducing the availability of calcium. Mellanby became Secretary of the Medical Research Council (1933-49) but continued his research by working at weekends. In the 1930s he campaigned for the results of nutritional research to be used for the benefit of public health. During World War II he acted as a scientific adviser to the War Cabinet and had a strong influence on the food policy which maintained successfully the nutrition of the population during the shipping blockade. Mellanby was a formidable person but with sagacity he promoted new research and guided the expansion of the organization.

  14. Association of Polar Early Career Scientists: a model for experiential learning in professional development for students and early career researchers

    Science.gov (United States)

    Bradley, A. C.; Hindshaw, R. S.; Fugmann, G.; Mariash, H.

    2016-12-01

    The Association of Polar Early Career Scientists was established by early career researchers during the 2007-2008 International Polar Year as an organization for early career researchers in the polar and cryospheric sciences. APECS works to promote early career researchers through soft-skills training in both research and outreach activities, through advocating for including early career researchers in all levels of the scientific process and scientific management, and through supporting a world-wide network of researchers in varied fields. APECS is lead by early career researchers; this self-driven model has proved to be an effective means for developing the leadership, management, and communication skills that are essential in the sciences, and has shown to be sustainable even in a community where frequent turn-over is inherent to the members. Since its inception, APECS has reached over 5,500 members in more than 80 countries, and we have placed more than 50 early career researchers on working groups and steering committees with organizations around the world in the last two years alone. The close partnerships that APECS has with national and international organizations exposes members to both academic and alternative career paths, including those at the science-policy interface. This paper describes APECS's approach to experiential learning in professional development and the best practices identified over our nearly ten years as an organization.

  15. Product Development and Commercialization of Diagnostic or Life Science Products for Scientists and Researchers.

    Science.gov (United States)

    Alonso, Meghan M

    2017-01-01

    Commercializing a diagnostic or life science product often encompasses different goals than that of research and grant funding. There are several necessary steps, and a strategy needs to be well defined in order to be successful. Product development requires input from and between various groups within a company and, for academia, outside entities. The product development stakeholder groups/entities are research, marketing, development, regulatory, manufacturing, clinical, safety/efficacy, and quality. After initial research and development, much of the work in product development can be outsourced or jointly created using public-private partnerships. This chapter serves as an overview of the product development process and provides a guide to best define a product strategy.

  16. Making Lists, Enlisting Scientists

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2011-01-01

    was the indicator conceptualised? How were notions of scientific knowledge and collaboration inscribed and challenged in the process? The analysis shows a two-sided process in which scientists become engaged in making lists but which is simultaneously a way for research policy to enlist scientists. In conclusion...

  17. Professor Mansour Ali Haseeb: Highlights from a pioneer of biomedical research, physician and scientist.

    Science.gov (United States)

    Salih, Mustafa Abdalla M

    2013-01-01

    The article highlights the career of Professor Mansour Ali Haseeb (1910 - 1973; DKSM, Dip Bact, FRCPath, FRCP [Lond]), a pioneer worker in health, medical services, biomedical research and medical education in the Sudan. After his graduation from the Kitchener School of Medicine (renamed, Faculty of Medicine, University of Khartoum [U of K]) in 1934, he devoted his life for the development of laboratory medicine. He became the first Sudanese Director of Stack Medical Research Laboratories (1952 - 1962). He made valuable contributions by his services in the vaccine production and implementation programs, most notably in combating small pox, rabies and epidemic meningitis. In 1963 he became the first Sudanese Professor of Microbiology and Parasitology and served as the first Sudanese Dean of the Faculty of Medicine, U of K (1963-1969). He was an active loyal citizen in public life and served in various fields outside the medical profession. As Mayor of Omdurman, he was invited to visit Berlin in 1963 by Willy Brandt, Mayor of West Berlin (1957-1966) and Chancellor of the Federal Republic of Germany (1969 to 1974). Also as Mayor of Omdurman, he represented the City in welcoming Queen Elizabeth II during her visit to Sudan in February 1965. He also received State Medals from Egypt and Ethiopia. In 1973 he was appointed Chairman of the Sudan Medical Research Council, and was awarded the international Dr. Shousha Foundation Prize and Medal by the WHO for his contribution in the advancement of health, research and medical services.

  18. Work engagement and research output among female and male scientists : A diary study

    NARCIS (Netherlands)

    Dubbelt, L.; Rispens, S.; Demerouti, E.

    2016-01-01

    Women have a minority position within science, technology, engineering, and mathematics and, consequently, are likely to face more adversities at work. This diary study takes a look at a facilitating factor for women's research performance within academia: daily work engagement. We examined the

  19. Increasing Complexity of Clinical Research in Gastroenterology: Implications for Training Clinician-Scientists

    Science.gov (United States)

    Scott, Frank I.; McConnell, Ryan A.; Lewis, Matthew E.; Lewis, James D.

    2014-01-01

    Background Significant advances have been made in clinical and epidemiologic research methods over the past 30 years. We sought to demonstrate the impact of these advances on published research in gastroenterology from 1980 to 2010. Methods Three journals (Gastroenterology, Gut, and American Journal of Gastroenterology) were selected for evaluation given their continuous publication during the study period. Twenty original clinical articles were randomly selected from each journal from 1980, 1990, 2000, and 2010. Each article was assessed for topic studied, whether the outcome was clinical or physiologic, study design, sample size, number of authors and centers collaborating, and reporting of statistical methods such as sample size calculations, p-values, confidence intervals, and advanced techniques such as bioinformatics or multivariate modeling. Research support with external funding was also recorded. Results A total of 240 articles were included in the study. From 1980 to 2010, there was a significant increase in analytic studies (pgastroenterology and hepatology over the last three decades. This increase highlights the need for advanced training of clinical investigators to conduct future research. PMID:22475957

  20. The Barrett Foundation: Undergraduate Research Program for Environmental Engineers and Scientists

    Science.gov (United States)

    Rizzo, D. M.; Paul, M.; Farmer, C.; Larson, P.; Matt, J.; Sentoff, K.; Vazquez-Spickers, I.; Pearce, A. R.

    2007-12-01

    A new program sponsored by The Barrett Foundation in the University of Vermont College of Engineering and Mathematical Sciences (UVM) supports undergraduate students in Environmental Engineering, Earth and Environmental Sciences to pursue independent summer research projects. The Barrett Foundation, a non-profit organization started by a UVM Engineering alum, provided a grant to support undergraduate research. Students must work with at least two different faculty advisors to develop project ideas, then independently prepare a research proposal and submit it to a faculty panel for review. The program was structured as a scholarship to foster a competitive application process. In the last three years, fourteen students have participated in the program. The 2007 Barrett Scholars projects include: - Using bacteria to change the chemistry of subsurface media to encourage calcite precipitation for soil stability and pollutant sequestration - Assessing structural weaknesses in a historic post and beam barn using accelerometers and wireless data collection equipment - Using image processing filters to 1) evaluate leaf wetness, a leading indicator of disease in crops and 2) assess the movement of contaminants through building materials. - Investigating the impact of increased water temperature on cold-water fish species in two Vermont streams. - Studying the impacts of light duty vehicle tailpipe emissions on air quality This program supports applied and interdisciplinary environmental research and introduces students to real- world engineering problems. In addition, faculty from different research focuses are presented the opportunity to establish new collaborations around campus through the interdisciplinary projects. To date, there is a successful publication record from the projects involving the Barrett scholars, including students as authors. One of the objectives of this program was to provide prestigious, competitive awards to outstanding undergraduate engineers

  1. Learning how scientists work: experiential research projects to promote cell biology learning and scientific process skills.

    Science.gov (United States)

    DebBurman, Shubhik K

    2002-01-01

    Facilitating not only the mastery of sophisticated subject matter, but also the development of process skills is an ongoing challenge in teaching any introductory undergraduate course. To accomplish this goal in a sophomore-level introductory cell biology course, I require students to work in groups and complete several mock experiential research projects that imitate the professional activities of the scientific community. I designed these projects as a way to promote process skill development within content-rich pedagogy and to connect text-based and laboratory-based learning with the world of contemporary research. First, students become familiar with one primary article from a leading peer-reviewed journal, which they discuss by means of PowerPoint-based journal clubs and journalism reports highlighting public relevance. Second, relying mostly on primary articles, they investigate the molecular basis of a disease, compose reviews for an in-house journal, and present seminars in a public symposium. Last, students author primary articles detailing investigative experiments conducted in the lab. This curriculum has been successful in both quarter-based and semester-based institutions. Student attitudes toward their learning were assessed quantitatively with course surveys. Students consistently reported that these projects significantly lowered barriers to primary literature, improved research-associated skills, strengthened traditional pedagogy, and helped accomplish course objectives. Such approaches are widely suited for instructors seeking to integrate process with content in their courses.

  2. Transforming Introductory Physics for Life Scientists: Researching the consequences for students

    Science.gov (United States)

    Turpen, Chandra

    2011-10-01

    In response to policy documents calling for dramatic changes in pre-medical and biology education [1-3], the physics and biology education research groups at the University of Maryland are rethinking how to teach physics to life science majors. As an interdisciplinary team, we are drastically reconsidering the physics topics relevant for these courses. We are designing new in-class tasks to engage students in using physical principles to explain aspects of biological phenomena where the physical principles are of consequence to the biological systems. We will present examples of such tasks as well as preliminary data on how students engage in these tasks. Lastly, we will share some barriers encountered in pursuing meaningful interdisciplinary education.[4pt] Co-authors: Edward F. Redish and Julia Svaboda [4pt] [1] National Research Council, Bio2010: Transforming Undergraduate Education for Future Research Biologists (NAP, 2003).[0pt] [2] AAMC-HHMI committee, Scientific Foundations for Future Physicians (AAMC, 2009).[0pt] [3] American Association for the Advancement of Science, Vision and Change in Undergraduate Biology Education: A Call to Action (AAAS, 2009).

  3. Gummi-Bears On Fire! Bringing Students and Scientists Together at the Alaska Summer Research Academy (ASRA)

    Science.gov (United States)

    Drake, J.; Schamel, D.; Fisher, P.; Terschak, J. A.; Stelling, P.; Almberg, L.; Phillips, E.; Forner, M.; Gregory, D.

    2002-12-01

    When a gummi-bear is introduced into hot potassium chlorate there is a powerful reaction. This is analogous to the response we have seen to the Alaska Summer Research Academy (ASRA). ASRA is a residential science research camp supported by the College of Science, Engineering and Mathematics at the University of Alaska Fairbanks. The hallmark of ASRA is the opportunity for small groups of 4 or fewer students, ages 10-17, to conduct scientific research and participate in engineering design projects with university faculty and researchers as mentors. Participating scientists, engineers, faculty, graduate students, and K-12 teachers from a variety of disciplines design individual research units and guide the students through designing and constructing a project, collecting data, and synthesizing results. The week-long camp culminates with the students from each project making a formal presentation to the camp and public. In its second year ASRA is already a huge success, quadrupling in size from 21 students in 2001 to 89 students in 2002. Due to a high percentage of returning students, we anticipate there will be a waiting list next year. This presentation contains perspectives from administrators, instructors, staff, and students. Based on our experience we feel there is a large potential demand for education and public outreach (EPO) in university settings. We believe the quality and depth of the ASRA experience directly contributes to the success of a worthwhile EPO program. ASRA will be portrayed as a useful model for EPO at other institutions.

  4. Scientists Shaping the Discussion

    Science.gov (United States)

    Abraham, J. A.; Weymann, R.; Mandia, S. A.; Ashley, M.

    2011-12-01

    Scientific studies which directly impact the larger society require an engagement between the scientists and the larger public. With respect to research on climate change, many third-party groups report on scientific findings and thereby serve as an intermediary between the scientist and the public. In many cases, the third-party reporting misinterprets the findings and conveys inaccurate information to the media and the public. To remedy this, many scientists are now taking a more active role in conveying their work directly to interested parties. In addition, some scientists are taking the further step of engaging with the general public to answer basic questions related to climate change - even on sub-topics which are unrelated to scientists' own research. Nevertheless, many scientists are reluctant to engage the general public or the media. The reasons for scientific reticence are varied but most commonly are related to fear of public engagement, concern about the time required to properly engage the public, or concerns about the impact to their professional reputations. However, for those scientists who are successful, these engagement activities provide many benefits. Scientists can increase the impact of their work, and they can help society make informed choices on significant issues, such as mitigating global warming. Here we provide some concrete steps that scientists can take to ensure that their public engagement is successful. These steps include: (1) cultivating relationships with reporters, (2) crafting clear, easy to understand messages that summarize their work, (3) relating science to everyday experiences, and (4) constructing arguments which appeal to a wide-ranging audience. With these steps, we show that scientists can efficiently deal with concerns that would otherwise inhibit their public engagement. Various resources will be provided that allow scientists to continue work on these key steps.

  5. Contributions to the field of neurotransmitters by Japanese scientists, and reflections on my own research.

    Science.gov (United States)

    Otsuka, Masanori

    2007-03-01

    PART I DESCRIBES IMPORTANT CONTRIBUTIONS MADE BY SOME JAPANESE PIONEERS IN THE FIELD OF NEUROTRANSMITTERS: (their achievements in parentheses) J. Takamine (isolation and crystallization of adrenaline); K. Shimidzu (early hint for acetylcholine as a neurotransmitter); F. Kanematsu (donation of the Kanematsu Memorial Institute in Sydney); T. Hayashi (discovery of the excitatory action of glutamate and the inhibitory action of GABA); and I. Sano (discovery of a high concentration of dopamine in striatum, its reduction in a patient with Parkinson's disease and the treatment with DOPA). In Part II, I present some of my reflections on my research on neurotransmitters. The work of my colleagues and myself has made some significant contributions to the establishment of neurotransmitter roles played by GABA and substance P, the first amino acid and the first peptide neurotransmitters, respectively. By the early 1960s, 3 substances, i.e., acetylcholine, noradrenaline, and adrenaline, had been established as neurotransmitters. Now the number of neurotransmitters is believed to be as many as 50 or even more mainly due to the inclusion of several amino acids and a large number of peptide transmitters.

  6. An Inquiry-Based Vision Science Activity for Graduate Students and Postdoctoral Research Scientists

    Science.gov (United States)

    Putnam, N. M.; Maness, H. L.; Rossi, E. A.; Hunter, J. J.

    2010-12-01

    The vision science activity was originally designed for the 2007 Center for Adaptive Optics (CfAO) Summer School. Participants were graduate students, postdoctoral researchers, and professionals studying the basics of adaptive optics. The majority were working in fields outside vision science, mainly astronomy and engineering. The primary goal of the activity was to give participants first-hand experience with the use of a wavefront sensor designed for clinical measurement of the aberrations of the human eye and to demonstrate how the resulting wavefront data generated from these measurements can be used to assess optical quality. A secondary goal was to examine the role wavefront measurements play in the investigation of vision-related scientific questions. In 2008, the activity was expanded to include a new section emphasizing defocus and astigmatism and vision testing/correction in a broad sense. As many of the participants were future post-secondary educators, a final goal of the activity was to highlight the inquiry-based approach as a distinct and effective alternative to traditional laboratory exercises. Participants worked in groups throughout the activity and formative assessment by a facilitator (instructor) was used to ensure that participants made progress toward the content goals. At the close of the activity, participants gave short presentations about their work to the whole group, the major points of which were referenced in a facilitator-led synthesis lecture. We discuss highlights and limitations of the vision science activity in its current format (2008 and 2009 summer schools) and make recommendations for its improvement and adaptation to different audiences.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  8. Birth of prominent scientists

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star. PMID:29543855

  9. Birth of prominent scientists.

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; González Brambila, Claudia N; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star.

  10. Research Natural Areas on National Forest System lands in Idaho, Montana, Nevada, Utah, and Western Wyoming: A guidebook for scientists, managers, and educators

    Science.gov (United States)

    Angela G. Evenden; Melinda Moeur; J. Stephen Shelly; Shannon F. Kimball; Charles A. Wellner

    2001-01-01

    This guidebook is intended to familiarize land resource managers, scientists, educators, and others with Research Natural Areas (RNAs) managed by the USDA Forest Service in the Northern Rocky Mountains and Intermountain West. This guidebook facilitates broader recognition and use of these valuable natural areas by describing the RNA network, past and current research...

  11. 2010 NASA-AIHEC Summer Research Experience: Students and Teachers from TCUs Engage in GIS/Remote Sensing with Researchers and Scientists--Lessons Learned

    Science.gov (United States)

    Rock, B. N.; Carlson, M.; Mell, V.; Maynard, N.

    2010-12-01

    Researchers and scientists from the University of New Hampshire (UNH) and the Confederated Tribes of Grand Ronde joined with the National Aeronautics and Space Administration (NASA) to develop and present a Summer Research Experience (SRE) that trained 21 students and 10 faculty members from 9 of the 36 Tribal Colleges and Universities (TCUs) which comprise the American Indian Higher Education Council (AIHEC). The 10-week SRE program was an inquiry-based introduction to remote sensing, geographic information systems (GIS) and field science research methods. Teams of students and TCU faculty members developed research projects that explored climate change, energy development, contamination of water and air, fire damage in forests, and lost cultural resources on tribal lands. The UNH-Grand Ronde team presented SRE participants with an initial three-week workshop in the use of research tools and development of research projects. During the following seven weeks, the team conferred weekly with SRE participants to monitor and support their progress. Rock provided specific guidance on numerous scientific questions. Carlson coached students on writing and organization and provided laboratory analysis of foliar samples. Mell provided support on GIS technology. Eight of the SRE college teams completed substantial research projects by the end of the SRE while one other team developed a method for future research. Seventeen students completed individual research papers, oral presentations and posters. Nineteen students and all teachers maintained regular and detailed communication with the UNH-Grand Ronde mentors throughout the ten-week program. The SRE produced several significant lessons learned regarding outreach educational programs in inquiry-based science and technology applications. These include: Leadership by an active research scientist (Rock) inspired and supported students and teachers in developing their own scientific inquiries. An intensive schedule of

  12. How Scientists Can Become Entrepreneurs.

    Science.gov (United States)

    Thon, Jonathan N; Karlsson, Sven

    2017-05-01

    Translating basic research discoveries through entrepreneurship must be scientist driven and institutionally supported to be successful (not the other way around). Here, we describe why scientists should engage in entrepreneurship, where institutional support for scientist-founders falls short, and how these challenges can be overcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Scientists as writers

    Science.gov (United States)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 18: A comparison of the technical communication practices of aerospace engineers and scientists in India and the United States

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.

  18. The Cosmic Ray Observatory Project: Results of a Summer High-School Student, Teacher, University Scientist Partnership Using a Capstone Research Experience

    Science.gov (United States)

    Shell, Duane F.; Snow, Gregory R.; Claes, Daniel R.

    2011-01-01

    This paper reports results from evaluation of the Cosmic Ray Observatory Project (CROP), a student, teacher, scientist partnership to engage high-school students and teachers in school based cosmic ray research. Specifically, this study examined whether an intensive summer workshop experience could effectively prepare teacher-student teams to…

  19. Alliance for NanoHealth (ANH) Training Program for the development of future generations of interdisciplinary scientists and collaborative research focused upon the advancement of nanomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Gorenstein, David [Univ. of Texas Health Science Center, Houston, TX (United States)

    2013-12-23

    The objectives of this program are to promote the mission of the Department of Energy (DOE) Science, Technology, Engineering, Math (STEM) Program by recruiting students to science and engineering disciplines with the intent of mentoring and supporting the next generation of scientists; to foster interdisciplinary and collaborative research under the sponsorship of ANH for the discovery and design of nano-based materials and devices with novel structures, functions, and properties; and to prepare a diverse work force of scientists, engineers, and clinicians by utilizing the unique intellectual and physical resources to develop novel nanotechnology paradigms for clinical application.

  20. Responsability of scientists

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is intended to give some practical help for CERN guides,who are confronted with questions from visitors concerning the purpose of research in general and - in paticular - of the work in our laboratory, its possible application and benefits.The dual use of scientific results will be emphasised by examples across natural sciences. Many investigations were neutral,others aimed at peaceful and beneficial use for humanity, a few were made for destructive purposes. Researchers have no or very little influence on the application of their results. The interplay between natural scientists ,social scientists,politicians,and their dependence on economic factors will be discussed.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  2. Scientific Personnel Resource Inventory: List and Index to Research Scientists Involved with the Estuarine Environment, Especially the Chesapeake Bay,

    Science.gov (United States)

    1972-06-01

    introduction of sewage from commercial or private structures -- Monthly sampling of sewage treatment effluents -- Resistance of Vibrio parahemolyticus in oyster...of microorganisms in animal diseases and the effect of V. parahemolyticus and other vibrios on recruitment of commercial mollusks and crustaceans 575...Microbiology; including a survey of areas of the Chesapeake Bay for Vibrio parahaemalyticus * 18 Barnard, Thomas Alexander MA Assistant Marine Scientist

  3. Do we need Berlin Walls or Chinese Walls between research, public consultation and advice? New public responsibilities for life scientist

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.

    2004-01-01

    During the coming decades, life scientists will become involved more than ever in the public and private lives of patients and consumers, as health and food sciences shift from a collective approach towards individualization, from a curative to a preventive approach, and from being driven by desires

  4. The effects of conducting authentic field-geology research on high school students' understanding of the nature of science, and their views of themselves as research scientists

    Science.gov (United States)

    Millette, Patricia M.

    Authentic field geology research is a inquiry method that encourages students to interact more with their local environment, and by solving genuine puzzles, begin to increase their intuitive understanding of the nature and processes of science. The goal of the current study was to determine if conducting authentic field research and giving high school students the opportunity to present findings to adult audiences outside of the school setting 1) enhances students' understanding of the nature of science, and 2) affects students views of themselves as researchers. To accomplish this, ninth-grade students from a public school in northern New England engaged in a community-initiated glacial geology problem, completed a field research investigation, and presented their findings at several professional conferences. Following the completion of this student-centered field research, I investigated its effects by using a mixed methods approach consisting of qualitative and quantitative data from two sources. These included selected questions from an open-response survey (VNOS-c), and interviews that were conducted with fifteen of the students of different ages and genders. Findings show that conducting original field research seems to have a positive influence on these students' understanding of the NOS as well as the processes of science. Many of the students reported feelings of accomplishment, acceptance of responsibility for the investigation, a sense of their authentic contribution to the body of scientific knowledge in the world, and becoming scientists. This type of authentic field investigation is significant because recent reforms in earth-science education stress the importance of students learning about the nature and processes of scientific knowledge along with science content.

  5. Expedition Earth and Beyond: Engaging Classrooms in Student-Led Research Using NASA Data, Access to Scientists, and Integrated Educational Strategies

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.; McCollum, T.; Baker, M.; Lindgren, C.; Mailhot, M.

    2011-01-01

    Classroom teachers are challenged with engaging and preparing today s students for the future. Activities are driven by state required skills, education standards, and high-stakes testing. Providing educators with standards-aligned, inquiry-based activities that will help them engage their students in student-led research in the classroom will help them teach required standards, essential skills, and help inspire their students to become motivated learners. The Astromaterials Research and Exploration Science (ARES) Education Program, classroom educators, and ARES scientists at the NASA Johnson Space Center created the Expedition Earth and Beyond education program to help teachers promote student-led research in their classrooms (grades 5-14) by using NASA data, providing access to scientists, and using integrated educational strategies.

  6. Developing Scientists' "Soft" Skills

    Science.gov (United States)

    Gordon, Wendy

    2014-02-01

    A great deal of professional advice directed at undergraduates, graduate students, postdoctoral fellows, and even early-career scientists focuses on technical skills necessary to succeed in a complex work environment in which problems transcend disciplinary boundaries. Collaborative research approaches are emphasized, as are cross-training and gaining nonacademic experiences [Moslemi et al., 2009].

  7. The Body as a Substrate of Differentiation. Shifting the Focus from Race Science to Life Scientists' Research on Human Variation

    OpenAIRE

    Lipphardt, Veronika

    2017-01-01

    Abstract This article suggests to focus on the history of human variation instead of focussing on the history of race science. It views the latter as a subset of the former, hence views race science as embedded into the larger field of life scientists' investigations into human variation. This paper explores why human variation is such an attractive and productive object particularly for the life sciences. It proposes that knowledge about human variation is incomplete in a promising way, and ...

  8. Education and Public Outreach for the PICASSO-CENA Satellite-Based Research Mission: K-12 Students Use Sun Photometers to Assist Scientists in Validating Atmospheric Data

    Science.gov (United States)

    Robinson, D. Q.

    2001-05-01

    Hampton University, a historically black university, is leading the Education and Public Outreach (EPO) portion of the PICASSO-CENA satellite-based research mission. Currently scheduled for launch in 2004, PICASSO-CENA will use LIDAR (LIght Detection and Ranging), to study earth's atmosphere. The PICASSO-CENA Outreach program works with scientists, teachers, and students to better understand the effects of clouds and aerosols on earth's atmosphere. This program actively involves students nationwide in NASA research by having them obtain sun photometer measurements from their schools and homes for comparison with data collected by the PICASSO-CENA mission. Students collect data from their classroom ground observations and report the data via the Internet. Scientists will use the data from the PICASSO-CENA research and the student ground-truthing observations to improve predications about climatic change. The two-band passive remote sensing sun photometer is designed for student use as a stand alone instrument to study atmospheric turbidity or in conjunction with satellite data to provide ground-truthing. The instrument will collect measurements of column optical depth from the ground level. These measurements will not only give the students an appreciation for atmospheric turbidity, but will also provide quantitative correlative information to the PICASSO-CENA mission on ground-level optical depth. Student data obtained in this manner will be sufficiently accurate for scientists to use as ground truthing. Thus, students will have the opportunity to be involved with a NASA satellite-based research mission.

  9. Why do scientists do outreach, what do we achieve, and how can we better learn from each other, and from research in this field?

    Science.gov (United States)

    Salmon, R. A.; Roop, H. A.

