WorldWideScience

Sample records for screw tightening forces

  1. Influence of Diamondlike Carbon Coating of Screws on Axial Tightening Force and Stress Distribution on Overdenture Bar Frameworks with Different Fit Levels and Materials.

    Science.gov (United States)

    dos Santos, Mateus Bertolini Fernandes; Bacchi, Atais; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço

    2015-01-01

    The aim of this study was to evaluate the axial tightening force applied by conventional and diamondlike carbon (DLC)-coated screws and to verify, through three-dimensional finite element analysis (FEA), the stress distribution caused by different framework materials and prosthetic screws in overdenture frameworks with different misfit levels. The axial tightening force applied by the screw was evaluated by means of a titanium matrix connected to a load cell. Conventional titanium or DLC-coated screws were tightened with a digital torque wrench, and the load values were recorded. The values were applied in an FEA to a bar-clip attachment system connected to two 4.0 × 11-mm external-hexagon titanium implants placed in an anterior edentulous arch. DLC-coated and conventional screws were modeled with their respective axial forces obtained on the experimental evaluation for three bar framework materials (titanium, nickel-chromium, and cobalt-chromium) and three levels of misfit (100, 150, and 200 μm). Von Mises stresses for prosthetic components and maximum principal stress and microstrains (maximum principal strains) for bone tissue were measured. The mean force applied by the conventional screw was 25.55 N (± 1.78); the prosthetic screw coated with a DLC layer applied a mean force of 31.44 N (± 2.11), a statistically significant difference. In the FEA, the DLC screw led to higher stresses on the framework; however, the prosthetic screw suffered lower stress. No influence of screw type was seen in the bone tissue. Titanium frameworks reduced the stress transmitted to the bone tissue and the bar framework but had no influence on the screws. Higher misfit values resulted in an increased stress/strain in bone tissue and bar framework, which was not the case for retention screws.

  2. Loosening torque of Universal Abutment screws after cyclic loading: influence of tightening technique and screw coating.

    Science.gov (United States)

    Bacchi, Atais; Regalin, Alexandre; Bhering, Claudia Lopes Brilhante; Alessandretti, Rodrigo; Spazzin, Aloisio Oro

    2015-10-01

    The purpose of this study was to evaluate the influence of tightening technique and the screw coating on the loosening torque of screws used for Universal Abutment fixation after cyclic loading. Forty implants (Titamax Ti Cortical, HE, Neodent) (n=10) were submerged in acrylic resin and four tightening techniques for Universal Abutment fixation were evaluated: A - torque with 32 Ncm (control); B - torque with 32 Ncm holding the torque meter for 20 seconds; C - torque with 32 Ncm and retorque after 10 minutes; D - torque (32 Ncm) holding the torque meter for 20 seconds and retorque after 10 minutes as initially. Samples were divided into subgroups according to the screw used: conventional titanium screw or diamond like carbon-coated (DLC) screw. Metallic crowns were fabricated for each abutment. Samples were submitted to cyclic loading at 10(6) cycles and 130 N of force. Data were analyzed by two-way ANOVA and Tukey's test (5%). The tightening technique did not show significant influence on the loosening torque of screws (P=.509). Conventional titanium screws showed significant higher loosening torque values than DLC (P=.000). The use of conventional titanium screw is more important than the tightening techniques employed in this study to provide long-term stability to Universal Abutment screws.

  3. Tightening techniques for the retaining screws of universal abutment

    Directory of Open Access Journals (Sweden)

    Alexandre Wittcinski REGALIN

    Full Text Available Abstract Purpose This study evaluated the torque maintenance of universal abutment retaining screws using different tightening techniques, and coated or uncoated screws. Material and method The screws were tightened to implants as following: Control – 32 Ncm torque; H20 – holding 32 Ncm torque for 20 s; R – 32 Ncm torque, repeated after 10 min (retorque; and H20+R – combining the two tightening techniques. Titanium and coated screws were also evaluated. Result Statistical analysis showed higher maintained torque for titanium screws (p<0.001. The H20+R technique showed the highest maintained torque (p=0.003, but the H20 technique’s maintained torque was similar. Conclusion Titanium screws associating the two tightening techniques can improve maintained torque.

  4. Effects of Screw Configuration on the Preload Force of Implant-Abutment Screws.

    Science.gov (United States)

    Zipprich, Holger; Rathe, Florian; Pinz, Sören; Schlotmann, Luca; Lauer, Hans-Christoph; Ratka, Christoph

    The aim of this study was to investigate the effects of tightening torque, screw head angle, and thread number on the preload force of abutment screws. The test specimens consisted of three self-manufactured components (ie, a thread sleeve serving as an implant analog, an abutment analog, and an abutment screw). The abutment screws were fabricated with metric M1.6 external threads. The thread number varied between one and seven threads. The screw head angles were produced in eight varying angles (30 to 180 degrees). A sensor unit simultaneously measured the preload force of the screw and the torsion moment inside the screw shank. The tightening of the screw with the torque wrench was performed in five steps (15 to 35 Ncm). The torque wrench was calibrated before each step. Only the tightening torque and screw head angle affected the resulting preload force of the implant-abutment connection. The thread number had no effect. There was an approximately linear correlation between tightening torque and preload force. The tightening torque and screw head angle were the only study parameters that affected the resulting preload force of the abutment screw. The results obtained from this experiment are valid only for a single torque condition. Further investigations are needed that analyze other parameters that affect preload force. Once these parameters are known, it will add value for a strong, but detachable connection between the implant and abutment. Short implants and flat-to-flat connections especially will benefit significantly from this knowledge.

  5. Influence of different tightening forces before laser welding to the implant/framework fit.

    Science.gov (United States)

    da Silveira-Júnior, Clebio Domingues; Neves, Flávio Domingues; Fernandes-Neto, Alfredo Júlio; Prado, Célio Jesus; Simamoto-Júnior, Paulo César

    2009-06-01

    The aim of the present study was to evaluate the influence of abutment screw tightening force before laser welding procedures on the vertical fit of metal frameworks over four implants. To construct the frameworks, prefabricated titanium abutments and cylindrical titanium bars were joined by laser welding to compose three groups: group of manual torque (GMT), GT10 and GT20. Before welding, manual torque simulating routine laboratory procedure was applied to GTM. In GT10 and GT20, the abutment screws received 10 and 20 Ncm torque, respectively. After welding, the implant/framework interfaces were assessed by optical comparator microscope using two methods. First, the single screw test (SST) was used, in which the interfaces of the screwed and non-screwed abutments were assessed, considering only the abutments at the framework extremities. Second, the interfaces of all the abutments were evaluated when they were screwed. In the SST, intergroup analysis (Kruskal Wallis) showed no significant difference among the three conditions of tightening force; that is, the different tightening force before welding did not guarantee smaller distortions. Intragroup analysis (Wilcoxon) showed that for all groups, the interfaces of the non-screwed abutments were statistically greater than the interfaces of the screwed abutments, evidencing distortions in all the frameworks. ANOVA was applied for the comparison of interfaces when all the abutments were screwed and showed no significant difference among the groups. Under the conditions of this study, pre-welding tightness on abutment screws did not influence the vertical fit of implant-supported metal frameworks.

  6. Torque Removal Evaluation of Screw in One-Piece and Two-Piece Abutments Tightened with a Handheld screwdriver

    Directory of Open Access Journals (Sweden)

    Jalil Ghanbarzadeh

    2013-12-01

    Full Text Available Introduction: Some clinicians use a handheld screw driver instead of a torque wrench to definitively tighten abutment screws. The aim of this study was to compare the removal torque of one-piece and two-piece abutments tightened with a handheld driver and a torque control ratchet. Methods: 40 ITI implants were placed in acrylic blocks and divided into 4 groups. In groups one and two, 10 ITI one-piece abutments (Solid® and in groups three and four, 10 ITI two-piece abutments (Synocta® were placed on the implants. In groups one and three abutments were tightened by 5 experienced males and 5 experienced females using a handheld driver. In groups two and four abutments were tightened using a torque wrench with torque values of 10, 20 and 35 N.cm. Insertion torque and removal torque values of the abutments were measured with a digital torque meter. Results: The insertion torque values (ITVs of males in both abutments were significantly higher than those of females. ITVs in both Solid® and Synocta® abutments tightened with a handheld screwdriver were similar to the torque of 20 N.cm in the torque wrench. Removal torque values (RTVs of solid® abutments were higher than those of synocta® abutments. Conclusion: The one- piece abutments (solid® showed higher RTVs than the two-piece abutments (synocta®. Hand driver does not produce sufficient preload force for the final tightening of the abutment

  7. Comparison of 3D displacements of screw-retained zirconia implant crowns into implants with different internal connections with respect to screw tightening.

    Science.gov (United States)

    Rebeeah, Hanadi A; Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin; Clelland, Nancy; Brantley, William

    2018-01-01

    Internal conical implant-abutment connections without horizontal platforms may lead to crown displacement during screw tightening and torque application. This displacement may affect the proximal contacts and occlusion of the definitive prosthesis. The purpose of this in vitro study was to evaluate the displacement of custom screw-retained zirconia single crowns into a recently introduced internal conical seal implant-abutment connection in 3D during hand and torque driver screw tightening. Stereolithic acrylic resin models were printed using computed tomography data from a patient missing the maxillary right central incisor. Two different internal connection implant systems (both ∼11.5 mm) were placed in the edentulous site in each model using a surgical guide. Five screw-retained single zirconia computer-aided design and computer-aided manufacturing (CAD-CAM) crowns were fabricated for each system. A pair of high-resolution digital cameras was used to record the relationship of the crown to the model. The crowns were tightened according to the manufacturers' specifications using a torque driver, and the cameras recorded their relative position again. Three-dimensional image correlation was used to measure and compare crown positions, first hand tightened and then torque driven. The displacement test was repeated 3 times for each crown. Commercial image correlation software was used to extract the data and compare the amount of displacement vertically, mesiodistally, and buccolingually. Repeated-measures ANOVA calculated the relative displacements for all 5 specimens for each implant for both crown screw hand tightening and after applied torque. A Student t test with Bonferroni correction was used for pairwise comparison of interest to determine statistical differences between the 2 implants (α=.05). The mean vertical displacements were statistically higher than the mean displacements in the mesiodistal and buccolingual directions for both implants

  8. Effect of force tightening on cable tension and displacement in greater trochanter reattachment.

    Science.gov (United States)

    Canet, Fanny; Duke, Kajsa; Bourgeois, Yan; Laflamme, G-Yves; Brailovski, Vladimir; Petit, Yvan

    2011-01-01

    The purpose of this study was to evaluate cable tension during installation, and during loading similar to walking in a cable grip type greater trochanter (GT), reattachment system. A 4th generation Sawbones composite femur with osteotomised GT was reattached with four Cable-Ready® systems (Zimmer, Warsaw, IN). Cables were tightened at 3 different target installation forces (178, 356 and 534 N) and retightened once as recommended by the manufacturer. Cables tension was continuously monitored using in-situ load cells. To simulate walking, a custom frame was used to apply quasi static load on the head of a femoral stem implant (2340 N) and abductor pull (667 N) on the GT. GT displacement (gap and sliding) relative to the femur was measured using a 3D camera system. During installation, a drop in cable tension was observed when tightening subsequent cables: an average 40+12.2% and 11 ± 5.9% tension loss was measured in the first and second cable. Therefore, retightening the cables, as recommended by the manufacturer, is important. During simulated walking, the second cable additionally lost up to 12.2+3.6% of tension. No difference was observed between the GT-femur gaps measured with cables tightened at different installation forces (p=0.32). The GT sliding however was significantly greater (0.9 ± 0.3 mm) when target installation force was set to only 178 N compared to 356 N (0.2 ± 0.1 mm); pcable tightening force should be as close as possible to that recommended by the manufacturer, because reducing it compromises the stability of the GT fragment, whereas increasing it does not improve this stability, but could lead to cable breakage.

  9. Axial displacement of abutments into implants and implant replicas, with the tapered cone-screw internal connection, as a function of tightening torque.

    Science.gov (United States)

    Dailey, Bruno; Jordan, Laurence; Blind, Olivier; Tavernier, Bruno

    2009-01-01

    The passive fit of a superstructure on implant abutments is essential to success. One source of error when using a tapered cone-screw internal connection may be the difference between the tightening torque level applied to the abutments by the laboratory technician compared to that applied by the treating clinician. The purpose of this study was to measure the axial displacement of tapered cone-screw abutments into implants and their replicas as a function of the tightening torque level. Twenty tapered cone-screw abutments were selected. Two groups were created: 10 abutments were secured into 10 implants, and 10 abutments were secured into 10 corresponding implant replicas. Each abutment was tightened in increasing increments of 5 Ncm, from 0 Ncm to 45 Ncm, with a torque controller. The length of each sample was measured repeatedly with an Electronic Digital Micrometer. The mean axial displacement for the implant group and the replica group was calculated. The data were analyzed by the Mann-Whitney and Spearman tests. For both groups, there was always an axial displacement of the abutment upon each incremental application of torque. The mean axial displacement values varied between 7 and 12 microm for the implant group and between 6 and 21 microm for the replica group at each 5-Ncm increment. From 0 to 45 Ncm, the total mean axial displacement values were 89 microm for the implant group and 122 microm for the replica group. There was a continuous axial displacement of the abutments into implants and implant replicas when the applied torque was raised from 0 to 45 Ncm. Torque applied above the level recommended by the manufacturer increased the difference in displacement between the two groups.

  10. In vitro evaluation of force-expansion characteristics in a newly designed orthodontic expansion screw compared to conventional screws

    Directory of Open Access Journals (Sweden)

    Oshagh Morteza

    2009-01-01

    Full Text Available Objective : Expansion screws like Hyrax, Haas and other types, produce heavy interrupted forces which are unfavorable for dental movement and could be harmful to the tooth and periodontium. The other disadvantage of these screws is the need for patient cooperation for their regular activation. The purpose of this study was to design a screw and compare its force- expansion curve with other types. Materials and Methods : A new screw was designed and fabricated in the same dimension, with conventional types, with the ability of 8 mm expansion (Free wire length: 12 mm, initial compression: 4.5 mm, spring wire diameter: 0.4 mm, spring diameter: 3 mm, number of the coils: n0 ine, material: s0 tainless steel. In this in vitro study, the new screw was placed in an acrylic orthodontic appliance, and after mounting on a stone cast, the force-expansion curve was evaluated by a compression test machine and compared to other screws. Results : Force-expansion curve of designed screw had a flatter inclination compared to other screws. Generally it produced a light continuous force (two to 3.5 pounds for every 4 mm of expansion. Conclusion : In comparison with heavy and interrupted forces of other screws, the newly designed screw created light and continuous forces.

  11. Screw-in forces during instrumentation by various file systems.

    Science.gov (United States)

    Ha, Jung-Hong; Kwak, Sang Won; Kim, Sung-Kyo; Kim, Hyeon-Cheol

    2016-11-01

    The purpose of this study was to compare the maximum screw-in forces generated during the movement of various Nickel-Titanium (NiTi) file systems. Forty simulated canals in resin blocks were randomly divided into 4 groups for the following instruments: Mtwo size 25/0.07 (MTW, VDW GmbH), Reciproc R25 (RPR, VDW GmbH), ProTaper Universal F2 (PTU, Dentsply Maillefer), and ProTaper Next X2 (PTN, Dentsply Maillefer, n = 10). All the artificial canals were prepared to obtain a standardized lumen by using ProTaper Universal F1. Screw-in forces were measured using a custom-made experimental device (AEndoS- k , DMJ system) during instrumentation with each NiTi file system using the designated movement. The rotation speed was set at 350 rpm with an automatic 4 mm pecking motion at a speed of 1 mm/sec. The pecking depth was increased by 1 mm for each pecking motion until the file reach the working length. Forces were recorded during file movement, and the maximum force was extracted from the data. Maximum screw-in forces were analyzed by one-way ANOVA and Tukey's post hoc comparison at a significance level of 95%. Reciproc and ProTaper Universal files generated the highest maximum screw-in forces among all the instruments while M-two and ProTaper Next showed the lowest ( p files with smaller cross-sectional area for higher flexibility is recommended.

  12. Undertapping of Lumbar Pedicle Screws Can Result in Tapping With a Pitch That Differs From That of the Screw, Which Decreases Screw Pullout Force.

    Science.gov (United States)

    Bohl, Daniel D; Basques, Bryce A; Golinvaux, Nicholas S; Toy, Jason O; Matheis, Erika A; Bucklen, Brandon S; Grauer, Jonathan N

    2015-06-15

    Survey of spine surgeons and biomechanical comparison of screw pullout forces. To investigate what may be a suboptimal practice regularly occurring in spine surgery. In order for a tap to function in its intended manner, the pitch of the tap should be the same as the pitch of the screw. Undertapping has been shown to increase the pullout force of pedicle screws compared with line-to-line tapping. However, given the way current commercial lumbar pedicle screw systems are designed, undertapping may result in a tap being used that has a different pitch from that of the screw (incongruent pitch). A survey asked participants questions to estimate the proportion of cases each participant performed in the prior year using various hole preparation techniques. Participant responses were interpreted in the context of manufacturing specifications of specific instrumentation systems. Screw pullout forces were compared between undertapping with incongruent pitch and undertapping with congruent pitch using 0.16 g/cm polyurethane foam block and 6.5-mm screws. Of the 3679 cases in which participants reported tapping, participants reported line-to-line tapping in 209 cases (5%), undertapping with incongruent pitch in 1156 cases (32%), and undertapping with congruent pitch in 2314 cases (63%). The mean pullout force for undertapping with incongruent pitch was 56 N (8%) less than the mean pullout force for undertapping with congruent pitch. This is equivalent to 13 lb. This study estimates that for about 1 out of every 3 surgical cases with tapping of lumbar pedicle screws in the United States, hole preparation is being performed by undertapping with incongruent pitch. This study also shows that undertapping with incongruent pitch results in a decrease in pullout force by 8% compared with undertapping with congruent pitch. Steps should be taken to correct this suboptimal practice. 3.

  13. Skin tightening.

    Science.gov (United States)

    Woolery-Lloyd, Heather; Kammer, Jenna N

    2011-01-01

    Skin tightening describes the treatment of skin laxity via radiofrequency (RF), ultrasound, or light-based devices. Skin laxity on the face is manifested by progressive loss of skin elasticity, loosening of the connective tissue framework, and deepening of skin folds. This results in prominence of submandibular and submental tissues. Genetic factors (chronological aging) and extrinsic factors (ultraviolet radiation) both contribute to skin laxity. There are many RF, ultrasound, and light-based devices directed at treating skin laxity. All of these devices target and heat the dermis to induce collagen contraction. Heating of the dermis causes collagen denaturation and immediate collagen contraction in addition to long-term collagen remodeling. Via RF, light, or ultrasound, these skin tightening devices deliver heat to the dermis to create new collagen and induce skin tightening. This chapter will provide an overview of the various skin tightening devices. Copyright © 2011 S. Karger AG, Basel.

  14. Effects of Repeated Screw Tightening on Implant Abutment Interfaces in Terms of Bacterial and Yeast Leakage in Vitro: One-Time Abutment Versus the Multiscrewing Technique.

    Science.gov (United States)

    Calcaterra, Roberta; Di Girolamo, Michele; Mirisola, Concetta; Baggi, Luigi

    2016-01-01

    Screw loosening can damage the interfaces of implant components, resulting in susceptibility to contamination of the internal parts by microorganisms. The aim of this study was to investigate the impact of abutment screw retightening on the leakage of two different types of bacteria, Streptococcus sanguinis and Fusobacterium nucleatum, and of the yeast Candida albicans. Two types of implant-abutment systems with tube-in-tube interfaces were tested. Groups A and B each used a different type of system that consisted of 20 different pieces that were assembled according to the manufacturer's torque recommendations; four samples in each group were closed just one time, four samples three times, four samples five times, four samples seven times, and four samples nine times. The implants of groups A and B were contaminated with 0.1 μL of microbial solution just before being assembled for the last time to minimize the possibility of contamination. Results showed a direct correlation between the number of colony-forming units grown in the plates and the closing/opening cycles of the implant-abutment systems. Within the limitations of this study, the results indicate the possibility that repeated closing/opening cycles of the implant-abutment unit may influence bacterial/yeast leakage, most likely as a consequence of decreased precision of the coupling between the abutment and the internal part of the dental implant. These findings suggest that a one-time abutment technique may avoid microbiologic leakage in cases of implant-abutment systems with tube-in-tube interfaces.

  15. Biomechanical comparison of force levels in spinal instrumentation using monoaxial versus multi degree of freedom postloading pedicle screws.

    Science.gov (United States)

    Wang, Xiaoyu; Aubin, Carl-Eric; Crandall, Dennis; Labelle, Hubert

    2011-01-15

    biomechanical analysis and simulations of correction mechanisms and force levels during scoliosis instrumentation using two types of pedicle screws and primary correction maneuvers. to biomechanically analyze implant-vertebra and inter-vertebral forces during scoliosis correction, to address the hypothesis that multi degree of freedom (MDOF) postloading screws with a direct incremental segmental translation (DIST) correction technique significantly reduce the loads as compared with monoaxial (MA) tulip-top design screws with a rod derotation technique (RDT). MA screw is widely used for spinal instrumentation. The MDOF screw was introduced as a refinement of the correction philosophy based on multiaxial screws. The kinematics of the MDOF construct is fundamentally different and offers more degrees of freedom than that of the MA construct; however, a systematic comparison of their biomechanics has not been done so far. a biomechanical model was developed to simulate the instrumentation of six scoliotic patients, first with the MDOF screws and DIST. Then, the instrumentation with MA screws and RDT was simulated using the same cases. Thirty more simulations were done to study the force-level sensitivity to small implant placement variation. there was a small average difference of 7°, 5°, and 4° between the two simulated systems for the computed main thoracic Cobb angle, kyphosis, and apical axial rotation, respectively. On average, the mean, standard deviation (SD), and maximum values of the implant-vertebra forces for MDOF screws were 56%, 59%, and 59%, respectively, lower than those for the MA screws, while the intervertebral forces for the MDOF screws were 31%, 37%, and 36% lower, respectively. Under the same set of random small implant placement changes, the mean, SD, and maximum values of implant-vertebra force magnitude changes for MDOF screws were 93%, 92%, and 95%, respectively, lower than those for MA screws. with MDOF screws and DIST, it is possible for

  16. Optimal tightening process of bolted joints

    Directory of Open Access Journals (Sweden)

    Monville Jean-Michel

    2016-01-01

    Full Text Available Threaded fasteners were developed long time (let’s remember that Archimedes – 287-212 BC – invented the water screw. Nowadays, bolted joints are used in almost all sectors of the industry. But in spite of having been an important machine part for centuries, problems may be encountered with them. They are so common that they are taken for granted and too often, not analyzed as deeply as it should be. The wrong tightening is one of the most frequent causes of ductile rupture and by far the most frequent cause of fatigue failure. The tightening operation is never easy. It is necessary to pay particular attention to the choice of the tightening tool, the process and the control method. The tightening operation may itself cause damage on parts. The tightening load must not be too low, or excessive or not equally distributed among the bolts. These three defects can even be made on the same bolted joint! This impacts badly the performance of the assembly and leads to a shorter lifespan. If insufficient precautions are taken, the real tightening preload on all the bolts will not fit well with the requirements and would be badly distributed. Consequently, the practical conditions are quite different from the hypothesizes which are taken for the initial calculations (analytics or FEM at the design stage. Thus, the results of the calculations of bolted joints cannot be considered as accurate and reliable. Practically, there are several means to tighten a bolt. The two ways most frequently used are torque wrench and hydraulic bolt tensioner. Torque wrench involves exerting a torque to the bolt head or the nut. Hydraulic bolt tensioner applies a traction load directly on the bolt. It is well known that bolt tensioners give better accuracy and homogeneity in the final tightening load than the torque method, but the tension load applied with the tensioner must be higher than the final remaining tightening load. So, the paper focusses on the hydraulic

  17. Secure and documented screwing down of Castor containers

    International Nuclear Information System (INIS)

    Yilmaz, Asir; Junkers, Patrick

    2011-01-01

    The castor container is sealed using a multiple lid system comprising a primary lid and a secondary lid. The two lids are positioned one above the other and screwed securely to the body of the container. In addition, the tightness of the lids is guaranteed by a special metal seal. A further steel plate is screwed securely over the lids providing additional protection for the lids from moisture and various influences. The central element connecting the lids to the container comprises fixed threaded connections which must be accurately tightened with a torque of 900 Nm, 1500 Nm or more. The basic function of a threaded connection, in terms of a positive fit and detachable joint, is to join together two or more parts in such a way that they always behave as a single part whatever operational forces are present. This can only be achieved by means of an accurate and sufficient pre-tensioning force. This pretensioning force is transferred to the threaded connection with the help of a particular torque and presses the components together. This loading brought about by the pretensioning force is referred to as the prestress. In order to create a correct and high quality connection, this prestress must be arrived at in an optimum manner. The prestress must therefore be high enough to withstand the full loading for which the connection is designed. In addition the connection should not come loose unintentionally if it is exposed to externally acting forces. Since under no circumstances should threaded connections on a castor container fail, a suitable screwing process must guarantee that this does not happen. The securing of threaded joints can only be ensured by introducing and maintaining a constant and accurate prestress. VDI Guideline 2230, Part 1, mentions various threaded connection or tightening processes, including torque-controlled tightening, angle-controlled tightening and yield-controlled tightening. (orig.)

  18. Secure and documented screwing down of Castor containers

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Asir; Junkers, Patrick [HYTORC - Barbarino und Kilp GmbH, Krailling (Germany)

    2011-07-01

    The castor container is sealed using a multiple lid system comprising a primary lid and a secondary lid. The two lids are positioned one above the other and screwed securely to the body of the container. In addition, the tightness of the lids is guaranteed by a special metal seal. A further steel plate is screwed securely over the lids providing additional protection for the lids from moisture and various influences. The central element connecting the lids to the container comprises fixed threaded connections which must be accurately tightened with a torque of 900 Nm, 1500 Nm or more. The basic function of a threaded connection, in terms of a positive fit and detachable joint, is to join together two or more parts in such a way that they always behave as a single part whatever operational forces are present. This can only be achieved by means of an accurate and sufficient pre-tensioning force. This pretensioning force is transferred to the threaded connection with the help of a particular torque and presses the components together. This loading brought about by the pretensioning force is referred to as the prestress. In order to create a correct and high quality connection, this prestress must be arrived at in an optimum manner. The prestress must therefore be high enough to withstand the full loading for which the connection is designed. In addition the connection should not come loose unintentionally if it is exposed to externally acting forces. Since under no circumstances should threaded connections on a castor container fail, a suitable screwing process must guarantee that this does not happen. The securing of threaded joints can only be ensured by introducing and maintaining a constant and accurate prestress. VDI Guideline 2230, Part 1, mentions various threaded connection or tightening processes, including torque-controlled tightening, angle-controlled tightening and yield-controlled tightening. (orig.)

  19. Ultrasound skin tightening.

    Science.gov (United States)

    Minkis, Kira; Alam, Murad

    2014-01-01

    Ultrasound skin tightening is a noninvasive, nonablative method that allows for energy deposition into the deep dermal and subcutaneous tissue while avoiding epidermal heating. Ultrasound coagulation is confined to arrays of 1-mm(3) zones that include the superficial musculoaponeurotic system and connective tissue. This technology gained approval from the Food and Drug Administration as the first energy-based skin "lifting" device, specifically for lifting lax tissue on the neck, submentum, and eyebrows. Ultrasound has the unique advantage of direct visualization of treated structures during treatment. Ultrasound is a safe and efficacious treatment for mild skin tightening and lifting. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Internal core tightener

    International Nuclear Information System (INIS)

    Brynsvold, G.V.; Snyder, H.J. Jr.

    1976-01-01

    An internal core tightener is disclosed which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a ''fixed'' outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change. 5 claims, 12 drawing figures

  1. Strength evaluation of top nozzle holddown spring screw for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Koh, S. K.; Won, S. Y.; Ryu, C. H.; Kim, Y. J.; Lee, K. S.; Jeon, K. L.

    2002-01-01

    Holddown springs are required to maintain the nuclear fuel assembly in contact with lower core plate and permit thermal and irradiation-induced length changes. Therefore, the holddown spring screw must be designed such that it is capable of sustaining the loads imposed by the initial tensile preload and operational loads. Prior to assessing the structural integrity of the spring screw in the corrosive and irradiating environment throughout the design lifetime of the fuel assembly, the strength evaluation of screw was made in this paper using the mechanics of materials and finite element methods. Calculations based on the mechanics of materials, showed that the preloaded screw with an operating holddown force had a quite large margin of safety in strength. However, the elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Preloading on the screw applied for tightening had beneficial effects on the screw strength by reducing the stress level at the critical regions, compared to the screw without preload. Calculated spring deflection using the finite element analysis was in close agreement with the experimentally measured deflection

  2. Effect of Repeated Screw Joint Closing and Opening Cycles and Cyclic Loading on Abutment Screw Removal Torque and Screw Thread Morphology: Scanning Electron Microscopy Evaluation.

    Science.gov (United States)

    Arshad, Mahnaz; Mahgoli, Hosseinali; Payaminia, Leila

    To evaluate the effect of repeated screw joint closing and opening cycles and cyclic loading on abutment screw removal torque and screw thread morphology using scanning electron microscopy (SEM). Three groups (n = 10 in each group) of implant-abutment-abutment screw assemblies were created. There were also 10 extra abutment screws as new screws in group 3. The abutment screws were tightened to 12 Ncm with an electronic torque meter; then they were removed and removal torque values were recorded. This sequence was repeated 5 times for group 1 and 15 times for groups 2 and 3. The same screws in groups 1 and 2 and the new screws in group 3 were then tightened to 12 Ncm; this was also followed by screw tightening to 30 Ncm and retightening to 30 Ncm 15 minutes later. Removal torque measurements were performed after screws were subjected to cyclic loading (0.5 × 10⁶ cycles; 1 Hz; 75 N). Moreover, the surface topography of one screw from each group before and after cyclic loading was evaluated with SEM and compared with an unused screw. All groups exhibited reduced removal torque values in comparison to insertion torque in each cycle. However, there was a steady trend of torque loss in each group. A comparison of the last cycle of the groups before loading showed significantly greater torque loss value in the 15th cycle of groups 2 and 3 compared with the fifth cycle of group 1 (P abutment is definitively placed.

  3. Removal torque evaluation of three different abutment screws for single implant restorations after mechanical cyclic loading.

    Science.gov (United States)

    Paepoemsin, T; Reichart, P A; Chaijareenont, P; Strietzel, F P; Khongkhunthian, P

    2016-01-01

    The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer's recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, Pabutment from implant fixture increased immensely after cyclic loading.

  4. Ball Screw Actuator Including a Compliant Ball Screw Stop

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)

    2017-01-01

    An actuator includes a ball nut, a ball screw, and a ball screw stop. The ball nut is adapted to receive an input torque and in response rotates and supplies a drive force. The ball screw extends through the ball nut and has a first end and a second end. The ball screw receives the drive force from the ball nut and in response selectively translates between a retract position and a extend position. The ball screw stop is mounted on the ball screw proximate the first end to translate therewith. The ball screw stop engages the ball nut when the ball screw is in the extend position, translates, with compliance, a predetermined distance toward the first end upon engaging the ball nut, and prevents further rotation of the ball screw upon translating the predetermined distance.

  5. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method.

    Science.gov (United States)

    Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Geramipanah, Farideh; Safari, Hamed; Paknejad, Mojgan

    2015-05-01

    To prevent screw loosening, a clear understanding of the factors influencing secure preload is necessary. The purpose of this study was to investigate the effect of coefficient of friction and tightening speed on screw tightening based on energy distribution method with exact geometric modeling and finite element analysis. To simulate the proper boundary conditions of the screw tightening process, the supporting bone of an implant was considered. The exact geometry of the implant complex, including the Straumann dental implant, direct crown attachment, and abutment screw were modeled with Solidworks software. Abutment screw/implant and implant/bone interfaces were designed as spiral thread helixes. The screw-tightening process was simulated with Abaqus software, and to achieve the target torque, an angular displacement was applied to the abutment screw head at different coefficients of friction and tightening speeds. The values of torque, preload, energy distribution, elastic energy, and efficiency were obtained at the target torque of 35 Ncm. Additionally, the torque distribution ratio and preload simulated values were compared to theoretically predicted values. Upon reducing the coefficient of friction and enhancing the tightening speed, the angle of turn increased at the target torque. As the angle of turn increased, the elastic energy and preload also increased. Additionally, by increasing the coefficient of friction, the frictional dissipation energy increased but the efficiency decreased, whereas the increase in tightening speed insignificantly affected efficiency. The results of this study indicate that the coefficient of friction is the most influential factor on efficiency. Increasing the tightening speed lowered the response rate to the frictional resistance, thus diminishing the coefficient of friction and slightly increasing the preload. Increasing the tightening speed has the same result as reducing the coefficient of friction. Copyright © 2015

  6. Biomechanical Comparison of External Fixation and Compression Screws for Transverse Tarsal Joint Arthrodesis.

    Science.gov (United States)

    Latt, L Daniel; Glisson, Richard R; Adams, Samuel B; Schuh, Reinhard; Narron, John A; Easley, Mark E

    2015-10-01

    Transverse tarsal joint arthrodesis is commonly performed in the operative treatment of hindfoot arthritis and acquired flatfoot deformity. While fixation is typically achieved using screws, failure to obtain and maintain joint compression sometimes occurs, potentially leading to nonunion. External fixation is an alternate method of achieving arthrodesis site compression and has the advantage of allowing postoperative compression adjustment when necessary. However, its performance relative to standard screw fixation has not been quantified in this application. We hypothesized that external fixation could provide transverse tarsal joint compression exceeding that possible with screw fixation. Transverse tarsal joint fixation was performed sequentially, first with a circular external fixator and then with compression screws, on 9 fresh-frozen cadaveric legs. The external fixator was attached in abutting rings fixed to the tibia and the hindfoot and a third anterior ring parallel to the hindfoot ring using transverse wires and half-pins in the tibial diaphysis, calcaneus, and metatarsals. Screw fixation comprised two 4.3 mm headless compression screws traversing the talonavicular joint and 1 across the calcaneocuboid joint. Compressive forces generated during incremental fixator foot ring displacement to 20 mm and incremental screw tightening were measured using a custom-fabricated instrumented miniature external fixator spanning the transverse tarsal joint. The maximum compressive force generated by the external fixator averaged 186% of that produced by the screws (range, 104%-391%). Fixator compression surpassed that obtainable with screws at 12 mm of ring displacement and decreased when the tibial ring was detached. No correlation was found between bone density and the compressive force achievable by either fusion method. The compression across the transverse tarsal joint that can be obtained with a circular external fixator including a tibial ring exceeds that

  7. Air-tighten test for used glove boxes

    International Nuclear Information System (INIS)

    Itoh, Masanori; Kashiro, Kashio; Matsumoto, Masaki; Ogiya, Takashi; Nakata, Keiji; Gohda, Masahiko

    2000-05-01

    All of the glove boxes in Plutonium Fuel Fabrication facilities are operated after confirming their condition by conducting negative pressure maintenance test and air-tighten test. Although we check the negative pressure maintenance condition before operating glove boxes in a daily basis, we have not been conducted the air-tighten test. Hence, we have conduct air-tighten test using the glove box that will be dismantled in the near future. In order to compare the present data to the criteria of licensing and to the measurement data for new glove box, the test was conducted by leak tightness vessel which is used the competent authority's test for newly constructed equipments. We also have confirmed the leakage condition in case failure of keeping negative pressure. The main results are as follows: 1. No leakage was detected after leaving the glove box 21 days in case failure of keeping negative pressure condition. 2. The measurement result of the air-tighten test was 0.025 vol%/h, and it was confirmed that this result is within the range of licensing criteria (-0.04 - 0.06 vol%/h). 3. The measurement result was also within the error of leak tightness vessel, and it was confirmed that the air-tighten condition was in force within this past 10 years after installing this glove box (the corresponding value for used the competent authority test for newly constructed equipments was 0.019 vol%/h). (author)

  8. Microfocused ultrasound for skin tightening.

    Science.gov (United States)

    MacGregor, Jennifer L; Tanzi, Elizabeth L

    2013-03-01

    The demand for noninvasive skin tightening procedures is increasing as patients seek safe and effective alternatives to aesthetic surgical procedures of the face, neck, and body. Over the past decade, radiofrequency and infrared laser devices have been popularized owing to their ability to deliver controlled heat to the dermis, stimulate neocollagenesis, and effect modest tissue tightening with minimal recovery. However, these less invasive approaches are historically associated with inferior efficacy so that surgery still remains the treatment of choice to address moderate to severe tissue laxity. Microfocused ultrasound was recently introduced as a novel energy modality for transcutaneous heat delivery that reaches the deeper subdermal connective tissue in tightly focused zones at consistent programmed depths. The goal is to produce a deeper wound healing response at multiple levels with robust collagen remodeling and a more durable clinical response. The Ulthera device (Ulthera, Inc, Meza, AZ), with refined microfocused ultrasound technology, has been adapted specifically for skin tightening and lifting with little recovery or risk of complications since its introduction in 2009. As clinical parameters are studied and optimized, enhanced efficacy and consistency of clinical improvement is expected.

  9. Compressive forces achieved in simulated equine third metacarpal bone lateral condylar fractures of varying fragment thickness with Acutrak Plus screw and 4.5 mm AO cortical screws.

    Science.gov (United States)

    Lewis, Andrew J; Sod, Gary A; Burba, Daniel J; Mitchell, Colin F

    2010-01-01

    To compare compression pressure (CP) of 6.5 mm Acutrak Plus (AP) and 4.5 mm AO cortical screws (AO) when inserted in simulated lateral condylar fractures of equine 3rd metacarpal (MC3) bones. Paired in vitro biomechanical testing. Cadaveric equine MC3 bones (n=12 pair). Complete lateral condylar osteotomies were created parallel to the midsagittal ridge at 20, 12, and 8 mm axial to the epicondylar fossa on different specimens grouped accordingly. Interfragmentary compression was measured using a pressure sensor placed in the fracture plane before screw placement for fracture fixation. CP was acquired and mean values of CP for each fixation method were compared between the 6.5 mm (AP) and 4.5 mm (AO) for each group using a paired t-test within each fracture fragment thickness group with statistical significance set at Pfractures, especially complete fractures. Because interfragmentary compression plays a factor in the overall stability of a repair, it is recommended for use only in patients with thin lateral condyle fracture fragments, as the compression tends to decrease with an increase in thickness.

  10. Screw Theory Based Singularity Analysis of Lower-Mobility Parallel Robots considering the Motion/Force Transmissibility and Constrainability

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2015-01-01

    Full Text Available Singularity is an inherent characteristic of parallel robots and is also a typical mathematical problem in engineering application. In general, to identify singularity configuration, the singular solution in mathematics should be derived. This work introduces an alternative approach to the singularity identification of lower-mobility parallel robots considering the motion/force transmissibility and constrainability. The theory of screws is used as the mathematic tool to define the transmission and constraint indices of parallel robots. The singularity is hereby classified into four types concerning both input and output members of a parallel robot, that is, input transmission singularity, output transmission singularity, input constraint singularity, and output constraint singularity. Furthermore, we take several typical parallel robots as examples to illustrate the process of singularity analysis. Particularly, the input and output constraint singularities which are firstly proposed in this work are depicted in detail. The results demonstrate that the method can not only identify all possible singular configurations, but also explain their physical meanings. Therefore, the proposed approach is proved to be comprehensible and effective in solving singularity problems in parallel mechanisms.

  11. The Impact of Nitinol Staples on the Compressive Forces, Contact Area, and Mechanical Properties in Comparison to a Claw Plate and Crossed Screws for the First Tarsometatarsal Arthrodesis.

    Science.gov (United States)

    Aiyer, Amiethab; Russell, Nicholas A; Pelletier, Matthew H; Myerson, Mark; Walsh, William R

    2016-06-01

    Background The optimal fixation method for the first tarsometatarsal arthrodesis remains controversial. This study aimed to develop a reproducible first tarsometatarsal testing model to evaluate the biomechanical performance of different reconstruction techniques. Methods Crossed screws or a claw plate were compared with a single or double shape memory alloy staple configuration in 20 Sawbones models. Constructs were mechanically tested in 4-point bending to 1, 2, and 3 mm of plantar displacement. The joint contact force and area were measured at time zero, and following 1 and 2 mm of bending. Peak load, stiffness, and plantar gapping were determined. Results Both staple configurations induced a significantly greater contact force and area across the arthrodesis than the crossed screw and claw plate constructs at all measurements. The staple constructs completely recovered their plantar gapping following each test. The claw plate generated the least contact force and area at the joint interface and had significantly greater plantar gapping than all other constructs. The crossed screw constructs were significantly stiffer and had significantly less plantar gapping than the other constructs, but this gapping was not recoverable. Conclusions Crossed screw fixation provides a rigid arthrodesis with limited compression and contact footprint across the joint. Shape memory alloy staples afford dynamic fixation with sustained compression across the arthrodesis. A rigid polyurethane foam model provides an anatomically relevant comparison for evaluating the interface between different fixation techniques. Clinical Relevance The dynamic nature of shape memory alloy staples offers the potential to permit early weight bearing and could be a useful adjunctive device to impart compression across an arthrodesis of the first tarsometatarsal joint. Therapeutic, Level V: Bench testing. © 2015 The Author(s).

  12. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    International Nuclear Information System (INIS)

    Cheng, X R; Li, R N; Gao, Y; Guo, W L

    2013-01-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ε-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value

  13. Preload, Coefficient of Friction, and Thread Friction in an Implant-Abutment-Screw Complex.

    Science.gov (United States)

    Wentaschek, Stefan; Tomalla, Sven; Schmidtmann, Irene; Lehmann, Karl Martin

    To examine the screw preload, coefficient of friction (COF), and tightening torque needed to overcome the thread friction of an implant-abutment-screw complex. In a customized load frame, 25 new implant-abutment-screw complexes including uncoated titanium alloy screws were torqued and untorqued 10 times each, applying 25 Ncm. Mean preload values decreased significantly from 209.8 N to 129.5 N according to the number of repetitions. The overall COF increased correspondingly. There was no comparable trend for the thread friction component. These results suggest that the application of a used implant-abutment-screw complex may be unfavorable for obtaining optimal screw preload.

  14. Does smoking tighten the gut?

    International Nuclear Information System (INIS)

    Prytz, H.; Benoni, C.; Tagesson, C.

    1989-01-01

    There is a low prevalence of smoking in ulcerative colitis. The disease often starts or relapses after stopp of smoking. Increased intestinal permeability for harmful substances has been proposed as one causal factor in ulcerative colitis. The authors therefore wanted to study the relationship between smoking and intestinal permeability in healthy subjects. In 25 smoking and 25 non-smoking healthy persons, urine recoveries of two different oral probes, 51 Cr-ethylenediaminetetraacetic acid ( 51 Cr-EDTA) and low-molecular-weight polymers of polyethylene glycol, were measured. The smokers had significantly lower 24-h urine recoveries of 51 Cr-EDTA than the non-smokers. In contrast, 6-h urine recoveries of PEG 400 were not significantly different in smokers and non-smokers. Thus, smoking appears to tighten the gut either by effects on the paracelluar junctions in the intestinal epithelium, or by decreasing the permeability in the distal small bowel and the colon. 21 refs

  15. Measurements of Repeated Tightening and Loosening Torque of Seven Different Implant/Abutment Connection Designs and Their Modifications: An In Vitro Study.

    Science.gov (United States)

    Butkevica, Alena; Nathanson, Dan; Pober, Richard; Strating, Herman

    2018-02-01

    Repeated tightening and loosening of the abutment screw may alter its mechanical and physical properties affecting the optimal torque and ultimate reliability of an implant/abutment connection. The purpose of this study was to evaluate the effect of repeated tightening and loosening of implant/abutment screws on the loosening torque of implant/abutment connections of commercially available implant systems. Seven different implant/abutment connections and their modifications were tested. The screws of each system were tightened according to the manufacturer's specifications. After 20 minutes the screws were loosened. This procedure was repeated ten times, and the differences between the 1st and 10th cycle were expressed as a percentage change RTq(%) and correlated with initial torque, the number of threads, the length of shank, and thread surface area employing Spearman's analysis. All systems showed significant differences in residual torque (RTq) value (p 0.05). All connections but group 3 (p = 1.000) showed a significant change from the initial torque (ITq) to the RTq values. The first successive RTq values increased in two connection groups 1 and 2. The remaining connections showed reduced RTq values ranging from -1.2 % (group 5) to -23.5% (group 6). The RTq values declined gradually with every repeated tightening in groups 1, 2, 3, 8, 9, 11, 12. In group 2, after the tenth tightening the RTq was still above the ITq value. Only length of shank demonstrated a correlation with the RTq(%) change over the successive tightening loosening cycles (p abutment screws caused varying torque level changes among the different systems. These observations can probably be attributed to connection design. Limiting the number of tightening/loosening cycles in clinical and laboratory procedures is advisable for most of the implant systems tested. © 2016 by the American College of Prosthodontists.

  16. Displacement of screw-retained single crowns into implants with conical internal connections.

    Science.gov (United States)

    Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L

    2013-01-01

    Internal conical implant-abutment connections without platforms may lead to axial displacement of crowns during screw tightening. This displacement may affect proximal contacts, incisal edge position, or occlusion. This study aimed to measure the displacement of screw-retained single crowns into an implant in three dimensions during screw tightening by hand or via torque driver. A stereolithic acrylic resin cast was created using computed tomography data from a patient missing the maxillary right central incisor. A 4.0- × 11-mm implant was placed in the edentulous site. Five porcelain-fused-to-metal single crowns were made using "cast-to" abutments. Crowns were tried on the stereolithic model, representing the patient, and hand tightened. The spatial relationship of crowns to the model after hand tightening was determined using three-dimensional digital image correlation (3D DIC), an optical measurement technique. The crowns were then tightened using a torque driver to 20 Ncm and the relative crown positions were again recorded. Testing was repeated three times for each crown, and displacement of the crowns was compared between the hand-tightened and torqued states. Commercial image correlation software was used to analyze the data. Mean vertical and horizontal crown displacement values were calculated after torqueing. The interproximal contacts were evaluated before and after torquing using an 8-μm aluminum foil shim. There were vertical and horizontal differences in crown positions between hand tightening and torqueing. Although these were small in magnitude, detectable displacements occurred in both apical and facial directions. After hand tightening, the 8-μm shim could be dragged without tearing. However, after torque tightening, the interproximal contacts were too tight and the 8-μm shim could not be dragged without tearing. Differences between hand tightening and torque tightening should be taken into consideration during laboratory and clinical

  17. Ball Screw Actuator Including a Stop with an Integral Guide

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Perek, John (Inventor); Geck, Kellan (Inventor)

    2015-01-01

    An actuator includes a housing assembly, a ball nut, a ball screw, and a ball screw stop. The ball nut is rotationally mounted in the housing assembly, is adapted to receive an input torque, and is configured, upon receipt thereof, to rotate and supply a drive force. The ball screw is mounted within the housing assembly and extends through the ball nut. The ball screw has a first end and a second end, and is coupled to receive the drive force from the ball nut. The ball screw is configured, upon receipt of the drive force, to selectively translate between a stow position and a deploy position. The ball screw stop is mounted on the ball screw to translate therewith and is configured to at selectively engage the housing assembly while the ball screw is translating, and engage the ball nut when the ball screw is in the deploy position.

  18. The Influence of Torque Tightening on the Position Stability of the Abutment in Conical Implant-Abutment Connections.

    Science.gov (United States)

    Hogg, Wiebke Semper; Zulauf, Kris; Mehrhof, Jürgen; Nelson, Katja

    2015-01-01

    The influence of repeated system-specific torque tightening on the position stability of the abutment after de- and reassembly of the implant components was evaluated in six dental implant systems with a conical implant-abutment connection. An established experimental setup was used in this study. Rotation, vertical displacement, and canting moments of the abutment were observed; they depended on the implant system (P = .001, P abutment screw does not eliminate changes in position of the abutment.

  19. The applicability of PEEK-based abutment screws.

    Science.gov (United States)

    Schwitalla, Andreas Dominik; Abou-Emara, Mohamed; Zimmermann, Tycho; Spintig, Tobias; Beuer, Florian; Lackmann, Justus; Müller, Wolf-Dieter

    2016-10-01

    The high-performance polymer PEEK (poly-ether-ether-ketone) is more and more being used in the field of dentistry, mainly for removable and fixed prostheses. In cases of screw-retained implant-supported reconstructions of PEEK, an abutment screw made of PEEK might be advantageous over a conventional metal screw due to its similar elasticity. Also in case of abutment screw fracture, a screw of PEEK could be removed more easily. M1.6-abutment screws of four different PEEK compounds were subjected to tensile tests to set their maximum tensile strengths in relation to an equivalent stress of 186MPa, which is aused by a tightening torque of 15Ncm. Two screw types were manufactured via injection molding and contained 15% short carbon fibers (sCF-15) and 40% (sCF-40), respectively. Two screw types were manufactured via milling and contained 20% TiO2 powder (TiO2-20) and >50% parallel orientated, continuous carbon fibers (cCF-50). A conventional abutments screw of Ti6Al4V (Ti; CAMLOG(®) abutment screw, CAMLOG, Wimsheim, Germany) served as control. The maximum tensile strength was 76.08±5.50MPa for TiO2-20, 152.67±15.83MPa for sCF-15, 157.29±20.11MPa for sCF-40 and 191.69±36.33MPa for cCF-50. The maximum tensile strength of the Ti-screws amounted 1196.29±21.4MPa. The results of the TiO2-20 and the Ti screws were significantly different from the results of the other samples, respectively. For the manufacturing of PEEK abutment screws, PEEK reinforced by >50% continuous carbon fibers would be the material of choice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Process and remote device for unscrewing and extracting an assembly screw

    International Nuclear Information System (INIS)

    Lagarrigue, F.

    1990-01-01

    The device comprises a C-shaped frame, with two parallel arms and a joining section fixed at one end of a long support, an extraction screw engaged in a hole through one arm and having one end made of a centre punch directed towards the inside of the frame and a remote mean for screwed or unscrewed the extraction screw. A supporting and centering piece can also be fixed to the second branch of the frame. The screw is extracted by exerting a moment about the axis of the screw through the support and frame after tightening the extraction screw. This device can be used particularly for the unscrewing and the extraction of the screw of the springs of a nuclear fuel assembly [fr

  1. Skin tightening with a combined unipolar and bipolar radiofrequency device.

    Science.gov (United States)

    Mayoral, Flor A

    2007-02-01

    Monopolar radiofrequency (RF) devices are well established treatment modalities for tightening facial skin. A 60-year-old woman presented with a desire to tighten the lax skin and improve the appearance of both upper arms. A combination unipolar and bipolar RF device may provide volume reduction as well as skin tightening in the upper arm.

  2. Tightening the Purchasing Process: Superintendents Get More Involved in Buying Policies

    Science.gov (United States)

    Rivero, Victor

    2009-01-01

    Over the last 18 months, school district purchasing offices across the country have been tightening the reins like never before while more top-level administrators get involved in the budget process. "When the economy really hit the skids, states got hit hard, so a lot of school districts were forced to make severe budget cuts," says John Musso,…

  3. Tightening the Dutch coffee shop policy: Evaluation of the private club and the residence criterion

    NARCIS (Netherlands)

    van Ooyen-Houben, M.M.J.; Bieleman, B.; Korf, D.J.

    2016-01-01

    Background The Dutch coffee shop policy was tightened in 2012. Two additional criteria that coffee shops must adhere to in order for them to be tolerated came into force: the private club and the residence criterion. Coffee shops were only permitted to give access to members and only residents of

  4. Fastener tightening in a radioactive (hot) cell

    International Nuclear Information System (INIS)

    Kalk, J.J.

    1986-01-01

    Accurate remote tightening of fasteners in a radioactive (Hot) cell can be a very exasperating experience. Viewing can be difficult (in many places) and work sometimes must be done using mirrors and/or cameras. If electro mechanical manipulators are used, the operator has no ''feel,'' which often can result in cross threading, or improper torquing of fasteners. At the Interim Examination and Maintenance (IEM) Cell, where reactor components from the Fast Flux Test Facility (FFTF) are disassembled, these problems are prevalent because three of the IEM Cell walls have no windows. Electric impact wrenches were first proposed and tested for the IEM Cell, but the combined effects of radiation, dry argon atmosphere and poor visibility radically altered the cell tool development philosophy. This change in philosophy is reflected in the development of several simple fastener tightening devices

  5. Fastener tightening in a radioactive (hot) cell

    International Nuclear Information System (INIS)

    Kalk, J.J.

    1987-01-01

    Accurate remote tightening of fasteners in a radioactive (hot) cell can be a very exasperating experience. Viewing can be difficult (in many places) and work sometimes must be done using mirrors and/or cameras. If electro mechanical manipulators are used, the operator has no feel, which often can result in cross threading, or improper torquing of fasteners. At the Interim Examination and Maintenance (IEM) Cell, where reactor components from the Fast Flux Testing Facility (FFTF) are disassembled, these problems are prevalent because three of the IEM Cell walls have no windows. Electric impact wrenches were first proposed and tested for the IEM Cell, but the combined effects of radiation, dry argon atmosphere and poor visibility radically altered the cell tool development philosophy. This change in philosophy is reflected in the development of several simple fastener tightening devices

  6. A geometrical introduction to screw theory

    International Nuclear Information System (INIS)

    Minguzzi, E

    2013-01-01

    This work introduces screw theory, a venerable but little known theory aimed at describing rigid body dynamics. This formulation of mechanics unifies in the concept of screw the translational and rotational degrees of freedom of the body. It captures a remarkable mathematical analogy between mechanical momenta and linear velocities, and between forces and angular velocities. For instance, it clarifies that angular velocities should be treated as applied vectors and that, under the composition of motions, they sum with the same rules of applied forces. This work provides a short and rigorous introduction to screw theory intended for an undergraduate and general readership. (paper)

  7. Noninvasive radio frequency for skin tightening and body contouring.

    Science.gov (United States)

    Weiss, Robert A

    2013-03-01

    The medical use of radio frequency (RF) is based on an oscillating electrical current forcing collisions between charged molecules and ions, which are then transformed into heat. RF heating occurs irrespective of chromophore or skin type and is not dependent on selective photothermolysis. RF can be delivered using monopolar, bipolar, and unipolar devices, and each method has theoretical limits of depth penetration. A variant of bipolar delivery is fractional RF delivery. In monopolar configurations, RF will penetrate deeply and return via a grounding electrode. Multiple devices are available and are detailed later in the text. RF thermal stimulation is believed to result in a microinflammatory process that promotes new collagen. By manipulating skin cooling, RF can also be used for heating and reduction of fat. Currently, the most common uses of RF-based devices are to noninvasively manage and treat skin tightening of lax skin (including sagging jowls, abdomen, thighs, and arms), as well as wrinkle reduction, cellulite improvement, and body contouring.

  8. Displacement of screw-retained splinted and nonsplinted restorations into implants with conical internal connections.

    Science.gov (United States)

    Yilmaz, Burak; Seidt, Jeremy D; Clelland, Nancy L

    2014-01-01

    Variable abutment displacement could potentially affect proximal contacts, incisal edge position, or occlusion of implant-supported prostheses. This study aimed to measure and compare displacements of splinted and nonsplinted restorations into implants featuring internal conical connections as screws were tightened by hand or by torque driver. A stereolithic resin model was printed using computed tomography data from a patient missing mandibular left first and second molars. Two 5.0 × 11-mm implants were placed in the edentulous site using a surgical guide. Two sets (splinted and nonsplinted) of gold screw-retained prostheses were made indirectly to fit the implants in the stereolithic model representing the patient. The axial position of the crowns relative to a fixed location on the model was recorded following hand tightening using the three-dimensional image correlation technique and image correlation software. A pair of high-resolution digital cameras provided a synchronized view of the model during the experiment. Relative crown positions were again recorded after tightening with a torque driver to 25 Ncm. Testing was repeated randomly three times for each set of crowns. Displacement data after torque tightening were compared using a factorial analysis of variance with JMP 9.0 software (SAS) followed by a Tukey-Kramer post hoc test (α = .05). Interproximal contacts were evaluated using an 8-μm tin foil shim after tightening by hand and torque driver. Displacements for splinted and nonsplinted restorations differed only in a buccal direction. The nonsplinted crowns displaced significantly more than splinted crowns. Discernible differences were observed for the tin foil shim when dragged through proximal contacts following hand versus torque tightening. Differences between screw tightening by hand or torque driver should be taken into consideration during laboratory and clinical adjustments to prevent esthetic and functional complications.

  9. Vertical-Screw-Auger Conveyer Feeder

    Science.gov (United States)

    Walton, Otis (Inventor); Vollmer, Hubert J. (Inventor)

    2016-01-01

    A conical feeder is attached to a vertically conveying screw auger. The feeder is equipped with scoops and rotated from the surface to force-feed regolith the auger. Additional scoops are possible by adding a cylindrical section above the conical funnel section. Such then allows the unit to collect material from swaths larger in diameter than the enclosing casing pipe of the screw auger. A third element includes a flexible screw auger. All three can be used in combination in microgravity and zero atmosphere environments to drill and recover a wide area of subsurface regolith and entrained volatiles through a single access point on the surface.

  10. Stress corrosion cracking life estimation of hold-down spring screw for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Koh, S.K.

    2005-01-01

    Hold-down spring screw fractures due to primary water stress corrosion cracking were observed in nuclear fuel assemblies. The screw fastens hold-down springs that are required to maintain the nuclear fuel assembly in contact with upper core plate and permit thermal and irradiation-induced length changes. In order to investigate the primary causes of the screw fractures, the finite element stress analysis and fracture mechanics analysis were performed on the hold-down spring assembly. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded the yield strength of the screw material, resulting in local plastic deformation. Preloading on the screw applied for tightening had beneficial effects on the screw strength by reducing the stress level at the critical regions, compared to the screw without preload. Calculated deflections and strains at the hold-down springs using the finite element analysis were in very close agreements with the experimentally measured deflections and strains. Primary water stress corrosion cracking (PWSCC) life of the Inconel 600 screw was predicted by integrating the Scott's model and resulted in a life of 1.42 years, which was fairly close to the field experience. Cracks were expected to originate at the threaded region of the screw and propagated to the opposite side of the spring, which was confirmed by the fractographic analysis of the fractured screws. (orig.)

  11. PRELIMINARY STUDIES OF RIVETED JOINTS AT FEED FORCE

    Directory of Open Access Journals (Sweden)

    Radosław Bielawski

    2015-08-01

    Full Text Available The aim of the study was to determine the feasibility of riveted joints in composites materials. Static tensile test method was used. In the test one type of glass fabric was used (Interglas 92140 from which two types of composite samples were prepared. In each sample the same type of fiber with the same fiber orientation – 3 layers - was used. The samples had dimensions of 100×100 mm and thickness of approximately 1 mm. The composite probes were located in a metal frame with a screw connection which was made of screws with nominal thread pitch M5. Screws were tightened with constant torque. It was to provide an axial force to the sample during the tensile test. The frame was placed between cross-bars of tensile machine INSTRON 8516. The samples were stretched at a speed of 0.05 mm/s at a distance up to 16 mm. During the tensile test displacement of the samples and pull force were registered. Depending on the fibre orientations and the value of feed force, damage models were described. On the basis of the results the possibility of usage of aluminium rivet nuts connections in composite materials was determined.

  12. Correction Capability in the 3 Anatomic Planes of Different Pedicle Screw Designs in Scoliosis Instrumentation.

    Science.gov (United States)

    Wang, Xiaoyu; Aubin, Carl-Eric; Coleman, John; Rawlinson, Jeremy

    2017-05-01

    Computer simulations to compare the correction capabilities of different pedicle screws in adolescent idiopathic scoliosis (AIS) instrumentations. To compare the correction and resulting bone-screw forces associated with different pedicle screws in scoliosis instrumentations. Pedicle screw fixation is widely used in surgical instrumentation for spinal deformity treatment. Screw design, correction philosophies, and surgical techniques are constantly evolving to achieve better control of the vertebrae and correction of the spinal deformity. Yet, there remains a lack of biomechanical studies that quantify the effects and advantages of different screw designs in terms of correction kinematics. The correction capabilities of fixed-angle, multiaxial, uniaxial, and saddle axial screws were kinematically analyzed, simulated, and compared. These simulations were based on the screw patterns and correction techniques proposed by 2 experienced surgeons for 2 AIS cases. Additional instrumentations were assessed to compare the correction and resulting bone-screw forces associated with each type of screw. The fixed-angle, uniaxial and saddle axial screws had similar kinematic behavior and performed better than multiaxial screws in the coronal and transverse planes (8% and 30% greater simulated corrections, respectively). Uniaxial and multiaxial screws were less effective than fixed-angle and saddle axial screws in transmitting compression/distraction to the anterior spine because of their sagittal plane mobility between the screw head and shank. Only the saddle axial screws allow vertebra angle in the sagittal plane to be independently adjusted. Pedicle screws of different designs performed differently for deformity corrections or for compensating screw placement variations in different anatomic planes. For a given AIS case, screw types should be determined based on the particular instrumentation objectives, the deformity's stiffness and characteristics so as to make the best of

  13. Remotely controlled device for tightening, the nuts on locating pins for guide tubes in pressurized water reactors

    International Nuclear Information System (INIS)

    Styskal, P.

    1991-01-01

    The device has a support having a horizontal guide radial to the guide tube with a trolley moving on the guide and mounted on it a tool carrier. The tightening tool it self consists of a motor and an assembly of reducing gears mounted on the tool carrier. The final gear wheel in the assembly turns about a vertical axis and has a ferrule on its face for tightening the nut of the guide tube locating pin. The force of reaction on the tool carrier may be measured thus allowing the torque applied by the tool to be regulated [fr

  14. Comparison of the Pullout Strength of Different Pedicle Screw Designs and Augmentation Techniques in an Osteoporotic Bone Model.

    Science.gov (United States)

    Kiyak, Gorkem; Balikci, Tevfik; Heydar, Ahmed Majid; Bezer, Murat

    2018-02-01

    Mechanical study. To compare the pullout strength of different screw designs and augmentation techniques in an osteoporotic bone model. Adequate bone screw pullout strength is a common problem among osteoporotic patients. Various screw designs and augmentation techniques have been developed to improve the biomechanical characteristics of the bone-screw interface. Polyurethane blocks were used to mimic human osteoporotic cancellous bone, and six different screw designs were tested. Five standard and expandable screws without augmentation, eight expandable screws with polymethylmethacrylate (PMMA) or calcium phosphate augmentation, and distal cannulated screws with PMMA and calcium phosphate augmentation were tested. Mechanical tests were performed on 10 unused new screws of each group. Screws with or without augmentation were inserted in a block that was held in a fixture frame, and a longitudinal extraction force was applied to the screw head at a loading rate of 5 mm/min. Maximum load was recorded in a load displacement curve. The peak pullout force of all tested screws with or without augmentation was significantly greater than that of the standard pedicle screw. The greatest pullout force was observed with 40-mm expandable pedicle screws with four fins and PMMA augmentation. Augmented distal cannulated screws did not have a greater peak pullout force than nonaugmented expandable screws. PMMA augmentation provided a greater peak pullout force than calcium phosphate augmentation. Expandable pedicle screws had greater peak pullout forces than standard pedicle screws and had the advantage of augmentation with either PMMA or calcium phosphate cement. Although calcium phosphate cement is biodegradable, osteoconductive, and nonexothermic, PMMA provided a significantly greater peak pullout force. PMMA-augmented expandable 40-mm four-fin pedicle screws had the greatest peak pullout force.

  15. Failure Analysis Of The Bolt From Turn Table Tightening On The Heavy Lifting Equipment System

    International Nuclear Information System (INIS)

    Hatta, IIham

    2000-01-01

    This paper provides the results of failure analysis of the bolt from the turn table tightening which usually using on the heavy lifting equipment or as a equipment tor the material handling with the maximum load about 25 ton. The process of the failure analysis from the series of laboratory testing such as chemical composition, tensile testing, hardness, fracture surtace and microstructure. The results of the analysis we see this bolt have suffered fatigue failure and the initiation, cracking from the manufacture defect. This defect in the form like the folding on the screw surface which maybe happen at the screw forming process. This folding as a part of metal which not bonding together, so could act as a initial crack, and got the creasing of the strength too which cause from oxidation and decarburization at the moment of heat treatment process. So this material got the changein the strength too which oxidation and decarburization at the moment of heat treatment process. So this material got the change in the microstructure, from the martensite temper to the coarse ferrite and finally reduces the strength of the bolt

  16. Sacroiliac Screw Fixation

    NARCIS (Netherlands)

    E.W. van den Bosch

    2003-01-01

    textabstractThe aim of this thesis is to evaluate three major aspects of the use of sacroiliac screws in patients with unstable pelvic ring fractures: the optimal technique for sacroiliac screw fixation, the reliability of peroperative fluoroscopy and the late results. We focused on the questions

  17. Crack formation in ferritic screws of main steam isolation valves in German boiling water reactors

    International Nuclear Information System (INIS)

    Steinmill, H.

    1992-01-01

    In connection with crack formations at screws of main steam isolation valves in boiling water reactors, detected for the first time in 1988 in the Federal Republic of Germany, metallographic and fractographic investigations and coating analyses of screw surfaces and crack flanks were performed in order to find out the causes. These and other investigations of damaged screws were accompanied in the years 1989 and 1990 by autoclave tests made in several laboratories. With a view to the mechanical stress of the screws, tightening tests and stress analyses were performed by means of FEM. Repeated autoclave tests were concluded recently by the Stuttgart MPA. Although these tests are not reported here, it can be stated that the results obtained fit in with the overall framework of the results summed up in this report. With regard to the kind of sample stress and the results obtained, two cases have to be distinguished in the autoclave tests discussed in this report. (orig.) [de

  18. Pull out Strength of Dual Outer Diameter Pedicle Screws Compared to Uncemented and Cemented Standard Pedicle Screws: A Biomechanical in vitro Study.

    Science.gov (United States)

    Lorenz, Andrea; Leichtle, Carmen I; Frantz, Sandra; Bumann, Marte; Tsiflikas, Ilias; Shiozawa, Thomas; Leichtle, Ulf G

    2017-05-01

    To analyze the potential of the dual outer diameter screw and systematically evaluate the pull-out force of the dual outer diameter screw compared to the uncemented and cemented standard pedicle screws with special regard to the pedicle diameter and the vertebra level. Sixty vertebrae of five human spines (T 6 -L 5 ) were sorted into three study groups for pairwise comparison of the uncemented dual outer diameter screw, the uncemented standard screw, and the cemented standard screw, and randomized with respect to bone mineral density (BMD) and vertebra level. The vertebrae were instrumented, insertion torque was determined, and pull-out testing was performed using a material testing machine. Failure load was evaluated in pairwise comparison within each study group. The screw-to-pedicle diameter ratio was determined and the uncemented dual outer diameter and standard screws were compared for different ratios as well as vertebra levels. Significantly increased pull-out forces were measured for the cemented standard screw compared to the uncemented standard screw (+689 N, P dual outer diameter screw (+403 N, P dual outer diameter screw to the uncemented standard screw in the total study group, a distinct but not significant increase was measured (+149 N, P = 0.114). Further analysis of these two screws, however, revealed a significant increase of pull-out force for the dual outer diameter screw in the lumbar region (+247 N, P = 0.040), as well as for a screw-to-pedicle diameter ratio between 0.6 and 1 (+ 488 N, P = 0.028). For clinical application, cement augmentation remains the gold standard for increasing screw stability. According to our results, the use of a dual outer diameter screw is an interesting option to increase screw stability in the lumbar region without cement augmentation. For the thoracic region, however, the screw-to-pedicle diameter should be checked and attention should be paid to screw cut out, if the dual outer diameter screw is considered.

  19. Ball Screw Actuator Including an Axial Soft Stop

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Forrest, Steven Talbert (Inventor); Abel, Steve (Inventor); Woessner, George (Inventor); Hanlon, Casey (Inventor)

    2016-01-01

    An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.

