WorldWideScience

Sample records for screw defective material

  1. Removal torque of nail interlocking screws is related to screw proximity to the fracture and screw breakage.

    Science.gov (United States)

    White, Alexander A; Kubacki, Meghan R; Samona, Jason; Telehowski, Paul; Atkinson, Patrick J

    2016-06-01

    Studies have shown that titanium implants can be challenging to explant due to the material's excellent biocompatibility and resulting osseointegration. Clinically, titanium alloy nail interlocking screws may require removal to dynamize a construct or revise the nail due to nonunion, infection, pain, or periprosthetic fracture. This study was designed to determine what variables influence the removal torque for titanium alloy interlocking screws. An intramedullary nail with four interlocking screws was used to stabilize a 1-cm segmental femoral defect in a canine model for 16 weeks. The animals were observed to be active following a several-day recovery after surgery. In six animals, the femora and implanted nail/screws were first tested to failure in torsion to simulate periprosthetic fracture of an implant after which the screws were then removed. In four additional animals, the screws were removed without mechanical testing. Both intraoperative insertional and extraction torques were recorded for all screws. Mechanical testing to failure broke 10/24 screws. On average, the intact screws required 70% of the insertional torque during removal while broken screws only required 16% of the insertional torque (p torque than the outboard distal screw (p torque was ∼80°. The peak axial load did not significantly correlate with the torque required to remove the screws. On average, the removal torque was lower than at the time of insertion, and less torque was required to remove broken screws and screws remote to the fracture. However, broken screws will require additional time to retrieve the remaining screw fragment. This study suggests that broken screws and screws in prematurely active patients will require less torque to remove. © IMechE 2016.

  2. Analysis of Material Flow in Screw Extrusion of Aluminum

    International Nuclear Information System (INIS)

    Haugen, Bjoern; Oernskar, Magnus; Welo, Torgeir; Wideroee, Fredrik

    2010-01-01

    Screw extrusion of aluminum is a new process for production of aluminum profiles. The commercial potential could be large. Little experimental and numerical work has been done with respect to this process.The material flow of hot aluminum in a screw extruder has been analyzed using finite element formulations for the non-Newtonian Navier-Stokes equations. Aluminum material properties are modeled using the Zener-Holloman material model. Effects of stick-slip conditions are investigated with respect to pressure build up and mixing quality of the extrusion process.The numerical results are compared with physical experiments using an experimental screw extruder.

  3. A complete absorption mechanism of stacking fault tetrahedron by screw dislocation in copper

    International Nuclear Information System (INIS)

    Fan, Haidong; Wang, Qingyuan

    2013-01-01

    It was frequently observed in experiments that stacking fault tetrahedron (SFT) can be completely absorbed by dislocation and generate defect-free channels in irradiated materials, but the mechanism is still open. In this paper, molecular dynamics (MD) was used to explore the dislocation mechanism of reaction between SFT and screw dislocation in copper. Our computational results reveal that, at high temperature, the SFT is completely absorbed by screw dislocation with the help of Lomer–Cottrell (LC) lock transforming into Lomer dislocation. This complete absorption mechanism is very helpful to understand the defect-free channels in irradiated materials

  4. Parametric analysis and design of a screw extruder for slightly non-Newtonian (pseudoplastic materials

    Directory of Open Access Journals (Sweden)

    J.I. Orisaleye

    2018-04-01

    Full Text Available Extruders have found application in the food, polymer and pharmaceutical industries. Rheological characteristics of materials are important in the specification of design parameters of screw extruders. Biopolymers, which consist of proteins, nucleic acids and polysaccharides, are shear-thinning (pseudoplastic within normal operating ranges. However, analytical models to predict and design screw extruders for non-Newtonian pseudoplastic materials are rare. In this study, an analytical model suitable to design a screw extruder for slightly non-Newtonian materials was developed. The model was used to predict the performance of the screw extruder while processing materials with power law indices slightly deviating from unity (the Newtonian case. Using non-dimensional analysis, the effects of design and operational parameters were investigated. Expressions to determine the optimum channel depth and helix angle were also derived. The model is capable of predicting the performance of the screw extruder within the range of power law indices considered (1/2⩽n⩽1. The power law index influences the choice of optimum channel depth and helix angle of the screw extruder. Keywords: Screw extruder, Slightly non-Newtonian, Shear-thinning, Pseudoplastic, Biopolymer, Power law

  5. Pedicle screw anchorage of carbon fiber-reinforced PEEK screws under cyclic loading.

    Science.gov (United States)

    Lindtner, Richard A; Schmid, Rene; Nydegger, Thomas; Konschake, Marko; Schmoelz, Werner

    2018-03-01

    Pedicle screw loosening is a common and significant complication after posterior spinal instrumentation, particularly in osteoporosis. Radiolucent carbon fiber-reinforced polyetheretherketone (CF/PEEK) pedicle screws have been developed recently to overcome drawbacks of conventional metallic screws, such as metal-induced imaging artifacts and interference with postoperative radiotherapy. Beyond radiolucency, CF/PEEK may also be advantageous over standard titanium in terms of pedicle screw loosening due to its unique material properties. However, screw anchorage and loosening of CF/PEEK pedicle screws have not been evaluated yet. The aim of this biomechanical study therefore was to evaluate whether the use of this alternative nonmetallic pedicle screw material affects screw loosening. The hypotheses tested were that (1) nonmetallic CF/PEEK pedicle screws resist an equal or higher number of load cycles until loosening than standard titanium screws and that (2) PMMA cement augmentation further increases the number of load cycles until loosening of CF/PEEK screws. In the first part of the study, left and right pedicles of ten cadaveric lumbar vertebrae (BMD 70.8 mg/cm 3  ± 14.5) were randomly instrumented with either CF/PEEK or standard titanium pedicle screws. In the second part, left and right pedicles of ten vertebrae (BMD 56.3 mg/cm 3  ± 15.8) were randomly instrumented with either PMMA-augmented or nonaugmented CF/PEEK pedicle screws. Each pedicle screw was subjected to cyclic cranio-caudal loading (initial load ranging from - 50 N to + 50 N) with stepwise increasing compressive loads (5 N every 100 cycles) until loosening or a maximum of 10,000 cycles. Angular screw motion ("screw toggling") within the vertebra was measured with a 3D motion analysis system every 100 cycles and by stress fluoroscopy every 500 cycles. The nonmetallic CF/PEEK pedicle screws resisted a similar number of load cycles until loosening as the contralateral standard

  6. Inspection and replacement of baffle assembly screws inside American reactor vessels

    International Nuclear Information System (INIS)

    Neal, K.; Chaumont, J.C.

    1999-01-01

    The baffle assembly inside the vessel of a 900 MWe reactor designed by Framatome, is made up of 44 plates fixed on 8 horizontal supports by a system of about 1000 screws. These plates undergo high neutron flux and the problem of screw cracking appeared at the end of the eighties in the first-generation reactors. The first operation on a large scale concerning the screws of a Westinghouse type reactor, was performed on the Tihange-1 power plant where Framatome controlled 960 screws and replaced 91. In 1997 as a consequence of the Belgian and French feedback experience, American plant operators launched a vast program of preventive actions: material analysis, inspection of baffle plate screws and replacement of defective screws. This program was held in cooperation with EPRI (electric power research institute) and under the control of NRC (nuclear regulatory commission). Framatome Technologies Inc (FTI) was in charge of the in-situ inspection and replacement of the screws. FTI designed special tools and equipment adapted to the 2-loop American reactors but the basis ideas were those applied on the Tihange reactor. The successful experience of FTI has allowed the firm to be commissioned for 6 2-loops American reactors. (A.C.)

  7. Comparative study of two materials for dynamic hip screw during fall and gait loading: titanium alloy and stainless steel.

    Science.gov (United States)

    Taheri, Nooshin S; Blicblau, Aaron S; Singh, Manmohan

    2011-11-01

    Internal fixation with dynamic hip screw is a choice of treatment for hip fractures to stabilize a femoral fracture. Choosing the proper implant and its material has a great effect on the healing process and failure prevention. The purpose of this analysis was to assess biomechanical behavior of dynamic hip screw with two different materials implanted in the femur during fall and gait. A 3D finite element model of an intact femur and a 3D implant within the same femur were developed. A finite element analysis was carried out to establish the effect of load conditions and implant material properties on biomechanical behavior of the dynamic hip screw after internal fixation. Two load configurations are chosen: one simulating the stance phase of the normal gait cycle, and the other replicating a low-energy fall. The implanted femur was investigated with two different materials for the dynamic hip screw: stainless steel and titanium alloy. During stance, more stress is placed on the implanted femur compared with the intact femur. During a fall, the implanted femur is in a greater state of stress, which mostly occurs inside the dynamic hip screw. Titanium alloy decreases stress levels by an average of 40% compared with stainless steel. However, deformation is slightly reduced with a stainless steel dynamic hip screw during both load cases. After internal fixation, dynamic hip screw generates greater stresses within the implanted femur compared with the intact femur under the same loading conditions. A titanium alloy implant appears to undergo less stress from a low-energy fall compared with stainless steel and can be considered the preferred implant material. The critical parts of the dynamic hip screw are the forth distal screw and the plate.

  8. Development of load calculation techniques on screw and screw press energy consumption

    OpenAIRE

    Татарьянц, Максим Сергеевич; Завинский, Сергей Иванович; Трошин, Алексей Георгиевич

    2015-01-01

    The process of pressing of wood chips in screw machines is researched. It is defined processes taking place in different parts of the screw, formulas allowing to calculate the loads acting on the screw flights, as well as to determine the power required for compression. The unit costs of energy consumption and raw materials in the degree of heat pressing are determined

  9. Measurement of defects in carbon fiber reinforced polymer drilled

    Directory of Open Access Journals (Sweden)

    Pascual Víctor

    2017-01-01

    Full Text Available Increasingly, fiber-reinforced materials are more widely used because of their good mechanical properties. It is usual to join pieces of these materials through screws and rivets, for which it is necessary to make a hole in the piece, usually by drilling. One of the problems of use CFRP resides in the appearance of defects due to the machining. The main defect to be taken into account is the delamination. Delamination implies poor tolerance when assembling parts, reducing the structural integrity of the part, and areas with high wear, as a series of stresses arise when mounting the screws. Much has been published about delamination and the factors that influence its appearance, so we are not going to focus on it. The present study aims to quantify and measure the defects associated with the drilling of compounds reinforced with carbon fibers, in relation to the cutting parameters used in each case. For this purpose, an optical measurement system and a posterior digital image processing will be used through Deltec Vision software.

  10. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  11. [Open double-row rotator cuff repair using the LASA-DR screw].

    Science.gov (United States)

    Schoch, C; Geyer, S; Geyer, M

    2016-02-01

    Safe and cost-effective rotator-cuff repair. All types of rotator cuff lesions. Frozen shoulder, rotator cuff mass defect, defect arthropathy. Extensive four-point fixation on the bony footprint is performed using the double-row lateral augmentation screw anchor (LASA-DR) with high biomechanical stability. Following mobilization of the tendons, these are refixed in the desired configuration first medially and then laterally. To this end, two drilling channels (footprint and lateral tubercle) are created for each screw. Using the shuttle technique, a suture anchor screw is reinforced with up to four pairs of threads. The medial row is then pierced and tied, and the sutures that have been left long are tied laterally around the screw heads (double row). 4 Weeks abduction pillow, resulting in passive physiotherapy, followed by initiation of active assisted physiotherapy. Full weight-bearing after 4-6 months. Prospective analysis of 35 consecutive Bateman-III lesions with excellent results and low rerupture rate (6%).

  12. In vitro evaluation of force-expansion characteristics in a newly designed orthodontic expansion screw compared to conventional screws

    Directory of Open Access Journals (Sweden)

    Oshagh Morteza

    2009-01-01

    Full Text Available Objective : Expansion screws like Hyrax, Haas and other types, produce heavy interrupted forces which are unfavorable for dental movement and could be harmful to the tooth and periodontium. The other disadvantage of these screws is the need for patient cooperation for their regular activation. The purpose of this study was to design a screw and compare its force- expansion curve with other types. Materials and Methods : A new screw was designed and fabricated in the same dimension, with conventional types, with the ability of 8 mm expansion (Free wire length: 12 mm, initial compression: 4.5 mm, spring wire diameter: 0.4 mm, spring diameter: 3 mm, number of the coils: n0 ine, material: s0 tainless steel. In this in vitro study, the new screw was placed in an acrylic orthodontic appliance, and after mounting on a stone cast, the force-expansion curve was evaluated by a compression test machine and compared to other screws. Results : Force-expansion curve of designed screw had a flatter inclination compared to other screws. Generally it produced a light continuous force (two to 3.5 pounds for every 4 mm of expansion. Conclusion : In comparison with heavy and interrupted forces of other screws, the newly designed screw created light and continuous forces.

  13. Clinical results and functional outcomes after direct intralaminar screw repair of spondylolysis.

    Science.gov (United States)

    Menga, Emmanuel N; Kebaish, Khaled M; Jain, Amit; Carrino, John A; Sponseller, Paul D

    2014-01-01

    Prospective analysis. Our objective was to analyze clinical and functional results of patients with spondylolysis treated via direct intralaminar screw fixation and autograft, a minimally invasive and motion-preserving surgery. Spondylolysis is usually treated nonoperatively; multiple surgical techniques are available when nonoperative measures fail. No studies evaluate the clinical and functional outcomes and their correlation with pars defect size and disc morphology on magnetic resonance imaging. We reviewed patients with spondylolysis treated with intralaminar screw fixation and bone grafting from 2000 through 2010. Of the 31 patients (mean age, 16 yr; range, 10-37 yr), 25 (81%) were competitive athletes. Preoperative computed tomographic scans were used to measure the pars defect size, and preoperative magnetic resonance images were graded using Pfirrmann classification for correlation with postoperative outcomes. Student t test was used for analysis (significance, P spondylolysis repair for persistent pain starting 18 months after intralaminar screw fixation, 2 patients sustained unilateral intralaminar screw fractures at L5, and 1 patient required irrigation and debridement for a superficial postoperative infection. There was no correlation among preoperative magnetic resonance imaging disc morphology, defect size on computed tomography, patient age, and clinical outcomes. Direct repair of spondylolysis with intralaminar screws offers a low profile, reliable treatment with good functional outcome and a low complication rate in active patients. 4.

  14. Chirality-controlled crystallization via screw dislocations.

    Science.gov (United States)

    Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric

    2018-04-11

    Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.

  15. Experimental analysis of the material degradation of PET on a co-rotating twin-screw extruder for varying vacuum pressures

    International Nuclear Information System (INIS)

    Herken, T.; Fecke, N.; Schöppner, V.

    2015-01-01

    Plastics, starting from inexpensive mass-produced articles to technical high-end applications, are being used in ever more areas of life. The main drivers are their flexible product properties and the resultant broad application possibilities. To be able to offer plastic products inexpensively and conserve the environment at the same time, more and more attention is being paid to plastics recycling. Polyethylene terephthalate – in short PET – is of particular significance here because of its frequent application in the film and packaging industry and its special material properties. The recycling of PET, however, can only be carried out a limited number of times because it’s processing necessarily results in both thermal and mechanical stresses on the material. This is the basis for the reactions at molecular level, which result in a shortening of the molecule chains (material degradation) and exert a negative effect on the product properties. The aim of this study is to identify the factors that influence the material degradation of PET in twin-screw extrusion. To do this, various screw configurations and different speed and throughput conditions are examined in a series of experiments. Furthermore, material specimens are removed along the length of the screw in order to evaluate the influence of individual screw sections. By determining the intrinsic viscosity of the specimens, it is possible to measure the mean molecular weight and thus the material damage. Based on the test results, guidelines are drawn up for the compounding of PET so as to ensure as little damage as possible to the material

  16. Experimental analysis of the material degradation of PET on a co-rotating twin-screw extruder for varying vacuum pressures

    Science.gov (United States)

    Herken, T.; Fecke, N.; Schöppner, V.

    2015-05-01

    Plastics, starting from inexpensive mass-produced articles to technical high-end applications, are being used in ever more areas of life. The main drivers are their flexible product properties and the resultant broad application possibilities. To be able to offer plastic products inexpensively and conserve the environment at the same time, more and more attention is being paid to plastics recycling. Polyethylene terephthalate - in short PET - is of particular significance here because of its frequent application in the film and packaging industry and its special material properties. The recycling of PET, however, can only be carried out a limited number of times because it's processing necessarily results in both thermal and mechanical stresses on the material. This is the basis for the reactions at molecular level, which result in a shortening of the molecule chains (material degradation) and exert a negative effect on the product properties. The aim of this study is to identify the factors that influence the material degradation of PET in twin-screw extrusion. To do this, various screw configurations and different speed and throughput conditions are examined in a series of experiments. Furthermore, material specimens are removed along the length of the screw in order to evaluate the influence of individual screw sections. By determining the intrinsic viscosity of the specimens, it is possible to measure the mean molecular weight and thus the material damage. Based on the test results, guidelines are drawn up for the compounding of PET so as to ensure as little damage as possible to the material.

  17. Experimental analysis of the material degradation of PET on a co-rotating twin-screw extruder for varying vacuum pressures

    Energy Technology Data Exchange (ETDEWEB)

    Herken, T.; Fecke, N.; Schöppner, V., E-mail: Tobias.Herken@ktp.uni-paderborn.de, E-mail: Nikolas.Fecke@ktp.uni-paderborn.de, E-mail: Volker.Schoeppner@ktp.uni-paderborn.de [KTP, University of Paderborn (Germany)

    2015-05-22

    Plastics, starting from inexpensive mass-produced articles to technical high-end applications, are being used in ever more areas of life. The main drivers are their flexible product properties and the resultant broad application possibilities. To be able to offer plastic products inexpensively and conserve the environment at the same time, more and more attention is being paid to plastics recycling. Polyethylene terephthalate – in short PET – is of particular significance here because of its frequent application in the film and packaging industry and its special material properties. The recycling of PET, however, can only be carried out a limited number of times because it’s processing necessarily results in both thermal and mechanical stresses on the material. This is the basis for the reactions at molecular level, which result in a shortening of the molecule chains (material degradation) and exert a negative effect on the product properties. The aim of this study is to identify the factors that influence the material degradation of PET in twin-screw extrusion. To do this, various screw configurations and different speed and throughput conditions are examined in a series of experiments. Furthermore, material specimens are removed along the length of the screw in order to evaluate the influence of individual screw sections. By determining the intrinsic viscosity of the specimens, it is possible to measure the mean molecular weight and thus the material damage. Based on the test results, guidelines are drawn up for the compounding of PET so as to ensure as little damage as possible to the material.

  18. Internal bone transport using a cannulated screw as a mounting device in the treatment of a post-infective ulnar defect.

    Science.gov (United States)

    Tsitskaris, Konstantinos; Havard, Heledd; Bijlsma, Paulien; Hill, Robert A

    2016-04-01

    Bone transport techniques can be used to address the segmental bone loss occurring after debridement for infection. Secure fixation of the bone transport construct to the bone transport segment can be challenging, particularly if the bone is small and osteopenic. We report a case of a segmental ulnar bone defect in a young child treated with internal bone transport using a cannulated screw as the mounting device. We found this technique particularly useful in the treatment of bone loss secondary to infection, where previous treatment and prolonged immobilisation had led to osteopenia. This technique has not been previously reported.

  19. Influence of Diamondlike Carbon Coating of Screws on Axial Tightening Force and Stress Distribution on Overdenture Bar Frameworks with Different Fit Levels and Materials.

    Science.gov (United States)

    dos Santos, Mateus Bertolini Fernandes; Bacchi, Atais; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço

    2015-01-01

    The aim of this study was to evaluate the axial tightening force applied by conventional and diamondlike carbon (DLC)-coated screws and to verify, through three-dimensional finite element analysis (FEA), the stress distribution caused by different framework materials and prosthetic screws in overdenture frameworks with different misfit levels. The axial tightening force applied by the screw was evaluated by means of a titanium matrix connected to a load cell. Conventional titanium or DLC-coated screws were tightened with a digital torque wrench, and the load values were recorded. The values were applied in an FEA to a bar-clip attachment system connected to two 4.0 × 11-mm external-hexagon titanium implants placed in an anterior edentulous arch. DLC-coated and conventional screws were modeled with their respective axial forces obtained on the experimental evaluation for three bar framework materials (titanium, nickel-chromium, and cobalt-chromium) and three levels of misfit (100, 150, and 200 μm). Von Mises stresses for prosthetic components and maximum principal stress and microstrains (maximum principal strains) for bone tissue were measured. The mean force applied by the conventional screw was 25.55 N (± 1.78); the prosthetic screw coated with a DLC layer applied a mean force of 31.44 N (± 2.11), a statistically significant difference. In the FEA, the DLC screw led to higher stresses on the framework; however, the prosthetic screw suffered lower stress. No influence of screw type was seen in the bone tissue. Titanium frameworks reduced the stress transmitted to the bone tissue and the bar framework but had no influence on the screws. Higher misfit values resulted in an increased stress/strain in bone tissue and bar framework, which was not the case for retention screws.

  20. Characterization of the structure and chemistry of defects in materials

    International Nuclear Information System (INIS)

    Larson, B.C.; Ruehle, M.; Seidman, D.N.

    1988-01-01

    Research programs, presented at the materials research symposium, on defects in materials are presented. Major areas include: point defects, defect aggregates, and ordering; defects in non-metals and semiconductors; atomic resolution imaging of defects; and gain boundaries, interfaces, and layered materials. Individual projects are processed separately for the data bases

  1. Defect kinetics in novel detector materials

    CERN Document Server

    MacEvoy, B C

    2000-01-01

    Silicon particle detectors will be used extensively in experiments at the CERN Large Hadron Collider, where unprecedented particle fluences will cause significant atomic displacement damage. We present a model of the evolution of defect concentrations and consequent electrical behaviour in "novel" detector materials with various oxygen and carbon impurity concentrations. The divacancy-oxygen (V/sub 2/O) defect is identified as the cause of changes in device characteristics during /sup 60/Co gamma irradiation. In the case of hadron irradiation changes in detector doping concentration (N/sub eff/) are dominated by cluster defects, in particular the divacancy (V/sub 2/), which exchange charge directly via a non-Shockley-Read- Hall mechanism. The V/sub 2/O defect also contributes to Ne/sub eff/. This defect is more copiously produced during 24 GeV/c proton irradiation than during 1 MeV neutron irradiation on account of the higher vacancy introduction rate, hence the radiation hardness of materials is more sensiti...

  2. Vertical-Screw-Auger Conveyer Feeder

    Science.gov (United States)

    Walton, Otis (Inventor); Vollmer, Hubert J. (Inventor)

    2016-01-01

    A conical feeder is attached to a vertically conveying screw auger. The feeder is equipped with scoops and rotated from the surface to force-feed regolith the auger. Additional scoops are possible by adding a cylindrical section above the conical funnel section. Such then allows the unit to collect material from swaths larger in diameter than the enclosing casing pipe of the screw auger. A third element includes a flexible screw auger. All three can be used in combination in microgravity and zero atmosphere environments to drill and recover a wide area of subsurface regolith and entrained volatiles through a single access point on the surface.

  3. Atomistic simulation of ideal shear strength, point defects, and screw dislocations in bcc transition metals: Mo as a prototype

    International Nuclear Information System (INIS)

    Xu, W.; Moriarty, J.A.

    1996-01-01

    Using multi-ion interatomic potentials derived from first-principles generalized pseudopotential theory, we have studied ideal shear strength, point defects, and screw dislocations in the prototype bcc transition metal molybdenum (Mo). Many-body angular forces, which are important to the structural and mechanical properties of such central transition metals with partially filled d bands, are accounted for in the present theory through explicit three- and four-ion potentials. For the ideal shear strength of Mo, our computed results agree well with those predicted by full electronic-structure calculations. For point defects in Mo, our calculated vacancy-formation and activation energies are in excellent agreement with experimental results. The energetics of six self-interstitial configurations have also been investigated. The left-angle 110 right-angle split dumbbell interstitial is found to have the lowest formation energy, in agreement with the configuration found by x-ray diffuse scattering measurements. In ascending order, the sequence of energetically stable interstitials is predicted to be left-angle 110 right-angle split dumbbell, crowdion, left-angle 111 right-angle split dumbbell, tetrahedral site, left-angle 001 right-angle split dumbbell, and octahedral site. In addition, the migration paths for the left-angle 110 right-angle dumbbell self-interstitial have been studied. The migration energies are found to be 3 endash 15 times higher than previous theoretical estimates obtained using simple radial-force Finnis-Sinclair potentials. Finally, the atomic structure and energetics of left-angle 111 right-angle screw dislocations in Mo have been investigated. We have found that the so-called open-quote open-quote easy close-quote close-quote core configuration has a lower formation energy than the open-quote open-quote hard close-quote close-quote one, consistent with previous theoretical studies. (Abstract Truncated)

  4. Ball Screw Actuator Including a Compliant Ball Screw Stop

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)

    2017-01-01

    An actuator includes a ball nut, a ball screw, and a ball screw stop. The ball nut is adapted to receive an input torque and in response rotates and supplies a drive force. The ball screw extends through the ball nut and has a first end and a second end. The ball screw receives the drive force from the ball nut and in response selectively translates between a retract position and a extend position. The ball screw stop is mounted on the ball screw proximate the first end to translate therewith. The ball screw stop engages the ball nut when the ball screw is in the extend position, translates, with compliance, a predetermined distance toward the first end upon engaging the ball nut, and prevents further rotation of the ball screw upon translating the predetermined distance.

  5. Experimental study of the density distribution of the particles of the material in screw installation

    Directory of Open Access Journals (Sweden)

    Demidov S. F.

    2017-02-01

    Full Text Available the experimental studies of density distribution of the particles of a mixture of wheat, oats, rye to feed pigs by infrared heating at the time of stay and temperature at the exit of the installation. The purpose of the work is to study the quality of treatment of the product with the settings with the screw and the screw with installed round jumper on the pen of the screw. Screw installations with infrared emitters of selected wavelength give the opportunity for intense and continuous heat treatment process. The authors used the optimal parameters of the process with the screw and the screw with installed round jumper on the pen of the screw. The parameters of screw installation during the study were the following: the number of revolutions of the screw was 10 rpm, density of heat flux was 12 kW/m2, output capacity – 250 kg/h.

  6. Failure Diagnosis System for a Ball-Screw by Using Vibration Signals

    Directory of Open Access Journals (Sweden)

    Won Gi Lee

    2015-01-01

    Full Text Available Recently, in order to reduce high maintenance costs and to increase operating ratio in manufacturing systems, condition-based maintenance (CBM has been developed. CBM is carried out with indicators, which show equipment’s faults and performance deterioration. In this study, indicator signal acquisition and condition monitoring are applied to a ball-screw-driven stage. Although ball-screw is a typical linearly reciprocating part and is widely used in industry, it has not gained attention to be diagnosed compared to rotating parts such as motor, pump, and bearing. First, the vibration-based monitoring method, which uses vibration signal to monitor the condition of a machine, is proposed. Second, Wavelet transform is used to analyze the defect signals in time-frequency domain. Finally, the failure diagnosis system is developed using the analysis, and then its performance is evaluated. Using the system, we estimated the severity of failure and detect the defect position. The low defect frequency (≈58.7 Hz is spread all over the time in the Wavelet-filtered signal with low frequency range. Its amplitude reflects the progress of defect. The defect position was found in the signal with high frequency range (768~1,536 Hz. It was detected from the interval between abrupt changes of signal.

  7. Minimal access direct spondylolysis repair using a pedicle screw-rod system: a case series

    Directory of Open Access Journals (Sweden)

    Mohi Eldin Mohamed

    2012-11-01

    Full Text Available Abstract Introduction Symptomatic spondylolysis is always challenging to treat because the pars defect causing the instability needs to be stabilized while segmental fusion needs to be avoided. Direct repair of the pars defect is ideal in cases of spondylolysis in which posterior decompression is not necessary. We report clinical results using segmental pedicle-screw-rod fixation with bone grafting in patients with symptomatic spondylolysis, a modification of a technique first reported by Tokuhashi and Matsuzaki in 1996. We also describe the surgical technique, assess the fusion and analyze the outcomes of patients. Case presentation At Cairo University Hospital, eight out of twelve Egyptian patients’ acute pars fractures healed after conservative management. Of those, two young male patients underwent an operative procedure for chronic low back pain secondary to pars defect. Case one was a 25-year-old Egyptian man who presented with a one-year history of axial low back pain, not radiating to the lower limbs, after falling from height. Case two was a 29-year-old Egyptian man who presented with a one-year history of axial low back pain and a one-year history of mild claudication and infrequent radiation to the leg, never below the knee. Utilizing a standardized mini-access fluoroscopically-guided surgical protocol, fixation was established with two titanium pedicle screws place into both pedicles, at the same level as the pars defect, without violating the facet joint. The cleaned pars defect was grafted; a curved titanium rod was then passed under the base of the spinous process of the affected vertebra, bridging the loose fragment, and attached to the pedicle screw heads, to uplift the spinal process, followed by compression of the defect. The patients were discharged three days after the procedure, with successful fusion at one-year follow-up. No rod breakage or implant-related complications were reported. Conclusions Where there is no

  8. A demonstration of applying ATS thermal screw technology to the processing of separated construction and other waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.; Golan, A.; Bosschieter, H.A.

    1991-06-01

    A demonstration was carried out by Spider Recycling, a waste haulage company, to determine how to sort, process and recycle or reuse waste disposed of by the company, using a new processing system based on the ATS thermal screw press technology. Selected loads of waste totalling one thousand tonnes from construction, sawmill, landscape and tire industries located around greater Toronto were delivered to a pilot separation and processing site and separated into piles of similar material such as wood, drywall and tires. The separated piles were drawn on as feedstock for processing through the ATS thermal screw press system to produce useable forms of product and raw material. The applications included: turning wood waste into firelogs or wood fuel; yard waste into mulch; waste drywall into gypsum powder; tires into crumb rubber; asphalt shingles into a bitumix; and mixed garbage into densified logs or flakes. Wide ranges of throughput were found depending on the material processed, material size, density, moisture content and model of the ATS thermal screw press used. It was shown that it is practical to separate selected wastes from industry and process them with the ATS machine, and that the system could probably offer recycling and reuse solutions to separable waste where product markets are available and in some cases where the operation could collect the estimated $100/tonne tipping fees available in southern Ontario. 37 figs., 20 tabs.

  9. Evaluation of the Effect of Fixation Angle between Polyaxial Pedicle Screw Head and Rod on the Failure of Screw-Rod Connection

    Directory of Open Access Journals (Sweden)

    Engin Çetin

    2015-01-01

    Full Text Available Introduction. Polyaxial screws had been only tested according to the ASTM standards (when they were perpendicularly positioned to the rod. In this study, effects of the pedicle screws angled fixation to the rod on the mechanical properties of fixation were investigated. Materials and Method. 30 vertically fixed screws and 30 screws fixed with angle were used in the study. Screws were used in three different diameters which were 6.5 mm, 7.0 mm, and 7.5 mm, in equal numbers. Axial pull-out and flexion moment tests were performed. Test results compared with each other using appropriate statistical methods. Results. In pull-out test, vertically fixed screws, in 6.5 mm and 7.0 mm diameter, had significantly higher maximum load values than angled fixed screws with the same diameters (P<0.01. Additionally, vertically fixed screws, in all diameters, had significantly greater stiffness according to corresponding size fixed with angle (P<0.005. Conclusion. Fixing the pedicle screw to the rod with angle significantly decreased the pull-out stiffness in all diameters. Similarly, pedicle screw instrumentation fixed with angle decreased the minimum sagittal angle between the rod and the screw in all diameters for flexion moment test but the differences were not significant.

  10. Insight into the effect of screw dislocations and oxygen vacancy defects on the optical nonlinear refraction response in chemically grown ZnO/Al2O3 films

    Science.gov (United States)

    Agrawal, Arpana; Saroj, Rajendra K.; Dar, Tanveer A.; Baraskar, Priyanka; Sen, Pratima; Dhar, Subhabrata

    2017-11-01

    We report the effect of screw dislocations and oxygen vacancy defects on the optical nonlinear refraction response of ZnO films grown on a sapphire substrate at various oxygen flow rates using the chemical vapor deposition technique. The nonlinear refraction response was investigated in the off-resonant regime using a CW He-Ne laser source to examine the role of the intermediate bandgap states. It has been observed that the structural defects strongly influence the optical nonlinearity in the off-resonant regime. Nonlinearity has been found to improve as the oxygen flow rate is lowered from 2 sccm to 0.3 sccm. From photoluminescence studies, we observe that the enhanced defect density of the electronic defect levels due to the increased concentration of structural defects (with the decrease in the oxygen flow rate) is responsible for this improved optical nonlinearity along with the thermal effect. This suggests that defect engineering is an effective way to tailor the nonlinearity of ZnO films and their utility for optoelectronic device applications.

  11. Defect Characterization of Pyroelectric Materials

    National Research Council Canada - National Science Library

    Keeble, David

    2002-01-01

    Two methods for identify point defects applicable to the study of technologically relevant pyroelectric oxide materials have been investigated, namely Positron Annihilation Lifetime Spectroscopy (PALS...

  12. Spondylolysis outcomes in adolescents after direct screw repair of the pars interarticularis.

    Science.gov (United States)

    Snyder, Laura A; Shufflebarger, Harry; O'Brien, Michael F; Thind, Harjot; Theodore, Nicholas; Kakarla, Udaya K

    2014-09-01

    Isthmic spondylolysis can significantly decrease functional abilities, especially in adolescent athletes. Although treatment can range from observation to surgery, direct screw placement through the fractured pars, or Buck's procedure, may be a more minimally invasive procedure than the more common pedicle screw-hook construct. Review of surgical databases identified 16 consecutive patients treated with Buck's procedure from 2004 to 2010. Twelve patients were treated at Miami Children's Hospital and 4 at Barrow Neurological Institute. Demographics and clinical and radiographic outcomes were recorded and analyzed retrospectively. The 16 patients had a median age of 16 years, and 14 were 20 years or younger at the time of treatment. Symptoms included axial back pain in 100% of patients with concomitant radiculopathy in 38%. Pars defects were bilateral in 81% and unilateral in 19% for a total of 29 pars defects treated using Buck's procedure. Autograft or allograft augmented with recombinant human bone morphogenetic protein as well as postoperative bracing was used in all cases. Postoperatively, symptoms resolved completely or partially in 15 patients (94%). Of 29 pars defects, healing was observed in 26 (89.6%) prior to 1 revision surgery, and an overall fusion rate of 97% was observed at last radiological follow-up. There were no implant failures. All 8 athletes in this group had returned to play at last follow-up. Direct screw repair of the pars interarticularis defect as described in this series may provide a more minimally invasive treatment of adolescent patients with satisfactory clinical and radiological outcomes, including return to play of adolescent athletes.