    2014-12-01

    Using four very different polar outreach case studies, we will discuss scientists' motivations, expectations, and institutional incentives (and dis-incentives) to engage with the public, and argue that improved training, evaluation, and academic value needs to be associated with scientist-led communication efforts - as well as clearer fora for sharing best practice in this field. We will illustrate our argument using examples from an Antarctic festival with public lectures and science cafes, outreach associated with an Antarctic expedition, the global launch of a climate change documentary that had a significant focus on Antarctica, and a series of "Polar Weeks" led by an international community of scientists and educators. While there is an excellent culture of accountability in both formal and informal science communication sectors, the same rigour is not applied to the majority of 'outreach' activities that are initiated by the science research community. Many of these activities are undertaken based on 'what feels right' and opportunism, and are proclaimed to be a success based on little or no formal evaluation. As a result, much of this work goes undocumented, is not evaluated from the perspective of the science community, and is rarely subject to peer-review and its associated benefits, including professional rewards. We therefore conclude with suggestions of new opportunities for publication in this field that would encourage science communication theory and practice to better inform each other, and for scientists to gain professional recognition for their efforts in this arena.

  10. Non-native scientists, research dissemination and English neologisms: What happens in the early stages of reception and re-production?

    Directory of Open Access Journals (Sweden)

    Daniel Linder

    2016-11-01

    Full Text Available That the English language is the prevailing language in international scientific discourse is an undeniable fact for research professionals who are non-native speakers of English (NNSE. An exploratory, survey-based study of scientists in the experimental disciplines of neuroscience and medicine seeks to reveal, on the one hand, the habits of scientists who in their research practice come across neologisms in English and need to use them in oral and written scientific discourse in their own languages, and, on the other hand, their attitudes towards these neologisms and towards English as the language of international science. We found that all scientists write and publish their research articles (RAs in English and most submit them unrevised by native speakers of English. When first encountering a neologism in English, scientists tend to pay close attention to these new concepts, ideas or terms and very early in the reception process attempt to coin acceptable, natural-sounding Spanish equivalents for use in the laboratory and in their Spanish texts. In conjunction with the naturalized Spanish term, they often use the English neologism verbatim in a coexistent bilingual form, but they avoid using only the English term and very literal translations. These behaviors show an ambivalent attitude towards English (the language of both new knowledge reception and dissemination of their RAs and Spanish (used for local professional purposes and for popularization: while accepting to write in their acquired non-native language, they simultaneously recognize that their native language needs to preserve its specificity as a language of science.

  11. Study of interdisciplinarity in chemistry research based on the production of Puerto Rican scientists 1992-2001. Interdisciplinarity, Bibliometric indicators, Chemistry

    Directory of Open Access Journals (Sweden)

    Elias Sanz-Casado

    2004-01-01

    Full Text Available Determining the role played by interdisciplinarity in the generation of knowledge is a very fertile line of research in which synergies among different fields of science can be identified and their impact on research efficiency ascertained. A number of methods may be used to explore interdisciplinarity, from the sociological approach to those requiring the application of bibliometric indicators. In this paper, a bibliometric analysis of the research conducted by scientists with the Chemistry Department at the University of Puerto Rico was run on the basis of the subject matter of citing and cited papers, in order to ascertain how interdisciplinarity affects certain aspects of research, such as collaboration or visibility. The data used for this paper were taken from the Science Citation Index database, which lists the most significant contributions made by these scientists, along with the respective bibliographic references. The study revealed the existence of scientific areas that are highly dependent on the knowledge generated in the specific area itself. A positive, albeit weak, correlation was also observed between research interdisciplinarity and collaboration between researchers and institutions. Interdisciplinarity was not found to have any effect, however, on the visibility of research papers or to be correlated with international collaboration.

  12. The HIV and Drug Abuse Prevention Research Ethics Training Institute: Training Early-Career Scientists to Conduct Research on Research Ethics

    Science.gov (United States)

    Fisher, Celia B.; Yuko, Elizabeth

    2018-01-01

    The responsible conduct of HIV/drug abuse prevention research requires investigators with both the knowledge of and ability to generate empirical data that can enhance global ethical practices and policies. This article describes a multidisciplinary program offering early-career professionals a 2-year intensive summer curriculum along with funding to conduct a mentored research study on a wide variety of HIV/drug abuse research ethics topics. Now in its fifth year, the program has admitted 29 trainees who have to date demonstrated increased knowledge of research ethics, produced 17 peer-reviewed publications, 46 professional presentations, and submitted or been awarded five related federal grants. The institute also hosts a global information platform providing general and HIV/drug abuse relevant research ethics educational and research resources that have had more than 38,800 unique visitors from more than 150 countries. PMID:26564944

  13. The HIV and Drug Abuse Prevention Research Ethics Training Institute: Training Early-Career Scientists to Conduct Research on Research Ethics.

    Science.gov (United States)

    Fisher, Celia B; Yuko, Elizabeth

    2015-12-01

    The responsible conduct of HIV/drug abuse prevention research requires investigators with both the knowledge of and ability to generate empirical data that can enhance global ethical practices and policies. This article describes a multidisciplinary program offering early-career professionals a 2-year intensive summer curriculum along with funding to conduct a mentored research study on a wide variety of HIV/drug abuse research ethics topics. Now in its fifth year, the program has admitted 29 trainees who have to date demonstrated increased knowledge of research ethics, produced 17 peer-reviewed publications, 46 professional presentations, and submitted or been awarded five related federal grants. The institute also hosts a global information platform providing general and HIV/drug abuse relevant research ethics educational and research resources that have had more than 38,800 unique visitors from more than 150 countries. © The Author(s) 2015.

  14. On Responsibility of Scientists

    Science.gov (United States)

    Burdyuzha, Vladimir

    The situation of modern world is analised. It is impossible for our Civilization when at least half of the World Scientists are engaged in research intended to solve military problems. Civilization cannot be called reasonable so long as it spends a huge portion of national incomes on armaments. For resolution of our global problems International Scientific Center - Brain Trust of planet must be created, the status of which should be defined and sealed by the UN organization.

  15. A Matrix Mentoring Model That Effectively Supports Clinical and Translational Scientists and Increases Inclusion in Biomedical Research: Lessons From the University of Utah.

    Science.gov (United States)

    Byington, Carrie L; Keenan, Heather; Phillips, John D; Childs, Rebecca; Wachs, Erin; Berzins, Mary Anne; Clark, Kim; Torres, Maria K; Abramson, Jan; Lee, Vivian; Clark, Edward B

    2016-04-01

    Physician-scientists and scientists in all the health professions are vital members of the U.S. biomedical workforce, but their numbers at academic health centers are declining. Mentorship has been identified as a key component in retention of faculty members at academic health centers. Effective mentoring may promote the retention of clinician-scientists in the biomedical workforce. The authors describe a holistic institutional mentoring program to support junior faculty members engaged in clinical and translational science at the University of Utah. The clinical and translational scholars (CATS) program leverages the resources of the institution, including the Center for Clinical and Translational Science, to augment departmental resources to support junior faculty investigators and uses a multilevel mentoring matrix that includes self, senior, scientific, peer, and staff mentorship. Begun in the Department of Pediatrics, the program was expanded in 2013 to include all departments in the school of medicine and the health sciences. During the two-year program, scholars learn management essentials and have leadership training designed to develop principal investigators. Of the 86 program participants since fiscal year 2008, 92% have received extramural awards, 99% remain in academic medicine, and 95% remain at the University of Utah. The CATS program has also been associated with increased inclusion of women and underrepresented minorities in the institutional research enterprise. The CATS program manifests institutional collaboration and coordination of resources, which have benefited faculty members and the institution. The model can be applied to other academic health centers to support and sustain the biomedical workforce.

  16. Scientists want more children.

    Directory of Open Access Journals (Sweden)

    Elaine Howard Ecklund

    Full Text Available Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  17. Scientists want more children.

    Science.gov (United States)

    Ecklund, Elaine Howard; Lincoln, Anne E

    2011-01-01

    Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows) who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  18. SROF12: NE Lau Basin on Scripps Research Vessel Roger Revelle between 20120909 and 20120926

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Ring of Fire 2012 cruise will use the University of Bremen Quest 4000 remotely operated vehicle to locate, map and sample hydrothermal sites at...

  19. Research goes to School: understanding the content and the procedures of Science through a new dialogue among students, teachers and scientists

    Science.gov (United States)

    L'Astorina, Alba; Tomasoni, Irene

    2015-04-01

    The Education system is increasingly interested in a more interactive dialogue with scientists in order to make science taught at school more aware of the models and the ways in which knowledge is produced, revised and discussed within the scientific community. Not always, in fact, the ministerial programs, the media, and the textbooks adopted by schools seem to be able to grasp the content and the procedures of the scientific knowledge as it is today being developed, sometimes spreading the idea of a monolithic and static science, with no reference to revisions, uncertainties, errors and disputes that, on the opposite, characterize the debate about science. On the other side, scientists, that in several surveys define students and teachers as one of the key groups that are most important to communicate with, often do not seem to be aware that scientific knowledge is continuously revised by the school and its protagonists. Science teaching, in all classes, has a highly educational role, as it offers the opportunity to value individual differences, to make students acquire specific tools and methods that enable them understand the world and critically interact with it. In this process of conscious learning, in which teachers play the role of tutors, the student participates actively bringing his tacit knowledge and beliefs. In this context, an educational proposal has recently been developed by the Italian National Research Council (CNR), aimed at starting a new dialogue between Education and Research. It's a way to encourage the technical and scientific culture among young people and a mutual exchange between the two main actors of the scientific production and promotion, considering weaknesses and strengths of the relationship between these two systems. In this proposal, students and teachers follow side by side a group of CNR scientists involved in an ongoing research project based on the use of innovative methodologies of aerospace Earth Observation (EO) for

  20. Medical laboratory scientist

    DEFF Research Database (Denmark)

    Smith, Julie; Qvist, Camilla Christine; Jacobsen, Katja Kemp

    2017-01-01

    Previously, biomarker research and development was performed by laboratory technicians working as craftsmen in laboratories under the guidance of medical doctors. This hierarchical structure based on professional boundaries appears to be outdated if we want to keep up with the high performance...... of our healthcare system, and take advantage of the vast potential of future biomarkers and personalized medicine. We ask the question; does our healthcare system benefit from giving the modern medical laboratory scientist (MLS) a stronger academic training in biomarker research, development...

  1. Otto Hahn - Research and responsibility. Conflicts of a scientist; Otto Hahn - Forschung und Verantwortung. Konflikte eines Wissenschaftlers

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, K.

    2005-07-01

    The life of Otto Hahn is documented and the time where science started in the mysterious field of radioactivity. The main steps: Youth, studies, first practical experiences, research at Berlin university, first world war, success for atomic researchers, national socialism - night over Germany, fission of uranium atom, menace with the atomic bomb of Hitler, the American super explosive U235, hunting on atomic researchers, diplomacy with atomic bombs, in conflict with conscience and policy, against nuclear arm tests and atomic arm race. (GL)

  2. Scientist-teacher collaboration: Integration of real data from a coastal wetland into a high school life science ecology-based research project

    Science.gov (United States)

    Hagan, Wendy L.

    Project G.R.O.W. is an ecology-based research project developed for high school biology students. The curriculum was designed based on how students learn and awareness of the nature of science and scientific practices so that students would design and carry out scientific investigations using real data from a local coastal wetland. This was a scientist-teacher collaboration between a CSULB biologist and high school biology teacher. Prior to implementing the three-week research project, students had multiple opportunities to practice building requisite skills via 55 lessons focusing on the nature of science, scientific practices, technology, Common Core State Standards of reading, writing, listening and speaking, and Next Generation Science Standards. Project G.R.O.W. culminated with student generated research papers and oral presentations. Outcomes reveal students struggle with constructing explanations and the use of Excel to create meaningful graphs. They showed gains in data organization, analysis, teamwork and aspects of the nature of science.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 36: Technical uncertainty as a correlate of information use by US industry-affiliated aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1994-01-01

    This paper reports the results of an exploratory study that investigated the influence of technical uncertainty on the use of information and information sources by U.S. industry-affiliated aerospace engineers and scientists in completing or solving a project, task, or problem. Data were collected through a self-administered questionnaire. Survey participants were U.S. aerospace engineers and scientists whose names appeared on the Society of Automotive Engineers (SAE) mailing list. The results support the findings of previous research and the following study assumptions. Information and information-source use differ for projects, problems, and tasks with high and low technical uncertainty. As technical uncertainty increases, information-source use changes from internal to external and from informal to formal sources. As technical uncertainty increases, so too does the use of federally funded aerospace research and development (R&D). The use of formal information sources to learn about federally funded aerospace R&D differs for projects, problems, and tasks with high and low technical uncertainty.

  4. 28 September 2011 - Canadian Intellectual Property Office Policy, International and Research Office Director K. Georgaras visiting the LHC superconducting magnet test hall with Engineer M. Bajko and Senior Scientists P. Jenni and R. Voss.

    CERN Multimedia

    2011-01-01

    28 September 2011 - Canadian Intellectual Property Office Policy, International and Research Office Director K. Georgaras visiting the LHC superconducting magnet test hall with Engineer M. Bajko and Senior Scientists P. Jenni and R. Voss.

  5. Shaping the Future of Research: a perspective from junior scientists [v2; ref status: indexed, http://f1000r.es/4yc

    Directory of Open Access Journals (Sweden)

    Gary S. McDowell

    2015-01-01

    Full Text Available The landscape of scientific research and funding is in flux as a result of tight budgets, evolving models of both publishing and evaluation, and questions about training and workforce stability. As future leaders, junior scientists are uniquely poised to shape the culture and practice of science in response to these challenges. A group of postdocs in the Boston area who are invested in improving the scientific endeavor, planned a symposium held on October 2nd and 3rd, 2014, as a way to join the discussion about the future of US biomedical research. Here we present a report of the proceedings of participant-driven workshops and the organizers’ synthesis of the outcomes.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 31: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SME mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical communications practices of U.S. aerospace engineers and scientists affiliated with, not necessarily belonging to, the Society of Manufacturing Engineers (SME).

  7. Scientist versus sceptic. Report of a weblog discussion between a climatic change researcher and a climatic change sceptic

    International Nuclear Information System (INIS)

    Strengers, B.J.; Labohm, H.H.J.

    2010-05-01

    In the run up to the international climate conference in Copenhagen in December 2009, climate sceptic Hans Labohm and climate researcher Bart Strengers of the Environmental Assessment Agency entered into a debate on the website of the Dutch Broadcasting Foundation NOS. The blog discussion offers a good view on the dilemmas surrounding knowledge about climate change. [nl

  8. Rocky Mountain Research Station Part 2 [U.S. Forest Service scientists continue work with the Lincoln National Forest

    Science.gov (United States)

    Todd A. Rawlinson

    2010-01-01

    The Rocky Mountain Research Station (RMRS) is studying the effects of fuels reduction treatments on Mexican Spotted Owls and their prey in the Sacramento Mountains of New Mexico. One challenge facing Forest Service managers is that much of the landscape is dominated by overstocked stands resulting from years of fire suppression.

  9. Behaviour-Changing Ingredients in Soft Drinks: An Experiment Developed by School Children in Partnership with a Research Scientist

    Science.gov (United States)

    Judge, Sarah; Delgaty, Laura; Broughton, Mark; Dyter, Laura; Grimes, Callum; Metcalf, James; Nicholson, Rose; Pennock, Erin; Jankowski, Karl

    2017-01-01

    A team of six children (13-14 years old) developed and conducted an experiment to assess the behaviour of the planarian flatworm, an invertebrate animal model, before, during and after exposure to chemicals. The aim of the project was to engage children in pharmacology and toxicology research. First, the concept that exposure to chemicals can…

  10. The Value of Applied Research: Retrieval Practice Improves Classroom Learning and Recommendations from a Teacher, a Principal, and a Scientist

    Science.gov (United States)

    Agarwal, Pooja K.; Bain, Patrice M.; Chamberlain, Roger W.

    2012-01-01

    Over the course of a 5-year applied research project with more than 1,400 middle school students, evidence from a number of studies revealed that retrieval practice in authentic classroom settings improves long-term learning (Agarwal et al. 2009; McDaniel et al., "Journal of Educational Psychology" 103:399-414, 2011; McDaniel et al.…

  11. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Results are reported from pilot surveys on the use of scientific and technical information (STI) by U.S. and NATO-nation aerospace scientists and engineers, undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. The survey procedures and the demographic characteristics of the 67 scientists and engineers who responded to the survey are summarized, and the results are presented in a series of tables and discussed in detail. Findings emphasized include: (1) both U.S. and NATO respondents spend around 60 percent of their work week producing or using STI products; (2) NATO respondents are more likely than their U.S. counterparts to use 'formal' STI products (like technical reports and papers) and the services of librarians and online data bases; (3) most of the respondents use computers and information technology in preparing STI products; and (4) respondents who had taken courses in technical communication agreed on the value and ideal subject matter of such courses.

  12. Mentoring, Training, and Scholarly Productivity Experiences of Cancer-Related Health Disparities Research Trainees: Do Outcomes Differ for Underrepresented Scientists?

    Science.gov (United States)

    Felder, Tisha M; Braun, Kathryn L; Wigfall, Lisa; Sevoyan, Maria; Vyas, Shraddha; Khan, Samira; Brandt, Heather M; Rogers, Charles; Tanjasiri, Sora; Armstead, Cheryl A; Hébert, James R

    2018-02-12

    The study aims to explore variation in scholarly productivity outcomes by underrepresented status among a diverse sample of researchers in a community-engaged training program. We identified 141 trainees from a web-based survey of researchers in the National Cancer Institute-funded, Community Networks Program Centers (CNPCs) (2011-2016). We conducted a series of multiple logistic regression models to estimate the effect of National Institutes of Health (NIH)-defined underrepresented status on four, self-reported, scholarly productivity outcomes in the previous 5 years: number of publications (first-authored and total) and funded grants (NIH and any agency). Sixty-five percent (n = 92) indicated NIH underrepresented status. In final adjusted models, non-NIH underrepresented (vs. underrepresented) trainees reported an increased odds of having more than the median number of total publications (> 9) (OR = 3.14, 95% CI 1.21-8.65) and any grant funding (OR = 5.10, 95% CI 1.77-14.65). Reporting ≥ 1 mentors (vs. none) was also positively associated (p < 0.05) with these outcomes. The CNPC underrepresented trainees had similar success in first-authored publications and NIH funding as non-underrepresented trainees, but not total publications and grants. Examining trainees' mentoring experiences over time in relation to scholarly productivity outcomes is needed.

  13. American Indian and Indigenous Geoscience Program: Ensuring the Evolution of Diverse STEM Scientists and Researchers in the 21st Century and Beyond

    Science.gov (United States)

    Bolman, J. R.

    2013-05-01

    Have you ever been lost? Knowing where you want to go yet unsure how to get there? In today's contemporary society you deploy the use of a navigator or navigation system. This is also one component of a cultural geoscience program in ensuring diverse students complete with excellence and success their route to research and education. The critical components of a cultural geoscience program and the role of cultural mentors are broad and the opportunity to expand one's own personal and professional success in science and society is immense. There remains a critical need and challenge to increase the representation of underrepresented people in the sciences. To address this challenge a navigational geoscience program approach was developed centered on the incorporation of traditional knowledge into modern research and education. The approach incorporates defining cultural/personal choices for a STEM vocation, developing science research with a "purpose", and refining leadership. The program model incorporates a mentor's personal oral histories and experiences in education, research and life. The goal is to ensure the next generation of scientists and researchers are more diverse, highly educated, experienced and leadership orientated by the time they complete STEM programs - then by the time they are our age, have our level of education and experience.

  14. The Navigator: Role of the Cultural Mentor in Ensuring the Evolution of Diverse STEM Scientists and Researchers in the 21st Century and Beyond.

    Science.gov (United States)

    Bolman, J. R.

    2012-12-01

    Have you ever been lost? Knowing where you want to go yet unsure how to get there? In today's contemporary society you deploy the use of a navigator or navigation system. This is also one role of the cultural mentor in ensuring diverse students complete with excellence and success their route to research and education. The responsibilities of the cultural mentor are broad and the opportunity to expand one's own personal and professional success in science and society is immense. There remains a critical need and challenge to increase the representation of underrepresented people in the sciences. To address this challenge a navigational mentoring approach was developed centered on the incorporation of traditional knowledge into modern research and education. The approach incorporates defining cultural/personal choices for a STEM vocation, developing science research with a "purpose", and refining leadership. The model incorporates a mentor's personal oral histories and experiences in education, research and life. The goal is to ensure the next generation of scientists and researchers are more diverse, highly educated, experienced and leadership orientated by the time they complete STEM programs - then by the time they are our age, have our level of education and experience.

  15. The Biology of Aging: Citizen Scientists and Their Pets as a Bridge Between Research on Model Organisms and Human Subjects.

    Science.gov (United States)

    Kaeberlein, M

    2016-03-01

    A fundamental goal of research into the basic mechanisms of aging is to develop translational strategies that improve human health by delaying the onset and progression of age-related pathology. Several interventions have been discovered that increase life span in invertebrate organisms, some of which have similar effects in mice. These include dietary restriction and inhibition of the mechanistic target of rapamycin by treatment with rapamycin. Key challenges moving forward will be to assess the extent to which these and other interventions improve healthy longevity and increase life span in mice and to develop practical strategies for extending this work to the clinic. Companion animals may provide an optimal intermediate between laboratory models and humans. By improving healthy longevity in companion animals, important insights will be gained regarding human aging while improving the quality of life for people and their pets. © The Author(s) 2015.

  16. Field-Based Teacher Research: How Teachers and Scientists Working Together Answers Questions about Turtle Nesting Ecology while Enhancing Teachers' Inquiry Skills

    Science.gov (United States)

    Winters, J. M.; Jungblut, D.; Catena, A. N.; Rubenstein, D. I.

    2013-12-01

    Providing rigorous academic supplement to a professional development program for teachers, QUEST is a fusion of Drexel University's environmental science research department with Princeton University's Program in Teacher Preparation. Completed in the summers of 2012 (in partnership with Earthwatch) and 2013 in Barnegat Bay, New Jersey, QUEST's terrapin field research program enhances K-12 teachers' ecological knowledge, develops inquiry-based thinking in the classroom, and builds citizen science engagement. With a focus on quality question development and data analysis to answer questions, teachers are coached in developing, implementing, and presenting independent research projects on diamondback terrapin nesting ecology. As a result, teachers participating in QUEST's week long program bring a realistic example of science in action into their classrooms, helping to develop their own students' critical thinking skills. For teachers, this program provides training towards educating students on how to do real and imaginative science - subsequently sending students to university better prepared to engage in their own independent research. An essential component of the collaboration through QUEST, in addition to the teacher's experience during and after the summer institute, is the research data collected which supplements that of the Principal Investigator. In 2012, by documenting terrapin nest site predators, teachers gained valuable scientific experience, while Drexel acquired important ecological data which would have not been able to be collected otherwise. In 2013, teachers helped answer important questions about terrapin nesting success post Superstorm Sandy. In fact, the 2013 QUEST teachers are the first to visualize the frighteningly increased erosion of a primary terrapin nesting site due to Sandy; showing how most terrapin nests now lie in the bay, instead of safe on shore. Teachers comment that interacting with scientists in the field, and contributing to

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 11: The Voice of the User: How US Aerospace Engineers and Scientists View DoD Technical Reports

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.

    1991-01-01

    The project examines how the results of NASA/DOD research diffuse into the aerospace R&D process, and empirically analyzes the implications of the aerospace knowledge diffusion process. Specific issues considered are the roles played by government technical reports, the recognition of the value of scientific and technical information (STI), and the optimization of the STI aerospace transfer system. Information-seeking habits are assessed for the U.S. aerospace community, the general community, the academic sector, and the international community. U.S. aerospace engineers and scientists use 65 percent of working time to communicate STI, and prefer 'internal' STI over 'external' STI. The isolation from 'external' information is found to be detrimental to U.S. aerospace R&D in general.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 13: Source selection and information use by US aerospace engineers and scientists: Results of a telephone survey

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Nanci A.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists belonging to the Society of Automotive Engineers (SAE) was conducted between December 4, 1991 and January 5, 1992. The survey was undertaken to (1) validate the telephone survey as an appropriate technique for collecting data from U.S. aerospace engineers and scientists; (2) collect information about how the results of NASA/DoD aerospace research are used in the R&D process; (3) identify those selection criteria which affect the use of federally-funded aerospace R&D; and (4) obtain information that could be used to develop a self-administered mail questionnaire for use with the same population. The average rating of importance of U.S. government technical reports was 2.5 (on a 4-point scale); The mean/median number of times U.S. government technical reports were used per 6 months was 8/2. Factors scoring highest for U.S. government technical reports were technical accuracy (2.9), reliable data and technical information (2.8), and contains comprehensive data and information (2.7) on a 4-point system. The factors scoring highest for influencing the use of U.S. government technical reports were relevance (3.1), technical accuracy (3.06), and reliable data/information (3.02). Ease of use, familiarity, technical accuracy, and relevance correlated with use of U.S. government technical reports. Survey demographics, survey questionnaire, and the NASA/DoD Aerospace Knowledge Diffusion Research Project publications list are included.

  19. An Earth System Scientist Network for Student and Scientist Partnerships

    Science.gov (United States)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative

  20. The Community Mentorship Program: Providing Community-Engagement Opportunities for Early-Stage Clinical and Translational Scientists to Facilitate Research Translation.

    Science.gov (United States)

    Patino, Cecilia M; Kubicek, Katrina; Robles, Marisela; Kiger, Holly; Dzekov, Jeanne

    2017-02-01

    A goal of the Southern California Clinical and Translational Science Institute (SC-CTSI) at the University of Southern California and Children's Hospital Los Angeles is to train early-stage clinical and translational scientists (CTSs) to conduct research that improves the health of diverse communities. This goal aligns well with the Institute of Medicine's recommendations emphasizing community engagement in biomedical research that facilitates research translation. The Community Mentorship Program (CMP), created to complement community-engaged research didactics, matches CTSs with community mentors who help them identify and complete community-engaged experiences that inform their research. The CMP was piloted in 2013-2015 by the SC-CTSI Workforce Development and Community Engagement cores. The CMP team matched three CTSs (assistant professors pursuing mentored career development awards) with mentors at community-based organizations (CBOs) aligned with their research interests. Each mentor-mentee pair signed a memorandum of understanding. The CMP team checked in regularly, monitoring progress and addressing challenges in CTSs' completion of their community-engaged experience. Each pair completed at least one community-engaged activity informing the CTS's research. In exit interviews, the CTSs and CBO mentors expressed satisfaction with the program and stated that they would continue to work together. The CTSs reported that the program provided opportunities to develop networks outside academia, build trust within the community, and receive feedback and learn from individuals in communities affected by their research. The CMP will be expanded to include all eligible early-career CTSs and promoted for use in similar settings outside the SC-CTSI.