  20. In Vitro Evaluation of Manual Torque Values Applied to Implant-Abutment Complex by Different Clinicians and Abutment Screw Loosening

    Science.gov (United States)

    Demircan, Sabit; Cene, Erhan; Aya, Serhan Aydın; Erdem, Mehmet Ali; Cankaya, Abdulkadir Burak

    2017-01-01

    Preload is applied to screws manually or using a torque wrench in dental implant systems, and the preload applied must be appropriate for the purpose. The aim of this study was to assess screw loosening and bending/torsional moments applied by clinicians of various specialties following application of manual tightening torque to combinations of implants and abutments. Ten-millimeter implants of 3.7 and 4.1 mm diameters and standard or solid abutments were used. Each group contained five implant-abutment combinations. The control and experimental groups comprised 20 and 160 specimens, respectively. Implants in the experimental group were tightened by dentists of different specialties. Torsional and bending moments during tightening were measured using a strain gauge. Control group and implants with preload values close to the ideal preload were subjected to a dynamic loading test at 150 N, 15 Hz, and 85,000 cycles. The implants that deformed in this test were examined using an optical microscope to assess deformities. Manual tightening did not yield the manufacturer-recommended preload values. Dynamic loading testing suggested early screw loosening/fracture in samples with insufficient preload. PMID:28473988

  1. Ways of Noninvasive Facial Skin Tightening and Fat Reduction.

    Science.gov (United States)

    Fritz, Klaus; Salavastru, Carmen

    2016-06-01

    For skin tightening, ablative and nonablative lasers have been used with various parameters full or fractionated. Currently, other energy-based technologies have been developed such as radiofrequency (RF) from mono- to multipolar, microneedling RF, and high-intensity focused ultrasound. They heat up the tissue to a clinical endpoint. Temperatures above 42°C stimulate fibroblasts to produce more collagen and some technologies produce small coagulation points that allow to shrink and to tighten the tissue with less downtime or side effects. Alternative treatments not based on heat can be chemical peels from light to deep and microneedling without RF. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Insertion profiles of 4 headless compression screws.

    Science.gov (United States)

    Hart, Adam; Harvey, Edward J; Lefebvre, Louis-Philippe; Barthelat, Francois; Rabiei, Reza; Martineau, Paul A

    2013-09-01

    In practice, the surgeon must rely on screw position (insertion depth) and tactile feedback from the screwdriver (insertion torque) to gauge compression. In this study, we identified the relationship between interfragmentary compression and these 2 factors. The Acutrak Standard, Acutrak Mini, Synthes 3.0, and Herbert-Whipple implants were tested using a polyurethane foam scaphoid model. A specialized testing jig simultaneously measured compression force, insertion torque, and insertion depth at half-screw-turn intervals until failure occurred. The peak compression occurs at an insertion depth of -3.1 mm, -2.8 mm, 0.9 mm, and 1.5 mm for the Acutrak Mini, Acutrak Standard, Herbert-Whipple, and Synthes screws respectively (insertion depth is positive when the screw is proud above the bone and negative when buried). The compression and insertion torque at a depth of -2 mm were found to be 113 ± 18 N and 0.348 ± 0.052 Nm for the Acutrak Standard, 104 ± 15 N and 0.175 ± 0.008 Nm for the Acutrak Mini, 78 ± 9 N and 0.245 ± 0.006 Nm for the Herbert-Whipple, and 67 ± 2N, 0.233 ± 0.010 Nm for the Synthes headless compression screws. All 4 screws generated a sizable amount of compression (> 60 N) over a wide range of insertion depths. The compression at the commonly recommended insertion depth of -2 mm was not significantly different between screws; thus, implant selection should not be based on compression profile alone. Conically shaped screws (Acutrak) generated their peak compression when they were fully buried in the foam whereas the shanked screws (Synthes and Herbert-Whipple) reached peak compression before they were fully inserted. Because insertion torque correlated poorly with compression, surgeons should avoid using tactile judgment of torque as a proxy for compression. Knowledge of the insertion profile may improve our understanding of the implants, provide a better basis for comparing screws, and enable the surgeon to optimize compression. Copyright

  3. 3D finite element analysis of tightening process of bolt and nut connections with pitch difference

    Science.gov (United States)

    Liu, X.; Noda, N.-A.; Sano, Y.; Huang, Y. T.; Takase, Y.

    2018-06-01

    In a wide industrial field, the bolt-nut joint is unitized as an important machine element and anti-loosening performance is always required. In this paper, the effect of a slight pitch difference between a bolt and nut is studied. Firstly, by varying the pitch difference, the prevailing torque required for the nut rotation, before the nut touches the clamped body, is measured experimentally. Secondly, the tightening torque is determined as a function of the axial force of the bolt after the nut touches the clamped body. The results show that a large value of pitch difference may provide large prevailing torque that causes an anti-loosening effect although a very large pitch difference may deteriorate the bolt axial force under a certain tightening torque. Thirdly, a suitable pitch difference is determined taking into account the anti-loosening and clamping abilities. Furthermore, the chamfered corners at nut ends are considered, and it is found that the 3D finite element analysis with considering the chamfered nut threads has a good agreement with the experimental observation. Finally, the most desirable pitch difference required for improving anti-loosening is proposed.

  4. Tightening unit EZ 250 for VVER 1000 type reactor pressure vessel head flange joints

    International Nuclear Information System (INIS)

    Ruchar, Miloslav; Nadenik, Tomas; Kroj, Ludek

    2010-01-01

    The programme of flange joints tightening by seals made of expanded graphite for VVER 440 and VVER 1000 reactor head flange joints is highlighted, and tightening units of row EZ 650 and EZ 650 TK and KNI for VVER 440 reactor head flange joints and EZ 250 tightening unit for VVER 1000 reactor head flange joints are described in detail. The main advantages of electronically controlled tightening units include: Precise and uniform compression of the gasket during the tightening procedure; Automated solution to the graphite relaxing problem during tightening; Possibility of diagnosis of the thread status of the joints being tightened; Alleviation of operator's tough work; Shorter time of tensioning associated with a lower collective doses; Quick preparation of tightening procedure report from the data measured; Calibration renewal is possible in advance at time of unit storage without the need to place it on a real joint. (P.A.)

  5. Complications of syndesmotic screw removal

    NARCIS (Netherlands)

    Schepers, Tim; van Lieshout, Esther M. M.; de Vries, Mark R.; van der Elst, Maarten

    2011-01-01

    Currently, the metallic syndesmotic screw is the gold standard in the treatment of syndesmotic disruption. Whether or not this screw needs to be removed remains debatable. The aim of the current study was to determine the complications which occur following routine removal of the syndesmotic screw

  6. Fractional nonablative laser resurfacing: is there a skin tightening effect?

    Science.gov (United States)

    Kauvar, Arielle N B

    2014-12-01

    Fractional photothermolysis, an approach to laser skin resurfacing that creates microscopic thermal wounds in skin separated by islands of spared tissue, was developed to overcome the high incidence of adverse events and prolonged healing times associated with full coverage ablative laser procedures. To examine whether fractional nonablative laser resurfacing induces skin tightening. A literature review was performed to evaluate the clinical and histologic effects of fractional nonablative laser resurfacing and full coverage ablative resurfacing procedures. Fractional nonablative lasers produce excellent outcomes with minimal risk and morbidity for a variety of clinical conditions, including photodamaged skin, atrophic scars, surgical and burn scars. Efforts to induce robust fibroplasia in histologic specimens and skin tightening in the clinical setting have yielded inconsistent results. A better understanding of the histology of fractional laser resurfacing will help to optimize clinical outcomes.

  7. Non-ablative skin tightening with radiofrequency in Asian skin.

    Science.gov (United States)

    Kushikata, Nobuharu; Negishi, Kei; Tezuka, Yukiko; Takeuchi, Kaori; Wakamatsu, Shingo

    2005-02-01

    The recent successful application of radiofrequency (RF) in non-ablative skin tightening for skin laxity has attracted attention worldwide. The efficacy and clinical effect of RF were assessed in Asian skin, with additional study on the duration of the effect and any complications. Eighty-five Japanese females were enrolled in the study for treatment of nasolabial folds, marionette lines, and sagging jowls with 6-month follow-up. RF treatment was effective for nasolabial folds, marionette lines, and jowls. Objective physician evaluation found relatively good improvement at 3 months post-treatment, and even better improvement at the 6-month evaluation. RF treatment was very satisfactory for skin tightening in Asian facial skin. When compared with published literature from the United States, the results suggested that there might be race-related differences in the treatment parameters. (c) 2005 Wiley-Liss, Inc.

  8. Release of metal in vivo from stressed and nonstressed maxillofacial fracture plates and screws.

    Science.gov (United States)

    Matthew, I R; Frame, J W

    2000-07-01

    To analyze the release of metal into the adjacent tissues from stressed and nonstressed titanium and stainless steel miniplates and screws. Two miniplates were inserted into the cranial vaults of 12 beagle dogs while they were under general endotracheal anesthesia. One miniplate was shaped to fit the curvature of the skull (control). Another miniplate, made of the same material, was bent in a curve until the midpoint was raised 3 mm above the ends. Screws were inserted and tightened until the plate conformed to the skull curvature, creating stresses in the system. Four animals (2 each, having titanium or stainless steel plates and screws) were killed after 4, 12, and 24 weeks. Metallosis of adjacent soft tissues was assessed qualitatively. Miniplates and screws were removed, and adjacent soft tissue and bone was excised. Titanium, iron, chromium, nickel, and aluminum levels were assayed by ultraviolet/visible light and atomic absorption spectrophotometry. Nonparametric statistical methods were used for data analysis. There was no clear relationship between pigmentation of soft tissue adjacent to the miniplates and screws and the concentrations of metal present. The data did not demonstrate any consistent differences in the concentrations of metallic elements next to stressed and nonstressed (control) miniplates and screws of either material. Stresses arising through poor contouring of miniplates do not appear to influence the extent of release of metal into the adjacent tissues.

  9. Stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture: a comparative finite element study.

    Science.gov (United States)

    Huang, Xiaowei; Zhi, Zhongzheng; Yu, Baoqing; Chen, Fancheng

    2015-11-25

    The purpose of this study is to compare the stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture. A three-dimensional (3D) finite element model of the medial tibial plateau fracture (Schatzker type IV fracture) was created. An axial force of 2500 N with a distribution of 60% to the medial compartment was applied to simulate the axial compressive load on an adult knee during single-limb stance. The equivalent von Mises stress, displacement of the model relative to the distal tibia, and displacement of the implants were used as the output measures. The mean stress value of the plate-screw fixation system was 18.78 MPa, which was significantly (P stress value of the triangular fragment in the plate-screw fixation system model was 42.04 MPa, which was higher than that in the screw fixation model (24.18 MPa). But the mean stress of the triangular fractured fragment in the screw fixation model was significantly higher in terms of equivalent von Mises stress (EVMS), x-axis, and z-axis (P < 0.001). This study demonstrated that the load transmission mechanism between plate-screw fixation system and screw fixation system was different and the stability provided by the plate-screw fixation system was superior to the screw fixation system.

  10. Pedicle Screw Fixation Study in Immature Porcine Spines to Improve Pullout Resistance during Animal Testing.

    Directory of Open Access Journals (Sweden)

    Sophie Le Cann

    Full Text Available The porcine model is frequently used during development and validation of new spinal devices, because of its likeness to the human spine. These spinal devices are frequently composed of pedicle screws with a reputation for stable fixation but which can suffer pullouts during preclinical implantation on young animals, leading to high morbidity. With a view to identifying the best choices to optimize pedicle screw fixation in the porcine model, this study evaluates ex vivo the impact of weight (age of the animal, the level of the vertebrae (lumbar or thoracic and the type of screw anchorage (mono- or bi-cortical on pedicle screw pullouts. Among the 80 pig vertebrae (90- and 140-day-old tested in this study, the average screw pullout forces ranged between 419.9N and 1341.2N. In addition, statistical differences were found between test groups, pointing out the influence of the three parameters stated above. We found that the the more caudally the screws are positioned (lumbar level, the greater their pullout resistance is, moreover, screw stability increases with the age, and finally, the screws implanted with a mono-cortical anchorage sustained lower pullout forces than those implanted with a bi-cortical anchorage. We conclude that the best anchorage can be obtained with older animals, using a lumbar fixation and long screws traversing the vertebra and inducing bi-cortical anchorage. In very young animals, pedicle screw fixations need to be bi-cortical and more numerous to prevent pullout.

  11. Pedicle Screw Fixation Study in Immature Porcine Spines to Improve Pullout Resistance during Animal Testing.

    Science.gov (United States)

    Le Cann, Sophie; Cachon, Thibaut; Viguier, Eric; Miladi, Lotfi; Odent, Thierry; Rossi, Jean-Marie; Chabrand, Patrick

    2015-01-01

    The porcine model is frequently used during development and validation of new spinal devices, because of its likeness to the human spine. These spinal devices are frequently composed of pedicle screws with a reputation for stable fixation but which can suffer pullouts during preclinical implantation on young animals, leading to high morbidity. With a view to identifying the best choices to optimize pedicle screw fixation in the porcine model, this study evaluates ex vivo the impact of weight (age) of the animal, the level of the vertebrae (lumbar or thoracic) and the type of screw anchorage (mono- or bi-cortical) on pedicle screw pullouts. Among the 80 pig vertebrae (90- and 140-day-old) tested in this study, the average screw pullout forces ranged between 419.9N and 1341.2N. In addition, statistical differences were found between test groups, pointing out the influence of the three parameters stated above. We found that the the more caudally the screws are positioned (lumbar level), the greater their pullout resistance is, moreover, screw stability increases with the age, and finally, the screws implanted with a mono-cortical anchorage sustained lower pullout forces than those implanted with a bi-cortical anchorage. We conclude that the best anchorage can be obtained with older animals, using a lumbar fixation and long screws traversing the vertebra and inducing bi-cortical anchorage. In very young animals, pedicle screw fixations need to be bi-cortical and more numerous to prevent pullout.

  12. In Vivo Evaluation of Immediately Loaded Stainless Steel and Titanium Orthodontic Screws in a Growing Bone

    OpenAIRE

    Gritsch, Kerstin; Laroche, Norbert; Bonnet, Jeanne-Marie; Exbrayat, Patrick; Morgon, Laurent; Rabilloud, Muriel; Grosgogeat, Brigitte

    2013-01-01

    The present work intends to evaluate the use of immediate loaded orthodontic screws in a growing model, and to study the specific bone response. Thirty-two screws (half of stainless steel and half of titanium) were inserted in the alveolar bone of 8 growing pigs. The devices were immediately loaded with a 100 g orthodontic force. Two loading periods were assessed: 4 and 12 weeks. Both systems of screws were clinically assessed. Histological observations and histomorphometric analysis evaluate...

  13. Radio frequency energy for non-invasive and minimally invasive skin tightening.

    Science.gov (United States)

    Mulholland, R Stephen

    2011-07-01

    This article reviews the non-invasive and minimally invasive options for skin tightening, focusing on peer-reviewed articles and presentations and those technologies with the most proven or promising RF non-excisional skin-tightening results for excisional surgeons. RF has been the mainstay of non-invasive skin tightening and has emerged as the "cutting edge" technology in the minimally invasive skin-tightening field. Because these RF skin-tightening technologies are capital equipment purchases with a significant cost associated, this article also discusses some business issues and models that have proven to work in the plastic surgeon's office for non-invasive and minimally invasive skin-tightening technologies. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Influence of abutment screw preload on stress distribution in marginal bone.

    Science.gov (United States)

    Khraisat, Ameen

    2012-01-01

    Changes in an implant assembly after abutment connection might possibly cause deformation in the implant/abutment joint and even in the marginal bone. The aim of this study was to evaluate the influence of abutment screw preload through the implant collar on marginal bone stress without external load application. Models of three implant parts made of titanium (implant, abutment, and abutment screw) and cortical bone were built and positioned with computer-aided design software. Meshing and generation of boundary conditions, loads, and interactions were performed. Each part was meshed independently. The sole load applied to the model was a torque of 32 Ncm on the abutment screw about its axis of rotation. The implant collar was deformed axially after the screw was tightened (3 μm). This deformation resulted in 60 MPa of stress in the marginal bone. Moreover, pressure on the marginal bone in a radial direction was observed. It can be concluded that, without any external load application, abutment screw preload exerts stresses on the implant collar and the marginal bone. These findings should help guide the development of new implant/abutment joint designs that exert less stress on the marginal bone.

  15. Laser lipolysis: skin tightening in lipoplasty using a diode laser.

    Science.gov (United States)

    Wolfenson, Moisés; Hochman, Bernardo; Ferreira, Lydia Massako

    2015-05-01

    New devices have been developed for surgical repair of deformities caused by localized fat deposits associated with skin laxity. The use of these devices requires the adoption of safety parameters. The aim of this study was to investigate skin tightening by laser lipolysis, using a dual-wavelength diode laser. This prospective, cross-sectional study was conducted between June of 2008 and July of 2010 with 41 consecutive patients who underwent laser lipolysis to correct contour deformities. Laser lipolysis was performed with a diode laser operating at two wavelengths (924 and 975 nm) controlled independently, and using three different tip lengths, allowing treatment of small, medium, and large areas of adipose tissue. The procedure was performed under local anesthesia in a surgical setting. To calculate the optimal cumulative energy, a total energy dose of 5 kJ/10 × 10-cm skin area was used as a safety parameter to prevent treatment complications. The circumferences of body regions were measured preoperatively, immediately after surgery, and 90 days later. Measurements were compared using the Wilcoxon test at a significance level of 0.05 (p Laser lipolysis results in progressive skin tightening over time. Therapeutic, IV.

  16. Nonsurgical tightening of skin laxity: a new radiofrequency approach.

    Science.gov (United States)

    Rusciani, Antonio; Curinga, Giuseppe; Menichini, Giulio; Alfano, Carmine; Rusciani, Luigi

    2007-04-01

    Improvement in skin laxity can be difficult to achieve without invasive surgical procedures. Monopolar radiofrequency (RF) treatment is used by physicians to heat skin and promote tissue tightening and contouring. RF technology produces an electric current that generates heat through resistance in the dermis and subcutaneous tissue. The thermal effect depends on the conductivity features of the treated tissue. When heated, collagen fibrils will denature and contract, which is believed to lead to the observed tissue tightening. Ninety-three consecutive patients with mild to moderate laxity were included in the study. The Surgitron Dual Frequency RF (Radiowave technology, Ellman International) was used to treat skin laxity. The application of RF energy took place in an ambulatory setting with no need for skin sterilization or anesthesia. Patients immediately noticed a microlifting retraction in the treated tissues according to the vectors mapped in the area. There were no significant complications and the majority of patients were satisfied with the procedure and able to return to their daily routine after leaving the office, thereby substantiating the popularity of noninvasive rejuvenating procedures.

  17. Positioning device for screwing or unscrewing screw nut

    International Nuclear Information System (INIS)

    Sevelinge, G.

    1987-01-01

    This automatic positioning device for screwing or unscrewing a screw nut on a closure stud has a drawed socket and means for axially centre and angularly by wedge the socket on the closure stud and generate a continuous spiral between the socket and the closure stud [fr

  18. Scaphoid Fracture Fixation with an Acutrak? Screw

    OpenAIRE

    Loving, Vilert A.; Richardson, Michael L.

    2015-01-01

    We report a case of fixation of a scaphoid fracture using an Acutrak? screw. This screw is cannulated and headless, which allows it to be implanted below the surface of the bone. It uses the same concept of variable thread pitch as the Herbert screw, but unlike the Herbert screw, is fully threaded, with continuously varying pitch along its length. This variable pitch creates constant compression across a fracture as the screw is advanced, and gives the screw its unique appearance. This featur...

  19. Complications of syndesmotic screw removal

    NARCIS (Netherlands)

    T. Schepers (Tim); E.M.M. van Lieshout (Esther); M.R. de Vries (Mark); M. van der Elst (Maarten)

    2011-01-01

    textabstractBackground: Currently, the metallic syndesmotic screw is the gold standard in the treatment of syndesmotic disruption. Whether or not this screw needs to be removed remains debatable. The aim of the current study was to determine the complications which occur following routine removal of

  20. Frictional performance of ball screw

    International Nuclear Information System (INIS)

    Nakashima, Katuhiro; Takafuji, Kazuki

    1985-01-01

    As feed screws, ball screws have become to be adopted in place of trapezoidal threads. The structure of ball screws is complex, but those are the indispensable component of NC machine tools and machining centers, and are frequently used for industrial robots. As the problems in the operation of ball screws, there are damage, life and the performance related to friction. As to the damage and life, though there is the problem of the load distribution on balls, the results of the research on rolling bearings are applied. The friction of ball screws consists of the friction of balls and a spiral groove, the friction of a ball and a ball, the friction in a ball-circulating mechanism and the viscous friction of lubricating oil. It was decided to synthetically examine the frictional performance of ball screws, such as driving torque, the variation of driving torque, efficiency, the formation of oil film and so on, under the working condition of wide range, using the screws with different accuracy and the nuts of various circuit number. The experimental setup and the processing of the experimental data, the driving performance of ball screws and so on are reported. (Kako, I.)

  1. Tightening the Dutch coffee shop policy: Evaluation of the private club and the residence criterion.

    Science.gov (United States)

    van Ooyen-Houben, Marianne M J; Bieleman, Bert; Korf, Dirk J

    2016-05-01

    The Dutch coffee shop policy was tightened in 2012. Two additional criteria that coffee shops must adhere to in order for them to be tolerated came into force: the private club and the residence criterion. Coffee shops were only permitted to give access to members and only residents of the Netherlands were permitted to become a member. This tightened policy sought to make coffee shops smaller and more controllable, to reduce the nuisance associated with coffee shops and to reduce the number of foreign visitors attracted by the coffee shops. Enforcement began in the southern provinces. The private club criterion was abolished at the end of 2012. A sample of fourteen municipalities with coffee shops was drawn. Seven in the south were treated as an 'experimental group' and the others as 'comparison group'. A baseline assessment and follow-ups at six and 18 months were performed. A combination of methods was applied: interviews with local experts, surveys with neighbourhood residents, coffee shop visitors and cannabis users, and ethnographic field work. Drugs tourism to coffee shops swiftly declined in 2012. The coffee shops also lost a large portion of their local customers, since users did not want to register as a member. The illegal market expanded. Neighbourhood residents experienced a greater amount of nuisance caused by dealer activities. After abolishment of the private club criterion, residents of the Netherlands largely returned to the coffee shops. Drug tourists still remained largely absent. Neighbourhood residents experienced more nuisance from coffee shops again. Illegal cannabis sale was tempered. No effect on cannabis use was found. The quick and robust shifts in the users' market in reaction to the policy changes illustrate the power of policy, but also the limitations caused by the dynamic and resilient nature of the Dutch cannabis supply market. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study

    Directory of Open Access Journals (Sweden)

    Herrera Antonio

    2010-06-01

    Full Text Available Abstract Background Primary stability of the graft is essential in anterior cruciate ligament surgery. An optimal method of fixation should be easy to insert and provide great resistance against pull-out forces. A controlled laboratory study was designed to test the primary stability of ACL tendinous grafts in the tibial tunnel. The correlation between resistance to traction forces and the cross-section and length of the screw was studied. Methods The tibial phase of ACL reconstruction was performed in forty porcine tibias using digital flexor tendons of the same animal. An 8 mm tunnel was drilled in each specimen and two looped tendons placed as graft. Specimens were divided in five groups according to the diameter and length of the screw used for fixation. Wedge interference screws were used. Longitudinal traction was applied to the graft with a Servohydraulic Fatigue System. Load and displacement were controlled and analyzed. Results The mean loads to failure for each group were 295,44 N (Group 1; 9 × 23 screw, 564,05 N (Group 2; 9 × 28, 614,95 N (Group 3; 9 × 35, 651,14 N (Group 4; 10 × 28 and 664,99 (Group 5; 10 × 35. No slippage of the graft was observed in groups 3, 4 and 5. There were significant differences in the load to failure among groups (ANOVA/P Conclusions Longer and wider interference screws provide better fixation in tibial ACL graft fixation. Short screws (23 mm do not achieve optimal fixation and should be implanted only with special requirements.

  3. The screw propeller

    Science.gov (United States)

    Larrabee, E. E.

    1980-07-01

    Marine and air screw propellers are considered in terms of theoretical hydrodynamics as developed by Joukowsky, Prandtl, and Betz. Attention is given to the flow around wings of finite span where spanwise flow exists and where lift and the bound vorticity must all go smoothly to zero at the wing tips. The concept of a trailing vortex sheet made up of infinitesimal line vortexes roughly aligned with the direction of flight is discussed in this regard. Also considered is induced velocity, which tends to convect the sheet downward at every stage in the roll-up process, the vortex theory of propellers and the Betz-Prandtl circulation distribution. The performance of the Gossamer Albatross and of a pedal-driven biplane called the Chrysalis are also discussed.

  4. The pullout performance of pedicle screws

    CERN Document Server

    Demir, Teyfik

    2015-01-01

    This brief book systematically discusses all subjects that affect the pullout strength of pedicle screws. These screws are used in spinal surgeries to stabilize the spine. The holding strength of the pedicle screw is vital since loosening of the pedicle screws can cause revision surgeries. Once the pedicle screw is pulled out, it is harder to obtain same stabilization for the fused vertebrae. The book reviews the effect of screw designs, application techniques, cement augmentation, coating of the screw and test conditions on the pullout strength. The studies with finite element analysis were also included.

  5. Geothermal ORC Systems Using Large Screw Expanders

    OpenAIRE

    Biederman, Tim R.; Brasz, Joost J.

    2014-01-01

    Geothermal ORC Systems using Large Screw Expanders Tim Biederman Cyrq Energy Abstract This paper describes a low-temperature Organic Rankine Cycle Power Recovery system with a screw expander a derivative of developed of Kaishan's line of screw compressors, as its power unit. The screw expander design is a modified version of its existing refrigeration compressor used on water-cooled chillers. Starting the ORC development program with existing refrigeration screw compre...

  6. Deformations of the spin currents by topological screw dislocation and cosmic dispiration

    International Nuclear Information System (INIS)

    Wang, Jianhua; Ma, Kai; Li, Kang; Fan, Huawei

    2015-01-01

    We study the spin currents induced by topological screw dislocation and cosmic dispiration. By using the extended Drude model, we find that the spin dependent forces are modified by the nontrivial geometry. For the topological screw dislocation, only the direction of spin current is bent by deforming the spin polarization vector. In contrast, the force induced by cosmic dispiration could affect both the direction and magnitude of the spin current. As a consequence, the spin-Hall conductivity does not receive corrections from screw dislocation.

  7. Deformations of the spin currents by topological screw dislocation and cosmic dispiration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhua [School of Physics Science, Shaanxi University of Technology, Hanzhong 723000, Shaanxi (China); Ma, Kai, E-mail: makainca@gmail.com [School of Physics Science, Shaanxi University of Technology, Hanzhong 723000, Shaanxi (China); Li, Kang [Department of Physics, Hangzhou Normal University, Hangzhou 310036, Zhejiang (China); Fan, Huawei [School of Physics and Information Technology, Shaanxi Normal University, Xian 710000, Shaanxi (China)

    2015-11-15

    We study the spin currents induced by topological screw dislocation and cosmic dispiration. By using the extended Drude model, we find that the spin dependent forces are modified by the nontrivial geometry. For the topological screw dislocation, only the direction of spin current is bent by deforming the spin polarization vector. In contrast, the force induced by cosmic dispiration could affect both the direction and magnitude of the spin current. As a consequence, the spin-Hall conductivity does not receive corrections from screw dislocation.

  8. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System

    OpenAIRE

    Sim, Bo Kyun; Kim, Bongju; Kim, Min Jeong; Jeong, Guk Hyun; Ju, Kyung Won; Shin, Yoo Jin; Kim, Man Yong; Lee, Jong-Ho

    2017-01-01

    The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access ...

  9. Removal torque of nail interlocking screws is related to screw proximity to the fracture and screw breakage.

    Science.gov (United States)

    White, Alexander A; Kubacki, Meghan R; Samona, Jason; Telehowski, Paul; Atkinson, Patrick J

    2016-06-01

    Studies have shown that titanium implants can be challenging to explant due to the material's excellent biocompatibility and resulting osseointegration. Clinically, titanium alloy nail interlocking screws may require removal to dynamize a construct or revise the nail due to nonunion, infection, pain, or periprosthetic fracture. This study was designed to determine what variables influence the removal torque for titanium alloy interlocking screws. An intramedullary nail with four interlocking screws was used to stabilize a 1-cm segmental femoral defect in a canine model for 16 weeks. The animals were observed to be active following a several-day recovery after surgery. In six animals, the femora and implanted nail/screws were first tested to failure in torsion to simulate periprosthetic fracture of an implant after which the screws were then removed. In four additional animals, the screws were removed without mechanical testing. Both intraoperative insertional and extraction torques were recorded for all screws. Mechanical testing to failure broke 10/24 screws. On average, the intact screws required 70% of the insertional torque during removal while broken screws only required 16% of the insertional torque (p torque than the outboard distal screw (p torque was ∼80°. The peak axial load did not significantly correlate with the torque required to remove the screws. On average, the removal torque was lower than at the time of insertion, and less torque was required to remove broken screws and screws remote to the fracture. However, broken screws will require additional time to retrieve the remaining screw fragment. This study suggests that broken screws and screws in prematurely active patients will require less torque to remove. © IMechE 2016.

  10. Methanol market slowly tightens as Brazil starts soaking up material

    International Nuclear Information System (INIS)

    Young, I.

    1992-01-01

    Although the US methanol market's response to mandated oxygen requirements in reformulated gasoline has been disappointing, the European market has surprisingly been tightening in recent weeks and looks set for a price rise in first-quarter 1993. The tightness is being felt mainly in the Mediterranean market, where the Libyan methanol plant is running at only 70% because of problems with gas feedstock supplies. More significantly, the Brazilian government has now given the go-ahead for a yearlong extension on imports of methanol for use as an ethanol replacement in fuel blending. The new authorization sets a monthly import limit of 48,000 m.t. during that period. Libya is an important supplier of methanol to the Brazilian market and has already shipped about 20,000 m.t. since the authorization was given. Another major supplier to Brazil is Russia, from its two giant 750,000-m.t./year plants at Gubakha and Tomsk. The material is shipped from the terminal at Yuzhnyy on the Black Sea, in Ukrainian territory since the collapse of the Soviet Union

  11. Is topical anesthesia useful in noninvasive skin tightening using radiofrequency?

    Science.gov (United States)

    Kushikata, Nobuharu; Negishi, Kei; Tezuka, Yukiko; Takeuchi, Kaori; Wakamatsu, Shingo

    2005-05-01

    The radiofrequency (RF) system has been applied to Asian skin for noninvasive skin tightening. The only drawback is the pain during the treatment. The relationships between the effectiveness of a topical anesthetic at various RF levels and the respective treatment results were compared and assessed after 3 months. Eighty-four females, ranging in age from 30 to 60 years, were divided into three groups of 28 subjects each. In all groups, the entire bilateral cheeks were treated. Group A underwent RF treatment (ThermaCool TC, Thermage, Hayward, CA, USA) with topical anesthesia and group B without anesthesia, and in group C, half of the face was treated with anesthesia and the other half was not. The degree of pain was recorded. Digital photographs of the patients pre- and post-treatment were objectively assessed by double-blinded physicians. Subjective assessment was performed with questionnaires. The average treatment levels for groups A and B were 14.13 and 14.02, respectively. Although anesthesia was useful for pain reduction, it did not allow a significant energy upgrade. In group C, 8 (28.6%) patients showed a statistically insignificant difference in the treatment levels, but not in the results, between the anesthetized and the unanesthetized sides. The use of anesthesia did not affect the final efficacy of the treatment compared with no anesthesia.

  12. Avaliação da resistência mecânica de três diferentes pinos de Schanz às forças de torção em montagens do fixador externo monolateral Mechanical resistance evaluation of three different Schanz screws to torsion forces in monolateral external fixation assemblies

    Directory of Open Access Journals (Sweden)

    Marcelo Mercadante

    2005-01-01

    Full Text Available OBJETIVO: O objetivo deste estudo é avaliar a resistência mecânica de três montagens de fixador externo linear utilizando pinos de 4,5 mm e de 5,5 mm com alma 3,2mm, e de 5,5 mm com alma de 4,5 mm no setor rosqueado dos pinos. MATERIAL E MÉTODOS: Foram montados fixadores externos lineares em tubos de polipropileno de 500 mm, com um corte obliquo a 45º no seu centro, com dois pinos de Schanz em cada segmento. Foram estudados 18 corpos de prova, divididos em três grupos de seis peças cada. No grupo 1 foram utilizados pinos de Schanz de 4,5 mm, no grupo 2 pinos de 5,5 mm ambos com alma de 3,2 mm e no grupo 3 pinos de 5,5 mm com alma de 4,5 mm de diâmetro. Os testes mecânicos foram realizadas em máquina de torção MT-100, e as medidas de resistência realizadas com 4,5º, 9,0º, 13,5º e 18,0º de torção. RESULTADOS: Os pinos de Schanz de 4,5 mm e alma de 3,2 mm mostraram como média de resistência para as torções de 4,5º, 9,0º, 13,5º e 18,0º, respectivamente: 12,0 N/mm, 21,0 N/mm, 33,0 N/mm e 46,0 N/mm. Os pinos de 5,5 com alma de 3,2 mm mostraram como resistência média: 13,2 N/mm, 25,3 N/mm, 40,0 N/mm e 51,2 N/mm, respectivamente. Os testes com os pinos de Schanz de 5,5 mm com alma de 4,5 mm mostraram resistência média de: 15,2 N/mm, 33,5 N/mm, 53,0 N/mm e 70,0 N/mm. Estudo estatístico com o teste da Análise de Variância e o teste de Bonferroni mostraram ausência de diferença estatisticamente significante entre os grupos com pinos com diâmetro da alma da parte roscada de 3,2mm (de 4,5 mm e 5,5 mm. Houve diferença estatisticamente significante (alfa OBJECTIVE: The objective of this study was to evaluate the mechanical force of three different assemblies of a linear external fixator using 4.5 mm and 5.5 mm Schanz screws with a 3.2 mm-diameter root, and another screw with 5.5 mm diameter with a 4,5mm root. MATERIAL AND METHODS: The linear external fixator was assembled in a 500 mm-long polypropylene tube, with a 45

  13. Tests for the dynamic behavior of insulation valve screws

    International Nuclear Information System (INIS)

    Tulke, K.D.; Stoppler, W.; Stern, G.

    1994-01-01

    Thermal tensile tests were performed at a temperature of 270 C, with two new original insulation valve conical screws M30-Tx92,5 mm (material: 21 CrMo V 5 7)and two prestrained ones during the event on 27.12.92. In order to assure the results obtained with regard to the dynamic load on the insulation valve during ''quick opening'', in addition tensile impact tests were performed at 270 C with six original insulation valve conical screws. Impact velocity reached 13,5 m/s at four screws and 6 m/s at two screws. Test conditions regarding collision damping and mass distribution were adapted, by means of parameter studies, to the situation of the insulation valve. During thermal tensile tests, strength and deformation values, such as stress at flow start, tensile strength, fracture prolongation and strain, necking at fracture as well as energy absorption up to maximum force and up to rupture, were determined. During tensile impact tests, deformation values, such as elongation, strain and necking, and energy absorption by the screw, were determined. (orig.) [de

  14. Studies on positive conveying in helically channeled single screw extruders

    Directory of Open Access Journals (Sweden)

    L. Pan

    2012-07-01

    Full Text Available A solids conveying theory called double-flight driving theory was proposed for helically channeled single screw extruders. In the extruder, screw channel rotates against static barrel channel, which behaves as cooperative embedded twin-screws for the positive conveying. They turn as two parallel arc plates, between which an arc-plate solid-plug was assumed. By analyzing the forces on the solid-plug in the barrel channel and screw channel, the boundary conditions when the solid-plug is waived of being cut off on barrel wall, were found to have the capacity of the positive conveying. Experimental data were obtained using a specially designed extruder with a helically channeled barrel in the feeding zone and a pressure-adjustable die. The effects of the barrel channel geometry and friction coefficients on the conveying mechanism were presented and compared with the experimental results. The simulations showed that the positive conveying could be achieved after optimizing extruder designs. Compared with the traditional design with the friction-drag conveying, the throughput is higher while screw torque and energy consumption are decreased. Besides, the design criteria of the barrel channel were also discussed.

  15. Misplaced Cervical Screws Requiring Reoperation.

    Science.gov (United States)

    Peterson, Jeremy C; Arnold, Paul M; Smith, Zachary A; Hsu, Wellington K; Fehlings, Michael G; Hart, Robert A; Hilibrand, Alan S; Nassr, Ahmad; Rahman, Ra'Kerry K; Tannoury, Chadi A; Tannoury, Tony; Mroz, Thomas E; Currier, Bradford L; De Giacomo, Anthony F; Fogelson, Jeremy L; Jobse, Bruce C; Massicotte, Eric M; Riew, K Daniel

    2017-04-01

    A multicenter, retrospective case series. In the past several years, screw fixation of the cervical spine has become commonplace. For the most part, this is a safe, low-risk procedure. While rare, screw backout or misplaced screws can lead to morbidity and increased costs. We report our experiences with this uncommon complication. A multicenter, retrospective case series was undertaken at 23 institutions in the United States. Patients were included who underwent cervical spine surgery from January 1, 2005, to December 31, 2011, and had misplacement of screws requiring reoperation. Institutional review board approval was obtained at all participating institutions, and detailed records were sent to a central data center. A total of 12 903 patients met the inclusion criteria and were analyzed. There were 11 instances of screw backout requiring reoperation, for an incidence of 0.085%. There were 7 posterior procedures. Importantly, there were no changes in the health-related quality-of-life metrics due to this complication. There were no new neurologic deficits; a patient most often presented with pain, and misplacement was diagnosed on plain X-ray or computed tomography scan. The most common location for screw backout was C6 (36%). This study represents the largest series to tabulate the incidence of misplacement of screws following cervical spine surgery, which led to revision procedures. The data suggest this is a rare event, despite the widespread use of cervical fixation. Patients suffering this complication can require revision, but do not usually suffer neurologic sequelae. These patients have increased cost of care. Meticulous technique and thorough knowledge of the relevant anatomy are the best means of preventing this complication.

  16. Mini-Fragment Fixation Is Equivalent to Bicortical Screw Fixation for Horizontal Medial Malleolus Fractures.

    Science.gov (United States)

    Wegner, Adam M; Wolinsky, Philip R; Robbins, Michael A; Garcia, Tanya C; Amanatullah, Derek F

    2018-05-01

    Horizontal fractures of the medial malleolus occur through application of valgus or abduction force through the ankle that creates a tension failure of the medial malleolus. The authors hypothesize that mini-fragment T-plates may offer improved fixation, but the optimal fixation construct for these fractures remains unclear. Forty synthetic distal tibiae with identical osteotomies were randomized into 4 fixation constructs: (1) two parallel unicortical cancellous screws; (2) two parallel bicortical cortical screws; (3) a contoured mini-fragment T-plate with 2 unicortical screws in the fragment and 2 bicortical screws in the shaft; and (4) a contoured mini-fragment T-plate with 2 bicortical screws in the fragment and 2 unicortical screws in the shaft. Specimens were subjected to offset axial tension loading on a servohydraulic testing system and tracked using high-resolution video. Failure was defined as 2 mm of articular displacement. Analysis of variance followed by a Tukey-Kramer post hoc test was used to assess for differences between groups, with significance defined as Pfragment T-plate constructs (239±83 N/mm and 190±37 N/mm) and the bicortical screw construct (240±17 N/mm) were not statistically different. The mean stiffness values of both mini-fragment T-plate constructs and the bicortical screw construct were higher than that of a parallel unicortical screw construct (102±20 N/mm). Contoured T-plate constructs provide stiffer initial fixation than a unicortical cancellous screw construct. The T-plate is biomechanically equivalent to a bicortical screw construct, but may be superior in capturing small fragments of bone. [Orthopedics. 2018; 41(3):e395-e399.]. Copyright 2018, SLACK Incorporated.

  17. Development of a high speed extrusion concept using a floating screw sleeve for solid-melt-separation

    Science.gov (United States)

    Karrenberg, Gregor; Wortberg, Johannes

    2015-05-01

    The High-Speed-S-Truder with floating screw sleeve is an alternative extrusion concept with solid-melt-separation. A fairly conventional 35 mm screw with a length of 21 D, which is accelerated by a 75 kW gearless, water cooled synchronous drive, conveys the resin into a 60 mm screw sleeve with a length of 10 D. Inside the sleeve the material is plasticizied and discharged into the outer screw channel of the sleeve through radial bores. Only the solid bed remains inside. The development of a melt pool - and thus a decrease of the plasticizing capacity - is avoided. The sleeve is rotated by drag forces only (approximately 10 - 15 % of the screw speed). Due to the low speed of the screw sleeve molten material is conveyed to a 4 D Dynamic Mixing Ring in a gentle manner. The DMRs floating ring and the screw sleeve are directly coupled. The granules in the screw channel are stopped by a barrier on the screw in front of the mixing device. So nearly no unmelted material can pass the system. For temperature management in the plastification and mixing zone a 3-zone heating/air-cooling system is used. Various kinds of experiments with the High-Speed S-Truder were conducted. Reachable throughputs with different types of material (LDPE, LLDPE, PP, PS) have been tested. Also three screw geometries, which are mainly varying in the channel depth, were compared. Experimental results and theoretical background will be described in this paper.

  18. Effect of abutment screw length and cyclic loading on removal torque in external and internal hex implants.

    Science.gov (United States)

    Mohammed, Hnd Hadi; Lee, Jin-Han; Bae, Ji-Myung; Cho, Hye-Won

    2016-02-01

    The purpose of this study was to evaluate the effects of abutment screw length and cyclic loading on the removal torque (RTV) in external hex (EH) and internal hex (IH) implants. Forty screw-retained single crowns were connected to external and internal hex implants. The prepared titanium abutment screws were classified into 8 groups based on the number of threads (n = 5 per group): EH 12.5, 6.5, 3.5, 2.5 and IH 6.5, 5, 3.5, 2.5 threads. The abutment screws were tightened with 20 Ncm torque twice with 10-minute intervals. After 5 minutes, the initial RTVs of the abutment screws were measured with a digital torque gauge (MGT12). A customized jig was constructed to apply a load along the implant long axis at the central fossa of the maxillary first molar. The post-loading RTVs were measured after 16,000 cycles of mechanical loading with 50 N at a 1-Hz frequency. Statistical analysis included one-way analysis of variance and paired t-tests. The post-loading RTVs were significantly lower than the initial RTVs in the EH 2.5 thread and IH 2.5 thread groups (P<.05). The initial RTVs exhibited no significant differences among the 8 groups, whereas the post-loading RTVs of the EH 6.5 and EH 3.5 thread groups were higher than those of the IH 3.5 thread group (P<.05). Within the limitations of this study, the external hex implants with short screw lengths were more advantageous than internal hex implants with short screw lengths in torque maintenance after cyclic loading.

  19. Biomechanical competence of six different bone screws for reconstructive surgery in three different transplants: Fibular, iliac crest, scapular and artificial bone.

    Science.gov (United States)

    Pietsch, Arnold P; Raith, Stefan; Ode, Jan-Eric; Teichmann, Jan; Lethaus, Bernd; Möhlhenrich, Stephan C; Hölzle, Frank; Duda, Georg N; Steiner, Timm

    2016-06-01

    The goal of this study was to determine a combination of screw and transplantation type that offers optimal primary stability for reconstructive surgery. Fibular, iliac crest, and scapular transplants were tested along with artificial bone substrate. Six different kinds of bone screws (Medartis(©)) were compared, each type utilized with one of six specimens from human transplants (n = 6). Controlled screw-in-tests were performed and the required torque was protocolled. Subsequently, pull-out-tests were executed to determine the retention forces. The artificial bone substitute material showed significantly higher retention forces than real bone samples. The self-drilling screws achieved the significantly highest retention values in the synthetic bone substitute material. Cancellous screws achieved the highest retention in the fibular transplants, while self-drilling and cancellous screws demonstrated better retention than cortical screws in the iliac crest. In the scapular graft, no significant differences were found between the screw types. In comparison to the human transplant types, the cortical screws showed the significantly highest values in the fibula and the lowest values in the iliac crest. The best retention was found in the combination of cancellous screws with fibular graft (514.8 N + -252.3 N). For the flat bones (i.e., scapular and illiac crest) we recommend the cancellous screws. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Simple New Screw Insertion Technique without Extraction for Broken Pedicle Screws.

    Science.gov (United States)

    Kil, Jin-Sang; Park, Jong-Tae

    2018-05-01

    Spinal transpedicular screw fixation is widely performed. Broken pedicle screw rates range from 3%-7.1%. Several techniques have been described for extraction of broken pedicle screws. However, most of these techniques require special instruments. We describe a simple, modified technique for management of broken pedicle screws without extraction. No special instruments or drilling in an adjacent pedicle are required. We used a high-speed air drill with a round burr. With C-arm fluoroscopy guidance, the distal fragment of a broken pedicle screw was palpated using free-hand technique through the screw entry hole. A high-speed air drill with a round burr (not a diamond burr) was inserted through the hole. Drilling began slowly and continued until enough space was obtained for new screw insertion. Using this space, we performed new pedicle screw fixation medially alongside the distal fragment of the broken pedicle screw. We performed the insertion with a previously used entry hole and pathway in the pedicle. The same size pedicle screw was used. Three patients were treated with this modified technique. New screw insertion was successful in all cases after partial drilling of the distal broken pedicle screw fragment. There were no complications, such as screw loosening, dural tears, or root injury. We describe a simple, modified technique for management of broken pedicle screws without extraction. This technique is recommended in patients who require insertion of a new screw. Copyright © 2017. Published by Elsevier Inc.

  1. Increase of operational reliability and durability of square sectoral working bodies of flexible screw conveyors

    Directory of Open Access Journals (Sweden)

    O.L. Lyashuk

    2017-12-01

    Full Text Available The construction of the device for guiding screw sectional working bodies of increased operational reliability and durability and the method of determination of the force of guiding the design parameters are given. Two main methods of manufacturing screw mechanisms of machines of various service purposes were investigated and it was established that twisted screws, in terms of their strength and performance, considerably exceed rolling stock. The design of the device for manufacturing screw working bodies of conveyors by means of cutting by periodic and continuous methods, as the most reliable in operation, is developed. The specifics of their work are due to various operations of technological processes, as well as physical and mechanical properties of goods, determine the nomenclature and design parameters of screw mechanisms (SM. In studying the processes of forming screw spirals, the basic precision characteristics of the methods of drilling and rolling are established. A comparative study of two main methods in terms of their operational and durable capabilities has been carried out. An important factor determining the reliability and durability of a screw is the difference in the thickness of the inner and outer edges.

  2. Effects of Tightening Torque on Dynamic Characteristics of Low Pressure Rotors Connected by a Spline Coupling

    Institute of Scientific and Technical Information of China (English)

    Chen Xi; Liao M ingfu; Li Quankun

    2017-01-01

    A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic character-istics of low pressure rotors connected by a spline coupling .The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement .Through simulating calculation and experiments ,the effects of tightening torque on the dynamic characteristics of the rotor system con-nected by a spline coupling including critical speeds ,vibration modes and unbalance responses are analyzed .The results show that when increasing the tightening torque ,the first two critical speeds and the amplitudes of unbal-ance response gradually increase in varying degrees while the vibration modes are essentially unchanged .In addi-tion ,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change .

  3. In vitro validation of a novel mechanical model for testing the anchorage capacity of pedicle screws using physiological load application.

    Science.gov (United States)

    Liebsch, Christian; Zimmermann, Julia; Graf, Nicolas; Schilling, Christoph; Wilke, Hans-Joachim; Kienle, Annette

    2018-01-01

    Biomechanical in vitro tests analysing screw loosening often include high standard deviations caused by high variabilities in bone mineral density and pedicle geometry, whereas standardized mechanical models made of PU foam often do not integrate anatomical or physiological boundary conditions. The purpose of this study was to develop a most realistic mechanical model for the standardized and reproducible testing of pedicle screws regarding the resistance against screw loosening and the holding force as well as to validate this model by in vitro experiments. The novel mechanical testing model represents all anatomical structures of a human vertebra and is consisting of PU foam to simulate cancellous bone, as well as a novel pedicle model made of short carbon fibre filled epoxy. Six monoaxial cannulated pedicle screws (Ø6.5 × 45mm) were tested using the mechanical testing model as well as human vertebra specimens by applying complex physiological cyclic loading (shear, tension, and bending; 5Hz testing frequency; sinusoidal pulsating forces) in a dynamic materials testing machine with stepwise increasing load after each 50.000 cycles (100.0N shear force + 20.0N per step, 51.0N tension force + 10.2N per step, 4.2Nm bending moment + 0.8Nm per step) until screw loosening was detected. The pedicle screw head was fixed on a firmly clamped rod while the load was applied in the vertebral body. For the in vitro experiments, six human lumbar vertebrae (L1-3, BMD 75.4 ± 4.0mg/cc HA, pedicle width 9.8 ± 0.6mm) were tested after implanting pedicle screws under X-ray control. Relative motions of pedicle screw, specimen fixture, and rod fixture were detected using an optical motion tracking system. Translational motions of the mechanical testing model experiments in the point of load introduction (0.9-2.2mm at 240N shear force) were reproducible within the variation range of the in vitro experiments (0.6-3.5mm at 240N shear force). Screw loosening occurred continuously in

  4. Does a trochanteric lag screw improve fixation of vertically oriented femoral neck fractures? A biomechanical analysis in cadaveric bone.

    Science.gov (United States)

    Hawks, Michael A; Kim, Hyunchul; Strauss, Joseph E; Oliphant, Bryant W; Golden, Robert D; Hsieh, Adam H; Nascone, Jason W; O'Toole, Robert V

    2013-10-01

    We assessed the biomechanical performances of a trochanteric lag screw construct and a traditional inverted triangle construct in the treatment of simulated Pauwels type 3 femoral neck fractures. An inverted triangle construct (three 7.3-mm cannulated screws placed in inverted triangle orientation) and a trochanteric lag screw construct (two 7.3-mm cannulated screws placed across the superior portion of the femoral neck and one 4.5-mm lag screw placed perpendicular to the fracture in superolateral to inferomedial orientation) were tested in nine matched pairs of non-osteoporotic human cadaveric femora. We used a previously described vertically oriented femoral neck fracture model and testing protocol that incrementally loaded the constructs along the mechanical axis of the femur to 1400 N. Specimens that survived incremental loading underwent cyclic loading. Apparent construct stiffness, force at 3mm of displacement, and survival of incremental loading were recorded. The trochanteric lag screw group had a 70% increase in stiffness (261 N/mm [29 standard deviation] versus 153 N/mm [16 standard deviation]; P=0.026) and a 43% increase in force required for displacement (620 N versus 435 N; P=0.018) compared with the inverted triangle group. One trochanteric lag screw and no inverted triangle specimen survived incremental loading. A trochanteric lag screw construct applied to vertically oriented femoral neck fractures provides marked improvement in mechanical performance compared with the inverted triangle construct. © 2013.

  5. Dynamic locking screw improves fixation strength in osteoporotic bone: an in vitro study on an artificial bone model.

    Science.gov (United States)

    Pohlemann, Tim; Gueorguiev, Boyko; Agarwal, Yash; Wahl, Dieter; Sprecher, Christoph; Schwieger, Karsten; Lenz, Mark

    2015-04-01

    The novel dynamic locking screw (DLS) was developed to improve bone healing with locked-plate osteosynthesis by equalising construct stiffness at both cortices. Due to a theoretical damping effect, this modulated stiffness could be beneficial for fracture fixation in osteoporotic bone. Therefore, the mechanical behaviour of the DLS at the screw-bone interface was investigated in an artificial osteoporotic bone model and compared with conventional locking screws (LHS). Osteoporotic surrogate bones were plated with either a DLS or a LHS construct consisting of two screws and cyclically axially loaded (8,500 cycles, amplitude 420 N, increase 2 mN/cycle). Construct stiffness, relative movement, axial screw migration, proximal (P) and distal (D) screw pullout force and loosening at the bone interface were determined and statistically evaluated. DLS constructs exhibited a higher screw pullout force of P 85 N [standard deviation (SD) 21] and D 93 N (SD 12) compared with LHS (P 62 N, SD 28, p = 0.1; D 57 N, SD 25, p LHS (p = 0.01). DLS constructs showed significantly lower axial construct stiffness (403 N/mm, SD 21, p LHS (529 N/mm, SD 27; 0.8 mm, SD 0.04). Based on the model data, the DLS principle might also improve in vivo plate fixation in osteoporotic bone, providing enhanced residual holding strength and reducing screw cutout. The influence of pin-sleeve abutment still needs to be investigated.

  6. Ultrastable cellulosome-adhesion complex tightens under load.

    Science.gov (United States)

    Schoeler, Constantin; Malinowska, Klara H; Bernardi, Rafael C; Milles, Lukas F; Jobst, Markus A; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Schulten, Klaus; Gaub, Hermann E; Nash, Michael A

    2014-12-08

    Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand-receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand-receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600-750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.

  7. Cement Augmentation in Sacroiliac Screw Fixation Offers Modest Biomechanical Advantages in a Cadaver Model.

    Science.gov (United States)

    Osterhoff, Georg; Dodd, Andrew E; Unno, Florence; Wong, Angus; Amiri, Shahram; Lefaivre, Kelly A; Guy, Pierre

    2016-11-01

    Sacroiliac screw fixation in elderly patients with pelvic fractures is prone to failure owing to impaired bone quality. Cement augmentation has been proposed as a possible solution, because in other anatomic areas this has been shown to reduce screw loosening. However, to our knowledge, this has not been evaluated for sacroiliac screws. We investigated the potential biomechanical benefit of cement augmentation of sacroiliac screw fixation in a cadaver model of osteoporotic bone, specifically with respect to screw loosening, construct survival, and fracture-site motion. Standardized complete sacral ala fractures with intact posterior ligaments in combination with ipsilateral upper and lower pubic rami fractures were created in osteoporotic cadaver pelves and stabilized by three fixation techniques: sacroiliac (n = 5) with sacroiliac screws in S1 and S2, cemented (n = 5) with addition of cement augmentation, and transsacral (n = 5) with a single transsacral screw in S1. A cyclic loading protocol was applied with torque (1.5 Nm) and increasing axial force (250-750 N). Screw loosening, construct survival, and sacral fracture-site motion were measured by optoelectric motion tracking. A sample-size calculation revealed five samples per group to be required to achieve a power of 0.80 to detect 50% reduction in screw loosening. Screw motion in relation to the sacrum during loading with 250 N/1.5 Nm was not different among the three groups (sacroiliac: 1.2 mm, range, 0.6-1.9; cemented: 0.7 mm, range, 0.5-1.3; transsacral: 1.1 mm, range, 0.6-2.3) (p = 0.940). Screw subsidence was less in the cemented group (3.0 mm, range, 1.2-3.7) compared with the sacroiliac (5.7 mm, range, 4.7-10.4) or transsacral group (5.6 mm, range, 3.8-10.5) (p = 0.031). There was no difference with the numbers available in the median number of cycles needed until failure; this was 2921 cycles (range, 2586-5450) in the cemented group, 2570 cycles (range, 2500-5107) for the sacroiliac specimens, and

  8. Influence of the implant abutment types and the dynamic loading on initial screw loosening

    Science.gov (United States)

    Kim, Eun-Sook

    2013-01-01

    PURPOSE This study examined the effects of the abutment types and dynamic loading on the stability of implant prostheses with three types of implant abutments prepared using different fabrication methods by measuring removal torque both before and after dynamic loading. MATERIALS AND METHODS Three groups of abutments were produced using different types of fabrication methods; stock abutment, gold cast abutment, and CAD/CAM custom abutment. A customized jig was fabricated to apply the load at 30° to the long axis. The implant fixtures were fixed to the jig, and connected to the abutments with a 30 Ncm tightening torque. A sine curved dynamic load was applied for 105 cycles between 25 and 250 N at 14 Hz. Removal torque before loading and after loading were evaluated. The SPSS was used for statistical analysis of the results. A Kruskal-Wallis test was performed to compare screw loosening between the abutment systems. A Wilcoxon signed-rank test was performed to compare screw loosening between before and after loading in each group (α=0.05). RESULTS Removal torque value before loading and after loading was the highest in stock abutment, which was then followed by gold cast abutment and CAD/CAM custom abutment, but there were no significant differences. CONCLUSION The abutment types did not have a significant influence on short term screw loosening. On the other hand, after 105 cycles dynamic loading, CAD/CAM custom abutment affected the initial screw loosening, but stock abutment and gold cast abutment did not. PMID:23509006

  9. Law tightened to protect adults who lack capacity.

    Science.gov (United States)

    2009-05-21

    VULNERABLE OLDER people will be better protected from abuse and poor care after new legislation came into force last month. Under the Mental Capacity Act Deprivation of Liberty Safeguards, a care home or hospital wanting to deprive a person who lacks capacity of their liberty, for their own safety or wellbeing, must now apply for permission. A rigorous, standardised assessment and authorisation process must then be completed.

  10. PERFORMANCE OPTIMIZATION OF AN ORGANIC MUD AGITATOR SCREW

    Directory of Open Access Journals (Sweden)

    Mircea Dimitrie CAZACU

    2009-11-01

    Full Text Available Due to the special performances obtained by means of the optimisation method applied to the axial runners of run-of-river hydraulic turbines and of wind turbines, as well as in the case of the screws for boat propulsion, perfected by the first of the authors [1] - [10], in this work one extend the application of this method at the case of an organic mud agitator screw for fermentation and biogas production. One presents the obtaining of the bio liquid circulation minimal velocity in the two possible cases [3]: extracting the fluid velocity from the peripheral force exerted by the runner, as well as from the mechanical power consumed for its driving. After the obtaining of the optimal relative peripheral angle one determines also the optimal incidence angles of the profile for other blade radii. This method permits in the same time to find the optimal profile, using the multitude of the profile characteristics, experimentally studied.

  11. Analysis of Eyring-Powell Fluid in Helical Screw Rheometer

    Directory of Open Access Journals (Sweden)

    A. M. Siddiqui

    2014-01-01

    Full Text Available This paper aims to study the flow of an incompressible, isothermal Eyring-Powell fluid in a helical screw rheometer. The complicated geometry of the helical screw rheometer is simplified by “unwrapping or flattening” the channel, lands, and the outside rotating barrel, assuming the width of the channel is larger as compared to the depth. The developed second order nonlinear differential equations are solved by using Adomian decomposition method. Analytical expressions are obtained for the velocity profiles, shear stresses, shear at wall, force exerted on fluid, volume flow rates, and average velocity. The effect of non-Newtonian parameters, pressure gradients, and flight angle on the velocity profiles is noticed with the help of graphical representation. The observation confirmed the vital role of involved parameters during the extrusion process.

  12. Tricortical cervical inter-body screw fixation.

    Directory of Open Access Journals (Sweden)

    Goel A

    1997-01-01

    Full Text Available A new tricortical method of screw implantation for anterior cervical interbody plate fixation is described. The screws are placed obliquely such that they engage the anterior cortex of the body and traverse through the cortices adjoining the disc space. By this method the screws not only hold the plate firmly with a tricortical purchase, but by virtue of their course stabilize the two adjoining vertebral bodies by themselves. Sixteen patients were treated by this method. In three of these cases only tricortical screws without the metal plate were used for fixation. The advantages of the technique are discussed.

  13. Development of load calculation techniques on screw and screw press energy consumption

    OpenAIRE

    Татарьянц, Максим Сергеевич; Завинский, Сергей Иванович; Трошин, Алексей Георгиевич

    2015-01-01

    The process of pressing of wood chips in screw machines is researched. It is defined processes taking place in different parts of the screw, formulas allowing to calculate the loads acting on the screw flights, as well as to determine the power required for compression. The unit costs of energy consumption and raw materials in the degree of heat pressing are determined

  14. [Fracture of implant abutment screws and removal of a remaining screw piece

    NARCIS (Netherlands)

    Broeke, S.M. van den; Baat, C. de

    2008-01-01

    Fracture of the implant abutment screws is a complication which can render an implant useless. The prevalence of abutment screw fracture does not exceed 2.5% after 10 years. Causes are loosening of implant abutment screw, too few, too short or too narrow implants, implants not inserted perpendicular

  15. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System.

    Science.gov (United States)

    Sim, Bo Kyun; Kim, Bongju; Kim, Min Jeong; Jeong, Guk Hyun; Ju, Kyung Won; Shin, Yoo Jin; Kim, Man Yong; Lee, Jong-Ho

    2017-01-01

    The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA) and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA.

  16. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System

    Directory of Open Access Journals (Sweden)

    Bo Kyun Sim

    2017-01-01

    Full Text Available The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA.

  17. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System

    Science.gov (United States)

    Kim, Bongju; Shin, Yoo Jin

    2017-01-01

    The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA) and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA. PMID:29065610

  18. Pullout characteristics of percutaneous pedicle screws with different cement augmentation methods in elderly spines: An in vitro biomechanical study.

    Science.gov (United States)

    Charles, Y P; Pelletier, H; Hydier, P; Schuller, S; Garnon, J; Sauleau, E A; Steib, J-P; Clavert, P

    2015-05-01

    Vertebroplasty prefilling or fenestrated pedicle screw augmentation can be used to enhance pullout resistance in elderly patients. It is not clear which method offers the most reliable fixation strength if axial pullout and a bending moment is applied. The purpose of this study is to validate a new in vitro model aimed to reproduce a cut out mechanism of lumbar pedicle screws, to compare fixation strength in elderly spines with different cement augmentation techniques and to analyze factors that might influence the failure pattern. Six human specimens (82-100 years) were instrumented percutaneously at L2, L3 and L4 by non-augmented screws, vertebroplasty augmentation and fenestrated screws. Cement distribution (2 ml PMMA) was analyzed on CT. Vertebral endplates and the rod were oriented at 45° to the horizontal plane. The vertebral body was held by resin in a cylinder, linked to an unconstrained pivot, on which traction (10 N/s) was applied until rupture. Load-displacement curves were compared to simultaneous video recordings. Median pullout forces were 488.5 N (195-500) for non-augmented screws, 643.5 N (270-1050) for vertebroplasty augmentation and 943.5 N (750-1084) for fenestrated screws. Cement augmentation through fenestrated screws led to significantly higher rupture forces compared to non-augmented screws (P=0.0039). The pullout force after vertebroplasty was variable and linked to cement distribution. A cement bolus around the distal screw tip led to pullout forces similar to non-augmented screws. A proximal cement bolus, as it was observed in fenestrated screws, led to higher pullout resistance. This cement distribution led to vertebral body fractures prior to screw pullout. The experimental setup tended to reproduce a pullout mechanism observed on radiographs, combining axial pullout and a bending moment. Cement augmentation with fenestrated screws increased pullout resistance significantly, whereas the fixation strength with the vertebroplasty

  19. Inflation Targeting and Quantitative Tightening: Effects of Reserve Requirements in Peru

    OpenAIRE

    Adrián Armas; Paul Castillo; Marco Vega

    2014-01-01

    This paper provides an overview of the reserve requirement measures undertaken by the Central Bank of Peru. It provides a rationale for the use of these instruments as well as empirical evidence of their effectiveness. In general, the results show that tightening reserve requirements has the desired effects on interest rates and credit levels at both banks and smaller financial institutions (cajas municipales).

  20. Multicenter clinical perspectives on a broadband infrared light device for skin tightening.

    Science.gov (United States)

    Taub, Amy Forman; Battle, Eliot F; Nikolaidis, Gregory

    2006-09-01

    Modalities for skin tightening include radiofrequency (RF) energy, lasers, and combination RF and diode lasers. A new broadband infrared light device (BILD) (Titan, Cutera, Inc, Brisbane, CA) targets water to achieve dermal heating and collagen remodeling for skin tightening. Although thousands of procedures have been performed worldwide with this device, only one article (to the author's knowledge) describing its performance in skin tightening has been published. Three US dermatologists report their experience with and provide their perspective on facial skin tightening with the BILD system. As early adopters, they each have 12 to 18 months experience with this system. One author (A.F.T.) treated 42 patients twice at 1-month intervals over 18 months. The mean improvement score was 1.83 (scale 0 to 4, with 4 denoting maximum improvement) with an average follow-up time of 3.7 months. More than 90% of treated patients showed visible improvement. No complications were observed and patient satisfaction was high. This paper presents the general consensus of the authors on patient selection and treatment protocol, their modifications of the manufacturer's treatment protocol, and the outcomes of 42 patients treated by one author (A.F.T.). The observations were gathered separately and turned out to be very similar. The recommendations are presented to help practitioners achieve consistently good results and avoid complications with the BILD procedure.

  1. Complementary clinical effects of topical tightening treatment in conjunction with a radiofrequency procedure.

    Science.gov (United States)

    Goldberg, David J; Yatskayer, Margarita; Raab, Susana; Chen, Nannan; Krol, Yevgeniy; Oresajo, Christian

    2014-10-01

    Abstract Background: Skin laxity and cellulite on the buttocks and thighs are two common cosmetic concerns. Skin tightening with radiofrequency (RF) devices has become increasingly popular. The purpose of this study is to evaluate the efficacy and safety of a topical skin laxity tightening agent when used in combination with an RF device. A double-blinded, randomized clinical trial enrolled twenty females with mild-to-moderate skin laxity on the posterior thighs/buttocks. Each subject underwent two monthly treatments with an RF source (Alma Accent) to both legs. Subjects were then randomized to apply a topical agent (Skinceuticals Body Tightening Concentrate) twice daily to only one designated thigh/buttock throughout the eight-week duration of the study. All subjects were evaluated for improvement in lifting, skin tone, radiance, firmness/tightness, skin texture, and overall appearance based on photographic evaluation by blinded investigators at 12 weeks following the final RF treatment. A statistically significant improvement was found in the overall appearance on both sides treated with the RF device when compared to baseline. However, the area treated with the topical agent showed a statistically significantly greater degree of improvement than the side where no topical agent was applied. No adverse effects were reported. The use of a novel skin tightening agent used after RF procedures is both safe and effective for treatment of skin laxity on the buttocks and thighs. Combined therapy leads to a better result.

  2. Probabilistic analysis of preload in the abutment screw of a dental implant complex.

    Science.gov (United States)

    Guda, Teja; Ross, Thomas A; Lang, Lisa A; Millwater, Harry R

    2008-09-01

    Screw loosening is a problem for a percentage of implants. A probabilistic analysis to determine the cumulative probability distribution of the preload, the probability of obtaining an optimal preload, and the probabilistic sensitivities identifying important variables is lacking. The purpose of this study was to examine the inherent variability of material properties, surface interactions, and applied torque in an implant system to determine the probability of obtaining desired preload values and to identify the significant variables that affect the preload. Using software programs, an abutment screw was subjected to a tightening torque and the preload was determined from finite element (FE) analysis. The FE model was integrated with probabilistic analysis software. Two probabilistic analysis methods (advanced mean value and Monte Carlo sampling) were applied to determine the cumulative distribution function (CDF) of preload. The coefficient of friction, elastic moduli, Poisson's ratios, and applied torque were modeled as random variables and defined by probability distributions. Separate probability distributions were determined for the coefficient of friction in well-lubricated and dry environments. The probabilistic analyses were performed and the cumulative distribution of preload was determined for each environment. A distinct difference was seen between the preload probability distributions generated in a dry environment (normal distribution, mean (SD): 347 (61.9) N) compared to a well-lubricated environment (normal distribution, mean (SD): 616 (92.2) N). The probability of obtaining a preload value within the target range was approximately 54% for the well-lubricated environment and only 0.02% for the dry environment. The preload is predominately affected by the applied torque and coefficient of friction between the screw threads and implant bore at lower and middle values of the preload CDF, and by the applied torque and the elastic modulus of the abutment

  3. Pedicle screw anchorage of carbon fiber-reinforced PEEK screws under cyclic loading.

    Science.gov (United States)

    Lindtner, Richard A; Schmid, Rene; Nydegger, Thomas; Konschake, Marko; Schmoelz, Werner

    2018-03-01

    Pedicle screw loosening is a common and significant complication after posterior spinal instrumentation, particularly in osteoporosis. Radiolucent carbon fiber-reinforced polyetheretherketone (CF/PEEK) pedicle screws have been developed recently to overcome drawbacks of conventional metallic screws, such as metal-induced imaging artifacts and interference with postoperative radiotherapy. Beyond radiolucency, CF/PEEK may also be advantageous over standard titanium in terms of pedicle screw loosening due to its unique material properties. However, screw anchorage and loosening of CF/PEEK pedicle screws have not been evaluated yet. The aim of this biomechanical study therefore was to evaluate whether the use of this alternative nonmetallic pedicle screw material affects screw loosening. The hypotheses tested were that (1) nonmetallic CF/PEEK pedicle screws resist an equal or higher number of load cycles until loosening than standard titanium screws and that (2) PMMA cement augmentation further increases the number of load cycles until loosening of CF/PEEK screws. In the first part of the study, left and right pedicles of ten cadaveric lumbar vertebrae (BMD 70.8 mg/cm 3  ± 14.5) were randomly instrumented with either CF/PEEK or standard titanium pedicle screws. In the second part, left and right pedicles of ten vertebrae (BMD 56.3 mg/cm 3  ± 15.8) were randomly instrumented with either PMMA-augmented or nonaugmented CF/PEEK pedicle screws. Each pedicle screw was subjected to cyclic cranio-caudal loading (initial load ranging from - 50 N to + 50 N) with stepwise increasing compressive loads (5 N every 100 cycles) until loosening or a maximum of 10,000 cycles. Angular screw motion ("screw toggling") within the vertebra was measured with a 3D motion analysis system every 100 cycles and by stress fluoroscopy every 500 cycles. The nonmetallic CF/PEEK pedicle screws resisted a similar number of load cycles until loosening as the contralateral standard

  4. Determination of the most appropriate stress distribution by Finite Element Analysis in fixation with resorbable screws after Bilateral Sagittal Split Ramus Osteotomy surgery

    Directory of Open Access Journals (Sweden)

    Sarkarat F.