  13. The applicability of PEEK-based abutment screws.

    Science.gov (United States)

    Schwitalla, Andreas Dominik; Abou-Emara, Mohamed; Zimmermann, Tycho; Spintig, Tobias; Beuer, Florian; Lackmann, Justus; Müller, Wolf-Dieter

    2016-10-01

    The high-performance polymer PEEK (poly-ether-ether-ketone) is more and more being used in the field of dentistry, mainly for removable and fixed prostheses. In cases of screw-retained implant-supported reconstructions of PEEK, an abutment screw made of PEEK might be advantageous over a conventional metal screw due to its similar elasticity. Also in case of abutment screw fracture, a screw of PEEK could be removed more easily. M1.6-abutment screws of four different PEEK compounds were subjected to tensile tests to set their maximum tensile strengths in relation to an equivalent stress of 186MPa, which is aused by a tightening torque of 15Ncm. Two screw types were manufactured via injection molding and contained 15% short carbon fibers (sCF-15) and 40% (sCF-40), respectively. Two screw types were manufactured via milling and contained 20% TiO2 powder (TiO2-20) and >50% parallel orientated, continuous carbon fibers (cCF-50). A conventional abutments screw of Ti6Al4V (Ti; CAMLOG(®) abutment screw, CAMLOG, Wimsheim, Germany) served as control. The maximum tensile strength was 76.08±5.50MPa for TiO2-20, 152.67±15.83MPa for sCF-15, 157.29±20.11MPa for sCF-40 and 191.69±36.33MPa for cCF-50. The maximum tensile strength of the Ti-screws amounted 1196.29±21.4MPa. The results of the TiO2-20 and the Ti screws were significantly different from the results of the other samples, respectively. For the manufacturing of PEEK abutment screws, PEEK reinforced by >50% continuous carbon fibers would be the material of choice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Tightening techniques for the retaining screws of universal abutment

    Directory of Open Access Journals (Sweden)

    Alexandre Wittcinski REGALIN

    Full Text Available Abstract Purpose This study evaluated the torque maintenance of universal abutment retaining screws using different tightening techniques, and coated or uncoated screws. Material and method The screws were tightened to implants as following: Control – 32 Ncm torque; H20 – holding 32 Ncm torque for 20 s; R – 32 Ncm torque, repeated after 10 min (retorque; and H20+R – combining the two tightening techniques. Titanium and coated screws were also evaluated. Result Statistical analysis showed higher maintained torque for titanium screws (p<0.001. The H20+R technique showed the highest maintained torque (p=0.003, but the H20 technique’s maintained torque was similar. Conclusion Titanium screws associating the two tightening techniques can improve maintained torque.

  15. Conceptual design of ball-screw type control element drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Ho; Kim, Jong In; Huh, Hyung [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    In this report, the design features of ball-screw type CEDM with fine-step movement capability are described. The contents of this report are as follows: -Review of Design Requirements for Ball-screw type CEDM -System Description for Ball-screw type CEDM -Design of Ball Bearing and Ball-screw Assembly -Detail Design of Rotary Step Motor -Detail Design of Angular Position Indicator -Materials. The Ball-screw type CEDM described in this report is to be utilized as the starting point for design development of CEDM for SMART. 11 refs., 43 figs., 3 tabs. (Author)

  16. Strength evaluation of top nozzle holddown spring screw for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Koh, S. K.; Won, S. Y.; Ryu, C. H.; Kim, Y. J.; Lee, K. S.; Jeon, K. L.

    2002-01-01

    Holddown springs are required to maintain the nuclear fuel assembly in contact with lower core plate and permit thermal and irradiation-induced length changes. Therefore, the holddown spring screw must be designed such that it is capable of sustaining the loads imposed by the initial tensile preload and operational loads. Prior to assessing the structural integrity of the spring screw in the corrosive and irradiating environment throughout the design lifetime of the fuel assembly, the strength evaluation of screw was made in this paper using the mechanics of materials and finite element methods. Calculations based on the mechanics of materials, showed that the preloaded screw with an operating holddown force had a quite large margin of safety in strength. However, the elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Preloading on the screw applied for tightening had beneficial effects on the screw strength by reducing the stress level at the critical regions, compared to the screw without preload. Calculated spring deflection using the finite element analysis was in close agreement with the experimentally measured deflection

  17. Simple New Screw Insertion Technique without Extraction for Broken Pedicle Screws.

    Science.gov (United States)

    Kil, Jin-Sang; Park, Jong-Tae

    2018-05-01

    Spinal transpedicular screw fixation is widely performed. Broken pedicle screw rates range from 3%-7.1%. Several techniques have been described for extraction of broken pedicle screws. However, most of these techniques require special instruments. We describe a simple, modified technique for management of broken pedicle screws without extraction. No special instruments or drilling in an adjacent pedicle are required. We used a high-speed air drill with a round burr. With C-arm fluoroscopy guidance, the distal fragment of a broken pedicle screw was palpated using free-hand technique through the screw entry hole. A high-speed air drill with a round burr (not a diamond burr) was inserted through the hole. Drilling began slowly and continued until enough space was obtained for new screw insertion. Using this space, we performed new pedicle screw fixation medially alongside the distal fragment of the broken pedicle screw. We performed the insertion with a previously used entry hole and pathway in the pedicle. The same size pedicle screw was used. Three patients were treated with this modified technique. New screw insertion was successful in all cases after partial drilling of the distal broken pedicle screw fragment. There were no complications, such as screw loosening, dural tears, or root injury. We describe a simple, modified technique for management of broken pedicle screws without extraction. This technique is recommended in patients who require insertion of a new screw. Copyright © 2017. Published by Elsevier Inc.

  18. Pull out Strength of Dual Outer Diameter Pedicle Screws Compared to Uncemented and Cemented Standard Pedicle Screws: A Biomechanical in vitro Study.

    Science.gov (United States)

    Lorenz, Andrea; Leichtle, Carmen I; Frantz, Sandra; Bumann, Marte; Tsiflikas, Ilias; Shiozawa, Thomas; Leichtle, Ulf G

    2017-05-01

    To analyze the potential of the dual outer diameter screw and systematically evaluate the pull-out force of the dual outer diameter screw compared to the uncemented and cemented standard pedicle screws with special regard to the pedicle diameter and the vertebra level. Sixty vertebrae of five human spines (T 6 -L 5 ) were sorted into three study groups for pairwise comparison of the uncemented dual outer diameter screw, the uncemented standard screw, and the cemented standard screw, and randomized with respect to bone mineral density (BMD) and vertebra level. The vertebrae were instrumented, insertion torque was determined, and pull-out testing was performed using a material testing machine. Failure load was evaluated in pairwise comparison within each study group. The screw-to-pedicle diameter ratio was determined and the uncemented dual outer diameter and standard screws were compared for different ratios as well as vertebra levels. Significantly increased pull-out forces were measured for the cemented standard screw compared to the uncemented standard screw (+689 N, P dual outer diameter screw (+403 N, P dual outer diameter screw to the uncemented standard screw in the total study group, a distinct but not significant increase was measured (+149 N, P = 0.114). Further analysis of these two screws, however, revealed a significant increase of pull-out force for the dual outer diameter screw in the lumbar region (+247 N, P = 0.040), as well as for a screw-to-pedicle diameter ratio between 0.6 and 1 (+ 488 N, P = 0.028). For clinical application, cement augmentation remains the gold standard for increasing screw stability. According to our results, the use of a dual outer diameter screw is an interesting option to increase screw stability in the lumbar region without cement augmentation. For the thoracic region, however, the screw-to-pedicle diameter should be checked and attention should be paid to screw cut out, if the dual outer diameter screw is considered.

  19. The effect of different screw-rod design on the anti-rotational torque: a biomechanical comparison of three conventional screw-rod constructs.

    Science.gov (United States)

    Huang, Zifang; Wang, Chongwen; Fan, Hengwei; Sui, Wenyuan; Li, Xueshi; Wang, Qifei; Yang, Junlin

    2017-07-28

    Screw-rod constructs have been widely used to correct spinal deformities, but the effects of different screw-rod systems on anti-rotational torque have not been determined. This study aimed to analyze the biomechanical effect of different rod-screw constructs on anti-rotational torque. Three conventional spinal screw-rod systems (Legacy, RF-F-10 and USSII) were used to test the anti-rotational torque in the material test machine. ANOVA was performed to evaluate the anti-rotational capacity of different pedicle screws-rod constructs. The anti-rotational torque of Legacy group, RF-F-10 group and USSII group were 12.3 ± 1.9 Nm, 6.8 ± 0.4 Nm, and 3.9 ± 0.8 Nm, with a P value lower than 0.05. This results indicated that the Legacy screws-rod construct could provide a highest anti-rotation capacity, which is 68% and 210% greater than RF-F-10 screw-rod construct and USSII screw-rod respectively. The anti-rotational torque may be mainly affected by screw cap and groove design. Our result showed the anti-rotational torque are: Legacy system > RF-F-10 system > USSII system, suggesting that appropriate rod-screw constructs selection in surgery may be vital for anti-rotational torque improvement and preventing derotation correction loss.

  20. Stress corrosion cracking lifetime prediction of spring screw

    International Nuclear Information System (INIS)

    Koh, S. K.; Ryu, C. H.

    2004-01-01

    A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw

  1. Probing and Tapping: Are We Inserting Pedicle Screws Correctly?

    Science.gov (United States)

    Prasad, Vishal; Mesfin, Addisu; Lee, Robert; Reigrut, Julie; Schmidt, John

    2016-11-01

    Although there are a significant number of research publications on the topic of bone morphology and the strength of bone, the clinical significance of a failed pedicle screw is often revision surgery and the potential for further postoperative complications; especially in elderly patients with osteoporotic bone. The purpose of this report is to quantify the mechanical strength of the foam-screw interface by assessing probe/pilot hole diameter and tap sizes using statistically relevant sample sizes under highly controlled test conditions. The study consisted of two experiments and used up to three different densities of reference-grade polyurethane foam (ASTM 1839), including 0.16, 0.24, and 0.32 g/cm 3 . All screws and rods were provided by K2M Inc. and screws were inserted to a depth of 25 mm. A series of pilot holes, 1.5, 2.2, 2.7, 3.2, 3.7, 4.2, 5.0, and 6.0 mm in diameter were drilled through the entire depth of the material. A 6.5 × 45-mm pedicle screw was inserted and axially pulled from the material (n = 720). A 3.0-mm pilot hole was drilled and tapped with: no tap, 3.5-, 4.5-, 5.5-, and 6.5-mm taps. A 6.5 × 45-mm pedicle screw was inserted and axially pulled from the material (n = 300). The size of the probe/pilot hole had a nonlinear, parabolic effect on pullout strength. This shape suggests an optimum-sized probe hole for a given size pedicle screw. Too large or too small of a probe hole causes a rapid falloff in pullout strength. The tap data demonstrated that not tapping and undertapping by two or three sizes did not significantly alter the pullout strength of the screws. The data showed an exponential falloff of pullout strength when as tap size increased to the diameter of the screw. In the current study, the data show that an ideal pilot hole size half the diameter of the screw is a starting point. Also, that if tapping was necessary, to use a tap two sizes smaller than the screw being implanted. A similar optimum pilot hole or tap size may be

  2. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    Science.gov (United States)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  3. Comparative effect of implant-abutment connections, abutment angulations, and screw lengths on preloaded abutment screw using three-dimensional finite element analysis: An in vitro study

    OpenAIRE

    Krishna Chaitanya Kanneganti; Dileep Nag Vinnakota; Srinivas Rao Pottem; Mahesh Pulagam

    2018-01-01

    Purpose: The purpose of this study is to compare the effect of implant-abutment connections, abutment angulations, and screw lengths on screw loosening (SL) of preloaded abutment using three dimensional (3D) finite element analysis. Materials and Methods: 3D models of implants (conical connection with hex/trilobed connections), abutments (straight/angulated), abutment screws (short/long), and crown and bone were designed using software Parametric Technology Corporation Creo and assembled t...

  4. Graphene materials having randomly distributed two-dimensional structural defects

    Science.gov (United States)

    Kung, Harold H; Zhao, Xin; Hayner, Cary M; Kung, Mayfair C

    2013-10-08

    Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.

  5. Development of a high speed extrusion concept using a floating screw sleeve for solid-melt-separation

    Science.gov (United States)

    Karrenberg, Gregor; Wortberg, Johannes

    2015-05-01

    The High-Speed-S-Truder with floating screw sleeve is an alternative extrusion concept with solid-melt-separation. A fairly conventional 35 mm screw with a length of 21 D, which is accelerated by a 75 kW gearless, water cooled synchronous drive, conveys the resin into a 60 mm screw sleeve with a length of 10 D. Inside the sleeve the material is plasticizied and discharged into the outer screw channel of the sleeve through radial bores. Only the solid bed remains inside. The development of a melt pool - and thus a decrease of the plasticizing capacity - is avoided. The sleeve is rotated by drag forces only (approximately 10 - 15 % of the screw speed). Due to the low speed of the screw sleeve molten material is conveyed to a 4 D Dynamic Mixing Ring in a gentle manner. The DMRs floating ring and the screw sleeve are directly coupled. The granules in the screw channel are stopped by a barrier on the screw in front of the mixing device. So nearly no unmelted material can pass the system. For temperature management in the plastification and mixing zone a 3-zone heating/air-cooling system is used. Various kinds of experiments with the High-Speed S-Truder were conducted. Reachable throughputs with different types of material (LDPE, LLDPE, PP, PS) have been tested. Also three screw geometries, which are mainly varying in the channel depth, were compared. Experimental results and theoretical background will be described in this paper.

  6. Effects of Screw Configuration on the Preload Force of Implant-Abutment Screws.

    Science.gov (United States)

    Zipprich, Holger; Rathe, Florian; Pinz, Sören; Schlotmann, Luca; Lauer, Hans-Christoph; Ratka, Christoph

    The aim of this study was to investigate the effects of tightening torque, screw head angle, and thread number on the preload force of abutment screws. The test specimens consisted of three self-manufactured components (ie, a thread sleeve serving as an implant analog, an abutment analog, and an abutment screw). The abutment screws were fabricated with metric M1.6 external threads. The thread number varied between one and seven threads. The screw head angles were produced in eight varying angles (30 to 180 degrees). A sensor unit simultaneously measured the preload force of the screw and the torsion moment inside the screw shank. The tightening of the screw with the torque wrench was performed in five steps (15 to 35 Ncm). The torque wrench was calibrated before each step. Only the tightening torque and screw head angle affected the resulting preload force of the implant-abutment connection. The thread number had no effect. There was an approximately linear correlation between tightening torque and preload force. The tightening torque and screw head angle were the only study parameters that affected the resulting preload force of the abutment screw. The results obtained from this experiment are valid only for a single torque condition. Further investigations are needed that analyze other parameters that affect preload force. Once these parameters are known, it will add value for a strong, but detachable connection between the implant and abutment. Short implants and flat-to-flat connections especially will benefit significantly from this knowledge.

  7. Comparison of Direct Pars Repair Techniques of Spondylolysis in Pediatric and Adolescent Patients: Pars Compression Screw Versus Pedicle Screw-Rod-Hook.

    Science.gov (United States)

    Karatas, Ali F; Dede, Ozgur; Atanda, Alfred A; Holmes, Larry; Rogers, Kenneth; Gabos, Peter; Shah, Suken A

    2016-08-01

    Retrospective clinical cohort study. To compare the clinical and radiographic outcomes of patients who were treated with intrasegmental pars fixation by either laminar compression screw (LS) or a pedicle screw, rod, and laminar hook (PSRH) construct. Spondylolysis is a nonunion defect of the pars interarticularis. In symptomatic spondylolysis, direct repair of the pars interarticularis defect can preserve motion and prevent abnormal stresses at the adjacent levels. Sixteen patients who failed nonoperative treatment and underwent direct pars repair by using LS (n=9) or PSRH (n=7) constructs were included in the study. Clinical outcome was assessed by using the MacNab criteria. Radiologic fusion and complications were evaluated using plain radiographs or computed tomography images and patient charts. The healing rate was 100% after 6 months. The healing time was similar in both the groups: LS, 6.5 months; PSRH, 6.2 months. Patients with PSRH (5.9 mo) were more likely to return to sports earlier relative to patients with LS (7.7 mo). There were no complications in the LS group; in the PSRH group, 1 patient had mild sensory deficit and 2 had superficial wound infections. The MacNab criteria for pain assessment showed an excellent or good outcome in 8 of 9 patients in LS group and 6 of 7 patients in PSRH group. Relative to LS patients, there was a significant increase in surgical time and estimated blood loss among PSRH patients. Either of the mentioned 2 techniques appears to produce acceptable results. Biplanar fluoroscopy and navigation systems could minimize the risk of screw misplacement with LS construct. Familiarity with the various fixation techniques will allow the surgeon to select the most appropriate surgical technique.

  8. Intermaxillary Fixation Screw Morbidity in Treatment of Mandibular Fractures

    DEFF Research Database (Denmark)

    Florescu, Vlad-Andrei; Kofod, Thomas; Pinholt, Else Marie

    2016-01-01

    Purpose The aim of the present retrospective study was to investigate the morbidity of screws used for intermaxillary fixation (IMF) in the treatment of mandibular fractures. A review of the published data was also performed for a comparison of outcomes. Our hypothesis was that the use of screws...... for IMF of mandibular fractures would result in minimal morbidity. Materials and Methods Patients treated for mandibular fractures from 2007 to 2013, using screws for IMF, using the international diagnosis code for mandibular fracture, DS026, were anonymously selected (Department of Oral and Maxillofacial...... Surgery, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark). The fracture type, radiographic findings, treatment modality, screw type and number, and root damage were recorded. For the outcome comparison, a review of the published data regarding iatrogenic dental root damage caused...

  9. Positioning device for screwing or unscrewing screw nut

    International Nuclear Information System (INIS)

    Sevelinge, G.

    1987-01-01

    This automatic positioning device for screwing or unscrewing a screw nut on a closure stud has a drawed socket and means for axially centre and angularly by wedge the socket on the closure stud and generate a continuous spiral between the socket and the closure stud [fr

  10. FOREWORD International Conference on Defects in Insulating Materials

    Science.gov (United States)

    Valerio, Mário Ernesto Giroldo; Jackson, R. A.

    2010-11-01

    These proceedings represent a sample of the scientific works presented during ICDIM2008, the 16th International Conference on Defects in Insulating Materials, held at the Federal University of Sergipe, Aracaju, Brazil from 24-29 August 2008. The conference was the latest in a series which began at Argonne in 1956, and which has been held most recently in Riga, Latvia (2004) and Johannesburg, South Africa (2000). The conference was also related scientifically to the EURODIM series, which have been held most recently in Milan, Italy (2006), Wroclaw, Poland (2002) and Pecs, Hungary (2010). The aim of the conference was to bring together physicists, chemists and materials scientist to discuss defects in insulating materials and their effect on materials, including their optical, mass/charge transport, energy storage and sensor properties. The conference featured 6 plenary lectures, 60 contributed lectures and about 130 posters. The posters were displayed for the whole conference, but discussed in two three-hour sessions. We are grateful to the International Advisory Committee for suggesting invited speakers and to the Programme Committee for their help in refereeing all the abstracts and choosing the contributed oral contributions. We would also like to thank the Local Organising Committee and the Brazilian Physical Society for their help with local organisation and the online registration/payment process respectively. The chairpersons would like to specially thanks all the sponsors listed below for financial support. The Federal University of Sergipe, one of the public and 'free tuition' Universities of the Country, run by the Brazilian Ministry of Education, were pleased to host this 16th meeting, the first one in Latin America. Mario E G Valerio Conference Chair Robert A Jackson Programme Chair Conference Scope Scope of the Conference was the presentation of the latest investigations on point and extended defects in bulk materials and thin films. Technological

  11. Tests for the dynamic behavior of insulation valve screws

    International Nuclear Information System (INIS)

    Tulke, K.D.; Stoppler, W.; Stern, G.

    1994-01-01

    Thermal tensile tests were performed at a temperature of 270 C, with two new original insulation valve conical screws M30-Tx92,5 mm (material: 21 CrMo V 5 7)and two prestrained ones during the event on 27.12.92. In order to assure the results obtained with regard to the dynamic load on the insulation valve during ''quick opening'', in addition tensile impact tests were performed at 270 C with six original insulation valve conical screws. Impact velocity reached 13,5 m/s at four screws and 6 m/s at two screws. Test conditions regarding collision damping and mass distribution were adapted, by means of parameter studies, to the situation of the insulation valve. During thermal tensile tests, strength and deformation values, such as stress at flow start, tensile strength, fracture prolongation and strain, necking at fracture as well as energy absorption up to maximum force and up to rupture, were determined. During tensile impact tests, deformation values, such as elongation, strain and necking, and energy absorption by the screw, were determined. (orig.) [de

  12. Intrinsic defects in 3D printed materials

    OpenAIRE

    Bolton, Christopher; Dagastine, Raymond

    2015-01-01

    We discuss the impact of bulk structural defects on the coherence, phase and polarisation of light passing through transparent 3D printed materials fabricated using a variety of commercial print technologies.

  13. Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection.

    Science.gov (United States)

    Helgeson, Melvin D; Kang, Daniel G; Lehman, Ronald A; Dmitriev, Anton E; Luhmann, Scott J

    2013-08-01

    There is currently no reliable technique for intraoperative assessment of pedicle screw fixation strength and optimal screw size. Several studies have evaluated pedicle screw insertional torque (IT) and its direct correlation with pullout strength. However, there is limited clinical application with pedicle screw IT as it must be measured during screw placement and rarely causes the spine surgeon to change screw size. To date, no study has evaluated tapping IT, which precedes screw insertion, and its ability to predict pedicle screw pullout strength. The objective of this study was to investigate tapping IT and its ability to predict pedicle screw pullout strength and optimal screw size. In vitro human cadaveric biomechanical analysis. Twenty fresh-frozen human cadaveric thoracic vertebral levels were prepared and dual-energy radiographic absorptiometry scanned for bone mineral density (BMD). All specimens were osteoporotic with a mean BMD of 0.60 ± 0.07 g/cm(2). Five specimens (n=10) were used to perform a pilot study, as there were no previously established values for optimal tapping IT. Each pedicle during the pilot study was measured using a digital caliper as well as computed tomography measurements, and the optimal screw size was determined to be equal to or the first size smaller than the pedicle diameter. The optimal tap size was then selected as the tap diameter 1 mm smaller than the optimal screw size. During optimal tap size insertion, all peak tapping IT values were found to be between 2 in-lbs and 3 in-lbs. Therefore, the threshold tapping IT value for optimal pedicle screw and tap size was determined to be 2.5 in-lbs, and a comparison tapping IT value of 1.5 in-lbs was selected. Next, 15 test specimens (n=30) were measured with digital calipers, probed, tapped, and instrumented using a paired comparison between the two threshold tapping IT values (Group 1: 1.5 in-lbs; Group 2: 2.5 in-lbs), randomly assigned to the left or right pedicle on each

  14. Corrosion of magnesium alloy AZ31 screws is dependent on the implantation site

    Energy Technology Data Exchange (ETDEWEB)

    Willbold, E. [Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, D - 30625 Hannover (Germany); Kaya, A.A. [Mugla University, Engineering Faculty, Metallurgy and Materials Engineering Department, Mugla (Turkey); Kaya, R.A. [MedicalPark Hospital, Kueltuer Sok No:1, 34160 Bahcelievler, Istanbul (Turkey); Beckmann, F. [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str.1, D - 21502 Geesthacht (Germany); Witte, F., E-mail: witte.frank@mh-hannover.de [Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, D - 30625 Hannover (Germany)

    2011-12-15

    The corrosion of biodegradable materials is a crucial issue in implant development. Among other materials, magnesium and magnesium based alloys are one of the most promising candidates. Since the corrosion of biodegradable materials depends on different physiological parameters like pH or ion concentrations, the corrosion might be different in different biological environments. To investigate this issue, we produced screws from magnesium alloy AZ31 and implanted them into the hip bone of 14 sheep. After 3 and 6 months, the screws were explanted and analyzed with synchrotron-radiation based micro-computed tomography and hard tissue histology. We found considerable differences in the corrosion behavior of the magnesium screws with respect to its original tissue location. However, we could detect a normal immunological tissue response.

  15. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System.

    Science.gov (United States)

    Sim, Bo Kyun; Kim, Bongju; Kim, Min Jeong; Jeong, Guk Hyun; Ju, Kyung Won; Shin, Yoo Jin; Kim, Man Yong; Lee, Jong-Ho

    2017-01-01

    The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA) and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA.

  16. [Fracture of implant abutment screws and removal of a remaining screw piece

    NARCIS (Netherlands)

    Broeke, S.M. van den; Baat, C. de

    2008-01-01

    Fracture of the implant abutment screws is a complication which can render an implant useless. The prevalence of abutment screw fracture does not exceed 2.5% after 10 years. Causes are loosening of implant abutment screw, too few, too short or too narrow implants, implants not inserted perpendicular

  17. Effect of Repeated Screw Joint Closing and Opening Cycles and Cyclic Loading on Abutment Screw Removal Torque and Screw Thread Morphology: Scanning Electron Microscopy Evaluation.

    Science.gov (United States)

    Arshad, Mahnaz; Mahgoli, Hosseinali; Payaminia, Leila

    To evaluate the effect of repeated screw joint closing and opening cycles and cyclic loading on abutment screw removal torque and screw thread morphology using scanning electron microscopy (SEM). Three groups (n = 10 in each group) of implant-abutment-abutment screw assemblies were created. There were also 10 extra abutment screws as new screws in group 3. The abutment screws were tightened to 12 Ncm with an electronic torque meter; then they were removed and removal torque values were recorded. This sequence was repeated 5 times for group 1 and 15 times for groups 2 and 3. The same screws in groups 1 and 2 and the new screws in group 3 were then tightened to 12 Ncm; this was also followed by screw tightening to 30 Ncm and retightening to 30 Ncm 15 minutes later. Removal torque measurements were performed after screws were subjected to cyclic loading (0.5 × 10⁶ cycles; 1 Hz; 75 N). Moreover, the surface topography of one screw from each group before and after cyclic loading was evaluated with SEM and compared with an unused screw. All groups exhibited reduced removal torque values in comparison to insertion torque in each cycle. However, there was a steady trend of torque loss in each group. A comparison of the last cycle of the groups before loading showed significantly greater torque loss value in the 15th cycle of groups 2 and 3 compared with the fifth cycle of group 1 (P abutment is definitively placed.

  18. Failure analysis of top nozzle holddown spring screw for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Koh, S. K.; Ryu, C. H.; Na, E. G.; Baek, T. H.; Jeon, K. L.

    2003-01-01

    A failure analysis of holddown spring screw was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure, a stress analysis of the top nozzle spring assembly was done using finite element analysis and a life prediction of the screw was made using a fracture mechanics approach. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.42 years, which was fairly close to the actual service life of the holddown spring screw

  19. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System

    Directory of Open Access Journals (Sweden)

    Bo Kyun Sim

    2017-01-01

    Full Text Available The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA.

  20. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System

    Science.gov (United States)

    Kim, Bongju; Shin, Yoo Jin

    2017-01-01

    The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA) and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA. PMID:29065610

  1. Multiaxial pedicle screw designs: static and dynamic mechanical testing.

    Science.gov (United States)

    Stanford, Ralph Edward; Loefler, Andreas Herman; Stanford, Philip Mark; Walsh, William R

    2004-02-15

    Randomized investigation of multiaxial pedicle screw mechanical properties. Measure static yield and ultimate strengths, yield stiffness, and fatigue resistance according to an established model. Compare these measured properties with expected loads in vivo. Multiaxial pedicle screws provide surgical versatility, but the complexity of their design may reduce their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. Groups of five assemblies were tested in static tension and compression and subject to three cyclical loads. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six designs of screw. Static compression yield loads ranged from 217.1 to 388.0 N and yield stiffness from 23.7 to 38.0 N/mm. Cycles to failure ranged from 42 x 10(3) to 4,719 x 10(3) at 75% of static ultimate load. There were significant differences between designs in all modes of testing. Failure occurred at the multiaxial link in static and cyclical compression. Bending yield strengths just exceeded loads expected in vivo. Multiaxial designs had lower static bending yield strength than fixed screw designs. Five out of six multiaxial screw designs achieved one million cycles at 200 N in compression bending. "Ball-in-cup" multiaxial locking mechanisms were vulnerable to fatigue failure. Smooth surfaces and thicker material appeared to be protective against fatigue failure.

  2. Regularities of radiation defects build up on oxide materials surface

    International Nuclear Information System (INIS)

    Bitenbaev, M.I.; Polyakov, A.I.; Tuseev, T.

    2005-01-01

    Analysis of experimental data by radiation defects study on different oxide elements (silicon, beryllium, aluminium, rare earth elements) irradiated by the photo-, gamma-, neutron-, alpha- radiation, protons and helium ions show, that gas adsorption process on the surface centers and radiation defects build up in metal oxide correlated between themselves. These processes were described by the equivalent kinetic equations for analysis of radiation defects build up in the different metal oxides. It was revealed in the result of the analysis: number of radiation defects are droningly increasing up to limit value with the treatment temperature growth. Constant of radicals death at ionizing radiation increases as well. Amount of surface defects in different oxides defining absorbing activity of these materials looks as: silicon oxide→beryllium oxide→aluminium oxide. So it was found, that most optimal material for absorbing system preparation is silicon oxide by it power intensity and berylium oxide by it adsorption efficiency

  3. Root contact with maxillomandibular fixation screws in orthognathic surgery: incidence and consequences.

    Science.gov (United States)

    Camargo, I B; Van Sickels, J E; Laureano Filho, J R; Cunningham, L L

    2016-08-01

    The use of maxillomandibular fixation (MMF) screws in orthognathic surgery has become common in recent years. The risk of injury to adjacent roots with their placement in this population has not been studied extensively. The aim of this study was to review the incidence and consequences of root contact/injury in patients undergoing orthognathic surgery. A retrospective analysis of the treatment and radiographic records of patients who underwent orthognathic surgery between January 2013 and September 2014 at a university in Kentucky, USA was performed. The mean number of screws used was correlated to the mean number of roots affected using Spearman's test, set to a level of significance of 5%. Of 125 patients who underwent orthognathic surgery, 15 (12%) had evidence of root contact. Subsequent radiographs showed resolution of the bone defects. There was no clinical evidence of pulpal necrosis or pain during follow-up. The average number of screws used was 3.14±0.35 per patient, with an average of 0.17±0.52 root contacts per patient. There was no correlation between the number of screws used and the number of roots injured (P=0.279). Based on these results, MMF screws can safely be used to establish interim fixation during orthognathic surgery. Caution should be taken during placement to avoid direct injury to the roots of teeth. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System

    OpenAIRE

    Sim, Bo Kyun; Kim, Bongju; Kim, Min Jeong; Jeong, Guk Hyun; Ju, Kyung Won; Shin, Yoo Jin; Kim, Man Yong; Lee, Jong-Ho

    2017-01-01

    The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access ...

  5. Extraction of sunflower oil by twin screw extruder: screw configuration and operating condition effects

    Energy Technology Data Exchange (ETDEWEB)

    Kartika, I.A. [FATETA-IPB, Bogor (Indonesia). Department of Agroindustrial Technology; Pontalier, P.Y.; Rigal, L. [Laboratoire de Chimie Agro-Industrielle, UMR 1010 INRA/INP-ENSIACET, Toulouse (France)

    2006-12-15

    The objective of this study was to investigate the screw configuration allowing oil extraction from sunflower seeds with a twin-screw extruder. Experiments were conducted using a co-rotating twin-screw extruder. Five screw profiles were examined to define the best performance (oil extraction yield, specific mechanical energy and oil quality) by studying the influence of operating conditions, barrel temperature, screw speed and feed rate. Generally, the position and spacing between two reversed screw elements affected oil extraction yield. An increase of oil extraction yield was observed as the reversed screw elements were moved with increased spacing between two elements and with smaller pitch elements. In addition, oil extraction yield increased as barrel temperature, screw speed and feed rate were decreased. Highest oil extraction yield (85%) with best cake meal quality (residual oil content lower than 13%) was obtained under operating conditions of 120 {sup o}C, 75 rpm and 19 kg/h. Furthermore, the operating parameters influenced energy input. A decrease in barrel temperature and feed rate followed by an increase in screw speed increased energy input, particularly specific mechanical energy input. Effect of the operating parameters on oil quality was less important. In all experiments tested, the oil quality was very good. The acid value was below 2 mg of KOH/g of oil and total phosphorus content was low, below 100 mg/kg. (author)

  6. Kinematic analysis of parallel manipulators by algebraic screw theory

    CERN Document Server

    Gallardo-Alvarado, Jaime

    2016-01-01

    This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators. Stands as the only book devoted to the acceleration, jerk and hyper-jerk (snap) analyses of rigid-body by means of screw theory; Provides new strategies to simplify the forward kinematic...

  7. The pullout performance of pedicle screws

    CERN Document Server

    Demir, Teyfik

    2015-01-01

    This brief book systematically discusses all subjects that affect the pullout strength of pedicle screws. These screws are used in spinal surgeries to stabilize the spine. The holding strength of the pedicle screw is vital since loosening of the pedicle screws can cause revision surgeries. Once the pedicle screw is pulled out, it is harder to obtain same stabilization for the fused vertebrae. The book reviews the effect of screw designs, application techniques, cement augmentation, coating of the screw and test conditions on the pullout strength. The studies with finite element analysis were also included.

  8. Phononic crystals with one-dimensional defect as sensor materials

    Science.gov (United States)

    Aly, Arafa H.; Mehaney, Ahmed

    2017-09-01

    Recently, sensor technology has attracted great attention in many fields due to its importance in many engineering applications. In the present work, we introduce a study using the innovative properties of phononic crystals in enhancing a new type of sensors based on the intensity of transmitted frequencies inside the phononic band gaps. Based on the transfer matrix method and Bloch theory, the expressions of the reflection coefficient and dispersion relation are presented. Firstly, the influences of filling fraction ratio and the angle of incidence on the band gap width are discussed. Secondly, the localization of waves inside band gaps is discussed by enhancing the properties of the defected phononic crystal. Compared to the periodic structure, localization modes involved within the band structure of phononic crystals with one and two defect layers are presented and compared. Trapped localized modes can be detected easily and provide more information about defected structures. Such method could increase the knowledge of manufacturing defects by measuring the intensity of propagated waves in the resonant cavities and waveguides. Moreover, several factors enhance the role of the defect layer on the transmission properties of defected phononic crystals are presented. The acoustic band gap can be used to detect or sense the type of liquids filling the defect layer. The liquids make specific resonant modes through the phononic band gaps that related to the properties of each liquid. The frequency where the maximum resonant modes occur is correlated to material properties and allows to determine several parameters such as the type of an unknown material.

  9. Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution.

    Science.gov (United States)

    Nevelsky, Alexander; Borzov, Egor; Daniel, Shahar; Bar-Deroma, Raquel

    2017-03-01

    Radiation therapy, in conjunction with surgical implant fixation, is a common combined treatment in cases of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced Polyetheretherketone (CFR-PEEK) material has been recently introduced for production of intramedullary nails and plates. The purpose of this work was to investigate the perturbation effects of the new CFR-PEEK screws on radiotherapy dose distributions and to evaluate these effects in comparison with traditional titanium screws. The investigation was performed by means of Monte Carlo (MC) simulations for a 6 MV photon beam. The project consisted of two main stages. First, a comparison of measured and MC calculated doses was performed to verify the validity of the MC simulation results for different materials. For this purpose, stainless steel, titanium, and CFR-PEEK plates of various thicknesses were used for attenuation and backscatter measurements in a solid water phantom. For the same setup, MC dose calculations were performed. Next, MC dose calculations for titanium, CFR-PEEK screws, and CFR-PEEK screws with ultrathin titanium coating were performed. For the plates, the results of our MC calculations for all materials were found to be in good agreement with the measurements. This indicates that the MC model can be used for calculation of dose perturbation effects caused by the screws. For the CFR-PEEK screws, the maximum dose perturbation was less than 5%, compared to more than 30% perturbation for the titanium screws. Ultrathin titanium coating had a negligible effect on the dose distribution. CFR-PEEK implants have good prospects for use in radiotherapy because of minimal dose alteration and the potential for more accurate treatment planning. This could favorably influence treatment efficiency and decrease possible over- and underdose of adjacent tissues. The use of such implants has potential clinical advantages

  10. Effect of technique and impression material on the vertical misfit of a screw-retained, three-unit implant bridge: An in vitro study

    Directory of Open Access Journals (Sweden)

    Hamidreza Rajati Haghi

    2017-01-01

    Conclusion: Within the limitations of this study, the following conclusions can be drawn: The impression method had no effect on marginal discrepancy of 3-unit screw retained fixed partial dentures. A higher marginal accuracy was obtained using polyether impression material compared to polyvinyl siloxane.