  1. Drawings of Scientists

    Science.gov (United States)

    experiment can be reduplicated. He/she must check and double-check all of his/her work. A scientist is very , environment, nutrition, and other aspects of our daily and future life." . . . Marisa The scientists

  2. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... Scientists Must Speak: Bringing Presentations to Life helps readers do just that. At some point in their careers, the majority of scientists have to stand up in front of an inquisitive audience or board and present information...

  3. Ernest Rutherford: scientist supreme

    International Nuclear Information System (INIS)

    Campbell, J.

    1998-01-01

    One hundred years ago this month, Ernest Rutherford a talented young New Zealander who had just spent three years as a postgraduate student in Britain left for Canada, where he was to do the work that won him a Nobel prize. All three countries can justifiably claim this great scientist as their own. Ernest Rutherford is one of the most illustrious scientists that the world has ever seen. He achieved enduring international fame because of an incredibly productive life, during which he altered our view of nature on three separate occasions. Combining brilliantly conceived experiments with much hard work and special insight, he explained the perplexing problem of naturally occurring radioactivity, determined the structure of the atom, and was the world's first successful alchemist, changing nitrogen into oxygen. Rutherford received a Nobel prize for the first discovery, but the other two would have been equally worthy candidates, had they been discovered by someone else. Indeed, any one of his other secondary achievements many of which are now almost forgotten would have been enough to bring fame to a lesser scientist. For example, he invented an electrical method for detecting individual ionizing radiations, he dated the age of the Earth, and briefly held the world record for the distance over which wireless waves could be detected. He predicted the existence of neutrons, he oversaw the development of large-scale particle accelerators, and, during the First World War, he led the allied research into the detection of submarines. In this article the author describes the life and times of Ernest Rutherford. (UK)

  4. Python for scientists

    CERN Document Server

    Stewart, John M

    2017-01-01

    Scientific Python is a significant public domain alternative to expensive proprietary software packages. This book teaches from scratch everything the working scientist needs to know using copious, downloadable, useful and adaptable code snippets. Readers will discover how easy it is to implement and test non-trivial mathematical algorithms and will be guided through the many freely available add-on modules. A range of examples, relevant to many different fields, illustrate the language's capabilities. The author also shows how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code. In this new edition, several chapters have been re-written to reflect the IPython notebook style. With an extended index, an entirely new chapter discussing SymPy and a substantial increase in the number of code snippets, researchers and research students will be able to quickly acquire all the skills needed for using Python effectively.

  5. Do scientists trace hot topics?

    Science.gov (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 34: How early career-stage US aerospace engineers and scientists produce and use information

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the production and use of information by U.S. aerospace engineers and scientists who had changed their American Institute of Aeronautics and Astronautics (AIAA) membership from student to professional in the past five years.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 24: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SAE mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists affiliated with the Society of Automotive Engineers (SAE).

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 33: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 AIAA mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who are members of the American Institute of Aeronautics and Astronautics (AIAA).

  9. Collaboration between research scientists and educators in implementation of a Masters program for training new Earth Science teachers in New York State

    Science.gov (United States)

    Nadeau, P. A.; Flores, K. E.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.; Kinzler, R. J.; Macdonald, M.; Mathez, E. A.; Mac Low, M.

    2012-12-01

    Educators and research scientists at the American Museum of Natural History are collaborating to implement a teacher education program with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State (NYS), particularly in high-needs schools with diverse populations. This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City. By placing teaching candidates in such schools, the project has potential to engage, motivate, and improve Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The museum is in a unique position of being able to break traditional educational barriers as a result of a long history of interdisciplinary collaborations between educators and research scientists, as well as being the only stand-alone science graduate degree-granting museum in the United States. The intensive 15-month curriculum for MAT candidates comprises one summer of museum teaching residency, a full academic year of residency in high-needs public schools, one summer of science research residency, and concurrent graduate-level courses in Earth and space sciences, pedagogy, and adolescent psychology. We emphasize field-based geological studies and experiential learning, in contrast to many traditional teacher education programs. In an effort to ensure that MAT candidates have a robust knowledge base in Earth science, and per NYS Department of Education requirements, we selected candidates with strong

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1: The value of scientific and technical information (STI), its relationship to Research and Development (R/D), and its use by US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Glassman, Myron; Oliu, Walter E.

    1990-01-01

    This paper is based on the premise that scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace research and development (R&D) process are related. We intend to support this premise with data gathered from numerous studies concerned with STI, the relationship of STI to the performance and management of R&D activities, and the information use and seeking behavior of engineers in general and aerospace engineers and scientists in particular. We intend to develop and present a synthesized appreciation of how aerospace R&D managers can improve the efficacy of the R&D process by understanding the role and value of STI in this process.

  12. Scientists and Classroom Teachers Working Together, a Win-win Scenario Demonstrated Over a Ten Year Period of Collaboration Through Arctic Research

    Science.gov (United States)

    Carvellas, B.; Grebmeier, J. M.; Cooper, L. W.

    2016-02-01

    From 2002-2012 NSF and NOAA have supported a Vermont high school biology teacher to work with Dr. Jackie Grebmeier on 8 research cruises to the Arctic. Not only was the teacher embedded in Dr. Grebmeier's research team efforts, but her students were able to follow the work on board through her daily journals and photos. Subsequently, Dr. Grebmeier traveled to Vermont for a personal visit to students in multiple classes, grades 4-12. The opportunity for teachers to be teamed with a researcher, especially over an extended period of time as we will discuss in our presentation, allows their students to share in the tremendous learning experience and gain a deeper understanding of the interdisciplinary nature of science. The result is that the students begin to understand how the content they learn in the classroom is utilized in a real world setting. We will also discuss the more subtle benefits that occurred throughout the school year through connecting academic content with personal examples of "real" science. Note that the recently released Next Generation Science Standards (NGSS), when fully implemented, will change the way students learn science. Appendix A of the NGSS lists 7 Conceptual Shifts in these new standards. #1 states "K-12 Science Education Should Reflect the Interconnected Nature of Science as it is Practiced and Experienced in the Real World" and #4 calls for a "Focus on Deeper Understanding of Content as well as Application of Content." What better way to address the standards than bringing real world science research into the classroom? Many K-12 science teachers, particularly those in elementary classrooms, have never had the opportunity to pursue their own research and even fewer have experienced first hand the real world work of a research scientist. This presentation will provide insights about our successful collaboration and value-added aspects to enhance the educational experience.

  13. The Local-Cosmopolitan Scientist

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, Ph.D., Hon. Ph.D.

    2011-12-01

    Full Text Available In contrast to previous discussions in the literature treating cosmopolitan and local as two distinct groups of scientists, this paperi demonstrates the notion of cosmopolitan and local as a dual orientation of highly motivated scientists. This dual orientation is derived from institutional motivation, which is a determinant of both high quality basic research and accomplishment of non-research organizational activities. The dual orientation arises in a context of similarity of the institutional goal of science with the goal of the organization; the distinction between groups of locals and cosmopolitans derives from a conflict between two goals.

  14. WFIRST CGI Adjutant Scientist

    Science.gov (United States)

    Kasdin, N.

    One of the most exciting developments in exoplanet science is the inclusion of a coronagraph instrument on WFIRST. After more than 20 years of research and development on coronagraphy and wavefront control, the technology is ready for a demonstration in space and to be used for revolutionary science. Good progress has already been made at JPL and partner institutions on the coronagraph technology and instrument design and test. The next five years as we enter Phase A will be critical for raising the TRL of the coronagraph to the needed level for flight and for converging on a design that is robust, low risk, and meets the science requirements. In addition, there is growing excitement over the possibility of rendezvousing an occulter with WFIRST/AFTA as a separate mission; this would both demonstrate that important technology and potentially dramatically enhance the science reach, introducing the possibility of imaging Earth-like planets in the habitable zone of nearby stars. In this proposal I will be applying for the Coronagraph Adjutant Scientist (CAS) position. I bring to the position the background and skills needed to be an effective liaison between the project office, the instrument team, and the Science Investigation Team (SIT). My background in systems engineering before coming to Princeton (I was Chief Systems Engineer for the Gravity Probe-B mission) and my 15 years of working closely with NASA on both coronagraph and occulter technology make me well-suited to the role. I have been a lead coronagraph scientist for the WFIRST mission from the beginning, including as a member of the SDT. Together with JPL and NASA HQ, I helped organize the process for selecting the coronagraphs for the CGI, one of which, the shaped pupil, has been developed in my lab. All of the key algorithms for wavefront control (including EFC and Stroke Minimization) were originally developed by students or post-docs in my lab at Princeton. I am thus in a unique position to work with

  15. Professional Ethics for Climate Scientists

    Science.gov (United States)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  16. Voices of Romanian scientists

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    As Romania has now become a Member State of CERN, Romanian scientists share their thoughts about this new era of partnership for their community.   Members of ATLAS from Romanian institutes at CERN (from left to right): Dan Ciubotaru, Michele Renda, Bogdan Blidaru, Alexandra Tudorache, Marina Rotaru, Ana Dumitriu, Valentina Tudorache, Adam Jinaru, Calin Alexa. On 17 July 2016, Romania became the twenty-second Member State of CERN, 25 years after the first cooperation agreement with the country was signed. “CERN and Romania already have a long history of strong collaboration”, says Emmanuel Tsesmelis, head of Relations with Associate Members and Non-Member States. “We very much look forward to strengthening this collaboration as Romania becomes CERN’s twenty-second Member State, which promises the development of mutual interests in scientific research, related technologies and education,” he affirms. Romania&...

  17. "The Oceans" not Withstanding: Scripps Geological-Geophysical Expeditions of the Golden Age

    Science.gov (United States)

    Fisher, R. L.

    2002-12-01

    "The Oceans: Their Physics, Chemistry, and General Biology," fully recognized and promoted the inherent unity of oceanography, the field itself, and of all components of the oceanic world. It covered well the wet pieces. However, except for sedimentary studies of the California borderland and reconnaissances of the Arctic, Mediterranean, and the South Atlantic, little was presented that could be parent to today's portrayals of marine geology and geophysics. The advances in those areas in the 1950's, 1960's, and early 1970's, by SIO scientists and those of several other institutions resulted from extended expeditionary studies, essential on-the-job field training of confident very young chief scientists, dogged pushing of traditional rough sampling methods to their limits, and the invention and lateral prompt application of precise electronic timing and sensing devices to shipboard observation of deep ocean seafloor/crustal elements. SIO's multifaceted expeditions of those years were conceived, planned and often lead by graduate students making thesis observations, assisted by their fellows as "warm bodies," perhaps with more senior staff scientists making specific collections at key localities. Education was real-time: discovering--reflection--discussion, and mutual tutoring. The principal factor that made such operation scientifically and educationally successful was SIO's then Director, Roger Revelle, a benevolent and trusting, but very perceptive, godfather.

  18. Online Discovery and Mapping of Great Lakes Climate Change Education and Scientific Research Activities: Building an Online Collaborative Learning Community of Scientists and Educators

    Science.gov (United States)

    Tuddenham, P.; Bishop, K.; Walters, H.; Carley, S.

    2011-12-01

    The Great Lakes Climate Change Science and Education Systemic Network (GLCCSESN) project is an NSF-funded CCEP program awarded to Eastern Michigan University in 2010. The College of Exploration is one of the project partners and has conducted a series of online surveys, workshop and focus group to identify a wide range of organizations, individuals, resources and needs related to climate change education and research activities in and about the Great Lakes Region and to provide information about climate change science to the education community. One of the first steps taken to build this community was to build a web site that features a dynamic online map of individuals and organizations concerned about climate change as well as interested in resources and activities specific to the Great Lakes. Individuals and organizations have been, and are still, invited to put themselves on the map at http://greatlakesclimate.org This map of the Great Lakes region provides both a visual representation of activities and resources as well as a database of climate change activities. This map will grow over time as more people and organizations put themselves on the map. The use of online technologies has helped broaden the participation and representation in the GLCCSESN from all states/provinces in the Great Lakes region, encouraging diverse audiences and stakeholders, including scientists, educators, and journalists, etc.to engage with the project. In the fall of 2011 a combined online professional development workshop and focus group is planned. Educators and scientists working on climate change studies and issues related to the Great Lakes will be sharing their work and expertise in an online workshop and focus group. Following the professional development activity a focus group will be conducted online using a model developed as part of a NSF funded COSEE project. The focus group purpose is to review current educational resources and to identify gaps and needs for further

  19. Differences in research funding for women scientists: a systematic comparison of UK investments in global infectious disease research during 1997-2010.

    Science.gov (United States)

    Head, Michael G; Fitchett, Joseph R; Cooke, Mary K; Wurie, Fatima B; Atun, Rifat

    2013-12-09

    There has not previously been a systematic comparison of awards for research funding in infectious diseases by sex. We investigated funding awards to UK institutions for all infectious disease research from 1997 to 2010, across disease categories and along the research and development continuum. Systematic comparison. Data were obtained from several sources for awards from the period 1997 to 2010 and each study assigned to-disease categories; type of science (preclinical, phases I-III trials, product development, implementation research); categories of funding organisation. Fold differences and statistical analysis were used to compare total investment, study numbers, mean grant and median grant between men and women. 6052 studies were included in the final analysis, comprising 4357 grants (72%) awarded to men and 1695 grants (28%) awarded to women, totalling £2.274 billion. Of this, men received £1.786 billion (78.5%) and women £488 million (21.5%). The median value of award was greater for men (£179 389; IQR £59 146-£371 977) than women (£125 556; IQR £30 982-£261 834). Awards were greater for male principal investigators (PIs) across all infectious disease systems, excepting neurological infections and sexually transmitted infections. The proportion of total funding awarded to women ranged from 14.3% in 1998 to 26.8% in 2009 (mean 21.4%), and was lowest for preclinical research at 18.2% (£285.5 million of £1.573 billion) and highest for operational research at 30.9% (£151.4 million of £489.7 million). There are consistent differences in funding received by men and women PIs: women have fewer funded studies and receive less funding in absolute and in relative terms; the median funding awarded to women is lower across most infectious disease areas, by funder, and type of science. These differences remain broadly unchanged over the 14-year study period.

  20. Young Scientist Wetenschapskalender 2018

    NARCIS (Netherlands)

    van Dalen-Oskam, K.H.; van Zundert, Joris J.; Koolen, Corina

    2017-01-01

    Bijdragen scheurkalender Young Scientist Wetenschapskalender 2018. Karina van Dalen-Oskam, Belangrijk woord: Wat is het belangrijkste woord in de Nederlandse taal? In: Young Scientist Wetenschapskalender 2018, 1 september Corina Koolen, Op naar het boekenbal: Hoe wordt je beroemd als schrijver? In:

  1. Science Translational Medicine – improving human health care worldwide by providing an interdisciplinary forum for idea exchange between basic scientists and clinical research practitioners

    Directory of Open Access Journals (Sweden)

    Forsythe, Katherine

    2010-09-01

    Full Text Available Science Translational Medicine’s mission is to improve human health care worldwide by providing a forum for communication and interdisciplinary idea exchange between basic scientists and clinical research practitioners from all relevant established and emerging disciplines. The weekly journal debuted in October 2009 and is published by the American Association for the Advancement of Science (AAAS, the publisher of Science and Science Signaling. The journal features peer-reviewed research articles, perspectives and commentary, and is guided by an international Advisory Board, led by Chief Scientific Adviser, Elias A. Zerhouni, M.D., former Director of the National Institutes of Health, and Senior Scientific Adviser, Elazer R. Edelman, M.D., Ph.D., Thomas D. and Virginia W. Cabot Professor of Health Sciences and Technology, Massachusetts Institute of Technology. The Science Translational Medicine editorial team is led by Katrina L. Kelner, Ph.D., AAAS. A profound transition is required for the science of translational medicine. Despite 50 years of advances in our fundamental understanding of human biology and the emergence of powerful new technologies, the rapid transformation of this knowledge into effective health measures is not keeping pace with the challenges of global health care. Creative experimental approaches, novel technologies, and new ways of conducting scientific explorations at the interface of established and emerging disciplines are now required to an unprecedented degree if real progress is to be made. To aid in this reinvention, Science and AAAS have created a new interdisciplinary journal, Science Translational Medicine. The following interview exemplefies the pioneering content found in Science Translational Medicine. It is an excerpt from a Podcast interview with Dr. Samuel Broder, former director of the National Cancer Institute and current Chief Medical Officer at Celera. The Podcast was produced in tangent with Dr

  2. Meet EPA Physical Scientist Lukas Oudejans

    Science.gov (United States)

    Lukas Oudejans, Ph.D. is a physical scientist working in EPA’s National Homeland Security Research Center. His research focuses on preparing cleanup options for the agency following a disaster incident.

  3. CGH Short Term Scientist Exchange Program (STSEP)

    Science.gov (United States)

    STSEP promotes collaborative research between established U.S. and foreign scientists from low, middle, and upper-middle income countries (LMICs) by supporting, in part, exchange visits of cancer researchers between U.S. and foreign laboratories.

  4. The State of Young Scholars and Scientists in Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... career decisions and research performance of young scientists in higher education, ... progression Researchers will examine the supporting and limiting factors. ... They will work with scientists, government agencies, and higher education ...

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  6. Physical trajectory profile data from glider sp011 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-11-05 to 2016-02-18 (NCEI Accession 0145664)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  7. Physical trajectory profile data from glider sp025 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-03-10 to 2016-06-28 (NCEI Accession 0155280)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  8. Physical trajectory profile data from glider sp064 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-05-17 to 2016-08-23 (NCEI Accession 0156410)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  9. Physical trajectory profile data from glider sp050 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2016-03-30 to 2016-07-20 (NCEI Accession 0155979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  10. Physical trajectory profile data from glider sp064 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-10-30 to 2016-02-03 (NCEI Accession 0145715)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  11. Physical trajectory profile data from glider sp025 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-09-13 to 2016-12-14 (NCEI Accession 0157580)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  12. Physical trajectory profile data from glider sp056 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2017-03-29 to 2017-07-01 (NCEI Accession 0164292)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group. (This deployment supported by NOAA.) The National Centers for...

  13. Physical trajectory profile data from glider sp039 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-01-22 to 2015-07-16 (NCEI Accession 0138033)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  14. Physical trajectory profile data from glider sp030 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-01-09 to 2015-04-27 (NCEI Accession 0137984)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  15. Physical trajectory profile data from glider sp035 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-03-31 to 2015-07-16 (NCEI Accession 0138032)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  16. Physical trajectory profile data from glider sp011 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-05-01 to 2014-08-13 (NCEI Accession 0137974)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  17. Physical trajectory profile data from glider sp001 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2015-01-12 to 2015-04-08 (NCEI Accession 0137973)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  18. Physical trajectory profile data from glider sp063 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-02-03 to 2016-05-17 (NCEI Accession 0153552)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  19. Physical trajectory profile data from glider sp063 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-09-15 to 2014-11-04 (NCEI Accession 0137991)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  20. Physical trajectory profile data from glider sp052 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-08-14 to 2015-01-09 (NCEI Accession 0137990)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  1. Physical trajectory profile data from glider sp050 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2015-02-06 to 2015-05-14 (NCEI Accession 0137988)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  2. Physical trajectory profile data from glider sp018 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2014-06-10 to 2014-09-21 (NCEI Accession 0138030)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  3. Physical trajectory profile data from glider sp053 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2015-08-29 to 2015-12-13 (NCEI Accession 0145713)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  4. Physical trajectory profile data from glider sp011 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-11-30 to 2017-03-14 (NCEI Accession 0162197)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  5. Physical trajectory profile data from glider sp028 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-08-17 to 2016-09-16 (NCEI Accession 0156601)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  6. Physical trajectory profile data from glider sp031 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2015-09-10 to 2015-12-16 (NCEI Accession 0145667)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  7. Physical trajectory profile data from glider sp025 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-11-25 to 2014-11-27 (NCEI Accession 0137979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  8. Physical trajectory profile data from glider sp039 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-02-18 to 2016-09-06 (NCEI Accession 0156570)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  9. Physical trajectory profile data from glider sp028 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-11-24 to 2016-03-10 (NCEI Accession 0145666)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  10. Physical trajectory profile data from glider sp028 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-06-28 to 2016-08-23 (NCEI Accession 0156400)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  11. Physical trajectory profile data from glider sp025 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-08-13 to 2015-11-18 (NCEI Accession 0145665)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  12. Physical trajectory profile data from glider sp025 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-06-11 to 2014-09-15 (NCEI Accession 0137978)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  13. Physical trajectory profile data from glider sp053 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2016-07-20 to 2016-10-20 (NCEI Accession 0156796)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  14. Physical trajectory profile data from glider sp041 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-09-08 to 2016-12-14 (NCEI Accession 0157607)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  15. Physical trajectory profile data from glider sp042 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2016-11-04 to 2017-02-23 (NCEI Accession 0161310)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  16. Physical trajectory profile data from glider sp052 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-07-28 to 2016-02-18 (NCEI Accession 0145670)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  17. Physical trajectory profile data from glider sp064 deployed by University of California - San Diego; Scripps Institution of Oceanography in the |Coastal Waters of California from 2016-12-14 to 2017-03-29 (NCEI Accession 0162258)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  18. Physical trajectory profile data from glider sp024 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2017-01-30 to 2017-05-08 (NCEI Accession 0162888)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group. (This deployment supported by NOAA.) The National Centers for...

  19. Physical trajectory profile data from glider sp028 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-12-14 to 2017-03-28 (NCEI Accession 0162257)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  20. Physical trajectory profile data from glider sp001 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2016-08-15 to 2016-11-16 (NCEI Accession 0157002)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  1. Physical trajectory profile data from glider sp026 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2017-04-20 to 2017-07-31 (NCEI Accession 0164709)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group. (This deployment supported by NOAA.) The National Centers for...

  2. Physical trajectory profile data from glider sp054 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-03-17 to 2016-10-11 (NCEI Accession 0156772)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  3. Physical trajectory profile data from glider sp030 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-02-18 to 2016-06-02 (NCEI Accession 0153551)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  4. Physical trajectory profile data from glider sp055 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2017-03-14 to 2017-06-28 (NCEI Accession 0163867)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group. (This deployment supported by NOAA.) The National Centers for...

  5. Physical trajectory profile data from glider sp052 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-09-06 to 2017-03-14 (NCEI Accession 0162198)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  6. Physical trajectory profile data from glider sp030 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2017-04-05 to 2017-07-11 (NCEI Accession 0164208)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group. (This deployment supported by NOAA.) The National Centers for...

  7. Physical trajectory profile data from glider sp025 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2017-03-28 to 2017-07-11 (NCEI Accession 0164207)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group. (This deployment supported by NOAA.) The National Centers for...

  8. Physical trajectory profile data from glider sp049 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2017-05-18 to 2017-08-24 (NCEI Accession 0165396)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group. (This deployment supported by NOAA.) The National Centers for...

  9. Physical trajectory profile data from glider sp030 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-09-06 to 2016-11-30 (NCEI Accession 0157115)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  10. Physical trajectory profile data from glider sp011 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-06-02 to 2016-09-06 (NCEI Accession 0156569)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  11. Physical trajectory profile data from glider sp006 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2015-12-14 to 2016-03-30 (NCEI Accession 0153787)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  12. Physical trajectory profile data from glider sp028 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-06-05 to 2014-09-05 (NCEI Accession 0137981)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  13. Physical trajectory profile data from glider sp047 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-08-27 to 2016-03-17 (NCEI Accession 0145668)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  14. Physical trajectory profile data from glider sp027 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2015-06-16 to 2015-09-23 (NCEI Accession 0145712)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  15. Physical trajectory profile data from glider sp011 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-09-23 to 2015-01-09 (NCEI Accession 0137975)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  16. Physical trajectory profile data from glider sp063 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-08-23 to 2016-08-28 (NCEI Accession 0156530)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  17. Physical trajectory profile data from glider sp011 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-04-27 to 2015-08-13 (NCEI Accession 0137976)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  18. Physical trajectory profile data from glider sp030 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-08-13 to 2014-11-25 (NCEI Accession 0137983)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  19. Physical trajectory profile data from glider sp040 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-04-09 to 2015-07-14 (NCEI Accession 0138034)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  20. Physical trajectory profile data from glider sp051 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-11-12 to 2015-01-08 (NCEI Accession 0137989)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  1. Physical trajectory profile data from glider sp020 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2015-12-16 to 2016-03-30 (NCEI Accession 0153550)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  2. Physical trajectory profile data from glider sp048 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-01-27 to 2015-08-27 (NCEI Accession 0145669)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  3. Physical trajectory profile data from glider sp025 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-01-08 to 2015-04-09 (NCEI Accession 0137980)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  4. Physical trajectory profile data from glider sp048 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-01-16 to 2014-07-29 (NCEI Accession 0138035)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  5. Physical trajectory profile data from glider sp047 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-06-23 to 2015-01-22 (NCEI Accession 0137987)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  6. Physical trajectory profile data from glider sp020 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2014-08-03 to 2014-12-12 (NCEI Accession 0137977)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  7. Physical trajectory profile data from glider sp031 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2014-04-12 to 2014-08-02 (NCEI Accession 0138031)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  8. Physical trajectory profile data from glider sp018 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2016-02-18 to 2016-05-28 (NCEI Accession 0153549)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  9. Physical trajectory profile data from glider sp049 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-04-05 to 2016-06-02 (NCEI Accession 0153788)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  10. Tens of Romanian scientists work at CERN

    CERN Multimedia

    Silian, Sidonia

    2007-01-01

    "The figures regarding the actual number of Romanian scientists working at the European Center for Nuclear Research, or CERN, differ. The CERN data base lists some 30 Romanians on its payroll, while the scientists with the Nuclear Center at Magurele, Romania, say they should be around 50." (1 page)

  11. How Middle Schoolers Draw Engineers and Scientists

    Science.gov (United States)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  12. Scientists planning new internet

    CERN Multimedia

    Cookson, C

    2000-01-01

    British scientists are preparing to build the next generation internet - 'The Grid'. The government is expected to announce about 100 million pounds of funding for the project, to be done in collaboration with CERN (1/2 p).