    2009-12-01

    Full Text Available "nBackground and Aim: Due to the complications associated with fixation by Titanium screws and plates in Bilateral Sagittal Split Ramus Osteotomy (BSSRO surgery, the use of resorbable polymers has been increasingly recommended. Since there are not enough studies on this issue, this study aimed to assess the most appropriate stress distribution in fixation with resorbable screws after BSSRO surgery by Fnite Element Analysis (FEA."nMaterials and Methods: This experimental study was performed on simulated human mandible using Ansys and Catia softwares. The osteotomy line was applied to the simulated model and experimental loads of 75, 135 and 600 N were respectively exerted according to the natural direction of occlusal force. The distribution pattern of stress was assessed and compared for fixation with one resorbable screw, two resorbable screws in vertical pattern, two resorbable screws in horizontal pattern, three resorbable screws in L pattern and three resorbable screws in inverted backward L pattern using Ansys software."nResults: Among the four simulated fixations, L pattern showed the highest primary stability. Two screws in vertical pattern were also associated with sufficient primary stability and less trauma and cost for patients. One screw did not provide enough stability under 600 N."nConclusion: Polymer-based resorbable screws (polyglycolic acid and D, L polylactide acid provided satisfactory primary stability in BSSRO surgery.

  5. Tightening water quality regulations produces an innovative separation technology

    International Nuclear Information System (INIS)

    Welther, P.B.; Broussard, P.C.

    1994-01-01

    The impact of the recent proposed changes in the water quality standards for offshore producing platforms is having a far reaching effect on the oil and gas industry. At a time when oil companies are cutting back their work forces and reducing capital outlays in order to stay competitive in the market, water treatment equipment manufacturing companies are aggressively seeking innovative and cost effective solutions to meet the environmental requirements. Necessity drives advancements in technology, so Monosep Corporation has accepted the challenge to improve induced gas flotation technology and to develop enhanced gravity separation. This system of improved gas flotation and enhanced gravity separation can be used to consistently meet the proposed new guideline of an ''oil and grease'' maximum monthly average of 29 mg/l (milligrams per liter) in the discharged water from offshore platforms. The results demonstrated in the field suggest that adding enhanced gravity separation upstream of existing gas flotation units can improve performance sufficient to meet the Proposed stricter discharge limits. For platforms that do not have efficient gas flotation units, the old units can be replaced or modified to include the new features improved gas flotation technology like the Veirsep. For those few platforms are having difficulty meeting the current discharge requirements, both a new improved gas flotation unit, as well as a more sophisticated upstream gravity separator like the Cyclosep, may need to be installed. Chemical additives are sometimes a required necessity, but must be used sparingly due to the potential for creating soluble oil problems

  6. Simple Technique for Removing Broken Pedicular Screws

    Directory of Open Access Journals (Sweden)

    A Agrawal

    2014-03-01

    Full Text Available The procedure for removing a broken pedicle screw should ideally be technically easy and minimally invasive, as any damage to the pedicle, during removal of the broken screw, may weaken the pedicle, thus compromising on the success of re-instrumentation. We describe the case of a 32-year old man who had undergone surgery for traumatic third lumbar vertebral body fracture three years prior to current admission and had developed the complication of pedicle screw breakage within the vertebral body. The patient underwent re-exploration and removal of the distal screws. Through a paravertebral incision and muscle separation, the screws and rods were exposed and the implants were removed.

  7. Edge screw withdrawal resistance in conventional particleboard and OSB: Influence of the particles type

    Directory of Open Access Journals (Sweden)

    Miljković Jovan

    2007-01-01

    Full Text Available This research was based on presumption that the changes in size and shape of wood particles are expected to have certain impact on the particleboard quality in general. Since the conventional particleboard (PB and oriented strand board (OSB were built of the quite diverse wood particles, they present interesting specimens in the comparison tests. In this work, the influence of the wood particles type on the edge screw holding performance of conventional particleboard and OSB was investigated. Those tests were obtained with the screw diameters of 4.0 mm, 4.5 mm and 5 mm. Depth of embedment was 30 mm for all tests and with the pilot-hole diameter kept in the range of 80-90% in respect of the screw root diameter. Additional tests of the thickness density profile and tensile strength perpendicular to the surface of the board were conducted. Since the middle layer structure of the particleboard embeds the screw body, both mentioned parameters are considered important in the aspect of the quality of the edge screw holding performance. In order to have further insight into the conformation of the middle layer the image survey was obtained on the split board section presenting the surface of the middle layer. Significant differences in the SWR performance of OSB and PB was recorded at all screw diameters. For the screw withdrawal tests parameters OSB samples showed 56-73% superior mean values then conventional PB. On the other hand, the OSB showed wider dispersions of measured withdrawal forces at all screw diameters, which might present some of the problems in certain engineering and project calculations.

  8. Devolatilization Analysis in a Twin Screw Extruder by using the Flow Analysis Network (FAN) Method

    Science.gov (United States)

    Tomiyama, Hideki; Takamoto, Seiji; Shintani, Hiroaki; Inoue, Shigeki

    We derived the theoretical formulas for three mechanisms of devolatilization in a twin screw extruder. These are flash, surface refreshment and forced expansion. The method for flash devolatilization is based on the equation of equilibrium concentration which shows that volatiles break off from polymer when they are relieved from high pressure condition. For surface refreshment devolatilization, we applied Latinen's model to allow estimation of polymer behavior in the unfilled screw conveying condition. Forced expansion devolatilization is based on the expansion theory in which foams are generated under reduced pressure and volatiles are diffused on the exposed surface layer after mixing with the injected devolatilization agent. Based on these models, we developed the simulation software of twin-screw extrusion by the FAN method and it allows us to quantitatively estimate volatile concentration and polymer temperature with a high accuracy in the actual multi-vent extrusion process for LDPE + n-hexane.

  9. Optimization and Numerical Simulation of Outlet of Twin Screw Extruder

    Directory of Open Access Journals (Sweden)

    Zhang Yuan

    2018-01-01

    Full Text Available In view of the unreasonable design of non-intermeshing counter-rotating twin screw extruder die, the problem of productivity reduction was discussed. Firstly, the mathematical model of extruder productivity was established. The extruder die model was improved. Secondly, the force analysis of twin screw extruder physical model was carried out. Meanwhile, A combination of mechanical analysis and numerical simulation was adopted. The velocity field, pressure field and viscosity field were calculated by Mini-Element interpolation method, linear interpolation method and Picard iterative convergence method respectively. The influence of die model on the quantity of each field before and after improvement was analyzed. The results show that the improved model had increased the rheological parameters of the flow field, the leakage and reverse flow decreased. Through post-processing calculation, the productivity of the third dies extruder was 10% higher than before. The research results provide a theoretical basis for the design and optimization of die model of non intermeshing counter-rotating twin screw extruder.

  10. Evaluation of the stiffness characteristics of rapid palatal expander screws

    Directory of Open Access Journals (Sweden)

    Luca Lombardo

    2016-11-01

    Full Text Available Abstract Background The aim of this study is to evaluate the mechanical properties of the screws used for rapid expansion of the upper jaw. Methods Ten types of expansion screw were assessed, seven with four arms: Lancer Philosophy 1, Dentaurum Hyrax Click Medium, Forestadent Anatomic Expander type “S”, Forestadent Anatomic Expander type “S” for narrow palates, Forestadent Memory, Leone A 2620-10 with telescopic guide, and Leone A 0630-10 with orthogonal arms; and three with two arms: Dentaurum Variety S.P., Target Baby REP Veltri, and Leone A 362113. A test expander with the mean dimensions taken from measurements on a sample of 100 expanders was constructed for each screw. The test expanders were connected to the supports of an Instron 4467 (Instron Corp., USA mechanical testing machine equipped with a 500 N load cell, and the compression force exerted after each activation was measured. The mean forces expressed by the two- and four-arm expanders were then compared. Results After five activations, the forces expressed by the two-arm devices were double than those expressed by the four-arm devices on average (224 ± 59.9 N vs. 103 ± 32.9 N, and such values remained high after subsequent activations. Conclusions The expanders tested demonstrated stiffness characteristics compatible with opening of the palatine sutures in pre-adolescent patients. The stiffness of such devices can be further increased during the construction phase.

  11. The improvement of the edge screw connection in OSB and conventional particleboard

    Directory of Open Access Journals (Sweden)

    Popović Mlađan

    2006-01-01

    Full Text Available This work presents the method for improvement of direct screw connection performance in conventional particleboard (PB and oriented strand board (OSB. It is conceived on adhesive insertion into the pilot hole prior to embedment of the screw. The tests were carried out on the PB and OSB, both presenting interior boards and with the same nominal thickness of 18 mm. Particleboard screws of the 5 mm in diameter were inserted in the edge of the board. Pilot hole diameters were 2,5 mm and 3,0 mm and the depth of embedment was 30 mm for all tests. The chosen PVAc adhesive (type 3 with the addition of wood flour as consolidator in the range from 3-10% was inserted into pilot-hole. Tests were also obtained after consequent reassembly of the screw connection in order to examine the ratio of loss in withdrawal forces in such case. It was found that the insertion of PVAc adhesive into the pilot hole and the addition of wood flour have the positive effects on the screw withdrawal force in the tested boards.

  12. Pedicle screw-rod fixation: a feasible treatment for dogs with severe degenerative lumbosacral stenosis.

    Science.gov (United States)

    Tellegen, Anna R; Willems, Nicole; Tryfonidou, Marianna A; Meij, Björn P

    2015-12-07

    Degenerative lumbosacral stenosis is a common problem in large breed dogs. For severe degenerative lumbosacral stenosis, conservative treatment is often not effective and surgical intervention remains as the last treatment option. The objective of this retrospective study was to assess the middle to long term outcome of treatment of severe degenerative lumbosacral stenosis with pedicle screw-rod fixation with or without evidence of radiological discospondylitis. Twelve client-owned dogs with severe degenerative lumbosacral stenosis underwent pedicle screw-rod fixation of the lumbosacral junction. During long term follow-up, dogs were monitored by clinical evaluation, diagnostic imaging, force plate analysis, and by using questionnaires to owners. Clinical evaluation, force plate data, and responses to questionnaires completed by the owners showed resolution (n = 8) or improvement (n = 4) of clinical signs after pedicle screw-rod fixation in 12 dogs. There were no implant failures, however, no interbody vertebral bone fusion of the lumbosacral junction was observed in the follow-up period. Four dogs developed mild recurrent low back pain that could easily be controlled by pain medication and an altered exercise regime. Pedicle screw-rod fixation offers a surgical treatment option for large breed dogs with severe degenerative lumbosacral stenosis with or without evidence of radiological discospondylitis in which no other treatment is available. Pedicle screw-rod fixation alone does not result in interbody vertebral bone fusion between L7 and S1.

  13. Special remote tooling developed and utilized to tighten TFTR TF coil casing bolts

    International Nuclear Information System (INIS)

    Burgess, T.W.; Walton, G.R.; Meighan, T.G.; Paul, B.L.

    1993-01-01

    Special tooling has been developed and used to tighten toroidal field (TF) coil casing bolts that have loosened from years of Tokamak Fusion Test Reactor (TFTR) operation. Due to their location, many of the TF casing bolts cannot be directly accessed or viewed; their condition was first discovered during unrelated inspections in 1988. Engineering solutions were, sought until 1992, when a remotely operated wrench concept was successfully demonstrated on a TF coil mockup. The concept was developed into several working tools that have successfully been applied to tighten several thousand TF casing bolts during recent scheduled outages. This effort has improved the integrity and reliability of the TF coil system in preparing for the final experimental phase of the TFTR. This paper discusses the design and application of this tooling

  14. Single-impact calibrated electromagnetic tightening of long-life bolted joints in aviation structures

    Science.gov (United States)

    Firsov, V. A.; Bekhmet'ev, V. I.

    The general design and operation of a newly developed electromagnetic impact driver for the assembly of aviation structures is described. The electromagnetic impact driver makes it possible to considerably improve the precision of bolt torquing during the assembly. To test the performance of the new tool, M6 bolts of 16KhSN steel (tensile strength 120 +/- 10 kg/sq mm) were tightened by a manual torque wrench and by the electromagnetic impact driver. It is shown that the scatter of bolt elongation during the tightening by the impact driver is a factor of 3-5 less than in the case of manual torquing, which corresponds to a torque precision of 1.5-2 percent.

  15. A novel magnetic lead screw active suspension system for vehicles

    DEFF Research Database (Denmark)

    Berg, Nick Ilsø; Holm, Rasmus Koldborg; Rasmussen, Peter Omand

    2014-01-01

    This paper encompasses a detailed study of the redesign of a novel Magnetic Lead Screw (MLS) active suspension system for possible regeneration of the energy dispatched in the suspension system and active control of vehicle body movement. The MLS converts a low speed high force linear motion...... of a translator into a high speed low torque rotational motion of a rotor through helically shaped magnets. The paper describes the drawback of the first MLS prototype v1.0 developed for active suspension system, which lead to a new design of the MLS prototype named v1.5. Furthermore the paper introduces detailed...

  16. Modularity of Pressing Tools for Screw Press Producing Solid Biofuels

    Directory of Open Access Journals (Sweden)

    Miloš Matúš

    2012-01-01

    Full Text Available This paper focuses on the development of the newly-patented structure of a screw briquetting machine for compacting biomass into a solid biofuel. The design of the machine is based on the results of a comprehensive study of the complicated process of biomass compaction. The patented structure meets two main goals: the elimination of axial forces, leading to increased lifetime of the bearings, and the new modular design of a pressing chamber and tools with their geometry based on the application of a mathematical model.

  17. Maxillary anterior en masse retraction using different antero-posterior position of mini screw: a 3D finite element study

    Directory of Open Access Journals (Sweden)

    Zohreh Hedayati

    2016-10-01

    Full Text Available Abstract Background Nowadays, mini screws are used in orthodontic tooth movement to obtain maximum or absolute anchorage. They have gained popularity among orthodontists for en masse retraction of anterior teeth after first premolar extraction in maximum anchorage cases. The purpose of this study was to determine the type of anterior tooth movement during the time when force was applied from different mini screw placements to the anterior power arm with various heights. Methods A finite element method was used for modeling maxillary teeth and bone structure. Brackets, wire, and hooks were also designed for modeling. Two appropriate positions for mini screw in the mesial and distal of the second premolar were designed as fixed nodes. Forces were applied from the mini screw to four different levels of anterior hook height: 0, 3, 6, and 9 mm. Initial tooth movement in eight different conditions was analyzed and calculated with ANSYS software. Results Rotation of anterior dentition was decreased with a longer anterior power arm and the mesial placement of the mini screw. Bodily movements occurred with the 9-mm height of the power arm in both mini screw positions. Intrusion or extrusion of the anterior teeth segment depended on the level of the mini screw and the edge of the power arm on the Z axis. Conclusions According to the findings of this study, the best control in the sagittal plane during anterior en masse retraction was achieved by mesial placement of the mini screw and the 9-mm height of the anterior power arm. Where control in the vertical plane was concerned, distal placement of the mini screw with the 6-mm power arm height had minimum adverse effect on anterior dentition.

  18. Tightening slip knots in raw and degummed silk to increase toughness without losing strength

    OpenAIRE

    Pantano, Maria; Berardo, Alice; Pugno, Nicola

    2016-01-01

    Knots are fascinating topological elements, which can be found in both natural and artificial systems. While in most of the cases, knots cannot be loosened without breaking the strand where they are tightened, herein, attention is focused on slip or running knots, which on the contrary can be unfastened without compromising the structural integrity of their hosting material. Two different topologies are considered, involving opposite unfastening mechanisms, and their influence on the mechanic...

  19. Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening

    OpenAIRE

    He, Frank S.; Liu, Yang; Schwing, Alexander G.; Peng, Jian

    2016-01-01

    We propose a novel training algorithm for reinforcement learning which combines the strength of deep Q-learning with a constrained optimization approach to tighten optimality and encourage faster reward propagation. Our novel technique makes deep reinforcement learning more practical by drastically reducing the training time. We evaluate the performance of our approach on the 49 games of the challenging Arcade Learning Environment, and report significant improvements in both training time and...

  20. Screw-released roller brake

    Science.gov (United States)

    Vranish, John M. (Inventor)

    1999-01-01

    A screw-released roller brake including an input drive assembly, an output drive assembly, a plurality of locking sprags, a mechanical tripper nut for unlocking the sprags, and a casing therefor. The sprags consist of three dimensional (3-D) sprag members having pairs of contact surface regions which engage respective pairs of contact surface regions included in angular grooves or slots formed in the casing and the output drive assembly. The sprags operate to lock the output drive assembly to the casing to prevent rotation thereof in an idle mode of operation. In a drive mode of operation, the tripper is either self actuated or motor driven and is translated linearly up and down against a spline and at the limit of its travel rotates the sprags which unlock while coupling the input drive assembly to the output drive assembly so as to impart a turning motion thereto in either a clockwise or counterclockwise direction.

  1. Home-use TriPollar RF device for facial skin tightening: Clinical study results.

    Science.gov (United States)

    Beilin, Ghislaine

    2011-04-01

    Professional, non-invasive, anti-aging treatments based on radio-frequency (RF) technologies are popular for skin tightening and improvement of wrinkles. A new home-use RF device for facial treatments has recently been developed based on TriPollar™ technology. To evaluate the STOP™ home-use device for facial skin tightening using objective and subjective methods. Twenty-three female subjects used the STOP at home for a period of 6 weeks followed by a maintenance period of 6 weeks. Facial skin characteristics were objectively evaluated at baseline and at the end of the treatment and maintenance periods using a three-dimensional imaging system. Additionally, facial wrinkles were classified and subjects scored their satisfaction and sensations. Following STOP treatment, a statistically significant reduction of perioral and periorbital wrinkles was achieved in 90% and 95% of the patients, respectively, with an average periorbital wrinkle reduction of 41%. This objective result correlated well with the periorbital wrinkle classification result of 40%. All patients were satisfied to extremely satisfied with the treatments and all reported moderate to excellent visible results. The clinical study demonstrated the safety and efficacy of the STOP home-use device for facial skin tightening. Treatment can maintain a tighter and suppler skin with improvement of fine lines and wrinkles.

  2. Magnetic design consideration of a Magnetic Lead Screw with Halbach Array

    DEFF Research Database (Denmark)

    Holm, Rasmus Koldborg; Berg, Nick Ilsø; Rasmussen, Peter Omand

    This paper presents the novel design of a Magnetic Lead Screw (MLS) with magnetic thread of Halbach Arrays. The MLS where designed and build, tests indicated a stall force which where 12 % lower than calculated in 3D FE. This is explained by demagnetization of the magnet during stall, the behavio...

  3. Predicting bending strength of fire-retardant-treated plywood from screw-withdrawal tests

    Science.gov (United States)

    J. E. Winandy; P. K. Lebow; W. Nelson

    This report describes the development of a test method and predictive model to estimate the residual bending strength of fire-retardant-treated plywood roof sheathing from measurement of screw-withdrawal force. The preferred test methodology is described in detail. Models were developed to predict loss in mean and lower prediction bounds for plywood bending strength as...

  4. A screw-based dynamic balancing approach, applied to a 5-bar mechanism

    NARCIS (Netherlands)

    de Jong, Jan Johannes; van Dijk, Johannes; Herder, Justus Laurens; Lenarcic, Jadran; Merlet, Jean-Pierre

    2016-01-01

    Dynamic balancing aims to reduce or eliminate the shaking base reaction forces and moments of mechanisms, in order to minimize vibration and wear. The derivation of the dynamic balance conditions requires significant algebraic effort, even for simple mechanisms. In this study, a screw-based

  5. A new type of axial-flux magnetic lead screw with inherent spring characteristic

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Xia, Yongming; Pan, Haipeng

    2016-01-01

    Magnetic Lead Screw (MLS) can transfer slow linear motion into fast rotary motion offering much higher force density than that of traditional linear permanent magnet machines. It has been developed for ocean wave energy harvester and active damper for electrical vehicles. In this paper, a new type...

  6. Does Abutment Collar Length Affect Abutment Screw Loosening After Cyclic Loading?

    Science.gov (United States)

    Siadat, Hakimeh; Pirmoazen, Salma; Beyabanaki, Elaheh; Alikhasi, Marzieh

    2015-07-01

    A significant vertical space that is corrected with vertical ridge augmentation may necessitate selection of longer abutments, which would lead to an increased vertical cantilever. This study investigated the influence of different abutment collar heights on single-unit dental implant screw-loosening after cyclic loading. Fifteen implant-abutment assemblies each consisted of an internal hexagonal implant were randomly assigned to 3 groups: Group1, consisting of 5 abutments with 1.5 mm gingival height (GH); Group2, 5 abutments with 3.5 mm GH; and Group3, 5 abutments with 5.5 mm GH. Each specimen was mounted in transparent auto-polymerizing acrylic resin block, and the abutment screw was tightened to 35 Ncm with an electric torque wrench. After 5 minutes, initial torque loss (ITL) was recorded for all specimens. Metal crowns were fabricated with 45° occlusal surface and were placed on the abutments. A cyclic load of 75 N and frequency of 1 Hz were applied perpendicular to the long axis of each specimen. After 500 000 cycles, secondary torque loss (STL) was recorded. One-way ANOVA analysis was used to evaluate the effects of abutment collar height before and after cyclic loading. One-way ANOVA showed that ITL among the groups was not significantly different (P = .52), while STL was significantly different among the groups (P = .008). Post-hoc Tukey HSD tests showed that STL values were significantly different between the abutments with 1.5 mm GH (Group1) and with 5.5 mm GH (Group3) (P = .007). A paired comparison t-test showed that cyclic loading significantly influenced the STL in comparison with the ITL in each group. Within the limitations of this study, it can be concluded that increase in height of the abutment collar could adversely affect the torque loss of the abutment screw.

  7. In vitro effect of chlorhexidine gel on torque and detorque values of implant abutment screw

    Directory of Open Access Journals (Sweden)

    Hamid Neshandar Asli

    2017-01-01

    Full Text Available Purpose: Use of chlorhexidine (CHX gel to eliminate the malodor of implant cavity may decrease the friction coefficient and effective preload and result in abutment screw loosening. This study aimed to assess the effect of CHX gel on the preload, torque, and detorque values. Materials and Methods: This in vitro experimental study was conducted on three groups of five implants. Group A (G1 was the control group and no material was applied to the implant cavity. In Group B (G2, implant cavity was filled with saliva before abutment screw tightening. In Group C (G3, implant cavity was first filled with saliva and then with CHX gel. The abutments were torqued to 24 N/cm2 according to the manufacturer's instructions and were then loosened. These processes were repeated five times. The ratio of the mean percentage of detorque to torque values was measured in all groups. The collected data were analyzed using ANOVA and post hoc Tukey's test. Results: No significant difference was noted between G1 and G2. Group G2 had significantly higher detorque value (p < 0.05. ANOVA detected a significant difference in the mean torque (p < 0.05 and detorque (p < 0.001 values among the three groups. G3 showed maximum difference between torque and detorque values; the minimum difference was noted in G2. Conclusion: Application of CHX gel (to decrease the malodor of the implant cavity decreases the detorque and preload values and increases the risk of screw loosening.

  8. Diffuse Muscular Pain, Skin Tightening, and Nodular Regenerative Hyperplasia Revealing Paraneoplastic Amyopathic Dermatomyositis due to Testicular Cancer

    Directory of Open Access Journals (Sweden)

    Sarah Norrenberg

    2012-01-01

    Full Text Available Paraneoplastic dermatomyositis (DM associated with testicular cancer is extremely rare. We report the case of a patient with skin tightening, polymyalgia, hypereosinophilia, and nodular regenerative hyperplasia revealing seminoma and associated paraneoplastic DM.

  9. Extraction of sunflower oil by twin screw extruder: screw configuration and operating condition effects

    Energy Technology Data Exchange (ETDEWEB)

    Kartika, I.A. [FATETA-IPB, Bogor (Indonesia). Department of Agroindustrial Technology; Pontalier, P.Y.; Rigal, L. [Laboratoire de Chimie Agro-Industrielle, UMR 1010 INRA/INP-ENSIACET, Toulouse (France)

    2006-12-15

    The objective of this study was to investigate the screw configuration allowing oil extraction from sunflower seeds with a twin-screw extruder. Experiments were conducted using a co-rotating twin-screw extruder. Five screw profiles were examined to define the best performance (oil extraction yield, specific mechanical energy and oil quality) by studying the influence of operating conditions, barrel temperature, screw speed and feed rate. Generally, the position and spacing between two reversed screw elements affected oil extraction yield. An increase of oil extraction yield was observed as the reversed screw elements were moved with increased spacing between two elements and with smaller pitch elements. In addition, oil extraction yield increased as barrel temperature, screw speed and feed rate were decreased. Highest oil extraction yield (85%) with best cake meal quality (residual oil content lower than 13%) was obtained under operating conditions of 120 {sup o}C, 75 rpm and 19 kg/h. Furthermore, the operating parameters influenced energy input. A decrease in barrel temperature and feed rate followed by an increase in screw speed increased energy input, particularly specific mechanical energy input. Effect of the operating parameters on oil quality was less important. In all experiments tested, the oil quality was very good. The acid value was below 2 mg of KOH/g of oil and total phosphorus content was low, below 100 mg/kg. (author)

  10. Numerical analysis of the effect of plasma flow control on enhancing the aerodynamic characteristics of stratospheric screw propeller

    International Nuclear Information System (INIS)

    Cheng Yufeng; Nie Wansheng

    2012-01-01

    Based on the body force aerodynamic actuation mechanism of dielectric barrier discharge (DBD) plasma, the effect of plasma flow control on enhancing the aerodynamic characteristics of ten blade elements equably along the stratospheric screw propeller blade was numerical studied. Then the effect of plasma flow control enhancing the aerodynamic characteristics of stratospheric screw propeller was compared that by the blade element theory method. The results show that the flow separate phenomena will easily happen in the root region and top end region of screw propeller, and the blade elements in the root region of screw propeller may work on the negative attack angle condition. DBD plasma flow control can entirely restrain the faintish flow separate phenomena in middle region of screw propeller. Although DBD plasma flow control can not entirely restrain the badly flow separate phenomena in top end region of screw propeller, it also can enhance the aerodynamic characteristics of blade elements in these regions in same degree. But effect of DBD plasma flow control on enhancing the aerodynamic characteristics of the blade elements working on the negative attack angle condition is ineffectively. It can be concluded that DBD plasma flow control can enhance the aerodynamic characteristics of stratospheric screw propeller, the thrust of the whole propeller and the propeller efficiency in the case of plasma on will increases by a factor of 28.27% and 12.3% respectively compared with that in the case of plasma off studied. (authors)

  11. Design and analysis of a field modulated magnetic screw for artificial heart

    Science.gov (United States)

    Ling, Zhijian; Ji, Jinghua; Wang, Fangqun; Bian, Fangfang

    2017-05-01

    This paper proposes a new electromechanical energy conversion system, called Field Modulated Magnetic Screw (FMMS) as a high force density linear actuator for artificial heart. This device is based on the concept of magnetic screw and linear magnetic gear. The proposed FMMS consists of three parts with the outer and inner carrying the radially magnetized helically permanent-magnet (PM), and the intermediate having a set of helically ferromagnetic pole pieces, which modulate the magnetic fields produced by the PMs. The configuration of the newly designed FMMS is presented and its electromagnetic performances are analyzed by using the finite-element analysis, verifying the advantages of the proposed structure.

  12. Twin Screw Mixer/Fine Grind Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 40-mm Twin-Screw Mixer/Extruder (TSE) pilot plant is a continuous, remotely operated, flexible facility that can significantly enhance safety and environmental...

  13. Long-term Nasal and Peri-oral Tightening by a Single Fractional Noninsulated Microneedle Radiofrequency Treatment.

    Science.gov (United States)

    Tanaka, Yohei

    2017-02-01

    Background: The skin tightening effects induced by non-insulated microneedle radiofrequency have proved long-lasting. Our previous three-dimensional volumetric assessment showed significant facial tightening for up to six months. However, nasal and peri-oral tightening effects lasted longer. The objective of this study was to investigate the distribution of the long-term volumetric reduction in facial area induced by a single fractional non-insulated microneedle radiofrequency treatment. Methods: Fifteen Asian patients underwent full facial skin tightening using a sharply tapered non-insulated microneedle radiofrequency applicator with a novel fractionated pulse mode. Three-dimensional volumetric assessments were performed at six and 12 months post-treatment. Patients rated their satisfaction using a 5-point scale at each follow up. Results: Objective assessments with superimposed three-dimensional color images showed significant volumetric reduction in the nasal and peri-oral areas at 12 months post-treatment in all patients. Median volumetric reductions at six and 12 months post-treatment were 13.1 and 12.3ml, respectively. All of the patients were satisfied with their results 12 months post-treatment. Side effects were not observed. Conclusions: This single fractional NIMNRF treatment provided long-lasting nasal and peri-oral tightening as shown via 3D volumetric assessment. Moreover, NIMNRF produced minimal complications, downtime, and few side effects. This approach provides safe and effective treatment of skin tightening.

  14. Screw piles for cold climate foundations

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.; Sakr, M. [Almita Manufacturing Ltd., Edmonton, AB (Canada)

    2008-07-01

    Almita Manufacturing is an Alberta-based company that designs and builds screw piles with its own installation teams. It also engineers and supplies piles to numerous other companies and independent installers. The company services industries such as oil and gas; power transmission and distribution; and commercial construction. This presentation discussed the design and technical aspects of screw piles. A screw pile was defined as a steel pipe shaft with a 45 degree cut at the bottom and a formed helical plate welded to the outside of the pipe near the base and at a selected point on the shaft. The pile is screwed into the ground with a planetary drive head of suitable torque rating. The helical plate or helix helps facilitate the installation of the pile and gives the screw pile increased bearing capacity and pull-out resistance over a traditional straight-shaft pile. Screw piles were compared against cast in place concrete piles and steel driven piles. Screw piles were reported to have no tailings; no concrete curing time; no rebar, anchor belts, and no liners; and no dewatering. Screw piles can also be installed in all types of weather. Rhe Cree Burn Camp case study near Fort McMurray, Alberta was also presented. This residential camp and recreation complex consists of pre-fabricated units that make up three storey housing buildings and a single floor multi-use building. The case study provided information on soil; design parameter inputs; load testing program and pile configuration; geotechnical and structural design results; compression load test arrangement; pile test setup; and test results. The presentation also discussed fabrication as well as installation equipment. Various applications were also presented through a series of project pictures. Last, the presentation provided a simple cost analysis. tabs., figs.

  15. A comparitive clinical study between self tapping and drill free screws as a source of rigid orthodontic anchorage.

    Science.gov (United States)

    Gupta, Nishant; Kotrashetti, S M; Naik, Vijay

    2012-03-01

    Self-tapping miniscrews are commonly being used as a temporary anchorage device for orthodontic purpose. A prerequisite for the insertion of these screws is the preparation of a pilot hole, which is time consuming and may result in damage to nerves, tooth root, drill bit breakage and thermal necrosis of bone. On the other hand the design of drill-free screws enables them to be inserted without drilling. The aim of this prospective study was to compare the stability and clinical response of the soft tissue around the self tapping and drill free screws when used for orthodontic anchorage for en mass retraction of maxillary anterior teeth. The study sample consisted of 20 patients requiring retraction of maxillary anterior teeth. The screws were placed in the alveolar bone between maxillary 2nd premolar and 1st molar bilaterally at the junction of attached gingiva and moveable mucosa. Pilot hole was drilled on the side which was selected for insertion of the self tapping screw under copious irrigation, after which it was inserted. Drill free screw was inserted on the contralateral side without predrilling. All screws were immediately loaded with 150-200 gm of retraction force. Patients were recalled for regular follow up for a period of 6 months. If the screws became mobile or showed any signs of inflammation during the course of the study, they were considered to be a failure. After a period of 6 months an overall success rate of 77.5% was noted. Four self tapping and five drill-free screws failed during the study. There was no statistically significant difference between the two types of screws with respect to success/failure. Mobility was found to be the major cause for the failure. Both self-tapping and the drill-free screws are effective anchorage units. But the latter have an edge over the conventional self-tapping screws because of decrease in operative time, little bone debris, less thermal damage, lower morbidity, and minimal patient discomfort as

  16. Tightening grip

    Science.gov (United States)

    Strukov, Dmitri B.

    2018-01-01

    Engineering channels for ion transport in a SiGe solid-state electrolyte layer allows one to significantly decrease the spatial and temporal variations of the electrical characteristics in resistive switching memories.

  17. A biomechanical comparison of headless tapered variable pitch and AO cortical bone screws for fixation of a simulated slab fracture in equine third carpal bones.

    Science.gov (United States)

    Bueno, Aloisio C D; Galuppo, Larry D; Taylor, Kenneth T; Jensen, David G; Stover, Susan M

    2003-01-01

    To compare the mechanical shear strengths and stiffnesses obtained from in vitro testing of a simulated complete third carpal bone (C3) frontal plane radial facet slab fracture (osteotomy) stabilized with either a 4/5 Acutrak (AT) compression screw or a 4.5-mm AO cortical bone (AO) screw inserted in lag fashion. Drilling, tapping, and screw insertion torques, forces, and times also were compared between AT and AO implants. In vitro biomechanical assessment of site preparation, screw insertion, and shear failure test variables of bone screw stabilized simulated C3 slab fracture in paired cadaveric equine carpi. Eight pairs of cadaveric equine C3 without orthopedic abnormalities. Standardized simulated C3 slab fractures were repaired with either AO or AT screws (AO/C3 and AT/C3 groups, respectively). Drilling, tapping, and screw insertion torques, forces, and times were measured with a materials testing machine for each screw type. Repaired specimens were tested in axially oriented shear until failure. Paired Students t-tests were used to assess differences between site preparation, screw insertion, and shear testing variables. Significance was set at P bone fragment measurements of the standardized simulated C3 slab fractures created for AO or AT screws. There were no significant differences for mean and maximum drilling torques; however, the tapered AT drill had greater maximum drilling force compared with the 3.2-mm and 4.5-mm AO drill bits. Mean insertion torque and force measured from the self-tapping AT screw were not significantly different compared with the 4.5-mm AO tap. There were no significant differences in maximum screw torque among constructs. Total procedure time was significantly longer for the AT group (5.8 +/- 1.6 minutes) compared with the AO group (2.9 +/- 1.1 minutes; P =.001). AT stabilized specimens had significantly greater mean +/- SD initial shear stiffness (3.64 +/- 1.08 kN/mm) than AO specimens (1.64 +/- 0.73 kN/mm; P =.005). All other

  18. Finite element analysis of the equivalent stress distribution in Schanz screws during the use of a femoral fracture distractor

    Directory of Open Access Journals (Sweden)

    Vincenzo Giordano

    Full Text Available ABSTRACT To evaluate the mechanical stress and elastic deformation exercised in the thread/shaft transition of Schanz screws in assemblies with different screw anchorage distances in the entrance to the bone cortex, through the distribution and location of tension in the samples. An analysis of 3D finite elements was performed to evaluate the distribution of the equivalent stress (triple stress state in a Schanz screw fixed bicortically and orthogonally to a tubular bone, using two mounting patterns: (1 thread/shaft transition located 20 mm from the anchorage of the Schanz screws in the entrance to the bone cortex and (2 thread/shaft transition located 3 mm from the anchorage of the Schanz screws in entrance to the bone cortex. The simulations were performed maintaining the same direction of loading and the same distance from the force vector in relation to the center of the hypothetical bone. The load applied, its direction, and the distance to the center of the bone were constant during the simulations in order to maintain the moment of flexion equally constant. The present calculations demonstrated linear behavior during the experiment. It was found that the model with a distance of 20 mm between the Schanz screws anchorage in the entrance to the bone cortex and the thread/shaft transition reduces the risk of breakage or fatigue of the material during the application of constant static loads; in this model, the maximum forces observed were higher (350 MPa. The distance between the Schanz screws anchorage at the entrance to the bone cortex and the smooth thread/shaft transition of the screws used in a femoral distractor during acute distraction of a fracture must be farther from the entrance to the bone cortex, allowing greater degree of elastic deformation of the material, lower mechanical stress in the thread/shaft transition, and minimized breakage or fatigue. The suggested distance is 20 mm.

  19. A novel method for real-time skin impedance measurement during radiofrequency skin tightening treatments.

    Science.gov (United States)

    Harth, Yoram; Lischinsky, Daniel

    2011-03-01

    The thermal effects of monopolar and bipolar radiofrequency (RF) have been proven to be beneficial in skin tightening. Nevertheless, these effects were frequently partial or unpredictable because of the uncontrolled nature of monopolar or unipolar RF and the superficial nature of energy flow for bipolar or tripolar configurations. One of the hypotheses for lack or predictability of efficacy of the first-generation RF therapy skin tightening systems is lack of adaptation of delivered power to differences in individual skin impedance. A novel multisource phase-controlled system was used (1 MHz, power range 0-65 W) for treatment and real-time skin impedance measurements in 24 patients (EndyMed PRO™; EndyMed, Cesarea, Israel). This system allows continuous real-time measurement of skin impedance delivering constant energy to the patient skin independent of changes in its impedance. More than 6000 unique skin impedance measurements on 22 patients showed an average session impedance range was 215-584 Ohm with an average of 369 Ohm (standard deviation of 49 Ohm). Analyzing individual pulses (total of 600 readings) showed a significant decrease in impedance during the pulse. These findings validate the expected differences in skin impedance between individual patients and in the same patients during the treatment pulse. Clinical study on 30 patients with facial skin aging using the device has shown high predictability of efficacy (86.7% of patients had good results or better at 3 months' follow-up [decrease of 2 or more grades in Fitzpatrick's wrinkle scale]). The real-time customization of energy according to skin impedance allows a significantly more accurate and safe method of nonablative skin tightening with more consistent and predictable results. © 2011 Wiley Periodicals, Inc.

  20. Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection.

    Science.gov (United States)

    Helgeson, Melvin D; Kang, Daniel G; Lehman, Ronald A; Dmitriev, Anton E; Luhmann, Scott J

    2013-08-01

    There is currently no reliable technique for intraoperative assessment of pedicle screw fixation strength and optimal screw size. Several studies have evaluated pedicle screw insertional torque (IT) and its direct correlation with pullout strength. However, there is limited clinical application with pedicle screw IT as it must be measured during screw placement and rarely causes the spine surgeon to change screw size. To date, no study has evaluated tapping IT, which precedes screw insertion, and its ability to predict pedicle screw pullout strength. The objective of this study was to investigate tapping IT and its ability to predict pedicle screw pullout strength and optimal screw size. In vitro human cadaveric biomechanical analysis. Twenty fresh-frozen human cadaveric thoracic vertebral levels were prepared and dual-energy radiographic absorptiometry scanned for bone mineral density (BMD). All specimens were osteoporotic with a mean BMD of 0.60 ± 0.07 g/cm(2). Five specimens (n=10) were used to perform a pilot study, as there were no previously established values for optimal tapping IT. Each pedicle during the pilot study was measured using a digital caliper as well as computed tomography measurements, and the optimal screw size was determined to be equal to or the first size smaller than the pedicle diameter. The optimal tap size was then selected as the tap diameter 1 mm smaller than the optimal screw size. During optimal tap size insertion, all peak tapping IT values were found to be between 2 in-lbs and 3 in-lbs. Therefore, the threshold tapping IT value for optimal pedicle screw and tap size was determined to be 2.5 in-lbs, and a comparison tapping IT value of 1.5 in-lbs was selected. Next, 15 test specimens (n=30) were measured with digital calipers, probed, tapped, and instrumented using a paired comparison between the two threshold tapping IT values (Group 1: 1.5 in-lbs; Group 2: 2.5 in-lbs), randomly assigned to the left or right pedicle on each

  1. Constructions complying with tightened Danish sound insulation requirements for new housing

    OpenAIRE

    Rasmussen, Birgit; Hoffmeyer, Dan

    2010-01-01

    New sound insulation requirements in Denmark in 2008 New Danish Building Regulations with tightened sound insulation requirements were introduced in 2008 (and in 2010 with unchanged acoustic requirements). Compared to the Building Regulations from 1995, the airborne sound insulation requirements were 2 –3 dB stricter and the impact sound insulation requirements 5 dB stricter. The limit values are given using the descriptors R’w and L’n,w as before. For the first time, acoustic requirements fo...

  2. Significant skin-tightening by closure of fractional ablative laser holes.

    Science.gov (United States)

    Russe, Elisabeth; Purschke, Martin; Limpiangkanan, Wikunda; Farinelli, William A; Wang, Ying; Doukas, Apostolos G; Sakamoto, Fernanda H; Wechselberger, Gottfried; Anderson, Richard Rox

    2018-01-01

    Ablative fractional laser treatment uses thousands of very small laser beam wounds to damage a fraction of the skin, which stimulates tissue remodeling. Each open micro-wound heals without scarring, but the amount of skin tightening achieved is limited. This animal study was performed to test the hypothesis that immediate temporary closure of fractional laser wounds could increase skin tightening after fractional ablative laser treatment. Four adult swine were used for the study; 98 square test sites (3 × 3 cm) were tattooed on the abdomen and flanks of each pig. An ablative fractional Erbium:YAG laser (Sciton Profile, Sciton Inc, Palo Alto, CA) was used to treat the test areas. A laser micro-spot fluence of 375 J/cm 2 was delivered in 150-250 microseconds pulses, resulting in an array of ablation channels extending 1.5 mm deep into the skin, with a spot size of 250 µm, with 10% treatment density. Immediately following laser exposure the resulting holes were closed using a stretched elastic adhesive dressing, which, when applied, recoiled and compressed the diameter of the ablation holes. The compressive dressings were removed after 7 days. This procedure was compared to removing the same amount of skin (10%) mechanically by specially designed 19 gauge coring needles, as well as to the same laser and coring methods without compression closure. Area and shape of test sites were measured by digital photography before and 28 days after treatment. Data analysis included compensation for animal growth, as measured by increase in the area of the untreated control sites. All treated and control sites healed within a week, without scarring evident at 28 days. Laser treatment combined with compressive wound closure caused significant shrinkage at 28 days compared with untreated control sites. The treated skin area was reduced by 11.5% (P = 0.0001). Needle coring with wound closure produced similar, significant shrinkage (8%, P < 0.0021), whereas laser

  3. Optimized bolt tightening strategies for gasketed flanged pipe joints of different sizes

    International Nuclear Information System (INIS)

    Abid, Muhammad; Khan, Ayesha; Nash, David Hugh; Hussain, Masroor; Wajid, Hafiz Abdul

    2016-01-01

    Achieving a proper preload in the bolts of a gasketed bolted flanged pipe joint during joint assembly is considered important for its optimized performance. This paper presents results of detailed non-linear finite element analysis of an optimized bolt tightening strategy of different joint sizes for achieving proper preload close to the target stress values. Industrial guidelines are considered for applying recommended target stress values with TCM (torque control method) and SCM (stretch control method) using a customized optimization algorithm. Different joint components performance is observed and discussed in detail.

  4. Transpedicular screw fixation in the thoracic and lumbar spine with a novel cannulated polyaxial screw system

    Directory of Open Access Journals (Sweden)

    Lutz Weise

    2008-10-01

    Full Text Available Lutz Weise, Olaf Suess, Thomas Picht, Theodoros KombosNeurochirurgische Klinik, Charité – Universitätsmedizin Berlin, Berlin, GermanyObjective: Transpedicular screws are commonly and successfully used for posterior fixation in spinal instability, but their insertion remains challenging. Even using navigation techniques, there is a misplacement rate of up to 11%. The aim of this study was to assess the accuracy of a novel pedicle screw system.Methods: Thoracic and lumbar fusions were performed on 67 consecutive patients for tumor, trauma, degenerative disease or infection. A total of 326 pedicular screws were placed using a novel wire-guided, cannulated, polyaxial screw system (XIA Precision®, Stryker. The accuracy of placement was assessed post operatively by CT scan, and the patients were followed-up clinically for a mean of 16 months.Results: The total medio-caudal pedicle wall perforation rate was 9.2% (30/326. In 19 of these 30 cases a cortical breakthrough of less than 2 mm occurred. The misplacement rate (defined as a perforation of 2 mm or more was 3.37% (11/326. Three of these 11 screws needed surgical revision due to neurological symptoms or CSF leakage. There have been no screw breakages or dislocations over the follow up-period.Conclusion: We conclude that the use of this cannulated screw system for the placement of pedicle screws in the thoracic and lumbar spine is accurate and safe. The advantages of this technique include easy handling without a time-consuming set up. Considering the incidence of long-term screw breakage, further investigation with a longer follow-up period is necessary.Keywords: spinal instrumentation, pedicle screws, misplacement, pedicle wall perforation

  5. Standard Waste Box Lid Screw Removal Option Testing

    International Nuclear Information System (INIS)

    Anast, Kurt Roy

    2016-01-01

    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  6. Standard Waste Box Lid Screw Removal Option Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  7. A New Orthodontic Appliance with a Mini Screw for Upper Molar Distalization.

    Science.gov (United States)

    Ozkalayci, Nurhat; Yetmez, Mehmet

    2016-01-01

    The aim of this study is to present a new upper molar distalization appliance called Cise distalizer designed as intraoral device supported with orthodontic mini screw for upper permanent molar distalization. The new appliance consists of eight main components. In order to understand the optimum force level, the appliance under static loading is tested by using strain gage measurement techniques. Results show that one of the open coils produces approximately 300 gr distalization force. Cise distalizer can provide totally 600 gr distalization force. This range of force level is enough for distalization of upper first and second molar teeth.

  8. A New Orthodontic Appliance with a Mini Screw for Upper Molar Distalization

    Directory of Open Access Journals (Sweden)

    Nurhat Ozkalayci

    2016-01-01

    Full Text Available The aim of this study is to present a new upper molar distalization appliance called Cise distalizer designed as intraoral device supported with orthodontic mini screw for upper permanent molar distalization. The new appliance consists of eight main components. In order to understand the optimum force level, the appliance under static loading is tested by using strain gage measurement techniques. Results show that one of the open coils produces approximately 300 gr distalization force. Cise distalizer can provide totally 600 gr distalization force. This range of force level is enough for distalization of upper first and second molar teeth.

  9. Twin screw wet granulation: Binder delivery.

    Science.gov (United States)

    Saleh, Mohammed F; Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2015-06-20

    The effects of three ways of binder delivery into the twin screw granulator (TSG) on the residence time, torque, properties of granules (size, shape, strength) and binder distribution were studied. The binder distribution was visualised through the transparent barrel using high speed imaging as well as quantified using offline technique. Furthermore, the effect of binder delivery and the change of screw configuration (conveying elements only and conveying elements with kneading elements) on the surface velocity of granules across the screw channel were investigated using particle image velocimetry (PIV). The binder was delivered in three ways; all solid binder incorporated with powder mixture, 50% of solid binder mixed with powder mixture and 50% mixed with water, all the solid binder dissolved in water. Incorporation of all solid binder with powder mixture resulted in the relatively longer residence time and higher torque, narrower granule size distribution, more spherical granules, weaker big-sized granules, stronger small-sized granules and better binder distribution compared to that in other two ways. The surface velocity of granules showed variation from one screw to another as a result of uneven liquid distribution as well as shown a reduction while introducing the kneading elements into the screw configuration. Copyright © 2015. Published by Elsevier B.V.

  10. A novel non-invasive radiofrequency dermal heating device for skin tightening of the face and neck.

    Science.gov (United States)

    Nelson, Andrew A; Beynet, David; Lask, Gary P

    2015-01-01

    Loose, lax skin is a common cosmetic complaint. Previous non-invasive skin tightening devices had modest efficacy and were associated with pain or downtime. New technologies may allow for effective skin tightening with a series of radiofrequency (RF) treatments with no downtime. To evaluate the efficacy and safety of a novel bipolar RF device for skin tightening. Fifteen consecutive female patients were enrolled in the case series; 14 completed the study and were included in the analysis. The device under investigation is a novel, bipolar RF device allowing for achievement and maintenance of optimal dermal temperatures to stimulate collagen remodeling and skin tightening. Patients underwent a series of 4-6 weekly treatments. Three blinded, experienced cosmetic physicians evaluated paired pre-treatment and post-treatment photographs and determined the associated improvement, if any. All patients (14/14) were determined to have a clinical improvement, as the pre-treatment and post-treatment photographs were correctly identified by the evaluators. It was observed that 21% (3/14) of patients had significant improvement, 50% (7/14) had moderate improvement, and 29% (4/14) had mild improvement. No pain, side effects, or adverse events were observed. This novel bipolar RF device represents a safe, effective treatment option for non-invasive skin tightening.

  11. Efficacy of diode laser (810 and 940 nm) for facial skin tightening.

    Science.gov (United States)

    Voravutinon, Nataya; Seawthaweesin, Kanikar; Bureethan, Apron; Srivipatana, Anchisa; Vejanurug, Patnapa

    2015-12-01

    Laser treatment has been introduced for facial skin tightening. However, no prior study has used a diode laser to treat facial skin laxity. To evaluate the efficacy and safety of a 810- and 940-nm diode laser (MeDioStarNeXT) for treating facial skin laxity. Thirty patients, with facial skin laxity grading scale II-IV, were enrolled in this study. Each patient underwent four sessions with a 810- and 940-nm diode laser (MeDioStarNeXT) treatment over 3-week intervals. Improvement in the laxity of facial skin was evaluated using a Cutometer MPA 580, spectrophotometer, and a grading scale. Significant improvement was observed with the Cutometer F3 and R7 parameters at 1 and 3 months after complete treatment, respectively. Physician assessment showed significant improvement in the laxity scale at 1 and 6 months after treatment. Approximately 10% of the patients reported mild pain or minor adverse events. Ninety-eight percent of the patients were satisfied with the treatments. Treatment with a diode laser (810 and 940 nm) is safe and may be effective for facial skin tightening. Maintenance treatment is necessary to sustain the effect of treatment. © 2015 Wiley Periodicals, Inc.

  12. Kinematics of Planetary Roller Screw Mechanism considering Helical Directions of Screw and Roller Threads

    Directory of Open Access Journals (Sweden)

    Shangjun Ma

    2015-01-01

    Full Text Available Based on the differential principle of thread transmission, an analytical model considering helical directions between screw and roller threads in planetary roller screw mechanism (PRSM is presented in this work. The model is critical for the design of PRSM with a smaller lead and a bigger pitch to realize a higher transmission accuracy. The kinematic principle of planetary transmission is employed to analyze the PRSM with different screw thread and roller thread directions. In order to investigate the differences with different screw thread and roller thread directions, the numerical model is developed by using the software Adams to validate the analytical solutions calculated by the presented model. The results indicate, when the helical direction of screw thread is identical with the direction of roller thread, that the lead of PRSM is unaffected regardless of whether sliding between screw and rollers occurs or not. Only when the direction of screw thread is reverse to the direction of roller thread, the design of PRSM with a smaller lead can be realized under a bigger pitch. The presented models and numerical simulation method can be used to research the transmission accuracy of PRSM.

  13. The movement of screw dislocations in tungsten

    International Nuclear Information System (INIS)

    Tian Xiaogeng; Woo Chungho

    2004-01-01

    Using Acland potential for tungsten, the movement of 1/2a screw dislocation under shear stress was investigated by molecular dynamics simulation. Equilibrated core structure was obtained by relaxation of screw dislocation with proper boundary conditions. We found that the equilibrium dislocation core has three-fold symmetry and spread out in three direction on {1 1 0} planes. The screw dislocation core could not keep the original shape when the shear stress applied. The dislocation could not move until the shear stress became large enough. The dislocation moved in zigzag when the shear stress neared the Peierls stress. When the shear stress became larger, the dislocation moved in zigzag at the beginning and than moved almost in straight line in [2-bar11] direction. The large shear stress applied, the long distance moved before the dislocation stilled in z-direction and the large velocity in y-direction

  14. Screw expander for light duty diesel engines

    Science.gov (United States)

    1983-01-01

    Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.

  15. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  16. Effect of lubricant on the reliability of dental implant abutment screw joint: An in vitro laboratory and three-dimension finite element analysis.

    Science.gov (United States)

    Wu, Tingting; Fan, Hongyi; Ma, Ruiyang; Chen, Hongyu; Li, Zhi; Yu, Haiyang

    2017-06-01

    Biomechanical factors play a key role in the success of dental implants. Fracture and loosening of abutment screws are major issues. This study investigated the effect of lubricants on the stability of dental implant-abutment connection. As lubricants, graphite and vaseline were coated on the abutment screw surface, respectively, and a blank without lubricant served as the control. The total friction coefficient (μ tot ), clamping force, fatigue behavior and detorque of the joint combined with dynamic cyclic loading were measured under different lubricating conditions. Further, a three-dimensional finite element analysis was used to investigate stress distribution, in conjunction with experimental images. The results showed that the lubricant reduced μ tot , which in turn led to an increase in clamping force. Decrease in loading increased the fatigue life of the screw. However, use of lubricant at high load reduced the fatigue life. Ductile fracture at the first thread of the screw was the chief failure mode, which was due to maximum von Mises stress. Higher stress levels occurred in the lubricant groups. Lubricated screws resulted in lower detorque which made the joint easier to loosen. In conclusion, the lubricant cannot effectively improve the reliability of dental implant-abutment connection. Keeping the interfaces of implant-screw uncontaminated and strengthening the surface of the screw may be recommend for clinical operation and future design. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  18. Effect of tightening torque on the marginal adaptation of cement-retained implant-supported fixed dental prostheses.

    Science.gov (United States)

    Ghanbarzadeh, Jalil; Dashti, Hossin; Karamad, Reza; Alikhasi, Marzieh; Nakhaei, Mohammadreza

    2015-01-01

    The final position of the abutment changes with the amount of tightening torque. This could eventually lead to loss of passivity and marginal misfit of prostheses. The aim of this study was to evaluate the effect of three different tightening torques on the marginal adaptation of 3-unit cement-retained implant-supported fixed dental prostheses (FDPs). Two implants (Straumann) were inserted in an acrylic block so that one of the implants was placed vertically and the other at a 15° vertical angle. A straight abutment and a 15° angulated abutment were connected to the vertically and obliquely installed implants, respectively, so that the two abutments were parallel. Then, 10 cement-retained FDPs were waxed and cast. Abutments were tightened with 10, 20, and 35 Ncm torques, respectively. Following each tightening torque, FDPs were luted on respective abutments with temporary cement. The marginal adaptation of the retainers was evaluated using stereomicroscope. FDPs were then removed from the abutments and were sectioned at the connector sites. The retainers were luted again on their respective abutments. Luting procedures and marginal adaptation measurement were repeated. Data were analyzed by ANOVA and least significant difference tests (α = 0.05). After cutting the FDP connectors, the independent samples t-test was used to compare misfit values (α = 0.05). Following 10, 20, and 35 Ncm tightening torques, the marginal discrepancy of the retainers of FDPs significantly increased (P marginal discrepancies of these two retainers (P > 0.05). The marginal gap values of angulated abutment retainers (ANRs) were significantly higher than those of the straight abutment after cutting the connectors (P = 0.026). Within the limitations of this study, the marginal misfit of cement-retained FDPs increased continuously when the tightening torque increased. After cutting the connectors, the marginal misfit of the ANRs was higher than those of the straight abutment retainers.

  19. Dual-worm screw compressors; Compresseurs bi-vis

    Energy Technology Data Exchange (ETDEWEB)

    Baleydier, J P [Bitzer France, 69 - Lyon (France)

    1998-12-31

    Low power worm-screw moto-compressors are used in any king of refrigerating machineries and more and more in air conditioning systems. This paper presents the principle of dual-screw moto-compressors: worm-screw technology, role of oil (lubrication, tightness, cooling), compression, internal pressure, power reduction, lubrication, economizer, operation, model selection and accessories. (J.S.)

  20. A Novel Pedicle Screw with Mobile Connection: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Yasuaki Tokuhashi

    2014-01-01

    Full Text Available To prevent adjacent disc problems after spinal fusion, a pedicle screw with a mobile junction between the head and threaded shaft was newly developed. The threaded shaft of the screw has 10 degrees mobility in all directions, but its structure is to prevent abnormal translation and tilting. This screw was evaluated as follows: (1 endurance test: 106 times rotational stress was applied; (2 biological reactions: novel screws with a mobile head and conventional screws with a fixed head were inserted into the bilateral pedicles of the L3, L4, and L5 in two mini pigs with combination. Eight months after surgery, vertebral units with the screw rod constructs were collected. After CT scan, the soft and bony tissues around the screws were examined grossly and histologically. As a result, none of the screws broke during the endurance test stressing. The mean amount of abrasion wear was 0.0338 g. In the resected mini pig section, though zygapophyseal joints between fixed-head screws showed bony union, the amount of callus in the zygapophyseal joints connected with mobile-head screws was small, and joint space was confirmed by CT. No metalloses were noted around any of the screws. Novel screws were suggested to be highly durable and histologically safe.

  1. Dual-worm screw compressors; Compresseurs bi-vis

    Energy Technology Data Exchange (ETDEWEB)

    Baleydier, J.P. [Bitzer France, 69 - Lyon (France)

    1997-12-31

    Low power worm-screw moto-compressors are used in any king of refrigerating machineries and more and more in air conditioning systems. This paper presents the principle of dual-screw moto-compressors: worm-screw technology, role of oil (lubrication, tightness, cooling), compression, internal pressure, power reduction, lubrication, economizer, operation, model selection and accessories. (J.S.)

  2. Nut tightening and bolt tension measuring apparatus for control guide tube with ultrasonic probe

    International Nuclear Information System (INIS)

    Lanzoni, M.

    1985-01-01

    Control rods are guided by elements set in the prolongation of the fuel assembly guide-tubes in which the control rods are introduced. These elements are inside guide-tubes fixed on the upper plate of the core by means of pins having a thread on which a nut is screwed bearing on the foot of the guide-tube. The pin is fixed inside the upper core plate by means of its lower part. An insufficient mechanical resistance and even failures have been observed with these pins. These failures have been involved by an unadequate screwing. The present invention proposes to control the pretension during the operation itself with an ultrasonic test [fr

  3. Comparison of Expansive Pedicle Screw and Polymethylmethacrylate-Augmented Pedicle Screw in Osteoporotic Sheep Lumbar Vertebrae: Biomechanical and Interfacial Evaluations

    OpenAIRE

    Liu, Da; Zhang, Yi; Zhang, Bo; Xie, Qing-yun; Wang, Cai-ru; Liu, Jin-biao; Liao, Dong-fa; Jiang, Kai; Lei, Wei; Pan, Xian-ming

    2013-01-01

    BACKGROUND: It was reported that expansive pedicle screw (EPS) and polymethylmethacrylate-augmented pedicle screw (PMMA-PS) could be used to increase screw stability in osteoporosis. However, there are no studies comparing the two kinds of screws in vivo. Thus, we aimed to compare biomechanical and interfacial performances of EPS and PMMA-PS in osteoporotic sheep spine. METHODOLOGY/PRINCIPAL FINDINGS: After successful induction of osteoporotic sheep, lumbar vertebrae in each sheep were random...

  4. Percutaneous anterior C1/2 transarticular screw fixation: salvage of failed percutaneous odontoid screw fixation for odontoid fracture

    OpenAIRE

    Wu, Ai-Min; Jin, Hai-Ming; Lin, Zhong-Ke; Chi, Yong-Long; Wang, Xiang-Yang

    2017-01-01

    Background The objective of this study is to investigate the outcomes and safety of using percutaneous anterior C1/2 transarticular screw fixation as a salvage technique for odontoid fracture if percutaneous odontoid screw fixation fails. Methods Fifteen in 108 odontoid fracture patients (planned to be treated by percutaneous anterior odontoid screw fixation) were failed to introduce satisfactory odontoid screw trajectory. To salvage this problem, we chose the percutaneous anterior C1/2 trans...

  5. Monopolar radiofrequency facial tightening: a retrospective analysis of efficacy and safety in over 600 treatments.

    Science.gov (United States)

    Weiss, Robert A; Weiss, Margaret A; Munavalli, Girish; Beasley, Karen L

    2006-09-01

    Monopolar radiofrequency skin heating coupled with cryogen cooling of facial skin for skin tightening has been utilized on over 10,000 patients since 2002. In order to establish the actual rate and degree of side effects in our clinical experience, a retrospective chart review was performed. Charts and clinical images of over 600 consecutive patient treatments between May 2002 and June 2006 using a monopolar radiofrequency device (Thermacool, Thermage, Haywood, CA) for skin tightening at the Maryland Laser, Skin and Vein Institute were retrospectively reviewed. The primary presentation for treatment was skin laxity of the lower face. Treatment was delivered with a 1-cm2 standard tip at fluences of 81 to 124 J/cm2 (level of 12.5 to 15), a 1-cm2 "fast" tip at fluences of 62 to 109 J/cm2 (level of 72.0 to 76.0), a 1.5-cm2 "big fast" tip at fluences of 75 to 130 J/cm2 (level of 61.5 to 65), and a 3-cm2 "bigger" tip at equivalent fluences as each became available. As treatment algorithms evolved over 4 years, the algorithm of multiple passes at lower fluence associated with better clinical outcomes and greater patient acceptance has been adopted. The most common immediate and expected clinical effects were erythema and edema lasting less than 24 hours, although 6 patients reported edema lasting for up to 1 week. There were no permanent side effects. In total, 2.7% of treatments resulted in temporary side effects, the most significant of which was a slight depression on the cheek (n = 1), which completely resolved within 3.5 months. Other side effects included localized areas of acneiform subcutaneous erythematous papules (n = 4) and a linear superficial crust (n = 1) with the original tip, all of which resolved within 1 week. One patient reported small erythematous subcutaneous nodules resolving in 17 days. Tenderness of the neck lasting from 2 weeks (n = 2) to 3 weeks (n = 1) was also reported. Our data, obtained in an office setting without injectable anesthetic or i

  6. A phenomenological study on twin screw extruders

    NARCIS (Netherlands)

    Janssen, L.P.B.M.

    1976-01-01

    Although more and more twin screw extruders are being used in the polymer industry, the theoretical background is relatively undeveloped. The literature abounds in contradictions and often informs the reader that all extrusion problems can be solved if a certain new design is considered. The

  7. Sacroiliac screw fixation for tile B fractures.

    NARCIS (Netherlands)

    Bosch, E.W. van den; Zwienen, C.M. van; Hoek van Dijke, G.A.; Snijders, C.J.; Vugt, A.B. van

    2003-01-01

    BACKGROUND: The purpose of this comparative cadaveric study was to investigate whether the stability of partially unstable pelvic fractures can be improved by combining plate fixation of the symphysis with a posterior sacroiliac screw. METHODS: In six specimens, a Tile B1 (open-book) pelvic fracture

  8. The belt-shaped screw-pinch reactor

    International Nuclear Information System (INIS)

    Bustraan, M.; Klippel, H.Th.; Veringa, H.J.; Verschuur, K.A.; Lievense, K.

    1981-12-01

    The belt-shaped screw pinch is a pulsed toroidal plasma with an elongated cross-section. Force-free currents in an outer plasma envelope of low density allow beta to rise to high values in the order of 50%. This is a potential possibility to develop an economically attractive reactor. The physical requirements of its realization are described: formation, heating and ignition of a very small amount of the fuel to be burnt in one pulse by the fields generated by normal or superconducting coils. Then follows injection of the greater part of the fuel by D-T pellets and consequent plasma heating and expansion by nuclear reactions without undue disturbing of the plasma current configuration. Technical requirements include an insulating first wall and fast rising magnetic fields produced by superconducting coils. This reactor system is compared with the tokamak and the reversed-field pinch system

  9. Constructions complying with tightened Danish sound insulation requirements for new housing

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Hoffmeyer, Dan

    New sound insulation requirements in Denmark in 2008 New Danish Building Regulations with tightened sound insulation requirements were introduced in 2008 (and in 2010 with unchanged acoustic requirements). Compared to the Building Regulations from 1995, the airborne sound insulation requirements...... were 2 –3 dB stricter and the impact sound insulation requirements 5 dB stricter. The limit values are given using the descriptors R’w and L’n,w as before. For the first time, acoustic requirements for dwellings are not found as figures in the Building Regulations. Instead, it is stated......), Denmark. [2] "Lydisolering mellem boliger – Nybyggeri" (Sound insulation between dwellings – Newbuild)". Publication expected in April 2011. The guideline is a part of a series of seven new SBi acoustic guidelines. Project leader Birgit Rasmussen. The series shall replace the existing guidelines 1984...

  10. Is the lag screw sliding effective in the intramedullary nailing in A1 and A2 AO-OTA intertrochanteric fractures? A prospective study of Sliding and None-sliding lag screw in Gamma-III nail

    Directory of Open Access Journals (Sweden)

    Zhu Yi

    2012-09-01

    Full Text Available Abstract Object To compare the Sliding with Non-sliding lag screw of a gamma nail in the treatment of A1 and A2 AO-OTA intertrochanteric fractures. Materials and methods 80 patients were prospectively collected. In each group, AO/OTA 31-A were classified into group A. AO/OTA 31-A2.1 was classified as group B. We classified the A2.2 and A2.3 as group C. According to the set-screw locking formation of Gamma-III, the cases were randomly allocated to Sliding subgroup and Non-sliding subgroup in A, B and C groups. Follow-ups were performed 1, 3, 6 and 12 months postoperatively. Results In the Sliding group, the bone healing rate 3, 6, 12 months postoperatively reached 85.00%, 97.50%, 100% in group A, B and C. Meanwhile, in Non-sliding group, postoperatively, bone healing rate were 90.00%, 95.00% and 97.50% in group A, B and C, respectively. Both differences were not significant. Lower limb discrepancy between Sliding and Non-sliding pattern was significantly different in group C which represent fracture types of AO/OTA 31-A2.2 and A2.3 (0.573 ± 0.019 mm in Non-sliding group, 0.955 mm ± 0.024 mm in Sliding group, P Conclusions As a result, we can conclude that the sliding distance is minimal in Gamma nails and it is related to the comminuted extent of the intertrochanteric area in A1 and A2 AO-OTA intertrochanteric fractures. For treating these kinds of fractures, the sliding of the lag screw of an Gamma nail does not improve any clinical results and in certain cases, such as highly comminuted A1 and A2 fractures, can therefore even benefit from a locked lag screw by tightening the set-screw.