  11. 2D and 3D assessment of sustentaculum tali screw fixation with or without Screw Targeting Clamp.

    Science.gov (United States)

    De Boer, A Siebe; Van Lieshout, Esther M M; Vellekoop, Leonie; Knops, Simon P; Kleinrensink, Gert-Jan; Verhofstad, Michael H J

    2017-12-01

    Precise placement of sustentaculum tali screw(s) is essential for restoring anatomy and biomechanical stability of the calcaneus. This can be challenging due to the small target area and presence of neurovascular structures on the medial side. The aim was to evaluate the precision of positioning of the subchondral posterior facet screw and processus anterior calcanei screw with or without a Screw Targeting Clamp. The secondary aim was to evaluate the added value of peroperative 3D imaging over 2D radiographs alone. Twenty Anubifix™ embalmed, human anatomic lower limb specimens were used. A subchondral posterior facet screw and a processus anterior calcanei screw were placed using an extended lateral approach. A senior orthopedic trauma surgeon experienced in calcaneal fracture surgery and a senior resident with limited experience in calcaneal surgery performed screw fixation in five specimens with and in five specimens without the clamp. 2D lateral and axial radiographs and a 3D recording were obtained postoperatively. Anatomical dissection was performed postoperatively as a diagnostic golden standard in order to obtain the factual screw positions. Blinded assessment of quality of fixation was performed by two surgeons. In 2D, eight screws were considered malpositioned when placed with the targeting device versus nine placed freehand. In 3D recordings, two additional screws were malpositioned in each group as compared to the golden standard. As opposed to the senior surgeon, the senior resident seemed to get the best results using the Screw Targeting Clamp (number of malpositioned screws using freehand was eight, and using the targeting clamp five). In nine out of 20 specimens 3D images provided additional information concerning target area and intra-articular placement. Based on the 3D assessment, five additional screws would have required repositioning. Except for one, all screw positions were rated equally after dissection when compared with 3D examinations

  12. Frictional performance of ball screw

    International Nuclear Information System (INIS)

    Nakashima, Katuhiro; Takafuji, Kazuki

    1985-01-01

    As feed screws, ball screws have become to be adopted in place of trapezoidal threads. The structure of ball screws is complex, but those are the indispensable component of NC machine tools and machining centers, and are frequently used for industrial robots. As the problems in the operation of ball screws, there are damage, life and the performance related to friction. As to the damage and life, though there is the problem of the load distribution on balls, the results of the research on rolling bearings are applied. The friction of ball screws consists of the friction of balls and a spiral groove, the friction of a ball and a ball, the friction in a ball-circulating mechanism and the viscous friction of lubricating oil. It was decided to synthetically examine the frictional performance of ball screws, such as driving torque, the variation of driving torque, efficiency, the formation of oil film and so on, under the working condition of wide range, using the screws with different accuracy and the nuts of various circuit number. The experimental setup and the processing of the experimental data, the driving performance of ball screws and so on are reported. (Kako, I.)

  13. Method and apparatus for extruding thermoplastic material

    International Nuclear Information System (INIS)

    McKelvey, J.M.

    1985-01-01

    A gear pump assisted screw conveyor extrusion system utilizing a cartridge heating device disposed axially within the screw and having the drives for the gear pump and the screw correlated in speed to create relatively little pressure in the thermoplastic material being extruded such that relatively little mechanical working thereof occurs. The thermoplastic material is melted in the screw conveyor primarily by heat transfer from the cartridge heater and the gear pump is utilized for conveying the melted material under pressure to a subsequent work station. A relatively deep material-conveying spiral channel is provided in the screw for maximized extrusion output per revolution of the screw and minimized mechanical energy generation by the screw. A motionless mixer may be employed intermediate the screw and the work station to homogenize the melted material for reducing temperature gradients therein. The system advantageously is capable of extruding material at a substantially greater rate and a lower material temperature and with substantially increased power economy than conventional systems utilizing a high pressure, externally heated screw conveyor portion

  14. PAT challenges routine techniques on defect spectroscopy in material science

    International Nuclear Information System (INIS)

    Badawi, E.A.

    2005-01-01

    Atomic or Point Defects are the most simple defects in solids. Due to the small size their direct observation by the routine techniques is not possible. A single type of defects (thermal defect) was observed in the quenching process. Using the Arrhenius method and threshold method we recommended the accurate both method of treatments. The calculated values for formation enthalpies and self-diffusion using positron lifetime and Doppler broadening in a good agreement in (A356.0) and (A413.1). Specifically it is show how PAT detect defect concentrations, (formation- migration) enthalpies and grain size for the material under investigation. Most of the these data are reported

  15. Kinematics of Planetary Roller Screw Mechanism considering Helical Directions of Screw and Roller Threads

    Directory of Open Access Journals (Sweden)

    Shangjun Ma

    2015-01-01

    Full Text Available Based on the differential principle of thread transmission, an analytical model considering helical directions between screw and roller threads in planetary roller screw mechanism (PRSM is presented in this work. The model is critical for the design of PRSM with a smaller lead and a bigger pitch to realize a higher transmission accuracy. The kinematic principle of planetary transmission is employed to analyze the PRSM with different screw thread and roller thread directions. In order to investigate the differences with different screw thread and roller thread directions, the numerical model is developed by using the software Adams to validate the analytical solutions calculated by the presented model. The results indicate, when the helical direction of screw thread is identical with the direction of roller thread, that the lead of PRSM is unaffected regardless of whether sliding between screw and rollers occurs or not. Only when the direction of screw thread is reverse to the direction of roller thread, the design of PRSM with a smaller lead can be realized under a bigger pitch. The presented models and numerical simulation method can be used to research the transmission accuracy of PRSM.

  16. Computed tomography- and fluoroscopy-guided percutaneous screw fixation of low-grade isthmic spondylolisthesis in adults: a new technique

    International Nuclear Information System (INIS)

    Amoretti, Nicolas; Huwart, Laurent; Browaeys, Patrick; Nouri, Yasir; Ibba, Caroline; Hauger, Olivier; Marcy, Pierre-Yves; Boileau, Pascal

    2012-01-01

    To evaluate the feasibility of computed tomography (CT)- and fluoroscopy-guided percutaneous screw fixation for the treatment of low-grade isthmic spondylolisthesis in adults. Ten consecutive adult patients (four men and six women; mean age: 57.1 [range, 44-78 years]) were prospectively treated by percutaneous screw fixation for low-grade (six grade 1 and four grade 2) isthmic spondylolisthesis of L5. For each patient, two 4.0-mm Asnis III cannulated screws were placed to fix the pars interarticularis defects. All procedures were performed under local anaesthesia by using CT and fluoroscopy guidance. Post-operative outcome was assessed using the visual analogue scale and Oswestry Disability Index (ODI) scores. The procedure time ranged from 45 to 60 min. The mean screw length was 27 mm (range, 24-32 mm). The VAS and ODI measurements ± SD decreased from 7.8 ± 0.9 preoperatively to 1.5 ± 1.1 at the last 2-year follow-up, and from 62.3 ± 17.2 to 15.1 ± 6.0, respectively (P < 0.001 in both cases). Neither slip progression nor screw failure was noted. This feasibility study showed that CT- and fluoroscopy-guided percutaneous screw fixation could be a rapid, safe and effective method of treating low-grade isthmic spondylolisthesis. (orig.)

  17. Computed tomography- and fluoroscopy-guided percutaneous screw fixation of low-grade isthmic spondylolisthesis in adults: a new technique

    Energy Technology Data Exchange (ETDEWEB)

    Amoretti, Nicolas; Huwart, Laurent; Browaeys, Patrick; Nouri, Yasir; Ibba, Caroline [Hopital Archet 2, Centre Hospitalo-Universitaire de Nice, Department of Radiology, Nice (France); Hauger, Olivier [Hopital Pellegrin, Centre Hospitalo-Universitaire de Bordeaux, Department of Radiology, Bordeaux (France); Marcy, Pierre-Yves [Antoine Lacassagne Cancer Research Institute, Department of Radiology, Nice (France); Boileau, Pascal [Hopital Archet 2, Centre Hospitalo-Universitaire de Nice, Department of Orthopedic Surgery, Nice (France)

    2012-12-15

    To evaluate the feasibility of computed tomography (CT)- and fluoroscopy-guided percutaneous screw fixation for the treatment of low-grade isthmic spondylolisthesis in adults. Ten consecutive adult patients (four men and six women; mean age: 57.1 [range, 44-78 years]) were prospectively treated by percutaneous screw fixation for low-grade (six grade 1 and four grade 2) isthmic spondylolisthesis of L5. For each patient, two 4.0-mm Asnis III cannulated screws were placed to fix the pars interarticularis defects. All procedures were performed under local anaesthesia by using CT and fluoroscopy guidance. Post-operative outcome was assessed using the visual analogue scale and Oswestry Disability Index (ODI) scores. The procedure time ranged from 45 to 60 min. The mean screw length was 27 mm (range, 24-32 mm). The VAS and ODI measurements {+-} SD decreased from 7.8 {+-} 0.9 preoperatively to 1.5 {+-} 1.1 at the last 2-year follow-up, and from 62.3 {+-} 17.2 to 15.1 {+-} 6.0, respectively (P < 0.001 in both cases). Neither slip progression nor screw failure was noted. This feasibility study showed that CT- and fluoroscopy-guided percutaneous screw fixation could be a rapid, safe and effective method of treating low-grade isthmic spondylolisthesis. (orig.)

  18. Loosening torque of Universal Abutment screws after cyclic loading: influence of tightening technique and screw coating.

    Science.gov (United States)

    Bacchi, Atais; Regalin, Alexandre; Bhering, Claudia Lopes Brilhante; Alessandretti, Rodrigo; Spazzin, Aloisio Oro

    2015-10-01

    The purpose of this study was to evaluate the influence of tightening technique and the screw coating on the loosening torque of screws used for Universal Abutment fixation after cyclic loading. Forty implants (Titamax Ti Cortical, HE, Neodent) (n=10) were submerged in acrylic resin and four tightening techniques for Universal Abutment fixation were evaluated: A - torque with 32 Ncm (control); B - torque with 32 Ncm holding the torque meter for 20 seconds; C - torque with 32 Ncm and retorque after 10 minutes; D - torque (32 Ncm) holding the torque meter for 20 seconds and retorque after 10 minutes as initially. Samples were divided into subgroups according to the screw used: conventional titanium screw or diamond like carbon-coated (DLC) screw. Metallic crowns were fabricated for each abutment. Samples were submitted to cyclic loading at 10(6) cycles and 130 N of force. Data were analyzed by two-way ANOVA and Tukey's test (5%). The tightening technique did not show significant influence on the loosening torque of screws (P=.509). Conventional titanium screws showed significant higher loosening torque values than DLC (P=.000). The use of conventional titanium screw is more important than the tightening techniques employed in this study to provide long-term stability to Universal Abutment screws.

  19. Sacroiliac Screw Fixation

    NARCIS (Netherlands)

    E.W. van den Bosch

    2003-01-01

    textabstractThe aim of this thesis is to evaluate three major aspects of the use of sacroiliac screws in patients with unstable pelvic ring fractures: the optimal technique for sacroiliac screw fixation, the reliability of peroperative fluoroscopy and the late results. We focused on the questions

  20. Stability of biodegradable metal (Mg-Ca-Zn alloy) screws compared with absorbable polymer and titanium screws for sagittal split ramus osteotomy of the mandible using the finite element analysis model.

    Science.gov (United States)

    Lee, Jee-Ho; Han, Hyung-Seop; Kim, Yu-Chan; Lee, Jin-Yong; Lee, Bu-Kyu

    2017-10-01

    Mg-Ca-Zn alloy has been suggested for the application of fixation materials during maxillofacial surgery. We investigated the stability of Mg-Ca-Zn alloy for clinical application during orthognathic surgery. The finite element model for the fixation of sagittal split ramus osteotomy was constructed. In the bicortical screw fixation of the mandible setback condition, the stress distributions of Mg-Ca-Za alloy, polylactic acid polymer, and titanium were evaluated using the virtual model with occlusal loading of 132 N. The deformations of the three different materials of fixation screw were observed according to masticatory force ranging from 132 to 1,000 N. When comparing the stress distribution placed on cortical bone between the polymer and magnesium alloy groups, the magnesium alloy screws could bear more stress, thereby decreasing the stress, which might be distributed to other biologic components, such as the condyle and cortical ramus of the mandible. Deformations of the screws according to functional load were minimal, and the deformation remained stability of sagittal split ramus osteotomy setback surgery. Copyright © 2017. Published by Elsevier Ltd.

  1. Pullout strength of misplaced pedicle screws in the thoracic and lumbar vertebrae - A cadaveric study

    Directory of Open Access Journals (Sweden)

    Shyam K Saraf

    2013-01-01

    Full Text Available Background: The objective of this cadaveric study was to analyze the effects of iatrogenic pedicle perforations from screw misplacement on the mean pullout strength of lower thoracic and lumbar pedicle screws. We also investigated the effect of bone mineral density (BMD, diameter of pedicle screws, and the region of spine on the pullout strength of pedicle screws. Materials and Methods: Sixty fresh human cadaveric vertebrae (D10-L2 were harvested. Dual-energy X-ray absorptiometry (DEXA scan of vertebrae was done for BMD. Titanium pedicle screws of different diameters (5.2 and 6.2 mm were inserted in the thoracic and lumbar segments after dividing the specimens into three groups: a standard pedicle screw (no cortical perforation; b screw with medial cortical perforation; and c screw with lateral cortical perforation. Finally, pullout load of pedicle screws was recorded using INSTRON Universal Testing Machine. Results: Compared with standard placement, medially misplaced screws had 9.4% greater mean pullout strength and laterally misplaced screws had 47.3% lesser mean pullout strength. The pullout strength of the 6.2 mm pedicle screws was 33% greater than that of the 5.2 mm pedicle screws. The pullout load of pedicle screws in lumbar vertebra was 13.9% greater than that in the thoracic vertebra ( P = 0.105, but it was not statistically significant. There was no significant difference between pullout loads of vertebra with different BMD ( P = 0.901. Conclusion: The mean pullout strength was less with lateral misplaced pedicle screws while medial misplaced pedicle screw had more pullout strength. The pullout load of 6.2 mm screws was greater than that of 5.2 mm pedicle screws. No significant correlation was found between bone mineral densities and the pullout strength of vertebra. Similarly, the pullout load of screw placed in thoracic and lumbar vertebrae was not significantly different.

  2. Complications of syndesmotic screw removal

    NARCIS (Netherlands)

    Schepers, Tim; van Lieshout, Esther M. M.; de Vries, Mark R.; van der Elst, Maarten

    2011-01-01

    Currently, the metallic syndesmotic screw is the gold standard in the treatment of syndesmotic disruption. Whether or not this screw needs to be removed remains debatable. The aim of the current study was to determine the complications which occur following routine removal of the syndesmotic screw

  3. UCN anomalous losses and the UCN capture cross section on material defects

    International Nuclear Information System (INIS)

    Serebrov, A.; Romanenko, N.; Zherebtsov, O.; Lasakov, M.; Vasiliev, A.; Fomin, A.; Geltenbort, P.; Krasnoshekova, I.; Kharitonov, A.; Varlamov, V.

    2005-01-01

    Experimental data shows anomalously large ultra cold neutrons (UCN) reflection losses and that the process of UCN reflection is not completely coherent. UCN anomalous losses under reflection cannot be explained in the context of neutron optics calculations. UCN losses by means of incoherent scattering on material defects are considered and cross-section values calculated. The UCN capture cross section on material defects is enhanced by a factor of 10 4 due to localization of UCN around defects. This phenomenon can explain anomalous losses of UCN

  4. Mechanical characteristics of connection for GFRP plates using tapping screws

    Science.gov (United States)

    Inoue, Yuya; Duong, Nguyen Ngoc; Satake, Chito; Matsumoto, Yukihiro

    2017-10-01

    FRP material has good characteristics such as light-weight, high-strength and high-corrosion resistance. Light-weight structure possesses some advantages over the rational constructing procedure such as self-building structures. In recent years, mechanical characteristics of FRP joints using bolts and/or rivet are investigated in detail, and they are used in many FRP structures. However, the bolts lack bearing strength compared with material strength and the joint needs the prepared bolt hole. In this paper, an alternative joint system for FRP structures using tapping screw is proposed and mechanical characteristics are investigated through experiment. Tapping screw has some advantages; easy-to-use, light-weight and high bearing strength. Then, the results of double-lapped tensile shear tests having one, four and eight tapping screws along longitudinal direction are shown. Moreover, it is shown that longitudinal stress distribution is approximately corresponding to the theoretical stress distribution of double-lapped adhesively bonded joints. Based on these, it is proposed that joint strength can be estimated by using the present calculation method.

  5. Release of metal in vivo from stressed and nonstressed maxillofacial fracture plates and screws.

    Science.gov (United States)

    Matthew, I R; Frame, J W

    2000-07-01

    To analyze the release of metal into the adjacent tissues from stressed and nonstressed titanium and stainless steel miniplates and screws. Two miniplates were inserted into the cranial vaults of 12 beagle dogs while they were under general endotracheal anesthesia. One miniplate was shaped to fit the curvature of the skull (control). Another miniplate, made of the same material, was bent in a curve until the midpoint was raised 3 mm above the ends. Screws were inserted and tightened until the plate conformed to the skull curvature, creating stresses in the system. Four animals (2 each, having titanium or stainless steel plates and screws) were killed after 4, 12, and 24 weeks. Metallosis of adjacent soft tissues was assessed qualitatively. Miniplates and screws were removed, and adjacent soft tissue and bone was excised. Titanium, iron, chromium, nickel, and aluminum levels were assayed by ultraviolet/visible light and atomic absorption spectrophotometry. Nonparametric statistical methods were used for data analysis. There was no clear relationship between pigmentation of soft tissue adjacent to the miniplates and screws and the concentrations of metal present. The data did not demonstrate any consistent differences in the concentrations of metallic elements next to stressed and nonstressed (control) miniplates and screws of either material. Stresses arising through poor contouring of miniplates do not appear to influence the extent of release of metal into the adjacent tissues.

  6. A rationale method for evaluating unscrewing torque values of prosthetic screws in dental implants

    Directory of Open Access Journals (Sweden)

    Felipe Miguel Saliba

    2011-02-01

    Full Text Available OBJECTIVES: Previous studies that evaluated the torque needed for removing dental implant screws have not considered the manner of transfer of the occlusal loads in clinical settings. Instead, the torque used for removal was applied directly to the screw, and most of them omitted the possibility that the hexagon could limit the action of the occlusal load in the loosening of the screws. The present study proposes a method for evaluating the screw removal torque in an anti-rotational device independent way, creating an unscrewing load transfer to the entire assembly, not only to the screw. MATERIAL AND METHODS: Twenty hexagonal abutments without the hexagon in their bases were fixed with a screw to 20 dental implants. They were divided into two groups: Group 1 used titanium screws and Group 2 used titanium screws covered with a solid lubricant. A torque of 32 Ncm was applied to the screw and then a custom-made wrench was used for rotating the abutment counterclockwise, to loosen the screw. A digital torque meter recorded the torque required to loosen the abutment. RESULTS: There was a significant difference between the means of Group 1 (38.62±6.43 Ncm and Group 2 (48.47±5.04 Ncm, with p=0.001. CONCLUSION: This methodology was effective in comparing unscrewing torque values of the implant-abutment junction even with a limited sample size. It confirmed a previously shown significant difference between two types of screws.

  7. Minimally Invasive Direct Repair of Bilateral Lumbar Spine Pars Defects in Athletes

    Directory of Open Access Journals (Sweden)

    Gabriel A. Widi

    2013-01-01

    Full Text Available Spondylolysis of the lumbar spine has traditionally been treated using a variety of techniques ranging from conservative care to fusion. Direct repair of the defect may be utilized in young adult patients without significant disc degeneration and lumbar instability. We used minimally invasive techniques to place pars interarticularis screws with the use of an intraoperative CT scanner in three young adults, including two athletes. This technique is a modification of the original procedure in 1970 by Buck, and it offers the advantage of minimal muscle dissection and optimal screw trajectory. There were no intra- or postoperative complications. The detailed operative procedure and the postoperative course along with a brief review of pars interarticularis defect treatment are discussed.

  8. An electromagnetic screw and nut system for operating vertical motions along an axis

    International Nuclear Information System (INIS)

    Fehr, Henri.

    1975-01-01

    This invention concerns a magnetic screw and nut system for operating control rods, designed for vertical mounting and having no mobile or slide contacts. It makes it possible to rotate a screw located inside a sealed tubular containment that can have a very thick wall. All the electromagnetic components entering into the operation are outside this containment. The magnetic screw has a constant air gap. The tube, manufactured of a non-magnetic material, includes two added annular pole pieces forming part of its wall and whose internal surfaces have a thread corresponding to that of the screw. The two annular pole pieces are spaced axially from each other by an amount equal to an integral number of thread pitches. An external winding and magnetic armature associated to these pole pieces form the fixed magnetic nut. A multiphase non-synchronous motor is placed around the tube and near the nut, the stator is external, the rotor is the screw. An appliance for fixing the degree of axial displacement freedom of the screw can be provided [fr

  9. Transpedicular screw fixation in the thoracic and lumbar spine with a novel cannulated polyaxial screw system

    Directory of Open Access Journals (Sweden)

    Lutz Weise

    2008-10-01

    Full Text Available Lutz Weise, Olaf Suess, Thomas Picht, Theodoros KombosNeurochirurgische Klinik, Charité – Universitätsmedizin Berlin, Berlin, GermanyObjective: Transpedicular screws are commonly and successfully used for posterior fixation in spinal instability, but their insertion remains challenging. Even using navigation techniques, there is a misplacement rate of up to 11%. The aim of this study was to assess the accuracy of a novel pedicle screw system.Methods: Thoracic and lumbar fusions were performed on 67 consecutive patients for tumor, trauma, degenerative disease or infection. A total of 326 pedicular screws were placed using a novel wire-guided, cannulated, polyaxial screw system (XIA Precision®, Stryker. The accuracy of placement was assessed post operatively by CT scan, and the patients were followed-up clinically for a mean of 16 months.Results: The total medio-caudal pedicle wall perforation rate was 9.2% (30/326. In 19 of these 30 cases a cortical breakthrough of less than 2 mm occurred. The misplacement rate (defined as a perforation of 2 mm or more was 3.37% (11/326. Three of these 11 screws needed surgical revision due to neurological symptoms or CSF leakage. There have been no screw breakages or dislocations over the follow up-period.Conclusion: We conclude that the use of this cannulated screw system for the placement of pedicle screws in the thoracic and lumbar spine is accurate and safe. The advantages of this technique include easy handling without a time-consuming set up. Considering the incidence of long-term screw breakage, further investigation with a longer follow-up period is necessary.Keywords: spinal instrumentation, pedicle screws, misplacement, pedicle wall perforation

  10. Scaphoid Fracture Fixation with an Acutrak? Screw

    OpenAIRE

    Loving, Vilert A.; Richardson, Michael L.

    2015-01-01

    We report a case of fixation of a scaphoid fracture using an Acutrak? screw. This screw is cannulated and headless, which allows it to be implanted below the surface of the bone. It uses the same concept of variable thread pitch as the Herbert screw, but unlike the Herbert screw, is fully threaded, with continuously varying pitch along its length. This variable pitch creates constant compression across a fracture as the screw is advanced, and gives the screw its unique appearance. This featur...

  11. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Screw dislocations of laser speckle fields in interferograms with a circular line structure

    Science.gov (United States)

    Bobrov, B. D.

    1991-07-01

    Experimental results are used to show that circular interferograms are of interest in studies of screw dislocations of speckle-distorted laser beams because of a close correspondence between the symmetry of these interferograms and defects. The presence of dislocations transforms a system of the usual rings into a split network. Typical structure elements of such interferograms are right- and left-handed spirals connecting singular points of dislocations. Spiral fragments can be used in the diagnostics of dislocations regarded as independent defects. A method is suggested for the formation of highly directed optical beams with a low level of the usual aberrations, but with a complex phase surface topology. Screw dislocations are shown to be a natural analog of helical waves known in optics and capable of deliberate generation.

  12. Lattice strain in irradiated materials unveils a prevalent defect evolution mechanism

    Science.gov (United States)

    Debelle, Aurélien; Crocombette, Jean-Paul; Boulle, Alexandre; Chartier, Alain; Jourdan, Thomas; Pellegrino, Stéphanie; Bachiller-Perea, Diana; Carpentier, Denise; Channagiri, Jayanth; Nguyen, Tien-Hien; Garrido, Frédérico; Thomé, Lionel

    2018-01-01

    Modification of materials using ion beams has become a widespread route to improve or design materials for advanced applications, from ion doping for microelectronic devices to emulation of nuclear reactor environments. Yet, despite decades of studies, major issues regarding ion/solid interactions are not solved, one of them being the lattice-strain development process in irradiated crystals. In this work, we address this question using a consistent approach that combines x-ray diffraction (XRD) measurements with both molecular dynamics (MD) and rate equation cluster dynamics (RECD) simulations. We investigate four distinct materials that differ notably in terms of crystalline structure and nature of the atomic bonding. We demonstrate that these materials exhibit a common behavior with respect to the strain development process. In fact, a strain build-up followed by a strain relaxation is observed in the four investigated cases. The strain variation is unambiguously ascribed to a change in the defect configuration, as revealed by MD simulations. Strain development is due to the clustering of interstitial defects into dislocation loops, while the strain release is associated with the disappearance of these loops through their integration into a network of dislocation lines. RECD calculations of strain depth profiles, which are in agreement with experimental data, indicate that the driving force for the change in the defect nature is the defect clustering process. This study paves the way for quantitative predictions of the microstructure changes in irradiated materials.

  13. Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures.

    Science.gov (United States)

    Röderer, Götz; Scola, Alexander; Schmölz, Werner; Gebhard, Florian; Windolf, Markus; Hofmann-Fliri, Ladina

    2013-10-01

    Proximal humerus fracture fixation can be difficult because of osteoporosis making it difficult to achieve stable implant anchorage in the weak bone stock even when using locking plates. This may cause implant failure requiring revision surgery. Cement augmentation has, in principle, been shown to improve stability. The aim of this study was to investigate whether augmentation of particular screws of a locking plate aimed at a region of low bone quality is effective in improving stability in a proximal humerus fracture model. Twelve paired human humerus specimens were included. Quantitative computed tomography was performed to determine bone mineral density (BMD). Local bone quality in the direction of the six proximal screws of a standard locking plate (PHILOS, Synthes) was assessed using mechanical means (DensiProbe™). A three-part fracture model with a metaphyseal defect was simulated and fixed with the plate. Within each pair of humeri the two screws aimed at the region of the lowest bone quality according to the DensiProbe™ were augmented in a randomised manner. For augmentation, 0.5 ml of bone cement was injected in a screw with multiple outlets at its tip under fluoroscopic control. A cyclic varus-bending test with increasing upper load magnitude was performed until failure of the screw-bone fixation. The augmented group withstood significantly more load cycles. The correlation of BMD with load cycles until failure and BMD with paired difference in load cycles to failure showed that augmentation could compensate for a low BMD. The results demonstrate that augmentation of screws in locked plating in a proximal humerus fracture model is effective in improving primary stability in a cyclic varus-bending test. The augmentation of two particular screws aimed at a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality

  14. Parameters Affecting the Extraction Process of Jatropha Curcas Oil Using a Single Screw Extruder

    OpenAIRE

    Siregar, Ali Nurrakhmad; Ghani, Jaharah A; Che Haron, Che Hassan; Rizal, Muhammad

    2015-01-01

    The most commonly used technique to separate oil and cake from J. curcas seeds is mechanical extraction. It uses simple tools such as a piston and a screw extruder to produce high pressure, driven by hand or by engine. A single screw extruder has one screw rotating inside the barrel and materials simultaneously flow from the feed to the die zone. The highest oil yield can be obtained by a well-designed oil press as well as finding the optimum conditions for all parameters involved during the ...

  15. Stress corrosion cracking life estimation of hold-down spring screw for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Koh, S.K.

    2005-01-01

    Hold-down spring screw fractures due to primary water stress corrosion cracking were observed in nuclear fuel assemblies. The screw fastens hold-down springs that are required to maintain the nuclear fuel assembly in contact with upper core plate and permit thermal and irradiation-induced length changes. In order to investigate the primary causes of the screw fractures, the finite element stress analysis and fracture mechanics analysis were performed on the hold-down spring assembly. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded the yield strength of the screw material, resulting in local plastic deformation. Preloading on the screw applied for tightening had beneficial effects on the screw strength by reducing the stress level at the critical regions, compared to the screw without preload. Calculated deflections and strains at the hold-down springs using the finite element analysis were in very close agreements with the experimentally measured deflections and strains. Primary water stress corrosion cracking (PWSCC) life of the Inconel 600 screw was predicted by integrating the Scott's model and resulted in a life of 1.42 years, which was fairly close to the field experience. Cracks were expected to originate at the threaded region of the screw and propagated to the opposite side of the spring, which was confirmed by the fractographic analysis of the fractured screws. (orig.)

  16. Transmission electron microscopy of defects and internal fields in GaN structures

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, H

    2001-07-01

    The main aim of this study was to understand the microstructure of GaN and InGaN/GaN and to examine electric fields around the defects, and across the quantum wells by electron holography. For this reason different types of GaN and InGaN/GaN samples have been prepared and studied. Conventional transmission electron microscopy has been used for structural study of two MBE grown GaN/GaAs samples, grown at room temperature and at 340 deg C. The structure of the samples were found to be hexagonal polycrystalline in an amorphous GaN matrix, and textured hexagonal polycrystalline material respectively. The experimental results indicate that the higher growth temperature results in a more crystalline material with a higher density of bigger grain sizes. Different types of undoped and Si doped GaN/Sapphire samples were studied, with respect to the defect structure in GaN films. GaN was found to be a highly defective material with a dislocation density of 10{sup 9}/cm{sup 2}. The majority of the dislocations are edge dislocations. It has been found that nanopipes are open core screw dislocations, and the population and size of the nanopipes is proportional to the Si doping concentration. Dislocation structures were found to depend on the Si doping level in the material, with higher Si doping giving a lower density of dislocations with a more random distribution. In addition some EELS, EDX and HRTEM have been performed on the nanopipes and dislocations in order to investigate Si segregation in the defects. In MBE grown GaN/In{sub 0.1}Ga{sub 0.9}N/GaN SQWs and MQWs, V shaped defects were found to be present in the InGaN regions, which locally reduced the width of the InGaN layers. (author)

  17. Transmission electron microscopy of defects and internal fields in GaN structures

    International Nuclear Information System (INIS)

    Mokhtari, H.

    2001-07-01

    The main aim of this study was to understand the microstructure of GaN and InGaN/GaN and to examine electric fields around the defects, and across the quantum wells by electron holography. For this reason different types of GaN and InGaN/GaN samples have been prepared and studied. Conventional transmission electron microscopy has been used for structural study of two MBE grown GaN/GaAs samples, grown at room temperature and at 340 deg C. The structure of the samples were found to be hexagonal polycrystalline in an amorphous GaN matrix, and textured hexagonal polycrystalline material respectively. The experimental results indicate that the higher growth temperature results in a more crystalline material with a higher density of bigger grain sizes. Different types of undoped and Si doped GaN/Sapphire samples were studied, with respect to the defect structure in GaN films. GaN was found to be a highly defective material with a dislocation density of 10 9 /cm 2 . The majority of the dislocations are edge dislocations. It has been found that nanopipes are open core screw dislocations, and the population and size of the nanopipes is proportional to the Si doping concentration. Dislocation structures were found to depend on the Si doping level in the material, with higher Si doping giving a lower density of dislocations with a more random distribution. In addition some EELS, EDX and HRTEM have been performed on the nanopipes and dislocations in order to investigate Si segregation in the defects. In MBE grown GaN/In 0.1 Ga 0.9 N/GaN SQWs and MQWs, V shaped defects were found to be present in the InGaN regions, which locally reduced the width of the InGaN layers. (author)

  18. Geothermal ORC Systems Using Large Screw Expanders

    OpenAIRE

    Biederman, Tim R.; Brasz, Joost J.

    2014-01-01

    Geothermal ORC Systems using Large Screw Expanders Tim Biederman Cyrq Energy Abstract This paper describes a low-temperature Organic Rankine Cycle Power Recovery system with a screw expander a derivative of developed of Kaishan's line of screw compressors, as its power unit. The screw expander design is a modified version of its existing refrigeration compressor used on water-cooled chillers. Starting the ORC development program with existing refrigeration screw compre...

  19. Improving the API dissolution rate during pharmaceutical hot-melt extrusion I: Effect of the API particle size, and the co-rotating, twin-screw extruder screw configuration on the API dissolution rate.

    Science.gov (United States)

    Li, Meng; Gogos, Costas G; Ioannidis, Nicolas

    2015-01-15

    The dissolution rate of the active pharmaceutical ingredients in pharmaceutical hot-melt extrusion is the most critical elementary step during the extrusion of amorphous solid solutions - total dissolution has to be achieved within the short residence time in the extruder. Dissolution and dissolution rates are affected by process, material and equipment variables. In this work, we examine the effect of one of the material variables and one of the equipment variables, namely, the API particle size and extruder screw configuration on the API dissolution rate, in a co-rotating, twin-screw extruder. By rapidly removing the extruder screws from the barrel after achieving a steady state, we collected samples along the length of the extruder screws that were characterized by polarized optical microscopy (POM) and differential scanning calorimetry (DSC) to determine the amount of undissolved API. Analyses of samples indicate that reduction of particle size of the API and appropriate selection of screw design can markedly improve the dissolution rate of the API during extrusion. In addition, angle of repose measurements and light microscopy images show that the reduction of particle size of the API can improve the flowability of the physical mixture feed and the adhesiveness between its components, respectively, through dry coating of the polymer particles by the API particles. Copyright © 2014. Published by Elsevier B.V.

  20. Undertapping of Lumbar Pedicle Screws Can Result in Tapping With a Pitch That Differs From That of the Screw, Which Decreases Screw Pullout Force.

    Science.gov (United States)

    Bohl, Daniel D; Basques, Bryce A; Golinvaux, Nicholas S; Toy, Jason O; Matheis, Erika A; Bucklen, Brandon S; Grauer, Jonathan N

    2015-06-15

    Survey of spine surgeons and biomechanical comparison of screw pullout forces. To investigate what may be a suboptimal practice regularly occurring in spine surgery. In order for a tap to function in its intended manner, the pitch of the tap should be the same as the pitch of the screw. Undertapping has been shown to increase the pullout force of pedicle screws compared with line-to-line tapping. However, given the way current commercial lumbar pedicle screw systems are designed, undertapping may result in a tap being used that has a different pitch from that of the screw (incongruent pitch). A survey asked participants questions to estimate the proportion of cases each participant performed in the prior year using various hole preparation techniques. Participant responses were interpreted in the context of manufacturing specifications of specific instrumentation systems. Screw pullout forces were compared between undertapping with incongruent pitch and undertapping with congruent pitch using 0.16 g/cm polyurethane foam block and 6.5-mm screws. Of the 3679 cases in which participants reported tapping, participants reported line-to-line tapping in 209 cases (5%), undertapping with incongruent pitch in 1156 cases (32%), and undertapping with congruent pitch in 2314 cases (63%). The mean pullout force for undertapping with incongruent pitch was 56 N (8%) less than the mean pullout force for undertapping with congruent pitch. This is equivalent to 13 lb. This study estimates that for about 1 out of every 3 surgical cases with tapping of lumbar pedicle screws in the United States, hole preparation is being performed by undertapping with incongruent pitch. This study also shows that undertapping with incongruent pitch results in a decrease in pullout force by 8% compared with undertapping with congruent pitch. Steps should be taken to correct this suboptimal practice. 3.