  13. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... This can be a stressful experience for many. For scientists, the experience may be further complicated by the specialist nature of the data and the fact that most self-help books are aimed at business or social situations...

  14. Scientists vs. the administration

    CERN Multimedia

    2004-01-01

    Article denouncing the supposed impartiality of signatories of a report released by the Union of Concerned Scientists (UCS), which accused the Bush administration of systemically suborning objective science to a political agenda (1 page).

  15. The Celebrity Scientists

    OpenAIRE

    Fahy, Declan

    2010-01-01

    This collective case study examines how four contemporary British scientists and popular science writers, Stephen Hawking, Richard Dawkins, Susan Greenfield and James Lovelock, are portrayed in mass media as celebrities. It finds that the scientists’ private and public lives merge in their representations, their images commodified and marketed by the cultural industries, their mediated personae embodying abstract ideas of truth and reason. The celebrity scientists base their authority on thei...

  16. FAIRNESS 2016 [4. workshop for young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research), Garmisch-Partenkirchen (Germany), 14-19 Feb 2016

    International Nuclear Information System (INIS)

    2016-01-01

    FAIRNESS 2016 was the fourth edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on February 14-19 2016 in Garmisch-Partenkirchen, Germany. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI facility close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. young non-tenured scientists, postdocs and advanced PhD students to present their work, to foster active informal discussions and build up networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Atomic and plasma physics, biophysics, material sciences and applications • Nuclear structure, astrophysics and reactions • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • Experimental programs APPA, CBM, HADES, PANDA, NUSTAR, as well as BES, NICA and the RHIC beam energy scan For these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2016 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that is dedicated to the

  17. New science chief must juggle missions and politics space scientists hope David Southwood can balance ESA's research with its widening interests

    CERN Multimedia

    Watson, A

    2000-01-01

    Southward, 55, will takeover next May as the European Space Agency's science director. He will need to balance the aspirations of scientist from the organisations 15 member states with calls to tie the agency more closely to the business and security industries (1 page).

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report No. 36: The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 1 NASA Langley Research Center Mail Survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.

  19. 10 September 2013 - Italian Minister for Economic Development F. Zanonato visiting the ATLAS cavern with Collaboration Spokesperson D. Charlton and Italian scientists F. Gianotti and A. Di Ciaccio; signing the guest book with CERN Director-General R. Heuer and Director for Research and Scientific Computing S. Bertolucci; in the LHC tunnel with S. Bertolucci, Technology Deputy Department Head L. Rossi and Engineering Department Head R. Saban; visiting CMS cavern with Scientists G. Rolandi and P. Checchia.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    10 September 2013 - Italian Minister for Economic Development F. Zanonato visiting the ATLAS cavern with Collaboration Spokesperson D. Charlton and Italian scientists F. Gianotti and A. Di Ciaccio; signing the guest book with CERN Director-General R. Heuer and Director for Research and Scientific Computing S. Bertolucci; in the LHC tunnel with S. Bertolucci, Technology Deputy Department Head L. Rossi and Engineering Department Head R. Saban; visiting CMS cavern with Scientists G. Rolandi and P. Checchia.

  20. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Photos and Images Spanish Language Information Grants and Funding Extramural Research Division of Extramural Science Programs Division ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety ...

  1. Marketing for scientists

    CERN Document Server

    Kuchner, Marc J

    2012-01-01

    It's a tough time to be a scientist: universities are shutting science departments, funding organisations are facing flat budgets, and many newspapers have dropped their science sections altogether. But according to Marc Kuchner, this anti-science climate doesn't have to equal a career death knell - it just means scientists have to be savvier about promoting their work and themselves. In "Marketing for Scientists", he provides clear, detailed advice about how to land a good job, win funding, and shape the public debate. As an astrophysicist at NASA, Kuchner knows that "marketing" can seem like a superficial distraction, whether your daily work is searching for new planets or seeking a cure for cancer. In fact, he argues, it's a critical component of the modern scientific endeavour, not only advancing personal careers but also society's knowledge. Kuchner approaches marketing as a science in itself. He translates theories about human interaction and sense of self into methods for building relationships - one o...

  2. Poll of radiation health scientists

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1986-01-01

    A sampling of 210 university-employed radiation health scientists randomly selected from the membership lists of the Health Physics Society and the Radiation Research Society was polled in a secret ballot. The results support the positions that the public's fear of radiation is substantially greater than realistic, that TV, newspapers and magazines substantially exaggerate the dangers of radiation, that the amount of money now being spent on radiation protection is sufficient, and that the openness and honesty of U.S. government agencies about dangers of radiation were below average before 1972 but have been above average since then. Respondents give very high credibility ratings to BEIR, UNSCEAR, ICRP, and NCRP and to the individual scientists associated with their reports, and very low credibility ratings to those who have disputed them

  3. Seven scientists advise

    International Nuclear Information System (INIS)

    1959-01-01

    The Scientific Advisory Committee of the International Atomic Energy Agency held its second series of meetings in Vienna on 4-5 June 1959. The members of the Committee are seven distinguished scientists from different countries: Dr. H.J. Bhabha (India), Sir John Cockcroft (UK), Professor V.S. Emelyanov (USSR), Dr. B. Goldschmidt (France), Dr. B. Gross (Brazil), Dr. W.B. Lewis (Canada) and Professor I.I. Rabi (USA). The function of the Committee is to provide the Director General and through him the Board of Governors with scientific and technical advice on questions relating to the Agency's activities. Subjects for consideration by the Committee can be submitted by the Director General either on his own behalf or on behalf of the Board. At its recent session, the Committee considered several aspects of the Agency's scientific programme, including the proposed conferences, symposia and seminars for 1960, scientific and technical publications, and the research contracts which had been or were to be awarded by the Agency. The programme of conferences for the current year had been approved earlier by the Board of Governors on the recommendation of the Committee. A provisional list of 17 conferences, symposia and seminars for 1960 was examined by the Committee and recommendations were made to the Director General. The Committee also examined the Agency's policy on the award of contracts for research work and studies. An important subject before the Committee was the principles and regulations for the application of Agency safeguards. Another subject considered by the Committee was the possibility of a project for an exchange of knowledge on controlled thermonuclear fusion. The Committee also examined a proposal for the determination of the world-wide distribution of hydrogen and oxygen isotopes in water. Exact information on the distribution of hydrogen and oxygen isotopes in rain, in rivers, in ground water and in oceans would be important for areas with limited water

  4. Seven scientists advise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    The Scientific Advisory Committee of the International Atomic Energy Agency held its second series of meetings in Vienna on 4-5 June 1959. The members of the Committee are seven distinguished scientists from different countries: Dr. H.J. Bhabha (India), Sir John Cockcroft (UK), Professor V.S. Emelyanov (USSR), Dr. B. Goldschmidt (France), Dr. B. Gross (Brazil), Dr. W.B. Lewis (Canada) and Professor I.I. Rabi (USA). The function of the Committee is to provide the Director General and through him the Board of Governors with scientific and technical advice on questions relating to the Agency's activities. Subjects for consideration by the Committee can be submitted by the Director General either on his own behalf or on behalf of the Board. At its recent session, the Committee considered several aspects of the Agency's scientific programme, including the proposed conferences, symposia and seminars for 1960, scientific and technical publications, and the research contracts which had been or were to be awarded by the Agency. The programme of conferences for the current year had been approved earlier by the Board of Governors on the recommendation of the Committee. A provisional list of 17 conferences, symposia and seminars for 1960 was examined by the Committee and recommendations were made to the Director General. The Committee also examined the Agency's policy on the award of contracts for research work and studies. An important subject before the Committee was the principles and regulations for the application of Agency safeguards. Another subject considered by the Committee was the possibility of a project for an exchange of knowledge on controlled thermonuclear fusion. The Committee also examined a proposal for the determination of the world-wide distribution of hydrogen and oxygen isotopes in water. Exact information on the distribution of hydrogen and oxygen isotopes in rain, in rivers, in ground water and in oceans would be important for areas with limited water

  5. Tides, Krill, Penguins, Oh My!: Scientists and Teachers Partner in Project CONVERGE to Bring Collaborative Antarctic Research, Authentic Data, and Scientific Inquiry into the Hands of NJ and NY Students

    Science.gov (United States)

    Hunter-thomson, K. I.; Kohut, J. T.; Florio, K.; McDonnell, J. D.; Ferraro, C.; Clark, H.; Gardner, K.; Oliver, M. J.

    2016-02-01

    How do you get middle and high school students excited about scientific inquiry? Have them join a collaborative research team in Antarctica! A comprehensive education program brought ocean science, marine ecology, and climate change impact research to more than 950 students in 2014-15 to increase their exposure to and excitement of current research. The program was integrated into a collaborative research project, involving five universities, that worked to characterize the connection between ocean circulation, plankton distribution, penguin foraging behavior, and climate change around Palmer Station, Antarctica. The scientists and education team co-led a weeklong workshop to expose 22 teachers to the research science, build relationships among the teachers and scientists, and refine the program to most effectively communicate the research to their students. In the fall, teachers taught NGSS-aligned, hands-on, data-focused classroom lessons to provide their students the necessary content to understand the project hypotheses using multiple science practices. Through a professional science blog and live video calls from Antarctica, students followed and discussed the science teams work while they were in the field. To apply the science practices the students had learned about, they designed, conducted, and analyzed their own ocean-related, inquiry-based research investigation as the culminating component of the program (results were presented at a Student Research Symposium attended by the science team). Of their own choosing, roughly half of the students used raw data from the CONVERGE research (including krill, CODAR, penguin, and glider data) for their investigations. This presentation will focus on the evaluation results of the education program to identify the aspects that successfully engaged teachers and students with scientific inquiry, science practices, and authentic data as well as the replicability of this integrated scientist-teacher partnership and

  6. Talk Like a Scientist

    Science.gov (United States)

    Marcum-Dietrich, Nanette

    2010-01-01

    In the scientific community, the symposium is one formal structure of conversation. Scientists routinely hold symposiums to gather and talk about a common topic. To model this method of communication in the classroom, the author designed an activity in which students conduct their own science symposiums. This article presents the science symposium…

  7. Ethics for life scientists

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.; Bogers, R.J.

    2004-01-01

    In this book we begin with two contributions on the ethical issues of working in organizations. A fruitful side effect of this start is that it gives a good insight into business ethics, a branch of applied ethics that until now is far ahead of ethics for life scientists. In the second part, ethics

  8. Code of conduct for scientists (abstract)

    International Nuclear Information System (INIS)

    Khurshid, S.J.

    2011-01-01

    The emergence of advanced technologies in the last three decades and extraordinary progress in our knowledge on the basic Physical, Chemical and Biological properties of living matter has offered tremendous benefits to human beings but simultaneously highlighted the need of higher awareness and responsibility by the scientists of 21 century. Scientist is not born with ethics, nor science is ethically neutral, but there are ethical dimensions to scientific work. There is need to evolve an appropriate Code of Conduct for scientist particularly working in every field of Science. However, while considering the contents, promulgation and adaptation of Codes of Conduct for Scientists, a balance is needed to be maintained between freedom of scientists and at the same time some binding on them in the form of Code of Conducts. The use of good and safe laboratory procedures, whether, codified by law or by common practice must also be considered as part of the moral duties of scientists. It is internationally agreed that a general Code of Conduct can't be formulated for all the scientists universally, but there should be a set of 'building blocks' aimed at establishing the Code of Conduct for Scientists either as individual researcher or responsible for direction, evaluation, monitoring of scientific activities at the institutional or organizational level. (author)

  9. Elements of ethics for physical scientists

    CERN Document Server

    Greer, Sandra C

    2017-01-01

    This book offers the first comprehensive guide to ethics for physical scientists and engineers who conduct research. Written by a distinguished professor of chemistry and chemical engineering, the book focuses on the everyday decisions about right and wrong faced by scientists as they do research, interact with other people, and work within society. The goal is to nurture readers’ ethical intelligence so that they know an ethical issue when they see one, and to give them a way to think about ethical problems. After introductions to the philosophy of ethics and the philosophy of science, the book discusses research integrity, with a unique emphasis on how scientists make mistakes and how they can avoid them. It goes on to cover personal interactions among scientists, including authorship, collaborators, predecessors, reviewers, grantees, mentors, and whistle-blowers. It considers underrepresented groups in science as an ethical issue that matters not only to those groups but also to the development of scien...

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 52: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 17: The relationship between seven variables and the use of US government technical reports by US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Nanci; Demerath, Loren

    1991-01-01

    A study was undertaken to investigate the relationship between the use of U.S. government technical reports by U.S. aerospace engineers and scientists and seven selected sociometric variables. Data were collected by means of a self-administered mail survey which was distributed to a randomly drawn sample of American Institute of Aeronautics and Astronautics (AIAA) members. Two research questions concerning the use of conference meeting papers, journal articles, in-house technical reports, and U.S. government technical reports were investigated. Relevance, technical quality, and accessibility were found to be more important determinants of the overall extent to which U.S. government technical reports and three other information products were used by U.S. aerospace engineers and scientists.

  12. Sexual harassment within the marine sciences and the ethical dilemmas of collaboration: a case study in the education and reportino methods available to scientists, students, and staff on board a federal research vessel

    Science.gov (United States)

    Ohern, J.

    2016-02-01

    Within the Science, technology, engineering, and math (STEM) disciplines, a disparity between male and female involvement persists on the order of about 3:1. While roughly 40% of men with STEM degrees go on to pursue STEM jobs, just 26% of women with STEM degrees hold jobs within the STEM field. There are a number of contributing factors to these disparities, but one pernicious factor is the issue of sexual harassment and discrimination. For the marine sciences this is an especially concerning issue because our field research frequently takes place hundreds of miles offshore. Despite education and policy initiatives, sexual harassment pervades many research vessels and is often never addressed, discouraging female involvement and limiting the opportunities available to women. Ethical dilemmas develop when administrators do not want to risk limited field schedules and funding while investigations are conducted and harassment issues resolved. Additionally, scientists and staff often collaborate between institutions, benefitting science but blurring the lines of responsibility. In one such case, administrators within a federal research office declined to report sexual harassment taking place between contracted crew members on their research vessel. The lengthy review process and lack of culpability discourages reporting of sexual harassment and allows problematic situations to occur. This case study reviews the reporting mechanisms currently in place, the barriers to reporting, and the proposed methods for more effectively resolving discriminatory workplaces. Collaboration within marine science is an absolute necessity, and our research benefits from diverse working groups. As marine scientists we have an ethical responsibility to ensure safe working environments for both the scientists and the staff who make our research possible.

  13. Chile Triple Junction 2012: NE Lau Basin on Scripps Research Vessel Roger Revelle between 20120909 and 20120926

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Ring of Fire 2012 cruise will use the University of Bremen Quest 4000 remotely operated vehicle to locate, map and sample hydrothermal sites at...

  14. ECNS '99 - Young scientists forum

    DEFF Research Database (Denmark)

    Ceretti, M.; Janssen, S.; McMorrow, D.F.

    2000-01-01

    The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups, they disc......The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups......, they discussed emerging scientific trends in their areas of expertise and the instrumentation required to meet the scientific challenges. The outcome was presented in the Young Scientists Panel on the final day of ECNS '99. This paper is a summary of the four working group reports prepared by the Group Conveners...

  15. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  16. Chemistry for environmental scientists

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Detlev [Brandenburgische Technische Univ., Berlin (Germany). Lehrstuhl fuer Luftchemie und Luftreinhaltung

    2015-07-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  17. Soviet scientists speak out

    International Nuclear Information System (INIS)

    Holloway, D.

    1993-01-01

    In this article, Russian bomb designers answer the KGB's claim that espionage, not science, produced the Soviet bomb. Yuli Khariton and Yuri Smirnov wholly reject the argument that Soviet scientists can claim little credit for the first Soviet bomb. In a lecture delivered at the Kurchatov Institute, established in 1943 when Igor Kurchatov became the director of the Soviet nuclear weapons project, Khariton and Smironov point to the work done by Soviet nuclear physicists before 1941 and refute assertions that have been made in Western literature regarding the hydrogen bomb

  18. Chemistry for environmental scientists

    International Nuclear Information System (INIS)

    Moeller, Detlev

    2015-01-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  19. Forensic scientists' conclusions: how readable are they for non-scientist report-users?

    Science.gov (United States)

    Howes, Loene M; Kirkbride, K Paul; Kelty, Sally F; Julian, Roberta; Kemp, Nenagh

    2013-09-10

    Scientists have an ethical responsibility to assist non-scientists to understand their findings and expert opinions before they are used as decision-aids within the criminal justice system. The communication of scientific expert opinion to non-scientist audiences (e.g., police, lawyers, and judges) through expert reports is an important but under-researched issue. Readability statistics were used to assess 111 conclusions from a proficiency test in forensic glass analysis. The conclusions were written using an average of 23 words per sentence, and approximately half of the conclusions were expressed using the active voice. At an average Flesch-Kincaid Grade level of university undergraduate (Grade 13), and Flesch Reading Ease score of difficult (42), the conclusions were written at a level suitable for people with some tertiary education in science, suggesting that the intended non-scientist readers would find them difficult to read. To further analyse the readability of conclusions, descriptive features of text were used: text structure; sentence structure; vocabulary; elaboration; and coherence and unity. Descriptive analysis supported the finding that texts were written at a level difficult for non-scientists to read. Specific aspects of conclusions that may pose difficulties for non-scientists were located. Suggestions are included to assist scientists to write conclusions with increased readability for non-scientist readers, while retaining scientific integrity. In the next stage of research, the readability of expert reports in their entirety is to be explored. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Education and Outreach: Advice to Young Scientists

    Science.gov (United States)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  1. Women scientists reflections, challenges, and breaking boundaries

    CERN Document Server

    Hargittai, Magdolna

    2015-01-01

    Magdolna Hargittai uses over fifteen years of in-depth conversation with female physicists, chemists, biomedical researchers, and other scientists to form cohesive ideas on the state of the modern female scientist. The compilation, based on sixty conversations, examines unique challenges that women with serious scientific aspirations face. In addition to addressing challenges and the unjustifiable underrepresentation of women at the higher levels of academia, Hargittai takes a balanced approach by discussing how some of the most successful of these women have managed to obtain professional success and personal happiness. Women Scientists portrays scientists from different backgrounds, different geographical regions-eighteen countries from four continents-and leaders from a variety of professional backgrounds, including eight Nobel laureate women. The book is divided into three sections: "Husband and Wife Teams," "Women at the Top," and "In High Positions." Hargittai uses her own experience to introduce her fi...

  2. The Oratorical Scientist: A Guide for Speechcraft and Presentation for Scientists

    Science.gov (United States)

    Lau, G. E.

    2015-12-01

    Public speaking organizations are highly valuable for individuals seeking to improve their skills in speech development and delivery. The methodology of such groups usually focuses on repetitive, guided practice. Toastmasters International, for instance, uses a curriculum based on topical manuals that guide their members through some number of prepared speeches with specific goals for each speech. I have similarly developed a public speaking manual for scientists with the intention of guiding scientists through the development and presentation of speeches that will help them hone their abilities as public speakers. I call this guide The Oratorical Scientist. The Oratorical Scientist will be a free, digital publication that is meant to guide scientists through five specific types of speech that the scientist may be called upon to deliver during their career. These five speeches are: The Coffee Talk, The Educational Talk, Research Talks for General Science Audiences, Research Talks for Specific Subdiscipline Audiences, and Taking the Big Stage (talks for public engagement). Each section of the manual focuses on speech development, rehearsal, and presentation for each of these specific types of speech. The curriculum was developed primarily from my personal experiences in public engagement. Individuals who use the manual may deliver their prepared speeches to groups of their peers (e.g. within their research group) or through video sharing websites like Youtube and Vimeo. Speeches that are broadcast online can then be followed and shared through social media networks (e.g. #OratoricalScientist), allowing a larger audience to evaluate the speech and to provide criticism. I will present The Oratorical Scientist, a guide for scientists to become better public speakers. The process of guided repetitive practice of scientific talks will improve the speaking capabilities of scientists, in turn benefitting science communication and public engagement.

  3. Is evaluation of scientist's objective

    CERN Document Server

    Wold, A

    2000-01-01

    There is ample data demonstrating that female scientists advance at a far slower rate than their male colleagues. The low numbers of female professors in European and North American universities is, thus, not solely an effect of few women in the recruitment pool but also to obstacles specific to the female gender. Together with her colleague Christine Wennerås, Agnes Wold conducted a study of the evaluation process at the Swedish Medical Research Council. Evaluators judged the "scientific competence", "research proposal" and "methodology" of applicants for post-doctoral positions in 1995. By relating the scores for "scientific competence" to the applicants' scientific productivity and other factors using multiple regression, Wennerås and Wold demonstrated that the applicant's sex exerted a strong influence on the "competence" score so that male applicants were perceived as being more competent than female applicants of equal productivity. The study was published in Nature (vol 387, p 341-3, 1997) and inspir...

  4. The Rehabilitation Medicine Scientist Training Program

    Science.gov (United States)

    Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn

    2016-01-01

    Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining NIH funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe, and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program (RMSTP) was funded by a K12 grant from the National Center of Medical Rehabilitation Research (NCMRR), as one strategy for increasing the number of research-productive physiatrists. The RMSTP's structure was revised in 2001 to improve the level of preparation of incoming trainees, and to provide a stronger central mentorship support network. Here we describe the original and revised structure of the RMSTP and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that RMSTP trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 years of training. PMID:19847126

  5. Scientists warn DOE of dwindling funding

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Fusion scientists have raised their voices to let the Department of Energy know that they are concerned about the DOE's commitment to fusion research. In a letter dated February 28, 1994, 37 scientists from 21 institutions noted that open-quotes US funding for fusion has steadily decreased: It is now roughly half its level of 1980. This peculiar and painful circumstance has forced the program to contract drastically, losing skilled technical personnel, even as it faces its most exciting opportunities.close quotes The letter was addressed to Martha Krebs, the DOE's director of the Office of Energy Research, and N. Anne Davies, associated director for fusion energy. The scientists wanted to make two points. The first was that fusion energy research, only midway between concept and commercialization, deserves major reinvestment. The second was that basic scientific knowledge in the area of fusion, not just applied engineering, must remain a priority

  6. Forgotten women the scientists

    CERN Document Server

    Tsjeng, Zing

    2018-01-01

    The women who shaped and were erased from our history. The Forgotten Women series will uncover the lost histories of the influential women who have refused over hundreds of years to accept the hand they've been dealt and, as a result, have formed, shaped and changed the course of our futures. The Scientists celebrates 48* unsung scientific heroines whose hugely important, yet broadly unacknowledged or incorrectly attributed, discoveries have transformed our understanding of the scientific world. Mary Anning, the amateur paleontologist whose fossil findings changed scientific thinking about prehistoric life Emmy Noether, dubbed "The Mighty Mathematician You've Never Heard Of" Ynés Mexía, the Mexican-American botanist who discovered over 500 new plant species Wangari Maathai, who started an environmental and ecological revolution in Kenya Margaret Sanger, the maverick nurse who paved the way for the legalization of contraception Chapters including Earth & Universe; Biology & N...

  7. A Serendipitous Scientist.

    Science.gov (United States)

    Lefkowitz, Robert J

    2018-01-06

    Growing up in a middle-class Jewish home in the Bronx, I had only one professional goal: to become a physician. However, as with most of my Vietnam-era MD colleagues, I found my residency training interrupted by the Doctor Draft in 1968. Some of us who were academically inclined fulfilled this obligation by serving in the US Public Health Service as commissioned officers stationed at the National Institutes of Health. This experience would eventually change the entire trajectory of my career. Here I describe how, over a period of years, I transitioned from the life of a physician to that of a physician-scientist; my 50 years of work on cellular receptors; and some miscellaneous thoughts on subjects as varied as Nobel prizes, scientific lineages, mentoring, publishing, and funding.

  8. Radiation Technician Scientist service

    International Nuclear Information System (INIS)

    Prieto Miranda, Enrique; Barrera Gonzalez, Gisela; Guerra Torres, Mercedes; Mora Lopez, Leonor; Altanes Valentin, Sonia; Rapado Paneque, Manuel; Plasencia Gutierrez, Manuel

    2003-01-01

    The irradiation service is part of the specialized technician scientist services of the Center of Technological Applications and Nuclear Development it belonging to the Radiobiological Department it provides a self shielded laboratory irradiator, PX y 30 type with Cobalt 60 sources, it destined for searches studies, so much basic as applying, in several branches of the science, like the radiobiology, the radiation chemistry, the solid state physics, the medicine, the agriculture and the Pharmaceutical- Medical Industry and besides offering the irradiation service properly with the which have been gotten significant economical outputs. The radiation processing is controlled by means of the dosimetric systems of Freckle, ceric cerous sulfate, Perspex (red, clear and Amber) and dose indicators

  9. Unsustainable Growth, Hyper-Competition, and Worth in Life Science Research: Narrowing Evaluative Repertoires in Doctoral and Postdoctoral Scientists' Work and Lives

    Science.gov (United States)

    Fochler, Maximilian; Felt, Ulrike; Müller, Ruth

    2016-01-01

    There is a crisis of valuation practices in the current academic life sciences, triggered by unsustainable growth and "hyper-competition." Quantitative metrics in evaluating researchers are seen as replacing deeper considerations of the quality and novelty of work, as well as substantive care for the societal implications of research.…

  10. Unsustainable Growth, Hyper-Competition, and Worth in Life Science Research: Narrowing Evaluative Repertoires in Doctoral and Postdoctoral Scientists' Work and Lives.