  11. Accuracy of computer-assisted cervicle pedicle screw installation

    International Nuclear Information System (INIS)

    Zhang Honglei; Zhou Dongsheng; Jang Zhensong

    2009-01-01

    Objective: To investigate the accuracy of computer-assisted cervical pedicle screw installation and the reason of screw malposition. Methods: A total of 172 cervical pedicle screws were installed by computer-assisted navigation for 30 patients with lower cervical spinal diseases. All the patients were examined by X-ray and CT after operation. Screw's position and direction were measured on the sagittal and transectional images of intraoperative navigation and post-operative CT. Then linear regression analysis was taken between navigational and post-operative CT's images. Results: Two screws perforated the upper pedicle wall, 3 perforated the lateral pedicle wall.There was a positive linear correlation between navigational and post-operative CT's images. Conclusion: Computer-assisted navigation can provide the high accuracy of cervical pedicle screw installation and excursion phenomenon is reason of screw malposition. (authors)

  12. Effect of tightening torque on the marginal adaptation of cement-retained implant-supported fixed dental prostheses

    Directory of Open Access Journals (Sweden)

    Jalil Ghanbarzadeh

    2015-01-01

    Conclusion: Within the limitations of this study, the marginal misfit of cement-retained FDPs increased continuously when the tightening torque increased. After cutting the connectors, the marginal misfit of the ANRs was higher than those of the straight abutment retainers.

  13. Are We Underestimating the Significance of Pedicle Screw Misplacement?

    Science.gov (United States)

    Sarwahi, Vishal; Wendolowski, Stephen F; Gecelter, Rachel C; Amaral, Terry; Lo, Yungtai; Wollowick, Adam L; Thornhill, Beverly

    2016-05-01

    A retrospective review of charts, x-rays (XRs) and computed tomography (CT) scans was performed. To evaluate the accuracy of pedicle screw placement using a novel classification system to determine potentially significant screw misplacement. The accuracy rate of pedicle screw (PS) placement varies from 85% to 95% in the literature. This demonstrates technical ability but does not represent the impact of screw misplacement on individual patients. This study quantifies the rate of screw misplacement on a per-patient basis to highlight its effect on potential morbidity. A retrospective review of charts, XRs and low-dose CT scans of 127 patients who underwent spinal fusion with pedicle screws for spinal deformity was performed. Screws were divided into four categories: screws at risk (SAR), indeterminate misplacements (IMP), benign misplacements (BMP), accurately placed (AP). A total of 2724 screws were placed in 127 patients. A total of 2396 screws were placed accurately (87.96%). A total of 247 screws (9.07%) were BMP, 52 (1.91%) were IMP, and 29 (1.06%) were considered SAR. Per-patient analysis showed 23 (18.11%) of patients had all screws AP. Thirty-five (27.56%) had IMP and 18 (14.17%) had SAR. Risk factor analysis showed smaller Cobb angles increased likelihood of all screws being AP. Sub-analysis of adolescent idiopathic scoliotic patients showed no curve or patient characteristic that correlated with IMP or SAR. Over 40% of patients had screws with either some/major concern. Overall reported screw misplacement is low, but it does not reflect the potential impact on patient morbidity. Per-patient analysis reveals more concerning numbers toward screw misplacement. With increasing pedicle screw usage, the number of patients with misplaced screws will likely increase proportionally. Better strategies need to be devised for evaluation of screw placement, including establishment of a national database of deformity surgery, use of intra-operative image guidance, and

  14. Radiofrequency-activated PMMA-augmentation through cannulated pedicle screws: A cadaver study to determine the biomechanical benefits in the osteoporotic spine.

    Science.gov (United States)

    Karius, T; Deborre, C; Wirtz, D C; Burger, C; Prescher, A; Fölsch, A; Kabir, K; Pflugmacher, R; Goost, H

    2017-01-01

    PMMA-augmentation of pedicle screws strengthens the bone-screw-interface reducing cut-out risk. Injection of fluid cement bears a higher risk of extravasation, with difficulty of application because of inconsistent viscosity and limited injection time. To test a new method of cement augmentation of pedicle screws using radiofrequency-activated PMMA, which is suspected to be easier to apply and have less extravasations. Twenty-seven fresh-frozen human cadaver lumbar spines were divided into 18 osteoporotic (BMD ≤ 0.8 g/cm2) and 9 non-osteoporotic (BMD > 0.8 g/cm2) vertebral bodies. Bipedicular cannulated pedicle screws were implanted into the vertebral bodies; right screws were augmented with ultra-high viscosity PMMA, whereas un-cemented left pedicle screws served as negative controls. Cement distribution was controlled with fluoroscopy and CT scans. Axial pullout forces of the screws were measured with a material testing machine, and results were analyzed statistically. Fluoroscopy and CT scans showed that in all cases an adequately big cement depot with homogenous form and no signs of extravasation was injected. Pullout forces showed significant differences (p < 0.001) between the augmented and non-augmented pedicle screws for bone densities below 0.8 g/cm2 (661.9 N ± 439) and over 0.8 g/cm2 (744.9 N ± 415). Pullout-forces were significantly increased in osteoporotic as well as in non-osteoporotic vertebral bodies without a significant difference between these groups using this standardized, simple procedure with increased control and less complications like extravasation.

  15. Abutments with reduced diameter for both cement and screw retentions: analysis of failure modes and misfit of abutment-crown-connections after cyclic loading.

    Science.gov (United States)

    Moris, Izabela Cristina Maurício; Faria, Adriana Cláudia Lapria; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira

    2017-04-01

    The aim of this study was to analyze failure modes and misfit of abutments with reduced diameter for both cement and screw retentions after cyclic loading. Forty morse-taper abutment/implant sets of titanium were divided into four groups (N = 10): G4.8S-4.8 abutment with screw-retained crown; G4.8C-4.8 abutment with cemented crown; G3.8S-3.8 abutment with screw-retained crown; and G3.8C-3.8 abutment with cemented crown. Copings were waxed on castable cylinders and cast by oxygen gas flame and injected by centrifugation. After, esthetic veneering ceramic was pressed on these copings for obtaining metalloceramic crowns of upper canine. Cemented crowns were cemented on abutments with provisional cement (Temp Bond NE), and screw-retained crowns were tightened to their abutments with torque recommended by manufacturer (10 N cm). The misfit was measured using a stereomicroscope in a 10× magnification before and after cyclic loading (300,000 cycles). Tests were visually monitored, and failures (decementation, screw loosening and fractures) were registered. Misfit was analyzed by mixed linear model while failure modes by chi-square test (α = 0.05). Cyclic loading affected misfit of 3.8C (P ≤ 0.0001), 3.8S (P = 0.0055) and 4.8C (P = 0.0318), but not of 4.8S (P = 0.1243). No differences were noted between 3.8S with 4.8S before (P = 0.1550) and after (P = 0.9861) cyclic loading, but 3.8C was different from 4.8C only after (P = 0.0015) loading. Comparing different types of retentions at the same diameter abutment, significant difference was noted before and after cyclic loading for 3.8 and 4.8 abutments. Analyzing failure modes, retrievable failures were present at 3.8S and 3.8C groups, while irretrievable were only present at 3.8S. The cyclic loading decreased misfit of cemented and screw-retained crowns on reduced diameter abutments, and misfit of cemented crowns is greater than screw-retained ones. Abutments of reduced diameter failed more than

  16. Graft tendon slippage with metallic and bioabsorbable interference screws under cyclic load: a biomechanical study in a porcine model

    Directory of Open Access Journals (Sweden)

    Ari Digiácomo Ocampo Moré

    Full Text Available Introduction The rupture of the anterior cruciate ligament (ACL is the most common type of knee injury. Reconstructive surgery is the ‘gold standard’ treatment. During the immediate post-operative period, the fixation of the graft is entirely dependent on the ability of the grafted implant to be secured inside the bone tunnel under the cyclical loads associated with daily tasks. Poor fixation can lead to graft slippage, thus impairing the healing and integration of the graft. The aim of this study was to evaluate the biomechanical performance of tendon graft fixation devices with metallic and bioabsorbable interference screws. Methods Twenty ACL reconstructions were carried out in porcine tibias using deep flexor tendons to fix 9 × 20 mm metallic (n=10 and PLLA 70/30 bioabsorbable screws (n=10. To verify the ability of a construct to resist immediate postoperative (PO rehabilitation protocols for immediate load bearing, a cyclic loading test was applied with 50-250 N of tensile force at 1 Hz for 1000 cycles, and the displacement was measured at 10, 50, 100, 500 and 1000 load cycles to quantify the slippage of the graft during the test. After the cyclic loading test, a single-cycle load-to-failure test was applied. Results The slippage of the graft using metallic screws did not differ (P = 0.616 from that observed when using bioabsorbable screws. Conclusion The results obtained in this experiment indicate that metallic screws may promote a similar amount of graft slippage during low cyclic loading as bioabsorbable screws. Additionally, there was no difference in the biomechanical performance of these two types of screws during high failure loads.

  17. Analysis of Modeling Parameters on Threaded Screws.

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, Miquela S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vangoethem, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

  18. Chirality-controlled crystallization via screw dislocations.

    Science.gov (United States)

    Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric

    2018-04-11

    Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.

  19. Non-symmetric approach to single-screw expander and compressor modeling

    Science.gov (United States)

    Ziviani, Davide; Groll, Eckhard A.; Braun, James E.; Horton, W. Travis; De Paepe, M.; van den Broek, M.

    2017-08-01

    Single-screw type volumetric machines are employed both as compressors in refrigeration systems and, more recently, as expanders in organic Rankine cycle (ORC) applications. The single-screw machine is characterized by having a central grooved rotor and two mating toothed starwheels that isolate the working chambers. One of the main features of such machine is related to the simultaneous occurrence of the compression or expansion processes on both sides of the main rotor which results in a more balanced loading on the main shaft bearings with respect to twin-screw machines. However, the meshing between starwheels and main rotor is a critical aspect as it heavily affects the volumetric performance of the machine. To allow flow interactions between the two sides of the rotor, a non-symmetric modelling approach has been established to obtain a more comprehensive model of the single-screw machine. The resulting mechanistic model includes in-chamber governing equations, leakage flow models, heat transfer mechanisms, viscous and mechanical losses. Forces and moments balances are used to estimate the loads on the main shaft bearings as well as on the starwheel bearings. An 11 kWe single-screw expander (SSE) adapted from an air compressor operating with R245fa as working fluid is used to validate the model. A total of 60 steady-steady points at four different rotational speeds have been collected to characterize the performance of the machine. The maximum electrical power output and overall isentropic efficiency measured were 7.31 kW and 51.91%, respectively.

  20. Calculating Characteristics of the Screws with Constant And Variable Step

    Directory of Open Access Journals (Sweden)

    B. N. Zotov

    2015-01-01

    Full Text Available This work is devoted to creating a technique for calculating power characteristics of the screws with constant and variable step for the centrifugal pumps. The technique feature is that the reverse currents, which are observed in screws working at low flow, are numerically taken into account. The paper presents a diagram of the stream in the screw with flow to the network Q=0, and the static pressure of the screw in this mode is computed according to reverse current parameters. Maximum flow of screw is determined from the known formulas. When calculating the power characteristics and computing the overall efficiency of the screw, for the first time a volumetric efficiency of the screw is introduced. It is defined as a ratio between the flow into the network and the sum of the reverse current flows and a flow into the network. This approach allowed us to determine the efficiency of the screw over the entire range of flows.A comparison of experimental characteristics of the constant step screw with those of calculated by the proposed technique shows their good agreement.The technique is also used in calculating characteristics of the variable step screws. The variable step screw is considered as a screw consisting of two screws with a smooth transition of the blades from the inlet to the outlet. Screws in which the step at the inlet is less than that of at the outlet as well as screws with the step at the inlet being more than that of at the outlet were investigated. It is shown that a pressure of the screw with zero step and the value of the reverse currents depend only on the parameters of the input section of the screw, and the maximum flow, if the step at the inlet is more than the step at the outlet, is determined by the parameters of the output part of the screw. Otherwise, the maximum flow is determined a little bit differently.The paper compares experimental characteristics with characteristics calculated by the technique for variable step

  1. Energy saving screw compressor technology; Energiebesparende schroefcompressortechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, A. [RefComp, Lonigo (Italy); Neus, M. [Delta Technics Engineering, Breda (Netherlands)

    2011-03-15

    Smart solutions to reduce the energy consumption are continuously part of investigation in the refrigeration technology. This article subscribed the technology on which way energy can be saved at the operation of screw compressors which are used in air conditioners and refrigerating machinery. The combination of frequency control and Vi-control (intrinsic volumetric ratio) such as researched in the laboratory of RefComp is for the user attractive because the energy efficiency during part load operation is much better. Smart uses of thermodynamics, electric technology and electronic control are the basics of these applications. According to the manufacturer's information it is possible with these new generation screw compressors to save approx. 26% energy in comparison with the standard screw compressor. [Dutch] In dit artikel wordt de technologie omschreven waarmee veel energie bespaard kan worden bij schroefcompressoren die worden gebruikt in airconditioningsystemen en koel- en vriesinstallaties. De combinatie van frequentieregeling en Vi- regeling (Vi is de intrinsieke volumetrische verhouding) zoals onderzocht in het laboratorium van RefComp biedt de gebruiker veel voordelen doordat de energie-efficintie van de compressor tijdens deellast enorm wordt verbeterd. Slim gebruik van thermodynamika, elektrotechniek en elektronica vormen de basis van deze toepassing. Volgens de fabrikant kan met deze nieuwe generatie schroefcompressoren circa 26 procent op het energiegebruik tijdens deellast worden bespaard in vergelijking met de standaard serie schroefcompressoren.

  2. 2D and 3D assessment of sustentaculum tali screw fixation with or without Screw Targeting Clamp.

    Science.gov (United States)

    De Boer, A Siebe; Van Lieshout, Esther M M; Vellekoop, Leonie; Knops, Simon P; Kleinrensink, Gert-Jan; Verhofstad, Michael H J

    2017-12-01

    Precise placement of sustentaculum tali screw(s) is essential for restoring anatomy and biomechanical stability of the calcaneus. This can be challenging due to the small target area and presence of neurovascular structures on the medial side. The aim was to evaluate the precision of positioning of the subchondral posterior facet screw and processus anterior calcanei screw with or without a Screw Targeting Clamp. The secondary aim was to evaluate the added value of peroperative 3D imaging over 2D radiographs alone. Twenty Anubifix™ embalmed, human anatomic lower limb specimens were used. A subchondral posterior facet screw and a processus anterior calcanei screw were placed using an extended lateral approach. A senior orthopedic trauma surgeon experienced in calcaneal fracture surgery and a senior resident with limited experience in calcaneal surgery performed screw fixation in five specimens with and in five specimens without the clamp. 2D lateral and axial radiographs and a 3D recording were obtained postoperatively. Anatomical dissection was performed postoperatively as a diagnostic golden standard in order to obtain the factual screw positions. Blinded assessment of quality of fixation was performed by two surgeons. In 2D, eight screws were considered malpositioned when placed with the targeting device versus nine placed freehand. In 3D recordings, two additional screws were malpositioned in each group as compared to the golden standard. As opposed to the senior surgeon, the senior resident seemed to get the best results using the Screw Targeting Clamp (number of malpositioned screws using freehand was eight, and using the targeting clamp five). In nine out of 20 specimens 3D images provided additional information concerning target area and intra-articular placement. Based on the 3D assessment, five additional screws would have required repositioning. Except for one, all screw positions were rated equally after dissection when compared with 3D examinations

  3. On Working Capacity Criteria for Screw-Roller Mechanisms

    Directory of Open Access Journals (Sweden)

    D. S. Blinov

    2015-01-01

    Full Text Available Today roller-screw mechanisms (RSM are the most prospective motion converters from rotary to linear type. RSM manufacturers have suggested their design in the way, similar to the rolling bearings, in static and dynamic load ratings. The latter means that during long operations the main criterion of the RSM working capacity is fatigue spalling. However, this approach does not permit to consider temporal changes of the most critical performance parameters of the RSM (such as the axial play, the efficiency factor, the axial stiffness, the accuracy, the starting torque force for zero lash RSMs, etc. through calculations. The abovementioned method was not perfect, because the choice of the main criterion of RSM working capacity was wrong. The article proves that wear-resistance is the main criterion of RSM working capacity. The proof is the RSM efficiency factor equal to 80-88% on the average. The power loss occurs because of overcoming a sliding friction between multiple (from 300 to 1000 interfacing turns of thread on the screw and the rollers as well as on the rollers and the nut. That is why the RSMs are the screwtype rolling mechanisms with an essential portion of sliding friction. High-accuracy measurements taken using the device called a form-tracer for threaded pieces permitted to determine the essential changes on the profiles of turns of threads on the rollers (a straight-line portion appeared on the radial profile; these changes could emerge only from wear. Besides, the length of this portion increased with the increasing RSM operation time. The JSC “Moskvich” has examined the RSMs, which have been put out of operation after completing their service life as parts of robot welding machines. There were no traces of fatigue spalling found on the threaded surfaces of the RSM parts, while the sizes of the straight-line portions on the turns of the roller threads were much bigger than they were during the measurements after the initial

  4. Unified Singularity Modeling and Reconfiguration of 3rTPS Metamorphic Parallel Mechanisms with Parallel Constraint Screws

    Directory of Open Access Journals (Sweden)

    Yufeng Zhuang

    2015-01-01

    Full Text Available This paper presents a unified singularity modeling and reconfiguration analysis of variable topologies of a class of metamorphic parallel mechanisms with parallel constraint screws. The new parallel mechanisms consist of three reconfigurable rTPS limbs that have two working phases stemming from the reconfigurable Hooke (rT joint. While one phase has full mobility, the other supplies a constraint force to the platform. Based on these, the platform constraint screw systems show that the new metamorphic parallel mechanisms have four topologies by altering the limb phases with mobility change among 1R2T (one rotation with two translations, 2R2T, and 3R2T and mobility 6. Geometric conditions of the mechanism design are investigated with some special topologies illustrated considering the limb arrangement. Following this and the actuation scheme analysis, a unified Jacobian matrix is formed using screw theory to include the change between geometric constraints and actuation constraints in the topology reconfiguration. Various singular configurations are identified by analyzing screw dependency in the Jacobian matrix. The work in this paper provides basis for singularity-free workspace analysis and optimal design of the class of metamorphic parallel mechanisms with parallel constraint screws which shows simple geometric constraints with potential simple kinematics and dynamics properties.

  5. Experimental study of pedicle screw stability on low BMD vertebrae

    International Nuclear Information System (INIS)

    Li Qi; Yang Huilin; Tang Tiansi; Wu Yiwei; Wang Yijin

    2005-01-01

    Objective: To conduct biomechanical study of different pedicle screws stability on spinal specimen, discuss the relationship between design parameter of screw, insertion torgue and BMD, establish the theoretical foundation for application of pedicle screw on osteoporotic patients. Methods: Six fixed lumbar cadavers were collected, the effects of design parameter, insertion torque and etc on fixation stability were determined under various BMD by using biomechanical ways. Results: According to in vitro study: (1) There was a significant difference among pullout strength of all screws (P 2 >U 1 >SF 1 >SF 2 >RF. Conclusions: There is a close correlated between type of screw, BMD and stability. The U-type screw displays the best fixation effect on specimen of low BMD. (authors)

  6. Passage of an Anterior Odontoid Screw through Gastrointestinal Tract.

    Science.gov (United States)

    Leitner, L; Brückmann, C I; Gilg, M M; Bratschitsch, G; Sadoghi, P; Leithner, A; Radl, R

    2017-01-01

    Purpose . Anterior screw fixation has become a popular surgical treatment method for instable odontoid fractures. Screw loosening and migration are a rare, severe complication following anterior odontoid fixation, which can lead to esophagus perforation and requires revision operation. Methods . We report a case of screw loosening and migration after anterior odontoid fixation, which perforated the esophagus and was excreted without complications in a 78-year-old male patient. Results . A ventral dislocated anterior screw perforated through the esophagus after eight years after implantation and was excreted through the gastrointestinal (GI) tract. At a 6-month follow-up after the event the patient was asymptomatic. Conclusion . Extrusion via the GI tract is not safe enough to be considered as a treatment option for loosened screws. Some improvements could be implemented to prevent such an incident. Furthermore, this case is a fine example that recent preoperative imaging is mandatory before revision surgery for screw loosening.

  7. Passage of an Anterior Odontoid Screw through Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    L. Leitner

    2017-01-01

    Full Text Available Purpose. Anterior screw fixation has become a popular surgical treatment method for instable odontoid fractures. Screw loosening and migration are a rare, severe complication following anterior odontoid fixation, which can lead to esophagus perforation and requires revision operation. Methods. We report a case of screw loosening and migration after anterior odontoid fixation, which perforated the esophagus and was excreted without complications in a 78-year-old male patient. Results. A ventral dislocated anterior screw perforated through the esophagus after eight years after implantation and was excreted through the gastrointestinal (GI tract. At a 6-month follow-up after the event the patient was asymptomatic. Conclusion. Extrusion via the GI tract is not safe enough to be considered as a treatment option for loosened screws. Some improvements could be implemented to prevent such an incident. Furthermore, this case is a fine example that recent preoperative imaging is mandatory before revision surgery for screw loosening.

  8. Hydraulic screw fastening devices - design, maintenance, operational experience

    International Nuclear Information System (INIS)

    Lachner.

    1976-01-01

    With hydraulic screw fastening devices, pretension values with a maximum deviation of +-2.5% from the rated value can be achieved. This high degree of pretension accuracy is of considerable importance with regard to the safety factor required for the screw connection between reactor vessel head and reactor vessel. The operating rhythm of a nuclear power station with its refuelling art regular intervals makes further demands on the screw fastening device, in particular in connection with the transport of screws and for nuts. The necessary installations extend the screw fastening device into a combination of a high-pressure hydraulic cylinder system with an electrical or pneumoelectrical driving unit and an electrical control unit. Maintenance work is complicated by the large number of identical, highly stressed structural elements in connection with an unfavourable relation operating time/outage time. The problems have been perpetually reduced by close cooperation between the manufacturers and users of screw fastening devices. (orig./AK) [de

  9. Effect of modifying the screw access channels of zirconia implant abutment on the cement flow pattern and retention of zirconia restorations.

    Science.gov (United States)

    Wadhwani, Chandur; Chung, Kwok-Hung

    2014-07-01

    The effect of managing the screw access channels of zirconia implant abutments in the esthetic zone has not been extensively evaluated. The purpose of this study was to determine the effect of an insert placed within the screw access channel of an anterior zirconia implant abutment on the amount of cement retained within the restoration-abutment system and on the dislodging force. Thirty-six paired zirconia abutments and restorations were fabricated by computer-aided design and computer-aided manufacturing and were divided into 3 groups: open abutment, with the screw access channel unfilled; closed abutment, with the screw access channel sealed; and insert abutment, with a thin, tubular metal insert projection continuous with the screw head and placed into the abutment screw access channel. The restorations were cemented to the abutments with preweighed eugenol-free zinc oxide cement (TempBond NE). Excess cement was removed, and the weight of the cement that remained in the restoration-abutment system was measured. Vertical tensile dislodging forces were recorded at a crosshead speed of 5 mm/min after incubation in a 37°C water bath for 24 hours. The specimens were examined for the cement flow pattern into the screw access channel after dislodgement. Data were analyzed with ANOVA, followed by multiple comparisons by using the Tukey honestly significant difference test (α = .05). The mean (standard deviation) of retentive force values ranged from 108.1 ± 29.9 N to 148.3 ± 21.0 N. The retentive force values differed significantly between the insert abutment and both the open abutment (P abutment groups (P abutment and insert abutment being greater than closed abutment (P abutment with a metal insert significantly affected both the cement retained within the abutment itself and the retention capabilities of the zirconia restoration cemented with TempBond NE cement. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier

  10. Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD

    Science.gov (United States)

    Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.

    2013-12-01

    As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.

  11. Deformation Analysis of the Main Components in a Single Screw Compressor

    Science.gov (United States)

    Liu, Feilong; Liao, Xueli; Feng, Quanke; Van Den Broek, Martijn; De Paepe, Michel

    2015-08-01

    The single screw compressor is used in many fields such as air compression, chemical industry and refrigeration. During operation, different gas pressures and temperatures applied on the components can cause different degrees of deformation, which leads to a difference between the thermally induced clearance and the designed clearance. However, limited research about clearance design is reported. In this paper, a temperature measurement instrument and a convective heat transfer model were described and used to establish the temperature of a single screw air compressor's casing, screw rotor and star wheel. 3-D models of these three main components were built. The gas force deformation, thermal- structure deformation and thermal-force coupling deformation were carried out by using a finite element simulation method. Results show that the clearance between the bottom of the groove and the top of star wheel is reduced by 0.066 mm, the clearance between the side of groove and the star wheel is reduced by 0.015 mm, and the clearance between the cylinder and the rotor is reduced by 0.01 mm. It is suggested that these deformations should be taken into account during the design of these clearances.

  12. Translaminar screw fixation in the lumbar spine: technique, indications, results

    OpenAIRE

    Grob, D.; Humke, T.

    1998-01-01

    Translaminar screw fixation of the lumbar spine represents a simple and effective technique for short segment fusion in the degenerative spine. Clinical experience with 173 patients who underwent translaminar screw fixation revealed a fusion rate of 94%. The indications for translaminar screw fixation as a primary fixation procedure are: segmental dysfunction, lumbar spinal stenosis with painful degenerative changes, segmental revision surgery after discectomies, and painful disc-related synd...

  13. Economics of water injected air screw compressor systems

    OpenAIRE

    Madhav, K. V.; Kovacevic, A.

    2015-01-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an in...

  14. Lower energy and pulse stacking. A safer alternative for skin tightening using fractional CO2 laser.

    Science.gov (United States)

    Motta, Marcos Matias; Stelini, Rafael Fantelli; Calderoni, Davi Reis; Gilioli, Rovilson; Kharmandayan, Paulo

    2016-01-01

    To evaluate the effect of different energies and stacking in skin shrinkage. Three decreasing settings of a fractional CO2 laser were applied to the abdomen of Twenty five Wistar rats divided into three groups. Group I (n=5) was histologically evaluated for microthermal zones dimensions. Groups II and III (n=10 each) were macroscopic evaluated with freeware ImageJ for area contraction immediately and after 30 and 60 days. No statistical significance was found within microthermal zone histological dimensions (Group I) in all settings studied. (Ablation depth: 76.90 to 97.18µm; Coagulation depth: 186.01 to 219.84 µm). In Group II, macroscopic evaluation showed that all settings cause significant immediate skin contraction. The highest setting cause significant more intense tightening effect initially, contracting skin area from 258.65 to 179.09 mm2. The same pattern was observed in Group III. At 30 and 60 days, the lowest setting significantly sustained contraction. Lower fractional CO2 laser energies associated to pulse stacking could cause consistent and long lasting tissue contraction in rats.

  15. Process and apparatus for optimizing screwing position for closure stud

    International Nuclear Information System (INIS)

    Bourdonne, J.C.; Briand, A.

    1987-01-01

    The stud is fixed to a screwing and unscrewing device. The vertical position and alignment of the stud with the axis of the threated hole is checking. The stud is descended into the hole and rotated in the unscrewing direction. After detection of the point of engagement, the stud is rotated in the screwing direction. When a gamming is detected the descent is stopped and the screwing device is positioned in a new position. When the screwing couple returns below the disconnection couple, the stud is rotated with a reduced speed and then with a normal speed until the end [fr

  16. Accuracy of pedicle screw placement in patients with Marfan syndrome.

    Science.gov (United States)

    Qiao, Jun; Zhu, Feng; Xu, Leilei; Liu, Zhen; Sun, Xu; Qian, Bangping; Jiang, Qing; Zhu, Zezhang; Qiu, Yong

    2017-03-21

    There is no study concerning safety and accuracy of pedicle screw placement in Marfan syndrome. The objective of this study is to investigate accuracy and safety of pedicle screw placement in scoliosis associated with Marfan syndrome. CT scanning was performed to analyze accuracy of pedicle screw placement. Pedicle perforations were classified as medial, lateral or anterior and categorized to four grades: ≤ 2 mm as Grade 1, 2.1-4.0 mm as Grade 2, 4.1-6.0 mm as Grade 3, ≥6.1 mm as Grade 4. Fully contained screws or with medial wall perforation ≤ 2 mm or with lateral wall perforation ≤ 6 mm and without injury of visceral organs were considered acceptable, otherwise were unacceptable. 976 pedicle screws were placed, 713 screws (73.1%) were fully contained within the cortical boundaries of the pedicle. 924 (94.7%) screws were considered as acceptable, and 52 (5.3%) as unacceptable. The perforation rate was higher using free-hand technique than O-arm navigation technique (30.8% VS. 11.4%, P Marfan syndrome is accuracy and safe. O-arm navigation was an effective modality to ensure the safety and accuracy of screw placement. Special attention should be paid when screws were placed at the lumber spine and the concave side of spine deformity to avoid the higher rate of complications.

  17. Minimally Invasive Technique for PMMA Augmentation of Fenestrated Screws

    Directory of Open Access Journals (Sweden)

    Jan-Helge Klingler

    2015-01-01

    Full Text Available Purpose. To describe the minimally invasive technique for cement augmentation of cannulated and fenestrated screws using an injection cannula as well as to report its safety and efficacy. Methods. A total of 157 cannulated and fenestrated pedicle screws had been cement-augmented during minimally invasive posterior screw-rod spondylodesis in 35 patients from January to December 2012. Retrospective evaluation of cement extravasation and screw loosening was carried out in postoperative plain radiographs and thin-sliced triplanar computed tomography scans. Results. Twenty-seven, largely prevertebral cement extravasations were detected in 157 screws (17.2%. None of the cement extravasations was causing a clinical sequela like a new neurological deficit. One screw loosening was noted (0.6% after a mean follow-up of 12.8 months. We observed no cementation-associated complication like pulmonary embolism or hemodynamic insufficiency. Conclusions. The presented minimally invasive cement augmentation technique using an injection cannula facilitates convenient and safe cement delivery through polyaxial cannulated and fenestrated screws during minimally invasive screw-rod spondylodesis. Nevertheless, the optimal injection technique and design of fenestrated screws have yet to be identified. This trial is registered with German Clinical Trials DRKS00006726.

  18. Stress field of a near-surface basal screw dislocation in elastically anisotropic hexagonal crystals

    Directory of Open Access Journals (Sweden)

    Valeri S. Harutyunyan

    2017-11-01

    Full Text Available In this study, we derive and analyze the analytical expressions for stress components of the dislocation elastic field induced by a near-surface basal screw dislocation in a semi-infinite elastically anisotropic material with hexagonal crystal lattice. The variation of above stress components depending on “free surface–dislocation” distance (i.e., free surface effect is studied by means of plotting the stress distribution maps for elastically anisotropic crystals of GaN and TiB2 that exhibit different degrees of elastic anisotropy. The dependence both of the image force on a screw dislocation and the force of interaction between two neighboring basal screw dislocations on the “free surface–dislocation” distance is analyzed as well. The influence of elastic anisotropy on the latter force is numerically analyzed for GaN and TiB2 and also for crystals of such highly elastically-anisotropic materials as Ti, Zn, Cd, and graphite. The comparatively stronger effect of the elastic anisotropy on dislocation-induced stress distribution quantified for TiB2 is attributed to the higher degree of elastic anisotropy of this compound in comparison to that of the GaN. For GaN and TiB2, the dislocation stress distribution maps are highly influenced by the free surface effect at “free surface–dislocation” distances roughly smaller than ≈15 and ≈50 nm, respectively. It is found that, for above indicated materials, the relative decrease of the force of interaction between near-surface screw dislocations due to free surface effect is in the order Ti > GaN > TiB2 > Zn > Cd > Graphite that results from increase of the specific shear anisotropy parameter in the reverse order Ti < GaN < TiB2 < Zn < Cd < Graphite. The results obtained in this study are also applicable to the case when a screw dislocation is situated in the “thin film–substrate” system at a (0001 basal interface between the film and substrate provided that the elastic constants

  19. Investigation of Calibrating Force Transducer Using Sinusoidal Force

    International Nuclear Information System (INIS)

    Zhang Li; Wang Yu; Zhang Lizhe

    2010-01-01

    Sinusoidal force calibration method was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). A similar dynamic force calibration system is developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electro-dynamic shakers to generate dynamic force in the range from 1 N to 20 kN, and heterodyne laser interferometers are used for acceleration measurement. The force transducer to be calibrated is mounted on the shaker, and a mass block is screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition. The methods of determining Spatial-dependent acceleration on mass block and measuring the end mass of force transducer in dynamic force calibration are discussed in this paper.

  20. Energy self-sufficient sensory ball screw drive; Energieautarker sensorischer Kugelgewindetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, Oliver

    2012-07-01

    Nowadays the availability of machine tools plays a decisive role in competition to increase in productivity. From state of the art it arises, that ball screw drives are the most abusive component in feed drives because of abrasive wear. Furthermore condition monitoring enables avoiding unplanned machine failure and increasing the availability of the deployed production facility. Thereby the application of additional sensors allows the direct acquisition of wear correlative measurements. To reduce the required effort for integration and increase the robustness, reliability and clarity in industrial environment energy self-sufficient sensor systems can be applied. In this thesis the development and investigation of an energy self-sufficient sensory ball screw drive with direct measurement of wear correlative pretension for condition monitoring application is described. The prototype measures the pretension with force sensors based on strain gauges. The sensor system includes microcontroller-based electronics for signal processing as well as wireless data transmission with ZigBee-standard. A hybrid system assures the energy supply of the sensor system. On the one hand a stepper motor generator produces electrical energy from the motion energy of the ball screw drive. On the other hand an energy buffer based on super caps is reloaded in stationary position by wireless energy transmission. For verification a prototype system is build up. In measurements the sensory and energetic characteristics of the energy self-sufficient sensor systems are analyzed. Moreover, the functionality of the ball screw drive as well as the signal characteristics of the force sensors are examined for different pretensions. In addition, pretension losses due to wear are established in realized endurance trials, which means that timely maintenance can be planned.

  1. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.

    Science.gov (United States)

    Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan

    2018-01-01

    Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may

  2. Polyacrylamide hydrogel pulmonary embolism--A fatal consequence of an illegal cosmetic vaginal tightening procedure: A case report.

    Science.gov (United States)

    Duan, Yijie; Zhang, Lin; Li, Shangxun; Yang, Yi; Xing, Jingjun; Li, Wenhe; Wang, Xinmei; Zhou, Yiwu

    2014-05-01

    Vaginal tightening is a kind of esthetic surgery aimed at enhancing sexual satisfaction during intercourse. Although the injective vaginal tightening procedure is informal, there are already some reports of its application. But pulmonary embolism is a really rare therapeutic complication of this procedure. We report a case of death due to the non-thrombotic pulmonary embolism as a consequence of illegal cosmetic vaginal-tightening procedure using polyacrylamide hydrogel. A 34-year-old woman was hospitalized with paroxysmal abdominal cramps and diarrhea as initial symptoms, while she concealed the genital cosmetic surgery history. Respiratory distress presented only 1.5h before she died. The result of autopsy revealed the cause of death as pulmonary embolism due to the hydrogel which was injected into her vaginal wall. The emboli were confirmed as polyacrylamide hydrogel by Alcian-blue stain and the Fourier transform infrared scanning. It is suggested that pulmonary embolism should not be discarded in the expertise of deaths following cosmetic implant surgeries. It broadens our understanding about death associated with esthetic genital procedures and informs clinicians and medical examiners of the potential death of this type. And detailed investigations of previous medical and surgical history will always play a critical role in the certification of cause of death. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Magnesium Alloys as a Biomaterial for Degradable Craniofacial Screws

    Science.gov (United States)

    Henderson, Sarah E.; Verdelis, Konstantinos; Maiti, Spandan; Pal, Siladitya; Chung, William L.; Chou, Da-Tren; Kumta, Prashant N.; Almarza, Alejandro J.

    2014-01-01

    Recently, magnesium (Mg) alloys have received significant attention as a potential biomaterial for degradable implants, and this study was directed at evaluating the suitability of Mg for craniofacial bone screws. The objective was to implant screws fabricated from commercially available Mg-alloys (pure Mg and AZ31) in-vivo in a rabbit mandible. First, Mg-alloy screws were compared to stainless steel screws in an in-vitro pull-out test and determined to have a similar holding strength (~40N). A finite element model of the screw was created using the pull-out test data, and the model can be used for future Mg-alloy screw design. Then, Mg-alloy screws were implanted for 4, 8, and 12 weeks, with two controls of an osteotomy site (hole) with no implant and a stainless steel screw implanted for 12 weeks. MicroCT (computed tomography) was used to assess bone remodeling and Mg-alloy degradation, both visually and qualitatively through volume fraction measurements for all time points. Histologic analysis was also completed for the Mg-alloys at 12 weeks. The results showed that craniofacial bone remodeling occurred around both Mg-alloy screw types. Pure Mg had a different degradation profile than AZ31, however bone growth occurred around both screw types. The degradation rate of both Mg-alloy screw types in the bone marrow space and the muscle were faster than in the cortical bone space at 12 weeks. Furthermore, it was shown that by alloying Mg, the degradation profile could be changed. These results indicate the promise of using Mg-alloys for craniofacial applications. PMID:24384125

  4. An in vitro biomechanical comparison of equine proximal interphalangeal joint arthrodesis techniques: an axial positioned dynamic compression plate and two abaxial transarticular cortical screws inserted in lag fashion versus three parallel transarticular cortical screws inserted in lag fashion.

    Science.gov (United States)

    Sod, Gary A; Riggs, Laura M; Mitchell, Colin F; Hubert, Jeremy D; Martin, George S

    2010-01-01

    To compare in vitro monotonic biomechanical properties of an axial 3-hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP-TLS) with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion (3-TLS) for the equine proximal interphalangeal (PIP) joint arthrodesis. Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Cadaveric adult equine forelimbs (n=15 pairs). For each forelimb pair, 1 PIP joint was stabilized with an axial 3-hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion. Five matching pairs of constructs were tested in single cycle to failure under axial compression, 5 construct pairs were tested for cyclic fatigue under axial compression, and 5 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t-test within each group with statistical significance set at Pcycle to failure, of the DCP-TLS fixation were significantly greater than those of the 3-TLS fixation. Mean cycles to failure in axial compression of the DCP-TLS fixation was significantly greater than that of the 3-TLS fixation. The DCP-TLS was superior to the 3-TLS in resisting the static overload forces and in resisting cyclic fatigue. The results of this in vitro study may provide information to aid in the selection of a treatment modality for arthrodesis of the equine PIP joint.

  5. Aspartate tightens the anchoring of staphylococcal lipoproteins to the cytoplasmic membrane.

    Science.gov (United States)

    Kumari, Nimerta; Götz, Friedrich; Nguyen, Minh-Thu

    2017-12-01

    In gram-negative bacteria, the ABC transporter LolCDE complex translocates outer membrane-specific lipoproteins (Lpp) from the inner membrane to the outer membrane. Lpp possessing aspartate (Asp) at position +2 are not translocated because it functions as a LolCDE avoidance signal. In gram-positive bacteria, lacking an outer membrane and the Lol system, Lpp are only anchored at the outer leaflet of the cytoplasmic membrane. However, the release of Lpp particularly in pathogenic or commensal species is crucial for immune modulation. Here, we provide evidence that in Staphylococcus aureus Asp at position +2 plays a role in withholding Lpp to the cytoplasmic membrane. Screening of published exoproteomic data of S. aureus revealed that Lpp mainly with Gly or Ser at position +2 were found in exoproteome, but there was no Lpp with Asp+2. The occurrence of Lpp with Asp+2 is infrequent in gram-positive bacteria. In S. aureus USA300 only seven of the 67 Lpp possess Asp+2; among them five Lpp represented Lpl lipoproteins involved in host cell invasion. Our study demonstrated that replacing the Asp+2 present in Lpl8 with a Ser enhances its release into the supernatant. However, there is no different release of Asp+2 and Ser+2 in mprF mutant that lacks the positive charge of lysyl-phosphatidylglycerol (Lys-PG). Moreover, substitution of Ser+2 by Asp in SitC (MntC) did not lead to a decreased release indicating that in staphylococci positions +3 and +4 might also be important for a tighter anchoring of Lpp. Here, we show that Asp in position +2 and adjacent amino acids contribute in tightening the anchoring of Lpp by interaction of the negative charged Asp with the positive charged Lys-PG. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Evaluation of a microfocused ultrasound system for improving skin laxity and tightening in the lower face.

    Science.gov (United States)

    Oni, Georgette; Hoxworth, Ron; Teotia, Sumeet; Brown, Spencer; Kenkel, Jeffrey M

    2014-09-01

    The Ulthera System (Ulthera, Inc, Mesa, Arizona) employs microfocused ultrasound to cause discrete focal heating of the dermis and stimulate neocollagenesis and elastin remodeling. The authors investigated tightening and lifting of cheek tissue, improvement in jawline definition, and reduction in submental skin laxity in patients treated with the Ulthera System. A total of 103 adults were enrolled in this prospective nonrandomized clinical trial. Three-dimensional photographs obtained at baseline and 3 months posttreatment were assessed qualitatively by 3 blinded reviewers and quantitatively with AutoCAD software (Informer Technologies, Redwood City, California). The relationship between outcomes and body mass index (BMI) was examined as well. Patients rated pain during the procedure and provided subjective assessment of their outcome at 90 days. Adverse events were documented. Ninety-three patients were evaluated. Blinded reviewers observed improvement in skin laxity in 58.1% of patients. During quantitative assessments, overall improvement in skin laxity was noted in 63.6% of evaluated patients. No change was detected in 54.5% of patients whose BMI exceeded 30 kg/m2 or in 12.2% of patients whose BMI was ≤30 kg/m2. At day 90, 65.6% of patients perceived improvement in the skin laxity of the lower half of their face/neck. The average procedural pain scores for the cheek, submental, and submandibular regions were 5.68, 6.09, and 6.53, respectively. Wheals, which resolved without intervention or long-term sequelae, were reported for 3 patients. To the authors' knowledge, this is the largest clinical study of the effectiveness of the Ulthera System for rejuvenation of the lower face. At day 90, improvements were reported by two-thirds of patients and by nearly 60% of blinded reviewers. Outcomes were better in patients with BMI≤30 kg/m2. 2. © 2014 The American Society for Aesthetic Plastic Surgery, Inc.

  7. Quantitative Analysis of Face and Neck Skin Tightening by Microfocused Ultrasound With Visualization in Asians.

    Science.gov (United States)

    Lu, Pei-Hsuan; Yang, Chih-Hsun; Chang, Ya-Ching

    2017-11-01

    Previous studies of microfocused ultrasound with visualization (MFU-V) on facial and neck laxity were largely based on masked physician assessments, histological analysis, and safety profile. More quantitative studies are needed. To evaluate the 800 treatment lines of MFU-V on skin tightening effect of face and neck in Asians using 2 quantitative analysis systems at 0, 90, and 180 days after treatment. Total 25 subjects were recruited in this prospective study. Subjects were treated with MFU-V to the face and neck using 2 different transducers: 4 MHz, 4.5-mm focal depth and 7 MHz, 3.0-mm focal depth with total 800 lines. The subjects were evaluated by skin complexion analysis and 3-dimensional imaging system at 0, 90, and 180 days. Mean brow height lift and submental lift were calculated. All 25 subjects completed treatment and received the follow-up examinations at 90 and 180 days. Two of the 25 subjects were male. Mean patient age was 53.3 years (range: 39.8-61.1 years). Wrinkles, texture, and pores were 3 variables relevant to analysis of skin laxity. Only mean wrinkles score reduction at 90 days was statistically significant (p = .0222). There was a mean 0.47 mm brow lift at 90 days (p = .0165), but there was a 0.12 mm decrease in brow height compared to baseline at 180 days (p = .6494). At 90 days, a mean 26.44 mm submental lift was noted (p = .0217). And at 180 days, a mean 13.76 mm submental lift was noted (p = .243). This study showed that the most prominent change after the 800-line MFU-V treatments in Asians was the significant submental lift at 90 days. Other noninvasive or minimally invasive treatment modalities can be considered to combine with MFU-V for the optimal treatment response. Additional MFU-V treatments can be considered 3 months after the first treatment.

  8. Combined infrared light and bipolar radiofrequency for skin tightening in Asians.

    Science.gov (United States)

    Yu, Carol S; Yeung, Chi K; Shek, Samantha Y; Tse, Raymond K; Kono, Taro; Chan, Henry H

    2007-07-01

    As the demand for non-invasive procedures for skin tightening is increasing, combined optical and radiofrequency (RF) devices have recently emerged. The purpose of this study is to evaluate the safety and efficacy of a device that combined broadband infrared (IR) light (700-2000 nm) and bipolar RF (electro-optical synergy [ELOS]) for non-ablative treatment of facial laxity. DESIGN/MATERIALS AND METHODS: Nineteen Chinese volunteers of skin types III-V, with facial laxity and periorbital rhytides, received three treatments at 3-week intervals with combined IR (700-2000 nm, 10 W/cm(2)) and RF energies (70-120 J/cm(3)). Standardized photographs were taken by the Canfield Visia CR system at baseline and serially for 3 months after the last treatment. Two masked assessors evaluated the photographs to assess the improvement in skin laxity. Patient satisfaction scores were also obtained. At 3 months after the last treatment, 89.5% of the subjects reported moderate to significant subjective improvement in skin laxity of cheek, jowl, periorbital area and upper neck, with a high overall satisfaction rating. Masked observers' assessments were less remarkable. Mild improvement in skin laxity was observed over mid and lower face. There was no serious complication. The combination of broadband infrared light and bipolar radiofrequency produces mild improvement of facial laxity in Asians with no serious adverse sequelae. A high patients' satisfaction is achieved. However, further studies are necessary to demonstrate the long-term effects of the procedure and to optimize treatment parameters. (c) 2007 Wiley-Liss, Inc.

  9. Evaluation of two styles of slotted, flat-head screws

    International Nuclear Information System (INIS)

    Reeves, C.A. Jr.; Johnson, W.B.

    1979-01-01

    A series of torque tests were performed to evaluate the relative merits of two different flat-head screws fabricated from a uranium--6% niobium alloy. The screws tested were machined with both normal, straight-through slots in the head and with slots having radiused bottoms. Test results indicate that both designs easily surpass the required 20-inch-pound-proof torque

  10. Electromagnetic Lead Screw for Potential Wave Energy Application

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2014-01-01

    This paper presents a new type electromagnetic lead screw (EMLS) intended for wave energy application. Similar to the mechanical lead screw, this electromagnetic version can transfer slow linear motion to high-rotational motion, offering gearing effects. Compared with the existing pure magnetic...

  11. The Analysis of Soil Resistance During Screw Displacement Pile Installation

    Science.gov (United States)

    Krasinski, Adam

    2015-02-01

    The application of screw displacement piles (SDP) is still increasing due to their high efficiency and many advantages. However, one technological problem is a serious disadvantage of those piles. It relates to the generation of very high soil resistance during screw auger penetration, especially when piles are installed in non-cohesive soils. In many situations this problem causes difficulties in creating piles of designed length and diameter. It is necessary to find a proper method for prediction of soil resistance during screw pile installation. The analysis of screw resistances based on model and field tests is presented in the paper. The investigations were carried out as part of research project, financed by the Polish Ministry of Science and Higher Education. As a result of tests and analyses the empirical method for prediction of rotation resistance (torque) during screw auger penetration in non-cohesive subsoil based on CPT is proposed.

  12. On Helical Projection and Its Application in Screw Modeling

    Directory of Open Access Journals (Sweden)

    Riliang Liu

    2014-04-01

    Full Text Available As helical surfaces, in their many and varied forms, are finding more and more applications in engineering, new approaches to their efficient design and manufacture are desired. To that end, the helical projection method that uses curvilinear projection lines to map a space object to a plane is examined in this paper, focusing on its mathematical model and characteristics in terms of graphical representation of helical objects. A number of interesting projective properties are identified in regard to straight lines, curves, and planes, and then the method is further investigated with respect to screws. The result shows that the helical projection of a cylindrical screw turns out to be a Jordan curve, which is determined by the screw's axial profile and number of flights. Based on the projection theory, a practical approach to the modeling of screws and helical surfaces is proposed and illustrated with examples, and its possible application in screw manufacturing is discussed.

  13. A four lumen screwing device for multiparametric brain monitoring.

    Science.gov (United States)

    Feuerstein, T H; Langemann, H; Gratzl, O; Mendelowitsch, A

    2000-01-01

    We describe multiparametric monitoring in severe head trauma using a new screwing device. Our aim was to create a screw which would make the implantation of the probes and thus multiparametric monitoring easier. The new screw allows us to implant 3 probes (microdialysis, Paratrend and an intracranial pressure device) through one burr hole. The screw has four channels, the fourth being for ventricular drainage. We monitored 13 patients with severe head trauma (GCS = 3-8) for up to 7 days. Brain tissue pO2, pCO2, pH, and temperature were measured on-line with the Paratrend 7 machine. The microdialytic parameters glucose, lactate, pyruvate and glutamate were determined semi on-line with a CMA 600 enzymatic analyser. There were no complications in any of the patients that could be ascribed to the screw.

  14. The Analysis of Soil Resistance During Screw Displacement Pile Installation

    Directory of Open Access Journals (Sweden)

    Krasinski Adam

    2015-02-01

    Full Text Available The application of screw displacement piles (SDP is still increasing due to their high efficiency and many advantages. However, one technological problem is a serious disadvantage of those piles. It relates to the generation of very high soil resistance during screw auger penetration, especially when piles are installed in non-cohesive soils. In many situations this problem causes difficulties in creating piles of designed length and diameter. It is necessary to find a proper method for prediction of soil resistance during screw pile installation. The analysis of screw resistances based on model and field tests is presented in the paper. The investigations were carried out as part of research project, financed by the Polish Ministry of Science and Higher Education. As a result of tests and analyses the empirical method for prediction of rotation resistance (torque during screw auger penetration in non-cohesive subsoil based on CPT is proposed.

  15. Open reduction and internal fixation of patellar fractures with tension band wiring through cannulated screws.

    Science.gov (United States)

    Malik, Mudasir; Halwai, Manzoor Ahmad

    2014-10-01

    The purpose of this study was to evaluate effectiveness and safety of a relatively new technique of open reduction and internal fixation of displaced transverse patellar fractures with tension band wiring (TBW) through parallel cannulated compression screws. A total of 30 patients with displaced transverse patellar fracture were enrolled in this prospective study. Of the 30 patients, 20 patients had trauma due to fall, 5 due to road traffic accident, 2 due to fall of heavy object on the knee, 2 due to forced flexion of knee, and 1 had fracture due to being beaten. All 30 patients were treated with vertical skin exposure, fracture open reduction, and internal fixation by anterior TBW through 4.0 mm cannulated screws. The postoperative rehabilitation protocol was standardized. The patients were followed postsurgery to evaluate time required for radiographic bone union, knee joint range of motion (ROM), loss of fracture reduction, material failure, and the overall functional result of knee using Bostman scoring. All the fractures healed radiologically, at an average time of 10.7 weeks (range, 8-12 weeks). The average ROM arc was 129.7 degrees (range, 115-140 degrees). No patient had loss of fracture reduction, implant migration, or material failure. The average Bostman score was 28.6 out of 30. Anterior TBW through cannulated screws for displaced transverse fractures is safe and effective alternative treatment. Good functional results and recovery can be expected. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Contribution to the study of screw dislocations; Contribution a l'etude des dislocations helicoidales

    Energy Technology Data Exchange (ETDEWEB)

    Grilhe, J [Commissariat a l' Energie Atomique, Fontenay aux Roses (France). Centre d' Etudes Nucleaires

    1965-03-01

    The aim of this work is to study the germination, growth and properties of screw dislocations. In the introduction (first chapter), we describe briefly the main experimental results obtained by various authors (observations of screws by Amelinckx and Bontinck in ionic crystals, by Dash in silicon crystals and by Thomas and Whelan in aluminium based alloys). We then make a few considerations concerning characteristic geometry of screws and the various methods used for calculating the energy of a dislocation. In the second chapter we study the problems involving only slip of the screw around its cylinder. We calculate the equilibrium step as a function of the forces acting on the extremities. We determine the critical stress required to disrupt the screw and study the interactions between the screw and other dislocations of the lattice. In the third chapter we consider the problem of the stability when the dislocation can climb by absorption or emission of vacancies. We study separately the stability of the size which only involves volume diffusion and the stability of the shape which depends only on the rearrangement of the vacancies along the dislocation. In chapter four we put forward a germination model for the screws: since the vacancies are not absorbed by the screw dislocations, they form clusters which take up a spiral form. The formation of these spirals is studied from the geometrical point of view in face-centered cubic systems. In chapter five we make use of the results obtained in chapters two and three for studying the growth of the spirals. (author) [French] Le but de ce travail est d'etudier la germination, la croissance et les proprietes des dislocations helico ales. Dans l'introduction (premier chapitre), nous exposons brievement les principaux resultats experimentaux obtenus par differents auteurs (observations d'helice par Amelinckx et Bontinck dans les cristaux ioniques, par Dash dans des cristaux de silicium et par Thomas et Whelan dans des

  17. Screw elastic intramedullary nail for the management of adult forearm fractures

    Directory of Open Access Journals (Sweden)

    Wasudeo Gadegone

    2012-01-01

    Full Text Available Background: The failure of the conventional nailing of both forearm bones or isolated fractures of radius and ulna pose a potential problem of nail migration and rotational instability, despite the best reduction. The purpose of this paper is to evaluate the results of screw elastic intramedullary nail for the treatment of adult diaphyseal fractures of both forearm bones, which effectively addresses the problems associated with the conventional nailing systems for the forearm fractures. Materials and Methods: Seventy-six adults with forearm fractures (radius and ulna or isolated fracture of the single bone were retrospectively evaluated. Fifty males and 26 females with the mean age of 38 years (range, 18-70 years underwent closed reduction and screw intramedullary nail fixation. Ten patients required limited open reduction. The fractures were classified according to the AO/OTA system. The average followup was 12 months (range, 6 to 18 months. Results: The mean surgical time was 45 minutes (35 to 65 minutes. The meantime to union was 14 weeks (10-21 weeks. The results were graded as excellent in 50, good in 18 patients, and acceptable in eight patients, using the criteria of Grace and Eversman. We had superficial infection in three cases, one case of delayed infection, painful bursa in two cases, delayed union in two cases, malunion with dislocation of the DRUJ in two cases, injury to the extensor tendon of the thumb in one case, and one case of incomplete radioulnar synostosis. Conclusion: Closed reduction and internal fixation of forearm fractures by screw intramedullary nails reestablishes the near normal relationship of the fractured fragments. Screw intramedullary nail effectively controls both rotatory forces and the migration of the nail. It produces excellent clinical results in isolated fractures of either bones, as well as both bones of the forearm in adults.

  18. Stability of biodegradable metal (Mg-Ca-Zn alloy) screws compared with absorbable polymer and titanium screws for sagittal split ramus osteotomy of the mandible using the finite element analysis model.

    Science.gov (United States)

    Lee, Jee-Ho; Han, Hyung-Seop; Kim, Yu-Chan; Lee, Jin-Yong; Lee, Bu-Kyu

    2017-10-01

    Mg-Ca-Zn alloy has been suggested for the application of fixation materials during maxillofacial surgery. We investigated the stability of Mg-Ca-Zn alloy for clinical application during orthognathic surgery. The finite element model for the fixation of sagittal split ramus osteotomy was constructed. In the bicortical screw fixation of the mandible setback condition, the stress distributions of Mg-Ca-Za alloy, polylactic acid polymer, and titanium were evaluated using the virtual model with occlusal loading of 132 N. The deformations of the three different materials of fixation screw were observed according to masticatory force ranging from 132 to 1,000 N. When comparing the stress distribution placed on cortical bone between the polymer and magnesium alloy groups, the magnesium alloy screws could bear more stress, thereby decreasing the stress, which might be distributed to other biologic components, such as the condyle and cortical ramus of the mandible. Deformations of the screws according to functional load were minimal, and the deformation remained stability of sagittal split ramus osteotomy setback surgery. Copyright © 2017. Published by Elsevier Ltd.

  19. Safety and surgical techniques of C1 lateral mass screws

    International Nuclear Information System (INIS)

    Kubo, Shinichiro; Kuroki, Hiroshi; Hanado, Shoji; Hamanaka, Hideaki; Inomata, Naoki; Kuroki, Shuji; Chosa, Etsuo

    2010-01-01

    The objectives of this study were to evaluate the proper insertion techniques of C1 lateral mass screws. Eighteen consecutive patients were examined after upper cervical fusion using twenty-nine C1 lateral mass screws. Screws were placed by three different techniques; Goel's technique (4), Tan's technique (20), Notching technique (5). Pre and post-operative CT scans with multiplanar reconstruction were used to detect cortical breaches and direction of screws. No transverse foramen and vertebral groove violation was found in CT scans. Three had breached superior articular facet of the atlas. However, the range of motion (R.O.M) of atlanto-occipital joints had not changed postoperatively. Theses screws were inserted with Tan's technique and two of three were directed medially. It is feasible to safely insert C1 lateral mass screws when correct insertion point and direction are considered preoperatively. However, care should be taken because screws can violate the atlanto-occipital joint especially with Tan's technique. (author)

  20. Experiments on screw-pinch plasmas with elongated cross section

    International Nuclear Information System (INIS)

    Lassing, H.W.

    1989-01-01

    In this thesis experiments are described carried out with SPICA II, a toroidal screw-pinch plasma device. this device is the last one in a series of plasma machines of the toroidal screw-pinch differing from its predecessor in its race-track shaped section. In devices of the type toroidal screw-pinch stable confinement is possible of plasmas with larger β values than in a tokamak discharge. In a pinch the plasma is screwed up, during the formation, in such a way that in a relatively small volume a plasma is formated with a high pressure. During the screwing up the plasma is heated by shock heating as well as adiabatic compression. With the modified snowplow model the density and temperature after the formation can be calculated, starting from the initial conditions. When all ions arrive into the plasma column, the density in the column is determined by the volume compression. First purpose of the experiments was to find a stable discharge. Subsequently discharges have been made with a high as possible β in order to investigate at which maximum β it is possible to confine screw-pinch plasmas stably. When these had been found, the nature and importance could be investigated of the processes following which the screw-pinch plasma looses its energy. (author), 75 res.; 95 figs.; 8 tabs

  1. Economics of water injected air screw compressor systems

    Science.gov (United States)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  2. Multiaxial pedicle screw designs: static and dynamic mechanical testing.

    Science.gov (United States)

    Stanford, Ralph Edward; Loefler, Andreas Herman; Stanford, Philip Mark; Walsh, William R

    2004-02-15

    Randomized investigation of multiaxial pedicle screw mechanical properties. Measure static yield and ultimate strengths, yield stiffness, and fatigue resistance according to an established model. Compare these measured properties with expected loads in vivo. Multiaxial pedicle screws provide surgical versatility, but the complexity of their design may reduce their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. Groups of five assemblies were tested in static tension and compression and subject to three cyclical loads. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six designs of screw. Static compression yield loads ranged from 217.1 to 388.0 N and yield stiffness from 23.7 to 38.0 N/mm. Cycles to failure ranged from 42 x 10(3) to 4,719 x 10(3) at 75% of static ultimate load. There were significant differences between designs in all modes of testing. Failure occurred at the multiaxial link in static and cyclical compression. Bending yield strengths just exceeded loads expected in vivo. Multiaxial designs had lower static bending yield strength than fixed screw designs. Five out of six multiaxial screw designs achieved one million cycles at 200 N in compression bending. "Ball-in-cup" multiaxial locking mechanisms were vulnerable to fatigue failure. Smooth surfaces and thicker material appeared to be protective against fatigue failure.

  3. Positioning of pedicle screws in adolescent idiopathic scoliosis using electromyography

    Directory of Open Access Journals (Sweden)

    Bruno Moreira Gavassi

    2015-06-01

    Full Text Available OBJECTIVE: To analyze the occurrence of poor positioning of pedicle screws inserted with the aid of intraoperative electromyographic stimulation in the treatment of Adolescent Idiopathic Scoliosis (AIS.METHODS: This is a prospective observational study including all patients undergoing surgical treatment for AIS, between March and December 2013 at a single institution. All procedures were monitored by electromyography of the inserted pedicle screws. The position of the screws was evaluated by assessment of postoperative CT and classified according to the specific AIS classification system.RESULTS: Sixteen patients were included in the study, totalizing 281 instrumented pedicles (17.5 per patient. No patient had any neurological deficit or complaint after surgery. In the axial plane, 195 screws were found in ideal position (69.4% while in the sagittal plane, 226 screws were found in ideal position (80.4%. Considering both the axial and the sagittal planes, it was observed that 59.1% (166/281 of the screws did not violate any cortical wall.CONCLUSION: The use of pedicle screws proved to be a safe technique without causing neurological damage in AIS surgeries, even with the occurrence of poor positioning of some implants.

  4. Biopolymer augmentation of the lag screw in the treatment of femoral neck fractures - a biomechanical in-vitro study

    Directory of Open Access Journals (Sweden)

    Paech A

    2010-04-01

    Full Text Available Abstract The cut-out of the sliding screw is one of the most common complications in the treatment of intertrochanteric fractures. The reasons for the cut-out are: a suboptimal position of the hip-screw in the femoral head, the type of fracture and poor bone quality. The aim of this study was to reproduce the cut-out event biomechanically and to evaluate the possible prevention of this event by the use of a biopolymer augmentation of the hip screw. Concerning the density and compression force of osteoporotic femoral bone polyurethane foam according to the terms of the Association for Standard Testing Material (ASTMF 1839-97 was used as test material. The polyurethane foam Lumoltan 200 with a compression force of 3.3 Mpa and a density of 0.192 g/cm3 was used to reproduce the osteoporotic bone of the femoral fragment (density 12 lbm/ft3. A cylinder of 50 mm of length and 50 mm of width was produced by a rotary splint raising procedure with planar contact. The axial load of the system was performed by a hydraulic force cylinder of a universal test machine type Zwick 1455, Ulm, Germany. The CCD-angle of the used TGN-System was preset at 130 degrees. The migration pattern of the hip screw in the polyurethane foam was measured and expressed as a curve of the distance in millimeter [mm] against the applied load in Newton [N] up to the cut-out point. During the tests the implants reached a critical changing point from stable to unstable with an increased load progression of steps of 50 Newton. This unstable point was characterized by an increased migration speed in millimeters and higher descending gradient in the migration curve. This peak of the migration curve served as an indicator for the change of the hip screw position in the simulated bone material. The applied load in the non-augmented implant showed that in this group for a density degree of 12 (0,192 g/cm3 the mean force at the failure point was 1431 Newton (± 52 Newton. In the augmented

  5. Fracture of an industrial steam turbine horizontal joint nut upon tightening; Bruch der Mutter einer Horizontalteilfugenverschraubung einer Industriedampfturbine beim Anziehen

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Boromir; Giller, Madeleine; Neidel, Andreas; Riesenbeck, Susanne [Siemens AG - Gasturbinenwerk Berlin (Germany). Energy Sector Werkstoffprueflabor

    2017-11-01

    The nut of a horizontal joint fastener cracked upon tightening during assembly in an industrial steam turbine factory. It was previously used in an over-pressure test, but was otherwise not yet used in service. Nut and bolt were made of the nickel-based superalloy Nimonic 80A, a precipitation-hardenable wrought high-strength alloy with excellent creep and corrosion properties. Such alloys usually get a complex heat treatment after hot-rolling, comprising homogenizing and multiple ageing cycles. The subject nut failed due to an extreme case of mixed grain size which detrimentally affected mechanical properties and was attributed to an insufficient degree of deformation during hot rolling.

  6. Double twist : Can-K's electric submersible twin screw pump is designed to handle the nastiest crudes

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-12-15

    This article described the Can-K Group of Companies' electric submersible twin screw pump (ESTSP) designed for pumping heavy crudes with high levels of asphaltenes, hydrogen sulphide, wax, and methane. The technology was awarded the 2010 winner of best production technology for a company with fewer than 100 employees. The ESTSP can pump at a greater depth than other lift technologies. The design challenges included making the pump small enough to fit inside the well casing while also able to generate the high pressures necessary for pumping heavy oil. The ESTSP can compete directly against other lift technologies, including electric submersible pumps (ESPs). In the design, two shafts are separated by a timing gear. Each shaft has short sections of interlocking screws that do not touch, which lessens tension and the need for torque, lowering electricity consumption. The ESTSP is more efficient than ESP systems, particularly in more viscous mediums with high gas-to-oil ratios. The positive displacement pump interprets only volume and does not distinguish between gas and oil, functioning with gas content up to 97 percent. ESTSP can also handle more sand than ESP because it does not rely on centrifugal force. A patented screw design also helps prevent pump seizure resulting from sand and other solids. The pump uses downhole electric motors from other manufacturers. The inherent efficiencies of twin screw pumps give the technology the potential to replace conventional ESPs. 2 figs.

  7. A power recirculating test rig for ball screw endurance tests

    Directory of Open Access Journals (Sweden)

    Giberti Hermes

    2016-01-01

    Full Text Available A conceptual design of an innovative test rig for endurance tests of ball screws is presented in this paper. The test rig layout is based on the power recirculating principle and it also allows to overtake the main critical issues of the ball screw endurance tests. Among these there are the high power required to make the test, the lengthy duration of the same and the high loads between the screw and the frame that holds it. The article describes the test rig designed scheme, the kinematic expedients to be adopted in order to obtain the required performance and functionality and the sizing procedure to choose the actuation system.

  8. Design of platform for removing screws from LCD display shields

    Science.gov (United States)

    Tu, Zimei; Qin, Qin; Dou, Jianfang; Zhu, Dongdong

    2017-11-01

    Removing the screws on the sides of a shield is a necessary process in disassembling a computer LCD display. To solve this issue, a platform has been designed for removing the screws on display shields. This platform uses virtual instrument technology with LabVIEW as the development environment to design the mechanical structure with the technologies of motion control, human-computer interaction and target recognition. This platform removes the screws from the sides of the shield of an LCD display mechanically thus to guarantee follow-up separation and recycle.

  9. Noninvasive method for retrieval of broken dental implant abutment screw

    Directory of Open Access Journals (Sweden)

    Jagadish Reddy Gooty

    2014-01-01

    Full Text Available Dental implants made of titanium for replacement of missing teeth are widely used because of ease of technical procedure and high success rate, but are not free of complications and may fail. Fracturing of the prosthetic screw continues to be a problem in restorative practice and great challenge to remove the fractured screw conservatively. This case report describes and demonstrates the technique of using an ultrasonic scaler in the removal of the fracture screw fragment as a noninvasive method without damaging the hex of implants.

  10. Grid deformation strategies for CFD analysis of screw compressors

    OpenAIRE

    Rane, S.; Kovacevic, A.; Stosic, N.; Kethidi, M.

    2013-01-01

    Customized grid generation of twin screw machines for CFD analysis is widely used by the refrigeration and air-conditioning industry today, but is currently not suitable for topologies such as those of single screw, variable pitch or tri screw rotors. This paper investigates a technique called key-frame re-meshing that supplies pre-generated unstructured grids to the CFD solver at different time steps. To evaluate its accuracy, the results of an isentropic compression-expansion process in a r...

  11. Analysis of Material Flow in Screw Extrusion of Aluminum

    International Nuclear Information System (INIS)

    Haugen, Bjoern; Oernskar, Magnus; Welo, Torgeir; Wideroee, Fredrik

    2010-01-01

    Screw extrusion of aluminum is a new process for production of aluminum profiles. The commercial potential could be large. Little experimental and numerical work has been done with respect to this process.The material flow of hot aluminum in a screw extruder has been analyzed using finite element formulations for the non-Newtonian Navier-Stokes equations. Aluminum material properties are modeled using the Zener-Holloman material model. Effects of stick-slip conditions are investigated with respect to pressure build up and mixing quality of the extrusion process.The numerical results are compared with physical experiments using an experimental screw extruder.

  12. Assessment of the stress transmitted to dental implants connected to screw-retained bars using different casting techniques.

    Science.gov (United States)

    Haselhuhn, Klaus; Marotti, Juliana; Tortamano, Pedro; Weiss, Claudia; Suleiman, Lubna; Wolfart, Stefan

    2014-12-01

    Passive fit of the prosthetic superstructure is important to avoid complications; however, evaluation of passive fit is not possible using conventional procedures. Thus, the aim of this study was to check and locate mechanical stress in bar restorations fabricated using two casting techniques. Fifteen patients received four implants in the interforaminal region of the mandible, and a bar was fabricated using either the cast-on abutment or lost-wax casting technique. The fit accuracy was checked according to the Sheffield's test criteria. Measurements were recorded on the master model with a gap-free, passive fit using foil strain gauges both before and after tightening the prosthetic screws. Data acquisition and processing was analyzed with computer software and submitted to statistical analysis (ANOVA). The greatest axial distortion was at position 42 with the cast-on abutment technique, with a mean distortion of 450 μm/m. The lowest axial distortion occurred at position 44 with the lost-wax casting technique, with a mean distortion of 100 μm/m. The minimal differences between the means of axial distortion do not indicate any significant differences between the techniques (P = 0.2076). Analysis of the sensor axial distortion in relation to the implant position produced a significant difference (P casting techniques, with no significant difference between the sides.