  1. Production behavior of irradiation defects in solid breeder materials

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Hirotake; Moritani, Kimikazu [Kyoto Univ. (Japan)

    1998-03-01

    The irradiation effects in solid breeder materials are important for the performance assessment of fusion reactor blanket systems. For a clearer understanding of such effects, we have studied the production behavior of irradiation defects in some lithium ceramics by an in-situ luminescence measurement technique under ion beam irradiation. The luminescence spectra were measured at different temperatures, and the temperature-transient behaviors of luminescence intensity were also measured. The production mechanisms of irradiation defects were discussed on the basis of the observations. (author)

  2. Parameters Affecting the Extraction Process of Jatropha curcas Oil Using a Single Screw Extruder

    Directory of Open Access Journals (Sweden)

    Ali Nurrakhmad Siregar

    2015-07-01

    Full Text Available The most commonly used technique to separate oil and cake from J. curcas seeds is mechanical extraction. It uses simple tools such as a piston and a screw extruder to produce high pressure, driven by hand or by engine. A single screw extruder has one screw rotating inside the barrel and materials simultaneously flow from the feed to the die zone. The highest oil yield can be obtained by a well-designed oil press as well as finding the optimum conditions for all parameters involved during the extraction process. The influence of the parameters in a single screw extruder was studied using finite element analysis and computational fluid dynamics simulation with ANSYS POLYFLOW. The research focused on predicting the velocity, pressure and shear rate in the metering section that influenced the screw rotational speed and mass flow rate. The obtained results revealed that increasing the screw rotational speed will increase the pressure, velocity and shear rate. Meanwhile, increasing the mass flow rate results in decreasing the pressure while the velocity and shear rate remain constant.

  3. Observation of defects evolution in electronic materials

    Science.gov (United States)

    Jang, Jung Hun

    Advanced characterization techniques have been used to obtain a better understanding of the microstructure of electronic materials. The structural evolution, especially defects, has been investigated during the film growth and post-growth processes. Obtaining the relation between the defect evolution and growth/post-growth parameters is very important to obtain highly crystalline films. In this work, the growth and post-growth related defects in GaN, ZnO, strained-Si/SiGe films have been studied using several advanced characterization techniques. First of all, the growth of related defects in GaN and p-type ZnO films have been studied. The effect of growth parameters, such as growth temperature, gas flow rate, dopants used during the deposition, on the crystalline quality of the GaN and ZnO layers was investigated by high resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM). In GaN films, it was found that the edge and mixed type threading dislocations were the dominant defects so that the only relevant figure of merit (FOM) for the crystalline quality should be the FWHM value of o-RC of the surface perpendicular plane which could be determined by a grazing incidence x-ray diffraction (GIXD) technique as shown in this work. The understanding of the relationship between the defect evolution and growth parameters allowed for the growth of high crystalline GaN films. For ZnO films, it was found that the degree of texture and crystalline quality of P-doped ZnO films decreased with increasing the phosphorus atomic percent. In addition, the result from the x-ray diffraction line profile analysis showed that the 0.5 at % P-doped ZnO film showed much higher microstrain than the 1.0 at % P-doped ZnO film, which indicated that the phosphorus atoms were segregated with increasing P atomic percentage. Finally, post-growth related defects in strained-Si/SiGe films were investigated. Postgrowth processes used in this work included high temperature N2

  4. Research on metallic material defect detection based on bionic sensing of human visual properties

    Science.gov (United States)

    Zhang, Pei Jiang; Cheng, Tao

    2018-05-01

    Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.

  5. [Development of polyaxial locking plate screw system of sacroiliac joint].

    Science.gov (United States)

    Fan, Weijie; Xie, Xuesong; Zhou, Shuping; Zhang, Yonghu

    2014-09-01

    To develop an instrument for sacroiliac joint fixation with less injury and less complications. Firstly, 18 adult pelvic specimens (8 males and 10 females) were used to measure the anatomical data related to the locking plates and locking screws on the sacrum and ilium, and the polyaxial locking plate screw system of the sacroiliac joint was designed according to the anatomic data. This system was made of medical titanium alloy. Then 4 adult male plevic specimens were harvested and the experiment was divided into 3 groups: group A (normal pelvic), group B (the dislocated sacroiliac joint fixed with sacroiliac screws), and group C (the dislocated sacroiliac joint fixed with polyaxial locking plate screw system). The vertical displacement of sacroiliac joint under the condition of 0-700 N vertical load and the horizontal displacement on angle under the condition of 0-12 N·m torsional load were compared among the 3 groups by using the biological material test system. Finally, the simulated application test was performed on 1 adult male cadaveric specimen to observe soft tissue injury and the position of the locking plate and screw by X-ray films. According to the anatomic data of the sacrum and ilium, the polyaxial locking plate screw system of the sacroiliac joint was designed. The biomechanical results showed that the vertical displacement of the sacroiliac joint under the condition of 0-700 N vertical load in group A was significantly bigger than that in group B and group C (P 0.05). The horizontal displacement on angle under the condition of 0-12 N·m torsional load in group A was significantly less than that in group B and group C (P 0.05). The test of simulating application showed that the specimen suffered less soft tissue injury, and this instrument could be implanted precisely and safely. The polyaxial locking plate screw system of the sacroiliac joint has the advantages of smaller volume and less injury; polyaxial fixation enables flexible adjustment screw

  6. Mixing and transport during pharmaceutical twin-screw wet granulation: experimental analysis via chemical imaging.

    Science.gov (United States)

    Kumar, Ashish; Vercruysse, Jurgen; Toiviainen, Maunu; Panouillot, Pierre-Emmanuel; Juuti, Mikko; Vanhoorne, Valérie; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2014-07-01

    Twin-screw granulation is a promising continuous alternative for traditional batch high shear wet granulation (HSWG). The extent of HSWG in a twin screw granulator (TSG) is greatly governed by the residence time of the granulation materials in the TSG and degree of mixing. In order to determine the residence time distribution (RTD) and mixing in TSG, mostly visual observation and particle tracking methods are used, which are either inaccurate and difficult for short RTD, or provide an RTD only for a finite number of preferential tracer paths. In this study, near infrared chemical imaging, which is more accurate and provides a complete RTD, was used. The impact of changes in material throughput (10-17 kg/h), screw speed (500-900 rpm), number of kneading discs (2-12) and stagger angle (30-90°) on the RTD and axial mixing of the material was characterised. The experimental RTD curves were used to calculate the mean residence time, mean centred variance and the Péclet number to determine the axial mixing and predominance of convective over dispersive transport. The results showed that screw speed is the most influential parameter in terms of RTD and axial mixing in the TSG and established a significant interaction between screw design parameters (number and stagger angle of kneading discs) and the process parameters (material throughput and number of kneading discs). The results of the study will allow the development and validation of a transport model capable of predicting the RTD and macro-mixing in the TSG. These can later be coupled with a population balance model in order to predict granulation yields in a TSG more accurately. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Defects and impurities in silicon materials an introduction to atomic-level silicon engineering

    CERN Document Server

    Langouche, Guido

    2015-01-01

    This book emphasizes the importance of the fascinating atomistic insights into the defects and the impurities as well as the dynamic behaviors in silicon materials, which have become more directly accessible over the past 20 years. Such progress has been made possible by newly developed experimental methods, first principle theories, and computer simulation techniques. The book is aimed at young researchers, scientists, and technicians in related industries. The main purposes are to provide readers with 1) the basic physics behind defects in silicon materials, 2) the atomistic modeling as well as the characterization techniques related to defects and impurities in silicon materials, and 3) an overview of the wide range of the research fields involved.

  8. Measurement of Tip Apex Distance and Migration of Lag Screws and Novel Blade Screw Used for the Fixation of Intertrochanteric Fractures.

    Directory of Open Access Journals (Sweden)

    Jesse Chieh-Szu Yang

    Full Text Available Fixation with a dynamic hip screw (DHS is one of the most common methods for stabilizing intertrochanteric fractures, except for unstable and reverse oblique fracture types. However, failure is often observed in osteoporotic patients whereby the lag screw effectively 'cuts out' through the weak bone. Novel anti-migration blades have been developed to be used in combination with a lag screw ('Blade Screw' to improve the fixation strength in osteoporotic intertrochanteric fractures. An in-vitro biomechanical study and a retrospective clinical study were performed to evaluate lag screw migration when using the novel Blade Screw and a traditional threaded DHS. The biomechanical study showed both the Blade Screw and DHS displayed excessive migration (≥10 mm before reaching 20,000 loading cycles in mild osteoporotic bone, but overall migration of the Blade Screw was significantly less (p ≤ 0.03. Among the patients implanted with a Blade Screw in the clinical study, there was no significant variation in screw migration at 3-months follow-up (P = 0.12. However, the patient's implanted with a DHS did display significantly greater migration (P<0.001 than those implanted with the Blade Screw. In conclusion, the Blade Screw stabilizes the bone fragments during dynamic loading so as to provide significantly greater resistance to screw migration in patients with mild osteoporosis.

  9. Comparison of effectiveness between cork-screw and peg-screw electrodes for transcranial motor evoked potential monitoring using the finite element method.

    Science.gov (United States)

    Tomio, Ryosuke; Akiyama, Takenori; Ohira, Takayuki; Yoshida, Kazunari

    2016-01-01

    Intraoperative monitoring of motor evoked potentials by transcranial electric stimulation is popular in neurosurgery for monitoring motor function preservation. Some authors have reported that the peg-screw electrodes screwed into the skull can more effectively conduct current to the brain compared to subdermal cork-screw electrodes screwed into the skin. The aim of this study was to investigate the influence of electrode design on transcranial motor evoked potential monitoring. We estimated differences in effectiveness between the cork-screw electrode, peg-screw electrode, and cortical electrode to produce electric fields in the brain. We used the finite element method to visualize electric fields in the brain generated by transcranial electric stimulation using realistic three-dimensional head models developed from T1-weighted images. Surfaces from five layers of the head were separated as accurately as possible. We created the "cork-screws model," "1 peg-screw model," "peg-screws model," and "cortical electrode model". Electric fields in the brain radially diffused from the brain surface at a maximum just below the electrodes in coronal sections. The coronal sections and surface views of the brain showed higher electric field distributions under the peg-screw compared to the cork-screw. An extremely high electric field was observed under cortical electrodes. Our main finding was that the intensity of electric fields in the brain are higher in the peg-screw model than the cork-screw model.

  10. Assessment of Different Metal Screw Joint Parameters by Using Multiple Criteria Analysis Methods

    Directory of Open Access Journals (Sweden)

    Audrius Čereška

    2018-05-01

    Full Text Available This study compares screw joints made of different materials, including screws of different diameters. For that purpose, 8, 10, 12, 14, 16 mm diameter steel screws and various parts made of aluminum (Al, steel (Stl, bronze (Brz, cast iron (CI, copper (Cu and brass (Br are considered. Multiple criteria decision making (MCDM methods such as evaluation based on distance from average solution (EDAS, simple additive weighting (SAW, technique for order of preference by similarity to ideal solution (TOPSIS and complex proportional assessment (COPRAS are utilized to assess reliability of screw joints also considering cost issues. The entropy, criterion impact loss (CILOS and integrated determination of objective criteria weights (IDOCRIW methods are utilized to assess weights of decision criteria and find the best design alternative. Numerical results confirm the validity of the proposed approach.

  11. Non-perturbative embedding of local defects in crystalline materials

    International Nuclear Information System (INIS)

    Cances, Eric; Deleurence, Amelie; Lewin, Mathieu

    2008-01-01

    We present a new variational model for computing the electronic first-order density matrix of a crystalline material in the presence of a local defect. A natural way to obtain variational discretizations of this model is to expand the difference Q between the density matrix of the defective crystal and the density matrix of the perfect crystal, in a basis of precomputed maximally localized Wannier functions of the reference perfect crystal. This approach can be used within any semi-empirical or density functional theory framework

  12. Biomechanical competence of six different bone screws for reconstructive surgery in three different transplants: Fibular, iliac crest, scapular and artificial bone.

    Science.gov (United States)

    Pietsch, Arnold P; Raith, Stefan; Ode, Jan-Eric; Teichmann, Jan; Lethaus, Bernd; Möhlhenrich, Stephan C; Hölzle, Frank; Duda, Georg N; Steiner, Timm

    2016-06-01

    The goal of this study was to determine a combination of screw and transplantation type that offers optimal primary stability for reconstructive surgery. Fibular, iliac crest, and scapular transplants were tested along with artificial bone substrate. Six different kinds of bone screws (Medartis(©)) were compared, each type utilized with one of six specimens from human transplants (n = 6). Controlled screw-in-tests were performed and the required torque was protocolled. Subsequently, pull-out-tests were executed to determine the retention forces. The artificial bone substitute material showed significantly higher retention forces than real bone samples. The self-drilling screws achieved the significantly highest retention values in the synthetic bone substitute material. Cancellous screws achieved the highest retention in the fibular transplants, while self-drilling and cancellous screws demonstrated better retention than cortical screws in the iliac crest. In the scapular graft, no significant differences were found between the screw types. In comparison to the human transplant types, the cortical screws showed the significantly highest values in the fibula and the lowest values in the iliac crest. The best retention was found in the combination of cancellous screws with fibular graft (514.8 N + -252.3 N). For the flat bones (i.e., scapular and illiac crest) we recommend the cancellous screws. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study

    Directory of Open Access Journals (Sweden)

    Herrera Antonio

    2010-06-01

    Full Text Available Abstract Background Primary stability of the graft is essential in anterior cruciate ligament surgery. An optimal method of fixation should be easy to insert and provide great resistance against pull-out forces. A controlled laboratory study was designed to test the primary stability of ACL tendinous grafts in the tibial tunnel. The correlation between resistance to traction forces and the cross-section and length of the screw was studied. Methods The tibial phase of ACL reconstruction was performed in forty porcine tibias using digital flexor tendons of the same animal. An 8 mm tunnel was drilled in each specimen and two looped tendons placed as graft. Specimens were divided in five groups according to the diameter and length of the screw used for fixation. Wedge interference screws were used. Longitudinal traction was applied to the graft with a Servohydraulic Fatigue System. Load and displacement were controlled and analyzed. Results The mean loads to failure for each group were 295,44 N (Group 1; 9 × 23 screw, 564,05 N (Group 2; 9 × 28, 614,95 N (Group 3; 9 × 35, 651,14 N (Group 4; 10 × 28 and 664,99 (Group 5; 10 × 35. No slippage of the graft was observed in groups 3, 4 and 5. There were significant differences in the load to failure among groups (ANOVA/P Conclusions Longer and wider interference screws provide better fixation in tibial ACL graft fixation. Short screws (23 mm do not achieve optimal fixation and should be implanted only with special requirements.

  14. Bone properties of the humeral head and resistance to screw cutout

    DEFF Research Database (Denmark)

    Frich, L. H.; Jensen, N. C.

    2014-01-01

    Surgical treatment of fractures involving the proximal humeral head is hampered by complications. Screw cutout is the major pitfall seen in connection with rigid plating. We have exploited a bony explanation for this phenomenon. Materials and Methods: We examined the convex surface of the humeral...... sectioning technique. Results: The bone strength and bone density correlated well and revealed large regional variations across the humeral head. Bone strength and stiffness of the trabecular bone came to a maximum in the most medial anterior and central parts of the humeral head, where strong textural...... screw directions will predictably place screws in areas of the humeral head comprising low density and low strength cancellous bone. New concepts of plates and plating techniques for the surgical treatment of complex fractures of the proximal humerus should take bone distribution, strength...

  15. THE DESIGN, FABRICATION AND PRELIMINARY TESTING OF AN INDIGENOUS SINGLE SCREW EXTRUDER

    Directory of Open Access Journals (Sweden)

    FOLASAYO T. FAYOSE

    2017-10-01

    Full Text Available Developing countries including Nigeria have become dumping grounds of unserviceable and broken down imported machineries because of poor adaptation. Detailed study and design of machines to suit local conditions will prevent poor adaptation of imported machines and high initial costs. In this study, a single screw starch extruder was designed, fabricated and tested using locally available materials. The extruder is the dry type and it has 27.12 kg/s capacity, a compression ratio of 4.5: 1 and is powered by a 5.5 kW electric motor. It consists of a hopper, feeding screw, extruder screw rotating in a barrel and variable die, all made of stainless steel. A unit of the machine costs N 470, 390.00.00 as at April 2015. When used to process cassava flour, a maximum temperature of 114°C was attained through viscous dissipation, up to an actual screw speed of 98.96 rpm (1.65 Hz and extruder efficiency of 64%. Barrel temperature varied directly with extrusion time in a polynomial trend while actual extruder screw speed and efficiency varied inversely with extrusion time and it is best fitted with a polynomial trend.

  16. Comparison of open reduction versus minimally invasive surgical approaches on screw position in canine sacroiliac lag-screw fixation.

    Science.gov (United States)

    Déjardin, Loïc M; Marturello, Danielle M; Guiot, Laurent P; Guillou, Reunan P; DeCamp, Charles E

    2016-07-19

    To compare accuracy and consistency of sacral screw placement in canine pelves treated for sacroiliac luxation with open reduction and internal fixation (ORIF) or minimally invasive osteosynthesis (MIO) techniques. Unilateral sacroiliac luxations created experimentally in canine cadavers were stabilized with an iliosacral lag screw applied via ORIF or MIO techniques (n = 10/group). Dorsoventral and craniocaudal screw angles were measured using computed tomography multiplanar reconstructions in transverse and dorsal planes, respectively. Ratios between pilot hole length and sacral width (PL/SW-R) were obtained. Data between groups were compared statistically (p sacroiliac luxations provides more accurate and consistent sacral screw placement than ORIF. With proper techniques, iatrogenic neurological damage can be avoided with both techniques. The PL /SW-R, which relates to safe screw fixation, also demonstrates that screw penetration of at least 60% of the sacral width is achievable regardless of surgical approach. These findings, along with the limited dissection needed for accurate sacral screw placement, suggest that MIO of sacroiliac luxations is a valid alternative to ORIF.

  17. Customized Polymethyl Methacrylate Implants for the Reconstruction of Craniofacial Osseous Defects

    Directory of Open Access Journals (Sweden)

    André Luis Fernandes da Silva

    2014-01-01

    Full Text Available Craniofacial defects represent alterations in the anatomy and morphology of the cranial vault and the facial bones that potentially affect an individual’s psychological and social well-being. Although a variety of techniques and restorative procedures have been described for the reconstruction of the affected area, polymethyl methacrylate (PMMA, a biocompatible and nondegradable acrylic resin-based implant, is the most widely used alloplastic material for such craniomaxillofacial reconstruction. The aim of this study was to describe a technique for aesthetic and functional preoperative customized reconstruction of craniofacial bone defects from a small series of patients offered by the Brazilian public health system. Three adult male patients attended consultation with chief complaints directly related to their individual craniofacial bone defects. With the aid of multislice computed tomography scans and subsequent fabrication of the three-dimensional craniofacial prototype, custom-made PMMA implants were fabricated preoperatively. Under general anesthesia, with access to the craniofacial defects with a coronal approach, the PMMA implants were adapted and fixated to the facial skeleton with titanium plates and screws. Postoperative evaluation demonstrated uneventful recovery and an excellent aesthetic result. Customized prefabricated PMMA implants manufactured over the rapid prototyping models proved to be effective and feasible.

  18. Percutaneous anterior C1/2 transarticular screw fixation: salvage of failed percutaneous odontoid screw fixation for odontoid fracture

    OpenAIRE

    Wu, Ai-Min; Jin, Hai-Ming; Lin, Zhong-Ke; Chi, Yong-Long; Wang, Xiang-Yang

    2017-01-01

    Background The objective of this study is to investigate the outcomes and safety of using percutaneous anterior C1/2 transarticular screw fixation as a salvage technique for odontoid fracture if percutaneous odontoid screw fixation fails. Methods Fifteen in 108 odontoid fracture patients (planned to be treated by percutaneous anterior odontoid screw fixation) were failed to introduce satisfactory odontoid screw trajectory. To salvage this problem, we chose the percutaneous anterior C1/2 trans...

  19. Investigation of intrinsic defect magnetic properties in wurtzite ZnO materials

    Science.gov (United States)

    Fedorov, A. S.; Visotin, M. A.; Kholtobina, A. S.; Kuzubov, A. A.; Mikhaleva, N. S.; Hsu, Hua Shu

    2017-10-01

    Theoretical and experimental investigations of the ferromagnetism induced by intrinsic defects inside wurtzite zinc oxide structures are performed using magnetic field-dependent circular dichroism (MCD-H), direct magnetization measurement (M-H) by superconducting quantum interference device (SQUID) as well as by generalized gradient density functional theory (GGA-DFT). To investigate localized magnetic moments of bulk material intrinsic defects - vacancies, interstitial atoms and Frenkel defects, various-size periodic supercells are calculated. It is shown that oxygen interstitial atoms (Oi) or zinc vacancies (Znv) generate magnetic moments of 1,98 и 1,26 μB respectively, however, the magnitudes are significantly reduced when the distance between defects increases. At the same time, the magnetic moments of oxygen Frenkel defects are large ( 1.5-1.8 μB) and do not depend on the distance between the defects. It is shown that the origin of the induced ferromagnetism in bulk ZnO is the extra spin density on the oxygen atoms nearest to the defect. Also dependence of the magnetization of ZnO (10 1 ̅ 0) and (0001) thin films on the positions of Oi and Znv in subsurface layers were investigated and it is shown that the magnetic moments of both defects are significantly different from the values inside bulk material. In order to check theoretical results regarding the defect induced ferromagnetism in ZnO, two thin films doped by carbon (C) and having Zn interstitials and oxygen vacancies were prepared and annealed in vacuum and air, respectively. According to the MCD-H and M-H measurements, the film, which was annealed in air, exhibits a ferromagnetic behavior, while the other does not. One can assume annealing of ZnO in vacuum should create oxygen vacancies or Zn interstitial atoms. At that annealing of the second C:ZnO film in air leads to essential magnetization, probably by annihilation of oxygen vacancies, formation of interstitial oxygen atoms or zinc vacancies

  20. Defects in Cu(In,Ga)Se{sub 2} chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qing; Gunawan, Oki; Copel, Matthew; Reuter, Kathleen B; Chey, S Jay; Mitzi, David B [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States); Deline, Vaughn R [IBM Almaden Resesarch Center, San Jose, CA (United States)

    2011-10-15

    Understanding defects in Cu(In,Ga)(Se,S){sub 2} (CIGS), especially correlating changes in the film formation process with differences in material properties, photovoltaic (PV) device performance, and defect levels extracted from admittance spectroscopy, is a critical but challenging undertaking due to the complex nature of this polycrystalline compound semiconductor. Here we present a systematic comparative study wherein varying defect density levels in CIGS films were intentionally induced by growing CIGS grains using different selenium activity levels. Material characterization results by techniques including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and medium energy ion scattering indicate that this process variation, although not significantly affecting CIGS grain structure, crystal orientation, or bulk composition, leads to enhanced formation of a defective chalcopyrite layer with high density of indium or gallium at copper antisite defects ((In, Ga){sub Cu}) near the CIGS surface, for CIGS films grown with insufficient selenium supply. This defective layer or the film growth conditions associated with it is further linked with observed current-voltage characteristics, including rollover and crossover behavior, and a defect state at around 110 meV (generally denoted as the N1 defect) commonly observed in admittance spectroscopy. The impact of the (In, Ga){sub Cu} defects on device PV performance is also established. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Standard Waste Box Lid Screw Removal Option Testing

    International Nuclear Information System (INIS)

    Anast, Kurt Roy

    2016-01-01

    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  2. Standard Waste Box Lid Screw Removal Option Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  3. Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging.

    Science.gov (United States)

    Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas

    2014-04-01

    Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. Copyright © 2013 Elsevier B.V. All

  4. Misplaced Cervical Screws Requiring Reoperation.

    Science.gov (United States)

    Peterson, Jeremy C; Arnold, Paul M; Smith, Zachary A; Hsu, Wellington K; Fehlings, Michael G; Hart, Robert A; Hilibrand, Alan S; Nassr, Ahmad; Rahman, Ra'Kerry K; Tannoury, Chadi A; Tannoury, Tony; Mroz, Thomas E; Currier, Bradford L; De Giacomo, Anthony F; Fogelson, Jeremy L; Jobse, Bruce C; Massicotte, Eric M; Riew, K Daniel

    2017-04-01

    A multicenter, retrospective case series. In the past several years, screw fixation of the cervical spine has become commonplace. For the most part, this is a safe, low-risk procedure. While rare, screw backout or misplaced screws can lead to morbidity and increased costs. We report our experiences with this uncommon complication. A multicenter, retrospective case series was undertaken at 23 institutions in the United States. Patients were included who underwent cervical spine surgery from January 1, 2005, to December 31, 2011, and had misplacement of screws requiring reoperation. Institutional review board approval was obtained at all participating institutions, and detailed records were sent to a central data center. A total of 12 903 patients met the inclusion criteria and were analyzed. There were 11 instances of screw backout requiring reoperation, for an incidence of 0.085%. There were 7 posterior procedures. Importantly, there were no changes in the health-related quality-of-life metrics due to this complication. There were no new neurologic deficits; a patient most often presented with pain, and misplacement was diagnosed on plain X-ray or computed tomography scan. The most common location for screw backout was C6 (36%). This study represents the largest series to tabulate the incidence of misplacement of screws following cervical spine surgery, which led to revision procedures. The data suggest this is a rare event, despite the widespread use of cervical fixation. Patients suffering this complication can require revision, but do not usually suffer neurologic sequelae. These patients have increased cost of care. Meticulous technique and thorough knowledge of the relevant anatomy are the best means of preventing this complication.

  5. Are We Underestimating the Significance of Pedicle Screw Misplacement?

    Science.gov (United States)

    Sarwahi, Vishal; Wendolowski, Stephen F; Gecelter, Rachel C; Amaral, Terry; Lo, Yungtai; Wollowick, Adam L; Thornhill, Beverly

    2016-05-01

    A retrospective review of charts, x-rays (XRs) and computed tomography (CT) scans was performed. To evaluate the accuracy of pedicle screw placement using a novel classification system to determine potentially significant screw misplacement. The accuracy rate of pedicle screw (PS) placement varies from 85% to 95% in the literature. This demonstrates technical ability but does not represent the impact of screw misplacement on individual patients. This study quantifies the rate of screw misplacement on a per-patient basis to highlight its effect on potential morbidity. A retrospective review of charts, XRs and low-dose CT scans of 127 patients who underwent spinal fusion with pedicle screws for spinal deformity was performed. Screws were divided into four categories: screws at risk (SAR), indeterminate misplacements (IMP), benign misplacements (BMP), accurately placed (AP). A total of 2724 screws were placed in 127 patients. A total of 2396 screws were placed accurately (87.96%). A total of 247 screws (9.07%) were BMP, 52 (1.91%) were IMP, and 29 (1.06%) were considered SAR. Per-patient analysis showed 23 (18.11%) of patients had all screws AP. Thirty-five (27.56%) had IMP and 18 (14.17%) had SAR. Risk factor analysis showed smaller Cobb angles increased likelihood of all screws being AP. Sub-analysis of adolescent idiopathic scoliotic patients showed no curve or patient characteristic that correlated with IMP or SAR. Over 40% of patients had screws with either some/major concern. Overall reported screw misplacement is low, but it does not reflect the potential impact on patient morbidity. Per-patient analysis reveals more concerning numbers toward screw misplacement. With increasing pedicle screw usage, the number of patients with misplaced screws will likely increase proportionally. Better strategies need to be devised for evaluation of screw placement, including establishment of a national database of deformity surgery, use of intra-operative image guidance, and

  6. Tricortical cervical inter-body screw fixation.

    Directory of Open Access Journals (Sweden)

    Goel A

    1997-01-01

    Full Text Available A new tricortical method of screw implantation for anterior cervical interbody plate fixation is described. The screws are placed obliquely such that they engage the anterior cortex of the body and traverse through the cortices adjoining the disc space. By this method the screws not only hold the plate firmly with a tricortical purchase, but by virtue of their course stabilize the two adjoining vertebral bodies by themselves. Sixteen patients were treated by this method. In three of these cases only tricortical screws without the metal plate were used for fixation. The advantages of the technique are discussed.

  7. Accuracy of computer-assisted cervicle pedicle screw installation

    International Nuclear Information System (INIS)

    Zhang Honglei; Zhou Dongsheng; Jang Zhensong

    2009-01-01

    Objective: To investigate the accuracy of computer-assisted cervical pedicle screw installation and the reason of screw malposition. Methods: A total of 172 cervical pedicle screws were installed by computer-assisted navigation for 30 patients with lower cervical spinal diseases. All the patients were examined by X-ray and CT after operation. Screw's position and direction were measured on the sagittal and transectional images of intraoperative navigation and post-operative CT. Then linear regression analysis was taken between navigational and post-operative CT's images. Results: Two screws perforated the upper pedicle wall, 3 perforated the lateral pedicle wall.There was a positive linear correlation between navigational and post-operative CT's images. Conclusion: Computer-assisted navigation can provide the high accuracy of cervical pedicle screw installation and excursion phenomenon is reason of screw malposition. (authors)

  8. Degradation behaviour of LAE442-based plate–screw-systems in an in vitro bone model

    International Nuclear Information System (INIS)

    Wolters, Leonie; Besdo, Silke; Angrisani, Nina; Wriggers, Peter; Hering, Britta; Seitz, Jan-Marten; Reifenrath, Janin

    2015-01-01

    The use of absorbable implant materials for fixation after bone fracture helps to avoid a second surgery for implant removal and the risks and costs involved. Magnesium (Mg) is well known as a potential metallic material for degradable implants. The aim of the present in vitro study was to evaluate if degradable LAE442-based magnesium plate–screw-systems are suitable candidates for osteosynthesis implants in load-bearing bones. The corrosion behaviour was tested concerning the influence of different surface treatments, coatings and screw torques. Steel plates and screws of the same size served as control. Plates without special treatment screwed on up to a specified torque of 15 cNm or 7 cNm, NaOH treated plates (15 cNm), magnesium fluoride coated plates (15 cNm) and steel plates as control (15 cNm) were examined in pH-buffered, temperature-controlled SBF solution for two weeks. The experimental results indicate that the LAE442 plates and screws coated with magnesium fluoride revealed a lower hydrogen evolution in SBF solution as well as a lower weight loss and volume decrease in μ-computed tomography (μCT). The nanoindentation and SEM/EDX measurements at several plate areas showed no significant differences. Summarized, the different screw torques did not affect the corrosion behaviour differently. Also the NaOH treatment seemed to have no essential influence on the degradation kinetics. The plates coated with magnesium fluoride showed a decreased corrosion rate. Hence, it is recommended to consider this coating for the next in vivo study. - Highlights: • Mg-based plate screw systems were examined in an in vitro corrosion setup. • Different screw torques did not affect the corrosion behaviour. • Pretreatment with NaOH showed no increase in corrosion resistance. • Fluoride coating slowed down the corrosion rate of plates. • Fluoride coating might be an alternative for decrease of corrosion rate in vivo

  9. Degradation behaviour of LAE442-based plate–screw-systems in an in vitro bone model

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, Leonie [Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover (Germany); Besdo, Silke [Institute of Continuum Mechanics, Leibniz Universität Hannover, Appelstraße 11, 30167 Hannover (Germany); Angrisani, Nina [Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover (Germany); Wriggers, Peter [Institute of Continuum Mechanics, Leibniz Universität Hannover, Appelstraße 11, 30167 Hannover (Germany); Hering, Britta [Institute of Production Engineering and Machine Tools, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Seitz, Jan-Marten [Institute of Materials Science, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Reifenrath, Janin, E-mail: janin.reifenrath@tiho-hannover.de [Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover (Germany)

    2015-04-01

    The use of absorbable implant materials for fixation after bone fracture helps to avoid a second surgery for implant removal and the risks and costs involved. Magnesium (Mg) is well known as a potential metallic material for degradable implants. The aim of the present in vitro study was to evaluate if degradable LAE442-based magnesium plate–screw-systems are suitable candidates for osteosynthesis implants in load-bearing bones. The corrosion behaviour was tested concerning the influence of different surface treatments, coatings and screw torques. Steel plates and screws of the same size served as control. Plates without special treatment screwed on up to a specified torque of 15 cNm or 7 cNm, NaOH treated plates (15 cNm), magnesium fluoride coated plates (15 cNm) and steel plates as control (15 cNm) were examined in pH-buffered, temperature-controlled SBF solution for two weeks. The experimental results indicate that the LAE442 plates and screws coated with magnesium fluoride revealed a lower hydrogen evolution in SBF solution as well as a lower weight loss and volume decrease in μ-computed tomography (μCT). The nanoindentation and SEM/EDX measurements at several plate areas showed no significant differences. Summarized, the different screw torques did not affect the corrosion behaviour differently. Also the NaOH treatment seemed to have no essential influence on the degradation kinetics. The plates coated with magnesium fluoride showed a decreased corrosion rate. Hence, it is recommended to consider this coating for the next in vivo study. - Highlights: • Mg-based plate screw systems were examined in an in vitro corrosion setup. • Different screw torques did not affect the corrosion behaviour. • Pretreatment with NaOH showed no increase in corrosion resistance. • Fluoride coating slowed down the corrosion rate of plates. • Fluoride coating might be an alternative for decrease of corrosion rate in vivo.

  10. Comparison of Expansive Pedicle Screw and Polymethylmethacrylate-Augmented Pedicle Screw in Osteoporotic Sheep Lumbar Vertebrae: Biomechanical and Interfacial Evaluations

    OpenAIRE

    Liu, Da; Zhang, Yi; Zhang, Bo; Xie, Qing-yun; Wang, Cai-ru; Liu, Jin-biao; Liao, Dong-fa; Jiang, Kai; Lei, Wei; Pan, Xian-ming

    2013-01-01

    BACKGROUND: It was reported that expansive pedicle screw (EPS) and polymethylmethacrylate-augmented pedicle screw (PMMA-PS) could be used to increase screw stability in osteoporosis. However, there are no studies comparing the two kinds of screws in vivo. Thus, we aimed to compare biomechanical and interfacial performances of EPS and PMMA-PS in osteoporotic sheep spine. METHODOLOGY/PRINCIPAL FINDINGS: After successful induction of osteoporotic sheep, lumbar vertebrae in each sheep were random...