    Science.gov (United States)

    Fochler, Maximilian; Felt, Ulrike; Müller, Ruth

    There is a crisis of valuation practices in the current academic life sciences, triggered by unsustainable growth and "hyper-competition." Quantitative metrics in evaluating researchers are seen as replacing deeper considerations of the quality and novelty of work, as well as substantive care for the societal implications of research. Junior researchers are frequently mentioned as those most strongly affected by these dynamics. However, their own perceptions of these issues are much less frequently considered. This paper aims at contributing to a better understanding of the interplay between how research is valued and how young researchers learn to live, work and produce knowledge within academia. We thus analyze how PhD students and postdocs in the Austrian life sciences ascribe worth to people, objects and practices as they talk about their own present and future lives in research. We draw on literature from the field of valuation studies and its interest in how actors refer to different forms of valuation to account for their actions. We explore how young researchers are socialized into different valuation practices in different stages of their growing into science. Introducing the concept of "regimes of valuation" we show that PhD students relate to a wider evaluative repertoire while postdocs base their decisions on one dominant regime of valuing research. In conclusion, we discuss the implications of these findings for the epistemic and social development of the life sciences, and for other scientific fields.

  11. Embedding Publication Skills in Science Research Training: A Writing Group Programme Based on Applied Linguistics Frameworks and Facilitated by a Scientist

    Science.gov (United States)

    Cargill, Margaret; Smernik, Ronald

    2016-01-01

    Few systematic efforts have been reported to develop higher degree by research student skills for writing publishable articles in science and technology fields. There is a need to address this lack in the light of the current importance of publication to science research students and the high supervisor workload entailed in repeated draft…

  12. The ASSISTments Ecosystem: Building a Platform That Brings Scientists and Teachers Together for Minimally Invasive Research on Human Learning and Teaching

    Science.gov (United States)

    Heffernan, Neil T.; Heffernan, Cristina Lindquist

    2014-01-01

    The ASSISTments project is an ecosystem of a few hundred teachers, a platform, and researchers working together. Development professionals help train teachers and get teachers to participate in studies. The platform and these teachers help researchers (sometimes explicitly and sometimes implicitly) simply by using content the teacher selects. The…

  13. How Four Scientists Integrate Thermodynamic and Kinetic Theory, Context, Analogies, and Methods in Protein-Folding and Dynamics Research: Implications for Biochemistry Instruction.

    Science.gov (United States)

    Jeffery, Kathleen A; Pelaez, Nancy; Anderson, Trevor R

    2018-01-01

    To keep biochemistry instruction current and relevant, it is crucial to expose students to cutting-edge scientific research and how experts reason about processes governed by thermodynamics and kinetics such as protein folding and dynamics. This study focuses on how experts explain their research into this topic with the intention of informing instruction. Previous research has modeled how expert biologists incorporate research methods, social or biological context, and analogies when they talk about their research on mechanisms. We used this model as a guiding framework to collect and analyze interview data from four experts. The similarities and differences that emerged from analysis indicate that all experts integrated theoretical knowledge with their research context, methods, and analogies when they explained how phenomena operate, in particular by mapping phenomena to mathematical models; they explored different processes depending on their explanatory aims, but readily transitioned between different perspectives and explanatory models; and they explained thermodynamic and kinetic concepts of relevance to protein folding in different ways that aligned with their particular research methods. We discuss how these findings have important implications for teaching and future educational research. © 2018 K. A. Jeffery et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 15: Technical uncertainty and project complexity as correlates of information use by US industry-affiliated aerospace engineers and scientists: Results of an exploratory investigation

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    An exploratory study was conducted that investigated the influence of technical uncertainty and project complexity on information use by U.S. industry-affiliated aerospace engineers and scientists. The study utilized survey research in the form of a self-administered mail questionnaire. U.S. aerospace engineers and scientists on the Society of Automotive Engineers (SAE) mailing list served as the study population. The adjusted response rate was 67 percent. The survey instrument is appendix C to this report. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and information use. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and the use of federally funded aerospace R&D. The results of this investigation are relevant to researchers investigating information-seeking behavior of aerospace engineers. They are also relevant to R&D managers and policy planners concerned with transferring the results of federally funded aerospace R&D to the U.S. aerospace industry.

  15. The applied philosopher-scientist: Intersections among phenomenological research, nursing science, and theory as a basis for practice aimed at facilitating boys' healing from being bullied.

    Science.gov (United States)

    Willis, Danny G; Grace, Pamela J

    2011-01-01

    This article uses an exemplar of phenomenological research of middle school boys, experiences of being bullied as applied philosophy and science to illuminate the intersection of the moral and scientific realms for theory-oriented research and practice. As a consequence, a clear foundation for advancing nursing science and envisioning innovative nursing practice with boys who experience being bullied is provided. Included is a weaving together of phenomenological perspective for research and practice, Roger's (nursing) Science of Unitary Human Beings (SUHB), and SUHB-derived middle range theories of self-transcendence and power.

  16. Preliminary results and prospects for research performed by the scientists of Ministry of Health of Ukraine on Chernobyl accident medical aspects

    International Nuclear Information System (INIS)

    Spyizhenko, Yu.P.; Rozenfel'd, L.G.; Mel'nik, V.M.

    1993-01-01

    Results of scientific management of Ministry of Health of Ukraine, as well as scientific researches of 23 scientific research institutes, 11 medical institutes, 6 scientific practical establishment were analyzed to cover Complex ecological research programme on Chernobyl accident outcomes for 1986-1990 (medical aspects). The data about the health of communities, epidemiology, peculiarities of the course, clinical features, diagnosis, treatment and prevention of inner organs and systems disorders and diseases in the exposed persons, which were obtained on the basis of environment radiologic are reported

  17. Boom time for scientists: with tens of millions of dollars coming in every year, science researchers across Ottawa are enjoying a new sense of optimism

    CERN Multimedia

    Spears, T

    2002-01-01

    A combination of fresh government and industry money and a sense of optimism have stimulated hiring, new construction and an aura of aggressive expansion in Ottowa's science research facilities (1 page).

  18. Improving Communication Skills in Early Career Scientists

    Science.gov (United States)

    Saia, S. M.

    2013-12-01

    The AGU fall meeting is a time for scientists to share what we have been hard at work on for the past year, to share our trials and tribulations, and of course, to share our science (we hope inspirational). In addition to sharing, the AGU fall meeting is also about collaboration as it brings old and new colleagues together from diverse communities across the planet. By sharing our ideas and findings, we build new relationships with the potential to cross boundaries and solve complex and pressing environmental issues. With ever emerging and intensifying water scarcity, extreme weather, and water quality issues across the plant, it is especially important that scientists like us share our ideas and work together to put these ideas into action. My vision of the future of water sciences embraces this fact. I believe that better training is needed to help early career scientists, like myself, build connections within and outside of our fields. First and foremost, more advanced training in effective storytelling concepts and themes may improve our ability to provide context for our research. Second, training in the production of video for internet-based media (e.g. YouTube) may help us bring our research to audiences in a more personalized way. Third, opportunities to practice presenting at highly visible public events such as the AGU fall meeting, will serve to prepare early career scientists for a variety of audiences. We hope this session, ';Water Sciences Pop-Ups', will provide the first steps to encourage and train early career scientists as they share and collaborate with scientists and non-scientists around the world.

  19. Scientists in the public sphere: Interactions of scientists and journalists in Brazil.

    Science.gov (United States)

    Massarani, Luisa; Peters, Hans P

    2016-06-07

    In order to map scientists' views on media channels and explore their experiences interacting with journalists, the authors conducted a survey of about 1,000 Brazilian scientists. Results indicate that scientists have clear and high expectations about how journalists should act in reporting scientific information in the media, but such expectations, in their opinion, do not always seem to be met. Nonetheless, the results show that surveyed scientists rate their relation with the media positively: 67% say that having their research covered by media has a positive impact on their colleagues. One quarter of the respondents expressed that talking to the media can facilitate acquisition of more funds for research. Moreover, 38% of the total respondents believe that writing about an interesting topic for release on media channels can also facilitate research publication in a scientific journal. However, 15% of the respondents outright agree that research reported in the media beforehand can threaten acceptance for publication by a scientific journal. We hope that these results can foster some initiatives for improving awareness of the two cultures, scientists and journalists; increasing the access of journalists to Brazilian scientific endeavors; stimulating scientists to communicate with the public via social networks.

  20. Tracking the career development of scientists in low- and middle-income countries trained through TDR's research capacity strengthening programmes: Learning from monitoring and impact evaluation.

    Science.gov (United States)

    Halpaap, Béatrice; Vahedi, Mahnaz; Certain, Edith; Alvarado, Tini; Saint Martin, Caroline; Merle, Corinne; Mihut, Michael; Launois, Pascal

    2017-12-01

    The Special Programme for Research and Training in Tropical Diseases (TDR) co-sponsored by UNICEF, UNDP, World Bank and WHO has been supporting research capacity strengthening in low- and middle-income countries for over 40 years. In order to assess and continuously optimize its capacity strengthening approaches, an evaluation of the influence of TDR training grants on research career development was undertaken. The assessment was part of a larger evaluation conducted by the European Science Foundation. A comprehensive survey questionnaire was developed and sent to a group of 117 trainees supported by TDR who had completed their degree (masters or PhD) between 2000 and 2012; of these, seventy seven (77) responded. Most of the respondents (80%) rated TDR support as a very important factor that influenced their professional career achievements. The "brain drain" phenomenon towards high-income countries was particularly low amongst TDR grantees: the rate of return to their region of origin upon completion of their degree was 96%. A vast majority of respondents are still working in research (89%), with 81% of respondents having participated in multidisciplinary research activities; women engaged in multidisciplinary collaboration to a higher extent than men. However, only a minority of all have engaged in intersectoral collaboration, an aspect that would require further study. The post-degree career choices made by the respondents were strongly influenced by academic considerations. At the time of the survey, 92% of all respondents hold full-time positions, mainly in the public sector. Almost 25% of the respondents reported that they had influenced policy and practice changes. Some of the challenges and opportunities faced by trainees at various stages of their research career have been identified. Modalities to overcome these will require further investigation. The survey evidenced how TDR's research capacity grant programmes made a difference on researchers' career

  1. Tracking the career development of scientists in low- and middle-income countries trained through TDR's research capacity strengthening programmes: Learning from monitoring and impact evaluation.

    Directory of Open Access Journals (Sweden)

    Béatrice Halpaap

    2017-12-01

    Full Text Available The Special Programme for Research and Training in Tropical Diseases (TDR co-sponsored by UNICEF, UNDP, World Bank and WHO has been supporting research capacity strengthening in low- and middle-income countries for over 40 years. In order to assess and continuously optimize its capacity strengthening approaches, an evaluation of the influence of TDR training grants on research career development was undertaken. The assessment was part of a larger evaluation conducted by the European Science Foundation. A comprehensive survey questionnaire was developed and sent to a group of 117 trainees supported by TDR who had completed their degree (masters or PhD between 2000 and 2012; of these, seventy seven (77 responded. Most of the respondents (80% rated TDR support as a very important factor that influenced their professional career achievements. The "brain drain" phenomenon towards high-income countries was particularly low amongst TDR grantees: the rate of return to their region of origin upon completion of their degree was 96%. A vast majority of respondents are still working in research (89%, with 81% of respondents having participated in multidisciplinary research activities; women engaged in multidisciplinary collaboration to a higher extent than men. However, only a minority of all have engaged in intersectoral collaboration, an aspect that would require further study. The post-degree career choices made by the respondents were strongly influenced by academic considerations. At the time of the survey, 92% of all respondents hold full-time positions, mainly in the public sector. Almost 25% of the respondents reported that they had influenced policy and practice changes. Some of the challenges and opportunities faced by trainees at various stages of their research career have been identified. Modalities to overcome these will require further investigation. The survey evidenced how TDR's research capacity grant programmes made a difference on

  2. Assessing scientists for hiring, promotion, and tenure.

    Science.gov (United States)

    Moher, David; Naudet, Florian; Cristea, Ioana A; Miedema, Frank; Ioannidis, John P A; Goodman, Steven N

    2018-03-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process.

  3. Assessing scientists for hiring, promotion, and tenure

    Science.gov (United States)

    Naudet, Florian; Cristea, Ioana A.; Miedema, Frank; Ioannidis, John P. A.; Goodman, Steven N.

    2018-01-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process. PMID:29596415

  4. PREFACE: FAIRNESS 2014: FAIR Next Generation ScientistS 2014

    Science.gov (United States)

    2015-04-01

    FAIRNESS 2014 was the third edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on September 22-27 2014 in Vietri sul Mare, Italy. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Nuclear structure, astrophysics and reactions • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • New developments in atomic and plasma physics • Special emphasis is put on the experiments CBM, HADES, PANDA, NUSTAR, APPA and related experiments For each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2014 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that

  5. The physician-scientists: rare species in Africa.

    Science.gov (United States)

    Adefuye, Anthonio Oladele; Adeola, Henry Ademola; Bezuidenhout, Johan

    2018-01-01

    There is paucity of physician-scientists in Africa, resulting in overt dependence of clinical practice on research findings from advanced "first world" countries. Physician-scientists include individuals with a medical degree alone or combined with other advanced degrees (e.g. MD/MBChB and PhD) with a career path in biomedical/ translational and patient-oriented/evaluative science research. The paucity of clinically trained research scientists in Africa could result in dire consequences as exemplified in the recent Ebola virus epidemic in West Africa, where shortage of skilled clinical scientists, played a major role in disease progression and mortality. Here we contextualise the role of physician-scientist in health care management, highlight factors limiting the training of physician-scientist in Africa and proffer implementable recommendations to address these factors.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.

    1991-01-01

    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.

  7. NREL Scientists Model Methane-Eating Bacteria | News | NREL

    Science.gov (United States)

    Scientists Model Methane-Eating Bacteria News Release: NREL Scientists Model Methane-Eating Bacteria February 13, 2018 Nature is full of surprises - not to mention solutions. A research team ) recently explored the possibilities provided by the natural world by researching how the bacteria

  8. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    Directory of Open Access Journals (Sweden)

    Jin-Qing Fang

    2013-01-01

    Full Text Available Nobelist TD Lee scientist cooperation network (TDLSCN and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scientist cooperation networks before. To demonstrate and explain this new finding, we propose a theoretical model for a nature scientist and his/her team innovation ability. The theoretical results are consistent with the empirical studies very well. This research demonstrates that the model has a certain universality and can be extended to estimate innovation ability for any nature scientist and his/her team. It is a better method for evaluating scientist innovation ability and his/her team for the academic profession and is of application potential.

  9. A scientist's guide to engaging decision makers

    Science.gov (United States)

    Vano, J. A.

    2015-12-01

    Being trained as a scientist provides many valuable tools needed to address society's most pressing environmental issues. It does not, however, provide training on one of the most critical for translating science into action: the ability to engage decision makers. Engagement means different things to different people and what is appropriate for one project might not be for another. However, recent reports have emphasized that for research to be most useful to decision making, engagement should happen at the beginning and throughout the research process. There are an increasing number of boundary organizations (e.g., NOAA's Regional Integrated Sciences and Assessment program, U.S. Department of the Interior's Climate Science Centers) where engagement is encouraged and rewarded, and scientists are learning, often through trial and error, how to effectively include decision makers (a.k.a. stakeholders, practitioners, resource managers) in their research process. This presentation highlights best practices and practices to avoid when scientists engage decision makers, a list compiled through the personal experiences of both scientists and decision makers and a literature review, and how this collective knowledge could be shared, such as through a recent session and role-playing exercise given at the Northwest Climate Science Center's Climate Boot Camp. These ideas are presented in an effort to facilitate conversations about how the science community (e.g., AGU researchers) can become better prepared for effective collaborations with decision makers that will ultimately result in more actionable science.

  10. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Search the NEI Website search NEI on Social Media | Search A-Z | en español | Text size S M L About NEI NEI Research Accomplishments Budget and Congress About the NEI Director History of the NEI NEI 50th Anniversary NEI Women Scientists Advisory Committee (WSAC) Board of Scientific Counselors ...

  11. Educational Mismatch and the Careers of Scientists

    Science.gov (United States)

    Bender, Keith A.; Heywood, John S.

    2011-01-01

    Previous research confirms that many employees work in jobs not well matched to their skills and education, resulting in lower pay and job satisfaction. While this literature typically uses cross-sectional data, we examine the evolution of mismatch and its consequences over a career, by using a panel data set of scientists in the USA. The results…

  12. University scientists test Mars probe equipment

    CERN Multimedia

    2002-01-01

    Scientists at Leicester University have spent four years researching and designing the Flight Model Position Adjustable Workbench (PAW) at the university. It will be attached to the Beagle 2 probe before being sent to the Red Planet in the spring (1/2 page).

  13. Medical and veterinary doctors, social scientists and agricultural researchers meet to carry forward the fight against cysticercosis, a neglected and fatal disease of the poor : to the editor

    Directory of Open Access Journals (Sweden)

    S. Mukaratirwa

    2008-05-01

    Full Text Available The fifth general assembly meeting on cysticercosis/taeniosis was held at the Faculty of Medicine, Eduardo Mondlane University, in Maputo, Mozambique, from 11-13 October 2007. The meeting was organised by the Cysticercosis Working Group in Eastern and Southern Africa (CWGESA in cooperation with the Medical and Veterinary Faculties of Eduardo Mondlane University in Mozambique and the WHO/FAO Collaborating Centre for Parasitic Zoonoses in Denmark with support from DBL - Centre for Health Research and Development, Denmark, and the Global Alliance for Livestock Veterinary Medicines (GALVmed based in Edinburgh, Scotland. Local support in Maputo was provided by Nestle, Medis Farmaceutica, Mcel and the Golden Travel Agency.

  14. Darwin the scientist.

    Science.gov (United States)

    Browne, J

    2009-01-01

    Charles Darwin's experimental investigations show him to have been a superb practical researcher. These skills are often underestimated today when assessing Darwin's achievement in the Origin of Species and his other books. Supported by a private income, he turned his house and gardens into a Victorian equivalent of a modern research station. Darwin participated actively in the exchange of scientific information via letters and much of his research was also carried out through correspondence. Although this research was relatively small scale in practice, it was large scale in intellectual scope. Darwin felt he had a strong desire to understand or explain whatever he observed.

  15. The Normative Orientations of Climate Scientists.

    Science.gov (United States)

    Bray, Dennis; von Storch, Hans

    2017-10-01

    In 1942 Robert K. Merton tried to demonstrate the structure of the normative system of science by specifying the norms that characterized it. The norms were assigned the abbreviation CUDOs: Communism, Universalism, Disinterestedness, and Organized skepticism. Using the results of an on-line survey of climate scientists concerning the norms of science, this paper explores the climate scientists' subscription to these norms. The data suggests that while Merton's CUDOs remain the overall guiding moral principles, they are not fully endorsed or present in the conduct of climate scientists: there is a tendency to withhold results until publication, there is the intention of maintaining property rights, there is external influence defining research and the tendency to assign the significance of authored work according to the status of the author rather than content of the paper. These are contrary to the norms of science as proposed by Robert K. Merton.

  16. The Impact of Scientist-Educator Collaborations: an early-career scientist's perspective

    Science.gov (United States)

    Roop, H. A.

    2017-12-01

    A decade ago, a forward-thinking faculty member exposed a group of aspiring scientists to the impacts and career benefits of working directly with K-12 students and educators. Ten years later, as one of those young scientists, it is clear that the relationships born out of this early experience can transform a researcher's impact and trajectory in science. Connections with programs like the NSF-funded PolarTREC program, the teacher-led Scientists in the Classroom effort, and through well-coordinated teacher training opportunities there are clear ways in which these partnerships can a) transform student learning; b) serve as a powerful and meaningful way to connect students to authentic research and researchers; and c) help researchers become more effective communicators by expanding their ability to connect their work to society. The distillation of science to K-12 students, with the expert eye of educators, makes scientists better at their work with tangible benefits to skills that matter in academia - securing funding, writing and communicating clearly and having high-value broader impacts. This invited abstract is submitted as part of this session's panel discussion and will explore in detail, with concrete examples, the mutual benefits of educator-scientist partnerships and how sustained engagement can transform the reach, connection and application of research science.

  17. Scientist Spotlight Homework Assignments Shift Students’ Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments (“Scientist Spotlights”) that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. PMID:27587856

  18. Association of Polar Early Career Scientists Promotes Professional Skills

    Science.gov (United States)

    Pope, Allen; Fugmann, Gerlis; Kruse, Frigga

    2014-06-01

    As a partner organization of AGU, the Association of Polar Early Career Scientists (APECS; http://www.apecs.is) fully supports the views expressed in Wendy Gordon's Forum article "Developing Scientists' `Soft' Skills" (Eos, 95(6), 55, doi:10.1002/2014EO060003). Her recognition that beyond research skills, people skills and professional training are crucial to the success of any early-career scientist is encouraging.

  19. Geomorphic research to determine the offsite impacts of the Jabiluka Mine on Swift (Ngarradj) Creek, Northern Territory. Supervising Scientist report 158

    International Nuclear Information System (INIS)

    Erskine, W.D.; Saynor, M.J.; The University of Western Australia, WA; Evans, K.G.; Boggs, G.S.; Northern Territory University, Darwin, NT

    2001-01-01

    A summary of 13 sub-projects results are outlined in this report. They were are designed to determine the hydrologic, sedimentologic and geomorphic baseline characteristics of catchments in the Jabiluka Mineral Lease, as well as the physical impacts of uranium mining on Swift Creek, and complement and extend the previous research undertaken by ERISS and other agencies at Ranger uranium mine and in the Alligator Rivers Region. Sites impacted by uranium mining were compared with similar natural sites upstream of the influence of mining. A digital evaluation model (DEM) has been generated for the Swift Creek catchment from stereo photogrammetric interpretation of 1:25000 pre-mining aerial photography. It will be used to develop a GIS-based catchment management modelling technology using existing erosion, hydrology and landform models. It is recommended that additional site-specific work will be required to monitor and measure the environmental impacts of the mine and to derive appropriate data for the calibration of landscape evolution models and for mine management. These models are not only required for environmental impact assessment but also for a meaningful assessment of the long-term stability of rehabilitated landforms at the conclusion of mining. The Extreme Events Project recommended by Erskine and Saynor (2000) for the Ranger mine should be undertaken in addition to the above mentioned sub-projects because such information is also required for the design of a stable rehabilitated mine site at Jabiluka. Copyright (2001) Commonwealth of Australia

  20. Media studies for scientists

    CERN Multimedia

    2002-01-01

    "Science, with its inherent uncertainties, can be hard to put across to the public. But blaming 'sloppy' journalism is too easy. If researchers are to make their points effectively, they should learn more about how the media work" (1 page).

  1. Frontier Scientists use Modern Media

    Science.gov (United States)

    O'connell, E. A.

    2013-12-01

    Engaging Americans and the international community in the excitement and value of Alaskan Arctic discovery is the goal of Frontier Scientists. With a changing climate, resources of polar regions are being eyed by many nations. Frontier Scientists brings the stories of field scientists in the Far North to the public. With a website, an app, short videos, and social media channels; FS is a model for making connections between the public and field scientists. FS will demonstrate how academia, web content, online communities, evaluation and marketing are brought together in a 21st century multi-media platform, how scientists can maintain their integrity while engaging in outreach, and how new forms of media such as short videos can entertain as well as inspire.

  2. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1:] The value of Scientific and Technical Information (STI), its relationship to Research and Development (R&D), and its use by US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Myron; Barclay, Rebecca O.; Oliu, Walter E.

    1990-01-01

    The relationship between scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace R&D process is examined. Data are presented from studies of the role of STI in the performance and management of R&D activities and the behavior of engineers when using and seeking information. Consideration is given to the information sources used to solve technical problems, the production and use of technical communications, and the use of libraries, technical information centers, and on-line data bases.

  3. Meet EPA Scientist Marie O'Shea, Ph.D.

    Science.gov (United States)

    EPA Scientist Dr. Marie O'Shea is Region 2's Liaison to the Agency's Office of Research and Development (ORD). Marie has a background in research on urban watershed management, focused on characterizing and controlling nutrients in stormwater runoff.

  4. Meet EPA Scientist Jeff Szabo, Ph.D.

    Science.gov (United States)

    EPA scientist Jeff Szabo, Ph.D., has worked for the EPA’s National Homeland Security Research Center since 2005. He conducts and manages water security research projects at EPA’s Test and Evaluation facility.

  5. Using Videoconferencing in a School-Scientist Partnership: Students' Perceptions and Scientists' Challenges

    Science.gov (United States)

    Falloon, Garry

    2012-01-01

    This research studied a series of videoconference teaching workshops and virtual labs, which formed a component of a school-scientist partnership involving a New Zealand science research institute and year 13 students at a Wellington high school. It explored students' perceptions of the effectiveness of the videoconferences as an interactive…

  6. SECONDARY SCHOOL STUDENTS' PERCEPTIONS AND ATTITUDES ABOUT SCIENTISTS

    OpenAIRE

    Muhammed Doğukan Balçın; Ayşegül Ergün

    2018-01-01

    This research was carried out to determine secondary school students’ perceptions and attitudes towards scientists. The study group consists of 53 fifth and sixth grade students receiving education in a state secondary school in Turkey. Convergent parallel design among mixed research methods was used during the research. Research data were collected using “Questionnaire on attitudes towards scientists” and “Draw A Scientist (DAS)” forms. Descriptive and inferential statistical methods and con...

  7. Assessing the bibliometric productivity of forest scientists in Italy

    Directory of Open Access Journals (Sweden)

    Francesca Giannetti

    2016-07-01

    Full Text Available Since 2010, the Italian Ministry of University and Research issued new evaluation protocols to select candidates for University professorships and assess the bibliometric productivity of Universities and Research Institutes based on bibliometric indicators, i.e. scientific paper and citation numbers and the h-index. Under this framework, the objective of this study was to quantify the bibliometric productivity of the Italian forest research community during the 2002-2012 period. We examined the following productivity parameters: (i the bibliometric productivity under the Forestry subject category at the global level; (ii compared the aggregated bibliometric productivity of Italian forest scientists with scientists from other countries; (iii analyzed publication and citation temporal trends of Italian forest scientists and their international collaborations; and (iv characterized productivity distribution among Italian forest scientists at different career levels. Results indicated the following: (i the UK is the most efficient country based on the ratio between Gross Domestic Spending (GDS on Research and Development (R&D and bibliometric productivity under the Forestry subject category, followed by Italy; (ii Italian forest scientist productivity exhibited a significant positive time trend, but was characterized by high inequality across authors; (iii one-half of the Italian forest scientist publications were written in collaboration with foreign scientists; (iv a strong relationship exists between bibliometric indicators calculated by WOS and SCOPUS, suggesting these two databases have the same potential to evaluate the forestry research community; and (v self-citations did not significantly affect the rank of Italian forest scientists.