  13. Comparison of open reduction versus minimally invasive surgical approaches on screw position in canine sacroiliac lag-screw fixation.

    Science.gov (United States)

    Déjardin, Loïc M; Marturello, Danielle M; Guiot, Laurent P; Guillou, Reunan P; DeCamp, Charles E

    2016-07-19

    To compare accuracy and consistency of sacral screw placement in canine pelves treated for sacroiliac luxation with open reduction and internal fixation (ORIF) or minimally invasive osteosynthesis (MIO) techniques. Unilateral sacroiliac luxations created experimentally in canine cadavers were stabilized with an iliosacral lag screw applied via ORIF or MIO techniques (n = 10/group). Dorsoventral and craniocaudal screw angles were measured using computed tomography multiplanar reconstructions in transverse and dorsal planes, respectively. Ratios between pilot hole length and sacral width (PL/SW-R) were obtained. Data between groups were compared statistically (p sacroiliac luxations provides more accurate and consistent sacral screw placement than ORIF. With proper techniques, iatrogenic neurological damage can be avoided with both techniques. The PL /SW-R, which relates to safe screw fixation, also demonstrates that screw penetration of at least 60% of the sacral width is achievable regardless of surgical approach. These findings, along with the limited dissection needed for accurate sacral screw placement, suggest that MIO of sacroiliac luxations is a valid alternative to ORIF.

  14. Measurement of Tip Apex Distance and Migration of Lag Screws and Novel Blade Screw Used for the Fixation of Intertrochanteric Fractures.

    Directory of Open Access Journals (Sweden)

    Jesse Chieh-Szu Yang

    Full Text Available Fixation with a dynamic hip screw (DHS is one of the most common methods for stabilizing intertrochanteric fractures, except for unstable and reverse oblique fracture types. However, failure is often observed in osteoporotic patients whereby the lag screw effectively 'cuts out' through the weak bone. Novel anti-migration blades have been developed to be used in combination with a lag screw ('Blade Screw' to improve the fixation strength in osteoporotic intertrochanteric fractures. An in-vitro biomechanical study and a retrospective clinical study were performed to evaluate lag screw migration when using the novel Blade Screw and a traditional threaded DHS. The biomechanical study showed both the Blade Screw and DHS displayed excessive migration (≥10 mm before reaching 20,000 loading cycles in mild osteoporotic bone, but overall migration of the Blade Screw was significantly less (p ≤ 0.03. Among the patients implanted with a Blade Screw in the clinical study, there was no significant variation in screw migration at 3-months follow-up (P = 0.12. However, the patient's implanted with a DHS did display significantly greater migration (P<0.001 than those implanted with the Blade Screw. In conclusion, the Blade Screw stabilizes the bone fragments during dynamic loading so as to provide significantly greater resistance to screw migration in patients with mild osteoporosis.

  15. Comparison of effectiveness between cork-screw and peg-screw electrodes for transcranial motor evoked potential monitoring using the finite element method.

    Science.gov (United States)

    Tomio, Ryosuke; Akiyama, Takenori; Ohira, Takayuki; Yoshida, Kazunari

    2016-01-01

    Intraoperative monitoring of motor evoked potentials by transcranial electric stimulation is popular in neurosurgery for monitoring motor function preservation. Some authors have reported that the peg-screw electrodes screwed into the skull can more effectively conduct current to the brain compared to subdermal cork-screw electrodes screwed into the skin. The aim of this study was to investigate the influence of electrode design on transcranial motor evoked potential monitoring. We estimated differences in effectiveness between the cork-screw electrode, peg-screw electrode, and cortical electrode to produce electric fields in the brain. We used the finite element method to visualize electric fields in the brain generated by transcranial electric stimulation using realistic three-dimensional head models developed from T1-weighted images. Surfaces from five layers of the head were separated as accurately as possible. We created the "cork-screws model," "1 peg-screw model," "peg-screws model," and "cortical electrode model". Electric fields in the brain radially diffused from the brain surface at a maximum just below the electrodes in coronal sections. The coronal sections and surface views of the brain showed higher electric field distributions under the peg-screw compared to the cork-screw. An extremely high electric field was observed under cortical electrodes. Our main finding was that the intensity of electric fields in the brain are higher in the peg-screw model than the cork-screw model.

  16. Effects on Subtalar Joint Stress Distribution After Cannulated Screw Insertion at Different Positions and Directions.

    Science.gov (United States)

    Yuan, Cheng-song; Chen, Wan; Chen, Chen; Yang, Guang-hua; Hu, Chao; Tang, Kang-lai

    2015-01-01

    We investigated the effects on subtalar joint stress distribution after cannulated screw insertion at different positions and directions. After establishing a 3-dimensional geometric model of a normal subtalar joint, we analyzed the most ideal cannulated screw insertion position and approach for subtalar joint stress distribution and compared the differences in loading stress, antirotary strength, and anti-inversion/eversion strength among lateral-medial antiparallel screw insertion, traditional screw insertion, and ideal cannulated screw insertion. The screw insertion approach allowing the most uniform subtalar joint loading stress distribution was lateral screw insertion near the border of the talar neck plus medial screw insertion close to the ankle joint. For stress distribution uniformity, antirotary strength, and anti-inversion/eversion strength, lateral-medial antiparallel screw insertion was superior to traditional double-screw insertion. Compared with ideal cannulated screw insertion, slightly poorer stress distribution uniformity and better antirotary strength and anti-inversion/eversion strength were observed for lateral-medial antiparallel screw insertion. Traditional single-screw insertion was better than double-screw insertion for stress distribution uniformity but worse for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion was slightly worse for stress distribution uniformity than was ideal cannulated screw insertion but superior to traditional screw insertion. It was better than both ideal cannulated screw insertion and traditional screw insertion for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion is an approach with simple localization, convenient operation, and good safety. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  17. The use of nonablative radiofrequency technology to tighten the lower face and neck.

    Science.gov (United States)

    Hsu, Te-Shao; Kaminer, Michael S

    2003-06-01

    The ThermaCool TC system is a radiofrequency device capable of delivering higher energy fluences to a greater volume of tissue than nonablative lasers, with no epidermal injury. It has been successful in treating periorbital rhytides and lifting eyebrows. Given these positive finding for treatment of the upper face, the device has been recently applied to rejuvenate and tighten the skin on the lower face and upper neck. This study shows the efficacy and patient satisfaction with this application. Data were compiled over a 6-month period from patients treated with the ThermaCool TC system on the lower face. Up to 3 areas were treated: cheeks, jawline, and upper neck. Treatment parameters and adverse events were recorded and digital photographs taken. Telephone interviews were then conducted after the treatment to assess patient satisfaction. Sixteen patients underwent treatment of the lower face during this period. Eleven of the patients had all three areas (cheeks, jawline, and neck) treated. Two patients had only the cheeks and jawline treated, and 3 patients underwent treatment of the cheeks only. The average level was 14.6 for the cheeks with the average energy of 113.8 joules per pulse. The average treatment level of the jawline was 14.0, with the average energy of 107.0 joules per pulse. The average level was 13.8 for the neck, at the average energy of 99.7 joules per pulse. All patients experienced mild erythema and edema of the treatment areas as expected, and all resolved within 48 hours post-treatment. Fifteen of the 16 patients were available for interview. Ten patients found the results unsatisfactory while five patients were satisfied. Four of 11 (36%) patients who had all 3 areas treated reported satisfactory results, compared to 1 of 4 (25%) of patients who had only 1 or 2 areas treated. The satisfactory group consistently was higher in both dial setting and energy per pulse. Furthermore, the average age of the unsatisfactory group was 58, compared to

  18. Lumbar pedicle screw placement: Using only AP plane imaging

    Directory of Open Access Journals (Sweden)

    Anil Sethi

    2012-01-01

    Conclusion: Placement of pedicle screws under fluoroscopic guidance using AP plane imaging alone with tactile guidance is safe, fast, and reliable. However, a good understanding of the radiographic landmarks is a prerequisite.

  19. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy ...

    African Journals Online (AJOL)

    countries. The known alternative in such condition is ... Key words: Hollow mill, stripped screws, titanium locked plates ... used a locally manufactured stainless steel hollow mill, ... head ‑ plate hole” assembly as a mono‑block single unit. In.

  20. scaphoid dimensions and appropriate screw sizes in a kenyan

    African Journals Online (AJOL)

    There were no side to side differences in the total length or the distal pole. Conclusion: Scaphoid screws .... gender differences in prehension may contribute to .... differences between males and females. Sports. Med Arthroscopy Review. 2002 ...

  1. Biomechanical analysis of titanium fixation plates and screws in ...

    African Journals Online (AJOL)

    hole Y plates with monocortical screws. 150 N incisal occlusal loads were simulated on the models. The commercial ANSYS software was utilized to calculate the Von Mises stresses on fixative appliances. Results: The highest Von Mises stress ...

  2. Effect of twin-screw extrusion parameters on mechanical hardness ...

    Indian Academy of Sciences (India)

    A 2-level–4-factor factorial experimental design was used to investigate the influ- ... ture content, screw speed and temperature are found to influence, while feed rate ... of the food product that can be adequately evaluated by the consumer.

  3. Intermaxillary Fixation Screw Morbidity in Treatment of Mandibular Fractures

    DEFF Research Database (Denmark)

    Florescu, Vlad-Andrei; Kofod, Thomas; Pinholt, Else Marie

    2016-01-01

    Purpose The aim of the present retrospective study was to investigate the morbidity of screws used for intermaxillary fixation (IMF) in the treatment of mandibular fractures. A review of the published data was also performed for a comparison of outcomes. Our hypothesis was that the use of screws...... for IMF of mandibular fractures would result in minimal morbidity. Materials and Methods Patients treated for mandibular fractures from 2007 to 2013, using screws for IMF, using the international diagnosis code for mandibular fracture, DS026, were anonymously selected (Department of Oral and Maxillofacial...... Surgery, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark). The fracture type, radiographic findings, treatment modality, screw type and number, and root damage were recorded. For the outcome comparison, a review of the published data regarding iatrogenic dental root damage caused...

  4. Kinematic analysis of parallel manipulators by algebraic screw theory

    CERN Document Server

    Gallardo-Alvarado, Jaime

    2016-01-01

    This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators. Stands as the only book devoted to the acceleration, jerk and hyper-jerk (snap) analyses of rigid-body by means of screw theory; Provides new strategies to simplify the forward kinematic...

  5. Single-treatment skin tightening by radiofrequency and long-pulsed, 1064-nm Nd: YAG laser compared.

    Science.gov (United States)

    Key, Douglas J

    2007-02-01

    To compare single-treatment facial skin tightening achieved with the current radiofrequency (RF) protocol with single-treatment tightening achieved with the long-pulsed, 1064-nm Nd:YAG laser. A total of 12 patients were treated with RF energy on one side of the face and laser energy on the other. Results were evaluated on a numerical scale (0-12 with 12 = greatest enhancement) from pre- and posttreatment photographs by a blinded panel. Upper face improvement (posttreatment score minus pretreatment score) was essentially the same on both sides (30.2 and 31.3% improvement for laser and RF, respectively, P=0.89). Lower face improvement was greater in the laser-treated side (35.7 and 23.8% improvement for laser and RF, respectively), but the difference was not significant (P=0.074). Overall face improvement was significantly greater on the laser-treated side (47.5 and 29.8% improvement for laser and RF, respectively, P=0.028). A single high-fluence treatment with the long-pulse 1064-nm Nd:YAG laser may improve skin laxity more than a single treatment with the RF device. Further controlled split-face or very large non-self controlled studies are needed to conclusively determine the relative efficacies of the two technologies. (c) 2007 Wiley-Liss, Inc.

  6. Probing and Tapping: Are We Inserting Pedicle Screws Correctly?

    Science.gov (United States)

    Prasad, Vishal; Mesfin, Addisu; Lee, Robert; Reigrut, Julie; Schmidt, John

    2016-11-01

    Although there are a significant number of research publications on the topic of bone morphology and the strength of bone, the clinical significance of a failed pedicle screw is often revision surgery and the potential for further postoperative complications; especially in elderly patients with osteoporotic bone. The purpose of this report is to quantify the mechanical strength of the foam-screw interface by assessing probe/pilot hole diameter and tap sizes using statistically relevant sample sizes under highly controlled test conditions. The study consisted of two experiments and used up to three different densities of reference-grade polyurethane foam (ASTM 1839), including 0.16, 0.24, and 0.32 g/cm 3 . All screws and rods were provided by K2M Inc. and screws were inserted to a depth of 25 mm. A series of pilot holes, 1.5, 2.2, 2.7, 3.2, 3.7, 4.2, 5.0, and 6.0 mm in diameter were drilled through the entire depth of the material. A 6.5 × 45-mm pedicle screw was inserted and axially pulled from the material (n = 720). A 3.0-mm pilot hole was drilled and tapped with: no tap, 3.5-, 4.5-, 5.5-, and 6.5-mm taps. A 6.5 × 45-mm pedicle screw was inserted and axially pulled from the material (n = 300). The size of the probe/pilot hole had a nonlinear, parabolic effect on pullout strength. This shape suggests an optimum-sized probe hole for a given size pedicle screw. Too large or too small of a probe hole causes a rapid falloff in pullout strength. The tap data demonstrated that not tapping and undertapping by two or three sizes did not significantly alter the pullout strength of the screws. The data showed an exponential falloff of pullout strength when as tap size increased to the diameter of the screw. In the current study, the data show that an ideal pilot hole size half the diameter of the screw is a starting point. Also, that if tapping was necessary, to use a tap two sizes smaller than the screw being implanted. A similar optimum pilot hole or tap size may be

  7. Comparative effect of implant-abutment connections, abutment angulations, and screw lengths on preloaded abutment screw using three-dimensional finite element analysis: An in vitro study

    Directory of Open Access Journals (Sweden)

    Krishna Chaitanya Kanneganti

    2018-01-01

    Conclusions: The present study suggests selecting appropriate implant-abutment connection based on the abutment angulation, as well as preferring long screws with more number of threads for effective preload retention by the screws.

  8. Adjacent-segment disease after thoracic pedicle screw fixation.

    Science.gov (United States)

    Agarwal, Nitin; Heary, Robert F; Agarwal, Prateek

    2018-03-01

    OBJECTIVE Pedicle screw fixation is a technique widely used to treat conditions ranging from spine deformity to fracture stabilization. Pedicle screws have been used traditionally in the lumbar spine; however, they are now being used with increasing frequency in the thoracic spine as a more favorable alternative to hooks, wires, or cables. Although safety concerns, such as the incidence of adjacent-segment disease (ASD) after cervical and lumbar fusions, have been reported, such issues in the thoracic spine have yet to be addressed thoroughly. Here, the authors review the literature on ASD after thoracic pedicle screw fixation and report their own experience specifically involving the use of pedicle screws in the thoracic spine. METHODS Select references from online databases, such as PubMed (provided by the US National Library of Medicine at the National Institutes of Health), were used to survey the literature concerning ASD after thoracic pedicle screw fixation. To include the authors' experience at Rutgers New Jersey Medical School, a retrospective review of a prospectively maintained database was performed to determine the incidence of complications over a 13-year period in 123 consecutive adult patients who underwent thoracic pedicle screw fixation. Children, pregnant or lactating women, and prisoners were excluded from the review. By comparing preoperative and postoperative radiographic images, the occurrence of thoracic ASD and disease within the surgical construct was determined. RESULTS Definitive radiographic fusion was detected in 115 (93.5%) patients. Seven incidences of instrumentation failure and 8 lucencies surrounding the screws were observed. One patient was observed to have ASD of the thoracic spine. The mean follow-up duration was 50 months. CONCLUSIONS This long-term radiographic evaluation revealed the use of pedicle screws for thoracic fixation to be an effective stabilization modality. In particular, ASD seems to be less of a problem in the

  9. Modeling and Analyzing the Slipping of the Ball Screw

    Directory of Open Access Journals (Sweden)

    Nannan Xu

    Full Text Available AbstractThis paper aims to set up the ball systematic slipping model and analyze the slipping characteristics caused by different factors for a ball screw operating at high speeds. To investigate the ball screw slipping mechanism, transformed coordinate system should be established firstly. Then it is used to set up mathematical modeling for the ball slipping caused by the three main reasons and the speed of slipping can be calculated. Later, the influence of the contact angle, helix angle and screw diameter for ball screw slipping will be analyzed according to the ball slipping model and slipping speeds equation and the slipping analysis will be obtained. Finally, curve of slipping analysis and that of mechanical efficiency of the ball screw analysis by Lin are compared, which will indirectly verify the correctness of the slipping model. The slipping model and the curve of slipping analysis established in this paper will provide theory basis for reducing slipping and improving the mechanical efficiency of a ball screw operating at high speeds.

  10. Stress corrosion cracking lifetime prediction of spring screw

    International Nuclear Information System (INIS)

    Koh, S. K.; Ryu, C. H.

    2004-01-01

    A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw

  11. Pullout strength of misplaced pedicle screws in the thoracic and lumbar vertebrae - A cadaveric study

    Directory of Open Access Journals (Sweden)

    Shyam K Saraf

    2013-01-01

    Full Text Available Background: The objective of this cadaveric study was to analyze the effects of iatrogenic pedicle perforations from screw misplacement on the mean pullout strength of lower thoracic and lumbar pedicle screws. We also investigated the effect of bone mineral density (BMD, diameter of pedicle screws, and the region of spine on the pullout strength of pedicle screws. Materials and Methods: Sixty fresh human cadaveric vertebrae (D10-L2 were harvested. Dual-energy X-ray absorptiometry (DEXA scan of vertebrae was done for BMD. Titanium pedicle screws of different diameters (5.2 and 6.2 mm were inserted in the thoracic and lumbar segments after dividing the specimens into three groups: a standard pedicle screw (no cortical perforation; b screw with medial cortical perforation; and c screw with lateral cortical perforation. Finally, pullout load of pedicle screws was recorded using INSTRON Universal Testing Machine. Results: Compared with standard placement, medially misplaced screws had 9.4% greater mean pullout strength and laterally misplaced screws had 47.3% lesser mean pullout strength. The pullout strength of the 6.2 mm pedicle screws was 33% greater than that of the 5.2 mm pedicle screws. The pullout load of pedicle screws in lumbar vertebra was 13.9% greater than that in the thoracic vertebra ( P = 0.105, but it was not statistically significant. There was no significant difference between pullout loads of vertebra with different BMD ( P = 0.901. Conclusion: The mean pullout strength was less with lateral misplaced pedicle screws while medial misplaced pedicle screw had more pullout strength. The pullout load of 6.2 mm screws was greater than that of 5.2 mm pedicle screws. No significant correlation was found between bone mineral densities and the pullout strength of vertebra. Similarly, the pullout load of screw placed in thoracic and lumbar vertebrae was not significantly different.

  12. Tightening rules of the oil game; Industry preparing for sulphur-free products

    International Nuclear Information System (INIS)

    Ropponen, V.M.

    2002-01-01

    Increasing demand for sulphur-free fuels is the major driving force behind Fortum's oil refining investments. Environmental regulations are also setting the direction for oil retail network investments and will lead to closure of some retail sites. The year 2001 was marked by fluctuations in crude oil prices and low refining margins

  13. Experimental study of the density distribution of the particles of the material in screw installation

    Directory of Open Access Journals (Sweden)

    Demidov S. F.

    2017-02-01

    Full Text Available the experimental studies of density distribution of the particles of a mixture of wheat, oats, rye to feed pigs by infrared heating at the time of stay and temperature at the exit of the installation. The purpose of the work is to study the quality of treatment of the product with the settings with the screw and the screw with installed round jumper on the pen of the screw. Screw installations with infrared emitters of selected wavelength give the opportunity for intense and continuous heat treatment process. The authors used the optimal parameters of the process with the screw and the screw with installed round jumper on the pen of the screw. The parameters of screw installation during the study were the following: the number of revolutions of the screw was 10 rpm, density of heat flux was 12 kW/m2, output capacity – 250 kg/h.

  14. Development and Testing of X-Ray Imaging-Enhanced Poly-L-Lactide Bone Screws.

    Directory of Open Access Journals (Sweden)

    Wei-Jen Chang

    Full Text Available Nanosized iron oxide particles exhibit osteogenic and radiopaque properties. Thus, iron oxide (Fe3O4 nanoparticles were incorporated into a biodegradable polymer (poly-L-lactic acid, PLLA to fabricate a composite bone screw. This multifunctional, 3D printable bone screw was detectable on X-ray examination. In this study, mechanical tests including three-point bending and ultimate tensile strength were conducted to evaluate the optimal ratio of iron oxide nanoparticles in the PLLA composite. Both injection molding and 3D printing techniques were used to fabricate the PLLA bone screws with and without the iron oxide nanoparticles. The fabricated screws were implanted into the femoral condyles of New Zealand White rabbits. Bone blocks containing the PLLA screws were resected 2 and 4 weeks after surgery. Histologic examination of the surrounding bone and the radiopacity of the iron-oxide-containing PLLA screws were evaluated. Our results indicated that addition of iron oxide nanoparticles at 30% significantly decreased the ultimate tensile stress properties of the PLLA screws. The screws with 20% iron oxide exhibited strong radiopacity compared to the screws fabricated without the iron oxide nanoparticles. Four weeks after surgery, the average bone volume of the iron oxide PLLA composite screws was significantly greater than that of PLLA screws without iron oxide. These findings suggested that biodegradable and X-ray detectable PLLA bone screws can be produced by incorporation of 20% iron oxide nanoparticles. Furthermore, these screws had significantly greater osteogenic capability than the PLLA screws without iron oxide.

  15. CT provides precise size assessment of implanted titanium alloy pedicle screws.

    Science.gov (United States)

    Elliott, Michael J; Slakey, Joseph B

    2014-05-01

    After performing instrumented spinal fusion with pedicle screws, postoperative imaging using CT to assess screw position may be necessary. Stainless steel implants produce significant metal artifact on CT, and the degree of distortion is at least partially dependent on the cross-sectional area of the implanted device. If the same effect occurs with titanium alloy implants, ability to precisely measure proximity of screws to adjacent structures may be adversely affected as screw size increases. We therefore asked whether (1) CT provides precise measurements of true screw widths; and (2) precision degrades based on the size of the titanium implant imaged. CT scans performed on 20 patients after instrumented spinal fusion for scoliosis were reviewed. The sizes of 151 titanium alloy pedicle screws were measured and compared with known screw size. The amount of metal bloom artifact was determined for each of the four screw sizes. ANOVA with Tukey's post hoc test were performed to evaluate differences in scatter, and Spearman's rho coefficient was used to measure relationship between screw size and scatter. All screws measured larger than their known size, but even with larger 7-mm screws the size differential was less than 1 mm. The four different screw sizes produced scatter amounts that were different from each other (p titanium alloy pedicle screws produces minimal artifact, thus making this the preferred imaging modality to assess screw position after surgery. Although the amount of artifact increases with the volume of titanium present, the degree of distortion is minimal and is usually less than 1 mm.

  16. 21 CFR 888.3060 - Spinal intervertebral body fixation orthosis.

    Science.gov (United States)

    2010-04-01

    ... the plates. A braided cable is threaded through each eye-type screw. The cable is tightened with a tension device and it is fastened or crimped at each eye-type screw. The device is used to apply force to...

  17. The Improvement of Bone-Tendon Fixation by Porous Titanium Interference Screw: A Rabbit Animal Model.

    Science.gov (United States)

    Tsai, Pei-I; Chen, Chih-Yu; Huang, Shu-Wei; Yang, Kuo-Yi; Lin, Tzu-Hung; Chen, San-Yuan; Sun, Jui-Sheng

    2018-05-04

    The interference screw is a widely used fixation device in the anterior cruciate ligament (ACL) reconstruction surgeries. Despite the generally satisfactory results, problems of using interference screws were reported. By using additive manufacturing (AM) technology, we developed an innovative titanium alloy (Ti 6 Al 4 V) interference screw with rough surface and inter-connected porous structure designs to improve the bone-tendon fixation. An innovative Ti 6 Al 4 V interference screws were manufactured by AM technology. In vitro mechanical tests were performed to validate its mechanical properties. Twenty-seven New Zealand white rabbits were randomly divided into control and AM screw groups for biomechanical analyses and histological analysis at 4, 8 and 12 weeks postoperatively; while micro-CT analysis was performed at 12 weeks postoperatively. The biomechanical tests showed that the ultimate failure load in the AM interference screw group was significantly higher than that in the control group at all tested periods. These results were also compatible with the findings of micro-CT and histological analyses. In micro-CT analysis, the bone-screw gap was larger in the control group; while for the additive manufactured screw, the screw and bone growth was in close contact. In histological study, the bone-screw gaps were wider in the control group and were almost invisible in the AM screw group. The innovative AM interference screws with surface roughness and inter-connected porous architectures demonstrated better bone-tendon-implant integration, and resulted in stronger biomechanical characteristics when compared to traditional screws. These advantages can be transferred to future interference screw designs to improve their clinical performance. The AM interference screw could improve graft fixation and eventually result in better biomechanical performance of the bone-tendon-screw construct. The innovative AM interference screws can be transferred to future

  18. Sacroiliac secure corridor: analysis for safe insertion of iliosacral screws

    Directory of Open Access Journals (Sweden)

    Henrique Alves Cruz

    2013-08-01

    Full Text Available OBJECTIVE: Posterior pelvic lesions, especially of the sacral-iliac joint, have high mortality and morbidity risks. Definitive fixation is necessary for the joint stabilization, and one option is the sacral percutaneous pinning with screws. Proximity to important structures to this region brings risks to the fixation procedure; therefore, it is important to know the tridimensional anatomy of the pelvis posterior region. Deviations of the surgeon's hand of four degrees may target the screws to those structures; dimorphisms of the upper sacrum and a poor lesion reduction may redound in a screw malpositioning. This study is aimed to evaluate the dimensions of a safe surgical corridor for safe sacroiliac screw insertion and relations with age and sex of the patients. METHOD: One hundred randomly selected pelvis CTs of patients with no pelvic diseases, seen at a tertiary care teaching Hospital. Measurements were made by computer and the safest area for screw insertion was calculated by two methods. The results were expressed in mm (not in degrees, in order to be a further surgical reference. RESULTS: There was a significant size difference in the analyzed sacral vertebra, differing on a wider size in men than in women. There was no significant statistical difference between vertebral size and age. By both methods, a safe area for screw insertion could be defined. CONCLUSION: Age does not influence the width of the surgical corridor. The surgeon has a safe corridor considered narrower when inserting screws in a female pelvis than when in a male one. However, as the smallest vertebra found (feminine was considered for statics, it was concluded that this corridor is 20 mm wide in any direction, taking as a reference the centrum of the vertebra.

  19. History of Retractor Technologies for Percutaneous Pedicle Screw Fixation Systems.

    Science.gov (United States)

    Mobbs, Ralph J; Phan, Kevin

    2016-02-01

    Minimally invasive techniques aimed at minimizing surgery-associated risk and morbidity of spinal surgery have increased in popularity in recent years. Their potential advantages include reduced length of hospital stay, blood loss, and requirement for post-operative analgesia and earlier return to work. One such minimally invasive technique is the use of percutaneous pedicle screw fixation, which is paramount for promoting rigid and stable constructs and fusion in the context of trauma, tumors, deformity and degenerative disease. Percutaneous pedicle screw insertion can be an intimidating prospect for surgeons who have only been trained in open techniques. One of the ongoing challenges of this percutaneous system is to provide the surgeon with adequate access to the pedicle entry anatomy and adequate tactile or visual feedback concerning the position and anatomy of the rod and set-screw construct. This review article discusses the history and evolution of percutaneous pedicle screw retractor technologies and outlines the advances over the last decade in the rapidly expanding field of minimal access surgery for posterior pedicle screw based spinal stabilization. As indications for percutaneous pedicle screw techniques expand, the nuances of the minimally invasive surgery techniques and associated technologies will also multiply. It is important that experienced surgeons have access to tools that can improve access with a greater degree of ease, simplicity and safety. We here discuss the technical challenges of percutaneous pedicle screw retractor technologies and a variety of systems with a focus on the pros and cons of various retractor systems. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  20. Painless, safe, and efficacious noninvasive skin tightening, body contouring, and cellulite reduction using multisource 3DEEP radiofrequency.

    Science.gov (United States)

    Harth, Yoram

    2015-03-01

    In the last decade, Radiofrequency (RF) energy has proven to be safe and highly efficacious for face and neck skin tightening, body contouring, and cellulite reduction. In contrast to first-generation Monopolar/Bipolar and "X -Polar" RF systems which use one RF generator connected to one or more skin electrodes, multisource radiofrequency devices use six independent RF generators allowing efficient dermal heating to 52-55°C, with no pain or risk of other side effects. In this review, the basic science and clinical results of body contouring and cellulite treatment using multisource radiofrequency system (Endymed PRO, Endymed, Cesarea, Israel) will be discussed and analyzed. © 2015 Wiley Periodicals, Inc.

  1. [Clinical efficacy of unilateral percutaneous transfacet screws combined with contralateral pedicle screw versus bilateral pedicle screws fixation in the treatment of the degenerative lumbar disease].

    Science.gov (United States)

    Hao, Rong-Xue; Zhou, Hui; Pan, Hao; Yue, Jun; Chen, Hui-Guo; Yang, He-Jie; Jia, Gao-Yong; Wang, Dong; Lin, Yan; Xu, Hua-Zi

    2017-09-25

    To investigate the surgical outcome of unilateral pedicle screw(UPS) after TLIF technique combined with contralateral percutaneous transfacet screw(PTS) fixation vs bilateral pedicle screws(BPS) fixation in treatment of degenerative lumbar disease. From January 2009 to June 2012, 46 patients with degenerative lumbar diseases, including 30 males and 16 females with an average age of 51.5 years old, who were divided into two groups according to different fixation methods. Twenty-two cases underwent UPS after TLIF technique combined with contralateral PTS fixation (group A), while the others underwent BPS fixation(group B). The relative data were analyzed, such as blood loss volume, operative time, fusion rate, ODI score, JOA score and so on. All the patients were followed up for 1 to 3 years with an average of 22 months. Except one case of each group was uncertainty fusion, the rest have obtained bony fusion, and the fusion rates in group A and B were 95.5% and 95.8%, respectively. No displacement and breakage of screw were found during follow-up. Operative time and blood loss volume in group A were better than of group B( P 0.05). Two approaches had similar clinical outcomes for degenerative lumbar disease with no severe instability. Compared with BPS fixation, the UPS after TLIF technique and contralateral PTS fixation has the advantages of less trauma, shorter operative time and less blood loss, and it is a safe and feasible surgical technique.

  2. Evaluation of the Effect of Fixation Angle between Polyaxial Pedicle Screw Head and Rod on the Failure of Screw-Rod Connection

    Directory of Open Access Journals (Sweden)

    Engin Çetin

    2015-01-01

    Full Text Available Introduction. Polyaxial screws had been only tested according to the ASTM standards (when they were perpendicularly positioned to the rod. In this study, effects of the pedicle screws angled fixation to the rod on the mechanical properties of fixation were investigated. Materials and Method. 30 vertically fixed screws and 30 screws fixed with angle were used in the study. Screws were used in three different diameters which were 6.5 mm, 7.0 mm, and 7.5 mm, in equal numbers. Axial pull-out and flexion moment tests were performed. Test results compared with each other using appropriate statistical methods. Results. In pull-out test, vertically fixed screws, in 6.5 mm and 7.0 mm diameter, had significantly higher maximum load values than angled fixed screws with the same diameters (P<0.01. Additionally, vertically fixed screws, in all diameters, had significantly greater stiffness according to corresponding size fixed with angle (P<0.005. Conclusion. Fixing the pedicle screw to the rod with angle significantly decreased the pull-out stiffness in all diameters. Similarly, pedicle screw instrumentation fixed with angle decreased the minimum sagittal angle between the rod and the screw in all diameters for flexion moment test but the differences were not significant.

  3. Clinical efficacy and safety evaluation of a novel fractional unipolar radiofrequency device on facial tightening: A preliminary report.

    Science.gov (United States)

    Suh, Dong Hye; Byun, Eun Jung; Lee, Sang Jun; Song, Kye Yong; Kim, Hei Sung

    2017-06-01

    Previous studies have shown that radiofrequency (RF) energy is safe and effective for improving skin laxity. Unlike monopolar and bipolar devices, little has been studied with the unipolar hand piece. We sought to evaluate the safety and efficacy of a novel fractional unipolar RF device on facial tightening. This was a retrospective, single-center study of 14 subjects with age-related facial laxity who underwent five sessions of fractional unipolar RF at an interval of 2 weeks, and then followed-up for 3 months. Standardized photos were taken at baseline and at 3-months follow-up, and were assessed by two independent dermatologists using a 4-point scale (0=no improvement, 1=mild improvement, 2=moderate improvement, 3=significant improvement). Punch biopsies (2 mm) were performed and a questionnaire was used to evaluate the patient's satisfaction and the incidence of adverse reactions. Fourteen subjects with mild to moderate age-related facial laxity were included in the study. The mean age of the subjects was 49.7 years (range 32-80). 35.7% of the subjects showed significant improvement, 50% moderate improvement, and 14.3% slight improvement of facial laxity in their follow-up photos. About 85.7% of the patients replied that they were either greatly satisfied or satisfied with the results at 3-months follow-up. Skin biopsies revealed an increase in collagen in the dermis. None of the subjects experienced any serious adverse events during or after the procedure. Our findings suggest that fractional Unipolar RF can be safely performed on the face and is effective in skin tightening. It has a great advantage over other forms of RF by being entirely painless. © 2017 Wiley Periodicals, Inc.

  4. Preoperative CT planning of screw length in arthroscopic Latarjet.

    Science.gov (United States)

    Hardy, Alexandre; Gerometta, Antoine; Granger, Benjamin; Massein, Audrey; Casabianca, Laurent; Pascal-Moussellard, Hugues; Loriaut, Philippe

    2018-01-01

    The Latarjet procedure has shown its efficiency for the treatment of anterior shoulder dislocation. The success of this technique depends on the correct positioning and fusion of the bone block. The length of the screws that fix the bone block can be a problem. They can increase the risk of non-union if too short or be the cause of nerve lesion or soft tissue discomfort if too long. Suprascapular nerve injuries have been reported during shoulder stabilisation surgery up to 6 % of the case. Bone block non-union depending on the series is found around 20 % of the cases. The purpose of this study was to evaluate the efficiency of this CT preoperative planning to predict optimal screws length. The clinical importance of this study lies in the observation that it is the first study to evaluate the efficiency of CT planning to predict screw length. Inclusion criteria were patients with chronic anterior instability of the shoulder with an ISIS superior to 4. Exclusion criteria were patients with multidirectional instability or any previous surgery on this shoulder. Thirty patients were included prospectively, 11 of them went threw a CT planning, before their arthroscopic Latarjet. Optimal length of both screws was calculated, adding the size of the coracoid at 5 and 15 mm from the tip to the glenoid. Thirty-two-mm screws were used for patients without planning. On a post-operative CT scan with 3D reconstruction, the distance between the screw tip and the posterior cortex was measured. A one-sample Wilcoxon test was used to compare the distance from the tip of the screw to an acceptable positioning of ±2 mm from the posterior cortex. In the group without planning, screw 1 tended to differ from the acceptable positioning: mean 3.44 mm ± 3.13, med 2.9 mm, q1; q3 [0.6; 4.75] p = 0.1118, and screw 2 differed significantly from the acceptable position: mean 4.83 mm ± 4.11, med 3.7 mm, q1; q3 [1.7; 5.45] p = 0.0045. In the group with planning, position of

  5. The Study of Vibration Processes in Oil Flooded Screw Compressors

    Directory of Open Access Journals (Sweden)

    I. V. Filippov

    2014-01-01

    Full Text Available Vibration processes that accompany most of machines and mechanisms are of interest to the researcher, as a source of information about the technical condition and the nature of the business processes flow. Vibration-based diagnostics of oil flooded screw compressors allows us to estimate the deviation of their operation from the main mode in accordance with changing the settings of vibration processes.The oil flooded screw compressor transition from the main mode of operation to the abnormal one is accompanied by complex gas-dynamic phenomena i.e. the initial gaps and their decays. This leads to changes in the nature of vibration processes, prompting suggestions that there is a relationship to a change of vibration parameters and mode of compressor operation.Studies were conducted by combined method using an analytical calculation of the decay parameters of the initial discontinuity and an experimental one based on the measurement of acceleration on the body of the real oil flooded screw compressor. A virtually adequate reaction of the decay parameters of the initial gap and the peak values of vibration acceleration to the change of operation mode of oil flooded screw compressor has been received. The peak value of the vibration acceleration was selected by the method of Gating being time-coinciding with the beginning discharge phase of the oil flooded screw compressor, and therefore, with the decay time of the initial discontinuity.This indicates a large degree of hypothesis likelihood on an existing initial break in oil flooded screw compressor when operating in abnormal conditions. This work contains the study results of vibration processes and their relationship to the operating mode of the oil flooded screw compressor, which distinguish it from the other works studied vibration processes in reciprocating compressors. The vibration parameters control of operating oil flooded screw compressor allows us to create an automatic capacity control

  6. In vivo evaluation of immediately loaded stainless steel and titanium orthodontic screws in a growing bone.

    Directory of Open Access Journals (Sweden)

    Kerstin Gritsch

    Full Text Available The present work intends to evaluate the use of immediate loaded orthodontic screws in a growing model, and to study the specific bone response. Thirty-two screws (half of stainless steel and half of titanium were inserted in the alveolar bone of 8 growing pigs. The devices were immediately loaded with a 100 g orthodontic force. Two loading periods were assessed: 4 and 12 weeks. Both systems of screws were clinically assessed. Histological observations and histomorphometric analysis evaluated the percent of "bone-to-implant contact" and static and dynamic bone parameters in the vicinity of the devices (test zone and in a bone area located 1.5 cm posterior to the devices (control zone. Both systems exhibit similar responses for the survival rate; 87.5% and 81.3% for stainless steel and titanium respectively (p = 0.64; 4-week period, and 62.5% and 50.0% for stainless steel and titanium respectively (p = 0.09; 12-week period. No significant differences between the devices were found regarding the percent of "bone-to-implant contact" (p = 0.1 or the static and dynamic bone parameters. However, the 5% threshold of "bone-to-implant contact" was obtained after 4 weeks with the stainless steel devices, leading to increased survival rate values. Bone in the vicinity of the miniscrew implants showed evidence of a significant increase in bone trabecular thickness when compared to bone in the control zone (p = 0.05. In our study, it is likely that increased trabecular thickness is a way for low density bone to respond to the stress induced by loading.

  7. In vivo evaluation of immediately loaded stainless steel and titanium orthodontic screws in a growing bone.

    Science.gov (United States)

    Gritsch, Kerstin; Laroche, Norbert; Bonnet, Jeanne-Marie; Exbrayat, Patrick; Morgon, Laurent; Rabilloud, Muriel; Grosgogeat, Brigitte

    2013-01-01

    The present work intends to evaluate the use of immediate loaded orthodontic screws in a growing model, and to study the specific bone response. Thirty-two screws (half of stainless steel and half of titanium) were inserted in the alveolar bone of 8 growing pigs. The devices were immediately loaded with a 100 g orthodontic force. Two loading periods were assessed: 4 and 12 weeks. Both systems of screws were clinically assessed. Histological observations and histomorphometric analysis evaluated the percent of "bone-to-implant contact" and static and dynamic bone parameters in the vicinity of the devices (test zone) and in a bone area located 1.5 cm posterior to the devices (control zone). Both systems exhibit similar responses for the survival rate; 87.5% and 81.3% for stainless steel and titanium respectively (p = 0.64; 4-week period), and 62.5% and 50.0% for stainless steel and titanium respectively (p = 0.09; 12-week period). No significant differences between the devices were found regarding the percent of "bone-to-implant contact" (p = 0.1) or the static and dynamic bone parameters. However, the 5% threshold of "bone-to-implant contact" was obtained after 4 weeks with the stainless steel devices, leading to increased survival rate values. Bone in the vicinity of the miniscrew implants showed evidence of a significant increase in bone trabecular thickness when compared to bone in the control zone (p = 0.05). In our study, it is likely that increased trabecular thickness is a way for low density bone to respond to the stress induced by loading.

  8. Locking screw apparatus and method for underwater remote replacement

    International Nuclear Information System (INIS)

    Balog, L.J.

    1987-01-01

    A method is described for locking in place a screw which secures together first and second structures in the internal region of a nuclear reactor core. The first structure has a screw bore with a counterbore portion formed in an outer surface. The method comprises the steps of: forming a lateral recess in the counterbore portion and spaced from the outer surface, providing an elongated screw having an enlarged shoulder flange and an angular drive head with a lateral width substantially less than that of the counterbore portion, disposing the screw through the screw bore in threaded engagement with the second structure and with the shoulder rotatably seated in the counterbore portion. This provides a locking member having an angular opening and disposing it in the counterbore portion against the flange with the drive head received in the opening for engagement with the locking member to prevent rotation. This deforms a portion of the locking member into the recess for engagement to prevent movement of the locking member with respect to the first structure

  9. Dorsal bridge plating or transarticular screws for Lisfranc fracture dislocations.

    Science.gov (United States)

    Kirzner, N; Zotov, P; Goldbloom, D; Curry, H; Bedi, H

    2018-04-01

    Aims The aim of this retrospective study was to compare the functional and radiological outcomes of bridge plating, screw fixation, and a combination of both methods for the treatment of Lisfranc fracture dislocations. Patients and Methods A total of 108 patients were treated for a Lisfranc fracture dislocation over a period of nine years. Of these, 38 underwent transarticular screw fixation, 45 dorsal bridge plating, and 25 a combination technique. Injuries were assessed preoperatively according to the Myerson classification system. The outcome measures included the American Orthopaedic Foot and Ankle Society (AOFAS) score, the validated Manchester Oxford Foot Questionnaire (MOXFQ) functional tool, and the radiological Wilppula classification of anatomical reduction. Results Significantly better functional outcomes were seen in the bridge plate group. These patients had a mean AOFAS score of 82.5 points, compared with 71.0 for the screw group and 63.3 for the combination group (p bridge plate group, 38.1 in the screw group, and 45.5 in the combination group (p bridge plating have better functional and radiological outcomes than those treated with transarticular screws or a combination technique. Cite this article: Bone Joint J 2018;100-B:468-74.

  10. Numerical simulation of a twin screw expander for performance prediction

    Science.gov (United States)

    Papes, Iva; Degroote, Joris; Vierendeels, Jan

    2015-08-01

    With the increasing use of twin screw expanders in waste heat recovery applications, the performance prediction of these machines plays an important role. This paper presents a mathematical model for calculating the performance of a twin screw expander. From the mass and energy conservation laws, differential equations are derived which are then solved together with the appropriate Equation of State in the instantaneous control volumes. Different flow processes that occur inside the screw expander such as filling (accompanied by a substantial pressure loss) and leakage flows through the clearances are accounted for in the model. The mathematical model employs all geometrical parameters such as chamber volume, suction and leakage areas. With R245fa as working fluid, the Aungier Redlich-Kwong Equation of State has been used in order to include real gas effects. To calculate the mass flow rates through the leakage paths formed inside the screw expander, flow coefficients are considered as constant and they are derived from 3D Computational Fluid Dynamic calculations at given working conditions and applied to all other working conditions. The outcome of the mathematical model is the P-V indicator diagram which is compared to CFD results of the same twin screw expander. Since CFD calculations require significant computational time, developed mathematical model can be used for the faster performance prediction.

  11. Percutaneous Iliac Screws for Minimally Invasive Spinal Deformity Surgery

    Directory of Open Access Journals (Sweden)

    Michael Y. Wang

    2012-01-01

    Full Text Available Introduction. Adult spinal deformity (ASD surgeries carry significant morbidity, and this has led many surgeons to apply minimally invasive surgery (MIS techniques to reduce the blood loss, infections, and other peri-operative complications. A spectrum of techniques for MIS correction of ASD has thus evolved, most recently the application of percutaneous iliac screws. Methods. Over an 18 months 10 patients with thoracolumbar scoliosis underwent MIS surgery. The mean age was 73 years (70% females. Patients were treated with multi-level facet osteotomies and interbody fusion using expandable cages followed by percutaneous screw fixation. Percutaneous iliac screws were placed bilaterally using the obturator outlet view to target the ischial body. Results. All patients were successfully instrumented without conversion to an open technique. Mean operative time was 302 minutes and the mean blood loss was 480 cc, with no intraoperative complications. A total of 20 screws were placed successfully as judged by CT scanning to confirm no bony violations. Complications included: two asymptomatic medial breaches at T10 and L5, and one patient requiring delayed epidural hematoma evacuation. Conclusions. Percutaneous iliac screws can be placed safely in patients with ASD. This MIS technique allows for successful caudal anchoring to stress-shield the sacrum and L5-S1 fusion site in long-segment constructs.

  12. Theoretical investigation of flash vaporisation in a screw expander

    Science.gov (United States)

    Vasuthevan, Hanushan; Brümmer, Andreas

    2017-08-01

    In the present study flash vaporisation of liquid injection in a twin screw expander for a Trilateral Flash Cycle (TFC) is examined theoretically. The TFC process comprises a pressure increase in the working fluid, followed by heating the liquid close to boiling point. The hot liquid is injected into the working chamber of a screw expander. During this process the pressure of the liquid drops below the saturation pressure, while the temperature of the liquid remains virtually constant. Hence the liquid is superheated and in a metastable state. The liquid jet seeks to achieve a stable state in thermodynamic equilibrium and is therefore partially vaporised. This effect is referred to as flash vaporisation. Accordingly, a two-phase mixture, consisting of vapour and liquid, exists in the working chamber. Thermodynamic simulations were carried out using water as the working fluid for representative screw expander geometry. The simulations presented are performed from two different aspects during the filling process of a screw expander. The first case is the vaporisation of the injected liquid in a state of thermodynamic equilibrium, whereby the two-phase mixture is treated entirely as a compressible and homogeneous gas. The second case considers flashing efficiency. It describes the quantity of flashed vapour and consists of a liquid and vapour domain. Both models are compared and analysed with respect to the operational behaviour of a screw expander.

  13. Experiments on a Toroidal Screw Pinch with Various Field Programming

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, H.; Wilhelm, R.; Krause, H. [Max-Planck-Institut Fuer Plasmaphysik, EURATOM-Association, Garching, Munich, Federal Republic of Germany (Germany)

    1971-10-15

    In the toroidal screw pinch ISAR-IV (large diameter 60 cm, aspect ratio 5, maximum storage, energy 140 kj) attempts were made to get an improved stability of the plasma by different kinds of field programming. The best results were obtained with positive trapped B{sub z}-fields and simultaneous switching of main B{sub z}-field and I{sub z}-current. In this case the dense plasma column (n{sub e} Almost-Equal-To 2-3 x 10{sup 16} , kT Almost-Equal-To 50-100 eV, {beta} Almost-Equal-To 15-20%) is surrounded by a force-free plasma ({beta} = 1%) with weak shear and it behaves stably for, at least, 25 {mu}s. The resulting containment time nr of near 10{sup 12} s cm{sup -3} remains a factor of 2-3 below the upper limit given by the classical diffusion. The following loss of the equilibrium position near the coil axis ({Delta} Almost-Equal-To 1-2 cm) is connected to a strong damping of the axial plasma current which starts near the end of the containment. It may be assumed that the increase of the effective plasma resistance mainly results from a contact of the force-free regions with the tube wall. Attempts were made to improve the containment by suitable programming of a plasma z-current. The results are presented. Experiments with one quartz limiter inside the torus improved the equilibrium but introduced instabilities at the new surface of the dilute plasma. To obtain more information about the outer region, the dilute plasma was produced without a dense core and separated from the tube walls by weak adiabatic compression. Under these Tokamak-like conditions the q-value was varied. In the region of q Almost-Equal-To 1 there appeared instabilities which seem to haver higher m-modes and rather short wavelengths. In a different kind of field programming the field distribution of the ''diffuse pinch'' was realized within an accuracy of 5-10% (kT Almost-Equal-To 100 eV, {beta} Almost-Equal-To 30%). In contrast to the predictions of MHD-theory, stability was observed only for

  14. Development of structural schemes of parallel structure manipulators using screw calculus

    Science.gov (United States)

    Rashoyan, G. V.; Shalyukhin, K. A.; Gaponenko, EV

    2018-03-01

    The paper considers the approach to the structural analysis and synthesis of parallel structure robots based on the mathematical apparatus of groups of screws and on a concept of reciprocity of screws. The results are depicted of synthesis of parallel structure robots with different numbers of degrees of freedom, corresponding to the different groups of screws. Power screws are applied with this aim, based on the principle of static-kinematic analogy; the power screws are similar to the orts of axes of not driven kinematic pairs of a corresponding connecting chain. Accordingly, kinematic screws of the outlet chain of a robot are simultaneously determined which are reciprocal to power screws of kinematic sub-chains. Solution of certain synthesis problems is illustrated with practical applications. Closed groups of screws can have eight types. The three-membered groups of screws are of greatest significance, as well as four-membered screw groups [1] and six-membered screw groups. Three-membered screw groups correspond to progressively guiding mechanisms, to spherical mechanisms, and to planar mechanisms. The four-membered group corresponds to the motion of the SCARA robot. The six-membered group includes all possible motions. From the works of A.P. Kotelnikov, F.M. Dimentberg, it is known that closed fifth-order screw groups do not exist. The article presents examples of the mechanisms corresponding to the given groups.

  15. New concept single screw compressors and their manufacture technology

    Science.gov (United States)

    Feng, Q.; Liu, F.; Chang, L.; Feng, C.; Peng, C.; Xie, J.; van den Broek, M.

    2017-08-01

    Single screw compressors were generally acknowledged as one of the nearly perfect machines by compressor researchers and manufacturers. However the rapid wear of the star-wheel in a single screw compressor during operation is a key reason why it hasn’t previously joined the main current compressors’ market. After more than ten years of effective work, the authors of this paper have proposed a new concept single screw compressor whose mesh-couple profile is enveloped with multi-column. Also a new design method and manufacture equipment for this kind of compressor have been developed and are described in this paper. A lot of prototype tests and a long period of industrial operations under full loading conditions have shown that the mesh-couple profiles of the new concept single compressors have excellent anti-wearness.

  16. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    Science.gov (United States)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  17. A modified transcondylar screw to accommodate anatomical skull base variations.

    Science.gov (United States)

    Ghaly, R F; Lissounov, A

    2017-01-01

    Occipitocervical instability may be attributed to congenital, bony/ligamentous abnormalities, trauma, neoplasm, degenerative bone disease, and failed atlantoaxial fixation. Indications for occipitocervical fixation include the prevention of disabling pain, cranial nerve dysfunction, paralysis, or even sudden death. The screw trajectory for the modified transcondylar screw (mTCS) is optimally planned utilizing a three-dimensional skull reconstructed image. The modified mTCS technique is helpful where there is a loss of bone, such as after prior suboccipital craniotomy and/or an inadequate occipital condyle. The new proposed technique is similar to the classical transcondylar screw placement but follows a deeper course along the bony lip of foramen magnum toward clivus from a dorsolateral approach. The modified mTCS technique allows for direct visualization and, therefore, helps to avoid damage to the hypoglossal nerve and lateral aspect of brain stem.

  18. Bioabsorbable metal screws in traumatology: A promising innovation

    Directory of Open Access Journals (Sweden)

    Roland Biber

    2017-04-01

    Full Text Available MAGNEZIX® CS (Syntellix AG, Hanover, Germany is a bioabsorbable compression screw made of a magnesium alloy (MgYREZr. Currently there are only two clinical studies reporting on a limited number of elective patients who received this screw in a hallux valgus operation. We applied MAGNEZIX® CS for fixation of distal fibular fracture in a trauma patient who had sustained a bimalleolar fracture type AO 44-B2.3. Clinical course was uneventful, fracture healing occurred within three months. Follow-up X-rays showed a radiolucent area around the implant for some months, yet this radiolucent area had disappeared in the 17-months follow-up X-ray. Keywords: Magnesium, Bioabsorbable, Compression screw, Osteosynthesis, Ankle fracture

  19. Influence of bacterial colonization of the healing screws on peri-implant tissue

    Directory of Open Access Journals (Sweden)

    Simonetta D'Ercole

    2013-06-01

    Conclusion: The healing screws left in situ for a period of 90 days caused a peri-implant inflammation and the presence of periodontal pathogenic bacteria in the peri-implant sulcus, due to the plaque accumulation on screw surfaces.

  20. The fluid–solid coupling analysis of screw conveyor in drilling fluid centrifuge based on ANSYS

    Directory of Open Access Journals (Sweden)

    Hongbin Liu

    2015-09-01

    Full Text Available In the centrifugal separations of drilling fluid, screw conveyor is a critical component to push and separate the sediment. The work performance and structural parameters of conveyor are immediately related to the production capability, the working life and the separating effect of the centrifuge. The existing researches always use the theoretical calculation of the approximate loads to analyze the strength of conveyor, and it cannot reflect the stress situations accurately. In order to ensure the precise mastery of the working performance, this article obtained pressure distribution under working conditions from CFX evaluation and gained equivalent stress and deformation under several load conditions by using the ANSYS Workbench platform to check the strength of conveyor. The results showed that the influence of centrifugal hydraulic pressure was less than that of centrifugal force on the strength and deformation of conveyor. Besides, the maximum equivalent stress occurred at the inside of the feed opening, while the maximum deformation occurred at the conveyor blade edge of taper extremity. Furthermore, whether considered the feed opening or not, the computing model had a great influence on the analysis results, and the simplified loads had a great influence on the deformation analysis results. The methods and results from this article can provide reference for the design and the improvement of screw conveyor.

  1. Design of an extrusion screw and solid fuel produced from coconut shell

    Directory of Open Access Journals (Sweden)

    Madhiyanon, T

    2006-03-01

    Full Text Available The objectives were to design an extrusion screw to produce biomass solid fuel in a cold extrusion process, and investigate the effects of molasses used as a selected adhesive on the physical properties of extruded products. The material employed consisted of crushed coconut shell char and coconut fiber char mixed at a ratio of 40:60. The ratios of molasses in the mixture were 10:100, 15:100 and 20:100 (by weight and the extrusion die angles were 1.0, 1.1, 1.2, and 1.3 degrees gradation per experiment. The experimental results showed that the newly designed screw could function properly in the output range 0.75-0.90 kg/min, which is close to the design value. Regarding the molasses's effect on solid fuel properties, increasing the share of molasses was positive for both output and strength of the resulting briquettes, whereas the results of increasing die angle showed decreases in both output and strength. The compressive strength varied between 2.49-2.87 MPa in all circumstances, which was considerably higher than acceptable industrial level. Furthermore, the extruded solid fuel showed excellent resistance to impact force. Regarding energy consumption, the amount of electrical energy used in the extrusion process was insignificant, ranging between 0.040-0.079 kWh/kg.

  2. Interface effects on elastic behavior of a screw dislocation around double nanowires

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Liu, Youwen

    2014-01-01

    The elastic behavior of a screw dislocation around double nanowires (NWs) is addressed with taking into account the interface stress effect in controlling mechanical response of nanoscale structures. The stress boundary conditions at the interface of the NWs are modified by incorporating surface/interface stress. The analytic solution of complex functions of the right NW, the infinite matrix and the left NW are obtained by applying the complex variable method. The equilibrium positions and the image force acting on the dislocation of a screw dislocation near one of the NWs are discussed in detail and compared with those obtained within the classical theory of elasticity. It is shown that the NWs possess a significant local softening or hardening at the interface, which can change the nature of the equilibrium positions for the dislocation. The radius ratio between NWs has profound effects on the equilibrium position. Additionally, the soft NW with the positive interface stress inhibits the dislocation motion to enhance its own structural stability.

  3. Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods

    International Nuclear Information System (INIS)

    Lambert, M.A.

    1996-06-01

    An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d rz-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere's law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods

  4. [Development of polyaxial locking plate screw system of sacroiliac joint].

    Science.gov (United States)

    Fan, Weijie; Xie, Xuesong; Zhou, Shuping; Zhang, Yonghu

    2014-09-01

    To develop an instrument for sacroiliac joint fixation with less injury and less complications. Firstly, 18 adult pelvic specimens (8 males and 10 females) were used to measure the anatomical data related to the locking plates and locking screws on the sacrum and ilium, and the polyaxial locking plate screw system of the sacroiliac joint was designed according to the anatomic data. This system was made of medical titanium alloy. Then 4 adult male plevic specimens were harvested and the experiment was divided into 3 groups: group A (normal pelvic), group B (the dislocated sacroiliac joint fixed with sacroiliac screws), and group C (the dislocated sacroiliac joint fixed with polyaxial locking plate screw system). The vertical displacement of sacroiliac joint under the condition of 0-700 N vertical load and the horizontal displacement on angle under the condition of 0-12 N·m torsional load were compared among the 3 groups by using the biological material test system. Finally, the simulated application test was performed on 1 adult male cadaveric specimen to observe soft tissue injury and the position of the locking plate and screw by X-ray films. According to the anatomic data of the sacrum and ilium, the polyaxial locking plate screw system of the sacroiliac joint was designed. The biomechanical results showed that the vertical displacement of the sacroiliac joint under the condition of 0-700 N vertical load in group A was significantly bigger than that in group B and group C (P 0.05). The horizontal displacement on angle under the condition of 0-12 N·m torsional load in group A was significantly less than that in group B and group C (P 0.05). The test of simulating application showed that the specimen suffered less soft tissue injury, and this instrument could be implanted precisely and safely. The polyaxial locking plate screw system of the sacroiliac joint has the advantages of smaller volume and less injury; polyaxial fixation enables flexible adjustment screw

  5. Idealized Compression Ratio for a Screw Briquetting Press

    Directory of Open Access Journals (Sweden)

    Peter Biath

    2012-01-01

    Full Text Available This paper deals with issues in determining the ideal compression ratio for a screw briquetting press. First, the principles of operation and a basic description of the main parts of a screw briquetting press are introduced. The next section describes the pressing space by means of 3D software. The pressing space was created using a Boolean subtract function. The final section of the paper measures the partial volumes of the pressing chamber in CATIA V5 by function of measuring. The measured values are substituted into the formula for the compression ratio, and the resulting evaluations are presented in the diagram in the conclusion of this paper.

  6. Accelerated Tooth Movement with Orthodontic Mini-Screws

    Directory of Open Access Journals (Sweden)

    S. Aksakalli

    2017-01-01

    Full Text Available This case report outlines the possibility of accelerated tooth movement with the combination of microosteoperforation and mini-screws. A 14-year-old male patient presented Class II malocclusion with maxillary incisor protrusion. Upper first premolars were extracted, and after leveling, accelerated canine distalization started. For pre- and postdistalization times, amount of distalization, periodontal health, and root resorption were assessed. Within the limitations of this case report, micro-osteoperforations with mini-screw have a potential for shortening the treatment time.

  7. Screw compressor analysis from a vibration point-of-view

    Science.gov (United States)

    Hübel, D.; Žitek, P.

    2017-09-01

    Vibrations are a very typical feature of all compressors and are given great attention in the industry. The reason for this interest is primarily the negative influence that it can have on both the operating staff and the entire machine's service life. The purpose of this work is to describe the methodology of screw compressor analysis from a vibration point-of-view. This analysis is an essential part of the design of vibro-diagnostics of screw compressors with regard to their service life.

  8. A locking compression plate versus the gold-standard non-locking plate with lag screw for first metatarsophalangeal fusion: A biomechanical comparison.

    Science.gov (United States)

    Mandell, Daniel; Karbassi, John; Zhou, Hanbing; Burroughs, Brian; Aurigemma, Philip; Patel, Abhay R

    2018-03-01

    The treatment of end-stage first metatarso-phalangeal joint (MTP) arthritis has been arthrodesis. A dorsal non-locking plate with a lag screw has been the standard traditional fixation method. This study compares the biomechanical strength of a locking compression plate (LCP) with and without internal compression versus this known gold standard. In group 1, six matched pairs of cadaver great toes were used to compare the standard non-locking dorsal plate and 3.5mm lag screw to an anatomic locking compression plate in which a lag screw was utilized rather than the internal compression features of the plate. In group 2, another six matched pairs of cadaver great toes were used to compare the gold standard to the locking compression plate, utilizing the plate's internal compression feature instead of a lag screw. A material testing system (MTS) machine applied loads to the MTP joints and measured displacement and stiffness of the constructs. The stiffness of the constructs (Young's modulus) was calculated from the force-displacement curves, and the displacement was measured. The locking compression plate group that used the compression features of the plate, without the lag screw, had less joint displacement and higher stiffness than control (p<0.05). The same plating construct in which a lag screw was used rather than internal compression of the plate was found to be stiffer than the control (p<0.05), but displacement was not statistically significant. The results suggest that a locking compression plate alone provides the stiffest construct for a first MTP joint fusion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The effect of different screw-rod design on the anti-rotational torque: a biomechanical comparison of three conventional screw-rod constructs.

    Science.gov (United States)

    Huang, Zifang; Wang, Chongwen; Fan, Hengwei; Sui, Wenyuan; Li, Xueshi; Wang, Qifei; Yang, Junlin

    2017-07-28

    Screw-rod constructs have been widely used to correct spinal deformities, but the effects of different screw-rod systems on anti-rotational torque have not been determined. This study aimed to analyze the biomechanical effect of different rod-screw constructs on anti-rotational torque. Three conventional spinal screw-rod systems (Legacy, RF-F-10 and USSII) were used to test the anti-rotational torque in the material test machine. ANOVA was performed to evaluate the anti-rotational capacity of different pedicle screws-rod constructs. The anti-rotational torque of Legacy group, RF-F-10 group and USSII group were 12.3 ± 1.9 Nm, 6.8 ± 0.4 Nm, and 3.9 ± 0.8 Nm, with a P value lower than 0.05. This results indicated that the Legacy screws-rod construct could provide a highest anti-rotation capacity, which is 68% and 210% greater than RF-F-10 screw-rod construct and USSII screw-rod respectively. The anti-rotational torque may be mainly affected by screw cap and groove design. Our result showed the anti-rotational torque are: Legacy system > RF-F-10 system > USSII system, suggesting that appropriate rod-screw constructs selection in surgery may be vital for anti-rotational torque improvement and preventing derotation correction loss.

  10. Posterior cervical spine arthrodesis with laminar screws. A report of two cases

    International Nuclear Information System (INIS)

    Nakanishi, Kazuo; Tanaka, Masato; Sugimoto, Yoshihisa; Ozaki, Toshifumi

    2007-01-01

    We performed fixation using laminar screws in 2 patients in whom lateral mass screws, pedicle screws or transarticular screws could not be inserted. One was a 56-year-old woman who had anterior atlantoaxial subluxation (AAS). When a guide wire was inserted using an imaging guide, the hole bled massively. We thought the re-insertion of a guide wire or screw would thus increase the risk of vascular injury, so we used laminar screws. The other case was an 18-year-old man who had a hangman fracture. Preoperative magnetic resonance angiography showed occlusion of the left vertebral artery. A laminar screw was inserted into the patent side (i.e., the right side of C2). Cervical pedicle screws are the most biomechanically stable screws. However, their use carries a high risk of neurovascular complications during screw insertion, because the cervical pedicle is small and is adjacent laterally to the vertebral artery, medially to the spinal cord, and vertically to the nerve roots. Lateral mass screws are also reported to involve a risk of neurovascular injuries. The laminar screw method was thus thought to be useful, since arterial injuries could thus be avoided and it could also be used as a salvage modality for the previous misinsertion. (author)

  11. The best location for proximal locking screw for femur interlocking nailing: A biomechanical study

    Directory of Open Access Journals (Sweden)

    Ahmet A Karaarslan

    2016-01-01

    Conclusion: According to our findings, there is twice as much difference in locking screw bending resistance between these two application levels. To avoid proximal locking screw deformation, locking screws should be placed in the level of the lesser trochanter in nailing of 1/3 middle and distal femur fractures.

  12. An Online Fault Pre-warning System of the Rolling Mill Screw-down Device Based on Virtual Instrument

    Directory of Open Access Journals (Sweden)

    Qing Bai

    2014-04-01

    Full Text Available A traditional off-line screw-down monitoring system performs not well on real-time signal analysis or process, which cannot provide simultaneous fault pre-warning either. A diagnostic monitoring system as well as a remotely accessible graphic user interface is presented in this paper. The main objective of this work is to develop an online and available technique for monitoring the kinetic, hydrodynamic and electrical parameters of the rolling mill screw-down device, and analyze these figures to support online fault pre-warning. A series of transducers are installed in suitable locations to measure parameters decried above including the vibration acceleration of a rolling mill stand, the rolling force of a screw-down device, the stroke of a hydraulic cylinder, the system source pressure, the in-cylinder stress and the output value of an electro-hydraulic servo valve. An industrial personal computer picks up the information transformed by an extra high-speed data acquisition board embedded inside, processes the signals via a software designed by means of Laborary Virtual Instrument Engineering Workbench (LabVIEW and indicates fault conditions through the graphic user interface. Besides, the data of the overall system can be published over the Internet using LabVIEW Web Server capabilities. The results of experiments suggest that the system works well on real-time data acquisition and online fault pre- warning. The statistics saved contributes to the research of vibration performance and malfunction analysis of a rolling mill.

  13. Interference screw versus Endoscrew fixation for anterior cruciate ligament reconstruction: A biomechanical comparative study in sawbones and porcine knees

    Directory of Open Access Journals (Sweden)

    Chu-Chih Hung

    2014-04-01

    Full Text Available Interference screw fixation is one of the most common methods for ligament reconstruction. Although the advantages and clinical outcomes of this procedure have been widely reported, post-surgical complications often arise. The purpose of this study was to evaluate a new femoral fixation device, the Endoscrew, for anterior cruciate ligament (ACL reconstruction. We performed a mechanical test in accordance with American Society for Testing and Materials (ASTM standards and an in vitro biomechanical study. An axial pullout test was conducted to evaluate the mechanical properties of the new device and the interference screw when implanted in solid rigid polyurethane foam test blocks. The biomechanical test used porcine femora to evaluate the initial fixation strength between these two implants. The maximum pullout force of the interference screw group [722.05 ± 130.49 N (N] was significantly greater (p < 0.01 than the Endoscrew group (440.79 ± 26.54 N when implanted in polyurethane foam 320 kg/m3 density. With polyurethane foam 160 kg/m3 density, the maximum pullout forces were (242.61 ± 37.36 N (p < 0.001 and (99.33 ± 30.01 N for the interference screw group and Endoscrew group, respectively. In the in vitro mechanical study, the Endoscrew (646.39 ± 72.38 N required a significantly greater ultimate load prior to failure (p < 0.05 when compared with the interference screw (489.72 ± 138.64 N. With regard to pullout stiffness, there was no statistically significant difference (p < 0.13 between the Endoscrew group (99.15 ± 12.16 N/mm and the interference screw group (87.96 ± 11.12 N/mm. The cyclic stiffness was also not significantly different (p < 0.44 between the Endoscrew group (93.09 ± 16.07 N/mm and the interference screw group (85.78 ± 14.76 N/mm. The axial pullout test showed that the strength of the Endoscrew was close to the fixation strength required for daily activities, but it is

  14. Mini-screw implant or transpalatal arch-mediated anchorage reinforcement during canine retraction: a randomized clinical trial.