  11. Novel free-hand T1 pedicle screw method: Review of 44 consecutive cases

    Directory of Open Access Journals (Sweden)

    Mark A Rivkin

    2014-01-01

    Full Text Available Summary of Background Data: Multilevel posterior cervical instrumented fusions are becoming more prevalent in current practice. Biomechanical characteristics of the cervicothoracic junction may necessitate extending the construct to upper thoracic segments. However, fixation in upper thoracic spine can be technically demanding owing to transitional anatomy while suboptimal placement facilitates vascular and neurologic complications. Thoracic instrumentation methods include free-hand, fluoroscopic guidance, and CT-based image guidance. However, fluoroscopy of upper thoracic spine is challenging secondary to vertebral geometry and patient positioning, while image-guided systems present substantial financial commitment and are not readily available at most centers. Additionally, imaging modalities increase radiation exposure to the patient and surgeon while potentially lengthening surgical time. Materials and Methods: Retrospective review of 44 consecutive patients undergoing a cervicothoracic fusion by a single surgeon using the novel free-hand T1 pedicle screw technique between June 2009 and November 2012. A starting point medial and cephalad to classic entry as well as new trajectory were utilized. No imaging modalities were employed during screw insertion. Postoperative CT scans were obtained on day 1. Screw accuracy was independently evaluated according to the Heary classification. Results: In total, 87 pedicle screws placed were at T1. Grade 1 placement occurred in 72 (82.8% screws, Grade 2 in 4 (4.6% screws and Grade 3 in 9 (10.3% screws. All Grade 2 and 3 breaches were <2 mm except one Grade 3 screw breaching 2-4 mm laterally. Only two screws (2.3% were noted to be Grade 4, both breaching medially by less than 2 mm. No new neurological deficits or returns to operating room took place postoperatively. Conclusions: This modification of the traditional starting point and trajectory at T1 is safe and effective. It attenuates additional bone

  12. Applications of pulsed Eddy Current (PEC) technique on defect and material assessment

    International Nuclear Information System (INIS)

    Nurul A'in Ahmad Latif; Noorhazleena Azaman; Ilham Mukriz Zainal Abidin

    2014-01-01

    The pulsed eddy current (PEC) is an emerging electromagnetic method and widely used in multiple field including aerospace, petrochemical, industry and transportation. PEC mainly depends on the multiple variables such as peak value and rising time to detect and quantify the defects. Apart of its advantage as non contacting technique, it has ability on conducting surface and subsurface detection. Additionally, PEC is high sensitive to variety parameters that are inherent in the flaws. Compare to conventional eddy current, PEC allows deeper penetration as it is a combination from multiple frequencies. This paper demonstrates the abilities of PEC technique performing multiple testing in various fields such as conducting conductivity testing, measuring the material thickness and identifying depth of the defects. The conductivity testing will be performed on multiple materials such as aluminium, stainless steel, copper, austenitic steel and titanium. To measure the material thicknesses, PEC testing will be conducted on the multi layered specimen with the different thickness. Meanwhile to identify depth of defects, the testing will be carried out using a stainless steel calibration block contains multiple length of defect. For the validation purposes, all the results generate through the experiments will be compared with simulation results produced using dedicated software, COMSOL. (author)

  13. Simple Technique for Removing Broken Pedicular Screws

    Directory of Open Access Journals (Sweden)

    A Agrawal

    2014-03-01

    Full Text Available The procedure for removing a broken pedicle screw should ideally be technically easy and minimally invasive, as any damage to the pedicle, during removal of the broken screw, may weaken the pedicle, thus compromising on the success of re-instrumentation. We describe the case of a 32-year old man who had undergone surgery for traumatic third lumbar vertebral body fracture three years prior to current admission and had developed the complication of pedicle screw breakage within the vertebral body. The patient underwent re-exploration and removal of the distal screws. Through a paravertebral incision and muscle separation, the screws and rods were exposed and the implants were removed.

  14. Ability of multiaxial fatigue criteria accounting for stress gradient effect for surface defective material

    Directory of Open Access Journals (Sweden)

    Niamchaona Wichian

    2018-01-01

    Full Text Available New high strength steels are widely used nowadays in many industrial areas as in automotive industry. These steels are more resistant and provide higher fatigue limits than latter ones but they are also more sensible to small defects. Natural defects that outcome from metallurgy (as shrinkage, inclusion, void are not considered in this study. We focus on small manufacturing defects such as cutting edge defects generated by punching or other surface defects due to stamping. These defects are harmful on the material fatigue behaviour due to high stress concentration at defects root. They also generate stress gradient that is beneficial from the fatigue strength point of view. This study focusses on the stress gradient (it does not account for the size effect from cylindrical defect on specimen edge. Practically a normal stress gradient is added in multiaxial fatigue criteria formulation. Both critical plane approach and integral approach are involved in the present study. This gradient is calculated from stress states at defects root by using FEM. Criteria fatigue function at N cycles is used to assess the material fatigue strength. Obviously multiaxial fatigue criteria accounting for stress gradient give more precise fatigue functions than criteria that do not consider the gradient influence.

  15. Evaluation of the Structural Safety of a Vessel with Different Material(Cr-13)-Supplemented Screw Thread

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Hoon; Bae, Jun Ho; Kim, Chul [Pusan National University, Busan (Korea, Republic of)

    2015-04-15

    The dome and neck part of a vessel is generally formed by a hot spinning process with a seamless tube. However, as studies on and design data from the hot spinning process are insufficient, this process has been performed based on trial and error and the experiences of field engineers. Changes in the inner diameter from the bottom to the top of the neck have occurred mainly because of the characteristics of the hot spinning process due to the high-speed rotation of the rollers. In this study, a theoretical and finite element analysis of the vessel is conducted with different material(Cr-13)-supplemented screw threads for tapping and to reduce shape errors. Based on the results, the structural safety under the operating conditions is evaluated.

  16. Utilization of Additive Manufacturing in Evaluating the Performance of Internally Defected Materials

    Science.gov (United States)

    Mourad, A.-H. I.; Ghazal, A. M.; Syam, M. M.; Qadi, O. D. Al; Jassmi, H. Al

    2018-05-01

    The elimination of internal defects in a material present in the raw material or generated during the manufacturing or service is difficult. The inclusions of the defects have an adverse effect on the load bearing capacity. The presence of the cracks subjected to a specific orientation in materials or machinery can cause devastating unexpected failure during operation. Analysis of the failure in the components with cracks is more confined to analytical and numerical evaluation. The experimental evaluation has been tedious due to the complexity of replicating the actual defected component. The potential of additive manufacturing in developing user-defined components with cracks for the experimental evaluation is explored in this research. The present research investigated the effect of the internal elliptical cracks aligned at different orientations on the mechanical performance of polylactic acid (Green filament). The Fusion Deposition Method was utilized for the development of the standard tensile specimens with internal elliptical crack oriented at 0°, 45° and 90° using UltiMaker 2. The results proved that there is a considerable reduction in the load bearing capacity due to the presence of the cracks. The maximum load bearing capacity decreased by 15.01% for the specimen with crack inclined at 0° to the lateral axis compared to crack- free specimen. The nature of the fracture and the stress-strain graph evidently showcase the brittle nature of the material. The SEM image of the fractured region proved the phenomenal characteristics such as strong adhesion between the layers and the proper material flow. In the light of the results of this work, it can be concluded that the 3-D printing methodology is effective for evaluating the mechanical performance of the internally defected material.

  17. Screw piles for cold climate foundations

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.; Sakr, M. [Almita Manufacturing Ltd., Edmonton, AB (Canada)

    2008-07-01

    Almita Manufacturing is an Alberta-based company that designs and builds screw piles with its own installation teams. It also engineers and supplies piles to numerous other companies and independent installers. The company services industries such as oil and gas; power transmission and distribution; and commercial construction. This presentation discussed the design and technical aspects of screw piles. A screw pile was defined as a steel pipe shaft with a 45 degree cut at the bottom and a formed helical plate welded to the outside of the pipe near the base and at a selected point on the shaft. The pile is screwed into the ground with a planetary drive head of suitable torque rating. The helical plate or helix helps facilitate the installation of the pile and gives the screw pile increased bearing capacity and pull-out resistance over a traditional straight-shaft pile. Screw piles were compared against cast in place concrete piles and steel driven piles. Screw piles were reported to have no tailings; no concrete curing time; no rebar, anchor belts, and no liners; and no dewatering. Screw piles can also be installed in all types of weather. Rhe Cree Burn Camp case study near Fort McMurray, Alberta was also presented. This residential camp and recreation complex consists of pre-fabricated units that make up three storey housing buildings and a single floor multi-use building. The case study provided information on soil; design parameter inputs; load testing program and pile configuration; geotechnical and structural design results; compression load test arrangement; pile test setup; and test results. The presentation also discussed fabrication as well as installation equipment. Various applications were also presented through a series of project pictures. Last, the presentation provided a simple cost analysis. tabs., figs.

  18. Using three-dimensional rapid prototyping in the design and development of orthopaedic screws in standardised pull-out tests.

    Science.gov (United States)

    Leslie, Laura Jane; Connolly, Ashley; Swadener, John G; Junaid, Sarah; Theivendran, Kanthan; Deshmukh, Subodh C

    2018-05-01

    The majority of orthopaedic screws are designed, tested and manufactured by existing orthopaedics companies and are predominantly developed with healthy bone in mind. The timescales and costs involved in the development of a new screw design, for example, for osteoporotic bone, are high. In this study, standard wood screws were used to analyse the concept of using three-dimensional printing, or rapid prototyping, as a viable stage of development in the design of a new bone screw. Six wood screws were reverse engineered and printed in polymeric material using stereolithography. Three of the designs were also printed in Ti6Al4V using direct metal laser sintering; however, these were not of sufficient quality to test further. Both the original metal screws (metal) and polymeric rapid prototyping screws were then tested using standard pull-out tests from low-density polyurethane blocks (Sawbones). Results showed the highest pull-out strengths for screws with the longest thread length and the smallest inner diameter. Of the six screw designs tested, five showed no more than a 17% variance between the metal and rapid prototyping results. A similar pattern of results was shown between the screw designs for both the metal and rapid prototyping screws in five of the six cases. While not producing fully comparable pull-out results to orthopaedic screws, the results from this study do provide evidence of the potential usefulness and cost-effectiveness of rapid prototyping in the early stages of design and testing of orthopaedic screws.

  19. Intra-operative computer navigation guided cervical pedicle screw insertion in thirty-three complex cervical spine deformities

    Directory of Open Access Journals (Sweden)

    S Rajasekaran

    2010-01-01

    Full Text Available Background: Cervical pedicle screw fixation is challenging due to the small osseous morphometrics and the close proximity of neurovascular elements. Computer navigation has been reported to improve the accuracy of pedicle screw placement. There are very few studies assessing its efficacy in the presence of deformity. Also cervical pedicle screw insertion in children has not been described before. We evaluated the safety and accuracy of Iso-C 3D-navigated pedicle screws in the deformed cervical spine. Materials and Methods: Thirty-three patients including 15 children formed the study group. One hundred and forty-five cervical pedicle screws were inserted using Iso-C 3D-based computer navigation in patients undergoing cervical spine stabilization for craniovertebral junction anomalies, cervico-thoracic deformities and cervical instabilities due to trauma, post-surgery and degenerative disorders. The accuracy and containment of screw placement was assessed from postoperative computerized tomography scans. Results: One hundred and thirty (89.7% screws were well contained inside the pedicles. Nine (6.1% Type A and six (4.2% Type B pedicle breaches were observed. In 136 levels, the screws were inserted in the classical description of pedicle screw application and in nine deformed vertebra, the screws were inserted in a non-classical fashion, taking purchase of the best bone stock. None of them had a critical breach. No patient had any neurovascular complications. Conclusion: Iso-C navigation improves the safety and accuracy of pedicle screw insertion and is not only successful in achieving secure pedicle fixation but also in identifying the best available bone stock for three-column bone fixation in altered anatomy. The advantages conferred by cervical pedicle screws can be extended to the pediatric population also.

  20. Experimental Investigation into Pull-Out Strength of Foamed Concrete Using Different Types of Screw

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available This study focuses on the results of the comprehensive strength test to quantify the mechanical properties of the screw’s pullout strength on foamed concrete. Foamed concrete is classified as lightweight concrete that been produced by cement paste or mortar in which air-voids are entrapped in the mortar by a suitable foaming agent. These days, the use of foamed concrete has been recognized in the construction industry as wall blocks, wall panels and also material floor and roof screeds. Hence, the applications of this material should be maximized as it is multi-functional. As we know, the use of screws on the wall or ceiling is common in a building. The objective of this research is to examine and determine the pullout strength of various properties and types of screws in lightweight foamed concrete with various densities that may depict the best result of the pullout strength on foamed concrete. To visualize the different results of pullout strength, screws with and without wall plug will be used as well. The pullout strength will be tested using the Universal Testing Machine where it shall measure the ultimate load of the screws attached to the foamed concrete may resist.

  1. Complications of syndesmotic screw removal

    NARCIS (Netherlands)

    T. Schepers (Tim); E.M.M. van Lieshout (Esther); M.R. de Vries (Mark); M. van der Elst (Maarten)

    2011-01-01

    textabstractBackground: Currently, the metallic syndesmotic screw is the gold standard in the treatment of syndesmotic disruption. Whether or not this screw needs to be removed remains debatable. The aim of the current study was to determine the complications which occur following routine removal of

  2. Direct repair of defects in lumbar spondylolysis with a new pedicle screw hook fixation: clinical, functional and Ct-assessed study

    Science.gov (United States)

    Troussel, Serge

    2007-01-01

    good” to “excellent’ in 73% and fusion of the defect was discovered in 82% of cases. Eight of them (73%) had moderate disk signal modification before the surgery. All people with fair results displayed moderate disk degeneration signs at MRI before surgery; but two of those three patients had a failure of defect consolidation too and it is also associated with poor results by several authors. No complication was found in this series. According to the good results reported by Louis and upto the current finding, the authors believe that pars interarticularis repair can be carried out on patients with moderate degenerative disk disease; the stage 3 of Pfirrmann’s classification seems a good limit. The Bone and joint research (B.J.R. system) is readily usable by any surgeon using pedicle screw systems and having a short learning curve. No device failure has been observed in this series. PMID:17520298

  3. Degradation behaviour of LAE442-based plate-screw-systems in an in vitro bone model.

    Science.gov (United States)

    Wolters, Leonie; Besdo, Silke; Angrisani, Nina; Wriggers, Peter; Hering, Britta; Seitz, Jan-Marten; Reifenrath, Janin

    2015-04-01

    The use of absorbable implant materials for fixation after bone fracture helps to avoid a second surgery for implant removal and the risks and costs involved. Magnesium (Mg) is well known as a potential metallic material for degradable implants. The aim of the present in vitro study was to evaluate if degradable LAE442-based magnesium plate-screw-systems are suitable candidates for osteosynthesis implants in load-bearing bones. The corrosion behaviour was tested concerning the influence of different surface treatments, coatings and screw torques. Steel plates and screws of the same size served as control. Plates without special treatment screwed on up to a specified torque of 15cNm or 7cNm, NaOH treated plates (15cNm), magnesium fluoride coated plates (15cNm) and steel plates as control (15cNm) were examined in pH-buffered, temperature-controlled SBF solution for two weeks. The experimental results indicate that the LAE442 plates and screws coated with magnesium fluoride revealed a lower hydrogen evolution in SBF solution as well as a lower weight loss and volume decrease in μ-computed tomography (μCT). The nanoindentation and SEM/EDX measurements at several plate areas showed no significant differences. Summarized, the different screw torques did not affect the corrosion behaviour differently. Also the NaOH treatment seemed to have no essential influence on the degradation kinetics. The plates coated with magnesium fluoride showed a decreased corrosion rate. Hence, it is recommended to consider this coating for the next in vivo study. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Motion of Defect Clusters and Dislocations at a Crack Tip of Irradiated Material

    International Nuclear Information System (INIS)

    Moon, Won Jin; Kwon, Sang Chul; Kim, Whung Whoe

    2007-01-01

    Effects of defect clusters on mechanical properties of irradiated materials have not been clarified until now. Two radiation hardening models have been proposed. One is a dispersed barrier hardening mechanism based on the Orowan hardening model. This explains defect clusters as barriers to a dislocation motion. Generally the dislocation would rather shear or remove the defect clusters than make so-called Orowan loops. And the other is a cascade induced source hardening mechanism, which explains defect clusters as a Cottrell atmosphere for dislocation motions. However, the above mechanisms can not explain the microstructure of deformed material after irradiation and the phenomenon of yield softening. These mechanisms are based on an immobility of clusters. But we observed defect clusters could move into a specific crystallographic direction easily. Through 3 times of High Voltage Electron Microscope analysis, defect clusters have been observed to make one dimensional motion without applied external stress. If very small defect clusters could move under a stress gradient due to interactions between clusters, we can suggest that the clusters will move more actively when a stress gradient is applied externally. In-situ tensile test at TEM, we confirmed that kind of motion. We suggest defect clusters can move into crack tip, a stress-concentrated area due to tensile stress gradient and dislocations move out from the area by shear stress. Therefore radiation hardening can be explained agglomeration of defect clusters at stress concentrated area prohibits a generation of dislocation and make an increase of yield point

  5. Dual-worm screw compressors; Compresseurs bi-vis

    Energy Technology Data Exchange (ETDEWEB)

    Baleydier, J P [Bitzer France, 69 - Lyon (France)

    1998-12-31

    Low power worm-screw moto-compressors are used in any king of refrigerating machineries and more and more in air conditioning systems. This paper presents the principle of dual-screw moto-compressors: worm-screw technology, role of oil (lubrication, tightness, cooling), compression, internal pressure, power reduction, lubrication, economizer, operation, model selection and accessories. (J.S.)

  6. Dual-worm screw compressors; Compresseurs bi-vis

    Energy Technology Data Exchange (ETDEWEB)

    Baleydier, J.P. [Bitzer France, 69 - Lyon (France)

    1997-12-31

    Low power worm-screw moto-compressors are used in any king of refrigerating machineries and more and more in air conditioning systems. This paper presents the principle of dual-screw moto-compressors: worm-screw technology, role of oil (lubrication, tightness, cooling), compression, internal pressure, power reduction, lubrication, economizer, operation, model selection and accessories. (J.S.)

  7. Enhanced biocompatibility and osseointegration of calcium titanate coating on titanium screws in rabbit femur.

    Science.gov (United States)

    Wang, Zi-Li; He, Rong-Zhen; Tu, Bin; Cao, Xu; He, Jin-Shen; Xia, Han-Song; Liang, Chi; Zou, Min; Wu, Song; Wu, Zhen-Jun; Xiong, Kun

    2017-06-01

    This study aimed to examine the biocompatibility of calcium titanate (CaTiO 3 ) coating prepared by a simplified technique in an attempt to assess the potential of CaTiO 3 coating as an alternative to current implant coating materials. CaTiO 3 -coated titanium screws were implanted with hydroxyapatite (HA)-coated or uncoated titanium screws into medial and lateral femoral condyles of 48 New Zealand white rabbits. Imaging, histomorphometric and biomechanical analyses were employed to evaluate the osseointegration and biocompatibility 12 weeks after the implantation. Histology and scanning electron microscopy revealed that bone tissues surrounding the screws coated with CaTiO 3 were fully regenerated and they were also well integrated with the screws. An interfacial fibrous membrane layer, which was found in the HA coating group, was not noticeable between the bone tissues and CaTiO 3 -coated screws. X-ray imaging analysis showed in the CaTiO 3 coating group, there was a dense and tight binding between implants and the bone tissues; no radiation translucent zone was found surrounding the implants as well as no detachment of the coating and femoral condyle fracture. In contrast, uncoated screws exhibited a fibrous membrane layer, as evidenced by the detection of a radiation translucent zone between the implants and the bone tissues. Additionally, biomechanical testing revealed that the binding strength of CaTiO 3 coating with bone tissues was significantly higher than that of uncoated titanium screws, and was comparable to that of HA coating. The study demonstrated that CaTiO 3 coating in situ to titanium screws possesses great biocompatibility and osseointegration comparable to HA coating.

  8. the screw-conveyor vane design for piece-wise construction

    African Journals Online (AJOL)

    Dr Obe

    Summary. One of the long-used methods of conveying granular, Powdery or slurry material is by the screw conveyor. This method of transport is well suited to some at the needs of local processing Industries based on such local produce as millet, maize, cocoa-beans, rice, palm-kernels. The spiral vanes of such conveyors ...

  9. Calculating Characteristics of the Screws with Constant And Variable Step

    Directory of Open Access Journals (Sweden)

    B. N. Zotov

    2015-01-01

    Full Text Available This work is devoted to creating a technique for calculating power characteristics of the screws with constant and variable step for the centrifugal pumps. The technique feature is that the reverse currents, which are observed in screws working at low flow, are numerically taken into account. The paper presents a diagram of the stream in the screw with flow to the network Q=0, and the static pressure of the screw in this mode is computed according to reverse current parameters. Maximum flow of screw is determined from the known formulas. When calculating the power characteristics and computing the overall efficiency of the screw, for the first time a volumetric efficiency of the screw is introduced. It is defined as a ratio between the flow into the network and the sum of the reverse current flows and a flow into the network. This approach allowed us to determine the efficiency of the screw over the entire range of flows.A comparison of experimental characteristics of the constant step screw with those of calculated by the proposed technique shows their good agreement.The technique is also used in calculating characteristics of the variable step screws. The variable step screw is considered as a screw consisting of two screws with a smooth transition of the blades from the inlet to the outlet. Screws in which the step at the inlet is less than that of at the outlet as well as screws with the step at the inlet being more than that of at the outlet were investigated. It is shown that a pressure of the screw with zero step and the value of the reverse currents depend only on the parameters of the input section of the screw, and the maximum flow, if the step at the inlet is more than the step at the outlet, is determined by the parameters of the output part of the screw. Otherwise, the maximum flow is determined a little bit differently.The paper compares experimental characteristics with characteristics calculated by the technique for variable step

  10. A Novel Pedicle Screw with Mobile Connection: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Yasuaki Tokuhashi

    2014-01-01

    Full Text Available To prevent adjacent disc problems after spinal fusion, a pedicle screw with a mobile junction between the head and threaded shaft was newly developed. The threaded shaft of the screw has 10 degrees mobility in all directions, but its structure is to prevent abnormal translation and tilting. This screw was evaluated as follows: (1 endurance test: 106 times rotational stress was applied; (2 biological reactions: novel screws with a mobile head and conventional screws with a fixed head were inserted into the bilateral pedicles of the L3, L4, and L5 in two mini pigs with combination. Eight months after surgery, vertebral units with the screw rod constructs were collected. After CT scan, the soft and bony tissues around the screws were examined grossly and histologically. As a result, none of the screws broke during the endurance test stressing. The mean amount of abrasion wear was 0.0338 g. In the resected mini pig section, though zygapophyseal joints between fixed-head screws showed bony union, the amount of callus in the zygapophyseal joints connected with mobile-head screws was small, and joint space was confirmed by CT. No metalloses were noted around any of the screws. Novel screws were suggested to be highly durable and histologically safe.

  11. Minimally Invasive Technique for PMMA Augmentation of Fenestrated Screws

    Directory of Open Access Journals (Sweden)

    Jan-Helge Klingler

    2015-01-01

    Full Text Available Purpose. To describe the minimally invasive technique for cement augmentation of cannulated and fenestrated screws using an injection cannula as well as to report its safety and efficacy. Methods. A total of 157 cannulated and fenestrated pedicle screws had been cement-augmented during minimally invasive posterior screw-rod spondylodesis in 35 patients from January to December 2012. Retrospective evaluation of cement extravasation and screw loosening was carried out in postoperative plain radiographs and thin-sliced triplanar computed tomography scans. Results. Twenty-seven, largely prevertebral cement extravasations were detected in 157 screws (17.2%. None of the cement extravasations was causing a clinical sequela like a new neurological deficit. One screw loosening was noted (0.6% after a mean follow-up of 12.8 months. We observed no cementation-associated complication like pulmonary embolism or hemodynamic insufficiency. Conclusions. The presented minimally invasive cement augmentation technique using an injection cannula facilitates convenient and safe cement delivery through polyaxial cannulated and fenestrated screws during minimally invasive screw-rod spondylodesis. Nevertheless, the optimal injection technique and design of fenestrated screws have yet to be identified. This trial is registered with German Clinical Trials DRKS00006726.

  12. Insertion profiles of 4 headless compression screws.

    Science.gov (United States)

    Hart, Adam; Harvey, Edward J; Lefebvre, Louis-Philippe; Barthelat, Francois; Rabiei, Reza; Martineau, Paul A

    2013-09-01

    In practice, the surgeon must rely on screw position (insertion depth) and tactile feedback from the screwdriver (insertion torque) to gauge compression. In this study, we identified the relationship between interfragmentary compression and these 2 factors. The Acutrak Standard, Acutrak Mini, Synthes 3.0, and Herbert-Whipple implants were tested using a polyurethane foam scaphoid model. A specialized testing jig simultaneously measured compression force, insertion torque, and insertion depth at half-screw-turn intervals until failure occurred. The peak compression occurs at an insertion depth of -3.1 mm, -2.8 mm, 0.9 mm, and 1.5 mm for the Acutrak Mini, Acutrak Standard, Herbert-Whipple, and Synthes screws respectively (insertion depth is positive when the screw is proud above the bone and negative when buried). The compression and insertion torque at a depth of -2 mm were found to be 113 ± 18 N and 0.348 ± 0.052 Nm for the Acutrak Standard, 104 ± 15 N and 0.175 ± 0.008 Nm for the Acutrak Mini, 78 ± 9 N and 0.245 ± 0.006 Nm for the Herbert-Whipple, and 67 ± 2N, 0.233 ± 0.010 Nm for the Synthes headless compression screws. All 4 screws generated a sizable amount of compression (> 60 N) over a wide range of insertion depths. The compression at the commonly recommended insertion depth of -2 mm was not significantly different between screws; thus, implant selection should not be based on compression profile alone. Conically shaped screws (Acutrak) generated their peak compression when they were fully buried in the foam whereas the shanked screws (Synthes and Herbert-Whipple) reached peak compression before they were fully inserted. Because insertion torque correlated poorly with compression, surgeons should avoid using tactile judgment of torque as a proxy for compression. Knowledge of the insertion profile may improve our understanding of the implants, provide a better basis for comparing screws, and enable the surgeon to optimize compression. Copyright

  13. Bremsstrahlung Based Positron Annihilation Spectroscopy for Material Defect Analysis

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, F.; Kwofie, J.; Lancaster, G.; Jones, J.L.

    2003-01-01

    The Idaho Accelerator Center (IAC) has developed new techniques for Positron Annihilation Spectroscopy (PAS) using highly penetrating γ-rays to create positrons inside the material via pair production. γ-Ray induced positron annihilation spectroscopy can provide highly penetrating probes for material characterization and defect analysis. Bremsstrahlung beams from small, pulsed electron Linacs (6 MeV) have been used to bombard the materials to generate positrons, which annihilate with the material electrons emitting 511 keV radiation. We have also synchronized bremsstrahlung pulses with laser irradiation pulses to study dynamic structural changes in material. In addition, we have developed another method using (p,γ) reactions from a 2 MeV proton beam, which induce coincident γ-rays to perform positron life-time spectroscopy. We have showed the feasibility of extending PAS into thick samples and a wide variety of materials and industrial applications

  14. Role of point defects and additives in kinetics of hydrogen storage materials

    Science.gov (United States)

    van de Walle, Chris

    2010-03-01

    First-principles computational studies of hydrogen interactions with storage materials can provide direct insight into the processes of H uptake and release, and may help in developing guidelines for designing storage media with improved storage capacity and kinetics. One important conclusion is that the defects involved in kinetics of semiconducting or insulating H-storage materials are charged, and hence their formation energy is Fermi-level dependent and can be affected by the presence of impurities that change the Fermi level [1,2]. This provides an explanation for the role played by transition-metal impurities in the kinetics of NaAlH4 and related materials. Desorption of H and decomposition of NaAlH4 requires not only mass transport of H but also of Al and/or Na. This process is mediated by native defects. We have investigated the structure, stability, and migration enthalpy of native defects based on density functional theory. The results allow us to estimate diffusion activation energies for the defects that may be involved in mass transport. Most of the relevant defects exist in charge states other than neutral, and consideration of these charge states is essential for a proper description of kinetics. We propose specific new mechanisms to explain the observed activation energies and their dependence on the presence of impurities. We have also expanded our studies to materials other than NaAlH4. In the case of LiBH4 and Li4BN3H10 we have found that the calculations have predictive power in terms of identifying which impurities will actually enhance kinetics. Other complex hydrides that we are currently investigating include Li2NH and LiNH2. [4pt] [1] A. Peles and C. G. Van de Walle, Phys. Rev. B 76, 214101 (2007). [0pt] [2] C. G. Van de Walle, A. Peles, A. Janotti, and G. B. Wilson-Short, Physica B 404, 793 (2009).

  15. Ball Screw Actuator Including a Stop with an Integral Guide

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Perek, John (Inventor); Geck, Kellan (Inventor)

    2015-01-01

    An actuator includes a housing assembly, a ball nut, a ball screw, and a ball screw stop. The ball nut is rotationally mounted in the housing assembly, is adapted to receive an input torque, and is configured, upon receipt thereof, to rotate and supply a drive force. The ball screw is mounted within the housing assembly and extends through the ball nut. The ball screw has a first end and a second end, and is coupled to receive the drive force from the ball nut. The ball screw is configured, upon receipt of the drive force, to selectively translate between a stow position and a deploy position. The ball screw stop is mounted on the ball screw to translate therewith and is configured to at selectively engage the housing assembly while the ball screw is translating, and engage the ball nut when the ball screw is in the deploy position.

  16. Effect of saddle-point anisotropy on point-defect drift-diffusion into straight dislocations

    International Nuclear Information System (INIS)

    Skinner, B.C.; Woo, C.H.

    1983-02-01

    Effects on point-defect drift-diffusion in the strain fields of edge or screw dislocations, due to the anisotropy of the point defect in its saddle-point configuration, are investigated. Expressions for sink strength and bias that include the saddle-point shape effect are derived, both in the absence and presence of an externally applied stress. These are found to depend on intrinsic parameters such as the relaxation volume and the saddle-point shape of the point defects, and extrinsic parameters such as temperature and the magnitude and direction of the externally applied stress with respect to the line direction and Burgers vector direction of the dislocation. The theory is applied to fcc copper and bcc iron. It is found that screw dislocations are biased sinks and that the stress-induced bias differential for the edge dislocations depends much more on the line direction than the Burgers vector direction. Comparison with the stress-induced bias differential due to the usual SIPA effect is made. It is found that the present effect causes a bias differential that is more than an order of magnitude larger

  17. Study on transcatheter ASD occlusion using modified atrial septal defect occluder with no stainless steel screw in canine model

    International Nuclear Information System (INIS)

    Xuan Bin; Qin Yongwen; Hu Jianqiang; Wu Hong

    2006-01-01

    Objective: To evaluate the safety, biocompatibility and efficacy of transcatheter closure of atrial septal defect (ASD) with no stainless-steel-screw occluder in canine model. Methods: The device was constructed from superelastic Nitinol wires tightly woven into two flat disks and sewed with polyester fibers inside, with a pliable loop on the right-atrial-disk of the device, connecting to the delivery cable. ASD was created by transcatheter puncture and balloon dilatation and then closed by occluder under fluoroscopy in the catheterization laboratory. the location and the influence of the implanted device on function of tricuspid valve and mitral valve were evaluated by echocardiography. At 1, 2, 3 and 6 months after the operation, the animals were killed and autopsy was conducted. Results: Eight dogs with puncture-produced ASD underwent ASD closing procedure successfully. the occluder showed no influence on the function of MV and AV demonstrated by echocardiogram. The two disks of the implanted device were covered with a smooth intact neogenesis layer in all dogs. Endocardial cells fully covered the surface of the two disk without inflammating reaction 3 months later. There was no evidence of corrosion on the surface of the nitinol wire removed from the dog after 6 months. Light microscopic examination of the liver, kidney, lung and spleen showed no evidence of embolization and inflammation. Conclusion: Transcatheter ASD occlusion with new-type occluder is safe, feasible, effective and good biocompatibility with a good prospective clinical application. (authors)

  18. On the 'relativistic' description of motion of soliton-like defects in elastic media

    International Nuclear Information System (INIS)

    Caccese, E.; Guarracino, F.

    2006-01-01

    An analysis of the manner of establishing a relativistic micro-universe with respect to the motion of soliton-like defects in elastic media is performed. It is demonstrated that the change of variables in the elastic-dynamic equations holding the motion of a screw dislocation must be complemented by the contraction law for the displacement vector and that a theory based on Lorentz's transformations is not the only possible framework for representing the motion of soliton-like defects

  19. Ball Screw Actuator Including an Axial Soft Stop

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Forrest, Steven Talbert (Inventor); Abel, Steve (Inventor); Woessner, George (Inventor); Hanlon, Casey (Inventor)

    2016-01-01

    An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.

  20. Development of eddy current sensor for detecting defect on ferromagnetic material

    International Nuclear Information System (INIS)

    Choi, Duck Su; Lee, Hyang Beom

    2002-01-01

    In this paper, the eddy current sensor is developed for observing the ability of detecting defect on ferromagnetic material with variation of frequency and velocity. In order to research the characteristics on eddy current sensor. The circuit which is designed for processing detected voltage is developed and differential frequency is used for eddy current sensor to detect defect with variation of frequency. The ability of eddy current sensor to detect defects is studied with variation of velocity adjusted by rotating the circular plate. This study shows that the ability of eddy current sensor for detecting defect is increased and decreased by frequency. This fact means that the sensor has its best ability at a certain frequency. And the ability of eddy current sensor by velocity is decreased by increased velocity. Therefore, the eddy current sensor has to be developed with consideration of its operation velocity and frequency.

  1. A Biomechanical Analysis of 2 Constructs for Metacarpal Spiral Fracture Fixation in a Cadaver Model: 2 Large Screws Versus 3 Small Screws.

    Science.gov (United States)

    Eu-Jin Cheah, Andre; Behn, Anthony W; Comer, Garet; Yao, Jeffrey

    2017-12-01

    Surgeons confronted with a long spiral metacarpal fracture may choose to fix it solely with lagged screws. A biomechanical analysis of a metacarpal spiral fracture model was performed to determine whether 3 1.5-mm screws or 2 2.0-mm screws provided more stability during bending and torsional loading. Second and third metacarpals were harvested from 12 matched pairs of fresh-frozen cadaveric hands and spiral fractures were created. One specimen from each matched pair was fixed with 2 2.0-mm lagged screws whereas the other was fixed with 3 1.5-mm lagged screws. Nine pairs underwent combined cyclic cantilever bending and axial compressive loading followed by loading to failure. Nine additional pairs were subjected to cyclic external rotation while under a constant axial compressive load and were subsequently externally rotated to failure under a constant axial compressive load. Paired t tests were used to compare cyclic creep, stiffness, displacement, rotation, and peak load levels. Average failure torque for all specimens was 7.2 ± 1.7 Nm. In cyclic torsional testing, the group with 2 screws exhibited significantly less rotational creep than the one with 3 screws. A single specimen in the group with 2 screws failed before cyclic bending tests were completed. No other significant differences were found between test groups during torsional or bending tests. Both constructs were biomechanically similar except that the construct with 2 screws displayed significantly less loosening during torsional cyclic loading, although the difference was small and may not be clinically meaningful. Because we found no obvious biomechanical advantage to using 3 1.5-mm lagged screws to fix long spiral metacarpal fractures, the time efficiency and decreased implant costs of using 2-2.0 mm lagged screws may be preferred. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  2. Biopolymer augmentation of the lag screw in the treatment of femoral neck fractures - a biomechanical in-vitro study

    Directory of Open Access Journals (Sweden)

    Paech A

    2010-04-01

    Full Text Available Abstract The cut-out of the sliding screw is one of the most common complications in the treatment of intertrochanteric fractures. The reasons for the cut-out are: a suboptimal position of the hip-screw in the femoral head, the type of fracture and poor bone quality. The aim of this study was to reproduce the cut-out event biomechanically and to evaluate the possible prevention of this event by the use of a biopolymer augmentation of the hip screw. Concerning the density and compression force of osteoporotic femoral bone polyurethane foam according to the terms of the Association for Standard Testing Material (ASTMF 1839-97 was used as test material. The polyurethane foam Lumoltan 200 with a compression force of 3.3 Mpa and a density of 0.192 g/cm3 was used to reproduce the osteoporotic bone of the femoral fragment (density 12 lbm/ft3. A cylinder of 50 mm of length and 50 mm of width was produced by a rotary splint raising procedure with planar contact. The axial load of the system was performed by a hydraulic force cylinder of a universal test machine type Zwick 1455, Ulm, Germany. The CCD-angle of the used TGN-System was preset at 130 degrees. The migration pattern of the hip screw in the polyurethane foam was measured and expressed as a curve of the distance in millimeter [mm] against the applied load in Newton [N] up to the cut-out point. During the tests the implants reached a critical changing point from stable to unstable with an increased load progression of steps of 50 Newton. This unstable point was characterized by an increased migration speed in millimeters and higher descending gradient in the migration curve. This peak of the migration curve served as an indicator for the change of the hip screw position in the simulated bone material. The applied load in the non-augmented implant showed that in this group for a density degree of 12 (0,192 g/cm3 the mean force at the failure point was 1431 Newton (± 52 Newton. In the augmented

  3. Modern materials in fabrication of scaffolds for bone defect replacement

    Science.gov (United States)

    Bazlov, V. A.; Mamuladze, T. Z.; Pavlov, V. V.; Kirilova, I. A.; Sadovoy, M. A.