  8. The scientist lady

    Indian Academy of Sciences (India)

    Lawrence

    stream of her life also must have been quiet, easy, un- eventful. It was not so, she ... That too when she had full support from her family. Little Kamala ... doing research work at that famous institute was a matter of course. She then applied for ... work would not be recognized until the director was satisfied about its quality and.

  9. From pioneers to scientists

    DEFF Research Database (Denmark)

    Carlsson, Jessica; Sonne, Charlotte; Silove, Derrick

    2014-01-01

    Outcome studies on treatment of trauma-affected refugees have been published but are limited in design and quality. In this article, we discuss possible impediments to pursuing research aimed at gathering evidence to support the efficacy of treatments in the field and the challenges in carrying out...

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 25: The technical communications practices of British aerospace engineers and scientists: Results of the phase 4 RAeS mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of British aerospace engineers and scientists.

  11. NASA/DoD Aerospace Knowledge Diffusion Research Project: Report 43: The Technical Communication Practices of U.S. Aerospace Engineers and Scientists: Results of the Phase 1 Mail Survey -- Manufacturing and Production Perspective

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the Society of Manufacturing Engineers.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 45; The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 3 US Aerospace Engineering Educators Survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports, present a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the American Institute of Aeronautics and Astronautics (AIAA) and identified themselves as educators.

  13. Scientists' Prioritization of Communication Objectives for Public Engagement.

    Directory of Open Access Journals (Sweden)

    Anthony Dudo

    Full Text Available Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.

  14. EGU's Early Career Scientists Network

    Science.gov (United States)

    Roberts Artal, L.; Rietbroek, R.

    2017-12-01

    The EGU encourages early career scientists (ECS) to become involved in interdisciplinary research in the Earth, planetary and space sciences, through sessions, social events and short courses at the annual General Assembly in April and throughout the year. Through division-level representatives, all ECS members can have direct input into matters of the division. A Union-wide representative, who sits on the EGU Council, ensures that ECS are heard at a higher level in the Union too. After a brief introduction as to how the network is organised and structured, this presentation will discuss how EGU ECS activities have been tailored to the needs of ECS members and how those needs have been identified. Reaching and communicating opportunities to ECS remains an ongoing challenge; they will be discussed in this presentation too, as well as some thoughts on how to make them more effective. Finally, the service offered to EGU ECS members would certainly benefit from building links and collaboration with other early career networks in the geosciences. This presentation will outline some of our efforts in that direction and the challenges that remain.

  15. Russian scientists make desperate plea to save nuclear institute

    CERN Multimedia

    2003-01-01

    Scientists from a Russian nuclear research institute recently held a news conference in Moscow to publicize their work on a revolutionary new type of nuclear reactor. However, it transpired that the scientists were worried about their institute being closed down, and saw the news conference as an opportunity to draw attention to their plight (1 page).

  16. "Star Wars" on Campus: Scientists Debate the Wisdom of SDI.

    Science.gov (United States)

    Rosenblatt, Jean

    1987-01-01

    President Reagan's Strategic Defense Initiative is opposed by many university scientists, but government officials have no problem placing research contracts. Specific arrangements and personal opinions are cited, and the text of the Star Wars Petition signed by 6,500 faculty and graduate student scientists is included. (MSE)

  17. Scientists feature their work in Arctic-focused short videos by FrontierScientists

    Science.gov (United States)

    Nielsen, L.; O'Connell, E.

    2013-12-01

    Whether they're guiding an unmanned aerial vehicle into a volcanic plume to sample aerosols, or documenting core drilling at a frozen lake in Siberia formed 3.6 million years ago by a massive meteorite impact, Arctic scientists are using video to enhance and expand their science and science outreach. FrontierScientists (FS), a forum for showcasing scientific work, produces and promotes radically different video blogs featuring Arctic scientists. Three- to seven- minute multimedia vlogs help deconstruct researcher's efforts and disseminate stories, communicating scientific discoveries to our increasingly connected world. The videos cover a wide range of current field work being performed in the Arctic. All videos are freely available to view or download from the FrontierScientists.com website, accessible via any internet browser or via the FrontierScientists app. FS' filming process fosters a close collaboration between the scientist and the media maker. Film creation helps scientists reach out to the public, communicate the relevance of their scientific findings, and craft a discussion. Videos keep audience tuned in; combining field footage, pictures, audio, and graphics with a verbal explanation helps illustrate ideas, allowing one video to reach people with different learning strategies. The scientists' stories are highlighted through social media platforms online. Vlogs grant scientists a voice, letting them illustrate their own work while ensuring accuracy. Each scientific topic on FS has its own project page where easy-to-navigate videos are featured prominently. Video sets focus on different aspects of a researcher's work or follow one of their projects into the field. We help the scientist slip the answers to their five most-asked questions into the casual script in layman's terms in order to free the viewers' minds to focus on new concepts. Videos are accompanied by written blogs intended to systematically demystify related facts so the scientists can focus

  18. Opennes and scientists' everyday research processes

    NARCIS (Netherlands)

    Benneworth, Paul Stephen; Olmos-Penuela, Julia; Castro-Martinez, Elena

    2015-01-01

    Science policy increasingly focuses on maximising societal benefits from science and technology investments, but often reduces those benefits to activities involving codifying and selling knowledge, thereby idealising best practice academic behaviours around entrepreneurial superstars. This paper

  19. Students in search of research scientists

    CERN Multimedia

    HR Department

    2010-01-01

    CERN is a magnet for many young people wanting to discover for themselves what the Laboratory is about through a traineeship. During their traineeships, the students develop an interest in engineering, informatics and also in physics, a discipline where there has been a marked fall-off in university applications.  We would therefore encourage you to take part in hosting students.   In 2009, CERN granted 270 students unremunerated traineeships lasting a few days or more. However, many applications could not be satisfied owing to the lack of CERN volunteers to supervise the students. The hosting of students in an aspect of one of the Organization’s fundamental missions, namely education and training. CERN’s traineeships offer secondary schoolchildren and university students the opportunity to discover how fascinating science can be and contribute to encouraging young people to choose to study branches of science that have seen a fall-off of applications in recent years. &...

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace Research and Development (R&D) and the information seeking behavior of US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The present exploration of the diffusion of federally-funded R&D via the information-seeking behavior of scientists and engineers proceeds under three assumptions: (1) that knowledge transfer and utilization is as important as knowledge production; (2) that the diffusion of knowledge obtained through federally-funded R&D is necessary for the maintenance of U.S. preeminence in the aerospace field; and (3) that federally-funded NASA and DoD technical reports play an important, albeit as-yet undefined, role in aerospace R&D diffusion. A conceptual model is presented for the process of knowledge diffusion that stresses the role of U.S. government-funded technical reports.

  1. Refugee scientists under the spotlight

    Science.gov (United States)

    Extance, Andy

    2017-07-01

    Thousands of people are forced to flee war-torn regions every year, but the struggles of scientists who have to leave their homeland often goes under the radar. Andy Extance reports on initiatives to help

  2. Temperature profile and other data collected using bottle and CTD casts from the ELLEN B. SCRIPPS and other platforms from the Coastal Waters of California during the California Cooperative Fisheries Investigation (CALCOFI) project, 23 January 1983 to 08 December 1983 (NODC Accession 8600371)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data, temperature, and other data were collected using CTD and bottle casts from ELLEN B. SCRIPPS and other platforms from the Coastal Waters...

  3. The Scientist as Illustrator.

    Science.gov (United States)

    Iwasa, Janet H

    2016-04-01

    Proficiency in art and illustration was once considered an essential skill for biologists, because text alone often could not suffice to describe observations of biological systems. With modern imaging technology, it is no longer necessary to illustrate what we can see by eye. However, in molecular and cellular biology, our understanding of biological processes is dependent on our ability to synthesize diverse data to generate a hypothesis. Creating visual models of these hypotheses is important for generating new ideas and for communicating to our peers and to the public. Here, I discuss the benefits of creating visual models in molecular and cellular biology and consider steps to enable researchers to become more effective visual communicators. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Scientists Involved in K-12 Education

    Science.gov (United States)

    Robigou, V.

    2004-12-01

    The publication of countless reports documenting the dismal state of science education in the 1980s, and the Third International Mathematics and Science Study (TIMMS) report (1996) called for a wider involvement of the scientific community in K-12 education and outreach. Improving science education will not happen without the collaboration of educators and scientists working in a coordinated manner and it requires a long-term, continuous effort. To contribute effectively to K-12 education all scientists should refer to the National Science Education Standards, a set of policies that guide the development of curriculum and assessment. Ocean scientists can also specifically refer to the COSEE recommendations (www.cosee.org) that led to the creation of seven regional Centers for Ocean Sciences Education Excellence. Scientists can get involved in K-12 education in a multitude of ways. They should select projects that will accommodate time away from their research and teaching obligations, their talent, and their interest but also contribute to the education reform. A few examples of effective involvement are: 1) collaborating with colleagues in a school of education that can lead to better education of all students and future teachers, 2) acting as a resource for a national program or a local science fair, 3) serving on the advisory board of a program that develops educational material, 4) speaking out at professional meetings about the value of scientists' involvement in education, 5) speaking enthusiastically about the teaching profession. Improving science education in addition to research can seem a large, overwhelming task for scientists. As a result, focusing on projects that will fit the scientist's needs as well as benefit the science reform is of prime importance. It takes an enormous amount of work and financial and personnel resources to start a new program with measurable impact on students. So, finding the right opportunity is a priority, and stepping

  5. Exploring Native American Students' Perceptions of Scientists

    Science.gov (United States)

    Laubach, Timothy A.; Crofford, Geary Don; Marek, Edmund A.

    2012-07-01

    The purpose of this descriptive study was to explore Native American (NA) students' perceptions of scientists by using the Draw-A-Scientist Test and to determine if differences in these perceptions exist between grade level, gender, and level of cultural tradition. Data were collected for students in Grades 9-12 within a NA grant off-reservation boarding school. A total of 133 NA students were asked to draw a picture of a scientist at work and to provide a written explanation as to what the scientist was doing. A content analysis of the drawings indicated that the level of stereotype differed between all NA subgroups, but analysis of variance revealed that these differences were not significant between groups except for students who practised native cultural tradition at home compared to students who did not practise native cultural tradition at home (p educational and career science, technology, engineering, and mathematics paths in the future. The educational implication is that once initial perceptions are identified, researchers and teachers can provide meaningful experiences to combat the stereotypes.

  6. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical…

  7. Enhancing Graduate Education and Research in Ocean Sciences at the Universidad de Concepcion (UDEC) and in Chile: Cooperation Between UDEC and Woods Hole Oceanographic Institution.

    Science.gov (United States)

    Farrington, J.; Pantoja, S.

    2007-05-01

    The Woods Hole Oceanographic Institution, USA (WHOI) and the University of Concepcion, Chile (UDEC) entered into an MOU to enhance graduate education and research in ocean sciences in Chile and enhance research for understanding the Southeastern Pacific Ocean. The MOU was drafted and signed after exchange visits of faculty. The formulation of a five year program of activities included: exchange of faculty for purposes of enhancing research, teaching and advising; visits of Chilean graduate students to WHOI for several months of supplemental study and research in the area of their thesis research; participation of Chilean faculty and graduate students in WHOI faculty led cruises off Chile and Peru (with Peruvian colleagues); a postdoctoral fellowship program for Chilean ocean scientists at WHOI; and the establishment of an Austral Summer Institute of advanced undergraduate and graduate level intensive two to three week courses on diverse topics at the cutting edge of ocean science research co-sponsored by WHOI and UDEC for Chilean and South American students with faculty drawn from WHOI and other U.S. universities with ocean sciences graduate schools and departments, e.g. Scripps Institution of Oceanography, University of Delaware. The program has been evaluated by external review and received excellent comments. The success of the program has been due mainly to: (1) the cooperative attitude and enthusiasm of the faculty colleagues of both Chilean Universities (especially UDEC) and WHOI, students and postdoctoral fellows, and (2) a generous grant from the Fundacion Andes- Chile enabling these activities.

  8. Anthony Sclafani: Consummate scientist.

    Science.gov (United States)

    Vasselli, Joseph R; Smith, Gerard P

    2018-03-01

    In this article we review the scientific contributions of Anthony Sclafani, with specific emphasis on his early work on the neural substrate of the ventromedial hypothalamic (VMH) hyperphagia-obesity syndrome, and on the development of diet-induced obesity (DIO). Over a period of 20 years Sclafani systematically investigated the neuroanatomical basis of the VMH hyperphagia-obesity syndrome, and ultimately identified a longitudinal oxytocin-containing neural tract contributing to its expression. This tract has since been implicated in mediating the effects of at least two gastrointestinal satiety factors. Sclafani was one of the first investigators to demonstrate DIO in rats as a result of exposure to multiple palatable food items (the "supermarket diet"), and concluded that diet palatability was the primary factor responsible for DIO. Sclafani went on to investigate the potency of specific carbohydrate and fat stimuli for inducing hyperphagia, and in so doing discovered that post-ingestive nutrient effects contribute to the elevated intake of palatable food items. To further investigate this effect, he devised an intragastric infusion system which allowed the introduction of nutrients into the gut paired with the oral intake of flavored solutions, an apparatus her termed the "electronic esophagus". Sclafani coined the term "appetition" to describe the effect of intestinal nutrient sensing on post-ingestive appetite stimulation. Sclafani's productivity in the research areas he chose to investigate has been nothing short of extraordinary, and his studies are characterized by inventive hypothesizing and meticulous experimental design. His results and conclusions, to our knowledge, have never been contradicted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Supporting Students as Scientists: One Mission's Efforts

    Science.gov (United States)

    Taylor, J.; Chambers, L. H.; Trepte, C. R.

    2012-12-01

    NASA's CALIPSO satellite mission provides an array of opportunities for teachers, students, and the general public. In developing our latest plan for education and public outreach, CALIPSO focused on efforts that would support students as scientists. CALIPSO EPO activities are aimed at inspiring young scientists through multiple avenues of potential contact, including: educator professional development, student-scientist mentoring, curriculum resource development, and public outreach through collaborative mission efforts. In this session, we will explore how these avenues complement one another and take a closer look at the development of the educator professional development activities. As part of CALIPSO's EPO efforts, we have developed the GLOBE Atmosphere Investigations Programs (AIP). The program encourages students to engage in authentic science through research on the atmosphere. The National Research Council (NRC) has emphasized the importance of teaching scientific inquiry in the National Science Education Standards (1996, 2000) and scientific practice in the recent Framework for K-12 Science Education (2011). In order to encourage student-centered science inquiry, teacher training utilizing GLOBE Atmosphere Investigations and GLOBE's Student Research Process are provided to middle and high school teachers to assist them in incorporating real scientific investigations into their classroom. Through participation in the program, teachers become a part of GLOBE (Global Learning and Observations to Benefit the Environment) - an international community of teachers, students, and scientists studying environmental science in over 24,000 schools around the world. The program uses NASA's satellites and the collection of atmosphere data by students to provide an engaging science learning experience for the students, and teachers. The GLOBE Atmosphere Investigations program offers year-long support to both teachers and students through direct involvement with NASA

  10. Overcoming the obstacles: Life stories of scientists with learning disabilities

    Science.gov (United States)

    Force, Crista Marie

    Scientific discovery is at the heart of solving many of the problems facing contemporary society. Scientists are retiring at rates that exceed the numbers of new scientists. Unfortunately, scientific careers still appear to be outside the reach of most individuals with learning disabilities. The purpose of this research was to better understand the methods by which successful learning disabled scientists have overcome the barriers and challenges associated with their learning disabilities in their preparation and performance as scientists. This narrative inquiry involved the researcher writing the life stories of four scientists. These life stories were generated from extensive interviews in which each of the scientists recounted their life histories. The researcher used narrative analysis to "make sense" of these learning disabled scientists' life stories. The narrative analysis required the researcher to identify and describe emergent themes characterizing each scientist's life. A cross-case analysis was then performed to uncover commonalities and differences in the lives of these four individuals. Results of the cross-case analysis revealed that all four scientists had a passion for science that emerged at an early age, which, with strong drive and determination, drove these individuals to succeed in spite of the many obstacles arising from their learning disabilities. The analysis also revealed that these scientists chose careers based on their strengths; they actively sought mentors to guide them in their preparation as scientists; and they developed coping techniques to overcome difficulties and succeed. The cross-case analysis also revealed differences in the degree to which each scientist accepted his or her learning disability. While some demonstrated inferior feelings about their successes as scientists, still other individuals revealed feelings of having superior abilities in areas such as visualization and working with people. These individuals revealed

  11. Data sharing by scientists: Practices and perceptions

    Science.gov (United States)

    Tenopir, C.; Allard, S.; Douglass, K.; Aydinoglu, A.U.; Wu, L.; Read, E.; Manoff, M.; Frame, M.

    2011-01-01

    Background: Scientific research in the 21st century is more data intensive and collaborative than in the past. It is important to study the data practices of researchers - data accessibility, discovery, re-use, preservation and, particularly, data sharing. Data sharing is a valuable part of the scientific method allowing for verification of results and extending research from prior results. Methodology/Principal Findings: A total of 1329 scientists participated in this survey exploring current data sharing practices and perceptions of the barriers and enablers of data sharing. Scientists do not make their data electronically available to others for various reasons, including insufficient time and lack of funding. Most respondents are satisfied with their current processes for the initial and short-term parts of the data or research lifecycle (collecting their research data; searching for, describing or cataloging, analyzing, and short-term storage of their data) but are not satisfied with long-term data preservation. Many organizations do not provide support to their researchers for data management both in the short- and long-term. If certain conditions are met (such as formal citation and sharing reprints) respondents agree they are willing to share their data. There are also significant differences and approaches in data management practices based on primary funding agency, subject discipline, age, work focus, and world region. Conclusions/Significance: Barriers to effective data sharing and preservation are deeply rooted in the practices and culture of the research process as well as the researchers themselves. New mandates for data management plans from NSF and other federal agencies and world-wide attention to the need to share and preserve data could lead to changes. Large scale programs, such as the NSF-sponsored DataNET (including projects like DataONE) will both bring attention and resources to the issue and make it easier for scientists to apply sound

  12. Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists

    Science.gov (United States)

    Shein, Paichi Pat; Tsai, Chun-Yen

    2015-09-01

    Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.

  13. History and Outcomes of 50 Years of Physician-Scientist Training in Medical Scientist Training Programs.

    Science.gov (United States)

    Harding, Clifford V; Akabas, Myles H; Andersen, Olaf S

    2017-10-01

    Physician-scientists are needed to continue the great pace of recent biomedical research and translate scientific findings to clinical applications. MD-PhD programs represent one approach to train physician-scientists. MD-PhD training started in the 1950s and expanded greatly with the Medical Scientist Training Program (MSTP), launched in 1964 by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. MD-PhD training has been influenced by substantial changes in medical education, science, and clinical fields since its inception. In 2014, NIGMS held a 50th Anniversary MSTP Symposium highlighting the program and assessing its outcomes. In 2016, there were over 90 active MD-PhD programs in the United States, of which 45 were MSTP supported, with a total of 988 trainee slots. Over 10,000 students have received MSTP support since 1964. The authors present data for the demographic characteristics and outcomes for 9,683 MSTP trainees from 1975-2014. The integration of MD and PhD training has allowed trainees to develop a rigorous foundation in research in concert with clinical training. MSTP graduates have had relative success in obtaining research grants and have become prominent leaders in many biomedical research fields. Many challenges remain, however, including the need to maintain rigorous scientific components in evolving medical curricula, to enhance research-oriented residency and fellowship opportunities in a widening scope of fields targeted by MSTP graduates, to achieve greater racial diversity and gender balance in the physician-scientist workforce, and to sustain subsequent research activities of physician-scientists.

  14. Professionals and Emerging Scientists Sharing Science

    Science.gov (United States)

    Graff, P. V.; Allen, J. S.; Tobola, K.

    2010-01-01

    The Year of the Solar System (YSS) celebration begins in the fall of 2010. As YSS provides a means in which NASA can inspire members of the public about exciting missions to other worlds in our solar system, it is important to remember these missions are about the science being conducted and new discoveries being made. As part of the Year of the Solar System, Astromaterials Research and Exploration Science (ARES) Education, at the NASA Johnson Space Center, will infuse the great YSS celebration within the Expedition Earth and Beyond Program. Expedition Earth and Beyond (EEAB) is an authentic research program for students in grades 5-14 and is a component of ARES Education. Students involved in EEAB have the opportunity to conduct and share their research about Earth and/or planetary comparisons. ARES Education will help celebrate this exciting Year of the Solar System by inviting scientists to share their science. Throughout YSS, each month will highlight a topic related to exploring our solar system. Additionally, special mission events will be highlighted to increase awareness of the exciting missions and exploration milestones. To bring this excitement to classrooms across the nation, the Expedition Earth and Beyond Program and ARES Education will host classroom connection events in which scientists will have an opportunity to share discoveries being made through scientific research that relate to the YSS topic of the month. These interactive presentations will immerse students in some of the realities of exploration and potentially inspire them to conduct their own investigations. Additionally, scientists will share their own story of how they were inspired to pursue a STEM-related career that got them involved in exploration. These career highlights will allow students to understand and relate to the different avenues that scientists have taken to get where they are today. To bring the sharing of science full circle, student groups who conduct research by

  15. Young Scientist in Classroom

    Science.gov (United States)

    Doran, Rosa

    Bringing space exploration recent results and future challenges and opportunities to the knowledge of students has been a preoccupation of educators and space agencies for quite some time. The will to foster student’s interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of “Big Data”. Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student’s path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission’s results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes and Radio Antennas - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a

  16. Microgravity sciences application visiting scientist program

    Science.gov (United States)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  17. Thinking like a scientist: innateness as a case study.

    Science.gov (United States)

    Knobe, Joshua; Samuels, Richard

    2013-01-01

    The concept of innateness appears in systematic research within cognitive science, but it also appears in less systematic modes of thought that long predate the scientific study of the mind. The present studies therefore explore the relationship between the properly scientific uses of this concept and its role in ordinary folk understanding. Studies 1-4 examined the judgments of people with no specific training in cognitive science. Results showed (a) that judgments about whether a trait was innate were not affected by whether or not the trait was learned, but (b) such judgments were impacted by moral considerations. Study 5 looked at the judgments of both non-scientists and scientists, in conditions that encouraged either thinking about individual cases or thinking about certain general principles. In the case-based condition, both non-scientists and scientists showed an impact of moral considerations but little impact of learning. In the principled condition, both non-scientists and scientists showed an impact of learning but little impact of moral considerations. These results suggest that both non-scientists and scientists are drawn to a conception of innateness that differs from the one at work in contemporary scientific research but that they are also both capable of 'filtering out' their initial intuitions and using a more scientific approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Scientist impact factor (SIF): a new metric for improving scientists' evaluation?

    Science.gov (United States)

    Lippi, Giuseppe; Mattiuzzi, Camilla

    2017-08-01

    The publication of scientific research is the mainstay for knowledge dissemination, but is also an essential criterion of scientists' evaluation for recruiting funds and career progression. Although the most widespread approach for evaluating scientists is currently based on the H-index, the total impact factor (IF) and the overall number of citations, these metrics are plagued by some well-known drawbacks. Therefore, with the aim to improve the process of scientists' evaluation, we developed a new and potentially useful indicator of recent scientific output. The new metric scientist impact factor (SIF) was calculated as all citations of articles published in the two years following the publication year of the articles, divided by the overall number of articles published in that year. The metrics was then tested by analyzing data of the 40 top scientists of the local University. No correlation was found between SIF and H-index (r=0.15; P=0.367) or 2 years H-index (r=-0.01; P=0.933), whereas the H-index and 2 years H-index values were found to be highly correlated (r=0.57; Particles published in one year and the total number of citations to these articles in the two following years (r=0.62; Pscientists, wherein the SIF reflects the scientific output over the past two years thus increasing their chances to apply to and obtain competitive funding.

  19. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    Energy Technology Data Exchange (ETDEWEB)

    Paul H. Wine

    1998-11-23

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  20. Best practices in bioinformatics training for life scientists.

    KAUST Repository

    Via, Allegra; Blicher, Thomas; Bongcam-Rudloff, Erik; Brazas, Michelle D; Brooksbank, Cath; Budd, Aidan; De Las Rivas, Javier; Dreyer, Jacqueline; Fernandes, Pedro L; van Gelder, Celia; Jacob, Joachim; Jimenez, Rafael C; Loveland, Jane; Moran, Federico; Mulder, Nicola; Nyrö nen, Tommi; Rother, Kristian; Schneider, Maria Victoria; Attwood, Teresa K

    2013-01-01

    concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource

  1. Scientists discover how deadly fungal microbes enter host cells

    OpenAIRE

    Whyte, Barry James

    2010-01-01

    A research team led by scientists at the Virginia Bioinformatics Institute at Virginia Tech has discovered a fundamental entry mechanism that allows dangerous fungal microbes to infect plants and cause disease.

  2. Italian scientists fear impact of cabinet reshuffle on reforms

    CERN Multimedia

    Abbott, A

    1998-01-01

    Scientists are nervous about the choice of Ortensio Zecchino for minister for research and universities in the new coalition government, mainly because the Italien Space, Energy and Environment agencies and CNR have not yet been formally approved (1 page).

  3. Scientists adopt new strategy to find Huntington's disease therapies

    Science.gov (United States)

    ... Links PubMed Stem Cell Information OppNet NIDB NIH Blueprint for Neuroscience Research Institutes at NIH List of ... Release Friday, August 7, 2015 Scientists adopt new strategy to find Huntington’s disease therapies A skyline view ...

  4. The LIS Blogosphere Contains Tags that Can Be Categorized and It Disseminates Professional Content. A Review of: Aharony, N. (2009. Librarians and information scientists in the blogosphere: An exploratory analysis. Library & Information Science Research, 31(3, 174‐181.