    Science.gov (United States)

    Sharma, Mohit; Sharma, Vineet; Khanna, Bharat

    2012-06-01

    To compare mesial movement of upper first molars during maxillary canine retraction using a pre-adjusted edgewise appliance provided by anchorage reinforcement and a transpalatal arch or mini-screw implant. Randomized clinical trial. Department of Orthodontics and Dentofacial Orthopedics, Armed Forces Medical College, Pune, India. From a cohort of subjects requiring the extraction of both upper first premolars and pre-adjusted edgewise appliances to correct their malocclusion, a total of 30 were randomly allocated to receive two different forms of anchorage reinforcement: group A--receiving mini-screw implant and group B--receiving a transpalatal arch Group A subjects received titanium mini-screw implants placed at the start of treatment between the maxillary second premolar and maxillary first molar. Maxillary second premolars were secured to the mini-screw implants using of 0.010-inch stainless steel ligature wire. Group B subjects received a custom-made transpalatal arch which was soldered to maxillary first molar bands. Active canine retraction was initiated in both groups on placement of a 0.019×0.025-inch stainless steel archwire using nickel titanium closed coil springs. Mesial movement of the upper first molars as measured on pre- (T1) and post-treatment (T2) lateral skull radiographs. The results showed that in group A the mean mesial movement of the first molars between T1 and T2 was 0.0 mm (SD 0.02; P = 0.90), whereas in Group B there was a mean forward movement of the first maolars of 2.48 mm (SD 0.71; Pimplants placed prior to levelling and aligning were able to provide absolute anchorage during maxillary canine retraction, in contrast to a transpalatal arch.

  15. Effects of Multilevel Facetectomy and Screw Density on Postoperative Changes in Spinal Rod Contour in Thoracic Adolescent Idiopathic Scoliosis Surgery.

    Directory of Open Access Journals (Sweden)

    Terufumi Kokabu

    Full Text Available Flattening of the preimplantation rod contour in the sagittal plane influences thoracic kyphosis (TK restoration in adolescent idiopathic scoliosis (AIS surgery. The effects of multilevel facetectomy and screw density on postoperative changes in spinal rod contour have not been documented. This study aimed to evaluate the effects of multilevel facetectomy and screw density on changes in spinal rod contour from before implantation to after surgical correction of thoracic curves in patients with AIS prospectively. The concave and convex rod shapes from patients with thoracic AIS (n = 49 were traced prior to insertion. Postoperative sagittal rod shape was determined by computed tomography. The angle of intersection of the tangents to the rod end points was measured. Multiple stepwise linear regression analysis was used to identify variables independently predictive of change in rod contour (Δθ. Average Δθ at the concave and convex side were 13.6° ± 7.5° and 4.3° ± 4.8°, respectively. The Δθ at the concave side was significantly greater than that of the convex side (P < 0.0001 and significantly correlated with Risser sign (P = 0.032, the preoperative main thoracic Cobb angle (P = 0.031, the preoperative TK angle (P = 0.012, and the number of facetectomy levels (P = 0.007. Furthermore, a Δθ at the concave side ≥14° significantly correlated with the postoperative TK angle (P = 0.003, the number of facetectomy levels (P = 0.021, and screw density at the concave side (P = 0.008. Rod deformation at the concave side suggests that corrective forces acting on that side are greater than on the convex side. Multilevel facetectomy and/or screw density at the concave side have positive effects on reducing the rod deformation that can lead to a loss of TK angle postoperatively.

  16. Biomechanical evaluation of a second generation headless compression screw for ankle arthrodesis in a cadaver model.

    Science.gov (United States)

    Somberg, Andrew Max; Whiteside, William K; Nilssen, Erik; Murawski, Daniel; Liu, Wei

    2016-03-01

    Many types of screws, plates, and strut grafts have been utilized for ankle arthrodesis. Biomechanical testing has shown that these constructs can have variable stiffness. More recently, headless compression screws have emerged as an evolving method of achieving compression in various applications but there is limited literature regarding ankle arthrodesis. The aim of this study was to determine the biomechanical stability provided by a second generation fully threaded headless compression screw compared to a standard headed, partially threaded cancellous screw in a cadaveric ankle arthrodesis model. Twenty fresh frozen human cadaver specimens were subjected to simulated ankle arthrodesis with either three standard cancellous-bone screws (InFix 7.3mm) or with three headless compression screws (Acumed Acutrak 2 7.5mm). The specimens were subjected to cyclic loading and unloading at a rate of 1Hz, compression of 525 Newtons (N) and distraction of 20N for a total of 500 cycles using an electromechanical load frame (Instron). The amount of maximum distraction was recorded as well as the amount of motion that occurred through 1, 10, 50, 100, and 500 cycles. No significant difference (p=0.412) was seen in the amount of distraction that occurred across the fusion site for either screw. The average maximum distraction after 500 cycles was 201.9μm for the Acutrak 2 screw and 235.4μm for the InFix screw. No difference was seen throughout each cycle over time for the Acutrak 2 screw (p-value=0.988) or the InFix screw (p-value=0.991). Both the traditional InFix type screw and the second generation Acumed Acutrak headless compression screws provide adequate fixation during ankle arthrodesis under submaximal loads. There is no demonstrable difference between traditional cannulated partially threaded screws and headless compression screws studied in this model. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  17. Enhancement of Orthodontic Anchor Screw Stability Under Immediate Loading by Ultraviolet Photofunctionalization Technology.

    Science.gov (United States)

    Takahashi, Maiko; Motoyoshi, Mitsuru; Inaba, Mizuki; Hagiwara, Yoshiyuki; Shimizu, Noriyoshi

    Ultraviolet (UV)-mediated photofunctionalization technology is intended to enhance the osseointegration capability of titanium implants. There are concerns about orthodontic anchor screws loosening under immediate loading protocols in adolescent orthodontic treatment. The purpose of this in vivo study was to evaluate the effects of photofunctionalization on the intrabony stability of orthodontic titanium anchor screws and bone-anchor screw contact under immediate loading in growing rats. Custom-made titanium anchor screws (1.4 mm in diameter and 4.0 mm in length) with or without photofunctionalization pretreatment were placed on the proximal epiphysis of the tibial bone in 6-week-old male Sprague-Dawley rats and were loaded immediately after placement. After 2 weeks of loading, the stability of the anchor screws was evaluated using a Periotest device, and the bone-anchor screw contact ratio (BSC) was assessed by a histomorphometric analysis using field-emission scanning electron microscopy. In the unloaded group, Periotest values (PTVs) were ~25 for UV-untreated screws and 13 for UVtreated screws (P < .01), while in the immediate-loading group, PTVs were 28 for UV-untreated screws and 16 for UV-treated screws (P < .05). Significantly less screw mobility was observed in both UV-treated groups regardless of the loading protocol. The BSC was increased ~1.8 fold for UV-treated screws, compared with UV-untreated screws, regardless of the loading protocol. Photofunctionalization enhanced the intrabony stability of orthodontic anchor screws under immediate loading in growing rats by increasing bone-anchor screw contact.

  18. Direct access to polyisocyanide screw sense using vibrational circular dichroism

    NARCIS (Netherlands)

    Schwartz, E.; Domingos, S.R.; Vdovin, A.; Koepf, M.; Buma, W.J.; Cornelissen, J.J.L.M.; Rowan, A.E.; Nolte, R.J.M.; Woutersen, S.

    2010-01-01

    We show that the screw sense of polyisocyanide helices can be determined in a simple manner from the vibrational circular dichroism (VCD) of their CN-stretching mode. The relation between VCD and molecular structure is obtained using the coupled-oscillator approximation. It is shown that since the

  19. Residence time distribution in twin-screw extruders

    NARCIS (Netherlands)

    Jager, T.

    1992-01-01

    For the twin-screw extruders used in the food industry at short time high temperature processes the knowledge of their reactor properties is incomplete for mass- and heat flow. Therefore each process change such as: scale-up or product development requires a great number of measurements

  20. Kinematics and Dynamic Evaluation of the Screw Conveyor of a ...

    African Journals Online (AJOL)

    An analysis of the vortex motion in a horizontal screw conveyor of a Cassava Centrifuge Dewatering Machine is presented. It is shown that the vortex motion is characterised by the tangential component of the absolute grain velocity being constant with the radial position of a point on the blade. On this basis, an expression ...

  1. Kinematics of a Hybrid Manipulator by Means of Screw Theory

    International Nuclear Information System (INIS)

    Gallardo-Alvarado, J

    2005-01-01

    In this work the kinematics of a hybrid manipulator, namely a fully parallel-serial manipulator, with a particular topology is approached by means of the theory of screws. Given the length of the six independent limbs, the forward position analysis of the mechanism under study, indeed the computation of the resulting pose, position and orientation, of the end-platform with respect to the fixed platform, is carried out in closed-form solution. Therefore conveniently this initial analysis avoids the use of a numerical technique such as the Newton-Raphson method. Writing in screw form the reduced acceleration state of the translational platform, with respect to the fixed platform, a simple expression for the computation of the acceleration of the translational platform is derived by taking advantage of the properties of reciprocal screws, via the Klein form, a bilinear symmetric form of the Lie algebra e(3). Following a similar procedure, a simple expression for the computation of the angular acceleration of the end-platform, with respect to the translational platform, is easily derived. Naturally, as an intermediate step, this contribution also provides the forward and inverse velocity analyses of the chosen parallel-serial manipulator. Finally, in order to prove the versatility of the expressions obtained via screw theory for solving the kinematics, up to the acceleration analysis, of the proposed spatial mechanism, a numerical example is solved with the help of commercial computer codes

  2. Sacroiliac screw fixation: A mini review of surgical technique

    Directory of Open Access Journals (Sweden)

    Hernando Raphael Alvis-Miranda

    2014-01-01

    Full Text Available The sacral percutaneous fixation has many advantages but can be associated with a significant exposure to X-ray radiation. Currently, sacroiliac screw fixation represents the only minimally invasive technique to stabilize the posterior pelvic ring. It is a technique that should be used by experienced surgeons. We present a practical review of important aspects of this technique.

  3. Biomechanical analysis of titanium fixation plates and screws in ...

    African Journals Online (AJOL)

    Conclusions: It was concluded that the use of double 4-hole straight plates provided the sufficient stability on the osteotomy site when compared with the other rigid fixation methods used in this study. Key words: Bone plates, bone screws, finite element analysis, jaw fixation techniques, mandible, mandibular osteotomy ...

  4. Resorbable screws for fixation of autologous bone grafts

    NARCIS (Netherlands)

    Raghoebar, GM; Liem, RSB; Bos, RRM; van der Wal, JE; Vissink, A

    The aim of this study was to evaluate the suitability of resorbable screws made of poly (D,L-lactide) acid (PDLLA) for fixation of autologous bone grafts related to graft regeneration and osseointegration of dental implants. In eight edentulous patients suffering from insufficient retention of their

  5. Modeling The Effect Of Extruder Screw Speed On The Mechanical ...

    African Journals Online (AJOL)

    Modeling The Effect Of Extruder Screw Speed On The Mechanical Properties Of High Density Polyethylene Blown Film. ... Journal of Modeling, Design and Management of Engineering Systems ... Two sets of multiple linear regression models were developed to predict impact failure weight and tenacity respectively.

  6. Comparison of accuracy of lag screw placement in cephalocondylic nails and sliding hip screw plate fixation for extracapsular fractures of the neck of femur

    OpenAIRE

    Shyam Kumar, A. J.; Parmar, V.; Bankart, J.; Williams, S. C.; Harper, W. M.

    2006-01-01

    This study compared the accuracy of lag screw placement between extracapsular femoral fractures fixed with sliding hip screw plate systems and those fixed with cephalocondylic nails. It involved 75 retrospective radiographs of fractures fixed with either a cephalocondylic nail (32) or a sliding hip screw plate system (43). Postoperative anteroposterior and lateral radiographs of the hip were scanned using a digital X-ray scanner and measured using computer software. Measurements were conducte...

  7. Comparative effect of implant-abutment connections, abutment angulations, and screw lengths on preloaded abutment screw using three-dimensional finite element analysis: An in vitro study

    OpenAIRE

    Krishna Chaitanya Kanneganti; Dileep Nag Vinnakota; Srinivas Rao Pottem; Mahesh Pulagam

    2018-01-01

    Purpose: The purpose of this study is to compare the effect of implant-abutment connections, abutment angulations, and screw lengths on screw loosening (SL) of preloaded abutment using three dimensional (3D) finite element analysis. Materials and Methods: 3D models of implants (conical connection with hex/trilobed connections), abutments (straight/angulated), abutment screws (short/long), and crown and bone were designed using software Parametric Technology Corporation Creo and assembled t...

  8. Comparison of cannulated screw and dynamic hip screw for the treatment of femoral neck fractures

    Directory of Open Access Journals (Sweden)

    Mehmet Gem

    2015-09-01

    Full Text Available Objective: We aimed to compare the results of surgeries for intracapsular femoral neck fractures with cannulated screws(CS and dynamic hip screw(DHS, due to lack of evidence which implant for internal fixation of femoral neck fractures is better . Methods: In our clinic between September 2005 and November 2009, 38 patients were operated with intracapsular transcervical fracture of collum femoris between17 to 65 years of age. Eighteen were operated with DHS(47.4% and 20 were operated with CS fixation(52.6%. Results: 16 patients (42.1% were female and 22 (57.9% were male and the mean age was 37.13 (17-65 years. The mean duration of follow-up was 18.05 (2-57 months. 26 patients were operated in 1st -3rd day (68.4%, 9 patients were operated in 4 to 7 day (23.7%, 3 patients were operated in after 7th day (7.9%. In the DHS group, 9 (50% patients had avascular necrosis (AVN, 6 (33.3% patients had implant failure, 3 (16.7% patients had delayed union, 5 (27.8% patients had nonunion, 1 (5.6% patient had infection, and 1 (5.6% patient had myositis ossificans. According to the criteria of Salvati Wilson hip joint assessment, in the DHS group 8 patients (44.4% were very good, 5 patients (27.8% were good, 5 patients (27.8% were moderate. Salvati score was evaluated as average of 28 points (16-40. İn the CS group, 8 (40% patients had AVN, 1 (5% had delayed union, 3 (15% of the cases had nonunion and 1 (5% patients infection was detected. According to the criteria of the Salvati-Wilson, in the CS group13 (65% of them are very good, 5 (25% were good, 2 (10% were assessed as moderate. Salvati score was evaluated as average of 33 points (18-40. In the CS group none of the patients had implant failure, in the DHS group 6 patients had implant failure (33.3% (p<0,05. Conclusion: Except for the high rate of implant failure detection in the DHS group method, no significant difference between complications and functional results between two groups. J Clin Exp Invest

  9. Conceptual design of ball-screw type control element drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Ho; Kim, Jong In; Huh, Hyung [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    In this report, the design features of ball-screw type CEDM with fine-step movement capability are described. The contents of this report are as follows: -Review of Design Requirements for Ball-screw type CEDM -System Description for Ball-screw type CEDM -Design of Ball Bearing and Ball-screw Assembly -Detail Design of Rotary Step Motor -Detail Design of Angular Position Indicator -Materials. The Ball-screw type CEDM described in this report is to be utilized as the starting point for design development of CEDM for SMART. 11 refs., 43 figs., 3 tabs. (Author)

  10. The improvement of screw compressor performance using a newly developed rotor profile

    International Nuclear Information System (INIS)

    Kishi, Takayuki; Nishio, Toshio; Matsui, Akira; Ino, Nobumi

    1994-01-01

    An oil-compression phenomenon occurs at two portions of a conventional oil injected screw compressor that degrades the isothermal efficiency of the screw compressor. Hence a new screw rotor profile and lubricant have been developed in order to avoid the above oil-compression phenomena. Mycom and Fermi National Accelerator Laboratory have measured the performance of a new Mycom compound type screw compressor 2016C using the new profile rotors and the new lubricant. In the experiments, a 33% enhancement rate in the isothermal efficiency of the new screw compressor installed in Fermilab was achieved

  11. Mechanical comparison between lengthened and short sacroiliac screws in sacral fracture fixation: a finite element analysis.

    Science.gov (United States)

    Zhao, Y; Zhang, S; Sun, T; Wang, D; Lian, W; Tan, J; Zou, D; Zhao, Y

    2013-09-01

    To compare the stability of lengthened sacroiliac screw and standard sacroiliac screw for the treatment of unilateral vertical sacral fractures; to provide reference for clinical applications. A finite element model of Tile type C pelvic ring injury (unilateral Denis type II fracture of the sacrum) was produced. The unilateral sacral fractures were fixed with lengthened sacroiliac screw and sacroiliac screw in six different types of models respectively. The translation and angle displacement of the superior surface of the sacrum (in standing position on both feet) were measured and compared. The stability of one lengthened sacroiliac screw fixation in S1 or S2 segment is superior to that of one sacroiliac screw fixation in the same sacral segment. The stability of one lengthened sacroiliac screw fixation in S1 and S2 segments respectively is superior to that of one sacroiliac screw fixation in S1 and S2 segments respectively. The stability of one lengthened sacroiliac screw fixation in S1 and S2 segments respectively is superior to that of one lengthened sacroiliac screw fixation in S1 or S2 segment. The stability of one sacroiliac screw fixation in S1 and S2 segments respectively is markedly superior to that of one sacroiliac screw fixation in S1 or S2 segment. The vertical and rotational stability of lengthened sacroiliac screw fixation and sacroiliac screw fixation in S2 is superior to that of S1. In a finite element model of type C pelvic ring disruption, S1 and S2 lengthened sacroiliac screws should be utilized for the fixation as regularly as possible and the most stable fixation is the combination of the lengthened sacroiliac screws of S1 and S2 segments. Even if lengthened sacroiliac screws cannot be systematically used due to specific conditions, one sacroiliac screw fixation in S1 and S2 segments respectively is recommended. No matter which kind of sacroiliac screw is used, if only one screw can be implanted, the fixation in S2 segment is more recommended

  12. A technique for the management of screw access opening in cement-retained implant restorations

    Directory of Open Access Journals (Sweden)

    Hamid Kermanshah

    2014-01-01

    Full Text Available Introduction: Abutment screw loosening has been considered as a common complication of implant-supported dental prostheses. This problem is more important in cement-retained implant restorations due to their invisible position of the screw access opening. Case Report: This report describes a modified retrievability method for cement-retained implant restorations in the event of abutment screw loosening. The screw access opening was marked with ceramic stain and its porcelain surface was treated using hydrofluoric acid (HF, silane, and adhesive to bond to composite resin. Discussion: The present modified technique facilitates screw access opening and improves the bond between the porcelain and composite resin.

  13. Covering the screw-access holes of implant restorations in the esthetic zone: a clinical report.

    Directory of Open Access Journals (Sweden)

    Abolfazl Saboury

    2014-12-01

    Full Text Available Screw-retained implant restorations have an advantage of predictable retention as well as retrievability, and obviate the risk of excessive sub-gingival cement commonly associated with cement retained implant restorations. Screw-retained restorations generally have screw access holes, which can compromise esthetics and weaken the porcelain around the holes. The purpose of this study is to describe the use of a separate overcasting crown design to cover the screw access hole of implant screw-retained prosthesis for improved esthetics.

  14. Thermal homogeneity of plastication processes in single-screw extruders

    Science.gov (United States)

    Bu, L. X.; Agbessi, Y.; Béreaux, Y.; Charmeau, J.-Y.

    2018-05-01

    Single-screw plastication, used in extrusion and in injection moulding, is a major way of processing commodity thermoplastics. During the plastication phase, the polymeric material is melted by the combined effects of shear-induced self-heating (viscous dissipation) and heat conduction coming from the barrel. In injection moulding, a high level of reliability is usually achieved that makes this process ideally suited to mass market production. Nonetheless, process fluctuations still appear that make moulded part quality control an everyday issue. In this work, we used a combined modelling of plastication, throughput calculation and laminar dispersion, to investigate if, and how, thermal fluctuations could propagate along the screw length and affect the melt homogeneity at the end of the metering section. To do this, we used plastication models to relate changes in processing parameters to changes in the plastication length. Moreover, a simple model of throughput calculation is used to relate the screw geometry, the polymer rheology and the processing parameters to get a good estimate of the mass flow rate. Hence, we found that the typical residence time in a single screw is around one tenth of the thermal diffusion time scale. This residence time is too short for the dispersion coefficient to reach a steady state, but too long to be able to neglect radial thermal diffusion and resort to a purely convective solution. Therefore, a full diffusion/convection problem has to be solved with a base flow described by the classic pressure and drag velocity field. Preliminary results already show the major importance of the processing parameters in the breakthrough curve of an arbitrary temperature fluctuation at the end of the metering section of injection moulding screw. When the flow back-pressure is high, the temperature fluctuation is spread more evenly with time, whereas a pressure drop in the flow will results in a breakthrough curve which presents a larger peak of

  15. Oral mucosa tissue response to titanium cover screws.

    Science.gov (United States)

    Olmedo, Daniel G; Paparella, María L; Spielberg, Martín; Brandizzi, Daniel; Guglielmotti, María B; Cabrini, Rómulo L

    2012-08-01

    Titanium is the most widely used metal in dental implantology. The release of particles from metal structures into the biologic milieu may be the result of electrochemical processes (corrosion) and/or mechanical disruption during insertion, abutment connection, or removal of failing implants. The aim of the present study is to evaluate tissue response of human oral mucosa adjacent to titanium cover screws. One hundred fifty-three biopsies of the supra-implant oral mucosa adjacent to the cover screw of submerged dental implants were analyzed. Histologic studies were performed to analyze epithelial and connective tissue as well as the presence of metal particles, which were identified using microchemical analysis. Langerhans cells, macrophages, and T lymphocytes were studied using immunohistochemical techniques. The surface of the cover screws was evaluated by scanning electron microscopy (SEM). Forty-one percent of mucosa biopsies exhibited metal particles in different layers of the section thickness. Particle number and size varied greatly among specimens. Immunohistochemical study confirmed the presence of macrophages and T lymphocytes associated with the metal particles. Microchemical analysis revealed the presence of titanium in the particles. On SEM analysis, the surface of the screws exhibited depressions and irregularities. The biologic effects seen in the mucosa in contact with the cover screws might be associated with the presence of titanium or other elements, such as aluminum or vanadium. The potential long-term biologic effects of particles on soft tissues adjacent to metallic devices should be further investigated because these effects might affect the clinical outcome of the implant.

  16. Do screws and screw holes affect osteolysis in cementless cups using highly crosslinked polyethylene? A 7 to 10-year follow-up case-control study.

    Science.gov (United States)

    Taniguchi, N; Jinno, T; Takada, R; Koga, D; Ando, T; Okawa, A; Haro, H

    2018-05-01

    The use of screws and the presence of screw holes may cause acetabular osteolysis and implant loosening in cementless total hip arthroplasty (THA) using conventional polyethylene. In contrast, this issue is not fully understood using highly crosslinked polyethylene (HXLPE), particularly in large comparative study. Therefore, we performed a case-control study to assess the influence of screw usage and screw holes on: (1) implant fixation and osteolysis and (2) polyethylene steady-state wear rate, using cases with HXLPE liners followed up for 7-10 years postoperatively. The screw usage and screw holes adversely affect the implant fixation and incidence of wear-related osteolysis in THA with HXLPE. We reviewed 209 primary cementless THAs performed with 26-mm cobalt-chromium heads on HXLPE liners. To compare the effects of the use of screws and the presence of screw holes, the following groups were established: (1) with-screw (n=140); (2) without-screw (n=69); (3) no-hole (n=27) and (4) group in which a cup with screw holes, but no screw was used (n=42). Two adjunct groups (no-hole cups excluded) were established to compare the differences in the two types of HXLPE: (5) remelted group (n=100) and (6) annealed group (n=82). Implant stability and osteolysis were evaluated by plain radiography and computed tomography. The wear rate from 1 year to the final evaluation was measured using plain X-rays and PolyWare Digital software. All cups and stems achieved bony fixation. On CT-scan, no acetabular osteolysis was found, but there were 3 cases with a small area of femoral osteolysis. The mean steady-state wear rate of each group was (1) 0.031±0.022, (2) 0.033±0.035, (3) 0.031±0.024, (4) 0.029±0.018, (5) 0.030±0.018 and (6) 0.034±0.023mm/year, respectively. A comparison of the effects of screw usage or screw holes found no significant between-group differences in the implant stability, prevalence of osteolysis [no acetabular osteolysis and 3/209 at femoral side (1

  17. Comparative effect of implant-abutment connections, abutment angulations, and screw lengths on preloaded abutment screw using three-dimensional finite element analysis: An in vitro study.

    Science.gov (United States)

    Kanneganti, Krishna Chaitanya; Vinnakota, Dileep Nag; Pottem, Srinivas Rao; Pulagam, Mahesh

    2018-01-01

    The purpose of this study is to compare the effect of implant-abutment connections, abutment angulations, and screw lengths on screw loosening (SL) of preloaded abutment using three dimensional (3D) finite element analysis. 3D models of implants (conical connection with hex/trilobed connections), abutments (straight/angulated), abutment screws (short/long), and crown and bone were designed using software Parametric Technology Corporation Creo and assembled to form 8 simulations. After discretization, the contact stresses developed for 150 N vertical and 100 N oblique load applications were analyzed, using ABAQUS. By assessing damage initiation and shortest fatigue load on screw threads, the SL for 2.5, 5, and 10 lakh cyclic loads were estimated, using fe-safe program. The obtained values were compared for influence of connection design, abutment angulation, and screw length. In straight abutment models, conical connection showed more damage (14.3%-72.3%) when compared to trilobe (10.1%-65.73%) at 2.5, 5, and 10 lakh cycles for both vertical and oblique loads, whereas in angulated abutments, trilobe (16.1%-76.9%) demonstrated more damage compared to conical (13.5%-70%). Irrespective of the connection type and abutment angulation, short screws showed more percentage of damage compared to long screws. The present study suggests selecting appropriate implant-abutment connection based on the abutment angulation, as well as preferring long screws with more number of threads for effective preload retention by the screws.

  18. Screw-worm eradication in the Americas - Overview

    International Nuclear Information System (INIS)

    Wyss, John H.

    2000-01-01

    Screw-worms (Cochliomyia hominivorax, Coquerel) are found only in the Americas, and are known, therefore, as the New World Screw-worm (NWS). The larval stages of the fly feed on the living flesh of their host. A screw-worm infestation can kill an adult animal in 7-10 days if not treated. All warm-blooded animals are affected including man. Although screw-worms had long been recognised as a severe pest of animals in the southwestern United States, they had never been detected east of the Mississippi River before 1933. In July 1933, screw-worms were transported on infested cattle to Georgia and became established east of the Mississippi River. Screw-worms spread quickly in the southeastern United States and were able to overwinter in southern Florida. Being new to the region, they were quickly recognised as a severe pest with a tremendous economic impact on livestock production. The livestock owners in the southeastern United States immediately noticed an increase in the number of animal deaths and increased costs of insecticides, veterinary medicines, veterinary services, inspection and handling. At the same time, they observed a decrease in animal weights and in milk production. Due to these observations, the livestock industry in the southeastern United States requested help in controlling screw-worms. Because of these requests, the research community became interested in control and eradication measures for this pest. Early work by Crushing and Patton in 1933 recognised that C. hominivorax was an obligatory animal parasite and different from the secondary blowfly, Cochliomyia macellaria. In 1934, the US Department of Agriculture (USDA), Agricultural Research Service (ARS) opened a research station in Valdosa, Georgia, and E.W. Laake and E.F. Knipling were assigned to work there. In September 1935, R.C. Bushland was hired by ARS to do research related to screw-worms at an ARS Research Laboratory in Dallas, Texas. Melvin and Bushland in 1936 developed artificial

  19. A rationale method for evaluating unscrewing torque values of prosthetic screws in dental implants

    Directory of Open Access Journals (Sweden)

    Felipe Miguel Saliba

    2011-02-01

    Full Text Available OBJECTIVES: Previous studies that evaluated the torque needed for removing dental implant screws have not considered the manner of transfer of the occlusal loads in clinical settings. Instead, the torque used for removal was applied directly to the screw, and most of them omitted the possibility that the hexagon could limit the action of the occlusal load in the loosening of the screws. The present study proposes a method for evaluating the screw removal torque in an anti-rotational device independent way, creating an unscrewing load transfer to the entire assembly, not only to the screw. MATERIAL AND METHODS: Twenty hexagonal abutments without the hexagon in their bases were fixed with a screw to 20 dental implants. They were divided into two groups: Group 1 used titanium screws and Group 2 used titanium screws covered with a solid lubricant. A torque of 32 Ncm was applied to the screw and then a custom-made wrench was used for rotating the abutment counterclockwise, to loosen the screw. A digital torque meter recorded the torque required to loosen the abutment. RESULTS: There was a significant difference between the means of Group 1 (38.62±6.43 Ncm and Group 2 (48.47±5.04 Ncm, with p=0.001. CONCLUSION: This methodology was effective in comparing unscrewing torque values of the implant-abutment junction even with a limited sample size. It confirmed a previously shown significant difference between two types of screws.

  20. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone

    Directory of Open Access Journals (Sweden)

    Eduardo Aloisio Fleck NEUMANN

    2014-08-01

    Full Text Available Fractured abutment screws may be replaced; however, sometimes, the screw cannot be removed and the entire implant must be surgically removed and replaced. The aim of this study was to compare the fracture resistance of abutment retention screws made of titanium, polyetheretherketone (PEEK and 30% carbon fiber-reinforced PEEK, using an external hexagonal implant/UCLA-type abutment interface assembly. UCLA-type abutments were fixed to implants using titanium screws (Group 1, polyetheretherketone (PEEK screws (Group 2, and 30% carbon fiber-reinforced PEEK screws (Group 3. The assemblies were placed on a stainless steel holding apparatus to allow for loading at 45o off-axis, in a universal testing machine. A 200 N load (static load was applied at the central point of the abutment extremity, at a crosshead speed of 5 mm/minute, until failure. Data was analyzed by ANOVA and Tukey’s range test. The titanium screws had higher fracture resistance, compared with PEEK and 30% carbon fiber-reinforced PEEK screws (p 0.05. Finally, visual analysis of the fractions revealed that 100% of them occurred at the neck of the abutment screw, suggesting that this is the weakest point of this unit. PEEK abutment screws have lower fracture resistance, in comparison with titanium abutment screws.

  1. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone.

    Science.gov (United States)

    Neumann, Eduardo Aloisio Fleck; Villar, Cristina Cunha; França, Fabiana Mantovani Gomes

    2014-01-01

    Fractured abutment screws may be replaced; however, sometimes, the screw cannot be removed and the entire implant must be surgically removed and replaced. The aim of this study was to compare the fracture resistance of abutment retention screws made of titanium, polyetheretherketone (PEEK) and 30% carbon fiber-reinforced PEEK, using an external hexagonal implant/UCLA-type abutment interface assembly. UCLA-type abutments were fixed to implants using titanium screws (Group 1), polyetheretherketone (PEEK) screws (Group 2), and 30% carbon fiber-reinforced PEEK screws (Group 3). The assemblies were placed on a stainless steel holding apparatus to allow for loading at 45o off-axis, in a universal testing machine. A 200 N load (static load) was applied at the central point of the abutment extremity, at a crosshead speed of 5 mm/minute, until failure. Data was analyzed by ANOVA and Tukey's range test. The titanium screws had higher fracture resistance, compared with PEEK and 30% carbon fiber-reinforced PEEK screws (p 0.05). Finally, visual analysis of the fractions revealed that 100% of them occurred at the neck of the abutment screw, suggesting that this is the weakest point of this unit. PEEK abutment screws have lower fracture resistance, in comparison with titanium abutment screws.

  2. Bioresorbable screws reinforced with phosphate glass fibre: manufacturing and mechanical property characterisation.

    Science.gov (United States)

    Felfel, R M; Ahmed, I; Parsons, A J; Rudd, C D

    2013-01-01

    Use of bioresorbable screws could eliminate disadvantages associated with metals such as removal operations, corrosion, MRI interference and stress shielding. Mechanical properties of bioresorbable polymers alone are insufficient for load bearing applications application as screws. Thus, reinforcement is necessary to try and match or surpass the mechanical properties of cortical bone. Phosphate based glass fibres were used to reinforce polylactic acid (PLA) in order to produce unidirectionally aligned (UD) and unidirectionally plus randomly distributed (UD/RM) composite screws (P40 UD and P40 UD/RM). The maximum flexural and push-out properties for the composite screws (P40 UD and P40 UD/RM) increased by almost 100% in comparison with the PLA screws. While the pull-out strength and stiffness of the headless composite screws were ∼80% (strength) and ∼130% (stiffness) higher than for PLA, those with heads exhibited properties lower than those for PLA alone as a result of failure at the heads. An increase in the maximum shear load and stiffness for the composite screws (∼30% and ∼40%) in comparison to the PLA screws was also seen. Maximum torque for the PLA screws was ∼1000 mN m, while that for the composite screws were slightly lower. The SEM micrographs for P40 UD and P40 UD/RM screws revealed small gaps around the fibres, which were suggested to be due to buckling of the UD fibres during the manufacturing process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Coil Springs Layer Used to Support a Car Vertical Dynamics Simulator and to Reduce the Maximum Actuation Force

    Directory of Open Access Journals (Sweden)

    Dan N. Dumitriu

    2015-09-01

    Full Text Available A Danaher Thomson linear actuator with ball screw drive and a realtime control system are used here to induce vertical displacements under the driver/user seat of an in-house dynamic car simulator. In order to better support the car simulator and to dynamically protect the actuator’s ball screw drive, a layer of coil springs is used to support the whole simulator chassis. More precisely, one coil spring is placed vertically under each corner of the rectangular chassis. The paper presents the choice of the appropriate coil springs, so that to minimize as much as possible the ball screw drive task of generating linear motions, corresponding to the vertical displacements and accelerations encountered by a driver during a real ride. For this application, coil springs with lower spring constant are more suited to reduce the forces in the ball screw drive and thus to increase the ball screw drive life expectancy.

  4. Screw Remaining Life Prediction Based on Quantum Genetic Algorithm and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xiaochen Zhang

    2017-01-01

    Full Text Available To predict the remaining life of ball screw, a screw remaining life prediction method based on quantum genetic algorithm (QGA and support vector machine (SVM is proposed. A screw accelerated test bench is introduced. Accelerometers are installed to monitor the performance degradation of ball screw. Combined with wavelet packet decomposition and isometric mapping (Isomap, the sensitive feature vectors are obtained and stored in database. Meanwhile, the sensitive feature vectors are randomly chosen from the database and constitute training samples and testing samples. Then the optimal kernel function parameter and penalty factor of SVM are searched with the method of QGA. Finally, the training samples are used to train optimized SVM while testing samples are adopted to test the prediction accuracy of the trained SVM so the screw remaining life prediction model can be got. The experiment results show that the screw remaining life prediction model could effectively predict screw remaining life.

  5. Evaluation of pre-tightening in abutments and prosthetic screws on different implant connections = Avaliação do pré-aparafusamento em pilares e parafusos protéticos em diferentes conexões de implante

    Directory of Open Access Journals (Sweden)

    Panza, Leonardo Henrique Vadenal

    2010-01-01

    Conclusão: Os tipos de conexão do implante ou pilar fetaram a manutenção do préaparafusamento. As conexões de hexágono interno e externo foram efetivas para evitar o deslocamento horizontal das coroas

  6. A Biomechanical Analysis of 2 Constructs for Metacarpal Spiral Fracture Fixation in a Cadaver Model: 2 Large Screws Versus 3 Small Screws.

    Science.gov (United States)

    Eu-Jin Cheah, Andre; Behn, Anthony W; Comer, Garet; Yao, Jeffrey

    2017-12-01

    Surgeons confronted with a long spiral metacarpal fracture may choose to fix it solely with lagged screws. A biomechanical analysis of a metacarpal spiral fracture model was performed to determine whether 3 1.5-mm screws or 2 2.0-mm screws provided more stability during bending and torsional loading. Second and third metacarpals were harvested from 12 matched pairs of fresh-frozen cadaveric hands and spiral fractures were created. One specimen from each matched pair was fixed with 2 2.0-mm lagged screws whereas the other was fixed with 3 1.5-mm lagged screws. Nine pairs underwent combined cyclic cantilever bending and axial compressive loading followed by loading to failure. Nine additional pairs were subjected to cyclic external rotation while under a constant axial compressive load and were subsequently externally rotated to failure under a constant axial compressive load. Paired t tests were used to compare cyclic creep, stiffness, displacement, rotation, and peak load levels. Average failure torque for all specimens was 7.2 ± 1.7 Nm. In cyclic torsional testing, the group with 2 screws exhibited significantly less rotational creep than the one with 3 screws. A single specimen in the group with 2 screws failed before cyclic bending tests were completed. No other significant differences were found between test groups during torsional or bending tests. Both constructs were biomechanically similar except that the construct with 2 screws displayed significantly less loosening during torsional cyclic loading, although the difference was small and may not be clinically meaningful. Because we found no obvious biomechanical advantage to using 3 1.5-mm lagged screws to fix long spiral metacarpal fractures, the time efficiency and decreased implant costs of using 2-2.0 mm lagged screws may be preferred. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  7. Split-face histological and biochemical evaluation of tightening efficacy using temperature- and impedance-controlled continuous non-invasive radiofrequency energy.

    Science.gov (United States)

    Boisnic, Sylvie; Divaris, Marc; Branchet, Marie-Christine; Nelson, Andrew A

    2017-06-01

    Bipolar radiofrequency (RF) is capable of heating dermal collagen fibers and inducing skin tightening by collagen remodeling. To substantiate safety and improvement of skin laxity following skin heating with a novel temperature- and impedance-controlled non-invasive radiofrequency (RF) device by histological and biochemical evaluations. A split-face study was performed on 4 subjects who underwent 8 weekly RF sessions on one side of their face, leaving the other side an untreated control and then underwent facelift procedure. Clinical evaluation by photographs was done prior to the surgical procedure. Ex vivo fragments were harvested from both sides and compared. Morphometric analysis of dermal collagen fibers, collagen synthesis, and elastin synthesis evaluations were compared in triplicates. Facial skin tightening was apparent in split-face photographs. A significant increase of 7.9% in dermal collagen content, and a significant increase of 34.7% in collagen synthesis were demonstrated in the treated samples. No statistically significant effect on elastin synthesis was detected. Skin tightening following treatment with non-invasive RF has proven histologically and biochemically to derive from increase in dermal collagen synthesis and content.

  8. Evaluation of MR issues for the latest standard brands of orthopedic metal implants: plates and screws.

    Science.gov (United States)

    Zou, Yue-Fen; Chu, Bin; Wang, Chuan-Bing; Hu, Zhi-Yi

    2015-03-01

    The study was performed to evaluate magnetic resonance (MR) issues for the latest standard brands of plates and screws used in orthopedic surgery at a 1.5-T MR system, including the safety and metallic artifacts. The plates and screws (made of titanium alloy and stainless steel materials, according to the latest standard brands) were assessed for displacement in degrees, MRI-related heating and artifacts at a 1.5-T MR system. The displacement in degrees of the plates and screws was evaluated on an angel-measurement instrument at the entrance of the MR scanner. The MRI-related heating was assessed on a swine leg fixed with a plate by using a "worst-case" pulse sequence. A rectangular water phantom was designed to evaluate metallic artifacts of a screw on different sequences (T1/T2-weighted FSE, STIR, T2-FSE fat saturation, GRE, DWI) and then artifacts were evaluated on T2-weighted FSE sequence by modifying the scanning parameters including field of view (FOV), echo train length (ETL) and bandwidth to identify the influence of parameters on metallic artifacts. 15 volunteers with internal vertebral fixation (titanium alloy materials) were scanned with MR using axial and sagittal T2-FSE, sagittal T2-FSE fat suppression and STIR with conventional and optimized parameters, respectively. Then all images were graded by two experienced radiologists having the experience of more than 7 years under double-blind studies that is neither of them knew which was conventional parameter group and optimized parameter group. The average deflection angle of titanium alloy and stainless steel implants were 4.3° and 7.7°, respectively, (less than 45°) which indicated that the magnetically induced force was less than the weight of the object. The deflection angle of the titanium alloy implants was less than the stainless steel one (t=9.69, Ptitanium alloy before and after the scan was 0.48°C and stainless steel implants was 0.74°C, respectively, with the background temperature

  9. Comparison of migration behavior between single and dual lag screw implants for intertrochanteric fracture fixation

    Directory of Open Access Journals (Sweden)

    Katonis Pavlos G

    2009-05-01

    Full Text Available Abstract Background Lag screw cut-out failure following fixation of unstable intertrochanteric fractures in osteoporotic bone remains an unsolved challenge. This study tested if resistance to cut-out failure can be improved by using a dual lag screw implant in place of a single lag screw implant. Migration behavior and cut-out resistance of a single and a dual lag screw implant were comparatively evaluated in surrogate specimens using an established laboratory model of hip screw cut-out failure. Methods Five dual lag screw implants (Endovis, Citieffe and five single lag screw implants (DHS, Synthes were tested in the Hip Implant Performance Simulator (HIPS of the Legacy Biomechanics Laboratory. This model simulated osteoporotic bone, an unstable fracture, and biaxial rocking motion representative of hip loading during normal gait. All constructs were loaded up to 20,000 cycles of 1.45 kN peak magnitude under biaxial rocking motion. The migration kinematics was continuously monitored with 6-degrees of freedom motion tracking system and the number of cycles to implant cut-out was recorded. Results The dual lag screw implant exhibited significantly less migration and sustained more loading cycles in comparison to the DHS single lag screw. All DHS constructs failed before 20,000 cycles, on average at 6,638 ± 2,837 cycles either by cut-out or permanent screw bending. At failure, DHS constructs exhibited 10.8 ± 2.3° varus collapse and 15.5 ± 9.5° rotation around the lag screw axis. Four out of five dual screws constructs sustained 20,000 loading cycles. One dual screw specimens sustained cut-out by medial migration of the distal screw after 10,054 cycles. At test end, varus collapse and neck rotation in dual screws implants advanced to 3.7 ± 1.7° and 1.6 ± 1.0°, respectively. Conclusion The single and double lag screw implants demonstrated a significantly different migration resistance in surrogate specimens under gait loading simulation with

  10. Geodetic Control Points, Chippewa County has been working on tightening up their control network over the years. The first network was constructed in 1993, with densification done from 2008-2011., Published in 2011, Not Applicable scale, Chippewa County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Geodetic Control Points dataset current as of 2011. Chippewa County has been working on tightening up their control network over the years. The first network was...

  11. Process and device for the ultrasonic testing of slotted screws screwed into a head of a nuclear reactor fuel element for cracks

    International Nuclear Information System (INIS)

    Scharpenberg, R.

    1986-01-01

    To achieve correct echo signals, a test head is set separately on each area limited by a slot of the top of the slotted screw and the screw head is ultrasonically sounded in the direction of the suspected cracks. (orig./HP) [de

  12. Biomechanical comparison of 3.0 mm headless compression screw and 3.5 mm cortical bone screw in a canine humeral condylar fracture model.

    Science.gov (United States)

    Gonsalves, Mishka N; Jankovits, Daniel A; Huber, Michael L; Strom, Adam M; Garcia, Tanya C; Stover, Susan M

    2016-09-20

    To compare the biomechanical properties of simulated humeral condylar fractures reduced with one of two screw fixation methods: 3.0 mm headless compression screw (HCS) or 3.5 mm cortical bone screw (CBS) placed in lag fashion. Bilateral humeri were collected from nine canine cadavers. Standardized osteotomies were stabilized with 3.0 mm HCS in one limb and 3.5 mm CBS in the contralateral limb. Condylar fragments were loaded to walk, trot, and failure loads while measuring construct properties and condylar fragment motion. The 3.5 mm CBS-stabilized constructs were 36% stiffer than 3.0 mm HCS-stabilized constructs, but differences were not apparent in quality of fracture reduction nor in yield loads, which exceeded expected physiological loads during rehabilitation. Small residual fragment displacements were not different between CBS and HCS screws. Small fragment rotation was not significantly different between screws, but was weakly correlated with moment arm length (R² = 0.25). A CBS screw placed in lag fashion provides stiffer fixation than an HCS screw, although both screws provide similar anatomical reduction and yield strength to condylar fracture fixation in adult canine humeri.

  13. Numerical study of internal flow in twin screw extruder and its mixing performance analysis

    International Nuclear Information System (INIS)

    Kim, Nak Soo; Kim, Hong Bum; Lee, Jae Wook

    2006-01-01

    We analyzed the non-Newtonian and non-isothermal flow in the melt conveying zone in co-rotating and counter-rotating screw extruder system with the commercial code, STAR-CD, and compared the mixing performance with respect to screw speed and rotating direction. The viscosity of fluid was described by power-law model. The dynamics of mixing was studied numerically by tracking the motion of particles in a twin screw extruder system. The extent of mixing was characterized in terms of the residence time distribution and average strain. The results showed that high screw speed decreases the residence time but increases the shear rate. Therefore higher screw speed increases the strain and has better mixing performance. Counter-rotating screw extruder system and co-rotating screw extruder has the similar shear rate with the same screw speed in spite of different rotating direction. However, the counter-rotating screw has good mixing performance, which is resulted from longer residence time than that of co-rotating screw extruder

  14. BIOMECHANICAL EVALUATION OF THE INFLUENCE OF CERVICAL SCREWS TAPPING AND DESIGN.

    Science.gov (United States)

    Silva, Patricia; Rosa, Rodrigo César; Shimano, Antonio Carlos; Albuquerque de Paula, Francisco José; Volpon, José Batista; Aparecido Defino, Helton Luiz

    2009-01-01

    To assess if the screw design (self-drilling/self-tapping) and the pilot hole tapping could affect the insertion torque and screw pullout strength of the screw used in anterior fixation of the cervical spine. Forty self-tapping screws and 20 self-drilling screws were inserted into 10 models of artificial bone and 10 cervical vertebrae of sheep. The studied parameters were the insertion torque and pullout strength. The following groups were created: Group I-self-tapping screw insertion after pilot hole drilling and tapping; Group II-self-tapping screw insertion after pilot hole drilling without tapping; Group III-self-drilling screw insertion without drilling and tapping. In Groups I and II, the pilot hole had 14.0 mm in depth and was made with a 3mmn drill, while tapping was made with a 4mm tap. The insertion torque was measured and the pullout test was performed. The comparison between groups was made considering the mean insertion torque and the maximum mean pullout strength with the variance analysis (ANOVA; p≤ 0.05). Previous drilling and tapping of pilot hole significantly decreased the insertion torque and the pullout strength. The insertion torque and pullout strength of self-drilling screws were significantly higher when compared to self-tapping screws inserted after pilot hole tapping.

  15. Effectiveness of screw surface coating on the stability of zirconia abutments after cyclic loading.

    Science.gov (United States)

    Basílio, Mariana de Almeida; Butignon, Luis Eduardo; Arioli Filho, João Neudenir

    2012-01-01

    Different surface treatments have been developed in attempts to prevent the loosening of abutment screws. The aim of the current study was to compare the effectiveness of titanium alloy screws with tungsten-doped diamond-like carbon (W-DLC) coating and uncoated screws in providing stability to zirconia (ZrO2) ceramic abutments after cyclic loading. Twenty prefabricated ZrO2 ceramic abutments on their respective external-hex implants were divided into two groups of equal size according to the type of screw used: uncoated titanium alloy screw (Ti) or titanium alloy screw with W-DLC coating (W-DLC/Ti). The removal torque value (preload) of the abutment screw was measured before and after loading. Cyclic loading between 11 and 211 N was applied at an angle of 30 degrees to the long axis of the implants at a frequency of 15 Hz. A target of 0.5 X 106 cycles was defined. Group means were calculated and compared using analysis of variance and the F test (α = .05). Before cyclic loading, the preload for Ti screws was significantly higher than that for W-DLC/Ti screws (P = .021). After cyclic loading, there was no significant difference between them (P = .499). Under the studied conditions, it can be concluded that, after cyclic loading, both abutment screws presented a significant reduction in the mean retained preload and similar effectiveness in maintaining preload.

  16. Determination of Screw and Nail Withdrawal Resistance of Some Important Wood Species

    Directory of Open Access Journals (Sweden)

    Alper Aytekin

    2008-04-01

    Full Text Available In this study, screw and nail withdrawal resistance of fir (Abies nordmanniana, oak (Quercus robur L. black pine (Pinus nigra Arnold and Stone pine (Pinus pinea L. wood were determined and compared. The data represent the testing of withdrawal resistance of three types of screws as smart, serrated and conventional and common nails. The specimens were prepared according to TS 6094 standards. The dimensions of the specimens were 5x5x15cm and for all of the directions. Moreover, the specimens were conditioned at ambient room temperature and 65±2% relative humidity. The screws and nails were installed according to ASTM-D 1761 standards. Nail dimensions were 2.5mm diameter and 50 mm length, conventional screws were 4x50mm, serrated screws were 4x45mm and smart screws were 4x50mm. Results show that the maximum screw withdrawal resistance value was found in Stone pine for the serrated screw. There were no significant differences between Stone pine and oak regarding screw withdrawal resistance values. Conventional screw yielded the maximum screw withdrawal resistance value in oak, followed by Stone pine, black pine and fir. Oak wood showed the maximum screw withdrawal resistance value for the smart screw, followed by Stone pine, black pine, and fir. Oak wood showed higher nail withdrawal resistances than softwood species. It was also determined that oak shows the maximum nail withdrawal resistance in all types. The nail withdrawal resistances at the longitudinal direction are lower with respect to radial and tangential directions.

  17. Pedicle Screw Insertion Accuracy Using O-Arm, Robotic Guidance, or Freehand Technique: A Comparative Study.

    Science.gov (United States)

    Laudato, Pietro Aniello; Pierzchala, Katarzyna; Schizas, Constantin

    2018-03-15

    A retrospective radiological study. The aim of this study was to evaluate the accuracy of pedicle screw insertion using O-Arm navigation, robotic assistance, or a freehand fluoroscopic technique. Pedicle screw insertion using either "O-Arm" navigation or robotic devices is gaining popularity. Although several studies are available evaluating each of those techniques separately, no direct comparison has been attempted. Eighty-four patients undergoing implantation of 569 lumbar and thoracic screws were divided into three groups. Eleven patients (64 screws) had screws inserted using robotic assistance, 25 patients (191 screws) using the O-arm, while 48 patients (314 screws) had screws inserted using lateral fluoroscopy in a freehand technique. A single experienced spine surgeon assisted by a spinal fellow performed all procedures. Screw placement accuracy was assessed by two independent observers on postoperative computed tomography (CTs) according to the A to D Rampersaud criteria. No statistically significant difference was noted between the three groups. About 70.4% of screws in the freehand group, 69.6% in the O arm group, and 78.8% in the robotic group were placed completely within the pedicle margins (grade A) (P > 0.05). About 6.4% of screws were considered misplaced (grades C&D) in the freehand group, 4.2% in the O-arm group, and 4.7% in the robotic group (P > 0.05). The spinal fellow inserted screws with the same accuracy as the senior surgeon (P > 0.05). The advent of new technologies does not appear to alter accuracy of screw placement in our setting. Under supervision, spinal fellows might perform equally well to experienced surgeons using new tools. The lack of difference in accuracy does not imply that the above-mentioned techniques have no added advantages. Other issues, such as surgeon/patient radiation, fiddle factor, teaching suitability, etc., outside the scope of our present study, need further assessment. 3.

  18. Numerical Simulation and Performance Analysis of Twin Screw Air Compressors

    Directory of Open Access Journals (Sweden)

    W. S. Lee

    2001-01-01

    Full Text Available A theoretical model is proposed in this paper in order to study the performance of oil-less and oil-injected twin screw air compressors. Based on this model, a computer simulation program is developed and the effects of different design parameters including rotor profile, geometric clearance, oil-injected angle, oil temperature, oil flow rate, built-in volume ratio and other operation conditions on the performance of twin screw air compressors are investigated. The simulation program gives us output variables such as specific power, compression ratio, compression efficiency, volumetric efficiency, and discharge temperature. Some of the above results are then compared with experimentally measured data and good agreement is found between the simulation results and the measured data.

  19. Range of motion, sacral screw and rod strain in long posterior spinal constructs: a biomechanical comparison between S2 alar iliac screws with traditional fixation strategies.

    Science.gov (United States)

    Sutterlin, Chester E; Field, Antony; Ferrara, Lisa A; Freeman, Andrew L; Phan, Kevin

    2016-12-01

    S1 screw failure and L5/S1 non-union are issues with long fusions to S1. Improved construct stiffness and S1 screw offloading can help avoid this. S2AI screws have shown to provide similar stiffness to iliac screws when added to L3-S1 constructs. We sought to examine and compare the biomechanical effects on an L2-S1 pedicle screw construct of adding S2AI screws, AxiaLIF, L5-S1 interbody support via transforaminal lumbar interbody fusion (TLIF), and to examine the effect of the addition of cross connectors to each of these constructs. Two S1 screws and one rod with strain gauges (at L5/S1) were used in L2-S1 screw-rod constructs in 7 L1-pelvis specimens (two with low BMD). ROM, S1 screw and rod strain were assessed using a pure-moment flexibility testing protocol. Specimens were tested intact, and then in five instrumentation states consisting of: (I) Pedicle screws (PS) L2-S1; (II) PS + S2AI screws; (III) PS + TLIF L5/S1; (IV) PS + AxiaLIF L5/S1; (V) PS + S2AI + AxiaLIF L5/S1. The five instrumentation conditions were also tested with crosslinks at L2/3 and S1/2. Tests were conducted in flexion-extension, lateral bending and axial torsion with no compressive preload. S2A1 produces reduced S1 screw strain for flexion-extension, lateral bending and axial torsion, as well as reduced rod strain in lateral bending and axial torsion in comparison to AxiaLIF and interbody instrumentation, at the expense of increased rod flexion-extension strain. Cross-connectors may have a role in further reduction of S1 screw and rod strain. From a biomechanical standpoint, the use of the S2AI technique is at least equivalent to traditional iliac screws, but offers lower prominence and ease of assembly compared to conventional sacroiliac stabilization.

  20. Fatigue life prediction of pedicle screw for spinal surgery

    Czech Academy of Sciences Publication Activity Database

    Major, Štěpán; Kocour, Vladimír; Cyrus, P.

    2016-01-01

    Roč. 10, č. 35 (2016), s. 379-388 ISSN 1971-8993. [European Conference on Fracture. ECF21. Catania, 20.06.2015-20.06.2015] Institutional support: RVO:68378297 Keywords : pedicle-screw * titan alloy * fatigue life * finite element analysis Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://www.fracturae.com/index.php/fis/article/view/IGF-ESIS.35.43

  1. Outcomes of Distal Femur Fracture Treated with Dynamic Condylar Screw

    International Nuclear Information System (INIS)

    Razaq, M. N. U.; Muhammad, T.; Ahmed, A.; Adeel, M.; Ahmad, S.; Ahmad, S.; Sultan, S.

    2016-01-01

    Background: Implants for open reduction and internal fixation of distal femoral fracture includes angle blade plate, rush nails, enders nail and interlocking nails. But all these devices are technically demanding and less effective in providing inter-fragmentary compression in osteoporotic bones. These problems can be solved with dynamic condylar screw (DCS).The objective of the study was to determine the frequency of different outcomes of distal femoral fracture treated with dynamic condylar screw Methods: This case series study was carried out in the Department of Trauma and Orthopaedics, Ayub Teaching Hospital Abbottabad from 1st October 2014 to August 2015, after approval of the ethical committee of the institution. Data of all patients with distal femoral fractures aged 20-70 years, recruited through emergency, OPD or consultant clinic collected on a proforma. Standard treatment of trauma was given to the patients. Detailed history was taken including the past medical and surgical history. Detailed examination including air-way, breathing and circulation, general physical examination and abdomino-pelvic examination was done in each patient. Investigations including urinalysis, haemoglobin percent, full blood count, X-ray (both AP and lateral view) of the involved femur (including hip and knee) was done. Results: Mean age of the patients was 43.18±14.647 ranging from 20 to 70 years. Mean duration of hospital stay in days was 2.21±1.111 ranging from 1 to 6 days. Patients follow-up assessment after 4 months of surgery for union of femoral fracture treated with dynamic condylar screw was found in 96 (94.1 percent), wound infection was found in 7 (6.9 percent), knee stiffness was found in 21 (20.6 percent) and limb shortening was found in 7 (6.9 percent). Conclusion: Dynamic condylar screw is an easy, scientifically less difficult and satisfying method of treatment for fractures of femur. (author)

  2. External jig in the placement of distal interlocking screws | Ikem ...

    African Journals Online (AJOL)

    Retrograde (52.2%) was the commonest surgical approach used for femur. The main indication for SIGN interlocking surgery was recent fracture 77.8%. Open reduction 97.8% was the commonest method of reduction used. The mean±SD bone union time was 3.58±0.56 months and range 3-5 months. Distal screw insertion ...

  3. CFD Modelling in Screw Compressors With Complex Multi Rotor Configurations

    OpenAIRE

    Rane, Sham Ramchandra; Kovacevic, Ahmed; Kethidi, Madhulika

    2012-01-01

    Computational Fluid Dynamics (CFD) of screw compressors is challenging due to the positive displacement nature of the process, existence of very fine fluid leakage paths, coexistence of working fluid and lubricant or coolant, fluid injection and most importantly the lack of methodologies available to generate meshes required for the full three dimensional transient simulations. In this paper, currently available technology of grid remeshing has been used to demonstrate the CFD simulations of ...

  4. Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals

    Directory of Open Access Journals (Sweden)

    Jung-Hong Ha

    2012-11-01

    Full Text Available Objectives The purpose of this study was to investigate the screw-in effect and torque generation depending on the size of glide path during root canal preparation. Materials and Methods Forty Endo-Training Blocks (REF A 0177, Dentsply Maillefer were used. They were divided into 4 groups. For groups 1, 2, 3, and 4, the glide path was established with ISO #13 Path File (Dentsply Maillefer, #15 NiTi K-file NITIFLEX (Dentsply Maillefer, modified #16 Path File (equivalent to #18, and #20 NiTi K-file NITIFLEX, respectively. The screw-in force and resultant torque were measured using a custom-made experimental apparatus while canals were instrumented with ProTaper S1 (Dentsply Maillefer at a constant speed of 300 rpm with an automated pecking motion. A statistical analysis was performed using one-way analysis of variance and the Duncan post hoc comparison test. Results Group 4 showed lowest screw-in effect (2.796 ± 0.134 among the groups (p < 0.05. Torque was inversely proportional to the glide path of each group. In #20 glide path group, the screw-in effect and torque decreased at the last 1 mm from the apical terminus. However, in the other groups, the decrease of the screw-in effect and torque did not occur in the last 1 mm from the apical terminus. Conclusions The establishment of a larger glide path before NiTi rotary instrumentation appears to be appropriate for safely shaping the canal. It is recommended to establish #20 glide path with NiTi file when using ProTaper NiTi rotary instruments system safely.

  5. Mechanical characteristics of connection for GFRP plates using tapping screws

    Science.gov (United States)

    Inoue, Yuya; Duong, Nguyen Ngoc; Satake, Chito; Matsumoto, Yukihiro

    2017-10-01

    FRP material has good characteristics such as light-weight, high-strength and high-corrosion resistance. Light-weight structure possesses some advantages over the rational constructing procedure such as self-building structures. In recent years, mechanical characteristics of FRP joints using bolts and/or rivet are investigated in detail, and they are used in many FRP structures. However, the bolts lack bearing strength compared with material strength and the joint needs the prepared bolt hole. In this paper, an alternative joint system for FRP structures using tapping screw is proposed and mechanical characteristics are investigated through experiment. Tapping screw has some advantages; easy-to-use, light-weight and high bearing strength. Then, the results of double-lapped tensile shear tests having one, four and eight tapping screws along longitudinal direction are shown. Moreover, it is shown that longitudinal stress distribution is approximately corresponding to the theoretical stress distribution of double-lapped adhesively bonded joints. Based on these, it is proposed that joint strength can be estimated by using the present calculation method.

  6. A CFD study of Screw Compressor Motor Cooling Analysis

    Science.gov (United States)

    Branch, S.

    2017-08-01

    Screw compressors use electric motors to drive the male screw rotor. They are cooled by the suction refrigerant vapor that flows around the motor. The thermal conditions of the motor can dramatically influence the performance and reliability of the compressor. The more optimized this flow path is, the better the motor performance. For that reason it is important to understand the flow characteristics around the motor and the motor temperatures. Computational fluid dynamics (CFD) can be used to provide a detailed analysis of the refrigerant’s flow behavior and motor temperatures to identify the undesirable hot spots in the motor. CFD analysis can be used further to optimize the flow path and determine the reduction of hot spots and cooling effect. This study compares the CFD solutions of a motor cooling model to a motor installed with thermocouples measured in the lab. The compressor considered for this study is an R134a screw compressor. The CFD simulation of the motor consists of a detailed breakdown of the stator and rotor components. Orthotropic thermal conductivity material properties are used to represent the simplified motor geometry. In addition, the analysis includes the motor casings of the compressor to draw heat away from the motor by conduction. The study will look at different operating conditions and motor speeds. Finally, the CFD study will investigate the predicted motor temperature change by varying the vapor mass flow rates and motor speed. Recommendations for CFD modeling of such intricate heat transfer phenomenon have thus been proposed.

  7. Use of a continuous twin screw granulation and drying system during formulation development and process optimization.

    Science.gov (United States)

    Vercruysse, J; Peeters, E; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2015-01-01

    Since small scale is key for successful introduction of continuous techniques in the pharmaceutical industry to allow its use during formulation development and process optimization, it is essential to determine whether the product quality is similar when small quantities of materials are processed compared to the continuous processing of larger quantities. Therefore, the aim of this study was to investigate whether material processed in a single cell of the six-segmented fluid bed dryer of the ConsiGma™-25 system (a continuous twin screw granulation and drying system introduced by GEA Pharma Systems, Collette™, Wommelgem, Belgium) is predictive of granule and tablet quality during full-scale manufacturing when all drying cells are filled. Furthermore, the performance of the ConsiGma™-1 system (a mobile laboratory unit) was evaluated and compared to the ConsiGma™-25 system. A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch and sodium starch glycolate was granulated with distilled water. After drying and milling (1000 μm, 800 rpm), granules were blended with magnesium stearate and compressed using a Modul™ P tablet press (tablet weight: 430 mg, main compression force: 12 kN). Single cell experiments using the ConsiGma™-25 system and ConsiGma™-1 system were performed in triplicate. Additionally, a 1h continuous run using the ConsiGma™-25 system was executed. Process outcomes (torque, barrel wall temperature, product temperature during drying) and granule (residual moisture content, particle size distribution, bulk and tapped density, hausner ratio, friability) as well as tablet (hardness, friability, disintegration time and dissolution) quality attributes were evaluated. By performing a 1h continuous run, it was detected that a stabilization period was needed for torque and barrel wall temperature due to initial layering of the screws and the screw chamber walls with material. Consequently, slightly deviating

  8. d = 2 transverse-field Ising model under the screw-boundary condition: an optimization of the screw pitch

    International Nuclear Information System (INIS)

    Nishiyama, Yoshihiro

    2011-01-01

    A length-N spin chain with the √N(=v)th neighbor interaction is identical to a two-dimensional (d = 2) model under the screw-boundary (SB) condition. The SB condition provides a flexible scheme to construct a d ≥ 2 cluster from an arbitrary number of spins; the numerical diagonalization combined with the SB condition admits a potential applicability to a class of systems intractable with the quantum Monte Carlo method due to the negative-sign problem. However, the simulation results suffer from characteristic finite-size corrections inherent in SB. In order to suppress these corrections, we adjust the screw pitch v(N) so as to minimize the excitation gap for each N. This idea is adapted to the transverse-field Ising model on the triangular lattice with N ≤ 32 spins. As a demonstration, the correlation-length critical exponent ν is analyzed in some detail

  9. Tightening the nitrogen cycle

    OpenAIRE

    Christensen, B.T.

    2004-01-01

    The availability of nitrogen to crop plants is a universally important aspect of soil quality, and often nitrogen represents the immediate limitation to crop productivity in modern agriculture. Nitrogen is decisive for the nutritive value of plant products and plays a key role in the environmental impact of agricultural production. The fundamental doctrine of nitrogen management is to optimise the nitrogen use efficiency of both introduced and native soil nitrogen by increasing the temporal a...

  10. Skin tightening technologies.

    Science.gov (United States)

    Greene, Ryan M; Green, Jeremy B

    2014-02-01

    Radiofrequency (RF) and intense focused ultrasound (IFUS) are increasingly used to address skin laxity of the face and neck. Both nonablative RF and ultrasound create a heat-induced tissue response that leads to collagen remodeling and other ultrastructural changes. Although these treatments are not meant to replace surgical procedures, patient satisfaction in the majority of studies has been consistently high. This article discusses the various RF and IFUS technologies currently in use and reviews pertinent clinical studies evaluating their efficacy and safety. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Numerical simulation of in vivo intraosseous torsional failure of a hollow-screw oral implant

    Directory of Open Access Journals (Sweden)

    Akca Kivanc

    2006-11-01

    Full Text Available Abstract Background Owing to the complexity and magnitude of functional forces transferred to the bone-implant interface, the mechanical strength of the interface is of great importance. The purpose of this study was to determine the intraosseous torsional shear strength of an osseointegrated oral implant using 3-D finite element (FE stress analysis implemented by in vivo failure torque data of an implant. Methods A Ø 3.5 mm × 12 mm ITI® hollow screw dental implant in a patient was subjected to torque failure test using a custom-made strain-gauged manual torque wrench connected to a data acquisition system. The 3-D FE model of the implant and peri-implant circumstances was constructed. The in vivo strain data was converted to torque units (N.cm to involve in loading definition of FE analysis. Upon processing of the FE analysis, the shear stress of peri-implant bone was evaluated to assume torsional shear stress strength of the bone-implant interface. Results The in vivo torque failure test yielded 5952 μstrains at custom-made manual torque wrench level and conversion of the strain data resulted in 750 N.cm. FE revealed that highest shear stress value in the trabecular bone, 121 MPa, was located at the first intimate contact with implant. Trabecular bone in contact with external surface of hollow implant body participated shear stress distribution, but not the bone resting inside of the hollow. Conclusion The torsional strength of hollow-screw implants is basically provided by the marginal bone and the hollow part has negligible effect on interfacial shear strength.

  12. Micro-CT evaluation and histological analysis of screw-bone interface of expansive pedicle screw in osteoporotic sheep.

    Science.gov (United States)

    Wan, Shi-yong; Lei, Wei; Wu, Zi-xiang; Lv, Rong; Wang, Jun; Fu, Suo-chao; Li, Bo; Zhan, Ce

    2008-04-01

    To investigate the properties of screw-bone interface of expansive pedicle screw (EPS) in osteoporotic sheep by micro-CT and histological observation. Six female sheep with bilateral ovariectomy-induced osteoporosis were employed in this experiment. After EPS insertion in each femoral condyle, the sheep were randomly divided into two groups: 3 sheep were bred for 3 months (Group A), while the other 3 were bred for 6 months (Group B). After the animals being killed, the femoral condyles with EPS were obtained, which were three-dimensionally-imaged and reconstructed by micro-CT. Histological evaluation was made thereafter. The trabecular microstructure was denser at the screw-bone interface than in the distant parts in expansive section, especially within the spiral marking. In the non-expansive section, however, there was no significant difference between the interface and the distant parts. The regions of interest (ROI) adjacent to EPS were reconstructed and analyzed by micro-CT with the same thresholds. The three-dimensional (3-D) parameters, including tissue mineral density (TMD), bone volume fraction (BVF, BV/TV), bone surface/bone volume (BS/BV) ratio, trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp), were significantly better in expansive sections than non-expansive sections (P less than 0.05). Histologically, newly-formed bony trabeculae crawled along the expansive fissures and into the center of EPS. The newly-formed bones, as well as the bones at the bone-screw interface, closely contacted with the EPS and constructed four compartments. The findings of the current study, based on micro-CT and histological evaluation, suggest that EPS can significantly provide stabilization in osteoporotic cancellous bones.

  13. Failure analysis of top nozzle holddown spring screw for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Koh, S. K.; Ryu, C. H.; Na, E. G.; Baek, T. H.; Jeon, K. L.

    2003-01-01

    A failure analysis of holddown spring screw was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure, a stress analysis of the top nozzle spring assembly was done using finite element analysis and a life prediction of the screw was made using a fracture mechanics approach. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.42 years, which was fairly close to the actual service life of the holddown spring screw

  14. Decrease in Hydrogen Embrittlement Susceptibility of 10B21 Screws by Bake Aging

    Directory of Open Access Journals (Sweden)

    Kuan-Jen Chen

    2016-08-01

    Full Text Available The effects of baking on the mechanical properties and fracture characteristics of low-carbon boron (10B21 steel screws were investigated. Fracture torque tests and hydrogen content analysis were performed on baked screws to evaluate hydrogen embrittlement (HE susceptibility. The diffusible hydrogen content within 10B21 steel dominated the fracture behavior of the screws. The fracture torque of 10B21 screws baked for a long duration was affected by released hydrogen. Secondary ion mass spectroscopy (SIMS result showed that hydrogen content decreased with increasing baking duration, and thus the HE susceptibility of 10B21 screws improved. Diffusible hydrogen promoted crack propagation in high-stress region. The HE of 10B21 screws can be prevented by long-duration baking.