    2016-08-01

    The article defines the requirements for modern scaffold-forming materials and describes the main advantages and disadvantages of various synthetic materials. Osseointegration of synthetic scaffolds approved for use in medical practice is evaluated. Nylon 618 (certification ISO9001 1093-1-2009) is described as the most promising synthetic material used in medical practice. The authors briefly highlight the issues of individual bone grafting with the use of 3D printing technology. An example of contouring pelvis defect after removal of a giant tumor with the use of 3D models is provided.

  4. Hydraulic screw fastening devices - design, maintenance, operational experience

    International Nuclear Information System (INIS)

    Lachner.

    1976-01-01

    With hydraulic screw fastening devices, pretension values with a maximum deviation of +-2.5% from the rated value can be achieved. This high degree of pretension accuracy is of considerable importance with regard to the safety factor required for the screw connection between reactor vessel head and reactor vessel. The operating rhythm of a nuclear power station with its refuelling art regular intervals makes further demands on the screw fastening device, in particular in connection with the transport of screws and for nuts. The necessary installations extend the screw fastening device into a combination of a high-pressure hydraulic cylinder system with an electrical or pneumoelectrical driving unit and an electrical control unit. Maintenance work is complicated by the large number of identical, highly stressed structural elements in connection with an unfavourable relation operating time/outage time. The problems have been perpetually reduced by close cooperation between the manufacturers and users of screw fastening devices. (orig./AK) [de

  5. Magnesium Alloys as a Biomaterial for Degradable Craniofacial Screws

    Science.gov (United States)

    Henderson, Sarah E.; Verdelis, Konstantinos; Maiti, Spandan; Pal, Siladitya; Chung, William L.; Chou, Da-Tren; Kumta, Prashant N.; Almarza, Alejandro J.

    2014-01-01

    Recently, magnesium (Mg) alloys have received significant attention as a potential biomaterial for degradable implants, and this study was directed at evaluating the suitability of Mg for craniofacial bone screws. The objective was to implant screws fabricated from commercially available Mg-alloys (pure Mg and AZ31) in-vivo in a rabbit mandible. First, Mg-alloy screws were compared to stainless steel screws in an in-vitro pull-out test and determined to have a similar holding strength (~40N). A finite element model of the screw was created using the pull-out test data, and the model can be used for future Mg-alloy screw design. Then, Mg-alloy screws were implanted for 4, 8, and 12 weeks, with two controls of an osteotomy site (hole) with no implant and a stainless steel screw implanted for 12 weeks. MicroCT (computed tomography) was used to assess bone remodeling and Mg-alloy degradation, both visually and qualitatively through volume fraction measurements for all time points. Histologic analysis was also completed for the Mg-alloys at 12 weeks. The results showed that craniofacial bone remodeling occurred around both Mg-alloy screw types. Pure Mg had a different degradation profile than AZ31, however bone growth occurred around both screw types. The degradation rate of both Mg-alloy screw types in the bone marrow space and the muscle were faster than in the cortical bone space at 12 weeks. Furthermore, it was shown that by alloying Mg, the degradation profile could be changed. These results indicate the promise of using Mg-alloys for craniofacial applications. PMID:24384125

  6. Contribution of x-ray topography and high-resolution diffraction to the study of defects in SiC

    International Nuclear Information System (INIS)

    Dudley, Michael; Huang Xianrong; Vetter, William M

    2003-01-01

    A short review is presented of the various synchrotron white beam x-ray topography (SWBXT) imaging techniques developed for characterization of silicon carbide (SiC) crystals and thin films. These techniques, including back-reflection topography, reticulography, transmission topography, and a set of section topography techniques, are demonstrated to be particularly powerful for imaging hollow-core screw dislocations (micropipes) and closed-core threading screw dislocations, as well as other defects, in SiC. The geometrical diffraction mechanism commonly underlying these imaging processes is emphasized for understanding the nature and origins of these defects. Also introduced is the application of SWBXT combined with high-resolution x-ray diffraction techniques to complete characterization of 3C/4H or 3C/6H SiC heterostructures, including polytype identification, 3C variant mapping, and accurate lattice mismatch measurements

  7. Influence of abutment type and esthetic veneering on preload maintenance of abutment screw of implant-supported crowns.

    Science.gov (United States)

    Delben, Juliana Aparecida; Barão, Valentim Adelino Ricardo; Dos Santos, Paulo Henrique; Assunção, Wirley Gonçalves

    2014-02-01

    The effect of veneering materials on screw joint stability remains inconclusive. Thus, this study evaluated the preload maintenance of abutment screws of single crowns fabricated with different abutments and veneering materials. Sixty crowns were divided into five groups (n = 12): UCLA abutment in gold alloy with ceramic (group GC) and resin (group GR) veneering, UCLA abutment in titanium with ceramic (group TiC) and resin (group TiR) veneering, and zirconia abutment with ceramic veneering (group ZiC). Abutment screws made of gold were used with a 35 Ncm insertion torque. Detorque measurements were obtained initially and after mechanical cycling. Data were analyzed by ANOVA and Fisher's exact test at a significance level of 5%. For the initial detorque means (in Ncm), group TiC (21.4 ± 1.78) exhibited statistically lower torque maintenance than groups GC (23.9 ± 0.91), GR (24.1 ± 1.34), and TiR (23.2 ± 1.33) (p abutment type and veneering material. More irregular surfaces in the hexagon area of the castable abutments were observed. The superiority of any veneering material concerning preload maintenance was not established. © 2013 by the American College of Prosthodontists.

  8. Nanoscale defect architectures and their influence on material properties

    Science.gov (United States)

    Campbell, Branton

    2006-10-01

    Diffraction studies of long-range order often permit one to unambiguously determine the atomic structure of a crystalline material. Many interesting material properties, however, are dominated by nanoscale crystal defects that can't be characterized in this way. Fortunately, advances in x-ray detector technology, synchrotron x-ray source brightness, and computational power make it possible to apply new methods to old problems. Our research group uses multi-megapixel x-ray cameras to map out large contiguous volumes of reciprocal space, which can then be visually explored using graphics engines originally developed by the video-game industry. Here, I will highlight a few recent examples that include high-temperature superconductors, colossal magnetoresistors and piezoelectric materials.

  9. Fatigue life prediction of pedicle screw for spinal surgery

    Czech Academy of Sciences Publication Activity Database

    Major, Štěpán; Kocour, Vladimír; Cyrus, P.

    2016-01-01

    Roč. 10, č. 35 (2016), s. 379-388 ISSN 1971-8993. [European Conference on Fracture. ECF21. Catania, 20.06.2015-20.06.2015] Institutional support: RVO:68378297 Keywords : pedicle-screw * titan alloy * fatigue life * finite element analysis Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://www.fracturae.com/index.php/fis/article/view/IGF-ESIS.35.43

  10. Impact of fill-level in twin-screw granulation on critical quality attributes of granules and tablets.

    Science.gov (United States)

    Meier, Robin; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter

    2017-06-01

    In a previous study a change of the fill-level in the barrel exerted a huge influence on the twin-screw granulation (TSG) process of a high drug loaded, simplified formulation. The present work investigated this influence systematically. The specific feed load (SFL) indicating the mass per revolution as surrogate parameter for the fill-level was applied and the correlation to the real volumetric fill level of an extruder could be demonstrated by a newly developed method. A design of experiments was conducted to examine the combined influence of SFL and screw speed on the process and on critical quality attributes of granules and tablets. The same formulation was granulated at constant liquid level with the same screw configuration and led to distinctively different results by only changing the fill-level and the screw speed. The power consumption of the extruder increased at higher SFLs with hardly any influence of screw speed. At low SFL the median residence time was mainly fill-level dependent and at higher SFL mainly screw speed dependent. Optimal values for the product characteristics were found at medium values for the SFL. Granule size distributions shifted from mono-modal and narrow shape to broader and even bimodal distributions of larger median granule sizes, when exceeding or falling below a certain fill-level. Deviating from the optimum fill-level, tensile strength of tablets decreased by about 25% and disintegration times of tablets increased for more than one third. At low fill-levels, material accumulation in front of the kneading zone was detected by pressure measurements and was assumed to be responsible for the unfavored product performance. At high fill-levels, granule consolidation due to higher propensity of contact with the result of higher material temperature was accounted for inferior product performance. The fill-level was found to be an important factor in assessment and development of twin-screw granulation processes as it impacted

  11. Do screws and screw holes affect osteolysis in cementless cups using highly crosslinked polyethylene? A 7 to 10-year follow-up case-control study.

    Science.gov (United States)

    Taniguchi, N; Jinno, T; Takada, R; Koga, D; Ando, T; Okawa, A; Haro, H

    2018-05-01

    The use of screws and the presence of screw holes may cause acetabular osteolysis and implant loosening in cementless total hip arthroplasty (THA) using conventional polyethylene. In contrast, this issue is not fully understood using highly crosslinked polyethylene (HXLPE), particularly in large comparative study. Therefore, we performed a case-control study to assess the influence of screw usage and screw holes on: (1) implant fixation and osteolysis and (2) polyethylene steady-state wear rate, using cases with HXLPE liners followed up for 7-10 years postoperatively. The screw usage and screw holes adversely affect the implant fixation and incidence of wear-related osteolysis in THA with HXLPE. We reviewed 209 primary cementless THAs performed with 26-mm cobalt-chromium heads on HXLPE liners. To compare the effects of the use of screws and the presence of screw holes, the following groups were established: (1) with-screw (n=140); (2) without-screw (n=69); (3) no-hole (n=27) and (4) group in which a cup with screw holes, but no screw was used (n=42). Two adjunct groups (no-hole cups excluded) were established to compare the differences in the two types of HXLPE: (5) remelted group (n=100) and (6) annealed group (n=82). Implant stability and osteolysis were evaluated by plain radiography and computed tomography. The wear rate from 1 year to the final evaluation was measured using plain X-rays and PolyWare Digital software. All cups and stems achieved bony fixation. On CT-scan, no acetabular osteolysis was found, but there were 3 cases with a small area of femoral osteolysis. The mean steady-state wear rate of each group was (1) 0.031±0.022, (2) 0.033±0.035, (3) 0.031±0.024, (4) 0.029±0.018, (5) 0.030±0.018 and (6) 0.034±0.023mm/year, respectively. A comparison of the effects of screw usage or screw holes found no significant between-group differences in the implant stability, prevalence of osteolysis [no acetabular osteolysis and 3/209 at femoral side (1

  12. Extrusion trials with a TSK045 twin screw extruder (Poster presentation)

    NARCIS (Netherlands)

    Sabel, H.W.R.; Schonewille, E.

    1998-01-01

    In 1994 a 45mm twin screw extruder was introduced at the Prins Maurits Laboratory of TNO for the processing of energetic materials. Initial safety experiments were carried out by using inert compositions with small amounts of different energetic components and micro encapsulated chemical sensors to

  13. A geometrical introduction to screw theory

    International Nuclear Information System (INIS)

    Minguzzi, E

    2013-01-01

    This work introduces screw theory, a venerable but little known theory aimed at describing rigid body dynamics. This formulation of mechanics unifies in the concept of screw the translational and rotational degrees of freedom of the body. It captures a remarkable mathematical analogy between mechanical momenta and linear velocities, and between forces and angular velocities. For instance, it clarifies that angular velocities should be treated as applied vectors and that, under the composition of motions, they sum with the same rules of applied forces. This work provides a short and rigorous introduction to screw theory intended for an undergraduate and general readership. (paper)

  14. Twin screw wet granulation: Binder delivery.

    Science.gov (United States)

    Saleh, Mohammed F; Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2015-06-20

    The effects of three ways of binder delivery into the twin screw granulator (TSG) on the residence time, torque, properties of granules (size, shape, strength) and binder distribution were studied. The binder distribution was visualised through the transparent barrel using high speed imaging as well as quantified using offline technique. Furthermore, the effect of binder delivery and the change of screw configuration (conveying elements only and conveying elements with kneading elements) on the surface velocity of granules across the screw channel were investigated using particle image velocimetry (PIV). The binder was delivered in three ways; all solid binder incorporated with powder mixture, 50% of solid binder mixed with powder mixture and 50% mixed with water, all the solid binder dissolved in water. Incorporation of all solid binder with powder mixture resulted in the relatively longer residence time and higher torque, narrower granule size distribution, more spherical granules, weaker big-sized granules, stronger small-sized granules and better binder distribution compared to that in other two ways. The surface velocity of granules showed variation from one screw to another as a result of uneven liquid distribution as well as shown a reduction while introducing the kneading elements into the screw configuration. Copyright © 2015. Published by Elsevier B.V.

  15. Biomechanical comparison of 3.0 mm headless compression screw and 3.5 mm cortical bone screw in a canine humeral condylar fracture model.

    Science.gov (United States)

    Gonsalves, Mishka N; Jankovits, Daniel A; Huber, Michael L; Strom, Adam M; Garcia, Tanya C; Stover, Susan M

    2016-09-20

    To compare the biomechanical properties of simulated humeral condylar fractures reduced with one of two screw fixation methods: 3.0 mm headless compression screw (HCS) or 3.5 mm cortical bone screw (CBS) placed in lag fashion. Bilateral humeri were collected from nine canine cadavers. Standardized osteotomies were stabilized with 3.0 mm HCS in one limb and 3.5 mm CBS in the contralateral limb. Condylar fragments were loaded to walk, trot, and failure loads while measuring construct properties and condylar fragment motion. The 3.5 mm CBS-stabilized constructs were 36% stiffer than 3.0 mm HCS-stabilized constructs, but differences were not apparent in quality of fracture reduction nor in yield loads, which exceeded expected physiological loads during rehabilitation. Small residual fragment displacements were not different between CBS and HCS screws. Small fragment rotation was not significantly different between screws, but was weakly correlated with moment arm length (R² = 0.25). A CBS screw placed in lag fashion provides stiffer fixation than an HCS screw, although both screws provide similar anatomical reduction and yield strength to condylar fracture fixation in adult canine humeri.

  16. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    With a new purchase of a waste conveyer screw at hand, for the 'A-warehouse' at the combined power and heating plant at E.ON Norrkoeping, the request for improved construction materials was raised. The previous screw required maintenance with very short intervals due to the difficult operation conditions. With the new screw the expectation is to manage 6 months of operation without interruption. The environment for the screw has two main components that sets the demand on the materials, on one hand the corrosive products that comes along and which forms at digestion of the waste and on the other hand the abrasive content in the waste. The term of the mechanism is wear-corrosion and can give considerably higher material loss than the two mechanisms wear and corrosion separately. Combination of a strong corrosive environment together with extensive wear is something that we today have limited knowledge about. The overall objective of the project has been to establish better wear and corrosive resistant construction materials for a waste conveyer screw that will lead to reduced operational disturbance costs. The evaluation has been performed in both controlled laboratory environments and in field tests, which has given us a better understanding of what materials are more suitable in this tough environment and has given us a tool for future predictions of the wear rate of the different material. The new conveyer screw, installed in February 2007 and with which the field test have been performed, has considerably reduced the wear of the construction and the target of 6 month maintenance-free operation is met with this screw for all the evaluated materials. The wear along the screw varies very much and with a clear trend for all the materials to increase towards the feeding direction of the screw. As an example, the wear plate SS2377 (stainless duplex steel) has a useful life at the most affected areas that is calculated to be 1077 days of operation with the

  17. Development of structural schemes of parallel structure manipulators using screw calculus

    Science.gov (United States)

    Rashoyan, G. V.; Shalyukhin, K. A.; Gaponenko, EV

    2018-03-01

    The paper considers the approach to the structural analysis and synthesis of parallel structure robots based on the mathematical apparatus of groups of screws and on a concept of reciprocity of screws. The results are depicted of synthesis of parallel structure robots with different numbers of degrees of freedom, corresponding to the different groups of screws. Power screws are applied with this aim, based on the principle of static-kinematic analogy; the power screws are similar to the orts of axes of not driven kinematic pairs of a corresponding connecting chain. Accordingly, kinematic screws of the outlet chain of a robot are simultaneously determined which are reciprocal to power screws of kinematic sub-chains. Solution of certain synthesis problems is illustrated with practical applications. Closed groups of screws can have eight types. The three-membered groups of screws are of greatest significance, as well as four-membered screw groups [1] and six-membered screw groups. Three-membered screw groups correspond to progressively guiding mechanisms, to spherical mechanisms, and to planar mechanisms. The four-membered group corresponds to the motion of the SCARA robot. The six-membered group includes all possible motions. From the works of A.P. Kotelnikov, F.M. Dimentberg, it is known that closed fifth-order screw groups do not exist. The article presents examples of the mechanisms corresponding to the given groups.

  18. Thermal homogeneity of plastication processes in single-screw extruders

    Science.gov (United States)

    Bu, L. X.; Agbessi, Y.; Béreaux, Y.; Charmeau, J.-Y.

    2018-05-01

    Single-screw plastication, used in extrusion and in injection moulding, is a major way of processing commodity thermoplastics. During the plastication phase, the polymeric material is melted by the combined effects of shear-induced self-heating (viscous dissipation) and heat conduction coming from the barrel. In injection moulding, a high level of reliability is usually achieved that makes this process ideally suited to mass market production. Nonetheless, process fluctuations still appear that make moulded part quality control an everyday issue. In this work, we used a combined modelling of plastication, throughput calculation and laminar dispersion, to investigate if, and how, thermal fluctuations could propagate along the screw length and affect the melt homogeneity at the end of the metering section. To do this, we used plastication models to relate changes in processing parameters to changes in the plastication length. Moreover, a simple model of throughput calculation is used to relate the screw geometry, the polymer rheology and the processing parameters to get a good estimate of the mass flow rate. Hence, we found that the typical residence time in a single screw is around one tenth of the thermal diffusion time scale. This residence time is too short for the dispersion coefficient to reach a steady state, but too long to be able to neglect radial thermal diffusion and resort to a purely convective solution. Therefore, a full diffusion/convection problem has to be solved with a base flow described by the classic pressure and drag velocity field. Preliminary results already show the major importance of the processing parameters in the breakthrough curve of an arbitrary temperature fluctuation at the end of the metering section of injection moulding screw. When the flow back-pressure is high, the temperature fluctuation is spread more evenly with time, whereas a pressure drop in the flow will results in a breakthrough curve which presents a larger peak of

  19. Navigation of Pedicle Screws in the Thoracic Spine with a New Electromagnetic Navigation System: A Human Cadaver Study

    Directory of Open Access Journals (Sweden)

    Patrick Hahn

    2015-01-01

    Full Text Available Introduction. Posterior stabilization of the spine is a standard procedure in spinal surgery. In addition to the standard techniques, several new techniques have been developed. The objective of this cadaveric study was to examine the accuracy of a new electromagnetic navigation system for instrumentation of pedicle screws in the spine. Material and Method. Forty-eight pedicle screws were inserted in the thoracic spine of human cadavers using EMF navigation and instruments developed especially for electromagnetic navigation. The screw position was assessed postoperatively by a CT scan. Results. The screws were classified into 3 groups: grade 1 = ideal position; grade 2 = cortical penetration <2 mm; grade 3 = cortical penetration ≥2 mm. The initial evaluation of the system showed satisfied positioning for the thoracic spine; 37 of 48 screws (77.1%, 95% confidence interval [62.7%, 88%] were classified as group 1 or 2. Discussion. The screw placement was satisfactory. The initial results show that there is room for improvement with some changes needed. The ease of use and short setup times should be pointed out. Instrumentation is achieved without restricting the operator’s mobility during navigation. Conclusion. The results indicate a good placement technique for pedicle screws. Big advantages are the easy handling of the system.

  20. CT provides precise size assessment of implanted titanium alloy pedicle screws.

    Science.gov (United States)

    Elliott, Michael J; Slakey, Joseph B

    2014-05-01

    After performing instrumented spinal fusion with pedicle screws, postoperative imaging using CT to assess screw position may be necessary. Stainless steel implants produce significant metal artifact on CT, and the degree of distortion is at least partially dependent on the cross-sectional area of the implanted device. If the same effect occurs with titanium alloy implants, ability to precisely measure proximity of screws to adjacent structures may be adversely affected as screw size increases. We therefore asked whether (1) CT provides precise measurements of true screw widths; and (2) precision degrades based on the size of the titanium implant imaged. CT scans performed on 20 patients after instrumented spinal fusion for scoliosis were reviewed. The sizes of 151 titanium alloy pedicle screws were measured and compared with known screw size. The amount of metal bloom artifact was determined for each of the four screw sizes. ANOVA with Tukey's post hoc test were performed to evaluate differences in scatter, and Spearman's rho coefficient was used to measure relationship between screw size and scatter. All screws measured larger than their known size, but even with larger 7-mm screws the size differential was less than 1 mm. The four different screw sizes produced scatter amounts that were different from each other (p titanium alloy pedicle screws produces minimal artifact, thus making this the preferred imaging modality to assess screw position after surgery. Although the amount of artifact increases with the volume of titanium present, the degree of distortion is minimal and is usually less than 1 mm.

  1. Fate of the syndesmotic screw--Search for a prudent solution.

    Science.gov (United States)

    Kaftandziev, Igor; Spasov, Marko; Trpeski, Simon; Zafirova-Ivanovska, Beti; Bakota, Bore

    2015-11-01

    Ankle fractures are common injuries. Since the recognition of the importance of syndesmotic injury in ankle fractures, much of the scientific work has been focused on concomitant syndesmotic injury. Despite the invention of novel devices for restoration and maintenance of the congruent syndesmosis following syndesmotic injury, the metallic syndesmotic screw is still considered to be the "gold standard". The aim of this study was to compare the clinical results in patients who retained the syndesmosis screw with those in whom the screw was removed following open reduction and internal fixation of the malleolar fracture associated with syndesmosis disruption. This was a retrospective study of 82 patients. Minimum follow-up was 12 months. Clinical evaluation included American Orthopaedic Foot and Ankle Society (AOFAS) score and Visual Analogue Scale (VAS) for patient general satisfaction. The condition of the screw (removed, intact or broken), presence of radiolucency around the syndesmotic screw and the tibiofibular clear space were recorded using final follow-up radiographs. Three cortices were engaged in 66 patients (80%) and quadricortical fixation was performed in the remaining 16 patients (20%). The number of engaged cortices did not correlate with the clinical outcome and screw fracture. A single syndesmotic screw was used in 71 patients (86%. The mean AOFAS score in the group with intact screw (I) was 83; the scores in the group with broken screw (B) and removed screw (R) were 92.5 and 85.5, respectively. There was a statistically significant difference between the three groups: this was due to the difference between groups I and B; the difference between groups I and R and groups B and R were not statistically significant. There were no statistically significant differences in VAS results. There were no statistically significant differences in clinical outcome between the group with the screw retained and the group in which the screw was removed; however, the

  2. Defects of diamond single crystal grown under high temperature and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Su, Qingcai, E-mail: suqc@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan, P. R. China, 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Shandong Engineering Research Center for Superhard Materials, Zoucheng, P. R. China 273500 (China); Zhang, Jianhua [School of Mechanical Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Li, Musen [Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan, P. R. China, 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Shandong Engineering Research Center for Superhard Materials, Zoucheng, P. R. China 273500 (China)

    2013-11-01

    The diamond single crystal, synthesized with Fe–Ni–C–B system of catalyst under high temperature and high pressure, had been observed by field emission scanning electron microscope and transmission electron microscope. The presence of a cellular structure suggested that the diamond grew from melted catalyst solution and there existed a zone of component supercooling zone in front of the solid–liquid interface. The main impurities in the diamond crystal was (FeNi){sub 23}C{sub 6}. The triangle screw pit revealed on the (111) plane was generated by the screw dislocation meeting the diamond (111) plane at the points of emergence of dislocations. A narrow twin plane was formed between the two (111) plane. - Highlights: • High pressure, high temperature synthesis of diamond single crystal. • Fe–Ni–C–B used as catalyst, graphite as carbon source. • The main impurity in the diamond crystal was (FeNi){sub 23}C{sub 6}. • Surface defects arose from screw dislocations and stacking faults.

  3. Atomic-scale processes revealing dynamic twin boundary strengthening mechanisms in face-centered cubic materials

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Chisholm, M.F.; He, L.L.; Pennycook, S.J.; Ye, H.Q.

    2012-01-01

    We report experimental investigations on interactions/reactions between dislocations and twin boundaries in Al. The absorption of screw dislocations via cross-slip and the production of stair-rods via reactions with non-screw dislocations were verified by atomic resolution imaging. Importantly, the resulting partial dislocations moving along twin boundaries can produce secondary sessile defects. These immobile defects act as obstacles to other dislocations and also serve to pin the twin boundaries. These findings show the atomic-level dynamics of the dislocation–twin boundary processes and the unique strengthening mechanism of twin boundaries in face-centered cubic metals.

  4. A novel approach to secondary defect reduction in separation by implantation of oxygen (SIMOX) material

    Energy Technology Data Exchange (ETDEWEB)

    Ellingboe, S.L.; Ridgway, M.C. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1993-12-31

    The formation of a buried SiO{sub 2} layer in Si for increased radiation hardness, dielectric isolation, and/or higher operating speeds in Si devices has been studied extensively. In the present report, a novel method for improving the final defect structure of SIMOX material is demonstrated for the first time. The concept of ion-beam defect-engineering (IBDE) introduced by Wang et al has been utilised. If defects are introduced at a depth R{sub 1} by irradiation with energetic ions into samples which were previously damaged at a depth R{sub 2}, it is possible to alter the properties of the defects at R{sub 2}, reduce or eliminate damage at R{sub 2}, and/or create gettering sites for defects at R{sub 1} . To elucidate the mechanisms responsible for the secondary defect reduction in annealed SIMOX material, unannealed samples were implanted with Si ions at various energies, while keeping the nuclear energy deposition constant at two depths. It was observed that after annealing, even greater changes in the defect structure are evident. It has been demonstrated that pre-anneal Si irradiation in O-implanted Si can reduce secondary defect formation. Both the depth and amount of damage created are crucial to the success of the Si implantation. 5 refs., 1 tab., 2 figs.

  5. A novel approach to secondary defect reduction in separation by implantation of oxygen (SIMOX) material

    Energy Technology Data Exchange (ETDEWEB)

    Ellingboe, S L; Ridgway, M C [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1994-12-31

    The formation of a buried SiO{sub 2} layer in Si for increased radiation hardness, dielectric isolation, and/or higher operating speeds in Si devices has been studied extensively. In the present report, a novel method for improving the final defect structure of SIMOX material is demonstrated for the first time. The concept of ion-beam defect-engineering (IBDE) introduced by Wang et al has been utilised. If defects are introduced at a depth R{sub 1} by irradiation with energetic ions into samples which were previously damaged at a depth R{sub 2}, it is possible to alter the properties of the defects at R{sub 2}, reduce or eliminate damage at R{sub 2}, and/or create gettering sites for defects at R{sub 1} . To elucidate the mechanisms responsible for the secondary defect reduction in annealed SIMOX material, unannealed samples were implanted with Si ions at various energies, while keeping the nuclear energy deposition constant at two depths. It was observed that after annealing, even greater changes in the defect structure are evident. It has been demonstrated that pre-anneal Si irradiation in O-implanted Si can reduce secondary defect formation. Both the depth and amount of damage created are crucial to the success of the Si implantation. 5 refs., 1 tab., 2 figs.

  6. X-ray backscatter sensing of defects in carbon fibre composite materials

    Science.gov (United States)

    O'Flynn, Daniel; Crews, Chiaki; Fox, Nicholas; Allen, Brian P.; Sammons, Mark; Speller, Robert D.

    2017-05-01

    X-ray backscatter (XBS) provides a novel approach to the field of non-destructive evaluation (NDE) in the aerospace industry. XBS is conducted by collecting the radiation which is scattered from a sample illuminated by a well-defined Xray beam, and the technique enables objects to be scanned at a sub-surface level using single-sided access, and without the requirement for coupling with the sample. Single-sided access is of particular importance when the objects of interest are very large, such as aircraft components. Carbon fibre composite materials are being increasingly used as a structural material in aircraft, and there is an increasing demand for techniques which are sensitive to the delaminations which occur in these composites as a result of both large impacts and barely visible impact damage (BVID). The XBS signal is greatly enhanced for plastics and lightweight materials, making it an ideal candidate for probing sub-surface damage and defects in carbon fibre composites. Here we present both computer modelling and experimental data which demonstrate the capability of the XBS technique for identifying hidden defects in carbon fibre.

  7. Economics of water injected air screw compressor systems

    Science.gov (United States)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  8. First Metatarsophalangeal Joint Arthrodesis: A Retrospective Comparison of Crossed-screws, Locking and Non-Locking Plate Fixation with Lag Screw

    Directory of Open Access Journals (Sweden)

    Leif Claassen

    2017-07-01

    Full Text Available Background:Locking plate fixation is increasingly used for first metatarsophalangeal joint (MTP-I arthrodesis. Still there is few comparable clinical data regarding this procedure. Methods:We retrospectively evaluated 60 patients who received an arthrodesis of the MTP-I between January 2008 and June 2010. With 20 patients each we performed a locking plate fixation with lag screw, arthrodesis with crossed-screwsor with a nonlocking plate with lag screw. Results: There were four non-unions in crossed-screws patients and one nonunion in non-locked plate group. All the patients in locking plate group achieved union. 90% of the patients were completely or mildly satisfied in locking plate group, whereas this rate was 80% for patients in both crossed screws and non-locking plate groups. Conclusions: Use of dorsal plating for arthrodesis of MTP1 joint either locking or non-locking were associated with high union rate and acceptable and comparable functional outcome. Although nonunion rate was high using two crossed screws but functional outcome was not significantly different compare to dorsal plating. Level of evidence:Ш, retrospective comparative study

  9. Mathematical modeling and design parameters of crushing machines with variable-pitch helix of the screw

    Directory of Open Access Journals (Sweden)

    Pelenko V. V.

    2017-11-01

    Full Text Available From the point of view of the effectiveness of the top cutting unit, the helix angle in the end portion of the screw is the most important and characteristic parameter, as it determines the pressure of the meat material in the zone of interaction of a knife and grate. The importance of solving the problem of mathematical modeling of geometry is due to the need to address the problem of minimizing the reverse flow of the food material when injecting into the cutting zone, as the specified effect of "locking" significantly reduces the performance of the transfer process, increases energy consumption of the equipment and entails the deterioration of the quality of the raw materials output. The problem of determining the length of the helix variable pitch for screw chopper food materials has been formulated and solved by methods of differential geometry. The task of correct description of the law of changing the angle of helix inclination along its length has been defined in this case as a key to provide the required dependence of this angle tangent on the angle of the radius-vector of the circle. It has been taken into account that the reduction in the pitch of the screw in the direction of the product delivery should occur at a decreasing rate. The parametric equation of the helix has been written in the form of three functional dependencies of the corresponding cylindrical coordinates. Based on the wide range analysis and significant number of models of tops from different manufacturers the boundaries of possible changes in the angles of inclination of the helical line of the first and last turns of the screw have been identified. The auger screw length is determined mathematically in the form of an analytical relationship and both as a function of the variable angle of its rise, and as a function of the rotation angle of the radius-vector of the circle generatrix, which makes it possible to expand the design possibilities of this node. Along

  10. Comparison of screw fixation with elastic fixation methods in the treatment of syndesmosis injuries in ankle fractures.

    Science.gov (United States)

    Seyhan, Mustafa; Donmez, Ferdi; Mahirogullari, Mahir; Cakmak, Selami; Mutlu, Serhat; Guler, Olcay

    2015-07-01

    17 patients with ankle syndesmosic injury were treated with a 4.5mm single cortical screw fixation (passage of screw 4 cortices) and 15 patients were treated with single-level elastic fixation material. All patients were evaluated according to the AOFAS ankle and posterior foot scale at the third, sixth and twelfth months after the fixation. The ankle range of movement was recorded together with the healthy side. The Student's t test was used for statistical comparisons. No statistical significant difference was observed between the AOFAS scores (p>0.05). The range of dorsiflexion and plantar flexion motion of the elastic fixation group at the 6th and 12th months were significantly better compared to the screw fixation group (pankle syndesmosis injuries. The unnecessary need of a second surgical intervention for removal of the fixation material is another advantageous aspect of this method of fixation. Copyright © 2015. Published by Elsevier Ltd.

  11. Analysis on Accuracy of Bias, Linearity and Stability of Measurement System in Ball screw Processes by Simulation

    Directory of Open Access Journals (Sweden)

    Fan-Yun Pai

    2015-11-01

    Full Text Available To consistently produce high quality products, a quality management system, such as the ISO9001, 2000 or TS 16949 must be practically implemented. One core instrument of the TS16949 MSA (Measurement System Analysis is to rank the capability of a measurement system and ensure the quality characteristics of the product would likely be transformed through the whole manufacturing process. It is important to reduce the risk of Type I errors (acceptable goods are misjudged as defective parts and Type II errors (defective parts are misjudged as good parts. An ideal measuring system would have the statistical characteristic of zero error, but such a system could hardly exist. Hence, to maintain better control of the variance that might occur in the manufacturing process, MSA is necessary for better quality control. Ball screws, which are a key component in precision machines, have significant attributes with respect to positioning and transmitting. Failures of lead accuracy and axial-gap of a ball screw can cause negative and expensive effects in machine positioning accuracy. Consequently, a functional measurement system can incur great savings by detecting Type I and Type II errors. If the measurement system fails with respect to specification of the product, it will likely misjudge Type I and Type II errors. Inspectors normally follow the MSA regulations for accuracy measurement, but the choice of measuring system does not merely depend on some simple indices. In this paper, we examine the stability of a measuring system by using a Monte Carlo simulation to establish bias, linearity variance of the normal distribution, and the probability density function. Further, we forecast the possible area distribution in the real case. After the simulation, the measurement capability will be improved, which helps the user classify the measurement system and establish measurement regulations for better performance and monitoring of the precision of the ball screw.

  12. Screw-worm eradication in the Americas - Overview

    International Nuclear Information System (INIS)

    Wyss, John H.

    2000-01-01

    Screw-worms (Cochliomyia hominivorax, Coquerel) are found only in the Americas, and are known, therefore, as the New World Screw-worm (NWS). The larval stages of the fly feed on the living flesh of their host. A screw-worm infestation can kill an adult animal in 7-10 days if not treated. All warm-blooded animals are affected including man. Although screw-worms had long been recognised as a severe pest of animals in the southwestern United States, they had never been detected east of the Mississippi River before 1933. In July 1933, screw-worms were transported on infested cattle to Georgia and became established east of the Mississippi River. Screw-worms spread quickly in the southeastern United States and were able to overwinter in southern Florida. Being new to the region, they were quickly recognised as a severe pest with a tremendous economic impact on livestock production. The livestock owners in the southeastern United States immediately noticed an increase in the number of animal deaths and increased costs of insecticides, veterinary medicines, veterinary services, inspection and handling. At the same time, they observed a decrease in animal weights and in milk production. Due to these observations, the livestock industry in the southeastern United States requested help in controlling screw-worms. Because of these requests, the research community became interested in control and eradication measures for this pest. Early work by Crushing and Patton in 1933 recognised that C. hominivorax was an obligatory animal parasite and different from the secondary blowfly, Cochliomyia macellaria. In 1934, the US Department of Agriculture (USDA), Agricultural Research Service (ARS) opened a research station in Valdosa, Georgia, and E.W. Laake and E.F. Knipling were assigned to work there. In September 1935, R.C. Bushland was hired by ARS to do research related to screw-worms at an ARS Research Laboratory in Dallas, Texas. Melvin and Bushland in 1936 developed artificial

  13. The accuracy and safety of fluoroscopically guided percutaneous pedicle screws in the lumbosacral junction and the lumbar spine: a review of 880 screws.