    Directory of Open Access Journals (Sweden)

    Virginia Wilson

    2010-03-01

    Full Text Available Objective – This study analyzes library and information studies (LIS oriented blogs to determine the content, and looks at tags and folksonomies of these blogs to determine whether they form a consistent, coherent scheme or whether they are lacking in internal logic.Design – A qualitative content analysis of tags assigned to 30 LIS blogs.Setting – The research took place on the internet from May to July, 2008.Subjects – Thirty LIS blogs were examined, each of which was written by a librarian or an information scientist.Methods – The researcher reviewed 100 blogs that were found by browsing the Top 25 Librarian Bloggers as published by the Online Education Database in 2007 and by searching Technorati, one of the main search engines for blogs, using the term “library and information science.” Thirty blogs were chosen for analysis based on two criteria: the blog had to be written by a librarian or an information scientist, and the blog had to be active during the period studied (May‐July, 2008.A content analysis was undertaken on the tags assigned to the 30 blogs by categorizing the tags that appeared as tag clouds (visual representations of user‐generated tags in which the tags used more frequently are depicted in larger, bolder font in Technorati. In order to validate the Technorati tags, the researcher’s coders read and analyzed all the blog posts over the given time period. The categorization consists of five major categories, each with several subcategories. The categories were developed using a clustering approach, with new categories coming into being when a tag did not fit into an already established category.Main Results – The tag categorization resulted in five broad categories, each with several sub‐categories (a few of which are listed here:1.General (Nouns, Disciplines, Place Names2.Library‐related (Web 2.0, Librarians’ Activities, Catalogues3.Technology‐related Products, Technology – Types, People4

  5. Learning with Teachers; A Scientist's Perspective

    Science.gov (United States)

    Czajkowski, K. P.

    2004-12-01

    Over the past six years, as an Assistant Professor and now as an Associate Professor, I have engaged in educational outreach activities with K-12 teachers and their students. In this presentation I will talk about the successes and failures that I have had as a scientist engaged in K-12 educational outreach, including teaching the Earth System Science Education Alliance (ESSEA) distance learning course, teaching inquiry-based science to pre-service teachers through the NASA Opportunities for Visionary Academics (NOVA) program, GLOBE, school visits, and research projects with teachers and students. I will reflect on the potential impact this has had on my career, negative and positive. I will present ways that I have been able to engage in educational outreach while remaining a productive scientist, publishing research papers, etc. Obtaining grant funding to support a team of educational experts to assist me perform outreach has been critical to my groups success. However, reporting for small educational grants from state agencies can often be overwhelming. The bottom line is that I find working with teachers and students rewarding and believe that it is a critical part of me being a scientist. Through the process of working with teachers I have learned pedagogy that has helped me be a better teacher in the university classroom.

  6. Conservation beyond science: scientists as storytellers

    Directory of Open Access Journals (Sweden)

    Diogo Veríssimo

    2014-11-01

    Full Text Available As scientists we are often unprepared and unwilling to communicate our passion for what we do to those outside our professional circles. Scientific literature can also be difficult or unattractive to those without a professional interest in research. Storytelling can be a successful approach to enable readers to engage with the challenges faced by scientists. In an effort to convey to the public what it means to be a field biologist, 18 Portuguese biologists came together to write a book titled “BIOgraphies: The lives of those who study life”, in the original Portuguese “BIOgrafias: Vidas de quem estuda a vida”. This book is a collection of 35 field stories that became career landmarks for those who lived them. We discuss the obstacles and opportunities of the publishing process and reflect on the lessons learned for future outreach efforts.

  7. Scientists, government, and nuclear power

    International Nuclear Information System (INIS)

    Katz, J.E.

    1982-01-01

    Scientists in less-developed countries (LDCs) that undertake nuclear programs become involved in political decisions on manpower and resource allocations that will preclude other options. Controversy over the adoption of sophisticated technology has put those who see science as the servant of society in conflict with those who see the pursuit of science as a social service. The role model which LDC scientists present in this issue has given them increasing power, which can be either in accord with or in conflict with the perceived national interest. 29 references

  8. British scientists and the Manhattan Project: the Los Alamos years

    International Nuclear Information System (INIS)

    Szasz, F.M.

    1992-01-01

    This is a study of the British scientific mission to Los Alamos, New Mexico, from 1943 to 1947, and the impact it had on the early history of the atomic age. In the years following the Manhattan Project and the production of the world's first atomic explosion in 1945, the British contribution to the Project was played down or completely ignored leaving the impression that all the atomic scientists had been American. However, the two dozen or so British scientists contributed crucially to the development of the atomic bomb. First, the initial research and reports of British scientists convinced American scientists that an atomic weapons could be constructed before the likely end of hostilities. Secondly their contribution insured the bomb was available in the shortest possible time. Also, because these scientists became involved in post-war politics and in post-war development of nuclear power, they also helped forge the nuclear boundaries of the mid-twentieth century. (UK)

  9. Scientist's Perceptions of Uncertainty During Discussions of Global Climate

    Science.gov (United States)

    Romanello, S.; Fortner, R.; Dervin, B.

    2003-04-01

    This research examines the nature of disagreements between natural and social scientists during discussions of global climate change. In particular, it explores whether the disagreements between natural and social scientists are related to the ontological, epistemological, or methodological nature of the uncertainty of global climate change during these discussions. A purposeful sample of 30 natural and social scientists recognized as experts in global climate change by the United States Global Change Research Program (USGCRP) and National Academies Committee on Global Change were interviewed to elicit their perceptions of disagreements during their three most troublesome discussions on global climate change. A mixed-method (qualitative plus quantitative research) approach with three independent variables was used to explore nature of uncertainty as a mediating variable in the relationships between academic training, level of sureness, level of knowledge, and position on global climate change, and the nature of disagreements and bridging strategies of natural and social scientists (Patton, 1997; Frechtling et al., 1997). This dissertation posits that it is the differences in the nature of uncertainty communicated by natural and social scientists and not sureness, knowledge, and position on global climate change that causes disagreements between the groups. By describing the nature of disagreements between natural and social scientists and illuminating bridging techniques scientists use during these disagreements, it is hoped that information collected from this research will create a better dialogue between the scientists studying global climate change by providing communication strategies which will allow those versed in one particular area to speak to non-experts whether they be other scientists, media officials, or the public. These tangible strategies can then be used by government agencies to create better communications and education plans, which can

  10. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  11. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class.

    Science.gov (United States)

    Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. © 2016 J. N. Schinske et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Educating the Next Generation of Lunar Scientists

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2010-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute (LPI) and NASA’s Johnson Space Center (JSC), is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA’s and NLSI’s objective to train the next generation of scientists, CLSE’s High School Lunar Research Project is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The High School Lunar Research Project engages teams of high school students in authentic lunar research that envelopes them in the process of science and supports the science goals of the CLSE. Most high school students’ lack of scientific research experience leaves them without an understanding of science as a process. Because of this, each team is paired with a lunar scientist mentor responsible for guiding students through the process of conducting a scientific investigation. Before beginning their research, students undertake “Moon 101,” designed to familiarize them with lunar geology and exploration. Students read articles covering various lunar geology topics and analyze images from past and current lunar missions to become familiar with available lunar data sets. At the end of “Moon 101”, students present a characterization of the geology and chronology of features surrounding the Apollo 11 landing site. To begin their research, teams choose a research subject from a pool of topics compiled by the CLSE staff. After choosing a topic, student teams ask their own research questions, within the context of the larger question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results and, after receiving feedback, create and present a conference style poster to a panel of

  13. Building the Next Generation of Earth Scientists: the Deep Carbon Observatory Early Career Scientist Workshops

    Science.gov (United States)

    Pratt, K.; Fellowes, J.; Giovannelli, D.; Stagno, V.

    2016-12-01

    Building a network of collaborators and colleagues is a key professional development activity for early career scientists (ECS) dealing with a challenging job market. At large conferences, young scientists often focus on interacting with senior researchers, competing for a small number of positions in leading laboratories. However, building a strong, international network amongst their peers in related disciplines is often as valuable in the long run. The Deep Carbon Observatory (DCO) began funding a series of workshops in 2014 designed to connect early career researchers within its extensive network of multidisciplinary scientists. The workshops, by design, are by and for early career scientists, thus removing any element of competition and focusing on peer-to-peer networking, collaboration, and creativity. The successful workshops, organized by committees of early career deep carbon scientists, have nucleated a lively community of like-minded individuals from around the world. Indeed, the organizers themselves often benefit greatly from the leadership experience of pulling together an international workshop on budget and on deadline. We have found that a combination of presentations from all participants in classroom sessions, professional development training such as communication and data management, and field-based relationship building and networking is a recipe for success. Small groups within the DCO ECS network have formed; publishing papers together, forging new research directions, and planning novel and ambitious field campaigns. Many DCO ECS also have come together to convene sessions at major international conferences, including the AGU Fall Meeting. Most of all, there is a broad sense of camaraderie and accessibility within the DCO ECS Community, providing the foundation for a career in the new, international, and interdisciplinary field of deep carbon science.

  14. The scientist's role in the nuclear debate

    International Nuclear Information System (INIS)

    Blackstein, F.P.

    1981-01-01

    Until recently the public had little time for, or interest in, studying scientific developments. Details on topics such as medical research, energy developments and communications advances were left to scientific journals and specialist conferences. For the most part the public had faith in science and science was able to maintain that faith through developments which recognizably improved the lot of mankind. But faith is no longer sufficient; scientists must now interact with people if we are to fulfil our obligations in this new theatre of increased public awareness. Scientists and egineers like myself and my colleagues at Atomic Energy of Canada Ltd. are communicating with the public as one part of a broad programme of public information. This includes: operation of public information centres, visits to our laboratories, interaction with teachers, distribution of reports and hosting exhibits. Technical people have a lot to learn about communicating with the public, the media and the critics. It is an extremely difficult task, but as concerned scientists it is something we should and must do, openly and constructively

  15. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    Science.gov (United States)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments

  16. Usage Analysis for the Identification of Research Trends in Digital Libraries; Keepers of the Crumbling Culture: What Digital Preservation Can Learn from Library History; Patterns of Journal Use by Scientists through Three Evolutionary Phases; Developing a Content Management System-Based Web Site; Exploring Charging Models for Digital Cultural Heritage in Europe; Visions: The Academic Library in 2012.

    Science.gov (United States)

    Bollen, Johan; Vemulapalli, Soma Sekara; Xu, Weining; Luce, Rick; Marcum, Deanna; Friedlander, Amy; Tenopir, Carol; Grayson, Matt; Zhang, Yan; Ebuen, Mercy; King, Donald W.; Boyce, Peter; Rogers, Clare; Kirriemuir, John; Tanner, Simon; Deegan, Marilyn; Marcum, James W.

    2003-01-01

    Includes six articles that discuss use analysis and research trends in digital libraries; library history and digital preservation; journal use by scientists; a content management system-based Web site for higher education in the United Kingdom; cost studies for transitioning to digitized collections in European cultural institutions; and the…

  17. News Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

    Science.gov (United States)

    2011-01-01

    Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

  18. Mentors, networks, and resources for early career female atmospheric scientists

    Science.gov (United States)

    Hallar, A. G.; Avallone, L. M.; Edwards, L. M.; Thiry, H.; Ascent

    2011-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT is a multi-faceted approach to retaining these junior scientists through the challenges in their research and teaching career paths. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory - Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. An external evaluation of the three workshop cohorts concludes that the workshops have been successful in establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  19. The Current Situation of Female Scientists in Argentina

    Science.gov (United States)

    Llois, Ana María; Dawson, Silvina Ponce

    2009-04-01

    We report the changes that have taken place recently regarding the situation of female scientists in Argentina. We comment on the rules for maternity leave that have been passed recently for research scholars doing their PhDs and on the number of women scientists that occupy decision making-positions in science. We also present some evidence that seems to indicate that, among young scientists, women are more willing to occupy leadership positions and that the Argentinean society is more accepting of this new role.

  20. The subjectivity of scientists and the Bayesian approach

    CERN Document Server

    Press, James S

    2001-01-01

    Comparing and contrasting the reality of subjectivity in the work of history's great scientists and the modern Bayesian approach to statistical analysisScientists and researchers are taught to analyze their data from an objective point of view, allowing the data to speak for themselves rather than assigning them meaning based on expectations or opinions. But scientists have never behaved fully objectively. Throughout history, some of our greatest scientific minds have relied on intuition, hunches, and personal beliefs to make sense of empirical data-and these subjective influences have often a

  1. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  2. Mathematics for the Student Scientist

    Science.gov (United States)

    Lauten, A. Darien; Lauten, Gary N.

    1998-03-01

    The Earth Day:Forest Watch Program, introduces elementary, middle, and secondary students to field laboratory, and satellite-data analysis methods for assessing the health of Eastern White Pine ( Pinus strobus). In this Student-Scientist Partnership program, mathematics, as envisioned in the NCTM Standards, arises naturally and provides opportunities for science-mathematics interdisciplinary student learning. School mathematics becomes the vehicle for students to quantify, represent, analyze, and interpret meaningful, real data.

  3. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  4. The Scientist as Sentinel (Invited)

    Science.gov (United States)

    Oreskes, N.

    2013-12-01

    Scientists have been warning the world for some time about the risks of anthropogenic interference in the climate system. But we struggle with how, exactly, to express that warning. The norms of scientific behavior enjoin us from the communication strategies normally associated with warnings. If a scientist sounds excited or emotional, for example, it is often assumed that he has lost his capac¬ity to assess data calmly and therefore his conclusions are suspect. If the scientist is a woman, the problem is that much worse. In a recently published article my colleagues and I have shown that scientists have systematically underestimated the threat of climate change (Brysse et al., 2012). We suggested that this occurs for norma¬tive reasons: The scientific values of rationality, dispassion, and self-restraint lead us to demand greater levels of evidence in support of surprising, dramatic, or alarming conclusions than in support of less alarming conclusions. We call this tendency 'err¬ing on the side of least drama.' However, the problem is not only that we err on the side of least drama in our assessment of evidence, it's also that we speak without drama, even when our conclusions are dramatic. We speak without the emotional cadence that people expect to hear when the speaker is worried. Even when we are worried, we don't sound as if we are. In short, we are trying to act as sentinels, but we lack the register with which to do so. Until we find those registers, or partner with colleagues who are able to speak in the cadences that communicating dangers requires, our warnings about climate change will likely continue to go substantially unheeded.

  5. Support for Synchrotron Access by Environmental Scientists

    International Nuclear Information System (INIS)

    Daly, Michael; Madden, Andrew; Palumbo, Anthony; Qafoku, N.

    2006-01-01

    To support ERSP-funded scientists in all aspects of synchrotron-based research at the Advanced Photon Source (APS). This support comes in one or more of the following forms: (1) writing proposals to the APS General User (GU) program, (2) providing time at MRCAT/EnviroCAT beamlines via the membership of the Molecular Environmental Science (MES) Group in MRCAT/EnviroCAT, (3) assistance in experimental design and sample preparation, (4) support at the beamline during the synchrotron experiment, (5) analysis and interpretation of the synchrotron data, and (6) integration of synchrotron experimental results into manuscripts

  6. Practical Statistics for Environmental and Biological Scientists

    CERN Document Server

    Townend, John

    2012-01-01

    All students and researchers in environmental and biological sciences require statistical methods at some stage of their work. Many have a preconception that statistics are difficult and unpleasant and find that the textbooks available are difficult to understand. Practical Statistics for Environmental and Biological Scientists provides a concise, user-friendly, non-technical introduction to statistics. The book covers planning and designing an experiment, how to analyse and present data, and the limitations and assumptions of each statistical method. The text does not refer to a specific comp

  7. Call for new OWSD Fellowships for Early Career Women Scientists ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-05-03

    May 3, 2018 ... Call for new OWSD Fellowships for Early Career Women Scientists now open ... or mathematics; and employed at an academic or scientific research ... research groups that will attract international visitors; and to develop links with ... opportunity to support Canadian-African research teams studying Ebola.

  8. Exploring Natural and Social Scientists' Views of Nature of Science

    Science.gov (United States)

    Bayir, Eylem; Cakici, Yilmaz; Ertas, Ozge

    2014-01-01

    Science education researchers recently turned their attention to exploring views about nature of science (NOS). A large body of research indicates that both students and teachers have many naïve views about the NOS. Unfortunately, less attention has been directed at the issue of exploring the views of the scientists. Also, the little research in…

  9. The Women Scientists of India | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    She had 11 papers to her credit in international journals. ... in India at the Indian Cancer Research Centre (presently Cancer Research Institute). ..... eminent Indian Woman Scientists, the Ranbaxy Science Foundation Award for Clinical Research, etc. ... She is Professor at the Saraswati Medical & Dental College, Lucknow.

  10. Whom do scientists talk to? Themselves or the general public ...

    African Journals Online (AJOL)

    The paper reveals that although science researchers admit to the effectiveness of mass media as possible channels for science communication, they hardly make use of them to disseminate their research. Research scientists choose academic channels, namely; journals and brochures, lectures and seminars and, books ...

  11. Developing Earth and Space Scientists for the Future

    Science.gov (United States)

    Manduca, Cathryn A.; Cifuentes, Inés

    2007-09-01

    As the world's largest organization of Earth and space scientists, AGU safeguards the future of pioneering research by ensuring that ``the number and diversity of Earth and space scientists continue to grow through the flow of young talent into the field'' (AGU Strategic Plan 2008, Goal IV). Achieving this goal is the focus of the AGU Committee on Education and Human Resources (CEHR), one of the Union's three outreach committees.

  12. Biotechnology awareness study, Part 1: Where scientists get their information.

    Science.gov (United States)

    Grefsheim, S; Franklin, J; Cunningham, D

    1991-01-01

    A model study, funded by the National Library of Medicine (NLM) and conducted by the Southeastern/Atlantic Regional Medical Library (RML) and the University of Maryland Health Sciences Library, attempted to assess the information needs of researchers in the developing field of biotechnology and to determine the resources available to meet those needs in major academic health sciences centers. Nine medical schools in RML Region 2 were selected to participate in a biotechnology awareness study. A survey was conducted of the nine medical school libraries to assess their support of biotechnology research. To identify the information needs of scientists engaged in biotechnology-related research at the schools, a written survey was sent to the deans of the nine institutions and selected scientists they had identified. This was followed by individual, in-depth interviews with both the deans and scientists surveyed. In general, scientists obtained information from three major sources: their own experiments, personal communication with other scientists, and textual material (print or electronic). For textual information, most study participants relied on personal journal subscriptions. Tangential journals were scanned in the department's library. Only a few of these scientists came to the health sciences library on a regular basis. Further, the study found that personal computers have had a major impact on how biotechnologists get and use information. Implications of these findings for libraries and librarians are discussed. PMID:1998818

  13. To Boldly Go: Practical Career Advice for Young Scientists

    Science.gov (United States)

    Fiske, P.

    1998-05-01

    Young scientists in nearly every field are finding the job market of the 1990's a confusing and frustrating place. Ph.D. supply is far larger than that needed to fill entry-level positions in "traditional" research careers. More new Ph.D. and Master's degree holders are considering a wider range of careers in and out of science, but feel ill-prepared and uninformed about their options. Some feel their Ph.D. training has led them to a dead-end. I present a thorough and practical overview to the process of career planning and job hunting in the 1990's, from the perspective of a young scientist. I cover specific steps that young scientists can take to broaden their horizons, strengthen their skills, and present their best face to potential employers. An important part of this is the realization that most young scientists possess a range of valuable "transferable skills" that are highly sought after by employers in and out of science. I will summarize the specifics of job hunting in the 90's, including informational interviewing, building your network, developing a compelling CV and resume, cover letters, interviewing, based on my book "To Boldly Go: A Practical Career Guide for Scientists". I will also identify other resources available for young scientists. Finally, I will highlight individual stories of Ph.D.-trained scientists who have found exciting and fulfilling careers outside the "traditional" world of academia.

  14. The challenges for scientists in avoiding plagiarism.

    Science.gov (United States)

    Fisher, E R; Partin, K M

    2014-01-01

    Although it might seem to be a simple task for scientists to avoid plagiarism and thereby an allegation of research misconduct, assessment of trainees in the Responsible Conduct of Research and recent findings from the National Science Foundation Office of Inspector General regarding plagiarism suggests otherwise. Our experiences at a land-grant academic institution in assisting researchers in avoiding plagiarism are described. We provide evidence from a university-wide multi-disciplinary course that understanding how to avoid plagiarism in scientific writing is more difficult than it might appear, and that a failure to learn the rules of appropriate citation may cause dire consequences. We suggest that new strategies to provide training in avoiding plagiarism are required.

  15. Climate Change: On Scientists and Advocacy

    Science.gov (United States)

    Schmidt, Gavin A.

    2014-01-01

    Last year, I asked a crowd of a few hundred geoscientists from around the world what positions related to climate science and policy they would be comfortable publicly advocating. I presented a list of recommendations that included increased research funding, greater resources for education, and specific emission reduction technologies. In almost every case, a majority of the audience felt comfortable arguing for them. The only clear exceptions were related to geo-engineering research and nuclear power. I had queried the researchers because the relationship between science and advocacy is marked by many assumptions and little clarity. This despite the fact that the basic question of how scientists can be responsible advocates on issues related to their expertise has been discussed for decades most notably in the case of climate change by the late Stephen Schneider.

  16. The History of Winter: teachers as scientists

    Science.gov (United States)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned

  17. Search, access and dissemination of scientific information from scientists, social scientists and humanists

    Directory of Open Access Journals (Sweden)

    Fernando César Lima Leite

    2015-05-01

    Full Text Available This paper presents results of study on the characteristics of search activities, access to and use of information, and dissemination habits of researchers from scientific research institutes. From the methodological point of view, it is a mixed methods study which adopted the concurrent triangulation strategy. Data were collected through questionnaires, interviews and checklist, and then submitted to statistical and text analysis. The research sphere was consisted of researchers linked to the research units of the Ministry of Science, Technology and Innovation, and the sample basis were the researchers of the Brazilian Centre for Physics Research (CBPF and Museum of Astronomy and Related Sciences (MAST. Among other aspects, the findings shows that the safeguarded their disciplinary differences, search, access and communication activities, regardless of the knowledge area, occurring mainly in the digital environment; communication habits are stimulated by motives common to scientists and social scientists and humanists, share knowledge and visibility are the main reasons for the dissemination of research results, physicists are naturally within the open access context.

  18. Math for scientists refreshing the essentials

    CERN Document Server

    Maurits, Natasha

    2017-01-01

    Accessible and comprehensive, this guide is an indispensable tool for anyone in the sciences – new and established researchers, students and scientists – looking either to refresh their math skills or to prepare for the broad range of math, statistical and data-related challenges they are likely to encounter in their work or studies. In addition to helping scientists improve their knowledge of key mathematical concepts, this unique book will help readers: ·                     Read mathematical symbols ·                     Understand formulas, data or statistical information ·                     Determine medication equivalents ·                     Analyze neuroimaging  Mathematical concepts are presented alongside illustrative and useful real-world scien­tific examples and are further clarified through practical pen-and-paper exercises. Whether you are a student encountering high-level mathematics in your research or...

  19. A scientist at the seashore

    CERN Document Server

    Trefil, James S

    2005-01-01

    ""A marvelous excursion from the beach to the ends of the solar system . . . captivating.""-The New York Times""So easy to understand yet so dense with knowledge that you'll never look at waves on a beach the same way again.""-San Francisco Chronicle""One of the best popular science books.""-The Kansas City Star""Perfect for the weekend scientist.""-The Richmond News-LeaderA noted physicist and popular science writer heads for the beach to answer common and uncommon questions about the ocean. James S. Trefil, author of Dover Publications' The Moment of Creation: Big Bang Physics from Before th

  20. Give Young Scientists a Break

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. S.

    2009-11-01

    There has been much concern about the impact of tight funding on the careers of young scientists. When only a small percentage of grants are approved, even the smallest problem or error with an application can push it out of the funding range. Unfortunately, the relative lack of grant writing skills by new investigators often has this effect. To avoid a situation where only experienced investigators with polished writing skills are funded, the National Institutes of Health has instituted a more generous ranking scale for new investigators. Not surprisingly, some senior investigators have protested, calling it reverse discrimination. I say that their anger is misplaced. New investigators do deserve a break.

  1. Science fiction by scientists an anthology of short stories

    CERN Document Server

    2017-01-01

    This anthology contains fourteen intriguing short stories by active research scientists and other writers trained in science. Science is at the heart of real science fiction, which is more than just westerns with ray guns or fantasy with spaceships. The people who do science and love science best are scientists. Scientists like Isaac Asimov, Arthur C. Clarke, and Fred Hoyle wrote some of the legendary tales of golden age science fiction. Today there is a new generation of scientists writing science fiction informed with the expertise of their fields, from astrophysics to computer science, biochemistry to rocket science, quantum physics to genetics, speculating about what is possible in our universe. Here lies the sense of wonder only science can deliver. All the stories in this volume are supplemented by afterwords commenting on the science underlying each story.

  2. Facilitating ethical reflection among scientists using the ethical matrix

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Forsberg, Ellen-Marie; Gamborg, Christian

    2011-01-01

    Several studies have indicated that scientists are likely to have an outlook on both facts and values that are different to that of lay people in important ways. This is one significant reason it is currently believed that in order for scientists to exercise a reliable ethical reflection about...... their research it is necessary for them to engage in dialogue with other stakeholders. This paper reports on an exercise to encourage a group of scientists to reflect on ethical issues without the presence of external stakeholders. It reports on the use of a reflection process with scientists working in the area...... of animal disease genomics (mainly drawn from the EADGENE EC Network of Excellence). This reflection process was facilitated by using an ethical engagement framework, a modified version of the Ethical Matrix. As judged by two criteria, a qualitative assessment of the outcomes and the participants' own...

  3. Scientists in an alternative vision of a globalized world

    Science.gov (United States)

    Erzan, Ayse

    2008-03-01

    Why should ``increasing the visibility of scientists in emergent countries'' be of interest? Can increasing the relevance and connectedness of scientific output, both to technological applications at home and cutting edge basic research abroad contribute to the general welfare in such countries? For this to happen, governments, inter-governmental and non-governmental organizations must provide incentives for the local industry to help fund and actively engage in the creation of new technologies, rather than settling for the solution of well understood engineering problems under the rubric of collaboration between scientists and industry. However, the trajectory of the highly industrialized countries cannot be retraced. Globalization facilitates closer interaction and collaboration between scientists but also deepens the contrasts between the center and the periphery, both world wide and within national borders; as it is understood today, it can lead to the redundancy of local technology oriented research, as the idea of a ``local industry'' is rapidly made obsolete. Scientists from all over the world are sucked into the vortex as both the economic and the cultural world increasingly revolve around a single axis. The challenge is to redefine our terms of reference under these rapidly changing boundary conditions and help bring human needs, human security and human happiness to the fore in elaborating and forging alternative visions of a globalized world. Both natural scientists and social scientists will be indispensable in such an endeavor.