  15. CT-based bone density assessment for iliosacral screw trajectories

    Directory of Open Access Journals (Sweden)

    Andreas Schicho

    2016-01-01

    Full Text Available Introduction: Sacroiliac screw placement is one standard treatment option for stabilization of posterior pelvic ring injuries encountering high intra- and inter-individual variations of bone stock quality as well as a vast variety and prevalence of sacral dysmorphism. An individual, easy-to-use preoperative bone stock quality estimation would be of high value for the surgeon. Materials and Methods: We analyzed 36 standard computed tomography datasets with the uninjured pelvic ring. Using a two-plane cross-referencing technique, we assessed the Hounsfield unit (HU mean values as well as standard deviation and minimum/maximum values within selected region of interests (ROIs at five key areas: os ilium left and right, massa lateralis of os sacrum left and right, and central vertebral body on levels S1 and S2. Results: Results showed no difference in mean HU at any ROI when comparing male and female data. For all ROIs set on S1 and S2, there was an age-related decline of HU with a calculated slope significantly different from zero. There was no statistical difference of slopes when comparing S1- and S2-level with respect to any distinct ROI. Comparison of levels S1 and S2 revealed differences at the vertebral body and at the right os ilium. The right and left massa lateralis of os sacrum had lower bone density than the center of the vertebral body, the right, or left os ilium on S1; right and left massa lateralis density did not differ significantly. On level S2, results were comparable with no difference of massa lateralis density. Conclusion: With our easy-to-use preoperative assessment of bone density of five key areas of sacroiliac screw anchoring we were able to find the lowest bone density in both the left and right massa lateralis on levels S1 and S2 with high inter- and intra-individual variations. Significantly lower bone density was found in the center of the vertebral bodies S2 in comparison to S1, which both are crucial for iliosacral

  16. Performance Characteristics of a 4 × 6 Oil-Free Twin-Screw Compressor

    OpenAIRE

    Sun-Seok Byeon; Jae-Young Lee; Youn-Jea Kim

    2017-01-01

    The screw compressor in the early stage of development is generally known as the oil-injection type. However, escalating environmental problems and advances in electronic components have spurred continuous R & D to minimize the oil content in compressed air. The oil-free twin-screw compressor is continuously compressed by inner volumetric change between rotors and casing. For this reason, in order to predict the overall performance of the screw compressor at the early stage of the design ...

  17. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy, Quick, and Safe Technique

    OpenAIRE

    Gupta, Ravi; Singh, Harpreet; Singh, Amit; Garg, Sudhir

    2014-01-01

    Removal of jammed titanium screws can be difficult due to the problem of stripping of the hexagonal heads of the screws. We present a technique of extraction of stripped screws with the use of a standard 4.5 mm stainless steel hollow mill in a patient of peri-implant fracture of the radius fixed with a titanium locking plate 2 years back. The technique is quick, safe, and cost effective.

  18. Scapula fracture incidence in reverse total shoulder arthroplasty using screws above or below metaglene central cage: clinical and biomechanical outcomes.

    Science.gov (United States)

    Kennon, Justin C; Lu, Caroline; McGee-Lawrence, Meghan E; Crosby, Lynn A

    2017-06-01

    Reverse total shoulder arthroplasty (RTSA) is a viable treatment option for rotator cuff tear arthropathy but carries a complication risk of scapular fracture. We hypothesized that using screws above the central glenoid axis for metaglene fixation creates a stress riser contributing to increased scapula fracture incidence. Clinical type III scapular fracture incidence was determined with screw placement correlation: superior screw vs. screws placed exclusively below the glenoid midpoint. Cadaveric RTSA biomechanical modeling was employed to analyze scapular fractures. We reviewed 318 single-surgeon single-implant RTSAs with screw correlation to identify type III scapular fractures. Seventeen cadaveric scapula specimens were matched for bone mineral density, metaglenes implanted, and fixation with 2 screw configurations: inferior screws alone (group 1 INF ) vs. inferior screws with one additional superior screw (group 2 SUP ). Biomechanical load to failure was analyzed. Of 206 patients, 9 (4.4%) from the superior screw group experienced scapula fractures (type III); 0 fractures (0/112; 0%) were identified in the inferior screw group. Biomechanically, superior screw constructs (group 2 SUP ) demonstrated significantly (P < .05) lower load to failure (1077 N vs. 1970 N) compared with constructs with no superior screws (group 1 INF ). There was no significant age or bone mineral density discrepancy. Clinical scapular fracture incidence significantly decreased (P < .05) for patients with no screws placed above the central cage compared with patients with superior metaglene screws. Biomechanical modeling demonstrates significant construct compromise when screws are used above the central cage, fracturing at nearly half the ultimate load of the inferior screw constructs. We recommend use of inferior screws, all positioned below the central glenoid axis, unless necessary to stabilize the metaglene construct. Copyright © 2016 Journal of Shoulder and Elbow Surgery

  19. Relationship of forces acting on implant rods and degree of scoliosis correction.

    Science.gov (United States)

    Salmingo, Remel Alingalan; Tadano, Shigeru; Fujisaki, Kazuhiro; Abe, Yuichiro; Ito, Manabu

    2013-02-01

    Adolescent idiopathic scoliosis is a complex spinal pathology characterized as a three-dimensional spine deformity combined with vertebral rotation. Various surgical techniques for correction of severe scoliotic deformity have evolved and became more advanced in applying the corrective forces. The objective of this study was to investigate the relationship between corrective forces acting on deformed rods and degree of scoliosis correction. Implant rod geometries of six adolescent idiopathic scoliosis patients were measured before and after surgery. An elasto-plastic finite element model of the implant rod before surgery was reconstructed for each patient. An inverse method based on Finite Element Analysis was used to apply forces to the implant rod model such that it was deformed the same after surgery. Relationship between the magnitude of corrective forces and degree of correction expressed as change of Cobb angle was evaluated. The effects of screw configuration on the corrective forces were also investigated. Corrective forces acting on rods and degree of correction were not correlated. Increase in number of implant screws tended to decrease the magnitude of corrective forces but did not provide higher degree of correction. Although greater correction was achieved with higher screw density, the forces increased at some level. The biomechanics of scoliosis correction is not only dependent to the corrective forces acting on implant rods but also associated with various parameters such as screw placement configuration and spine stiffness. Considering the magnitude of forces, increasing screw density is not guaranteed as the safest surgical strategy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Computed tomography fluoroscopy-guided placement of iliosacral screws in patients with unstable posterior pelvic fractures

    International Nuclear Information System (INIS)

    Iguchi, Toshihiro; Ogawa, Ken-Ichi; Doi, Takeshi; Munetomo, Kazuo; Miyasho, Koji; Hiraki, Takao; Kanazawa, Susumu; Ozaki, Toshifumi

    2010-01-01

    The purpose of this study was to evaluate retrospectively the safety and effectiveness of the computed tomography (CT) fluoroscopy-guided placement of iliosacral screws in patients with unstable posterior pelvic fractures. Six patients (four women and two men; mean age 55.8 years; range 35-77 years) with unstable posterior pelvic fractures underwent iliosacral screw placement under CT fluoroscopy guidance between November 2007 and August 2008. Unstable pelvic ring injury (AO types B and C) was the indication for this procedure. In all the six patients except one, CT fluoroscopy-guided placement had been technically successful. In one patient, a second screw had been inserted, with a tilt to the caudal site, and slightly advanced into the extrasacral body; afterward, it could be exchanged safely for a shorter screw. Five patients and one patient underwent placement of two screws and one screw, respectively. The mean duration of the procedure was 15.0 min (range 9-30 min) per screw; the duration was 12.3 min and 18.2 min for the first and second screws, respectively. No complications requiring treatment occurred during or after the procedure. The mean clinical and radiologic follow-up period was 14 months (range 6-21 months). All pelvic injuries had healed satisfactorily, without complication, and all patients are now doing well clinically and can walk. CT fluoroscopy-guided placement of iliosacral screws is a safe and effective treatment in patients with unstable posterior pelvic fractures. (orig.)

  1. The biomechanical consequences of rod reduction on pedicle screws: should it be avoided?

    Science.gov (United States)

    Paik, Haines; Kang, Daniel G; Lehman, Ronald A; Gaume, Rachel E; Ambati, Divya V; Dmitriev, Anton E

    2013-11-01

    Rod contouring is frequently required to allow for appropriate alignment of pedicle screw-rod constructs. When residual mismatch is still present, a rod persuasion device is often used to achieve further rod reduction. Despite its popularity and widespread use, the biomechanical consequences of this technique have not been evaluated. To evaluate the biomechanical fixation strength of pedicle screws after attempted reduction of a rod-pedicle screw mismatch using a rod persuasion device. Fifteen 3-level, human cadaveric thoracic specimens were prepared and scanned for bone mineral density. Osteoporotic (n=6) and normal (n=9) specimens were instrumented with 5.0-mm-diameter pedicle screws; for each pair of comparison level tested, the bilateral screws were equal in length, and the screw length was determined by the thoracic level and size of the vertebra (35 to 45 mm). Titanium 5.5-mm rods were contoured and secured to the pedicle screws at the proximal and distal levels. For the middle segment, the rod on the right side was intentionally contoured to create a 5-mm residual gap between the inner bushing of the pedicle screw and the rod. A rod persuasion device was then used to engage the setscrew. The left side served as a control with perfect screw/rod alignment. After 30 minutes, constructs were disassembled and vertebrae individually potted. The implants were pulled in-line with the screw axis with peak pullout strength (POS) measured in Newton (N). For the proximal and distal segments, pedicle screws on the right side were taken out and reinserted through the same trajectory to simulate screw depth adjustment as an alternative to rod reduction. Pedicle screws reduced to the rod generated a 48% lower mean POS (495±379 N) relative to the controls (954±237 N) (p.05). In circumstances where a rod is not fully seated within the pedicle screw, the use of a rod persuasion device decreases the overall POS and work energy to failure of the screw or results in outright

  2. Screw engine used as an expander in ORC for low-potential heat utilization

    Science.gov (United States)

    Richter, Lukáš

    2017-09-01

    This paper deals with a screw motor that is used as an expander in an ORC (Organic Rankin Cycle) system, whose organic working substance allows the transformation of low-potential heat (waste heat, solar and geothermal energy) into electrical energy. The article describes the specific properties of an organic substance and a screw motor that must be considered when designing and assembling a complete power unit. Screw machines are not commonly used as expansion devices, so it is necessary to perform an analysis that makes it possible to adapt the screw machine to the expansion process in terms of profiling and design.

  3. Comparison of the Mechanical Characteristics of a Universal Small Biplane Plating Technique Without Compression Screw and Single Anatomic Plate With Compression Screw.

    Science.gov (United States)

    Dayton, Paul; Ferguson, Joe; Hatch, Daniel; Santrock, Robert; Scanlan, Sean; Smith, Bret

    2016-01-01

    To better understand the mechanical characteristics of biplane locked plating in small bone fixation, the present study compared the stability under cyclic cantilever loading of a 2-plate locked biplane (BPP) construct without interfragmentary compression with that of a single-plate locked construct with an additional interfragmentary screw (SPS) using surrogate bone models simulating Lapidus arthrodesis. In static ultimate plantar bending, the BPP construct failed at significantly greater load than did the SPS construct (556.2 ± 37.1 N versus 241.6 ± 6.3 N, p = .007). For cyclic failure testing in plantar bending at a 180-N starting load, the BPP construct failed at a significantly greater number of cycles (158,322 ± 50,609 versus 13,718 ± 10,471 cycles) and failure load (242.5 ± 25.0 N versus 180.0 ± 0.0 N) than the SPS construct (p = .002). For cyclic failure testing in plantar bending at a 120-N starting load, the results were not significantly different between the BPP and SPS constructs for the number of cycles (207,646 ± 45,253 versus 159,334 ± 69,430) or failure load (205.0 ± 22.4 N versus 185.0 ± 33.5 N; p = .300). For cyclic testing with 90° offset loading (i.e., medial to lateral bending) at a 120-N starting load, all 5 BPP constructs (tension side) and 2 of the 5 SPS constructs reached 250,000 cycles without failure. Overall, the present study found the BPP construct to have superior or equivalent stability in multiplanar orientations of force application in both static and fatigue testing. Thus, the concept of biplane locked plating, using 2 low profile plates and unicortical screw insertion, shows promise in small bone fixation, because it provides consistent stability in multiplanar orientations, making it universally adaptable to many clinical situations. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Effect of diameter of the drill hole on torque of screw insertion and pushout strength for headless tapered compression screws in simulated fractures of the lateral condyle of the equine third metacarpal bone.

    Science.gov (United States)

    Carpenter, Ryan S; Galuppo, Larry D; Stover, Susan M

    2006-05-01

    To compare variables for screw insertion, pushout strength, and failure modes for a headless tapered compression screw inserted in standard and oversize holes in a simulated lateral condylar fracture model. 6 pairs of third metacarpal bones from horse cadavers. Simulated lateral condylar fractures were created, reduced, and stabilized with a headless tapered compression screw by use of a standard or oversize hole. Torque, work, and time for drilling, tapping, and screw insertion were measured during site preparation and screw implantation. Axial load and displacement were measured during screw pushout. Effects of drill hole size on variables for screw insertion and screw pushout were assessed by use of Wilcoxon tests. Drill time was 59% greater for oversize holes than for standard holes. Variables for tapping (mean maximum torque, total work, positive work, and time) were 42%, 70%, 73%, and 58% less, respectively, for oversize holes, compared with standard holes. Variables for screw pushout testing (mean yield load, failure load, failure displacement, and failure energy) were 40%, 40%, 47%, and 71% less, respectively, for oversize holes, compared with standard holes. Screws could not be completely inserted in 1 standard and 2 oversize holes. Enlarging the diameter of the drill hole facilitated tapping but decreased overall holding strength of screws. Therefore, holes with a standard diameter are recommended for implantation of variable pitch screws whenever possible. During implantation, care should be taken to ensure that screw threads follow tapped bone threads.

  5. The accuracy and safety of fluoroscopically guided percutaneous pedicle screws in the lumbosacral junction and the lumbar spine: a review of 880 screws.

    Science.gov (United States)

    Chiu, C K; Kwan, M K; Chan, C Y W; Schaefer, C; Hansen-Algenstaedt, N

    2015-08-01

    We undertook a retrospective study investigating the accuracy and safety of percutaneous pedicle screws placed under fluoroscopic guidance in the lumbosacral junction and lumbar spine. The CT scans of patients were chosen from two centres: European patients from University Medical Center Hamburg-Eppendorf, Germany, and Asian patients from the University of Malaya, Malaysia. Screw perforations were classified into grades 0, 1, 2 and 3. A total of 880 percutaneous pedicle screws from 203 patients were analysed: 614 screws from 144 European patients and 266 screws from 59 Asian patients. The mean age of the patients was 58.8 years (16 to 91) and there were 103 men and 100 women. The total rate of perforation was 9.9% (87 screws) with 7.4% grade 1, 2.0% grade 2 and 0.5% grade 3 perforations. The rate of perforation in Europeans was 10.4% and in Asians was 8.6%, with no significant difference between the two (p = 0.42). The rate of perforation was the highest in S1 (19.4%) followed by L5 (14.9%). The accuracy and safety of percutaneous pedicle screw placement are comparable to those cited in the literature for the open method of pedicle screw placement. Greater caution must be taken during the insertion of L5 and S1 percutaneous pedicle screws owing to their more angulated pedicles, the anatomical variations in their vertebral bodies and the morphology of the spinal canal at this location. ©2015 The British Editorial Society of Bone & Joint Surgery.

  6. Evaluation of MR issues for the latest standard brands of orthopedic metal implants: Plates and screws

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yue-fen, E-mail: zou_yf@163.com [Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing (China); Chu, Bin, E-mail: 18262636700@163.com [Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing (China); Wang, Chuan-bing, E-mail: wangchuanb_csr@163.com [Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing (China); Hu, Zhi-yi, E-mail: huzhiyi@medmail.com.cn [Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing (China)

    2015-03-15

    Highlights: •Although previous studies have indicated that most of the orthopedic implants are compatible in MR imaging system especially for titanium alloy, there are still concerns about the safety of patients with stainless steel implants, who were refused to a MR scan in most cases in our country. •In this study, it was verified that both titanium alloy and stainless steel materials (plates and screws) cause a weak force and low MRI-related heating at a 1.5-T or less, which do not pose an additional hazard or risk to patients. In addition, we also had explored the influence of different sequences and parameters on size of metallic artifacts to obtain optimized pulse sequences with appropriate parameters for reducing artifacts, which would be convenient and useful in clinical work. -- Abstract: Purpose: The study was performed to evaluate magnetic resonance (MR) issues for the latest standard brands of plates and screws used in orthopedic surgery at a 1.5-T MR system, including the safety and metallic artifacts. Methods: The plates and screws (made of titanium alloy and stainless steel materials, according to the latest standard brands) were assessed for displacement in degrees, MRI-related heating and artifacts at a 1.5-T MR system. The displacement in degrees of the plates and screws was evaluated on an angel-measurement instrument at the entrance of the MR scanner. The MRI-related heating was assessed on a swine leg fixed with a plate by using a “worst-case” pulse sequence. A rectangular water phantom was designed to evaluate metallic artifacts of a screw on different sequences (T1/T2-weighted FSE, STIR, T2-FSE fat saturation, GRE, DWI) and then artifacts were evaluated on T2-weighted FSE sequence by modifying the scanning parameters including field of view (FOV), echo train length (ETL) and bandwidth to identify the influence of parameters on metallic artifacts. 15 volunteers with internal vertebral fixation (titanium alloy materials) were scanned

  7. Evaluation of MR issues for the latest standard brands of orthopedic metal implants: Plates and screws

    International Nuclear Information System (INIS)

    Zou, Yue-fen; Chu, Bin; Wang, Chuan-bing; Hu, Zhi-yi

    2015-01-01

    Highlights: •Although previous studies have indicated that most of the orthopedic implants are compatible in MR imaging system especially for titanium alloy, there are still concerns about the safety of patients with stainless steel implants, who were refused to a MR scan in most cases in our country. •In this study, it was verified that both titanium alloy and stainless steel materials (plates and screws) cause a weak force and low MRI-related heating at a 1.5-T or less, which do not pose an additional hazard or risk to patients. In addition, we also had explored the influence of different sequences and parameters on size of metallic artifacts to obtain optimized pulse sequences with appropriate parameters for reducing artifacts, which would be convenient and useful in clinical work. -- Abstract: Purpose: The study was performed to evaluate magnetic resonance (MR) issues for the latest standard brands of plates and screws used in orthopedic surgery at a 1.5-T MR system, including the safety and metallic artifacts. Methods: The plates and screws (made of titanium alloy and stainless steel materials, according to the latest standard brands) were assessed for displacement in degrees, MRI-related heating and artifacts at a 1.5-T MR system. The displacement in degrees of the plates and screws was evaluated on an angel-measurement instrument at the entrance of the MR scanner. The MRI-related heating was assessed on a swine leg fixed with a plate by using a “worst-case” pulse sequence. A rectangular water phantom was designed to evaluate metallic artifacts of a screw on different sequences (T1/T2-weighted FSE, STIR, T2-FSE fat saturation, GRE, DWI) and then artifacts were evaluated on T2-weighted FSE sequence by modifying the scanning parameters including field of view (FOV), echo train length (ETL) and bandwidth to identify the influence of parameters on metallic artifacts. 15 volunteers with internal vertebral fixation (titanium alloy materials) were scanned

  8. Long-term three-dimensional volumetric assessment of skin tightening using a sharply tapered non-insulated microneedle radiofrequency applicator with novel fractionated pulse mode in asians.

    Science.gov (United States)

    Tanaka, Yohei

    2015-10-01

    Non-insulated microneedle radiofrequency (NIMNRF) is a novel method that allows non-thermal penetration of the epidermis followed by radiofrequency (RF) coagulation at selected depths of the dermis that are surrounded by a zone of non-coagulative volumetric heating. The objective of this study was to investigate subjectively and objectively the efficacy of a single fractional NIMNRF treatment. Twenty Japanese patients underwent full face skin tightening using a sharply tapered NIMNRF applicator with a novel fractionated pulse mode. The system platform (1MHZ) incorporated six independent phase controlled RF generators coupled to RF microneedles that induced skin remodeling via controlled dermal coagulation. Patients received from 500 to 1000 pulses that were 80-110 milliseconds in duration at a power of 10-14 W, and a 1.5-2.5 mm penetration depth. Topical anesthetic cream was applied before the treatment. Monthly three-dimensional (3-D) volumetric assessments were performed for 6 months after treatment. Patients rated their satisfaction using a 5-point scale. During the study patients showed significant skin tightening on the lower two-thirds of the face. Objective assessments with superimposed 3-D color images showed significant median volumetric reduction of 12.1 ml at 6 months post-treatment. Ninety percent of the patients were either "satisfied" or "very satisfied" with the treatment results. The treatments were well tolerated with minimal discomfort. Complications included a slight burning sensation and mild erythema that were minor and transitory; both resolved within 5 hours. Side effects such as post-inflammatory hyperpigmentation, epidermal burns, and scar formation were not observed. The advantages of this NIMNRF treatment for skin tightening are its long-lasting high efficacy as shown through 3-D volumetric assessments. Moreover, NIMNRF produced minimal complications and downtime as well as few side effects. This non-invasive novel fractional NIMNRF

  9. Using three-dimensional rapid prototyping in the design and development of orthopaedic screws in standardised pull-out tests.

    Science.gov (United States)

    Leslie, Laura Jane; Connolly, Ashley; Swadener, John G; Junaid, Sarah; Theivendran, Kanthan; Deshmukh, Subodh C

    2018-05-01

    The majority of orthopaedic screws are designed, tested and manufactured by existing orthopaedics companies and are predominantly developed with healthy bone in mind. The timescales and costs involved in the development of a new screw design, for example, for osteoporotic bone, are high. In this study, standard wood screws were used to analyse the concept of using three-dimensional printing, or rapid prototyping, as a viable stage of development in the design of a new bone screw. Six wood screws were reverse engineered and printed in polymeric material using stereolithography. Three of the designs were also printed in Ti6Al4V using direct metal laser sintering; however, these were not of sufficient quality to test further. Both the original metal screws (metal) and polymeric rapid prototyping screws were then tested using standard pull-out tests from low-density polyurethane blocks (Sawbones). Results showed the highest pull-out strengths for screws with the longest thread length and the smallest inner diameter. Of the six screw designs tested, five showed no more than a 17% variance between the metal and rapid prototyping results. A similar pattern of results was shown between the screw designs for both the metal and rapid prototyping screws in five of the six cases. While not producing fully comparable pull-out results to orthopaedic screws, the results from this study do provide evidence of the potential usefulness and cost-effectiveness of rapid prototyping in the early stages of design and testing of orthopaedic screws.

  10. Fate of the syndesmotic screw--Search for a prudent solution.

    Science.gov (United States)

    Kaftandziev, Igor; Spasov, Marko; Trpeski, Simon; Zafirova-Ivanovska, Beti; Bakota, Bore

    2015-11-01

    Ankle fractures are common injuries. Since the recognition of the importance of syndesmotic injury in ankle fractures, much of the scientific work has been focused on concomitant syndesmotic injury. Despite the invention of novel devices for restoration and maintenance of the congruent syndesmosis following syndesmotic injury, the metallic syndesmotic screw is still considered to be the "gold standard". The aim of this study was to compare the clinical results in patients who retained the syndesmosis screw with those in whom the screw was removed following open reduction and internal fixation of the malleolar fracture associated with syndesmosis disruption. This was a retrospective study of 82 patients. Minimum follow-up was 12 months. Clinical evaluation included American Orthopaedic Foot and Ankle Society (AOFAS) score and Visual Analogue Scale (VAS) for patient general satisfaction. The condition of the screw (removed, intact or broken), presence of radiolucency around the syndesmotic screw and the tibiofibular clear space were recorded using final follow-up radiographs. Three cortices were engaged in 66 patients (80%) and quadricortical fixation was performed in the remaining 16 patients (20%). The number of engaged cortices did not correlate with the clinical outcome and screw fracture. A single syndesmotic screw was used in 71 patients (86%. The mean AOFAS score in the group with intact screw (I) was 83; the scores in the group with broken screw (B) and removed screw (R) were 92.5 and 85.5, respectively. There was a statistically significant difference between the three groups: this was due to the difference between groups I and B; the difference between groups I and R and groups B and R were not statistically significant. There were no statistically significant differences in VAS results. There were no statistically significant differences in clinical outcome between the group with the screw retained and the group in which the screw was removed; however, the

  11. Comparative Analysis of Effect of Density, Insertion Angle and Reinsertion on Pull-Out Strength of Single and Two Pedicle Screw Constructs Using Synthetic Bone Model

    OpenAIRE

    Krishnan, Venkatesh; Varghese, Vicky; Kumar, Gurunathan Saravana

    2016-01-01

    Study Design Biomechanical study. Purpose To determine the effect of density, insertion angle and reinsertion on pull-out strength of pedicle screw in single and two screw-rod configurations. Overview of Literature Pedicle screw pull-out studies have involved single screw construct, whereas two screws and rod constructs are always used in spine fusions. Extrapolation of results using the single screw construct may lead to using expensive implants or increasing the fusion levels specifically i...

  12. Ipsilateral proximal femur and shaft fractures treated with hip screws and a reamed retrograde intramedullary nail.

    Science.gov (United States)

    Ostrum, Robert F; Tornetta, Paul; Watson, J Tracy; Christiano, Anthony; Vafek, Emily

    2014-09-01

    Although not common, proximal femoral fractures associated with ipsilateral shaft fractures present a difficult management problem. A variety of surgical options have been employed with varying results. We investigated the use of hip screws and a reamed retrograde intramedullary (IM) nail for the treatment of this combined fracture pattern in terms of postoperative alignment (malunion), nonunion, and complications. Between May 2002 and October 2011, a total of 95 proximal femoral fractures with associated shaft fractures were treated at three participating Level 1 trauma centers; all were treated with hip screw fixation (cannulated screws or sliding hip screws) and retrograde reamed IM nails. The medical records of these patients were reviewed retrospectively for alignment, malunion, nonunion, and complications. Followup was available on 92 of 95 (97%) of the patients treated with hip screws and a retrograde nail. Forty were treated with a sliding hip screw, and 52 were treated with cannulated screws. There were five proximal malunions in this series (5%). The union rate was 98% (90 of 92) for the femoral neck fractures and 91.3% (84 of 92) for the femoral shaft fractures after the initial surgery. There were two nonunions of comminuted femoral neck fractures after cannulated screw fixation. There was no difference in femoral neck union or alignment when comparing cannulated screws to a sliding hip screw. Four open comminuted femoral shaft fractures went on to nonunion and required secondary surgery to obtain union, and one patient developed symptomatic avascular necrosis. The treatment of ipsilateral proximal femoral neck and shaft fractures with hip screw fixation and a reamed retrograde nail demonstrated a high likelihood of union for the femoral neck fractures and a low risk of malunion. Comminution and initial displacement of the proximal femoral fracture may still lead to a small incidence of malunion or nonunion, and open comminuted femoral shaft fractures

  13. What caused the failures of the solenoid valve screws

    International Nuclear Information System (INIS)

    Vassallo, T.P.; Mumford, J.R.; Hossain, F.

    2001-01-01

    At Seabrook Station on May 5,1998 following a lengthy purge of the pressurizer steam space through Containment isolation sample valve 1-RC-FV-2830, the UL status light associated with this solenoid valve did not come on when the valve was closed from the plant's main control board. The UL status light is used to confirm valve closure position to satisfy the plant's Technical Specification requirements. The incorrect valve position indication on the main control board was initially believed to have resulted from excessive heat from a failed voltage control module that did not reduce the voltage to the valve's solenoid coil. This conclusion was based on a similar event that occurred in November of 1996. Follow-up in-plant testing of the valve determined that the voltage control module had not failed and was functioning satisfactorily. Subsequent investigations determined the root cause of the event to be excessive heat-up of the valve caused by high process fluid temperature and an excessively long purge of the pressurizer. The excessive heat-up of the valve from the high temperature process fluid weakened the magnetic field strength of the valve stem magnet to the extent that the UL status light reed switch would not actuate when the valve was closed. Since the voltage control module was tested and found to be functioning properly it was not replaced. Only the UL status light reed switch was replaced with a more sensitive reed that would respond better to a reduced magnetic field strength that results from a hot magnet. During reed switch replacement, three terminal block screws in the valve housing were found fractured and three other terminal block screws fractured during determination of the electrical conductors. This paper describes the initial plant event and ensuing laboratory tests and examinations that were performed to determine the root cause of the failure of the terminal block screws from the Containment isolation sample solenoid valve. (author)

  14. Open reduction and internal fixation: Screw injury - Retrospective study

    Directory of Open Access Journals (Sweden)

    Preetha Balaji

    2017-01-01

    Full Text Available Background/Aims: Open reduction and internal fixation (ORIF is a standard surgical procedure in jaw trauma and in orthognathic surgery. Insertion of screws is a significant risk for accidental tooth root injury with varying outcomes. Contrary evidences are found in literature due to a variety of study designs. This study was undertaken to address the lacunae and possibly estimate the difference in occurrence of tooth damage during or after ORIF between trauma and planned osteotomies. Materials and Methods: In this retrospective study, the data of ORIF in either trauma or orthognathic surgery fulfilling inclusion and exclusion criteria were collected and analyzed. Results: There were 1632 patients fulfilling the inclusion and exclusion criteria and formed the study group, of which 663 were in orthognathic surgery, of whom 210 had bimaxillary orthognathic surgery. In the trauma group, 358 patients had fractures involving both jaws whereas 272 had maxilla alone and 339 had mandibular fractures alone. On comparing the outcome, of the 9073 screws studied, 93.40% were not involved in any contact with the teeth, 6.3% were in category of potential hits (near apices or the root surfaces, and only 0.28% had evidence of root damage with the screws. It is observed that molar and premolar had a significant difference in terms of the type of surgery (P ≤ 0.05 whereas canine (P = 0.75 and incisor (P = 0.67 showed no statistical difference. Conclusion: ORIF when used as mentioned is a safe way for the management of fractures. The incidence of root injury is not uncommon but can be avoided with careful planning and execution.

  15. Dual head screw hip nailing for trochanteric fractures

    Science.gov (United States)

    Mavrogenis, Andreas F.; Igoumenou, Vasilios G.; Megaloikonomos, Panayiotis D.; Panagopoulos, George N.; Galanopoulos, Ioannis P.; Vottis, Christos Th.; Karamanis, Eirinaios; Koulouvaris, Panayiotis; Papagelopoulos, Panayiotis J.

    2017-01-01

    Introduction: There are limited information and inconclusive results for dual head screw intramedullary hip nails for trochanteric fractures. Therefore, we performed a prospective study to evaluate the healing of fractures, and survival, function, and complications of patients operated with this implant. Methods: We prospectively studied 79 patients (61 women and 18 men; mean age: 84.7 years; range: 65–96 years) with a low-energy trochanteric fracture, treated with a dual head screw intramedullary hip nail from 2013 to 2016. The mean follow-up was 2.1 years (range: 1–3 years); seven patients were lost to follow up. This left 72 patients for further analysis. We evaluated the healing of fractures, and survival, function, and complications of patients. Results: Fracture healing was evident in 70 patients (97.2%) at 2–3 months postoperatively. One patient experienced cut-out and z-effect phenomenon of the head screws. Another patient experienced a periprosthetic femoral diaphysis fracture at the distal tip of the nail. A third patient experienced an acute postoperative superficial skin infection that was treated successfully with wound dressing changes and a course of antibiotics. Sixteen patients (22.2%) deceased within 12 months postoperatively. In the remaining patients, the Harris Hip Score (HHS) at 12 months postoperatively was excellent in 16 (28.6%), good in 23 (41.1%), fair in 10 (17.8%), and poor in 7 patients (12.5%). The function declined after the patients’ fracture. Fair and poor results were related to age > 85 years, poor pre-fracture level of function, and AO/OTA-31-A3 fracture types. Conclusion: The dual head screw intramedullary hip nail is associated with high healing and low complication rates for intertrochanteric fractures. The function of the patients is good or excellent in most cases; however, it declines, especially for those patients with age > 85 years, poor pre-fracture level of function, and AO/OTA-31-A3 fracture types

  16. Dual head screw hip nailing for trochanteric fractures

    Directory of Open Access Journals (Sweden)

    Mavrogenis Andreas F.

    2017-01-01

    Full Text Available Introduction: There are limited information and inconclusive results for dual head screw intramedullary hip nails for trochanteric fractures. Therefore, we performed a prospective study to evaluate the healing of fractures, and survival, function, and complications of patients operated with this implant. Methods: We prospectively studied 79 patients (61 women and 18 men; mean age: 84.7 years; range: 65–96 years with a low-energy trochanteric fracture, treated with a dual head screw intramedullary hip nail from 2013 to 2016. The mean follow-up was 2.1 years (range: 1–3 years; seven patients were lost to follow up. This left 72 patients for further analysis. We evaluated the healing of fractures, and survival, function, and complications of patients. Results: Fracture healing was evident in 70 patients (97.2% at 2–3 months postoperatively. One patient experienced cut-out and z-effect phenomenon of the head screws. Another patient experienced a periprosthetic femoral diaphysis fracture at the distal tip of the nail. A third patient experienced an acute postoperative superficial skin infection that was treated successfully with wound dressing changes and a course of antibiotics. Sixteen patients (22.2% deceased within 12 months postoperatively. In the remaining patients, the Harris Hip Score (HHS at 12 months postoperatively was excellent in 16 (28.6%, good in 23 (41.1%, fair in 10 (17.8%, and poor in 7 patients (12.5%. The function declined after the patients’ fracture. Fair and poor results were related to age > 85 years, poor pre-fracture level of function, and AO/OTA-31-A3 fracture types. Conclusion: The dual head screw intramedullary hip nail is associated with high healing and low complication rates for intertrochanteric fractures. The function of the patients is good or excellent in most cases; however, it declines, especially for those patients with age > 85 years, poor pre-fracture level of function, and AO/OTA-31-A3

  17. Anomalous behaviour of screw dislocations in quenched indium antimonide monocrystals

    International Nuclear Information System (INIS)

    Alekseenko, V.I.; Mostovoj, V.M.

    1991-01-01

    Anomalies of screw dislocation mobility in indium antimonide single crystals quenched after annealing were detected experimentally. Taking into accout specific nature of thermal treatment an enhanced attention is paid to the technique of the experiment. It is shown that the observed peculiarities can be explained using a model of thermoactivated movement of excessive bends over stoppers at the dislocation line. Proceeding from the assumption on the nature of stoppers, the values of stopper energy barriers overcome by an excessive bend are determined on the basis of the above model of excessive bend movement

  18. Subatomic forces

    International Nuclear Information System (INIS)

    Sutton, C.

    1989-01-01

    Inside the atom, particles interact through two forces which are never felt in the everyday world. But they may hold the key to the Universe. These ideas on subatomic forces are discussed with respect to the strong force, the electromagnetic force and the electroweak force. (author)

  19. The use of blocking screws with internal lengthening nail and reverse rule of thumb for blocking screws in limb lengthening and deformity correction surgery.

    Science.gov (United States)

    Muthusamy, Saravanaraja; Rozbruch, S Robert; Fragomen, Austin T

    2016-11-01

    Internal lengthening nail (ILN) is a recent development in limb lengthening and deformity correction specialty. The ILN has the distinct advantage of combining acute deformity correction with gradual lengthening of bone. While using ILN, the short metaphyseal bone fragment may develop a deformity at the time of osteotomy and nail insertion or during bone lengthening because of the wide medullary canal. These deformities are typically predictable, and blocking screws (Poller screws) are helpful in these situations. This manuscript describes the common deformities that occur in femur and tibia with osteotomies at different locations while using ILN in antegrade and retrograde nailing technique. Also, a systematic approach to the appropriate use of blocking screws in these deformities is described. In addition, the "reverse rule of thumb" is introduced as a quick reference to determine the ideal location(s) and number of blocking screws. These principles are applicable to limb lengthening and deformity correction as well as fracture fixation using intramedullary nails.

  20. The Research of Screw Thread Parameter Measurement Based on Position Sensitive Detector and Laser

    International Nuclear Information System (INIS)

    Tong, Q B; Ding, Z L; Chen, J C; Ai, L L; Yuan, F

    2006-01-01

    A technique and system of measuring screw thread parameter based on the theory of laser measurement is presented in this paper, which can be carried out the automated measurement of screw thread parameter. An inspection instrument was designed and produced, which included exterior imaging system of optical path, transverse displacement measurement system, axial displacement measurement system, and a module to deal with, control and assess the data in the upper system. The inspection and estimate of the screw thread contour curve were completed by using position sensitive device (PSD) as photoelectric detector to measure the coordinate data of the screw thread contour curve in the transverse section, and using precise raster to measure the axial displacement of the precision worktable under the screw thread test criterion., computer can gives a measured result according to coordinate data of the screw thread obtained by PSD. The relation between measured spot and image is established, and optimum design of the system organization are introduced, including the image length of receiving lens focal length optical system and the choice of PSD , and some main factor affected measuring precision are analyzed. The experimental results show that the measurement uncertainty of screw thread minor diameter can reach 0. 5μm, which can meet most requests for the measurement of screw thread parameter

  1. To retain or remove the syndesmotic screw: a review of literature

    NARCIS (Netherlands)

    T. Schepers (Tim)

    2011-01-01

    textabstractIntroduction: Syndesmotic positioning screws are frequently placed in unstable ankle fractures. Many facets of adequate placement techniques have been the subject of various studies. Whether or not the syndesmosis screw should be removed prior to weight-bearing is still debated. In this

  2. To retain or remove the syndesmotic screw: a review of literature

    NARCIS (Netherlands)

    Schepers, T.

    2011-01-01

    Syndesmotic positioning screws are frequently placed in unstable ankle fractures. Many facets of adequate placement techniques have been the subject of various studies. Whether or not the syndesmosis screw should be removed prior to weight-bearing is still debated. In this study, the recent

  3. Screw-System-Based Mobility Analysis of a Family of Fully Translational Parallel Manipulators

    Directory of Open Access Journals (Sweden)

    Ernesto Rodriguez-Leal

    2013-01-01

    Full Text Available This paper investigates the mobility of a family of fully translational parallel manipulators based on screw system analysis by identifying the common constraint and redundant constraints, providing a case study of this approach. The paper presents the branch motion-screws for the 3-RP̲C-Y parallel manipulator, the 3-RCC-Y (or 3-RP̲RC-Y parallel manipulator, and a newly proposed 3-RP̲C-T parallel manipulator. Then the paper determines the sets of platform constraint-screws for each of these three manipulators. The constraints exerted on the platforms of the 3-RP̲C architectures and the 3-RCC-Y manipulators are analyzed using the screw system approach and have been identified as couples. A similarity has been identified with the axes of couples: they are perpendicular to the R joint axes, but in the former the axes are coplanar with the base and in the latter the axes are perpendicular to the limb. The remaining couples act about the axis that is normal to the base. The motion-screw system and constraint-screw system analysis leads to the insightful understanding of the mobility of the platform that is then obtained by determining the reciprocal screws to the platform constraint screw sets, resulting in three independent instantaneous translational degrees-of-freedom. To validate the mobility analysis of the three parallel manipulators, the paper includes motion simulations which use a commercially available kinematics software.

  4. Screwing or unscrewing device for studs or bolls of big dimension

    International Nuclear Information System (INIS)

    Sevelinge, G.; Bourdonne, J.C.

    1988-01-01

    The device for screwing or unscrewing large studs or bolts has a system determining the optimun screwing position and orientation of the bolt, a variable speed bidirectional drive a pin holding the bolt axially and system compensating the weight of the bolt with an hydraulic jack with a pressure detector to which the drive is slaved [fr

  5. Percutaneous Intramedullary Screw Fixation of Distal Fibula Fractures: A Case Series and Systematic Review

    NARCIS (Netherlands)

    Loukachov, Vladimir V.; Birnie, Merel F. N.; Dingemans, Siem A.; de Jong, Vincent M.; Schepers, Tim

    2017-01-01

    The current reference standard for unstable ankle fractures is open reduction and internal fixation using a plate and lag screws. This approach requires extensive dissection and wound complications are not uncommon. The use of intramedullary screw fixation might overcome these issues. The aim of our

  6. Locking screw-plate interface stability in carbon-fibre reinforced polyetheretherketone proximal humerus plates.

    Science.gov (United States)

    Hak, David J; Fader, Ryan; Baldini, Todd; Chadayammuri, Vivek B S

    2017-09-01

    Carbon-fibre reinforced polyetheretherketone (CFR-PEEK) plates have recently been introduced for proximal humerus fracture treatment. The purpose of this study was to compare the locking screw-plate interface stability in CFR-PEEK versus stainless steel (SS) proximal humerus plates. Locking screw mechanical stability was evaluated independently in proximal and shaft plate holes. Stiffness and load to failure were tested for three conditions: (1) on-axis locking screw insertion in CFR-PEEK versus SS plates, (2) on-axis locking screw insertion, removal, and reinsertion in CFR-PEEK plates, and (3) 10-degree off-axis locking screw insertion in CFR-PEEK plates. Cantilever bending at a rate of 1 mm/minute was produced by an Instron machine and load-displacement data recorded. Shaft locking screw load to failure was significantly greater in CFR-PEEK plates compared to SS plates (746.4 ± 89.7 N versus 596.5 ± 32.6 N, p PEEK plates (p PEEK plates. The mechanical stability of locking screws in CFR-PEEK plates is comparable or superior to locking screws in SS plates.

  7. Treating Simple Tibia Fractures with Poly-DL-Lactic Acid Screw as a ...

    African Journals Online (AJOL)

    Purpose: To investigate the curative effect of poly-DL-lactic acid (PDLLA) absorbable screw as a locked intramedullary nail for simple tibia fractures. Methods: In this study, 35 patients treated with the PDLLA screw were observed, and another 35 patients treated with a traditional locking intramedullary nail were treated as ...

  8. Atomistic simulations of cross-slip of jogged screw dislocations in copper

    DEFF Research Database (Denmark)

    Vegge, T.; Rasmussen, T.; Leffers, T.

    2001-01-01

    We have performed atomic-scare simulations of cross-slip processes of screw dislocations in copper, simulating jog-free dislocations as well as different types of jogged screw dislocations. Minimum-energy paths and corresponding transition state energies are obtained using the nudged-elastic...

  9. Virtual surgery simulation versus traditional approaches in training of residents in cervical pedicle screw placement.

    Science.gov (United States)

    Hou, Yang; Shi, Jiangang; Lin, Yanping; Chen, Huajiang; Yuan, Wen

    2018-06-01

    The cervical screw placement is one of the most difficult procedures in spine surgery, which often needs a long period of repeated practices and could cause screw placement-related complications. We performed this cadaver study to investigate the effectiveness of virtual surgical training system (VSTS) on cervical pedicle screw instrumentation for residents. A total of ten novice residents were randomly assigned to two groups: the simulation training (ST) group (n = 5) and control group (n = 5). The ST group received a surgical training of cervical pedicle screw placement on VSTS and the control group was given an introductory teaching session before cadaver test. Ten fresh adult spine specimens including 6 males and 4 females were collected, and were randomly allocated to the two groups. The bilateral C3-C6 pedicle screw instrumentation was performed in the specimens of the two groups, respectively. After instrumentation, screw positions of the two groups were evaluated by image examinations. There was significantly statistical difference in screw penetration rates between the ST (10%) and control group (62.5%, P VSTS as an advanced training tool exhibited promising effects on improving performance of novice residents in cervical pedicle screw placement compared with the traditional teaching methods.

  10. Ball tip method for thoracic pedicle screw placement in patients with adolescent idiopathic scoliosis

    International Nuclear Information System (INIS)

    Watanabe, Kota; Matsumoto, Morio; Iizuka, Shingo

    2008-01-01

    The purpose of this study was to evaluate the efficacy of ball tip method for thoracic pedicle screw placements in idiopathic scoliosis patients. 24 patients with adolescent idiopathic scoliosis were included in this study. Conventional method was performed in 12 patients. Ball tip method was performed in 12 patients. Accuracy of the pedicle screw placement was evaluated based on the postoperative CT. In the ball tip method, a probe which was consisted of ball tip with flexible shaft was used. After removing of cortical bone at a starting point, the probe was inserted manually or sometimes with gently tapping by hammer. During the maneuver, the probe will gradually progress into cancellous bone in the pedicle, without perforating cortical bone in the pedicle. Following expansion of the hole by a rigid gear shift probe, screw was placed in the pedicle. 65.1% of screws were located within pedicle in the conventional group and 86.5% in the ball tip group. 5.3% of screws were located out of pedicle within 2 mm in the conventional group and 8.2% in the ball tip group. 15.8% of screws were located out of pedicle beyond 2 mm and 1.8% in the ball tip group. The ball tip method enhanced the accuracy of thoracic pedicle screw placements in adolescent idiopathic scoliosis patients. The ball tip method may be effective for accurate pedicle screw placement in patients with adolescent idiopathic scoliosis. (author)

  11. Four quadrant parallel peripheral screw fixation for displaced femoral neck fractures in elderly patients

    Directory of Open Access Journals (Sweden)

    Bhava RJ Satish

    2013-01-01

    Conclusion: Closed reduction and cannulated cancellous screw fixation gives satisfactory functional results in large group of elderly patients. The four quadrant parallel peripheral (FQPP screw fixation technique gives good stability, allows controlled collapse, avoids fixation failure and achieves predictable bone healing in displaced femoral neck fracture in patients ≥50 years of age.

  12. [Measurement of screw length through drilling technique in osteosynthesis of the proximal humerus fractures].

    Science.gov (United States)

    Avcı, Cem Coşkun; Gülabi, Deniz; Sağlam, Necdet; Kurtulmuş, Tuhan; Saka, Gürsel

    2013-01-01

    This study aims to investigate the efficacy of screw length measurement through drilling technique on the reduction of intraarticular screw penetration and fluoroscopy time in osteosynthesis of proximal humerus fractures. Between January 2008 and June 2012, 98 patients (34 males, 64 females; mean age 64.4 years; range 35 to 81 years) who underwent osteosynthesis using locking anatomical proximal humerus plates (PHILOS) in our clinic with the diagnosis of Neer type 2, 3 or 4 were included. Two different surgical techniques were used to measure proximal screw length in the plate and patients were divided into two groups based on the technique used. In group 1, screw length was determined by a 3 mm blunt tipped Kirschner wire without fluoroscopic control. In group 2, bilateral fluoroscopic images for each screw at least were obtained. Intraarticular screw penetration was detected in five patients (10.6%) in group 1, and in 19 patients (37.3%) in group 2. The mean fluoroscopic imaging time was 10.6 seconds in group 1 and 24.8 seconds in group 2, indicating a statistically significant difference. Screw length measurement through the drilling technique significantly reduces the intraarticular screw penetration and fluoroscopy time in osteosynthesis of proximal humerus fractures using PHILOS plates.

  13. Robot assisted navigated drilling for percutaneous pedicle screw placement: A preliminary animal study

    Directory of Open Access Journals (Sweden)

    Hongwei Wang

    2015-01-01

    Conclusions: The preliminary study supports the view that computer assisted pedicle screw fixation using spinal robot is feasible and the robot can decrease the intraoperative fluoroscopy time during the minimally invasive pedicle screw fixation surgery. As spine robotic surgery is still in its infancy, further research in this field is worthwhile especially the accuracy of spine robot system should be improved.

  14. [Dynamic analysis of the rigid fixed bridge and related tissue after intrusion of abutment with micro screw implant].

    Science.gov (United States)

    Zhu, Lin; Xu, Pei-cheng; Lu, Liu-lei

    2013-08-01

    To study the variety of mechanical behavior of fixed bridge after abutments being intruded by micro screw implant and to provide theoretical principles for clinical practice of teeth preparation after intrusion of abutments under dynamic loads. Two-dimensional images of maxilla, teeth and supporting tissues of healthy people were scanned by spiral CT and were synthesized by Mimics10.01, Ansys13.0, etc. The three-dimensional finite element mathematical model of rigid fixed bridge repairing on double end of maxillary molar was developed. Under the condition of 10% simulative abutment alveolar absorption, vertical and oblique dynamic forces were applied in a circle of mastication(0.875 s) to build mathematical model after the abutment had been intruded for 0.5, 1.0, 1.5 and 2.0 mm. Stress variety of prosthesis, teeth, periodontal ligaments and supporting tissues were compared before and after intrusion of abutments. Stress variety of the prosthesis occurred, which had close relationship with the structure of prosthesis and teeth, the areas of periodontal ligaments increased, stress on the whole decreased along with the increase of the length of intrusion. With time accumulating, the stress value in prosthesis, teeth, periodontal ligaments and supporting tissues increased gradually and loads in oblique direction induced peak value stress in a masticatory cycle. Some residual stress left after unloading. By preparing the fixed bridge after abutment intrusion by micro screw implant, the service life of abutment and fixed bridge prosthesis can be reduced. The abutment and its related tissue have time-dependent mechanical behaviors during one mastication. The influence of oblique force on stress was greater than vertical force. There is some residual stress left after one mastication period. With the increase of the intrusion on abutment, residual stress reduced.

  15. Computer simulation of migration atomic mechanism and substitutional impurity interaction with screw dislocation core in bcc lattice

    International Nuclear Information System (INIS)

    Klyavin, O.V.; Likhodedov, N.P.; Orlov, A.N.

    1986-01-01

    Distribution and migration of substitutional impurity atoms (He and C) in the screw dislocation core of the 1/2 type is studied in α-Fe. The atomic mechanism of impurity atom diffusion over screw dislocation core, consisting in the fact that impurity migration proceeds in a screw trajectory, is discovered and analyzed. It is shown that tubular He diffusion over screw dislocation may proceed at T <= 300 K

  16. Short time efficacy and safety of focused monopolar radiofrequency device for labial laxity improvement-noninvasive labia tissue tightening. A prospective cohort study.

    Science.gov (United States)

    Fistonić, Ivan; Sorta Bilajac Turina, Iva; Fistonić, Nikola; Marton, Ingrid

    2016-03-01

    To evaluate safety and efficacy of focused monopolar radio frequency (RF) device for non-invasive labia tissue tightening and improvement of labial laxity. This prospective cohort study participants were 17 female subjects aged between 27 and 56 years with lax skin at the labia area. All subjects received four consecutive treatments at 7-day intervals with RF device (Exilis Protege IntimaR, BTL Industries Inc., Boston, MA). The primary efficacy outcome measure was defined as one or more point improvement on 1-4 scale for vulva appearance determined by three blinded evaluators. Digital photographs were taken at the baseline and 1 month after the last treatment. Sexual gratification was assessed with Female Sexual Functioning Index (FSFI) and patient discomfort by Visual Analogue Scale (VAS). An average 2.9 (of maximum 4) points improvement rate in vulvar appearance was observed (P RF device for non-invasive labia tissue tightening. The treatment is effective and safe with high patient satisfaction. © 2016 Wiley Periodicals, Inc.

  17. A reactor study on a belt-shaped screw pinch

    International Nuclear Information System (INIS)

    Bustraan, M.; Franken, W.M.P.; Klippel, H.Th.; Veringa, H.J.; Verschuur, K.A.

    1979-10-01

    A previous study on a screw-pinch reactor with circular cross section (ECN-16 (1977) or Rijnhuizen report 77-101) has been extended to a belt configuration which allows to raise β to 0.5. The present study starts from the main assumptions and principal constraints of the previous work, but some technical aspects are treated more realistically. More attention has been paid to the modular construction, the non-uniform distribution of the wall loading, the thermo-hydraulics, the design of and the losses in the coil systems, and the energy storage and electric transmission systems. A potential use of the first wall of the blanket as part of the implosion coil system is suggested. Finally, a conceptual design of a reactor, with a cost estimate is given. Numerical results are given of parameter variations around the values for the reference reactor. The belt screw-pinch reactor with resistive coils turns out to be uneconomical because of its low net efficiency and its high capital costs. The application of superconducting coils to reduce the ohmic losses turns out to be a non-viable alternative. A more promising way to improve the energy balance seems to be the alternative scheme of fuel injection during the burn

  18. Analysis of Third-Grade Fluid in Helical Screw Rheometer

    Directory of Open Access Journals (Sweden)

    M. Zeb

    2013-01-01

    Full Text Available The steady flow of an incompressible, third-grade fluid in helical screw rheometer (HSR is studied by “unwrapping or flattening” the channel, lands, and the outside rotating barrel. The geometry is approximated as a shallow infinite channel, by assuming that the width of the channel is large as compared to the depth. The developed second-order nonlinear coupled differential equations are reduced to single differential equation by using a transformation. Using Adomian decomposition method, analytical expressions are calculated for the the velocity profiles and volume flow rates. The results have been discussed with the help of graphs as well. We observed that the velocity profiles are strongly dependant on non-Newtonian parameter (β~, and with the increase in β~, the velocity profiles increase progressively, which conclude that extrusion process increases with the increase in β~. We also observed that the increase in pressure gradients in x- and z-direction increases the net flow inside the helical screw rheometer, which increases the extrusion process. We noticed that the flow increases as the flight angle increase.

  19. Accuracy of navigated pedicle screw insertion by a junior spine surgeon without spinal surgery experience

    International Nuclear Information System (INIS)

    Yamazaki, Hironori; Kotani, Toshiaki; Motegi, Hiroyuki; Nemoto, Tetsuharu; Koshi, Takana; Nagahara, Ken; Minami, Syohei

    2010-01-01

    The purpose of this study was to investigate pedicle screw placement accuracy during navigated surgery by a junior spine surgeon who had no spinal surgery experience. A junior spine surgeon with no spinal surgery experience implanted a total of 137 pedicle screws by using a navigation system. Postoperative computerized tomography was performed to evaluate screw placement, and the pedicle perforation rate was 2.2%. There were no neurologic or vascular complications related to the pedicle screws. The results demonstrated that pedicle screws can be placed safely and effectively by a junior spine surgeon who has no spinal surgery experience when instructed by a senior spine surgeon. The results of this study suggest that navigation can be used as a surgical training tool for junior spine surgeons. (author)

  20. Movimentação de molares inferiores ancorados em mini-parafusos Mandibular molar uprighting, using mini-screw as anchorage

    Directory of Open Access Journals (Sweden)

    Rosana Canteras Di Matteo

    2005-08-01

    posterior to the tooth. Three pacients with ages between 40 and 48 years old (two females and one male were selected. The three of them presented mesially tipped molars, positioned posterior to the edentulous areas, on both sides of the mandible. These patients received orthodontic treatment during a period of 6 and 12 months with the MD3 technique. Titanium mini-screws were positioned bilaterally, under local anesthesia. One incision with 1 cm was done in each side of the mandibular external oblique line, distally to the tipped molars. After that, the mini-screws were positioned and sutures were done, leaving the mini-screws heads exposed. After one week, orthodontic loads (between 150 and 200 grams/force were applied to the mini-screws through elastics. A certain degree of inflammation around the mini-screws was noticed, but it was controlled by hygienic procedure. This surgery procedure was simple and could be done easily by the orthodontist. The dimensions and shapes of the mini-screws proved to be appropriate and their removal after the orthodontic movement were done without difficulty. The result was time reduction on the molars uprighting, without side effects on the others teeth. The use of mini-screws seems to be a good alternative for an effective orthodontic anchorage on the uprighting mandibular molars.

  1. Routine versus on demand removal of the syndesmotic screw; a protocol for an international randomised controlled trial (RODEO-trial)

    NARCIS (Netherlands)

    Dingemans, S. A.; Birnie, M. F. N.; Sanders, F. R. K.; van den Bekerom, M. P. J.; Backes, M.; van Beeck, E.; Bloemers, F. W.; van Dijkman, B.; Flikweert, E.; Haverkamp, D.; Holtslag, H. R.; Hoogendoorn, J. M.; Joosse, P.; Parkkinen, M.; Roukema, G.; Sosef, N.; Twigt, B. A.; van Veen, R. N.; van der Veen, A. H.; Vermeulen, J.; Winkelhagen, J.; van der Zwaard, B. C.; van Dieren, S.; Goslings, J. C.; Schepers, T.

    2018-01-01

    Background: Syndesmotic injuries are common and their incidence is rising. In case of surgical fixation of the syndesmosis a metal syndesmotic screw is used most often. It is however unclear whether this screw needs to be removed routinely after the syndesmosis has healed. Traditionally the screw is

  2. Novel free-hand T1 pedicle screw method: Review of 44 consecutive cases

    Directory of Open Access Journals (Sweden)

    Mark A Rivkin

    2014-01-01

    Full Text Available Summary of Background Data: Multilevel posterior cervical instrumented fusions are becoming more prevalent in current practice. Biomechanical characteristics of the cervicothoracic junction may necessitate extending the construct to upper thoracic segments. However, fixation in upper thoracic spine can be technically demanding owing to transitional anatomy while suboptimal placement facilitates vascular and neurologic complications. Thoracic instrumentation methods include free-hand, fluoroscopic guidance, and CT-based image guidance. However, fluoroscopy of upper thoracic spine is challenging secondary to vertebral geometry and patient positioning, while image-guided systems present substantial financial commitment and are not readily available at most centers. Additionally, imaging modalities increase radiation exposure to the patient and surgeon while potentially lengthening surgical time. Materials and Methods: Retrospective review of 44 consecutive patients undergoing a cervicothoracic fusion by a single surgeon using the novel free-hand T1 pedicle screw technique between June 2009 and November 2012. A starting point medial and cephalad to classic entry as well as new trajectory were utilized. No imaging modalities were employed during screw insertion. Postoperative CT scans were obtained on day 1. Screw accuracy was independently evaluated according to the Heary classification. Results: In total, 87 pedicle screws placed were at T1. Grade 1 placement occurred in 72 (82.8% screws, Grade 2 in 4 (4.6% screws and Grade 3 in 9 (10.3% screws. All Grade 2 and 3 breaches were <2 mm except one Grade 3 screw breaching 2-4 mm laterally. Only two screws (2.3% were noted to be Grade 4, both breaching medially by less than 2 mm. No new neurological deficits or returns to operating room took place postoperatively. Conclusions: This modification of the traditional starting point and trajectory at T1 is safe and effective. It attenuates additional bone

  3. Intraoperative insertion torque of lumbar pedicle screw and postoperative radiographic evaluation. Short-term observation

    International Nuclear Information System (INIS)

    Mizuno, Koichi; Shinomiya, Kenichi; Otani, Kazuyuki

    2005-01-01

    The correlation between the insertion torque of a lumbar pedicle screw and the mechanical stability of the screw in the bone has been mentioned in in vitro studies. The purpose of this study was to confirm the factors affecting the insertion torque of such screws in vivo. Also, the contribution of insertion torque to the initial stability of the fusion area was to be analyzed in vivo. A series of 23 cases representing 50 lumbar vertebrae were included in this study, in which we examined bone mineral density using quantitative computed tomography (CT) prior to operation. Two screw shapes were utilized, with the insertion torque for each screw measured at two points in time. The correlation between insertion torque and mineral density was investigated. Screw positions were confirmed on postoperative CT scans, and the effect of the screw thread cutting into the cortex bone was investigated. Radiographic changes at three points during a period of 3 months were also measured, and we then evaluated the interrelations between these changes and insertion torque. Furthermore, the relation between insertion torque and instability at 3 months was investigated. Correlations of insertion torque and bone mineral density depended on screw shape. There was no correlation found with mineral density in the case of cylindrical screws. Insertion torque was not affected by the screw thread cutting into the cortex of bone. As for postoperative alignment changes, no definitive trends could be ascertained, and no interrelations with torque and alignment changes were observed. There is a possibility that insertion torque was related to early-stage stability, but no statistical relation could be determined. (author)

  4. Theoretical prediction of pullout strengths for dental and orthopaedic screws with conical profile and buttress threads.

    Science.gov (United States)

    Shih, Kao-Shang; Hou, Sheng-Mou; Lin, Shang-Chih

    2017-12-01

    The pullout strength of a screw is an indicator of how secure bone fragments are being held in place. Such bone-purchasing ability is sensitive to bone quality, thread design, and the pilot hole, and is often evaluated by experimental and numerical methods. Historically, there are some mathematical formulae to simulate the screw withdrawal from the synthetic bone. There are great variations in screw specifications. However, extensive investigation of the correlation between experimental and analytical results has not been reported in literature. Referring to the literature formulae, this study aims to evaluate the differences in the calculated pullout strengths. The pullout tests of the surgical screws are measured and the sawbone is used as the testing block. The absolute errors and correlation coefficients of the experimental and analytical results are calculated as the comparison baselines of the formulae. The absolute error of the dental, traumatic, and spinal groups are 21.7%, 95.5%, and 37.0%, respectively. For the screws with a conical profile and/or tiny threads, the calculated and measured results are not well correlated. The formulae are not accurate indicators of the pullout strengths of the screws where the design parameters are slightly varied. However, the experimental and numerical results are highly correlated for the cylindrical screws. The pullout strength of a conical screw is higher than that of its counterpart, but all formulae consistently predict the opposite results. In general, the bony purchase of the buttress threads is securer than that of the symmetric thread. An absolute error of up to 51.4% indicates the theoretical results cannot predict the actual value of the pullout strength. Only thread diameter, pitch, and depth are considered in the investigated formulae. The thread profile and shape should be formulated to modify the slippage mechanism at the bone-screw interfaces and simulate the strength change in the squeezed bones

  5. Transforaminal lumbar interbody fusion using unilateral pedicle screw fixation plus contralateral translaminar facet screw fixation in lumbar degenerative diseases.

    Science.gov (United States)

    Liu, Fubing; Jiang, Chun; Cao, Yuanwu; Jiang, Xiaoxing; Feng, Zhenzhou

    2014-07-01

    Transforaminal lumbar interbody fusion (TLIF) has been used in lumbar degenerative diseases. Some researchers have applied unilateral fixation in TLIF to reduce operational trauma without compromising the clinical outcome, but it is always suspected biomechanically unstable. The supplementary contralateral translaminar facet screw (cTLFS) seemed to be able to overcome the inherent drawbacks of unilateral pedicle screw (uPS) fixation theoretically. This study evaluates the safety, feasibility and efficacy of TLIF using uPS with cTLFS fixation in the treatment of lumbar degenerative diseases (LDD). 50 patients (29 male) underwent the aforementioned surgical technique for their LDD between December 2009 and April 2012. The results were evaluated based on visual analogue scale (VAS) of the leg and back, Japanese Orthopedic Association (JOA) score and Oswestry Disability Index (ODI) were recorded. The radiographic examinations in form of X-ray, computed tomography (CT) or magnetic resonance imaging was done preoperatively and 1 week, 3 months, 6 months, 12 months and 24 months postoperatively. The student t-test was used for comparison between the preoperative values and postoperative counterparts. P degenerative diseases short termly.

  6. Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine.

    Directory of Open Access Journals (Sweden)

    Fei Guo

    Full Text Available Pedicle screw fixation in the upper cervical spine is a difficult and high-risk procedure. The screw is difficult to place rapidly and accurately, and can lead to serious injury of spinal cord or vertebral artery. The aim of this study was to design an individualized 3D printing navigation template for pedicle screw fixation in the upper cervical spine.Using CT thin slices data, we employed computer software to design the navigation template for pedicle screw fixation in the upper cervical spine (atlas and axis. The upper cervical spine models and navigation templates were produced by 3D printer with equal proportion, two sets for each case. In one set (Test group, pedicle screws fixation were guided by the navigation template; in the second set (Control group, the screws were fixed under fluoroscopy. According to the degree of pedicle cortex perforation and whether the screw needed to be refitted, the fixation effects were divided into 3 types: Type I, screw is fully located within the vertebral pedicle; Type II, degree of pedicle cortex perforation is 1 mm or with the poor internal fixation stability and in need of renovation. Type I and Type II were acceptable placements; Type III placements were unacceptable.A total of 19 upper cervical spine and 19 navigation templates were printed, and 37 pedicle screws were fixed in each group. Type I screw-placements in the test group totaled 32; Type II totaled 3; and Type III totaled 2; with an acceptable rate of 94.60%. Type I screw placements in the control group totaled 23; Type II totaled 3; and Type III totaled 11, with an acceptable rate of 70.27%. The acceptability rate in test group was higher than the rate in control group. The operation time and fluoroscopic frequency for each screw were decreased, compared with control group.The individualized 3D printing navigation template for pedicle screw fixation is easy and safe, with a high success rate in the upper cervical spine surgery.

  7. Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine.

    Science.gov (United States)

    Guo, Fei; Dai, Jianhao; Zhang, Junxiang; Ma, Yichuan; Zhu, Guanghui; Shen, Junjie; Niu, Guoqi

    2017-01-01

    Pedicle screw fixation in the upper cervical spine is a difficult and high-risk procedure. The screw is difficult to place rapidly and accurately, and can lead to serious injury of spinal cord or vertebral artery. The aim of this study was to design an individualized 3D printing navigation template for pedicle screw fixation in the upper cervical spine. Using CT thin slices data, we employed computer software to design the navigation template for pedicle screw fixation in the upper cervical spine (atlas and axis). The upper cervical spine models and navigation templates were produced by 3D printer with equal proportion, two sets for each case. In one set (Test group), pedicle screws fixation were guided by the navigation template; in the second set (Control group), the screws were fixed under fluoroscopy. According to the degree of pedicle cortex perforation and whether the screw needed to be refitted, the fixation effects were divided into 3 types: Type I, screw is fully located within the vertebral pedicle; Type II, degree of pedicle cortex perforation is stability and no need to renovate; Type III, degree of pedicle cortex perforation is >1 mm or with the poor internal fixation stability and in need of renovation. Type I and Type II were acceptable placements; Type III placements were unacceptable. A total of 19 upper cervical spine and 19 navigation templates were printed, and 37 pedicle screws were fixed in each group. Type I screw-placements in the test group totaled 32; Type II totaled 3; and Type III totaled 2; with an acceptable rate of 94.60%. Type I screw placements in the control group totaled 23; Type II totaled 3; and Type III totaled 11, with an acceptable rate of 70.27%. The acceptability rate in test group was higher than the rate in control group. The operation time and fluoroscopic frequency for each screw were decreased, compared with control group. The individualized 3D printing navigation template for pedicle screw fixation is easy and safe

  8. Accuracy of S2 Alar-Iliac Screw Placement Under Robotic Guidance.

    Science.gov (United States)

    Laratta, Joseph L; Shillingford, Jamal N; Lombardi, Joseph M; Alrabaa, Rami G; Benkli, Barlas; Fischer, Charla; Lenke, Lawrence G; Lehman, Ronald A

    Case series. To determine the safety and feasibility of S2 alar-iliac (S2AI) screw placement under robotic guidance. Similar to standard iliac fixation, S2AI screws aid in achieving fixation across the sacropelvic junction and decreasing S1 screw strain. Fortunately, the S2AI technique minimizes prominent instrumentation and the need for offset connectors to the fusion construct. Herein, we present an analysis of the largest series of robotic-guided S2AI screws in the literature without any significant author conflicts of interest with the robotics industry. Twenty-three consecutive patients who underwent spinopelvic fixation with 46 S2AI screws under robotic guidance were analyzed from 2015 to 2016. Screws were placed by two senior spine surgeons, along with various fellow or resident surgical assistants, using a proprietary robotic guidance system (Renaissance; Mazor Robotics Ltd., Caesara, Israel). Screw position and accuracy was assessed on intraoperative CT O-arm scans and analyzed using three-dimensional interactive viewing and manipulation of the images. The average caudal angle in the sagittal plane was 31.0° ± 10.0°. The average horizontal angle in the axial plane using the posterior superior iliac spine as a reference was 42.8° ± 6.6°. The average S1 screw to S2AI screw angle was 11.3° ± 9.9°. Two violations of the iliac cortex were noted, with an average breach distance of 7.9 ± 4.8 mm. One breach was posterior (2.2%) and one was anterior (2.2%). The overall robotic S2AI screw accuracy rate was 95.7%. There were no intraoperative neurologic, vascular, or visceral complications related to the placement of the S2AI screws. Spinopelvic fixation achieved using a bone-mounted miniature robotic-guided S2AI screw insertion technique is safe and reliable. Despite two breaches, no complications related to the placement of the S2AI screws occurred in this series. Level IV, therapeutic. Copyright © 2017 Scoliosis Research Society. Published by Elsevier

  9. A resonant force sensor based on ionic polymer metal composites

    International Nuclear Information System (INIS)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2008-01-01

    In this paper a novel force sensor, based on ionic polymer metal composites (IPMCs), is presented. The system has DC sensing capabilities and is able to work in the range of a few millinewtons. IPMCs are emerging materials used to realize motion actuators and sensors. An IPMC strip is activated in a beam fixed/simply-supported configuration. The beam is tightened at the simply-supported end by a force. This influences the natural resonant frequency of the beam; the value of the resonant frequency is used in the proposed system to estimate the force applied in the axial direction. The performance of the system based on the IPMC material has proved to be comparable with that of sensors based on other sensing mechanisms. This suggests the possibility of using this class of polymeric devices to realize PMEMS (plastic micro electrical mechanical systems) sensors

  10. A resonant force sensor based on ionic polymer metal composites

    Science.gov (United States)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2008-02-01

    In this paper a novel force sensor, based on ionic polymer metal composites (IPMCs), is presented. The system has DC sensing capabilities and is able to work in the range of a few millinewtons. IPMCs are emerging materials used to realize motion actuators and sensors. An IPMC strip is activated in a beam fixed/simply-supported configuration. The beam is tightened at the simply-supported end by a force. This influences the natural resonant frequency of the beam; the value of the resonant frequency is used in the proposed system to estimate the force applied in the axial direction. The performance of the system based on the IPMC material has proved to be comparable with that of sensors based on other sensing mechanisms. This suggests the possibility of using this class of polymeric devices to realize PMEMS (plastic micro electrical mechanical systems) sensors.