    Science.gov (United States)

    Chiu, C K; Kwan, M K; Chan, C Y W; Schaefer, C; Hansen-Algenstaedt, N

    2015-08-01

    We undertook a retrospective study investigating the accuracy and safety of percutaneous pedicle screws placed under fluoroscopic guidance in the lumbosacral junction and lumbar spine. The CT scans of patients were chosen from two centres: European patients from University Medical Center Hamburg-Eppendorf, Germany, and Asian patients from the University of Malaya, Malaysia. Screw perforations were classified into grades 0, 1, 2 and 3. A total of 880 percutaneous pedicle screws from 203 patients were analysed: 614 screws from 144 European patients and 266 screws from 59 Asian patients. The mean age of the patients was 58.8 years (16 to 91) and there were 103 men and 100 women. The total rate of perforation was 9.9% (87 screws) with 7.4% grade 1, 2.0% grade 2 and 0.5% grade 3 perforations. The rate of perforation in Europeans was 10.4% and in Asians was 8.6%, with no significant difference between the two (p = 0.42). The rate of perforation was the highest in S1 (19.4%) followed by L5 (14.9%). The accuracy and safety of percutaneous pedicle screw placement are comparable to those cited in the literature for the open method of pedicle screw placement. Greater caution must be taken during the insertion of L5 and S1 percutaneous pedicle screws owing to their more angulated pedicles, the anatomical variations in their vertebral bodies and the morphology of the spinal canal at this location. ©2015 The British Editorial Society of Bone & Joint Surgery.

  14. Passage of an Anterior Odontoid Screw through Gastrointestinal Tract.

    Science.gov (United States)

    Leitner, L; Brückmann, C I; Gilg, M M; Bratschitsch, G; Sadoghi, P; Leithner, A; Radl, R

    2017-01-01

    Purpose . Anterior screw fixation has become a popular surgical treatment method for instable odontoid fractures. Screw loosening and migration are a rare, severe complication following anterior odontoid fixation, which can lead to esophagus perforation and requires revision operation. Methods . We report a case of screw loosening and migration after anterior odontoid fixation, which perforated the esophagus and was excreted without complications in a 78-year-old male patient. Results . A ventral dislocated anterior screw perforated through the esophagus after eight years after implantation and was excreted through the gastrointestinal (GI) tract. At a 6-month follow-up after the event the patient was asymptomatic. Conclusion . Extrusion via the GI tract is not safe enough to be considered as a treatment option for loosened screws. Some improvements could be implemented to prevent such an incident. Furthermore, this case is a fine example that recent preoperative imaging is mandatory before revision surgery for screw loosening.

  15. Passage of an Anterior Odontoid Screw through Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    L. Leitner

    2017-01-01

    Full Text Available Purpose. Anterior screw fixation has become a popular surgical treatment method for instable odontoid fractures. Screw loosening and migration are a rare, severe complication following anterior odontoid fixation, which can lead to esophagus perforation and requires revision operation. Methods. We report a case of screw loosening and migration after anterior odontoid fixation, which perforated the esophagus and was excreted without complications in a 78-year-old male patient. Results. A ventral dislocated anterior screw perforated through the esophagus after eight years after implantation and was excreted through the gastrointestinal (GI tract. At a 6-month follow-up after the event the patient was asymptomatic. Conclusion. Extrusion via the GI tract is not safe enough to be considered as a treatment option for loosened screws. Some improvements could be implemented to prevent such an incident. Furthermore, this case is a fine example that recent preoperative imaging is mandatory before revision surgery for screw loosening.

  16. Stress field of a near-surface basal screw dislocation in elastically anisotropic hexagonal crystals

    Directory of Open Access Journals (Sweden)

    Valeri S. Harutyunyan

    2017-11-01

    Full Text Available In this study, we derive and analyze the analytical expressions for stress components of the dislocation elastic field induced by a near-surface basal screw dislocation in a semi-infinite elastically anisotropic material with hexagonal crystal lattice. The variation of above stress components depending on “free surface–dislocation” distance (i.e., free surface effect is studied by means of plotting the stress distribution maps for elastically anisotropic crystals of GaN and TiB2 that exhibit different degrees of elastic anisotropy. The dependence both of the image force on a screw dislocation and the force of interaction between two neighboring basal screw dislocations on the “free surface–dislocation” distance is analyzed as well. The influence of elastic anisotropy on the latter force is numerically analyzed for GaN and TiB2 and also for crystals of such highly elastically-anisotropic materials as Ti, Zn, Cd, and graphite. The comparatively stronger effect of the elastic anisotropy on dislocation-induced stress distribution quantified for TiB2 is attributed to the higher degree of elastic anisotropy of this compound in comparison to that of the GaN. For GaN and TiB2, the dislocation stress distribution maps are highly influenced by the free surface effect at “free surface–dislocation” distances roughly smaller than ≈15 and ≈50 nm, respectively. It is found that, for above indicated materials, the relative decrease of the force of interaction between near-surface screw dislocations due to free surface effect is in the order Ti > GaN > TiB2 > Zn > Cd > Graphite that results from increase of the specific shear anisotropy parameter in the reverse order Ti < GaN < TiB2 < Zn < Cd < Graphite. The results obtained in this study are also applicable to the case when a screw dislocation is situated in the “thin film–substrate” system at a (0001 basal interface between the film and substrate provided that the elastic constants

  17. Range of motion, sacral screw and rod strain in long posterior spinal constructs: a biomechanical comparison between S2 alar iliac screws with traditional fixation strategies.

    Science.gov (United States)

    Sutterlin, Chester E; Field, Antony; Ferrara, Lisa A; Freeman, Andrew L; Phan, Kevin

    2016-12-01

    S1 screw failure and L5/S1 non-union are issues with long fusions to S1. Improved construct stiffness and S1 screw offloading can help avoid this. S2AI screws have shown to provide similar stiffness to iliac screws when added to L3-S1 constructs. We sought to examine and compare the biomechanical effects on an L2-S1 pedicle screw construct of adding S2AI screws, AxiaLIF, L5-S1 interbody support via transforaminal lumbar interbody fusion (TLIF), and to examine the effect of the addition of cross connectors to each of these constructs. Two S1 screws and one rod with strain gauges (at L5/S1) were used in L2-S1 screw-rod constructs in 7 L1-pelvis specimens (two with low BMD). ROM, S1 screw and rod strain were assessed using a pure-moment flexibility testing protocol. Specimens were tested intact, and then in five instrumentation states consisting of: (I) Pedicle screws (PS) L2-S1; (II) PS + S2AI screws; (III) PS + TLIF L5/S1; (IV) PS + AxiaLIF L5/S1; (V) PS + S2AI + AxiaLIF L5/S1. The five instrumentation conditions were also tested with crosslinks at L2/3 and S1/2. Tests were conducted in flexion-extension, lateral bending and axial torsion with no compressive preload. S2A1 produces reduced S1 screw strain for flexion-extension, lateral bending and axial torsion, as well as reduced rod strain in lateral bending and axial torsion in comparison to AxiaLIF and interbody instrumentation, at the expense of increased rod flexion-extension strain. Cross-connectors may have a role in further reduction of S1 screw and rod strain. From a biomechanical standpoint, the use of the S2AI technique is at least equivalent to traditional iliac screws, but offers lower prominence and ease of assembly compared to conventional sacroiliac stabilization.

  18. Finite element analysis of the equivalent stress distribution in Schanz screws during the use of a femoral fracture distractor

    Directory of Open Access Journals (Sweden)

    Vincenzo Giordano

    Full Text Available ABSTRACT To evaluate the mechanical stress and elastic deformation exercised in the thread/shaft transition of Schanz screws in assemblies with different screw anchorage distances in the entrance to the bone cortex, through the distribution and location of tension in the samples. An analysis of 3D finite elements was performed to evaluate the distribution of the equivalent stress (triple stress state in a Schanz screw fixed bicortically and orthogonally to a tubular bone, using two mounting patterns: (1 thread/shaft transition located 20 mm from the anchorage of the Schanz screws in the entrance to the bone cortex and (2 thread/shaft transition located 3 mm from the anchorage of the Schanz screws in entrance to the bone cortex. The simulations were performed maintaining the same direction of loading and the same distance from the force vector in relation to the center of the hypothetical bone. The load applied, its direction, and the distance to the center of the bone were constant during the simulations in order to maintain the moment of flexion equally constant. The present calculations demonstrated linear behavior during the experiment. It was found that the model with a distance of 20 mm between the Schanz screws anchorage in the entrance to the bone cortex and the thread/shaft transition reduces the risk of breakage or fatigue of the material during the application of constant static loads; in this model, the maximum forces observed were higher (350 MPa. The distance between the Schanz screws anchorage at the entrance to the bone cortex and the smooth thread/shaft transition of the screws used in a femoral distractor during acute distraction of a fracture must be farther from the entrance to the bone cortex, allowing greater degree of elastic deformation of the material, lower mechanical stress in the thread/shaft transition, and minimized breakage or fatigue. The suggested distance is 20 mm.

  19. Experimental study of pedicle screw stability on low BMD vertebrae

    International Nuclear Information System (INIS)

    Li Qi; Yang Huilin; Tang Tiansi; Wu Yiwei; Wang Yijin

    2005-01-01

    Objective: To conduct biomechanical study of different pedicle screws stability on spinal specimen, discuss the relationship between design parameter of screw, insertion torgue and BMD, establish the theoretical foundation for application of pedicle screw on osteoporotic patients. Methods: Six fixed lumbar cadavers were collected, the effects of design parameter, insertion torque and etc on fixation stability were determined under various BMD by using biomechanical ways. Results: According to in vitro study: (1) There was a significant difference among pullout strength of all screws (P 2 >U 1 >SF 1 >SF 2 >RF. Conclusions: There is a close correlated between type of screw, BMD and stability. The U-type screw displays the best fixation effect on specimen of low BMD. (authors)

  20. [Odontoid bending stiffness after anterior fixation with a single lag screw: biomechanical study].

    Science.gov (United States)

    Buchvald, P; Čapek, L; Barsa, P

    2015-01-01

    PURPOSE OF THE STUDY The aim of the experiment was to compare the bending stiffness of an intact odontoid process with bending stiffness after its simulated type II fracture was fixed with a single lag screw. The experiment was done with a desire to answer the question of whether a single osteosynthetic screw is sufficient for good fixation of a type II odontoid fracture. MATERIAL AND METHODS The C2 vertebrae of six cadavers were used. With simultaneous measurement of odontoid bending stiffness, the occurrence of a fracture (type IIA, Grauer's modification of the Anderson- D'Alonzo classification) was simulated using action exerted by a tearing machine in the direction perpendicular to the odontoid axis. Each odontoid fracture was subsequently treated by direct osteosynthesis with a single lag screw inserted in the axial direction by a standard surgical procedure in order to provide conditions similar to those achieved by routine surgical management. The treated odontoid process was subsequently subjected to the same tearing machine loading as applied to it at the start of the experiment. The bending stiffness measured was then compared with that found before the fracture occurred. The results were statistically evaluated by the t-test for paired samples at the level of significance α = 0.05. RESULTS The average value of bending stiffness for odontoid processes of intact vertebrae at the moment of fracture occurrence was 318.3 N/mm. After single axial lag screw fixation of the fracture, the average bending stiffness for the odontoid processes treated was 331.3 N/mm. DISCUSSION Higher values of bending stiffness after screw fixation were found in all specimens and, in comparison with the values recorded before simulated fractures, the increase was statistically significant. CONCLUSIONS The results of our measurements suggest that the single lag screw fixation of a type IIA odontoid fracture will provide better stability for the fracture fragment-C2 body complex on

  1. Safety and surgical techniques of C1 lateral mass screws

    International Nuclear Information System (INIS)

    Kubo, Shinichiro; Kuroki, Hiroshi; Hanado, Shoji; Hamanaka, Hideaki; Inomata, Naoki; Kuroki, Shuji; Chosa, Etsuo

    2010-01-01

    The objectives of this study were to evaluate the proper insertion techniques of C1 lateral mass screws. Eighteen consecutive patients were examined after upper cervical fusion using twenty-nine C1 lateral mass screws. Screws were placed by three different techniques; Goel's technique (4), Tan's technique (20), Notching technique (5). Pre and post-operative CT scans with multiplanar reconstruction were used to detect cortical breaches and direction of screws. No transverse foramen and vertebral groove violation was found in CT scans. Three had breached superior articular facet of the atlas. However, the range of motion (R.O.M) of atlanto-occipital joints had not changed postoperatively. Theses screws were inserted with Tan's technique and two of three were directed medially. It is feasible to safely insert C1 lateral mass screws when correct insertion point and direction are considered preoperatively. However, care should be taken because screws can violate the atlanto-occipital joint especially with Tan's technique. (author)

  2. Accuracy of pedicle screw placement in patients with Marfan syndrome.

    Science.gov (United States)

    Qiao, Jun; Zhu, Feng; Xu, Leilei; Liu, Zhen; Sun, Xu; Qian, Bangping; Jiang, Qing; Zhu, Zezhang; Qiu, Yong

    2017-03-21

    There is no study concerning safety and accuracy of pedicle screw placement in Marfan syndrome. The objective of this study is to investigate accuracy and safety of pedicle screw placement in scoliosis associated with Marfan syndrome. CT scanning was performed to analyze accuracy of pedicle screw placement. Pedicle perforations were classified as medial, lateral or anterior and categorized to four grades: ≤ 2 mm as Grade 1, 2.1-4.0 mm as Grade 2, 4.1-6.0 mm as Grade 3, ≥6.1 mm as Grade 4. Fully contained screws or with medial wall perforation ≤ 2 mm or with lateral wall perforation ≤ 6 mm and without injury of visceral organs were considered acceptable, otherwise were unacceptable. 976 pedicle screws were placed, 713 screws (73.1%) were fully contained within the cortical boundaries of the pedicle. 924 (94.7%) screws were considered as acceptable, and 52 (5.3%) as unacceptable. The perforation rate was higher using free-hand technique than O-arm navigation technique (30.8% VS. 11.4%, P Marfan syndrome is accuracy and safe. O-arm navigation was an effective modality to ensure the safety and accuracy of screw placement. Special attention should be paid when screws were placed at the lumber spine and the concave side of spine deformity to avoid the higher rate of complications.

  3. Process and remote device for unscrewing and extracting an assembly screw

    International Nuclear Information System (INIS)

    Lagarrigue, F.

    1990-01-01

    The device comprises a C-shaped frame, with two parallel arms and a joining section fixed at one end of a long support, an extraction screw engaged in a hole through one arm and having one end made of a centre punch directed towards the inside of the frame and a remote mean for screwed or unscrewed the extraction screw. A supporting and centering piece can also be fixed to the second branch of the frame. The screw is extracted by exerting a moment about the axis of the screw through the support and frame after tightening the extraction screw. This device can be used particularly for the unscrewing and the extraction of the screw of the springs of a nuclear fuel assembly [fr

  4. Stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture: a comparative finite element study.

    Science.gov (United States)

    Huang, Xiaowei; Zhi, Zhongzheng; Yu, Baoqing; Chen, Fancheng

    2015-11-25

    The purpose of this study is to compare the stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture. A three-dimensional (3D) finite element model of the medial tibial plateau fracture (Schatzker type IV fracture) was created. An axial force of 2500 N with a distribution of 60% to the medial compartment was applied to simulate the axial compressive load on an adult knee during single-limb stance. The equivalent von Mises stress, displacement of the model relative to the distal tibia, and displacement of the implants were used as the output measures. The mean stress value of the plate-screw fixation system was 18.78 MPa, which was significantly (P stress value of the triangular fragment in the plate-screw fixation system model was 42.04 MPa, which was higher than that in the screw fixation model (24.18 MPa). But the mean stress of the triangular fractured fragment in the screw fixation model was significantly higher in terms of equivalent von Mises stress (EVMS), x-axis, and z-axis (P < 0.001). This study demonstrated that the load transmission mechanism between plate-screw fixation system and screw fixation system was different and the stability provided by the plate-screw fixation system was superior to the screw fixation system.

  5. BIOMECHANICAL EVALUATION OF THE INFLUENCE OF CERVICAL SCREWS TAPPING AND DESIGN.

    Science.gov (United States)

    Silva, Patricia; Rosa, Rodrigo César; Shimano, Antonio Carlos; Albuquerque de Paula, Francisco José; Volpon, José Batista; Aparecido Defino, Helton Luiz

    2009-01-01

    To assess if the screw design (self-drilling/self-tapping) and the pilot hole tapping could affect the insertion torque and screw pullout strength of the screw used in anterior fixation of the cervical spine. Forty self-tapping screws and 20 self-drilling screws were inserted into 10 models of artificial bone and 10 cervical vertebrae of sheep. The studied parameters were the insertion torque and pullout strength. The following groups were created: Group I-self-tapping screw insertion after pilot hole drilling and tapping; Group II-self-tapping screw insertion after pilot hole drilling without tapping; Group III-self-drilling screw insertion without drilling and tapping. In Groups I and II, the pilot hole had 14.0 mm in depth and was made with a 3mmn drill, while tapping was made with a 4mm tap. The insertion torque was measured and the pullout test was performed. The comparison between groups was made considering the mean insertion torque and the maximum mean pullout strength with the variance analysis (ANOVA; p≤ 0.05). Previous drilling and tapping of pilot hole significantly decreased the insertion torque and the pullout strength. The insertion torque and pullout strength of self-drilling screws were significantly higher when compared to self-tapping screws inserted after pilot hole tapping.

  6. Mixing and transport during pharmaceutical twin-screw wet granulation: Experimental analysis via chemical imaging

    DEFF Research Database (Denmark)

    Kumar, Ashish; Vercruysse, Jurgen; Toiviainen, Maunu

    2014-01-01

    to calculate the mean residence time, mean centred variance and the Péclet number to determine the axial mixing and predominance of convective over dispersive transport. The results showed that screw speed is the most influential parameter in terms of RTD and axial mixing in the TSG and established...... a significant interaction between screw design parameters (number and stagger angle of kneading discs) and the process parameters (material throughput and number of kneading discs). The results of the study will allow the development and validation of a transport model capable of predicting the RTD and macro...

  7. Posterior cervical spine arthrodesis with laminar screws. A report of two cases

    International Nuclear Information System (INIS)

    Nakanishi, Kazuo; Tanaka, Masato; Sugimoto, Yoshihisa; Ozaki, Toshifumi

    2007-01-01

    We performed fixation using laminar screws in 2 patients in whom lateral mass screws, pedicle screws or transarticular screws could not be inserted. One was a 56-year-old woman who had anterior atlantoaxial subluxation (AAS). When a guide wire was inserted using an imaging guide, the hole bled massively. We thought the re-insertion of a guide wire or screw would thus increase the risk of vascular injury, so we used laminar screws. The other case was an 18-year-old man who had a hangman fracture. Preoperative magnetic resonance angiography showed occlusion of the left vertebral artery. A laminar screw was inserted into the patent side (i.e., the right side of C2). Cervical pedicle screws are the most biomechanically stable screws. However, their use carries a high risk of neurovascular complications during screw insertion, because the cervical pedicle is small and is adjacent laterally to the vertebral artery, medially to the spinal cord, and vertically to the nerve roots. Lateral mass screws are also reported to involve a risk of neurovascular injuries. The laminar screw method was thus thought to be useful, since arterial injuries could thus be avoided and it could also be used as a salvage modality for the previous misinsertion. (author)

  8. Surgical treatment of sagittal fracture of mandibular condyle using long-screw osteosynthesis.

    Science.gov (United States)

    Luo, Shufang; Li, Bo; Long, Xing; Deng, Mohong; Cai, Hengxing; Cheng, Yong

    2011-07-01

    The retrospective study evaluated long-screw (bicortical screw) osteosynthesis used in the surgical treatment of sagittal fracture of the mandibular condyle and compared it with titanium plates and removal of the condylar fragment. Ninety-five patients with sagittal fracture of the mandibular condyle received open surgical treatment from 1997 to 2008. Among these patients, the condylar fragments were fixed with long screws in 56 cases (group A), were fixed with titanium plates in 12 cases (group B), and were completely removed in 24 cases (group C). Follow-up was carried out clinically and radiologically. The clinical features included limitation of mandibular mobility, occlusion disturbance, lateral deviation on mouth opening, joint pain, clicking, facial asymmetry, and patient's subjective evaluation. The radiologic parameters consisted of degree of bony resorption, bony change, change of osteosynthesis material, and shortening of mandibular ramus height. Anatomic reduction and functional restoration were obtained and no severe complication was detected in group A. However, 3 of 14 patients had severe osteoarthrosis and 2 of 14 patients had ankylosis in group B. In group C 3 of 24 patients had mandibular retrusion, 4 of 24 patients had front teeth open bite, 4 of 24 patients had severe osteoarthrosis, and 1 of 24 patients had ankylosis. The long-screw fixation group had a more favorable prognosis than the titanium plate group and the group in which removal of the condylar fragment was performed. The long-screw fixation technique might be suitable for use in the surgical treatment of sagittal fractures of the mandibular condyle. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Controlling material birefringence in sapphire via self-assembled, sub-wavelength defects

    Science.gov (United States)

    Singh, Astha; Sharma, Geeta; Ranjan, Neeraj; Mittholiya, Kshitij; Bhatnagar, Anuj; Singh, B. P.; Mathur, Deepak; Vasa, Parinda

    2018-02-01

    Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. Generally, this is an intrinsic optical property of a material and cannot be altered. Here, we report a novel technique—direct laser writing—that enables us to control the natural, material birefringence of sapphire over a broad range of wavelengths. The broadband form birefringence originating from self-assembled, periodic array of sub-wavelength (˜ 50-200 nm) defects created by laser writing, can enhance, suppress or maintain the material birefringence of sapphire without affecting its transparency range in visible or its surface quality.

  10. 12th Europhysical Conference on Defects in Insulating Materials (EURODIM 2014)

    International Nuclear Information System (INIS)

    Alfredsson, M L; Chadwick, A V; Jackson, R A; McCabe, E E

    2015-01-01

    The 12th Europhysical Conference on Defects in Insulating Materials (EURODIM14) was held at the University of Kent, UK, from 13-18 July 2014. It was attended by about 120 delegates from around the world, and featured 56 oral presentations and 77 posters. EURODIM14 followed other conferences in the series, held in Pecs (2010), Milan (2006) and Wroclaw (2002), as well as the related ICDIM conferences held in Santa Fe (2012), Aracaju (2008) and Riga (2004). These conferences all have the aim of bringing together scientists to discuss the chemistry and physics of defects in solids, and their role in determining material properties. We would like to thank the International Advisory Committee for suggesting invited speakers, and the Local and Programme Committee for their hard work in planning and running the conference. Finally we would like to thank the authors and referees for their contributions to the proceedings. M L Alfredsson (Conference Chair) A V Chadwick R A Jackson E E McCabe (preface)

  11. Probabilistic analysis of preload in the abutment screw of a dental implant complex.

    Science.gov (United States)

    Guda, Teja; Ross, Thomas A; Lang, Lisa A; Millwater, Harry R

    2008-09-01

    Screw loosening is a problem for a percentage of implants. A probabilistic analysis to determine the cumulative probability distribution of the preload, the probability of obtaining an optimal preload, and the probabilistic sensitivities identifying important variables is lacking. The purpose of this study was to examine the inherent variability of material properties, surface interactions, and applied torque in an implant system to determine the probability of obtaining desired preload values and to identify the significant variables that affect the preload. Using software programs, an abutment screw was subjected to a tightening torque and the preload was determined from finite element (FE) analysis. The FE model was integrated with probabilistic analysis software. Two probabilistic analysis methods (advanced mean value and Monte Carlo sampling) were applied to determine the cumulative distribution function (CDF) of preload. The coefficient of friction, elastic moduli, Poisson's ratios, and applied torque were modeled as random variables and defined by probability distributions. Separate probability distributions were determined for the coefficient of friction in well-lubricated and dry environments. The probabilistic analyses were performed and the cumulative distribution of preload was determined for each environment. A distinct difference was seen between the preload probability distributions generated in a dry environment (normal distribution, mean (SD): 347 (61.9) N) compared to a well-lubricated environment (normal distribution, mean (SD): 616 (92.2) N). The probability of obtaining a preload value within the target range was approximately 54% for the well-lubricated environment and only 0.02% for the dry environment. The preload is predominately affected by the applied torque and coefficient of friction between the screw threads and implant bore at lower and middle values of the preload CDF, and by the applied torque and the elastic modulus of the abutment

  12. Modeling and Analyzing the Slipping of the Ball Screw

    Directory of Open Access Journals (Sweden)

    Nannan Xu

    Full Text Available AbstractThis paper aims to set up the ball systematic slipping model and analyze the slipping characteristics caused by different factors for a ball screw operating at high speeds. To investigate the ball screw slipping mechanism, transformed coordinate system should be established firstly. Then it is used to set up mathematical modeling for the ball slipping caused by the three main reasons and the speed of slipping can be calculated. Later, the influence of the contact angle, helix angle and screw diameter for ball screw slipping will be analyzed according to the ball slipping model and slipping speeds equation and the slipping analysis will be obtained. Finally, curve of slipping analysis and that of mechanical efficiency of the ball screw analysis by Lin are compared, which will indirectly verify the correctness of the slipping model. The slipping model and the curve of slipping analysis established in this paper will provide theory basis for reducing slipping and improving the mechanical efficiency of a ball screw operating at high speeds.

  13. CT-based bone density assessment for iliosacral screw trajectories

    Directory of Open Access Journals (Sweden)

    Andreas Schicho

    2016-01-01

    Full Text Available Introduction: Sacroiliac screw placement is one standard treatment option for stabilization of posterior pelvic ring injuries encountering high intra- and inter-individual variations of bone stock quality as well as a vast variety and prevalence of sacral dysmorphism. An individual, easy-to-use preoperative bone stock quality estimation would be of high value for the surgeon. Materials and Methods: We analyzed 36 standard computed tomography datasets with the uninjured pelvic ring. Using a two-plane cross-referencing technique, we assessed the Hounsfield unit (HU mean values as well as standard deviation and minimum/maximum values within selected region of interests (ROIs at five key areas: os ilium left and right, massa lateralis of os sacrum left and right, and central vertebral body on levels S1 and S2. Results: Results showed no difference in mean HU at any ROI when comparing male and female data. For all ROIs set on S1 and S2, there was an age-related decline of HU with a calculated slope significantly different from zero. There was no statistical difference of slopes when comparing S1- and S2-level with respect to any distinct ROI. Comparison of levels S1 and S2 revealed differences at the vertebral body and at the right os ilium. The right and left massa lateralis of os sacrum had lower bone density than the center of the vertebral body, the right, or left os ilium on S1; right and left massa lateralis density did not differ significantly. On level S2, results were comparable with no difference of massa lateralis density. Conclusion: With our easy-to-use preoperative assessment of bone density of five key areas of sacroiliac screw anchoring we were able to find the lowest bone density in both the left and right massa lateralis on levels S1 and S2 with high inter- and intra-individual variations. Significantly lower bone density was found in the center of the vertebral bodies S2 in comparison to S1, which both are crucial for iliosacral

  14. Intercalary bone segment transport in treatment of segmental tibial defects

    International Nuclear Information System (INIS)

    Iqbal, A.; Amin, M.S.

    2002-01-01

    Objective: To evaluate the results and complications of intercalary bone segment transport in the treatment of segmental tibial defects. Design: This is a retrospective analysis of patients with segmental tibial defects who were treated with intercalary bone segment transport method. Place and Duration of Study: The study was carried out at Combined Military Hospital, Rawalpindi from September 1997 to April 2001. Subjects and methods: Thirteen patients were included in the study who had developed tibial defects either due to open fractures with bone loss or subsequent to bone debridement of infected non unions. The mean bone defect was 6.4 cms and there were eight associated soft tissue defects. Locally made unilateral 'Naseer-Awais' (NA) fixator was used for bone segment transport. The distraction was done at the rate of 1mm/day after 7-10 days of osteotomy. The patients were followed-up fortnightly during distraction and monthly thereafter. The mean follow-up duration was 18 months. Results: The mean time in external fixation was 9.4 months. The m ean healing index' was 1.47 months/cm. Satisfactory union was achieved in all cases. Six cases (46.2%) required bone grafting at target site and in one of them grafting was required at the level of regeneration as well. All the wounds healed well with no residual infection. There was no residual leg length discrepancy of more than 20 mm nd one angular deformity of more than 5 degrees. The commonest complication encountered was pin track infection seen in 38% of Shanz Screws applied. Loosening occurred in 6.8% of Shanz screws, requiring re-adjustment. Ankle joint contracture with equinus deformity and peroneal nerve paresis occurred in one case each. The functional results were graded as 'good' in seven, 'fair' in four, and 'poor' in two patients. Overall, thirteen patients had 31 (minor/major) complications with a ratio of 2.38 complications per patient. To treat the bone defects and associated complications, a mean of

  15. Development of a process map: A step towards a regime map for steady-state high shear wet twin screw granulation

    DEFF Research Database (Denmark)

    Kumar, Ashish; Dhondt, Jens; Vercruysse, Jurgen

    2016-01-01

    involves the combination of screw speed, material throughput and torque required to rotate the screws was correlated with the applied liquid-to-solid ratio to present process maps. The study suggested that, despite an increase in the granule size by the increasing liquid-to-solid ratio, most of the liquid...... contributes to formation of oversized granules. Therefore, keeping the liquid-to-solid ratio in a lower range and increasing the energy input to the system can be effectively used to lower the mean granule size. Changes in the screw geometry should also be explored to improve solid liquid mixing and breakage...

  16. Gauge field theoretic solution of a uniformly moving screw dislocation and admissibility of supersonic speeds

    International Nuclear Information System (INIS)

    Sharma, P.; Zhang, X.

    2006-01-01

    The failure of classical elasticity to address dislocation behavior spatially close to its core and (in Lorentz-type fashion) near the speed of sound is well known. In gauge field theory of defects, the latter are not postulated a priori in an ad hoc fashion rather defects such as dislocations arise naturally as a consequence of broken translational symmetry exhibiting solutions that are physically meaningful (e.g., removal of divergence of stress and the natural emergence of a core making redundant the artificial cut-off radius). In the present work we present the gauge field theoretic solution to the problem of a uniformly moving screw dislocation. Apart from the formal derivations, we show that stress divergence at the core of the dislocation is removed at all time and (consistent with atomistic simulations), supersonic states are found to be admissible

  17. Comparative effect of implant-abutment connections, abutment angulations, and screw lengths on preloaded abutment screw using three-dimensional finite element analysis: An in vitro study.

    Science.gov (United States)

    Kanneganti, Krishna Chaitanya; Vinnakota, Dileep Nag; Pottem, Srinivas Rao; Pulagam, Mahesh

    2018-01-01

    The purpose of this study is to compare the effect of implant-abutment connections, abutment angulations, and screw lengths on screw loosening (SL) of preloaded abutment using three dimensional (3D) finite element analysis. 3D models of implants (conical connection with hex/trilobed connections), abutments (straight/angulated), abutment screws (short/long), and crown and bone were designed using software Parametric Technology Corporation Creo and assembled to form 8 simulations. After discretization, the contact stresses developed for 150 N vertical and 100 N oblique load applications were analyzed, using ABAQUS. By assessing damage initiation and shortest fatigue load on screw threads, the SL for 2.5, 5, and 10 lakh cyclic loads were estimated, using fe-safe program. The obtained values were compared for influence of connection design, abutment angulation, and screw length. In straight abutment models, conical connection showed more damage (14.3%-72.3%) when compared to trilobe (10.1%-65.73%) at 2.5, 5, and 10 lakh cycles for both vertical and oblique loads, whereas in angulated abutments, trilobe (16.1%-76.9%) demonstrated more damage compared to conical (13.5%-70%). Irrespective of the connection type and abutment angulation, short screws showed more percentage of damage compared to long screws. The present study suggests selecting appropriate implant-abutment connection based on the abutment angulation, as well as preferring long screws with more number of threads for effective preload retention by the screws.

  18. A four lumen screwing device for multiparametric brain monitoring.

    Science.gov (United States)

    Feuerstein, T H; Langemann, H; Gratzl, O; Mendelowitsch, A

    2000-01-01

    We describe multiparametric monitoring in severe head trauma using a new screwing device. Our aim was to create a screw which would make the implantation of the probes and thus multiparametric monitoring easier. The new screw allows us to implant 3 probes (microdialysis, Paratrend and an intracranial pressure device) through one burr hole. The screw has four channels, the fourth being for ventricular drainage. We monitored 13 patients with severe head trauma (GCS = 3-8) for up to 7 days. Brain tissue pO2, pCO2, pH, and temperature were measured on-line with the Paratrend 7 machine. The microdialytic parameters glucose, lactate, pyruvate and glutamate were determined semi on-line with a CMA 600 enzymatic analyser. There were no complications in any of the patients that could be ascribed to the screw.

  19. Experiments on screw-pinch plasmas with elongated cross section

    International Nuclear Information System (INIS)

    Lassing, H.W.

    1989-01-01

    In this thesis experiments are described carried out with SPICA II, a toroidal screw-pinch plasma device. this device is the last one in a series of plasma machines of the toroidal screw-pinch differing from its predecessor in its race-track shaped section. In devices of the type toroidal screw-pinch stable confinement is possible of plasmas with larger β values than in a tokamak discharge. In a pinch the plasma is screwed up, during the formation, in such a way that in a relatively small volume a plasma is formated with a high pressure. During the screwing up the plasma is heated by shock heating as well as adiabatic compression. With the modified snowplow model the density and temperature after the formation can be calculated, starting from the initial conditions. When all ions arrive into the plasma column, the density in the column is determined by the volume compression. First purpose of the experiments was to find a stable discharge. Subsequently discharges have been made with a high as possible β in order to investigate at which maximum β it is possible to confine screw-pinch plasmas stably. When these had been found, the nature and importance could be investigated of the processes following which the screw-pinch plasma looses its energy. (author), 75 res.; 95 figs.; 8 tabs

  20. Determination of Screw and Nail Withdrawal Resistance of Some Important Wood Species

    Directory of Open Access Journals (Sweden)

    Alper Aytekin

    2008-04-01

    Full Text Available In this study, screw and nail withdrawal resistance of fir (Abies nordmanniana, oak (Quercus robur L. black pine (Pinus nigra Arnold and Stone pine (Pinus pinea L. wood were determined and compared. The data represent the testing of withdrawal resistance of three types of screws as smart, serrated and conventional and common nails. The specimens were prepared according to TS 6094 standards. The dimensions of the specimens were 5x5x15cm and for all of the directions. Moreover, the specimens were conditioned at ambient room temperature and 65±2% relative humidity. The screws and nails were installed according to ASTM-D 1761 standards. Nail dimensions were 2.5mm diameter and 50 mm length, conventional screws were 4x50mm, serrated screws were 4x45mm and smart screws were 4x50mm. Results show that the maximum screw withdrawal resistance value was found in Stone pine for the serrated screw. There were no significant differences between Stone pine and oak regarding screw withdrawal resistance values. Conventional screw yielded the maximum screw withdrawal resistance value in oak, followed by Stone pine, black pine and fir. Oak wood showed the maximum screw withdrawal resistance value for the smart screw, followed by Stone pine, black pine, and fir. Oak wood showed higher nail withdrawal resistances than softwood species. It was also determined that oak shows the maximum nail withdrawal resistance in all types. The nail withdrawal resistances at the longitudinal direction are lower with respect to radial and tangential directions.