  4. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Information Optical Illusions Printables Ask a Scientist Video Series Why can’t you see colors well in ... and more with our Ask a Scientist video series. Dr. Sheldon Miller answers questions about color blindness, ...

  5. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Listen All About Vision About the Eye Ask a Scientist Video Series ... Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun ...

  6. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series Why can’ ... a scientist? Click to Watch What is an optical illusion? Click to Watch What is color blindness? Click ...

  7. Young scientists in the making

    CERN Multimedia

    Corinne Pralavorio

    2011-01-01

    Some 700 local primary-school children will be trying out the scientific method for themselves from February to June. After "Draw me a physicist", the latest project "Dans la peau d’un chercheur" ("Be a scientist for a day") is designed to give children a taste of what it's like to be a scientist. Both schemes are the fruit of a partnership between CERN, "PhysiScope" (University of Geneva) and the local education authorities in the Pays de Gex and the Canton of Geneva.   Juliette Davenne (left) and Marie Bugnon (centre) from CERN's Communication Group prepare the mystery boxes for primary schools with Olivier Gaumer (right) of PhysiScope. Imagine a white box that rattles and gives off a strange smell when you shake it… How would you go about finding out what's inside it without opening it? Thirty primary-school teachers from the Pays de Gex and the Canton of Geneva tried out this exercise on Wednesday 26 ...

  8. Scientists Discover Sugar in Space

    Science.gov (United States)

    2000-06-01

    The prospects for life in the Universe just got sweeter, with the first discovery of a simple sugar molecule in space. The discovery of the sugar molecule glycolaldehyde in a giant cloud of gas and dust near the center of our own Milky Way Galaxy was made by scientists using the National Science Foundation's 12 Meter Telescope, a radio telescope on Kitt Peak, Arizona. "The discovery of this sugar molecule in a cloud from which new stars are forming means it is increasingly likely that the chemical precursors to life are formed in such clouds long before planets develop around the stars," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, MD. Hollis worked with Frank J. Lovas of the University of Illinois and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, on the observations, made in May. The scientists have submitted their results to the Astrophysical Journal Letters. "This discovery may be an important key to understanding the formation of life on the early Earth," said Jewell. Conditions in interstellar clouds may, in some cases, mimic the conditions on the early Earth, so studying the chemistry of interstellar clouds may help scientists understand how bio-molecules formed early in our planet's history. In addition, some scientists have suggested that Earth could have been "seeded" with complex molecules by passing comets, made of material from the interstellar cloud that condensed to form the Solar System. Glycolaldehyde, an 8-atom molecule composed of carbon, oxygen and hydrogen, can combine with other molecules to form the more-complex sugars Ribose and Glucose. Ribose is a building block of nucleic acids such as RNA and DNA, which carry the genetic code of living organisms. Glucose is the sugar found in fruits. Glycolaldehyde contains exactly the same atoms, though in a different molecular structure, as methyl formate and acetic acid, both of which were detected previously in interstellar clouds

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 53: From student to entry-level professional: Examining the technical communications practices of early career-stage US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Holloway, Karen; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    Studies indicate that communications and information-related activities take up a substantial portion of an engineer's work week; therefore, effective communications and information-use skills are one of the key engineering competencies that early career-stage aerospace engineers and scientists must possess to be successful. Feedback from industry rates communications and information-use skills high in terms of their importance to engineering practice; however, this same feedback rates the communications and information-use skills of early career-stage engineers low. To gather adequate and generalizable data about the communications and information-related activities of entry-level aerospace engineers and scientists, we surveyed 264 members of the AIAA who have no more than 1-5 years of aerospace engineering work experience. To learn more about the concomitant communications norms, we compared the results of this study with data (1,673 responses) we collected from student members of the AIAA and with data (341 responses) we collected from a study of aerospace engineering professionals. In this paper, we report selected results from these studies that focused on the communications practices and information-related activities of early career-stage U.S. aerospace engineers and scientists in the workplace.

  10. Moments in the Life of a Scientist

    Science.gov (United States)

    Rossi, Bruno

    1990-08-01

    Bruno Rossi has long been an influential figure in diverse areas of physics and in this volume he presents a fascinating account of his life and work as an experimental physicist. He discusses his scientific contributions, from experiments that played a major role in establishing the nature and properties of cosmic rays to those establishing the existence of a solar wind and others that laid the foundations of X-ray astronomy. Rossi provides close insight into his actual experiences as a scientist and the motivations that gave direction to his research, and he recounts the beginning of very significant stages in high energy physics and space research. He writes evocatively of the many places where he worked--of Florence, Arcetri, Padua, and Venice, of the mountains of Colorado and the deserts of New Mexico. His narrative also provides insight into the life of a Jewish family in fascist Italy. The text is accompanied by photographs taken throughout Rossi's career.

  11. Ivan Yakovych Gorbachevsky – Scientist, Patriot, Citizen

    Directory of Open Access Journals (Sweden)

    V. M. Danilova

    2014-10-01

    Full Text Available The article presents the facts about life and research activity of Ivan Ya. Gorbachevsky (1854-1942, the prominent scientist, Ukrainian by origin, doctor of medical sciences, professor, dean of the medical faculty and the rector of Charles University in Prague, member of the health board of the Czech Kingdom, a member of the Supreme Council of Health of Austria-Hungary in Vienna, a lifelong member of the House of Lords of the Austrian Parliament, first health minister of Austria-Hungary, rector of the Ukrainian Free University in Prague, professor of chemistry at the Padebradsk Economic Academy and the Ukrainian Pedagogical Dragomanov University, AUAS member in 1925, member of the Shevchenko Scientific Society. His research works were devoted to digestion of proteins, public and food hygiene. He was the first who synthesized uric acid (1882 and discovered xanthine oxidase (1889.

  12. Author Productivity and Collaboration Among Academic Scientists in ...

    African Journals Online (AJOL)

    A lot of researches on author productivity and collaboration were carried out in different fields. Many of the researches established that productive, active and prolific authors are also highly collaborative. This study determines whether the most productive author among the academic scientists in Modibbo Adama University ...

  13. Helping Young People Engage with Scientists

    Science.gov (United States)

    Leggett, Maggie; Sykes, Kathy

    2014-01-01

    There can be multiple benefits of scientists engaging with young people, including motivation and inspiration for all involved. But there are risks, particularly if scientists do not consider the interests and needs of young people or listen to what they have to say. We argue that "dialogue" between scientists, young people and teachers…

  14. An example of woman scientist in France

    Science.gov (United States)

    Cazenave, A.

    2002-12-01

    Although the presence of women in sciences has been increasing in the past few decades in Europe, it remains incredibly low at the top levels. Recent statistics from the European Commission indicate that now women represent 50 per cent of first degree students in many countries. However, the proportion of women at each stage of the scientific career decreases almost linearly, reaching less than 10 per cent at the highest level jobs. From my own experience, I don't think that this results from sexism nor discrimination. Rather, I think that this is a result of complex cultural factors making women subconsciously persuaded that top level jobs are destined to male scientists only. Many women scientists drop the idea of playing a role at high-level research, considering it is a way of exerting power (a matter reserved to men). Others give up the possibility of combining childcare and high level commitments in research. And too many (married women) still find only natural to sacrifice their own scientific ambitions to the benefit of their spouse's career. In this poster, I briefly present my personal experience. I chose to prioritize scientific productivity and expertise versus hierarchical responsibilities. Besides I tried to keep a satisfactory balance between family demand and research involvement. This was indeed facilitated by the French system, which provides substantial support to women's work (nurseries, recreation centers during school holidays, etc.). To my point of view, the most promising way of increasing the number of women at top levels in research is through education and mentality evolution

  15. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  16. Attitudes and norms affecting scientists' data reuse.

    Directory of Open Access Journals (Sweden)

    Renata Gonçalves Curty

    Full Text Available The value of sharing scientific research data is widely appreciated, but factors that hinder or prompt the reuse of data remain poorly understood. Using the Theory of Reasoned Action, we test the relationship between the beliefs and attitudes of scientists towards data reuse, and their self-reported data reuse behaviour. To do so, we used existing responses to selected questions from a worldwide survey of scientists developed and administered by the DataONE Usability and Assessment Working Group (thus practicing data reuse ourselves. Results show that the perceived efficacy and efficiency of data reuse are strong predictors of reuse behaviour, and that the perceived importance of data reuse corresponds to greater reuse. Expressed lack of trust in existing data and perceived norms against data reuse were not found to be major impediments for reuse contrary to our expectations. We found that reported use of models and remotely-sensed data was associated with greater reuse. The results suggest that data reuse would be encouraged and normalized by demonstration of its value. We offer some theoretical and practical suggestions that could help to legitimize investment and policies in favor of data sharing.

  17. Scientists and Science Education: Working at the Interface

    Science.gov (United States)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  18. Refugee scientists and nuclear energy

    International Nuclear Information System (INIS)

    Segre, E.

    1985-01-01

    The coming together of many of the world's experts in nuclear physics in the 1930's was largely the result of the persecution of Jews in Germany and later in Italy. Initially this meant there were no jobs for young physicists to go into as the senior scientists had been sacked. Later, it resulted in the assembly of many of the world's foremost physicists in the United States, specifically at the Los Alamos Laboratory to work on the Manhattan Project. The rise of antisemitism in Italy (to where many physicists had fled at first) provoked the emigration of Fermi, the leading expert on neutrons at that time. The politics, physics and personalities in the 1930's, relevant to the development of nuclear energy, are discussed. (UK)

  19. LHCb Early Career Scientist Awards

    CERN Multimedia

    Patrick Koppenburg for the LHCb Collaboration

    2016-01-01

    On 15 September 2016, the LHCb collaboration awarded the first set of prizes for outstanding contributions of early career scientists.   From left to right: Guy Wilkinson (LHCb spokesperson), Sascha Stahl, Kevin Dungs, Tim Head, Roel Aaij, Conor Fitzpatrick, Claire Prouvé, Patrick Koppenburg (chair of committee) and Sean Benson. Twenty-five nominations were submitted and considered by the committee, and 5 prizes were awarded to teams or individuals for works that had a significant impact within the last year. The awardees are: Roel Aaij, Sean Benson, Conor Fitzpatrick, Rosen Matev and Sascha Stahl for having implemented and commissioned the revolutionary changes to the LHC Run-2 high-level-trigger, including the first widespread deployment of real-time analysis techniques in High Energy Physics;   Kevin Dungs and Tim Head for having launched the Starterkit initiative, a new style of software tutorials based on modern programming methods. “Starterkit is a group of ph...

  20. Top scientists join Stephen Hawking at Perimeter Institute

    Science.gov (United States)

    Banks, Michael

    2009-03-01

    Nine leading researchers are to join Stephen Hawking as visiting fellows at the Perimeter Institute for Theoretical Physics in Ontario, Canada. The researchers, who include string theorists Leonard Susskind from Stanford University and Asoka Sen from the Harisch-Chandra Research Institute in India, will each spend a few months of the year at the institute as "distinguished research chairs". They will be joined by another 30 scientists to be announced at a later date.

  1. Changing the Culture of Science Communication Training for Junior Scientists

    Science.gov (United States)

    Bankston, Adriana; McDowell, Gary S.

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today’s society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists. PMID:29904538

  2. Changing the Culture of Science Communication Training for Junior Scientists.

    Science.gov (United States)

    Bankston, Adriana; McDowell, Gary S

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today's society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists.

  3. Preparing Scientists to be Community Partners

    Science.gov (United States)

    Pandya, R. E.

    2012-12-01

    Many students, especially students from historically under-represented communities, leave science majors or avoid choosing them because scientific careers do not offer enough opportunity to contribute to their communities. Citizen science, or public participation in scientific research, may address these challenges. At its most collaborative, it means inviting communities to partner in every step of the scientific process from defining the research question to applying the results to community priorities. In addition to attracting and retaining students, this level of community engagement will help diversify science, ensure the use and usability of our science, help buttress public support of science, and encourage the application of scientific results to policy. It also offers opportunities to tackle scientific questions that can't be accomplished in other way and it is demonstrably effective at helping people learn scientific concepts and methods. In order to learn how to prepare scientists for this kind of intensive community collaboration, we examined several case studies, including a project on disease and public health in Africa and the professionally evaluated experience of two summer interns in Southern Louisiana. In these and other cases, we learned that scientific expertise in a discipline has to be accompanied by a reservoir of humility and respect for other ways of knowing, the ability to work collaboratively with a broad range of disciplines and people, patience and enough career stability to allow that patience, and a willingness to adapt research to a broader set of scientific and non-scientific priorities. To help students achieve this, we found that direct instruction in participatory methods, mentoring by community members and scientists with participatory experience, in-depth training on scientific ethics and communication, explicit articulation of the goal of working with communities, and ample opportunity for personal reflection were essential

  4. Partnerships and Grassroots Action in the 500 Women Scientists Network

    Science.gov (United States)

    Weintraub, S. R.; Zelikova, T. J.; Pendergrass, A. G.; Bohon, W.; Ramirez, K. S.

    2017-12-01

    The past year has presented real challenges for scientists, especially in the US. The political context catalyzed the formation of many new organizations with a range of goals, from increasing the role of science in decision making to improving public trust in science and scientists. The grassroots organization 500 Women Scientists formed in the wake of the 2016 US election as a response to widespread anti-science, intolerant rhetoric and to form a community that could take action together. Within months, the network grew to more than 20,000 women scientists from across the globe. We evolved from our reactionary beginnings towards a broader mission to serve society by making science open, inclusive, and accessible. With the goal of transforming scientific institutions towards a more inclusive and just enterprise, we have been building alliances with diverse groups to provide training and mentorship opportunities to our members. In so doing, we created space for scientists from across disciplines to work together, speak out, and channel their energies toward making a difference. In partnership with the Union of Concerned Scientists and Rise Stronger, we assembled resources to help scientists write op-eds and letters to the editor about the importance of science in their communities. We partnered with researchers in Jordan to explore a new peer-to-peer mentoring model. Along with a healthcare advocacy group, we participated in dialogue to examine the role of science in affordable medicine. Finally, we are working with other groups to expand peer networks and career development resources for international STEM women. Our local chapters often initiate this work, teaming up with diverse organizations to bring science to their communities and, in the process, shift perceptions of what a scientist looks like. While as scientists, we would rather be conducting experiments or running models, what brings us together is an urgent sense that our scientific expertise is needed

  5. Scientists and Educators: Joining Forces to Enhance Ocean Science Literacy

    Science.gov (United States)

    Keener-Chavis, P.

    2004-12-01

    The need for scientists to work with educators to enhance the general public's understanding of science has been addressed for years in reports like Science for All Americans (1990), NSF in a Changing World (1995), Turning to the Sea: America's Ocean Future (1999), Discovering the Earth's Final Frontier, A U.S. Strategy for Ocean Exploration (2000), and most recently, the U.S. Commission on Ocean Policy Report (2004). As reported in The National Science Foundation's Center for Ocean Science Education Excellence (COSEE) Workshop Report (2000), "The Ocean Sciences community did not answer (this) call, even though their discovery that the ocean was a more critical driving force in the natural environment than previously thought possessed great educational significance." It has been further acknowledged that "rapid and extensive improvement of science education is unlikely to occur until it becomes clear to scientists that they have an obligation to become involved in elementary- and secondary-level science (The Role of Scientists in the Professional Development of Science Teachers, National Research Council, 1996.) This presentation will focus on teachers' perceptions of how scientists conduct research, scientists' perceptions of how teachers should teach, and some misconceptions between the two groups. Criteria for high-quality professional development for teachers working with scientists will also be presented, along with a brief overview of the National Oceanic and Atmospheric Administration's Ocean Exploration program efforts to bring teachers and ocean scientists together to further ocean science literacy at the national level through recommendations put forth in the U.S. Commission on Ocean Policy Report (2004).

  6. Increasing retention of early career female atmospheric scientists

    Science.gov (United States)

    Edwards, L. M.; Hallar, A. G.; Avallone, L. M.; Thiry, H.

    2010-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT uses a multi-faceted approach to provide junior scientists with tools that will help them meet the challenges in their research and teaching career paths and will promote their retention in the field. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful and prepared to fill vacancies created by the “baby boomer” retirees. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory, Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. Post-workshop reunion events are held at national scientific meetings to maintain connectivity among each year’s participants, and for collaborating among participants of all workshops held to date. Evaluations of the two workshop cohorts thus far conclude that the workshops have been successful in achieving the goals of establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  7. Science Educational Outreach Programs That Benefit Students and Scientists

    Science.gov (United States)

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  8. Quark Matter 2017: Young Scientist Support

    Energy Technology Data Exchange (ETDEWEB)

    Evdokimov, Olga [University of Illinois at Chicago

    2017-07-31

    Quark Matter conference series are amongst the major scientific events for the Relativistic Heavy Ion community. With over 30 year long history, the meetings are held about every 1½ years to showcase the progress made in theoretical and experimental studies of nuclear matter under extreme conditions. The 26th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2017) was held at the Hyatt Regency Hotel in downtown Chicago from Sunday, February 5th through Saturday, February 11th, 2017. The conference featured about 180 plenary and parallel presentations of the most significant recent results in the field, a poster session for additional presentations, and an evening public lecture. Following the tradition of previous Quark Matter meetings, the first day of the conference was dedicated entirely to a special program for young scientists (graduate students and postdoctoral researchers). This grant will provided financial support for 235 young physicists facilitating their attendance of the conference.

  9. Business planning for scientists and engineers

    Energy Technology Data Exchange (ETDEWEB)

    Servo, J.C.; Hauler, P.D.

    1992-03-01

    Business Planning for Scientists and Engineers is a combination text/workbook intended for use by individuals and firms having received Phase II SBIR funding (Small Business Innovation Research). It is used to best advantage in combination with other aspects of the Commercialization Assistance Project developed by Dawnbreaker for the US Department of Energy. Although there are many books on the market which indicate the desired contents of a business plan, there are none which clearly indicate how to find the needed information. This book focuses on the how of business planning: how to find the needed information; how to keep yourself honest about the market potential; how to develop the plan; how to sell and use the plan.

  10. Developing and Sustaining a Career as a Transdisciplinary Nurse Scientist.

    Science.gov (United States)

    Hickey, Kathleen T

    2018-01-01

    The purpose of this article is to provide an overview of strategies to build and sustain a career as a nurse scientist. This article examines how to integrate technologies and precision approaches into clinical practice, research, and education of the next generation of nursing scholars. This article presents information for shaping a sustainable transdisciplinary career. Programs of research that utilize self-management to improve quality of life are discussed throughout the article. The ongoing National Institute of Nursing Research-funded (R01 grant) iPhone Helping Evaluate Atrial Fibrillation Rhythm through Technology (iHEART) study is the first prospective, randomized controlled trial to evaluate whether electrocardiographic monitoring with the AliveCor™ device in the real-world setting will improve the time to detection and treatment of recurrent atrial fibrillation over a 6-month period as compared to usual cardiac care. Opportunities to sustain a career as a nurse scientist and build programs of transdisciplinary research are identified. These opportunities are focused within the area of research and precision medicine. Nurse scientists have the potential and ability to shape their careers and become essential members of transdisciplinary partnerships. Exposure to clinical research, expert mentorship, and diverse training opportunities in different areas are essential to ensure that contributions to nursing science are visible through publications and presentations as well as through securing grant funding to develop and maintain programs of research. Transcending boundaries and different disciplines, nurses are essential members of many diverse teams. Nurse scientists are strengthening research approaches, clinical care, and communication and improving health outcomes while also building and shaping the next generation of nurse scientists. © 2017 Sigma Theta Tau International.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 37: The impact of political control on technical communications: A comparative study of Russian and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Flammia, Madelyn; Kennedy, John M.

    1994-01-01

    Until the recent dissolution of the Soviet Union, the Communist Party exerted a strict control of access to and dissemination of scientific and technical information (STI). This article presents models of the Soviet-style information society and the Western-style information society and discusses the effects of centralized governmental control of information on Russian technical communication practices. The effects of political control on technical communication are then used to interpret the results of a survey of Russian and U.S. aerospace engineers and scientists concerning the time devoted to technical communication, their collaborative writing practices and their attitudes toward collaboration, the kinds of technical documents they produce and use, and their use of computer technology, and their use of and the importance to them of libraries and technical information centers. The data are discussed in terms of tentative conclusions drawn from the literature. Finally, we conclude with four questions concerning government policy, collaboration, and the flow of STI between Russian and U.S. aerospace engineers and scientists.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 60: Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and US Aerospace Engineers and Scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the Large Commercial Aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk- sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a 'program participant' in the production of the Boeing Company's 777; the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decisionmaking-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; and those cultural determinants thought to influence the information- seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this paper, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  13. One More Legacy of Paul F. Brandwein: Creating Scientists

    Science.gov (United States)

    Fort, Deborah C.

    2011-06-01

    This paper studies the influence of Paul F. Brandwein, author, scientist, teacher and mentor, publisher, humanist, and environmentalist, on gifted youngsters who later became scientists, based primarily on information gathered from surveys completed by 25 of his students and one colleague. It also traces his profound interactions with science educators. It illuminates the theories of Brandwein and his protégés and colleagues about the interaction of environment, schooling, and education and Brandwein's belief in having students do original research (that is, research whose results are unknown) on their way to discovering their future scientific paths. It tests Brandwein's 1955 hypothesis on the characteristics typical of the young who eventually become scientists, namely: Three factors are considered as being significant in the development of future scientists: a Genetic Factor with a primary base in heredity (general intelligence, numerical ability, and verbal ability); a Predisposing Factor, with a primary base in functions which are psychological in nature; an Activating Factor, with a primary base in the opportunities offered in school and in the special skills of the teacher. High intelligence alone does not make a youngster a scientist (p xix).

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 6: The relationship between the use of US government technical reports by US aerospace engineers and scientists and selected institutional and sociometric variables. Ph.D. Thesis - Indiana Univ., Nov. 1990 No. 6

    Science.gov (United States)

    Pinelli, Thomas E.

    1991-01-01

    The relationship between the use of U.S. government technical reports by U.S. aerospace engineers and scientists and selected institutional and sociometric variables was investigated. The methodology used for this study was survey research. Data were collected by means of a self-administered mail questionnaire. The approximately 34,000 members of the American Institute of Aeronautics and Astronauts (AIAA) served as the study population. The response rate for the survey was 70 percent. A dependent relationship was found to exist between the use of U.S. government technical reports and three of the institutional variables (academic preparation, years of professional aerospace work experience, and technical discipline). The use of U.S. government technical reports was found to be independent of all of the sociometric variables. The institutional variables best explain the use of U.S. government technical reports by U.S. aerospace engineers and scientists.

  15. Gifted and Talented Students’ Images of Scientists

    Directory of Open Access Journals (Sweden)

    Sezen Camcı-Erdoğan

    2013-06-01

    Full Text Available The purpose of this study was to investigate gifted students’ images of scientists. The study involved 25 students in grades 7 and 8. The Draw-a-Scientist Test (DAST (Chamber, 183 was used to collect data. Drawings were eval-uated using certain criterion such as a scien-tist’s appearance and investigation, knowledge and technology symbols and gender and working style, place work, expressions, titles-captions-symbols and alternative images and age. The results showed that gifted students’ perceptions about scientists were stereotypical, generally with glasses and laboratory coats and working with experiment tubes, beakers indoors and using books, technological tools and dominantly lonely males. Most gifted stu-dents drew male scientists. Although females drew male scientists, none of the boys drew female scientist.

  16. Frederic Joliot-Curie, a tormented scientist

    International Nuclear Information System (INIS)

    Pinault, M.

    2000-01-01

    This article is a short biography of the French scientist Frederic Joliot-Curie. His fight for a peaceful use of atomic energy, his responsibilities as nuclear physicist and as the first director of the French atomic commission (CEA) have led him to face contradictions very difficult to manage. All along his career as a scientist and as a high ranked civil servant, F.Joliot-Curie tried to find an ethical way for scientists in modern societies. (A.C.)

  17. Exploring Scientists' Working Timetable: A Global Survey

    OpenAIRE

    Wang, Xianwen; Peng, Lian; Zhang, Chunbo; Xu, Shenmeng; Wang, Zhi; Wang, Chuanli; Wang, Xianbing

    2013-01-01

    In our previous study (Wang et al., 2012), we analyzed scientists' working timetable of 3 countries, using realtime downloading data of scientific literatures. In this paper, we make a through analysis about global scientists' working habits. Top 30 countries/territories from Europe, Asia, Australia, North America, Latin America and Africa are selected as representatives and analyzed in detail. Regional differences for scientists' working habits exists in different countries. Besides differen...

  18. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  19. On the fundamental importance of the social psychology of research as a basic paradigm for the philosophy of science: A philosophical case study of the psychology of the Apollo moon scientists

    Science.gov (United States)

    Mitroff, I. I.

    1972-01-01

    A combined philosophical and social psychological study of over 40 of the Apollo moon Scientists reveals that the Orthodox or Received View of Scientific Theories is found wanting in several respects: (1) observations are not theory-free; (2) scientific observations are not directly observable; and (3) observations are no less problematic than theories. The study also raises some severe criticisms of distinction between the context of discovery and the context of justification. Not only does this distinction fail to describe the actual practice of science but even more important it has the dangerous effect of excluding some of the strongest lines of evidence which could most effectively challenge the distinction. The distinction is harmful of efforts to found interdisciplinary theories and philosophies of science.

  20. Michael Polanyi on the Education and Knowledge of Scientists.

    Science.gov (United States)

    Jacobs, Struan

    2000-01-01

    Explains why teachers addressing the nature of science should know the work of Michael Polanyi. Outlines Polanyi's intellectual career and examines his ideas on the education of scientists, research, and knowledge. Polanyi presaged Kuhn, Feyerabend, and the constructivists, yet insisted that science produces true knowledge about reality. (Contains…