  11. Optimization analysis of the motor cooling method in semi-closed single screw refrigeration compressor

    Science.gov (United States)

    Wang, Z. L.; Shen, Y. F.; Wang, Z. B.; Wang, J.

    2017-08-01

    Semi-closed single screw refrigeration compressors (SSRC) are widely used in refrigeration and air conditioning systems owing to the advantages of simple structure, balanced forces on the rotor, high volumetric efficiency and so on. In semi-closed SSRCs, motor is often cooled by suction gas or injected refrigerant liquid. Motor cooling method will changes the suction gas temperature, this to a certain extent, is an important factor influencing the thermal dynamic performance of a compressor. Thus the effects of motor cooling method on the performance of the compressor must be studied. In this paper mathematical models of motor cooling process by using these two methods were established. Influences of motor cooling parameters such as suction gas temperature, suction gas quantity, temperature of the injected refrigerant liquid and quantity of the injected refrigerant liquid on the thermal dynamic performance of the compressor were analyzed. The performances of the compressor using these two kinds of motor cooling methods were compared. The motor cooling capacity of the injected refrigerant liquid is proved to be better than the suction gas. All analysis results obtained can be useful for optimum design of the motor cooling process to improve the efficiency and the energy efficiency of the compressor.

  12. Study on solid-liquid two-phase unsteady flow characteristics with different flow rates in screw centrifugal pump

    International Nuclear Information System (INIS)

    Li, R N; Wang, H Y; Han, W; Shen, Z J; Ma, W

    2013-01-01

    The screw centrifugal pump is used as an object, and the unsteady numerical simulation of solid-liquid two-phase flow is carried out under different flow rate conditions in one circle by choosing the two-phase flow of sand and water as medium, using the software FLUENT based on the URANS equations, combining with sliding mesh method, and choosing the Mixture multiphase flow model and the SIMPLE algorithm. The results show that, with the flow rate increasing, the change trends for the pressure on volute outlet are almost constant, the fluctuation trends of the impeller axial force have a little change, the pressure and the axial force turn to decrease on the whole, the radial force gradually increases when the impeller maximum radius passes by half a cycle near the volute outlet, and the radial force gradually decreases when the maximum radius passes by the other half a cycle in a rotation cycle. The distributions of the solid particles are very uneven under a small flow rate condition on the face. The solid particles under a big flow rate condition are distributed more evenly than the ones under a small flow rate condition on the back. The theoretical basis and reference are provided for improving its working performance

  13. Study on pedicle screw fixation of cervical spine assisted CT-based navigation system compared with the individual cervical peddle screws placement technique

    International Nuclear Information System (INIS)

    He Xishun; Yang Huilin; Zhu Ruofu; Tan Xiangqi; Wang Genlin; Tang Tiansi

    2008-01-01

    Objective: To explore a safe and effective method for placing the cervical pedicle screws. Methods: There were ten adult cadaver specimens of cervica spine (C 1 -C 7 ) with intact structures including ligament and perivertebral muscles. The spiral computed tomography scan (Elscint CT Twin flash) at the section of 1 mm and three-dimensional reconstruction of all 10 cervical specimens were taken. By CT scan, the parameters of the cervical pedicles were measure,Then taking randomly 5 cervical specimens, according to the CT measurements, an appropriate screw was inserted into pedicle individually. In the other 5 human cadaver cervical vertebraes, Φ3.5 mm screws were inserted into the C 2 -C 7 pedicles by assisted by CT-based navigation system. Cortical integrity of every sample was examined by anatomic dissection, the spiral computed tomography scan and arrows,and coronal reconstruction. Results: Sixty screws was inserted into pedicle individually, and the achievement ratio was 90%, the perfectness ratio was 75%, 60 screws was placed into pedicle assisted by CT-based navigation system, and the achievement ratio was 96.6%, the perfectness ratio was 90%. By chi-square test for statistical analysis, there were no statistical significance between the accuracy rate of two methods(P>0.05). However there was statistical significance between the perfectness ratio between two methods(P<0.05). Conclusion: Compared with the individual cervical peddle screws placement technique, the perfectness ratio of pedicle screw fixation of cervical spine assisted by CT-based navigation system is higher, but there are no significant difference in accuracy. (authors)

  14. Dynamic modelling and PID loop control of an oil-injected screw compressor package

    Science.gov (United States)

    Poli, G. W.; Milligan, W. J.; McKenna, P.

    2017-08-01

    A significant amount of time is spent tuning the PID (Proportional, Integral and Derivative) control loops of a screw compressor package due to the unique characteristics of the system. Common mistakes incurred during the tuning of a PID control loop include improper PID algorithm selection and unsuitable tuning parameters of the system resulting in erratic and inefficient operation. This paper details the design and development of software that aims to dynamically model the operation of a single stage oil injected screw compressor package deployed in upstream oil and gas applications. The developed software will be used to assess and accurately tune PID control loops present on the screw compressor package employed in controlling the oil pressures, temperatures and gas pressures, in a bid to improve control of the operation of the screw compressor package. Other applications of the modelling software will include its use as an evaluation tool that can estimate compressor package performance during start up, shutdown and emergency shutdown processes. The paper first details the study into the fundamental operational characteristics of each of the components present on the API 619 screw compressor package and then discusses the creation of a dynamic screw compressor model within the MATLAB/Simulink software suite. The paper concludes by verifying and assessing the accuracy of the created compressor model using data collected from physical screw compressor packages.

  15. Inspection and replacement of baffle assembly screws inside American reactor vessels

    International Nuclear Information System (INIS)

    Neal, K.; Chaumont, J.C.

    1999-01-01

    The baffle assembly inside the vessel of a 900 MWe reactor designed by Framatome, is made up of 44 plates fixed on 8 horizontal supports by a system of about 1000 screws. These plates undergo high neutron flux and the problem of screw cracking appeared at the end of the eighties in the first-generation reactors. The first operation on a large scale concerning the screws of a Westinghouse type reactor, was performed on the Tihange-1 power plant where Framatome controlled 960 screws and replaced 91. In 1997 as a consequence of the Belgian and French feedback experience, American plant operators launched a vast program of preventive actions: material analysis, inspection of baffle plate screws and replacement of defective screws. This program was held in cooperation with EPRI (electric power research institute) and under the control of NRC (nuclear regulatory commission). Framatome Technologies Inc (FTI) was in charge of the in-situ inspection and replacement of the screws. FTI designed special tools and equipment adapted to the 2-loop American reactors but the basis ideas were those applied on the Tihange reactor. The successful experience of FTI has allowed the firm to be commissioned for 6 2-loops American reactors. (A.C.)

  16. Factors influencing success of cement versus screw-retained implant restorations: a clinical review

    Directory of Open Access Journals (Sweden)

    Ahmad Manawar

    2012-10-01

    Full Text Available Aim: As more and more dental practitioners are focusing on implant-supported fixed restorations, some clinicians favor the use of cement retained restorations while others consider screw retained prosthesis to be the best choice. Discussion: In screw-retained restorations, the fastening screw provides a solid joint between the restoration and the implant abutment, while in cement-retained prostheses the restorative screw is eliminated to enhance esthetics, occlusal stability, and passive fit of the restorations. The factors that influence the type of fixation of the prostheses to the implants like passivity of the framework, ease of fabrication, occlusion, esthetics, accessibility, retention and retrievability are discussed in this article with scientific studies demonstrating superior outcomes of one technique over another. Screwretained implant restorations have an advantage of predictable retention, retrievability and lack of potentially retained subgingival cement. However, a few disadvantages exist such as precise placement of the implant for optimal and esthetic location of the screw access hole and obtaining passive fit. On the other hand, cement retained restorations eliminate unesthetic screw access holes, have passive fit of castings, reduced complexity of clinical and lab procedures, enhanced esthetics, reduced cost factors and non disrupted morphology of the occlusal table. Conclusion: This article compares the advantages, potential disadvantages and limitations of screw and cement retained restorations and their specific implications in the most common clinical situation.

  17. Ball Nut Preload Diagnosis of the Hollow Ball Screw through Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Huang

    2018-01-01

    Full Text Available This paper studies the diagnostic results of hollow ball screws with different ball nut preload through the support vector machine (SVM process. The method is testified by considering the use of ball screw pretension and different ball nut preload. SVM was used to discriminate the hollow ball screw preload status through the vibration signals and servo motor current signals. Maximum dynamic preloads of 2%, 4%, and 6% ball screws were predesigned, manufactured, and conducted experimentally. Signal patterns with different preload features are separatedby SVM. The irregularity development of the ball screw driving motion current and rolling balls vibration of the ball screw can be discriminated via SVM based on complexity perception. The experimental results successfully show that the prognostic status of ball nut preload can be envisaged by the proposed methodology. The smart reasoning for the health of the ball screw is available based on classification of SVM. This diagnostic method satisfies the purposes of prognostic effectiveness on knowing the ball nut preload status

  18. Investigation of a Ball Screw Feed Drive System Based on Dynamic Modeling for Motion Control

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Huang

    2017-06-01

    Full Text Available This paper examines the frequency response relationship between the ball screw nut preload, ball screw torsional stiffness variations and table mass effect for a single-axis feed drive system. Identification for the frequency response of an industrial ball screw drive system is very important for the precision motion when the vibration modes of the system are critical for controller design. In this study, there is translation and rotation modes of a ball screw feed drive system when positioning table is actuated by a servo motor. A lumped dynamic model to study the ball nut preload variation and torsional stiffness of the ball screw drive system is derived first. The mathematical modeling and numerical simulation provide the information of peak frequency response as the different levels of ball nut preload, ball screw torsional stiffness and table mass. The trend of increasing preload will indicate the abrupt peak change in frequency response spectrum analysis in some mode shapes. This study provides an approach to investigate the dynamic frequency response of a ball screw drive system, which provides significant information for better control performance when precise motion control is concerned.

  19. Experimental results of single screw mechanical tests: a follow-up to SAND2005-6036.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sandwook; Lee, Kenneth L.; Korellis, John S.; McFadden, Sam X.

    2006-08-01

    The work reported here was conducted to address issues raised regarding mechanical testing of attachment screws described in SAND2005-6036, as well as to increase the understanding of screw behavior through additional testing. Efforts were made to evaluate fixture modifications and address issues of interest, including: fabrication of 45{sup o} test fixtures, measurement of the frictional load from the angled fixture guide, employment of electromechanical displacement transducers, development of a single-shear test, and study the affect of thread start orientation on single-shear behavior. A286 and 302HQ, No.10-32 socket-head cap screws were tested having orientations with respect to the primary loading axis of 0{sup 0}, 45{sup o}, 60{sup o}, 75{sup o} and 90{sup o} at stroke speeds 0,001 and 10 in/sec. The frictional load resulting from the angled screw fixture guide was insignificant. Load-displacement curves of A286 screws did not show a minimum value in displacement to failure (DTF) for 60{sup o} shear tests. Tests of 302HQ screws did not produce a consistent trend in DTF with load angle. The effect of displacement rate on DTF became larger as shear angle increased for both A286 and 302HQ screws.

  20. Parametric analysis and design of a screw extruder for slightly non-Newtonian (pseudoplastic materials

    Directory of Open Access Journals (Sweden)

    J.I. Orisaleye

    2018-04-01

    Full Text Available Extruders have found application in the food, polymer and pharmaceutical industries. Rheological characteristics of materials are important in the specification of design parameters of screw extruders. Biopolymers, which consist of proteins, nucleic acids and polysaccharides, are shear-thinning (pseudoplastic within normal operating ranges. However, analytical models to predict and design screw extruders for non-Newtonian pseudoplastic materials are rare. In this study, an analytical model suitable to design a screw extruder for slightly non-Newtonian materials was developed. The model was used to predict the performance of the screw extruder while processing materials with power law indices slightly deviating from unity (the Newtonian case. Using non-dimensional analysis, the effects of design and operational parameters were investigated. Expressions to determine the optimum channel depth and helix angle were also derived. The model is capable of predicting the performance of the screw extruder within the range of power law indices considered (1/2⩽n⩽1. The power law index influences the choice of optimum channel depth and helix angle of the screw extruder. Keywords: Screw extruder, Slightly non-Newtonian, Shear-thinning, Pseudoplastic, Biopolymer, Power law

  1. The trochanteric gamma nail versus the dynamic hip screw

    DEFF Research Database (Denmark)

    Ovesen, Ole; Andersen, Mikkel; Poulsen, Thomas

    2006-01-01

    In a prospective, randomized trial we compared the trochanteric gamma nail (TGN) and the dynamic hip screw (DHS) in the treatment of 146 intertrochanteric fractures. Follow-up was after four and 12 months. The operation time was significantly shorter in the DHS group. At discharge the need...... for walking aids was less in the DHS group. There were no differences in intraoperative blood loss, medical complications, mortality or length of hospital stay. Major fracture complications occurred twiceas often in the TGN group compared with the DHS group, however they were not statistically significant....... Any potential for the TGN leading to a less invasive procedure and a more rapid postoperative mobilisation could not be demonstrated. Compared with the TGN we prefer the DHS for most intertrochanteric fractures in a setting where the majority of these fractures are treated by younger doctors...

  2. Avulsion Fracture of the Calcaneus Treated With a Soft Anchor Bridge and Lag Screw Technique: A Report of Two Cases.

    Science.gov (United States)

    Yoshida, Kazushige; Kasama, Kentaro; Akahane, Tsutomu

    2016-01-01

    The displaced extra-articular avulsion fracture of the calcaneus has been classified as a Böhler type 1c calcaneal fracture, and most cases will require surgical repair. In the present report, we describe 2 patients in whom we performed the soft anchor bridge technique using single loaded suture anchors with lag screws for the repair of Böhler type 1c avulsion fractures of the calcaneus. In one of these patients, clinically relevant osteoporosis complicated the injury. In both cases, bone union was achieved, and by 1.5 months after surgery satisfactory recovery was observed. To our knowledge, the soft anchor bridge technique was first used for the treatment of rotator cuff tears, and the greatest merit of this technique is the ability to generate vertical compression force to the pulled out rotator cuff through the use of knotting sutures. In recent years, the soft anchor bridge technique using 4 suture anchors has also been used for fractures of the greater tuberosity of the humerus, an injury that poses operative difficulties similar to those encountered with an avulsion fracture of the calcaneus owing to the traction force of the rotator cuff and relative weakness of adjacent bone. The outcomes of our patients suggest that the soft anchor bridge technique combined with adjunct lag screws is useful in the fixation of avulsion fractures of the calcaneus. In addition, the result in the elderly patient indicates the possibility of using this technique for patients with osteoporosis. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Atomistic simulation of ideal shear strength, point defects, and screw dislocations in bcc transition metals: Mo as a prototype

    International Nuclear Information System (INIS)

    Xu, W.; Moriarty, J.A.

    1996-01-01

    Using multi-ion interatomic potentials derived from first-principles generalized pseudopotential theory, we have studied ideal shear strength, point defects, and screw dislocations in the prototype bcc transition metal molybdenum (Mo). Many-body angular forces, which are important to the structural and mechanical properties of such central transition metals with partially filled d bands, are accounted for in the present theory through explicit three- and four-ion potentials. For the ideal shear strength of Mo, our computed results agree well with those predicted by full electronic-structure calculations. For point defects in Mo, our calculated vacancy-formation and activation energies are in excellent agreement with experimental results. The energetics of six self-interstitial configurations have also been investigated. The left-angle 110 right-angle split dumbbell interstitial is found to have the lowest formation energy, in agreement with the configuration found by x-ray diffuse scattering measurements. In ascending order, the sequence of energetically stable interstitials is predicted to be left-angle 110 right-angle split dumbbell, crowdion, left-angle 111 right-angle split dumbbell, tetrahedral site, left-angle 001 right-angle split dumbbell, and octahedral site. In addition, the migration paths for the left-angle 110 right-angle dumbbell self-interstitial have been studied. The migration energies are found to be 3 endash 15 times higher than previous theoretical estimates obtained using simple radial-force Finnis-Sinclair potentials. Finally, the atomic structure and energetics of left-angle 111 right-angle screw dislocations in Mo have been investigated. We have found that the so-called open-quote open-quote easy close-quote close-quote core configuration has a lower formation energy than the open-quote open-quote hard close-quote close-quote one, consistent with previous theoretical studies. (Abstract Truncated)

  4. Surgical strategies to improve fixation in the osteoporotic spine: the effects of tapping, cement augmentation, and screw trajectory.

    Science.gov (United States)

    Kuhns, Craig A; Reiter, Michael; Pfeiffer, Ferris; Choma, Theodore J

    2014-02-01

    Study Design Biomechanical study of pedicle screw fixation in osteoporotic bone. Objective To investigate whether it is better to tap or not tap osteoporotic bone prior to placing a cement-augmented pedicle screw. Methods Initially, we evaluated load to failure of screws placed in cancellous bone blocks with or without prior tapping as well as after varying the depths of tapping prior to screw insertion. Then we evaluated load to failure of screws placed in bone block models with a straight-ahead screw trajectory as well as with screws having a 23-degree cephalad trajectory (toward the end plate). These techniques were tested with nonaugmented (NA) screws as well as with bioactive cement (BioC) augmentation prior to screw insertion. Results In the NA group, pretapping decreased fixation strength in a dose-dependent fashion. In the BioC group, the tapped screws had significantly greater loads to failure (p tapping prior to cement augmentation will substantially improve fixation when compared with not tapping. Angulating screws more cephalad also seems to enhance aging spine fixation.

  5. Flow and pressure characteristics within a screw compressor

    Science.gov (United States)

    Guerrato, D.; Nouri, J. M.; Stosic, N.; Arcoumanis, C.

    2007-10-01

    The angle-resolved mean and turbulence characteristics of the axial air flow inside a screw compressor with both male and female rotors have been measured, using a laser Doppler velocimeter (LDV) with high spatial and temporal resolution at different radial and axial locations for speeds of 800-1600 rpm, discharge pressures of 1-1.6 bar and discharge temperatures of 33-90°C. The velocity measurements were performed through a special transparent window fixed near the discharge port. The results confirmed the ability of the LDV technique to characterise the flow inside the compressor working chamber; an angular resolution of 1.5° was able to fully describe the velocity field within the machine. The flow variation between the different working chambers was established as well as the spatial variation of the axial mean velocity and turbulence velocity fluctuation within the working chamber. The effect of discharge port opening on the axial mean and RMS velocities was found to be significant near the leading edge of the rotors causing an increase in the mean and RMS velocities of the order of 4.2Vp in mean (where Vp is the axial pitched velocity) for male rotor and 5.4Vp for, female rotor and this effect is less pronounced on the flow near the root of the rotor. Moreover, to obtain a better understanding of the flow motion, a high sampling rate pressure transducer was used to provide the internal angular static pressure variation. These measurements are used to validate the in-house CFD model of the fluid flow within twin screw compressors which, in turn, allows reliable optimisation of various compressor designs.

  6. Flow and pressure characteristics within a screw compressor

    Energy Technology Data Exchange (ETDEWEB)

    Guerrato, D; Nouri, J M; Stosic, N; Arcoumanis, C [Centre for Energy and the Environment, School of Engineering and Mathematical Sciences, City University, Northampton Square, London, EC1V OHB (United Kingdom)

    2007-10-15

    The angle-resolved mean and turbulence characteristics of the axial air flow inside a screw compressor with both male and female rotors have been measured, using a laser Doppler velocimeter (LDV) with high spatial and temporal resolution at different radial and axial locations for speeds of 800-1600 rpm, discharge pressures of 1-1.6 bar and discharge temperatures of 33-90{sup 0}C. The velocity measurements were performed through a special transparent window fixed near the discharge port. The results confirmed the ability of the LDV technique to characterise the flow inside the compressor working chamber; an angular resolution of 1.5{sup 0} was able to fully describe the velocity field within the machine. The flow variation between the different working chambers was established as well as the spatial variation of the axial mean velocity and turbulence velocity fluctuation within the working chamber. The effect of discharge port opening on the axial mean and RMS velocities was found to be significant near the leading edge of the rotors causing an increase in the mean and RMS velocities of the order of 4.2V{sub p} in mean (where V{sub p} is the axial pitched velocity) for male rotor and 5.4V{sub p} for, female rotor and this effect is less pronounced on the flow near the root of the rotor. Moreover, to obtain a better understanding of the flow motion, a high sampling rate pressure transducer was used to provide the internal angular static pressure variation. These measurements are used to validate the in-house CFD model of the fluid flow within twin screw compressors which, in turn, allows reliable optimisation of various compressor designs.

  7. Flow and pressure characteristics within a screw compressor

    International Nuclear Information System (INIS)

    Guerrato, D; Nouri, J M; Stosic, N; Arcoumanis, C

    2007-01-01

    The angle-resolved mean and turbulence characteristics of the axial air flow inside a screw compressor with both male and female rotors have been measured, using a laser Doppler velocimeter (LDV) with high spatial and temporal resolution at different radial and axial locations for speeds of 800-1600 rpm, discharge pressures of 1-1.6 bar and discharge temperatures of 33-90 0 C. The velocity measurements were performed through a special transparent window fixed near the discharge port. The results confirmed the ability of the LDV technique to characterise the flow inside the compressor working chamber; an angular resolution of 1.5 0 was able to fully describe the velocity field within the machine. The flow variation between the different working chambers was established as well as the spatial variation of the axial mean velocity and turbulence velocity fluctuation within the working chamber. The effect of discharge port opening on the axial mean and RMS velocities was found to be significant near the leading edge of the rotors causing an increase in the mean and RMS velocities of the order of 4.2V p in mean (where V p is the axial pitched velocity) for male rotor and 5.4V p for, female rotor and this effect is less pronounced on the flow near the root of the rotor. Moreover, to obtain a better understanding of the flow motion, a high sampling rate pressure transducer was used to provide the internal angular static pressure variation. These measurements are used to validate the in-house CFD model of the fluid flow within twin screw compressors which, in turn, allows reliable optimisation of various compressor designs

  8. Variable Bone Density of Scaphoid: Importance of Subchondral Screw Placement.

    Science.gov (United States)

    Swanstrom, Morgan M; Morse, Kyle W; Lipman, Joseph D; Hearns, Krystle A; Carlson, Michelle G

    2018-02-01

    Background  Ideal internal fixation of the scaphoid relies on adequate bone stock for screw purchase; so, knowledge of regional bone density of the scaphoid is crucial. Questions/Purpose  The purpose of this study was to evaluate regional variations in scaphoid bone density. Materials and Methods  Three-dimensional CT models of fractured scaphoids were created and sectioned into proximal/distal segments and then into quadrants (volar/dorsal/radial/ulnar). Concentric shells in the proximal and distal pole were constructed in 2-mm increments moving from exterior to interior. Bone density was measured in Hounsfield units (HU). Results  Bone density of the distal scaphoid (453.2 ± 70.8 HU) was less than the proximal scaphoid (619.8 ± 124.2 HU). There was no difference in bone density between the four quadrants in either pole. In both the poles, the first subchondral shell was the densest. In both the proximal and distal poles, bone density decreased significantly in all three deeper shells. Conclusion  The proximal scaphoid had a greater density than the distal scaphoid. Within the poles, there was no difference in bone density between the quadrants. The subchondral 2-mm shell had the greatest density. Bone density dropped off significantly between the first and second shell in both the proximal and distal scaphoids. Clinical Relevance  In scaphoid fracture ORIF, optimal screw placement engages the subchondral 2-mm shell, especially in the distal pole, which has an overall lower bone density, and the second shell has only two-third the density of the first shell.

  9. Midline lumbar fusion using cortical bone trajectory screws. Preliminary report

    Directory of Open Access Journals (Sweden)

    Mateusz Bielecki

    2016-09-01

    Full Text Available Introduction : Midline lumbar fusion (MIDLF using cortical bone trajectory is an alternative method of transpedicular spinal fusion for degenerative disease. The new entry points’ location and screwdriving direction allow the approach-related morbidity to be reduced. Aim: To present our preliminary experience with the MIDLF technique on the first 5 patients with lumbar degenerative disease and with follow-up of at least 6 months. Material and methods: Retrospective analysis was performed on the first 5 patients with foraminal (4 or central (1 stenosis operated on between December 2014 and February 2015. Three patients were fused at L4–L5 and two at the L5–S1 level. Results: No intra- or post-operative complications occurred with this approach. An improvement regarding the leading symptom in the early postoperative period (sciatica 4/4, claudication 1/1 was achieved in all patients. The mean improvements in the visual analogue scale for low back and leg pain were 2.2 and 4.8 respectively. The mean Oswestry Disability Index scores were 52% (range: 16–82% before surgery and 33% (range: 12–56% at 3-month follow-up (mean improvement 19%. At the most recent follow-up, 4 patients reported the maintenance of the satisfactory result. The early standing and follow-up X-rays showed satisfactory screw placement in all patients. Conclusions : In our initial experience, the MIDLF technique seems to be an encouraging alternative to traditional transpedicular trajectory screws when short level lumbar fusion is needed. Nevertheless, longer observations on larger groups of patients are needed to reliably evaluate the safety of the method and the sustainability of the results.

  10. Computer-assisted surgery for screw insertion into the distal sesamoid bone in horses: an in vitro study.

    Science.gov (United States)

    Gygax, Diego; Lischer, Christoph; Auer, Joerg A

    2006-10-01

    To compare the precision of computer-assisted surgery with a conventional technique (CV) using a special guiding device for screw insertion into the distal sesamoid bone in horses. In vitro experimental study. Cadaveric forelimb specimens. Insertion of a 3.5 mm cortex screw in lag fashion along the longitudinal axis of intact (non-fractured) distal sesamoid bones was evaluated in 2 groups (8 limbs each): CV and computer-assisted surgery (CAS). For CV, the screw was inserted using a special guiding device and fluoroscopy, whereas for CAS, the screw was inserted using computer-assisted navigation. The accuracy of screw placement was verified by radiography, computed tomography, and specimen dissection. Surgical precision was better in CAS compared with CV. CAS improves the accuracy of lateromedial screw insertion, in lag fashion, into the distal sesamoid bone. The CAS technique should be considered for improved accuracy of screw insertion in fractures of the distal sesamoid bone.

  11. Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support.

    Science.gov (United States)

    Perez-Orribo, Luis; Kalb, Samuel; Reyes, Phillip M; Chang, Steve W; Crawford, Neil R

    2013-04-15

    Seven different combinations of posterior screw fixation, with or without interbody support, were compared in vitro using nondestructive flexibility tests. To study the biomechanical behavior of a new cortical screw (CS) fixation construct relative to the traditional pedicle screw (PS) construct. The CS is an alternative to the PS for posterior fixation of the lumbar spine. The CS trajectory is more sagittally and cranially oriented than the PS, being anchored in the pars interarticularis. Like PS fixation, CS fixation uses interconnecting rods fastened with top-locking connectors. Stability after bilateral CS fixation was compared with stability after bilateral PS fixation in the setting of intact disc and with direct lateral interbody fixation (DLIF) or transforaminal lateral interbody fixation (TLIF) support. Standard nondestructive flexibility tests were performed in cadaveric lumbar specimens, allowing non-paired comparisons of specific conditions from 28 specimens (4 groups of 7) within a larger experiment of multiple hardware configurations. Condition tested and group from which results originated were as follows: (1) intact (all groups); (2) with L3-L4 bilateral PS-rods (group 1); (3) with bilateral CS-rods (group 2); (4) with DLIF (group 3); (5) with DLIF + CS-rods (group 4); (6) with DLIF + PS-rods (group 3); (7) with TLIF + CS-rods (group 2), and (8) with TLIF + PS-rods (group 2). To assess spinal stability, the mean range of motion, lax zone, and stiff zone at L3-L4 were compared during flexion-extension, lateral bending, and axial rotation. With intact disc, stability was equivalent after PS-rod and CS-rod fixation, except that PS-rod fixation was stiffer during axial rotation. With DLIF support, there was no significant difference in stability between PS-rod and CS-rod fixation. With TLIF support, PS-rod fixation was stiffer than CS-rod fixation during lateral bending. Bilateral CS-rod fixation provided about the same stability in cadaveric specimens

  12. Study of Dynamic Flow and Mixing Performances of Tri-Screw Extruders with Finite Element Method

    OpenAIRE

    X. Z. Zhu; G. Wang; Y. D. He; Z. F. Cheng

    2013-01-01

    There is a special circumfluence in the center region of cross-section for a tri-screw extruder. To study the effect of the dynamic center region on the flow and mixing mechanism of the tri-screw extruder, 2D finite element modeling was used to reduce the axial effects. Based on the particle tracking technology, the nonlinear dynamics of a typical particle motions in the center region was carried out and the mixing process in the tri-screw extruder was analyzed with Poincaré maps. Moreover, m...

  13. Metal Artifacts Reduction of Pedicle Screws on Spine Computed Tomography Images Using Variable Thresholding Technique

    International Nuclear Information System (INIS)

    Kaewlek, T.; Koolpiruck, D.; Thongvigitmanee, S.; Mongkolsuk, M.; Chiewvit, P.; Thammakittiphan, S.

    2012-01-01

    Metal artifacts are one of significant problems in computed tomography (CT). The streak lines and air gaps arise from metal implants of orthopedic patients, such as prosthesis, dental bucket, and pedicle screws that cause incorrect diagnosis and local treatment planning. A common technique to suppressed artifacts is by adjusting windows, but those artifacts still remain on the images. To improve the detail of spine CT images, the variable thresholding technique is proposed in this paper. Three medical cases of spine CT images categorized by the severity of artifacts (screws head, one full screw, and two full screws) were investigated. Metal regions were segmented by k-mean clustering, then transformed into a sinogram domain. The metal sinogram was identified by the variable thresholding method, and then replaced the new estimated values by linear interpolation. The modified sinogram was reconstructed by the filtered back- projection algorithm, and added the metal region back to the modified reconstructed image in order to reproduce the final image. The image quality of the proposed technique, the automatic thresholding (Kalender) technique, and window adjustment technique was compared in term of noise and signal to noise ratio (SNR). The propose method can reduce metal artifacts between pedicle screws. After processing by our proposed technique, noise in the modified images is reduced (screws head 121.15 to73.83, one full screw 160.88 to 94.04, and two full screws 199.73 to 110.05 from the initial image) and SNR is increased (screws head 0.87 to 1.88, one full screw 1.54 to 2.82, and two full screws 0.32 to 0.41 from the initial image). The variable thresholding technique can identify the suitable boundary for restoring the missing data. The efficiency of the metal artifacts reduction is indicated on the case of partial and full pedicle screws. Our technique can improve the detail of spine CT images better than automatic thresholding (Kalender) technique, and

  14. Parameters Affecting the Extraction Process of Jatropha Curcas Oil Using a Single Screw Extruder

    OpenAIRE

    Siregar, Ali Nurrakhmad; Ghani, Jaharah A; Che Haron, Che Hassan; Rizal, Muhammad

    2015-01-01

    The most commonly used technique to separate oil and cake from J. curcas seeds is mechanical extraction. It uses simple tools such as a piston and a screw extruder to produce high pressure, driven by hand or by engine. A single screw extruder has one screw rotating inside the barrel and materials simultaneously flow from the feed to the die zone. The highest oil yield can be obtained by a well-designed oil press as well as finding the optimum conditions for all parameters involved during the ...

  15. On damping of screw dislocation bending vibrations in dissipative crystal: limiting cases

    Science.gov (United States)

    Dezhin, V. V.

    2018-03-01

    The expression for the generalized susceptibility of the dislocation obtained earlier was used. The electronic drag mechanism of dislocations is considered. The study of small dislocation oscillations was limited. The contribution of the attenuation of low-frequency bending screw dislocation vibrations to the overall coefficient of dynamic dislocation drag in the long-wave and short-wave limits is calculated. The damping of short-wave bending screw dislocation vibrations caused by an external action of an arbitrary frequency has been investigated. The contribution of long-wave bending screw dislocation vibrations damping in the total drag coefficient at an arbitrary frequency is found.

  16. First Metatarsophalangeal Joint Arthrodesis: A Retrospective Comparison of Crossed-screws, Locking and Non-Locking Plate Fixation with Lag Screw

    Directory of Open Access Journals (Sweden)

    Leif Claassen

    2017-07-01

    Full Text Available Background:Locking plate fixation is increasingly used for first metatarsophalangeal joint (MTP-I arthrodesis. Still there is few comparable clinical data regarding this procedure. Methods:We retrospectively evaluated 60 patients who received an arthrodesis of the MTP-I between January 2008 and June 2010. With 20 patients each we performed a locking plate fixation with lag screw, arthrodesis with crossed-screwsor with a nonlocking plate with lag screw. Results: There were four non-unions in crossed-screws patients and one nonunion in non-locked plate group. All the patients in locking plate group achieved union. 90% of the patients were completely or mildly satisfied in locking plate group, whereas this rate was 80% for patients in both crossed screws and non-locking plate groups. Conclusions: Use of dorsal plating for arthrodesis of MTP1 joint either locking or non-locking were associated with high union rate and acceptable and comparable functional outcome. Although nonunion rate was high using two crossed screws but functional outcome was not significantly different compare to dorsal plating. Level of evidence:Ш, retrospective comparative study

  17. Labor Force

    Science.gov (United States)

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  18. Ab-Initio Simulation of a/2 Screw Dislocations Gamma-TiAl

    National Research Council Canada - National Science Library

    Woodward, C; Rao, S. I

    2004-01-01

    ...The equilibrium core structure of an isolated a/2screw dislocations is calculated using a first-principles pseudopotential-planewave method within the Local Density Approximation of Density Functional Theory...

  19. EFFECT OF PILOT HOLE TAPPING ON PULLOUT STRENGTH AND INSERTION TORQUE OF DUAL CORE PEDICLE SCREWS.

    Science.gov (United States)

    Rosa, Rodrigo César; Silva, Patrícia; Falcai, Maurício José; Shimano, Antônio Carlos; Defino, Helton Luiz Aparecido

    2010-01-01

    To evaluate the influence of pilot hole tapping on pullout resistance and insertion torque of pedicle screws with a conical core. Mechanical tests using a universal testing machine were performed on pedicle screws with a conical core that were inserted into pedicles in the fifth lumbar vertebra of calves. The insertion torque was measured using a torque meter with a capacity of 10 Nm, which was considered to be the highest torque value. The pilot holes were prepared using a probe of external diameter 3.8 mm and tapping of the same dimensions and thread characteristics as the screw. Decreased insertion torque and pullout resistance were observed in the group with prior tapping of the pilot hole. Pilot hole tapping reduced the insertion torque and pullout resistance of pedicle screws with a conical core that had been inserted into the pedicle of the fifth lumbar vertebra of calves.

  20. Assessment of Different Metal Screw Joint Parameters by Using Multiple Criteria Analysis Methods

    Directory of Open Access Journals (Sweden)

    Audrius Čereška

    2018-05-01

    Full Text Available This study compares screw joints made of different materials, including screws of different diameters. For that purpose, 8, 10, 12, 14, 16 mm diameter steel screws and various parts made of aluminum (Al, steel (Stl, bronze (Brz, cast iron (CI, copper (Cu and brass (Br are considered. Multiple criteria decision making (MCDM methods such as evaluation based on distance from average solution (EDAS, simple additive weighting (SAW, technique for order of preference by similarity to ideal solution (TOPSIS and complex proportional assessment (COPRAS are utilized to assess reliability of screw joints also considering cost issues. The entropy, criterion impact loss (CILOS and integrated determination of objective criteria weights (IDOCRIW methods are utilized to assess weights of decision criteria and find the best design alternative. Numerical results confirm the validity of the proposed approach.

  1. ADOLESCENT IDIOPATHIC SCOLIOSIS: EVALUATION ON THE EFFECT OF SCREW DENSITY IN THE CORRECTION

    Directory of Open Access Journals (Sweden)

    Enguer Beraldo Garcia

    2016-03-01

    Full Text Available ABSTRACT Objective: The objective was to investigate implant density or the number of screws correlated with the correction of the main curve in patients undergoing surgery for adolescent idiopathic scoliosis (AIS. Methods: We evaluated 112 medical records: 33 patients with screw density of up to 50%, and 79 patients with a density of 100%; all patients underwent surgical correction by posterior approach with transpedicular fixation. Results: In the group of patients with screw density of up to 50% the residual Cobb median was 10°; in the group with 100% density, the median was 7°. Conclusion: Biostatistical analysis showed that the group with up to 50% of screw density presented correction rate of 82.1% and the group with 100% density had correction of about 86.8%. It is therefore concluded that the difference is statistically significant in favor of the fixation with 100% density (p =0.010.

  2. Conceptual framework for model-based analysis of residence time distribution in twin-screw granulation

    DEFF Research Database (Denmark)

    Kumar, Ashish; Vercruysse, Jurgen; Vanhoorne, Valerie

    2015-01-01

    Twin-screw granulation is a promising continuous alternative for traditional batchwise wet granulation processes. The twin-screw granulator (TSG) screws consist of transport and kneading element modules. Therefore, the granulation to a large extent is governed by the residence time distribution...... within each module where different granulation rate processes dominate over others. Currently, experimental data is used to determine the residence time distributions. In this study, a conceptual model based on classical chemical engineering methods is proposed to better understand and simulate...... the residence time distribution in a TSG. The experimental data were compared with the proposed most suitable conceptual model to estimate the parameters of the model and to analyse and predict the effects of changes in number of kneading discs and their stagger angle, screw speed and powder feed rate...

  3. A study of the bone healing kinetics of plateau versus screw root design titanium dental implants.

    LENUS (Irish Health Repository)

    Leonard, Gary

    2009-03-01

    This study was designed to compare the bone healing process around plateau root from (PRF) and screw root from (SRF) titanium dental implants over the immediate 12 week healing period post implant placement.

  4. Gas flow through the clearances of screw spindle vacuum pumps; Gasspaltstroemungen in Schraubenspindel-Vakuumpumpen

    Energy Technology Data Exchange (ETDEWEB)

    Kauder, K.; Wenderott, D. [Dortmund Univ. (Germany). FG Fluidenergiemaschinen

    1998-12-31

    The documentation `Schraubenmaschinen` deals with the subject `screw spindle vacuum pump` for the first time. Therefore, this paper presents the type of maschine `screw spindle vacuum pump`, fixes its limits to the better known screw type compressor and finally classifies it in the crossover of vacuum-technology, characteristic geometry and the numerical simulation. The suggested reflections to choose a proper model of flow are based on the geometry of the screw spindle vacuum pump and fundamentals concerning the vacuum-technology and the state of flow. (orig.) [Deutsch] Die Schriftenreihe `Schraubenmaschinen` behandelt erstmals das Thema `Schraubenspindel-Vakuumpumpe`. Aus diesem Grund stellt der vorliegende Beitrag den Maschinentyp Schraubenspindel-Vakuumpumpe vor, grenzt ihn zur bekannteren Schraubenmaschine ab und ordnet ihn in der Schnittmenge aus Vakuumtechnik, charakteristischer Maschinengeometrie und der Simulation ein. Auf den vakuumtechnischen und stroemungstechnischen Grundlagen sowie geometrischen Betrachtungen basieren die genannten Ueberlegungen zur Auswahl geeigneter Stroemungsmodelle. (orig.)

  5. Reconstruction of the lateral tibia plateau fracture with a third triangular support screw: A biomechanical study

    Directory of Open Access Journals (Sweden)

    Eduardo Moran

    2017-10-01

    Conclusion: Triangular support fixation enhanced interfragmentary stability at the ultimate stage of dynamic loading. However, the level of improvement seems to be limited and may not legitimate the intervention with an additional third screw.

  6. Bioresorbable composite screws manufactured via forging process: pull-out, shear, flexural and degradation characteristics.

    Science.gov (United States)

    Felfel, R M; Ahmed, I; Parsons, A J; Rudd, C D

    2013-02-01

    Bioresorbable screws have the potential to overcome some of the complications associated with metallic screws currently in use. Removal of metallic screws after bone has healed is a serious issue which can lead to refracture due to the presence of screw holes. Poly lactic acid (PLA), fully 40 mol% P(2)O(5) containing phosphate unidirectional (P40UD) and a mixture of UD and short chopped strand random fibre mats (P40 70%UD/30%RM) composite screws were prepared via forging composite bars. Water uptake and mass loss for the composite screws manufactured increased significantly to ∼1.25% (P=0.0002) and ∼1.1% (P<0.0001), respectively, after 42 days of immersion in PBS at 37 °C. The initial maximum flexural load for P40 UD/RM and P40 UD composite screws was ∼60% (P=0.0047) and ∼100% (P=0.0037) higher than for the PLA screws (∼190 N), whilst the shear load was slightly higher in comparison to PLA (∼2.2 kN). The initial pull-out strengths for the P40 UD/RM and PLA screws were similar whereas that for P40 UD screws was ∼75% higher (P=0.022). Mechanical properties for the composite screws decreased initially after 3 days of immersion and this reduction was ascribed to the degradation of the fibre/matrix interface. After 3 days interval the mechanical properties (flexural, shear and pull-out) maintained their integrity for the duration of the study (at 42 days). This property retention was attributed to the chemical durability of the fibres used and stability of the matrix properties during the degradation process. It was also deemed necessary to enhance the fibre/matrix interface via use of a coupling agent in order to maintain the initial mechanical properties acquired for the required period of time. Lastly, it is also suggested that the degrading reinforcement fibres may have the potential to buffer any acidic products released from the PLA matrix. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Stability of midface fracture repair using absorbable plate and screw system pilot holes drilled and pin placement at angles other than 90°.

    Science.gov (United States)

    Carron, Michael A; Zuliani, Giancarlo; Pereira, Lucio; Abuhamdan, Maher; Thibault, Adrianna; Dau, Nathan; Bir, Cynthia

    2014-01-01

    due to bone breakage, and 94 fixations failed as a result of the plate-screw construct breaking. Fractures fixated with the ultrasonic absorbable plating system placed with screws at all tested angles failed at similar loads to our control plates with pins placed at 90° angles. These results lend the surgeon to successfully reduce fractures in the midface fragments in difficult-to-reach areas and possibly cut down on operative time while improving the chance of achieving a long-lasting adequate reduction. Although there is a measured difference in the laboratory, no clinical difference is observed because the maximum force is not usually encountered. Overall, the clinical scenario indicates absorbable plates to be a viable option in less accessible areas. NA.

  8. Biomechanical properties of a novel biodegradable magnesium-based interference screw

    Directory of Open Access Journals (Sweden)

    Marco Ezechieli

    2016-06-01

    Full Text Available Magnesium-based interference screws may be an alternative in anterior/posterior cruciate ligament reconstruction. The well-known osteoconductive effects of biodegradable magnesium alloys may be useful. It was the purpose of this study to evaluate the biomechanical properties of a magnesium based interference screw and compare it to a standard implant. A MgYREZr-alloy interference screw and a standard implant (Milagro®; De Puy Mitek, Raynham, MA, USA were used for graft fixation. Specimens were placed into a tensile loading fixation of a servohydraulic testing machine. Biomechanical analysis included pretensioning of the constructs at 20 N for 1 min following cyclic pretensioning of 20 cycles between 20 and 60 N. Biomechanical elongation was evaluated with cyclic loading of 1000 cycles between 50 and 200 N at 0.5 Hz. Maximum load to failure was 511.3±66.5 N for the Milagro® screw and 529.0±63.3 N for magnesium-based screw (ns, P=0.57. Elongations after preload, during cyclical loading and during failure load were not different between the groups (ns, P>0.05. Stiffness was 121.1±13.8 N/mm for the magnesiumbased screw and 144.1±18.4 for the Milagro® screw (ns, P=0.32. MgYREZr alloy interference screws show comparable results in biomechanical testing to standard implants and may be an alternative for anterior cruciate reconstruction in the future.

  9. Degradation behaviour of LAE442-based plate–screw-systems in an in vitro bone model

    International Nuclear Information System (INIS)

    Wolters, Leonie; Besdo, Silke; Angrisani, Nina; Wriggers, Peter; Hering, Britta; Seitz, Jan-Marten; Reifenrath, Janin

    2015-01-01

    The use of absorbable implant materials for fixation after bone fracture helps to avoid a second surgery for implant removal and the risks and costs involved. Magnesium (Mg) is well known as a potential metallic material for degradable implants. The aim of the present in vitro study was to evaluate if degradable LAE442-based magnesium plate–screw-systems are suitable candidates for osteosynthesis implants in load-bearing bones. The corrosion behaviour was tested concerning the influence of different surface treatments, coatings and screw torques. Steel plates and screws of the same size served as control. Plates without special treatment screwed on up to a specified torque of 15 cNm or 7 cNm, NaOH treated plates (15 cNm), magnesium fluoride coated plates (15 cNm) and steel plates as control (15 cNm) were examined in pH-buffered, temperature-controlled SBF solution for two weeks. The experimental results indicate that the LAE442 plates and screws coated with magnesium fluoride revealed a lower hydrogen evolution in SBF solution as well as a lower weight loss and volume decrease in μ-computed tomography (μCT). The nanoindentation and SEM/EDX measurements at several plate areas showed no significant differences. Summarized, the different screw torques did not affect the corrosion behaviour differently. Also the NaOH treatment seemed to have no essential influence on the degradation kinetics. The plates coated with magnesium fluoride showed a decreased corrosion rate. Hence, it is recommended to consider this coating for the next in vivo study. - Highlights: • Mg-based plate screw systems were examined in an in vitro corrosion setup. • Different screw torques did not affect the corrosion behaviour. • Pretreatment with NaOH showed no increase in corrosion resistance. • Fluoride coating slowed down the corrosion rate of plates. • Fluoride coating might be an alternative for decrease of corrosion rate in vivo

  10. Degradation behaviour of LAE442-based plate–screw-systems in an in vitro bone model

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, Leonie [Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover (Germany); Besdo, Silke [Institute of Continuum Mechanics, Leibniz Universität Hannover, Appelstraße 11, 30167 Hannover (Germany); Angrisani, Nina [Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover (Germany); Wriggers, Peter [Institute of Continuum Mechanics, Leibniz Universität Hannover, Appelstraße 11, 30167 Hannover (Germany); Hering, Britta [Institute of Production Engineering and Machine Tools, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Seitz, Jan-Marten [Institute of Materials Science, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Reifenrath, Janin, E-mail: janin.reifenrath@tiho-hannover.de [Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover (Germany)

    2015-04-01

    The use of absorbable implant materials for fixation after bone fracture helps to avoid a second surgery for implant removal and the risks and costs involved. Magnesium (Mg) is well known as a potential metallic material for degradable implants. The aim of the present in vitro study was to evaluate if degradable LAE442-based magnesium plate–screw-systems are suitable candidates for osteosynthesis implants in load-bearing bones. The corrosion behaviour was tested concerning the influence of different surface treatments, coatings and screw torques. Steel plates and screws of the same size served as control. Plates without special treatment screwed on up to a specified torque of 15 cNm or 7 cNm, NaOH treated plates (15 cNm), magnesium fluoride coated plates (15 cNm) and steel plates as control (15 cNm) were examined in pH-buffered, temperature-controlled SBF solution for two weeks. The experimental results indicate that the LAE442 plates and screws coated with magnesium fluoride revealed a lower hydrogen evolution in SBF solution as well as a lower weight loss and volume decrease in μ-computed tomography (μCT). The nanoindentation and SEM/EDX measurements at several plate areas showed no significant differences. Summarized, the different screw torques did not affect the corrosion behaviour differently. Also the NaOH treatment seemed to have no essential influence on the degradation kinetics. The plates coated with magnesium fluoride showed a decreased corrosion rate. Hence, it is recommended to consider this coating for the next in vivo study. - Highlights: • Mg-based plate screw systems were examined in an in vitro corrosion setup. • Different screw torques did not affect the corrosion behaviour. • Pretreatment with NaOH showed no increase in corrosion resistance. • Fluoride coating slowed down the corrosion rate of plates. • Fluoride coating might be an alternative for decrease of corrosion rate in vivo.

  11. Accuracy of percutaneous pedicle screws for thoracic and lumbar spine fractures compared with open technique.

    Science.gov (United States)

    Paredes, Igor; Panero, Irene; Cepeda, Santiago; Castaño-Leon, Ana M; Jimenez-Roldan, Luis; Perez-Nuñez, Ángel; Alén, Jose A; Lagares, Alfonso

    2018-06-14

    This study aimed to compare the accuracy of screw placement between open pedicle screw fixation and percutaneous pedicle screw fixation (MIS) for the treatment of thoracolumbar spine fractures (TSF). Forty-nine patients with acute TSF who were treated with transpedicular screw fixation from January 2013 to December 2016 were retrospectively reviewed. The patients were divided into Open and MIS groups. Laminectomy was performed in either group if needed. The accuracy of the screw placement, the evolution of the Cobb sagital angle postoperatively and at 12-month follow up and the neurological status were recorded. AO type of fracture and TLICS score were also recorded. Mean age was 42 years old. Mean TLICS score was 6,29 and 5,96 for open and MIS groups respectively. Twenty five MIS and 24 open surgeries were performed, and 350 (175 in each group) screws were inserted (7,14 per patient). Twenty-four and 13 screws were considered ̈out ̈ in the open and MIS groups respectively (Odds ratio 1,98. 0,97-4,03 p=0,056). The Cobb sagittal angle went from 13,3o to 4,5o and from 14,9o to 8,2o in the Open and MIS groups respectively (both popen and MIS groups respectively. No neurological worsening was observed. For the treatment of acute thoracolumbar fractures, the MIS technique seems to achieve similar results to the open technique in relation to neurological improvement and deformity correction, while placing the screws more accurately.

  12. [Clinical application of atlas translaminar screws fixation in treatment of atlatoaxial instability].

    Science.gov (United States)

    Wang, Guoyou; Fu, Shijie; Shen, Huarui; Guan, Taiyuan; Xu, Ping

    2013-10-01

    To explore the effectiveness of fixation of atlas translaminar screws in the treatment of atlatoaxial instability. A retrospective analysis was made on the clinical data of 32 patients with atlatoaxial instability treated with atlantoaxial trans-pedicle screws between March 2007 and August 2009. Of them, 7 patients underwent atlas translaminar screws combined with axis transpedicle screws fixation because of fracture types, anatomic variation, and intraoperative reason, including 5 males and 2 females with an average age of 48.2 years (range, 35-69 years). A total of 9 translaminar screws were inserted. Injury was caused by traffic accident in 4 cases, falling from height in 2 cases, and crushing in 1 case. Two cases had simple odontoid fracture (Anderson type II), and 5 cases had odontoid fracture combined with other injuries (massa lateralis atlantis fracture in 2, atlantoaxial dislocation in 1, and Hangman fracture in 2). The interval between injury and operation was 4-9 days (mean, 6 days). The preoperative Japanese Orthopaedic Association (JOA) score was 8.29 +/- 1.60. The X-ray films showed good position of the screws. Healing of incision by first intention was obtained, and no patient had injuries of the spinal cord injury, nerve root, and vertebral artery. Seven cases were followed up 9-26 months (mean, 14 months). Good bone fusion was observed at 8 months on average (range, 6-11 months). No loosening, displacement, and breakage of internal fixation, re-dislocation and instability of atlantoaxial joint, or penetrating of pedicle screw into the spinal canal and the spinal cord occurred. The JOA score was significantly improved to 15.29 +/- 1.38 at 6 months after operation (t = 32.078, P = 0.000). Atlas translaminar screws fixation has the advantages of firm fixation, simple operating techniques, and relative safety, so it may be a remedial measure of atlatoaxial instability.

  13. Enhanced biocompatibility and osseointegration of calcium titanate coating on titanium screws in rabbit femur.

    Science.gov (United States)

    Wang, Zi-Li; He, Rong-Zhen; Tu, Bin; Cao, Xu; He, Jin-Shen; Xia, Han-Song; Liang, Chi; Zou, Min; Wu, Song; Wu, Zhen-Jun; Xiong, Kun

    2017-06-01

    This study aimed to examine the biocompatibility of calcium titanate (CaTiO 3 ) coating prepared by a simplified technique in an attempt to assess the potential of CaTiO 3 coating as an alternative to current implant coating materials. CaTiO 3 -coated titanium screws were implanted with hydroxyapatite (HA)-coated or uncoated titanium screws into medial and lateral femoral condyles of 48 New Zealand white rabbits. Imaging, histomorphometric and biomechanical analyses were employed to evaluate the osseointegration and biocompatibility 12 weeks after the implantation. Histology and scanning electron microscopy revealed that bone tissues surrounding the screws coated with CaTiO 3 were fully regenerated and they were also well integrated with the screws. An interfacial fibrous membrane layer, which was found in the HA coating group, was not noticeable between the bone tissues and CaTiO 3 -coated screws. X-ray imaging analysis showed in the CaTiO 3 coating group, there was a dense and tight binding between implants and the bone tissues; no radiation translucent zone was found surrounding the implants as well as no detachment of the coating and femoral condyle fracture. In contrast, uncoated screws exhibited a fibrous membrane layer, as evidenced by the detection of a radiation translucent zone between the implants and the bone tissues. Additionally, biomechanical testing revealed that the binding strength of CaTiO 3 coating with bone tissues was significantly higher than that of uncoated titanium screws, and was comparable to that of HA coating. The study demonstrated that CaTiO 3 coating in situ to titanium screws possesses great biocompatibility and osseointegration comparable to HA coating.

  14. Design of three-dimensional visualization based on the posterior lumbar pedicle screw fixation

    Directory of Open Access Journals (Sweden)

    Kai XU

    2011-09-01

    Full Text Available Objective To establish a three-dimensional visualization model of posterior lumbar pedicle screw fixation.Methods A patient with lumbar intervertebral disc hernia and another patient with compression fracture of lumbar vertebra were involved in the present study.Both patients underwent multi-slice spiral CT scan before and after lumbar pedicle screw fixation.The degree of preoperative vertebral compression,vertebral morphology before and after surgery,postoperative pedicle screw position,and decompression effects were observed.The original data of the multi-slice spiral CT were inputted into the computer.The three-dimensional reconstructed images of the lumbar and implanted screws were obtained using the software Amira 4.1 to show the three-dimensional shape of the lumbar vertebrae before and after surgery and the location of the implanted screws.Results The morphology and structure of the lumbar vertebrae before and after surgery and of the implanted screws were reconstructed using the digital navigation platform.The reconstructed 3D images could be displayed in multicolor,transparent,or arbitrary combinations.In the 3D surface reconstruction images,the location and structure of the implanted screws could be clearly observed,and the decompression of the spinal cord or nerve roots and the severity of the fracture and the compression of lumbar vertebrae could be fully evaluated.The reconstructed images before operation revealed the position of the vertebral pedicles and provided reference for intraoperative localization.Conclusions The three-dimensional computerized reconstructions of lumbar pedicle screw fixation may be valuable in basic research,clinical experiment,and surgical planning.The software Amira is one of the bases of three-dimensional reconstruction.

  15. Clinical Outcomes of Posterior C1 and C2 Screw-Rod Fixation for Atlantoaxial Instability.

    Science.gov (United States)

    Işik, Hasan Serdar; Sandal, Evren; Çağli, Sedat

    2017-06-14

    In this study, we aimed at sharing our experiences and contributing to the literature by making a retrospective analysis of the patients we operated with screw-rod system for atlantoaxial instability in our clinic. Archive files of adult patients, who were operated for posterior C1-C2 stabilization with screw and rod in our clinic between January 2006 and January 2016, were analyzed. 28 patients, who had pre and post-operative images, follow-up forms and who were followed for at least one year, were analyzed. Preoperative clinical and radiological records, preoperative observations, postoperative complications, and clinical responses were evaluated. The average age of 28 patients (F:13 M:19) was 44.7 (21-73). Fixation was performed with C1-C2 screw-rod system on the basis of the following diagnoses; type 2 odontoid fracture (16), basilar invagination (5), C1-C2 instability (5), and atlantoaxial subluxation secondary to rheumatoid arthritis (2). Lateral mass screws were inserted at C1 segment. C2 screws inserted were bilateral pedicle in 12 cases, bilateral pars in 4, bilateral laminar in 8 and one side pars, one side laminar in 4 cases. There was no screw malposition. Neither implant failure nor recurrent instability was observed during follow-up. Significant clinical improvement was reported according to the assessments done with JOA and VAS scores. C1-C2 screw fixation is regarded as a more successful and safe method than other fixation methods in surgical treatment of atlantoaxial instability considering complications, success in reduction, fusion and fixation strength. C2 laminar screw technique is as successful as the other alternatives in fixation and fusion.

  16. Modelling and Experimental Investigation of Unsteady Behaviour of a Screw Compressor Plant

    OpenAIRE

    Chukanova, Ekatarina; Stosic, Nikola; Kovacevic, Ahmed

    2014-01-01

    Majority of air compressor plants installed worldwide operate permanently under unsteady conditions, however, there is still a lack of published papers which describe the plant dynamics and offer quantification parameters of the phenomenon. An experimental and analytical study of a screw compressor operation under unsteady conditions has been carried out. For this purpose a one dimensional model of the processes within a screw compressor based on the differential equations of conservation of ...

  17. Radiographic study of the fifth metatarsal for optimal intramedullary screw fixation of Jones fracture.

    Science.gov (United States)

    Ochenjele, George; Ho, Bryant; Switaj, Paul J; Fuchs, Daniel; Goyal, Nitin; Kadakia, Anish R

    2015-03-01

    Jones fractures occur in the relatively avascular metadiaphyseal junction of the fifth metatarsal (MT), which predisposes these fractures to delayed union and nonunion. Operative treatment with intramedullary (IM) screw fixation is recommended in certain cases. Incorrect screw selection can lead to refractures, nonunion, and cortical blowout fractures. A better understanding of the anatomy of the fifth MT could aid in preoperative planning, guide screw size selection, and minimize complications. We retrospectively identified foot computed tomographic (CT) scans of 119 patients that met inclusion criteria. Using interactive 3-dimensional (3-D) models, the following measurements were calculated: MT length, "straight segment length" (distance from the base of the MT to the shaft curvature), and canal diameter. The diaphysis had a lateroplantar curvature where the medullary canal began to taper. The average straight segment length was 52 mm, and corresponded to 68% of the overall length of the MT from its proximal end. The medullary canal cross-section was elliptical rather than circular, with widest width in the sagittal plane and narrowest in coronal plane. The average coronal canal diameter at the isthmus was 5.0 mm. A coronal diameter greater than 4.5 mm at the isthmus was present in 81% of males and 74% of females. To our knowledge, this is the first anatomic description of the fifth metatarsal based on 3-D imaging. Excessive screw length could be avoided by keeping screw length less than 68% of the length of the fifth metatarsal. A greater than 4.5 mm diameter screw might be needed to provide adequate fixation for most study patients since the isthmus of the medullary canal for most were greater than 4.5 mm. Our results provide an improved understanding of the fifth metatarsal anatomy to guide screw diameter and length selection to maximize screw fixation and minimize complications. © The Author(s) 2014.

  18. Cervical pedicle screw fixation at C6 and C7 A cadaveric study

    Directory of Open Access Journals (Sweden)

    Ye Li

    2015-01-01

    Conclusion: The intersection of the horizontal line through the midpoint of the transverse process root and vertical line through the intersection of the posterolateral and posterior planes of the isthmus can be used as an entry point for C6 and C7 pedicle screw fixation. The screws should be inserted at 60 or 90° with the posterolateral isthmus in the horizontal plane and at 75° with the posterior isthmus in the sagittal plane. The LSC should not exceed 30 mm.

  19. Lag screw stabilization of a cervical vertebral fracture by use of computed tomography in a horse

    International Nuclear Information System (INIS)

    Barnes, H.G.; Tucker, R.L.; Grant, B.D.; Roberts, G.D.; Prades, M.

    1995-01-01

    A traumatic fracture of C2 was diagnosed radiographically in a 1-year-old German Warm-blood stallion. Fracture configuration was difficult to see on survey radiographs. Computed tomography yielded a more accurate assessment of the fracture and facilitated fracture repair with cortical lag screws. Precise screw placement, to avoid spinal cord damage, was obtained by use of computed tomography. Follow-up radiography revealed normal bone healing, and the horse was in dressage schooling 24 months after surgery

  20. Design of Cold-Formed Steel Screw Connections with Gypsum Sheathing at Ambient and Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-09-01

    Full Text Available Load-bearing cold-formed steel (CFS walls sheathed with double layers of gypsum plasterboard on both sides have demonstrated good fire resistance and attracted increasing interest for use in mid-rise CFS structures. As the main connection method, screw connections between CFS and gypsum sheathing play an important role in both the structural design and fire resistance of this wall system. However, studies on the mechanical behavior of screw connections with double-layer gypsum sheathing are still limited. In this study, 200 monotonic tests of screw connections with single- or double-layer gypsum sheathing at both ambient and elevated temperatures were conducted. The failure of screw connections with double-layer gypsum sheathing in shear was different from that of single-layer gypsum sheathing connections at ambient temperature, and it could be described as the breaking of the loaded sheathing edge combined with significant screw tilting and the loaded sheathing edge flexing fracture. However, the screw tilting and flexing fracture of the loaded sheathing edge gradually disappear at elevated temperatures. In addition, the influence of the loaded edge distance, double-layer sheathing and elevated temperatures is discussed in detail with clear conclusions. A unified design formula for the shear strength of screw connections with gypsum sheathing is proposed for ambient and elevated temperatures with adequate accuracy. A simplified load–displacement model with the post-peak branch is developed to evaluate the load–displacement response of screw connections with gypsum sheathing at ambient and elevated temperatures.

  1. Comparison of low density and high density pedicle screw instrumentation in Lenke 1 adolescent idiopathic scoliosis.

    Science.gov (United States)

    Shen, Mingkui; Jiang, Honghui; Luo, Ming; Wang, Wengang; Li, Ning; Wang, Lulu; Xia, Lei

    2017-08-02

    The correlation between implant density and deformity correction has not yet led to a precise conclusion in adolescent idiopathic scoliosis (AIS). The aim of this study was to evaluate the effects of low density (LD) and high density (HD) pedicle screw instrumentation in terms of the clinical, radiological and Scoliosis Research Society (SRS)-22 outcomes in Lenke 1 AIS. We retrospectively reviewed 62 consecutive Lenke 1 AIS patients who underwent posterior spinal arthrodesis using all-pedicle screw instrumentation with a minimum follow-up of 24 months. The implant density was defined as the number of screws per spinal level fused. Patients were then divided into two groups according to the average implant density for the entire study. The LD group (n = 28) had fewer than 1.61 screws per level, while the HD group (n = 34) had more than 1.61 screws per level. The radiographs were analysed preoperatively, postoperatively and at final follow-up. The perioperative and SRS-22 outcomes were also assessed. Independent sample t tests were used between the two groups. Comparisons between the two groups showed no significant differences in the correction of the main thoracic curve and thoracic kyphosis, blood transfusion, hospital stay, and SRS-22 scores. Compared with the HD group, there was a decreased operating time (278.4 vs. 331.0 min, p = 0.004) and decreased blood loss (823.6 vs. 1010.9 ml, p = 0.048), pedicle screws needed (15.1 vs. 19.6, p density and high density pedicle screw instrumentation achieved satisfactory deformity correction in Lenke 1 AIS patients. However, the operating time and blood loss were reduced, and the implant costs were decreased with the use of low screw density constructs.

  2. Effectiveness of the Thoracic Pedicle Screw Placement Using the Virtual Surgical Training System: A Cadaver Study.

    Science.gov (United States)

    Hou, Yang; Lin, Yanping; Shi, Jiangang; Chen, Huajiang; Yuan, Wen

    2018-03-14

    The virtual simulation surgery has initially exhibited its promising potentials in neurosurgery training. To evaluate effectiveness of the Virtual Surgical Training System (VSTS) on novice residents placing thoracic pedicle screws in a cadaver study. A total of 10 inexperienced residents participated in this study and were randomly assigned to 2 groups. The group using VSTS to learn thoracic pedicle screw fixation was the simulation training (ST) group and the group receiving an introductory teaching session was the control group. Ten fresh adult spine specimens including 6 males and 4 females with a mean age of 58.5 yr (range: 33-72) were collected and randomly allocated to the 2 groups. After exposing anatomic structures of thoracic spine, the bilateral pedicle screw placement of T6-T12 was performed on each cadaver specimen. The postoperative computed tomography scan was performed on each spine specimen, and experienced observers independently reviewed the placement of the pedicle screws to assess the incidence of pedicle breach. The screw penetration rates of the ST group (7.14%) was significantly lower in comparison to the control group (30%, P < .05). Statistically significant difference in acceptable rates of screws also occurred between the ST (100%) and control (92.86%) group (P < .05). In addition, the average screw penetration distance in control group (2.37 mm ± 0.23 mm) was significantly greater than ST group (1.23 mm ± 0.56 mm, P < .05). The virtual reality surgical training of thoracic pedicle screw instrumentation effectively improves surgical performance of novice residents compared to those with traditional teaching method, and can help new beginners to master the surgical technique within shortest period of time.

  3. Chitosan-coated Stainless Steel Screws for Fixation in Contaminated Fractures

    OpenAIRE

    Greene, Alex H.; Bumgardner, Joel D.; Yang, Yunzhi; Moseley, Jon; Haggard, Warren O.

    2008-01-01

    Stainless steel screws and other internal fixation devices are used routinely to stabilize bacteria-contaminated bone fractures from multiple injury mechanisms. In this preliminary study, we hypothesize that a chitosan coating either unloaded or loaded with an antibiotic, gentamicin, could lessen or prevent these devices from becoming an initial nidus for infection. The questions investigated for this hypothesis were: (1) how much of the sterilized coating remains on the screw with simulated ...

  4. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  5. Control of influence of a thread on a bending of screws

    International Nuclear Information System (INIS)

    Proskuriakov, N E; Lopa, I V; Trapeznikov, E V

    2017-01-01

    The influence of the threads and the bending of screw on their moments of inertia of the cross section considered. This problem is actual since existing methods exclude from calculations the influence of supporting the thread, using as the basic geometrical parameter such as the internal diameter of the thread (diameter of cavities). Fundamental difference of a bend of the screw from a bend of a smooth rod consists that moment of inertia of the screw is a variable. It is shown that the change in cross-section moment of inertia along the length of the screw are essential and have periodic character. Analytical interrelation of the bending of the screw and the decreasing of moment of inertia of its cross section is established and equation describing this phenomenon is suggested. The greatest decrease of the moment of inertia occurs in the middle of the screw length, and the lowest - at its ends. Function and approximate coefficients for the main types of thread are proposed, which take into account this change. (paper)

  6. Research on energy conversion mechanism of a screw centrifugal pump under the water

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Han, W; Cheng, X R; Shen, Z J; Su, Q M

    2013-01-01

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase

  7. Posterior pelvic ring fractures: Closed reduction and perc