  1. Enhancement of Orthodontic Anchor Screw Stability Under Immediate Loading by Ultraviolet Photofunctionalization Technology.

    Science.gov (United States)

    Takahashi, Maiko; Motoyoshi, Mitsuru; Inaba, Mizuki; Hagiwara, Yoshiyuki; Shimizu, Noriyoshi

    Ultraviolet (UV)-mediated photofunctionalization technology is intended to enhance the osseointegration capability of titanium implants. There are concerns about orthodontic anchor screws loosening under immediate loading protocols in adolescent orthodontic treatment. The purpose of this in vivo study was to evaluate the effects of photofunctionalization on the intrabony stability of orthodontic titanium anchor screws and bone-anchor screw contact under immediate loading in growing rats. Custom-made titanium anchor screws (1.4 mm in diameter and 4.0 mm in length) with or without photofunctionalization pretreatment were placed on the proximal epiphysis of the tibial bone in 6-week-old male Sprague-Dawley rats and were loaded immediately after placement. After 2 weeks of loading, the stability of the anchor screws was evaluated using a Periotest device, and the bone-anchor screw contact ratio (BSC) was assessed by a histomorphometric analysis using field-emission scanning electron microscopy. In the unloaded group, Periotest values (PTVs) were ~25 for UV-untreated screws and 13 for UVtreated screws (P < .01), while in the immediate-loading group, PTVs were 28 for UV-untreated screws and 16 for UV-treated screws (P < .05). Significantly less screw mobility was observed in both UV-treated groups regardless of the loading protocol. The BSC was increased ~1.8 fold for UV-treated screws, compared with UV-untreated screws, regardless of the loading protocol. Photofunctionalization enhanced the intrabony stability of orthodontic anchor screws under immediate loading in growing rats by increasing bone-anchor screw contact.

  2. Determination of the most appropriate stress distribution by Finite Element Analysis in fixation with resorbable screws after Bilateral Sagittal Split Ramus Osteotomy surgery

    Directory of Open Access Journals (Sweden)

    Sarkarat F.

    2009-12-01

    Full Text Available "nBackground and Aim: Due to the complications associated with fixation by Titanium screws and plates in Bilateral Sagittal Split Ramus Osteotomy (BSSRO surgery, the use of resorbable polymers has been increasingly recommended. Since there are not enough studies on this issue, this study aimed to assess the most appropriate stress distribution in fixation with resorbable screws after BSSRO surgery by Fnite Element Analysis (FEA."nMaterials and Methods: This experimental study was performed on simulated human mandible using Ansys and Catia softwares. The osteotomy line was applied to the simulated model and experimental loads of 75, 135 and 600 N were respectively exerted according to the natural direction of occlusal force. The distribution pattern of stress was assessed and compared for fixation with one resorbable screw, two resorbable screws in vertical pattern, two resorbable screws in horizontal pattern, three resorbable screws in L pattern and three resorbable screws in inverted backward L pattern using Ansys software."nResults: Among the four simulated fixations, L pattern showed the highest primary stability. Two screws in vertical pattern were also associated with sufficient primary stability and less trauma and cost for patients. One screw did not provide enough stability under 600 N."nConclusion: Polymer-based resorbable screws (polyglycolic acid and D, L polylactide acid provided satisfactory primary stability in BSSRO surgery.

  3. Repair of a mandibular defect with a free vascularized coccygeal vertebra transfer in a dog.

    Science.gov (United States)

    Yeh, L S; Hou, S M

    1994-01-01

    Bilateral mandibular defects in a male mongrel dog were repaired. On the left side, a free vascularized coccygeal bone graft that included the median caudal artery and caudal vein was used to correct the defect. On the right side, the defect was bridged with a bone plate and screws. For further immobilization, the muzzle was temporarily taped for 3 weeks and a pharyngostomy tube was used for nutritional support. The dog was able to eat dry commercial food satisfactorily within 2 months of surgery despite mild malocclusion. Radiographs taken 2 months and 18 months postoperatively showed bony union with graft hypertrophy in the left mandible, whereas the right mandibular defect showed protracted nonunion. The results indicate that vascularized coccygeal vertebra transfer provides an alternative for the management of canine mandibular defects.

  4. Comparison of Neck Screw and Conventional Fixation Techniques in Mandibular Condyle Fractures Using 3-Dimensional Finite Element Analysis.

    Science.gov (United States)

    Conci, Ricardo Augusto; Tomazi, Flavio Henrique Silveira; Noritomi, Pedro Yoshito; da Silva, Jorge Vicente Lopes; Fritscher, Guilherme Genehr; Heitz, Claiton

    2015-07-01

    To compare the mechanical stress on the mandibular condyle after the reduction and fixation of mandibular condylar fractures using the neck screw and 2 other conventional techniques according to 3-dimensional finite element analysis. A 3-dimensional finite element model of a mandible was created and graphically simulated on a computer screen. The model was fixed with 3 different techniques: a 2.0-mm plate with 4 screws, 2 plates (1 1.5-mm plate and 1 2.0-mm plate) with 4 screws, and a neck screw. Loads were applied that simulated muscular action, with restrictions of the upper movements of the mandible, differentiation of the cortical and medullary bone, and the virtual "folds" of the plates and screws so that they could adjust to the condylar surface. Afterward, the data were exported for graphic visualization of the results and quantitative analysis was performed. The 2-plate technique exhibited better stability in regard to displacement of fractures, deformity of the synthesis materials, and minimum and maximum tension values. The results with the neck screw were satisfactory and were similar to those found when a miniplate was used. Although the study shows that 2 isolated plates yielded better results compared with the other groups using other fixation systems and methods, the neck screw could be an option for condylar fracture reduction. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Economics of water injected air screw compressor systems

    OpenAIRE

    Madhav, K. V.; Kovacevic, A.

    2015-01-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an in...

  6. Adjacent-segment disease after thoracic pedicle screw fixation.

    Science.gov (United States)

    Agarwal, Nitin; Heary, Robert F; Agarwal, Prateek

    2018-03-01

    OBJECTIVE Pedicle screw fixation is a technique widely used to treat conditions ranging from spine deformity to fracture stabilization. Pedicle screws have been used traditionally in the lumbar spine; however, they are now being used with increasing frequency in the thoracic spine as a more favorable alternative to hooks, wires, or cables. Although safety concerns, such as the incidence of adjacent-segment disease (ASD) after cervical and lumbar fusions, have been reported, such issues in the thoracic spine have yet to be addressed thoroughly. Here, the authors review the literature on ASD after thoracic pedicle screw fixation and report their own experience specifically involving the use of pedicle screws in the thoracic spine. METHODS Select references from online databases, such as PubMed (provided by the US National Library of Medicine at the National Institutes of Health), were used to survey the literature concerning ASD after thoracic pedicle screw fixation. To include the authors' experience at Rutgers New Jersey Medical School, a retrospective review of a prospectively maintained database was performed to determine the incidence of complications over a 13-year period in 123 consecutive adult patients who underwent thoracic pedicle screw fixation. Children, pregnant or lactating women, and prisoners were excluded from the review. By comparing preoperative and postoperative radiographic images, the occurrence of thoracic ASD and disease within the surgical construct was determined. RESULTS Definitive radiographic fusion was detected in 115 (93.5%) patients. Seven incidences of instrumentation failure and 8 lucencies surrounding the screws were observed. One patient was observed to have ASD of the thoracic spine. The mean follow-up duration was 50 months. CONCLUSIONS This long-term radiographic evaluation revealed the use of pedicle screws for thoracic fixation to be an effective stabilization modality. In particular, ASD seems to be less of a problem in the

  7. Positioning of pedicle screws in adolescent idiopathic scoliosis using electromyography

    Directory of Open Access Journals (Sweden)

    Bruno Moreira Gavassi

    2015-06-01

    Full Text Available OBJECTIVE: To analyze the occurrence of poor positioning of pedicle screws inserted with the aid of intraoperative electromyographic stimulation in the treatment of Adolescent Idiopathic Scoliosis (AIS.METHODS: This is a prospective observational study including all patients undergoing surgical treatment for AIS, between March and December 2013 at a single institution. All procedures were monitored by electromyography of the inserted pedicle screws. The position of the screws was evaluated by assessment of postoperative CT and classified according to the specific AIS classification system.RESULTS: Sixteen patients were included in the study, totalizing 281 instrumented pedicles (17.5 per patient. No patient had any neurological deficit or complaint after surgery. In the axial plane, 195 screws were found in ideal position (69.4% while in the sagittal plane, 226 screws were found in ideal position (80.4%. Considering both the axial and the sagittal planes, it was observed that 59.1% (166/281 of the screws did not violate any cortical wall.CONCLUSION: The use of pedicle screws proved to be a safe technique without causing neurological damage in AIS surgeries, even with the occurrence of poor positioning of some implants.

  8. Preoperative CT planning of screw length in arthroscopic Latarjet.

    Science.gov (United States)

    Hardy, Alexandre; Gerometta, Antoine; Granger, Benjamin; Massein, Audrey; Casabianca, Laurent; Pascal-Moussellard, Hugues; Loriaut, Philippe

    2018-01-01

    The Latarjet procedure has shown its efficiency for the treatment of anterior shoulder dislocation. The success of this technique depends on the correct positioning and fusion of the bone block. The length of the screws that fix the bone block can be a problem. They can increase the risk of non-union if too short or be the cause of nerve lesion or soft tissue discomfort if too long. Suprascapular nerve injuries have been reported during shoulder stabilisation surgery up to 6 % of the case. Bone block non-union depending on the series is found around 20 % of the cases. The purpose of this study was to evaluate the efficiency of this CT preoperative planning to predict optimal screws length. The clinical importance of this study lies in the observation that it is the first study to evaluate the efficiency of CT planning to predict screw length. Inclusion criteria were patients with chronic anterior instability of the shoulder with an ISIS superior to 4. Exclusion criteria were patients with multidirectional instability or any previous surgery on this shoulder. Thirty patients were included prospectively, 11 of them went threw a CT planning, before their arthroscopic Latarjet. Optimal length of both screws was calculated, adding the size of the coracoid at 5 and 15 mm from the tip to the glenoid. Thirty-two-mm screws were used for patients without planning. On a post-operative CT scan with 3D reconstruction, the distance between the screw tip and the posterior cortex was measured. A one-sample Wilcoxon test was used to compare the distance from the tip of the screw to an acceptable positioning of ±2 mm from the posterior cortex. In the group without planning, screw 1 tended to differ from the acceptable positioning: mean 3.44 mm ± 3.13, med 2.9 mm, q1; q3 [0.6; 4.75] p = 0.1118, and screw 2 differed significantly from the acceptable position: mean 4.83 mm ± 4.11, med 3.7 mm, q1; q3 [1.7; 5.45] p = 0.0045. In the group with planning, position of

  9. Non Destructive Testing - Identification of Defects in Materials

    Directory of Open Access Journals (Sweden)

    Tibor Bachorec

    2006-01-01

    Full Text Available In electrical impedance tomography (EIT currents are applied through the electrodes attached on the surface of the object, and the resulting voltages are measured using the same or additional electrodes. Internal conductivity distribution is recalculated from the measured voltages and currents. The problem is very ill posed, and therefore, regularization has to be used. The aim is to reconstruct, as accurately as possible, the conductivity distribution s in phantom using finite element method (FEM. In this paper are proposed variations of the regularization term, which are applied to non-destructiveidentification of defects (voids or cracks in conductive material.

  10. Study on pedicle screw fixation of cervical spine assisted CT-based navigation system compared with the individual cervical peddle screws placement technique

    International Nuclear Information System (INIS)

    He Xishun; Yang Huilin; Zhu Ruofu; Tan Xiangqi; Wang Genlin; Tang Tiansi

    2008-01-01

    Objective: To explore a safe and effective method for placing the cervical pedicle screws. Methods: There were ten adult cadaver specimens of cervica spine (C 1 -C 7 ) with intact structures including ligament and perivertebral muscles. The spiral computed tomography scan (Elscint CT Twin flash) at the section of 1 mm and three-dimensional reconstruction of all 10 cervical specimens were taken. By CT scan, the parameters of the cervical pedicles were measure,Then taking randomly 5 cervical specimens, according to the CT measurements, an appropriate screw was inserted into pedicle individually. In the other 5 human cadaver cervical vertebraes, Φ3.5 mm screws were inserted into the C 2 -C 7 pedicles by assisted by CT-based navigation system. Cortical integrity of every sample was examined by anatomic dissection, the spiral computed tomography scan and arrows,and coronal reconstruction. Results: Sixty screws was inserted into pedicle individually, and the achievement ratio was 90%, the perfectness ratio was 75%, 60 screws was placed into pedicle assisted by CT-based navigation system, and the achievement ratio was 96.6%, the perfectness ratio was 90%. By chi-square test for statistical analysis, there were no statistical significance between the accuracy rate of two methods(P>0.05). However there was statistical significance between the perfectness ratio between two methods(P<0.05). Conclusion: Compared with the individual cervical peddle screws placement technique, the perfectness ratio of pedicle screw fixation of cervical spine assisted by CT-based navigation system is higher, but there are no significant difference in accuracy. (authors)

  11. [Clinical efficacy of unilateral percutaneous transfacet screws combined with contralateral pedicle screw versus bilateral pedicle screws fixation in the treatment of the degenerative lumbar disease].

    Science.gov (United States)

    Hao, Rong-Xue; Zhou, Hui; Pan, Hao; Yue, Jun; Chen, Hui-Guo; Yang, He-Jie; Jia, Gao-Yong; Wang, Dong; Lin, Yan; Xu, Hua-Zi

    2017-09-25

    To investigate the surgical outcome of unilateral pedicle screw(UPS) after TLIF technique combined with contralateral percutaneous transfacet screw(PTS) fixation vs bilateral pedicle screws(BPS) fixation in treatment of degenerative lumbar disease. From January 2009 to June 2012, 46 patients with degenerative lumbar diseases, including 30 males and 16 females with an average age of 51.5 years old, who were divided into two groups according to different fixation methods. Twenty-two cases underwent UPS after TLIF technique combined with contralateral PTS fixation (group A), while the others underwent BPS fixation(group B). The relative data were analyzed, such as blood loss volume, operative time, fusion rate, ODI score, JOA score and so on. All the patients were followed up for 1 to 3 years with an average of 22 months. Except one case of each group was uncertainty fusion, the rest have obtained bony fusion, and the fusion rates in group A and B were 95.5% and 95.8%, respectively. No displacement and breakage of screw were found during follow-up. Operative time and blood loss volume in group A were better than of group B( P 0.05). Two approaches had similar clinical outcomes for degenerative lumbar disease with no severe instability. Compared with BPS fixation, the UPS after TLIF technique and contralateral PTS fixation has the advantages of less trauma, shorter operative time and less blood loss, and it is a safe and feasible surgical technique.

  12. Kaolinite: Defect defined material properties – A soft X-ray and first principles study of the band gap

    Energy Technology Data Exchange (ETDEWEB)

    Pietzsch, A., E-mail: annette.pietzsch@helmholtz-berlin.de [Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Nisar, J. [Pakistan Atomic Energy Commission (PAEC), P.O. Box 2151, Islamabad (Pakistan); Jämstorp, E. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Gråsjö, J. [Department of Pharmacy, Uppsala University, Box 580, 75123 Uppsala (Sweden); Århammar, C. [Coromant R& D, S-126 80 Stockholm (Sweden); Ahuja, R.; Rubensson, J.-E. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

    2015-07-15

    Highlights: • The respective electronic structure of synthetic and natural kaolinite is compared. • The size of the band gap and thus many important material properties are defined by defect states in the band gap. • The oxygen-based defect states are identified and analyzed. • The band gap of kaolinite decreases significantly due to the forming of defects. - Abstract: By combining X-ray absorption spectroscopy and first principles calculations we have determined the electronic structure of synthetic and natural kaolinite as a model system for engineered and natural clay materials. We have analyzed defect states in the band gap and find that both natural and synthetic kaolinite contain defects where oxygen replaces hydrogen in one of the Al (0 0 1)-hydroxyl groups of the kaolinite clay sheets. The band gap of both synthetic and natural kaolinite is found to decrease by about 3.2 eV as this defect is formed.

  13. Kaolinite: Defect defined material properties – A soft X-ray and first principles study of the band gap

    International Nuclear Information System (INIS)

    Pietzsch, A.; Nisar, J.; Jämstorp, E.; Gråsjö, J.; Århammar, C.; Ahuja, R.; Rubensson, J.-E.

    2015-01-01

    Highlights: • The respective electronic structure of synthetic and natural kaolinite is compared. • The size of the band gap and thus many important material properties are defined by defect states in the band gap. • The oxygen-based defect states are identified and analyzed. • The band gap of kaolinite decreases significantly due to the forming of defects. - Abstract: By combining X-ray absorption spectroscopy and first principles calculations we have determined the electronic structure of synthetic and natural kaolinite as a model system for engineered and natural clay materials. We have analyzed defect states in the band gap and find that both natural and synthetic kaolinite contain defects where oxygen replaces hydrogen in one of the Al (0 0 1)-hydroxyl groups of the kaolinite clay sheets. The band gap of both synthetic and natural kaolinite is found to decrease by about 3.2 eV as this defect is formed

  14. On Helical Projection and Its Application in Screw Modeling

    Directory of Open Access Journals (Sweden)

    Riliang Liu

    2014-04-01

    Full Text Available As helical surfaces, in their many and varied forms, are finding more and more applications in engineering, new approaches to their efficient design and manufacture are desired. To that end, the helical projection method that uses curvilinear projection lines to map a space object to a plane is examined in this paper, focusing on its mathematical model and characteristics in terms of graphical representation of helical objects. A number of interesting projective properties are identified in regard to straight lines, curves, and planes, and then the method is further investigated with respect to screws. The result shows that the helical projection of a cylindrical screw turns out to be a Jordan curve, which is determined by the screw's axial profile and number of flights. Based on the projection theory, a practical approach to the modeling of screws and helical surfaces is proposed and illustrated with examples, and its possible application in screw manufacturing is discussed.

  15. Accuracy of S2 Alar-Iliac Screw Placement Under Robotic Guidance.

    Science.gov (United States)

    Laratta, Joseph L; Shillingford, Jamal N; Lombardi, Joseph M; Alrabaa, Rami G; Benkli, Barlas; Fischer, Charla; Lenke, Lawrence G; Lehman, Ronald A

    Case series. To determine the safety and feasibility of S2 alar-iliac (S2AI) screw placement under robotic guidance. Similar to standard iliac fixation, S2AI screws aid in achieving fixation across the sacropelvic junction and decreasing S1 screw strain. Fortunately, the S2AI technique minimizes prominent instrumentation and the need for offset connectors to the fusion construct. Herein, we present an analysis of the largest series of robotic-guided S2AI screws in the literature without any significant author conflicts of interest with the robotics industry. Twenty-three consecutive patients who underwent spinopelvic fixation with 46 S2AI screws under robotic guidance were analyzed from 2015 to 2016. Screws were placed by two senior spine surgeons, along with various fellow or resident surgical assistants, using a proprietary robotic guidance system (Renaissance; Mazor Robotics Ltd., Caesara, Israel). Screw position and accuracy was assessed on intraoperative CT O-arm scans and analyzed using three-dimensional interactive viewing and manipulation of the images. The average caudal angle in the sagittal plane was 31.0° ± 10.0°. The average horizontal angle in the axial plane using the posterior superior iliac spine as a reference was 42.8° ± 6.6°. The average S1 screw to S2AI screw angle was 11.3° ± 9.9°. Two violations of the iliac cortex were noted, with an average breach distance of 7.9 ± 4.8 mm. One breach was posterior (2.2%) and one was anterior (2.2%). The overall robotic S2AI screw accuracy rate was 95.7%. There were no intraoperative neurologic, vascular, or visceral complications related to the placement of the S2AI screws. Spinopelvic fixation achieved using a bone-mounted miniature robotic-guided S2AI screw insertion technique is safe and reliable. Despite two breaches, no complications related to the placement of the S2AI screws occurred in this series. Level IV, therapeutic. Copyright © 2017 Scoliosis Research Society. Published by Elsevier

  16. Development and Testing of X-Ray Imaging-Enhanced Poly-L-Lactide Bone Screws.

    Directory of Open Access Journals (Sweden)

    Wei-Jen Chang

    Full Text Available Nanosized iron oxide particles exhibit osteogenic and radiopaque properties. Thus, iron oxide (Fe3O4 nanoparticles were incorporated into a biodegradable polymer (poly-L-lactic acid, PLLA to fabricate a composite bone screw. This multifunctional, 3D printable bone screw was detectable on X-ray examination. In this study, mechanical tests including three-point bending and ultimate tensile strength were conducted to evaluate the optimal ratio of iron oxide nanoparticles in the PLLA composite. Both injection molding and 3D printing techniques were used to fabricate the PLLA bone screws with and without the iron oxide nanoparticles. The fabricated screws were implanted into the femoral condyles of New Zealand White rabbits. Bone blocks containing the PLLA screws were resected 2 and 4 weeks after surgery. Histologic examination of the surrounding bone and the radiopacity of the iron-oxide-containing PLLA screws were evaluated. Our results indicated that addition of iron oxide nanoparticles at 30% significantly decreased the ultimate tensile stress properties of the PLLA screws. The screws with 20% iron oxide exhibited strong radiopacity compared to the screws fabricated without the iron oxide nanoparticles. Four weeks after surgery, the average bone volume of the iron oxide PLLA composite screws was significantly greater than that of PLLA screws without iron oxide. These findings suggested that biodegradable and X-ray detectable PLLA bone screws can be produced by incorporation of 20% iron oxide nanoparticles. Furthermore, these screws had significantly greater osteogenic capability than the PLLA screws without iron oxide.

  17. Biomechanical properties of a novel biodegradable magnesium-based interference screw

    Directory of Open Access Journals (Sweden)

    Marco Ezechieli

    2016-06-01

    Full Text Available Magnesium-based interference screws may be an alternative in anterior/posterior cruciate ligament reconstruction. The well-known osteoconductive effects of biodegradable magnesium alloys may be useful. It was the purpose of this study to evaluate the biomechanical properties of a magnesium based interference screw and compare it to a standard implant. A MgYREZr-alloy interference screw and a standard implant (Milagro®; De Puy Mitek, Raynham, MA, USA were used for graft fixation. Specimens were placed into a tensile loading fixation of a servohydraulic testing machine. Biomechanical analysis included pretensioning of the constructs at 20 N for 1 min following cyclic pretensioning of 20 cycles between 20 and 60 N. Biomechanical elongation was evaluated with cyclic loading of 1000 cycles between 50 and 200 N at 0.5 Hz. Maximum load to failure was 511.3±66.5 N for the Milagro® screw and 529.0±63.3 N for magnesium-based screw (ns, P=0.57. Elongations after preload, during cyclical loading and during failure load were not different between the groups (ns, P>0.05. Stiffness was 121.1±13.8 N/mm for the magnesiumbased screw and 144.1±18.4 for the Milagro® screw (ns, P=0.32. MgYREZr alloy interference screws show comparable results in biomechanical testing to standard implants and may be an alternative for anterior cruciate reconstruction in the future.

  18. Defect forces, defect couples and path integrals in fracture mechanics

    International Nuclear Information System (INIS)

    Roche, R.L.

    1979-07-01

    In this work, it is shown that the path integrals can be introduced without any reference to the material behavior. The method is based on the definition in a continuous medium of a set of vectors and couples having the dimension of a force or a moment. More precisely, definitions are given of volume defect forces, surface defect forces, volume defect couples, and surface defect couples. This is done with the help of the stress working variation of a particule moving through the solid. The most important result is: the resultant of all the defect forces included in a volume V is the J integral on the surface surrounding V and the moment resultant is the L integral. So these integrals are defined without any assumption on the material constitutive equation. Another result is the material form of the virtual work principle - defect forces are acting like conventional forces in the conventional principles of virtual work. This lead to the introduction of the energy momentum tensor and of the associated couple stress. Application of this method is made to fracture mechanics in studying the defect forces distribution around a crack [fr

  19. Effects of nonlinearity in the materials used for the semi-rigid pedicle screw systems on biomechanical behaviors of the lumbar spine after surgery

    International Nuclear Information System (INIS)

    Kim, Hyun; Lee, Sung-Jae; Lim, Do-Hyung; Oh, Hyun-Ju; Lee, Kwon-Yong

    2011-01-01

    Recently, various types of semi-rigid pedicle screw fixation systems have been developed for the surgical treatment of the lumbar spine. They were introduced to address the adverse issues commonly found in traditional rigid spinal fusion--abnormally large motion at the adjacent level and subsequent degeneration. The semi-rigid system uses more compliant materials (nitinol or polymers) and/or changes in rod design (coiled or twisted rods) as compared to the conventional rigid straight rods made of Ti alloys (E = 114 GPa, υ = 0.32). However, biomechanical studies on the semi-rigid pedicle screw systems were usually limited to linear modeling of the implant and anatomic elements, which may not be capable of reflecting realistic post-operative motions of the spine. In this study, we evaluated the effects of nonlinearity in materials used for semi-rigid pedicle screw fixation systems to evaluate the changes in biomechanical behaviors using finite element analysis. Changes in range of motion (ROM) and center of rotation (COR) were assessed at the operated and adjacent levels. Actual load-displacement results of the semi-rigid rod from mechanical test were carried out to reflect the nonlinearity of the implant. In addition, nonlinear material properties of various spinal ligaments studies were used for the finite element modeling. The post-operative models were constructed by modifying the previously validated intact model of the L1-S1 spine. Eight different post-operative models were made to address the effects of nonlinearity-with a traditional stiffness modulus rod (with linear ligaments, case 1; with nonlinear ligaments, case 5), with a rigid rod (with linear ligaments, case 2; with nonlinear ligaments, case 6), with a soft rod (with linear ligaments, case 3; with nonlinear ligaments, case 7), and with a nonlinear rod (with linear ligaments, case 4; with nonlinear ligaments, case 8). To simulate the load on the lumbar spine in a neutral posture, follower load (400 N

  20. Detecting the honeycomb sandwich composite material's moisture impregnating defects by using infrared thermography technique

    International Nuclear Information System (INIS)

    Kwon, Koo Ahn; Choi, Man Yong; Park, Jeong Hak; Choi, Won Jae; Park, Hee Sang

    2017-01-01

    Many composite materials are used in the aerospace industry because of their excellent mechanical properties. However, the nature of aviation exposes these materials to high temperature and high moisture conditions depending on climate, location, and altitude. Therefore, the molecular arrangement chemical properties, and mechanical properties of composite materials can be changed under these conditions. As a result, surface disruptions and cracks can be created. Consequently, moisture-impregnating defects can be induced due to the crack and delamination of composite materials as they are repeatedly exposed to moisture absorption moisture release, fatigue environment, temperature changes, and fluid pressure changes. This study evaluates the possibility of detecting the moisture-impregnating defects of CFRP and GFRP honeycomb structure sandwich composite materials, which are the composite materials in the aircraft structure, by using an active infrared thermography technology among non-destructive testing methods. In all experiments, it was possible to distinguish the area and a number of CFRP composite materials more clearly than those of GFRP composite material. The highest detection rate was observed in the heating duration of 50 mHz and the low detection rate was at the heating duration of over 500 mHz. The reflection method showed a higher detection rate than the transmission method

  1. Effects on Subtalar Joint Stress Distribution After Cannulated Screw Insertion at Different Positions and Directions.

    Science.gov (United States)

    Yuan, Cheng-song; Chen, Wan; Chen, Chen; Yang, Guang-hua; Hu, Chao; Tang, Kang-lai

    2015-01-01

    We investigated the effects on subtalar joint stress distribution after cannulated screw insertion at different positions and directions. After establishing a 3-dimensional geometric model of a normal subtalar joint, we analyzed the most ideal cannulated screw insertion position and approach for subtalar joint stress distribution and compared the differences in loading stress, antirotary strength, and anti-inversion/eversion strength among lateral-medial antiparallel screw insertion, traditional screw insertion, and ideal cannulated screw insertion. The screw insertion approach allowing the most uniform subtalar joint loading stress distribution was lateral screw insertion near the border of the talar neck plus medial screw insertion close to the ankle joint. For stress distribution uniformity, antirotary strength, and anti-inversion/eversion strength, lateral-medial antiparallel screw insertion was superior to traditional double-screw insertion. Compared with ideal cannulated screw insertion, slightly poorer stress distribution uniformity and better antirotary strength and anti-inversion/eversion strength were observed for lateral-medial antiparallel screw insertion. Traditional single-screw insertion was better than double-screw insertion for stress distribution uniformity but worse for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion was slightly worse for stress distribution uniformity than was ideal cannulated screw insertion but superior to traditional screw insertion. It was better than both ideal cannulated screw insertion and traditional screw insertion for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion is an approach with simple localization, convenient operation, and good safety. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  2. High energy ion irradiated III-N semiconductors (AlN, GaN, InN): study of point defect and extended defect creation

    International Nuclear Information System (INIS)

    Sall, Mamour

    2013-01-01

    Nitride semiconductors III N (AlN, GaN, InN) have interesting properties for micro-and opto-electronic applications. In use, they may be subjected to different types of radiation in a wide range of energy. In AlN, initially considered insensitive to electronic excitations (Se), we have demonstrated a novel type of synergy between Se and nuclear collisions (Sn) for the creation of defects absorbing at 4.7 eV. In addition, another effect of Se is highlighted in AlN: climb of screw dislocations under the influence of Se, at high fluence. In GaN, two mechanisms can explain the creation of defects absorbing at 2.8 eV: a synergy between Se and Sn, or a creation only due to Sn but with a strong effect of the size of displacement cascades. The study, by TEM, of the effects of Se in the three materials, exhibits behaviors highly dependent on the material while they all belong to the same family with the same atomic structure. Under monoatomic ion irradiations (velocity between 0.4 and 5 MeV/u), while discontinuous tracks are observed in GaN and InN, no track is observed in AlN with the highest electronic stopping power (33 keV/nm). Only fullerene clusters produce tracks in AlN. The inelastic thermal spike model was used to calculate the energies required to produce track in AlN, GaN and InN, they are 4.2 eV/atom, 1.5 eV/atom and 0.8 eV/atom, respectively. This sensitivity difference according to Se, also occurs at high fluence. (author)

  3. Numerical studies of the polymer melt flow in the extruder screw channel and the forming tool

    Science.gov (United States)

    Ershov, S. V.; Trufanova, N. M.

    2017-06-01

    To date, polymer compositions based on polyethylene or PVC is widely used as insulating materials. These materials processing conjugate with a number of problems during selection of the rational extrusion regimes. To minimize the time and cost when determining the technological regime uses mathematical modeling techniques. The paper discusses heat and mass transfer processes in the extruder screw channel, output adapter and the cable head. During the study were determined coefficients for three rheological models based on obtained viscosity vs. shear rate experimental data. Also a comparative analysis of this viscosimetric laws application possibility for studying polymer melt flow during its processing on the extrusion equipment was held. As a result of numerical study the temperature, viscosity and shear rate fields in the extruder screw channel and forming tool were obtained.

  4. Corks, screw caps and wine consumers of the Campanha Gaúcha

    Directory of Open Access Journals (Sweden)

    Fernandes Cordeiro Ataíde Israel

    2014-01-01

    Full Text Available The Campanha Gaúcha is a region the South of Brazil with a crescent production in fine wines. Corks or similar were the materials most utilized to seal the bottles, actually are utilized too screw caps. The objective of this research was investigated if the consumer of the Campanha considers the type of seal of the bottles at the moment of purchase. A questionnaire was elaborated and applied to seventy wine consumers, where was possible to measure the principals factors that lead these consumers to buy of bottle wine. Analyzed the data, referring the screw caps 45.71% believe that this type of seal is interesting just for young wines; As for sealing 85.71% considers indifferent the type of material to seal the bottle, because consider the variety and the price as the main factor in the buying decision; However, 14.29% of these consumers said just buy wines sealed by corks and similar. Therefore, despite the corks are linked with the culture of consumption of wine, exist a significant percentage of consumers that are more interested to purchase wines with a variety desired and with attractives prices, than specifically linked to type of seal.

  5. Electromagnetic Lead Screw for Potential Wave Energy Application

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2014-01-01

    This paper presents a new type electromagnetic lead screw (EMLS) intended for wave energy application. Similar to the mechanical lead screw, this electromagnetic version can transfer slow linear motion to high-rotational motion, offering gearing effects. Compared with the existing pure magnetic...

  6. Bioresorbable screws reinforced with phosphate glass fibre: manufacturing and mechanical property characterisation.

    Science.gov (United States)

    Felfel, R M; Ahmed, I; Parsons, A J; Rudd, C D

    2013-01-01

    Use of bioresorbable screws could eliminate disadvantages associated with metals such as removal operations, corrosion, MRI interference and stress shielding. Mechanical properties of bioresorbable polymers alone are insufficient for load bearing applications application as screws. Thus, reinforcement is necessary to try and match or surpass the mechanical properties of cortical bone. Phosphate based glass fibres were used to reinforce polylactic acid (PLA) in order to produce unidirectionally aligned (UD) and unidirectionally plus randomly distributed (UD/RM) composite screws (P40 UD and P40 UD/RM). The maximum flexural and push-out properties for the composite screws (P40 UD and P40 UD/RM) increased by almost 100% in comparison with the PLA screws. While the pull-out strength and stiffness of the headless composite screws were ∼80% (strength) and ∼130% (stiffness) higher than for PLA, those with heads exhibited properties lower than those for PLA alone as a result of failure at the heads. An increase in the maximum shear load and stiffness for the composite screws (∼30% and ∼40%) in comparison to the PLA screws was also seen. Maximum torque for the PLA screws was ∼1000 mN m, while that for the composite screws were slightly lower. The SEM micrographs for P40 UD and P40 UD/RM screws revealed small gaps around the fibres, which were suggested to be due to buckling of the UD fibres during the manufacturing process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Biofilm formation on titanium alloy and anatase-Bactercline® coated titanium healing screws: an in vivo human study

    Directory of Open Access Journals (Sweden)

    Antonio Scarano

    2013-03-01

    Full Text Available Aim Bacterial adherence to implants is considered to be an important event in the pathogenesis of bacterial infections. In fact, this infection process is a first stage of peri-implant mucositis and peri-implantitis, and a positive correlation has been found between oral hygiene and marginal bone loss around implants in the edentulous mandible. Surface properties of transgingival implant components are important determinants in bacterial adhesion. The purpose of this study was to characterize the biofilm formation, in vivo, on healing screws made of titanium alloy or coated with a combination of anatase and Bactercline® product. Materials and methods Twenty-five patients, between 21- 37 years, in excellent systemic health, participated in this study. In each of the 25 participants, one anatase-Bactercline® coated healing screw (Test and one titanium alloy (TI6Al4V healing screw (Control were adapted to two different implants. Quantitative and qualitative biofilm formation on healing abutments was analyzed by culture method.Results Bacterial adherence to the two different healing screws used in this study were compared. Statistically significant differences were found between the Control and the Test group for both aerobic and anaerobic bacterial counts (p<0,05. The microflora consisted both of Gram-positive and Gram-negative bacteria, and displayed a high variability. The anaerobic S. intermedius, potentially “pathogenic”, was isolated only from the Control group. Both healing screws harbored primarily Gram-positive rods as Actinomyces spp, A. naeslundii, A. viscosus and the Gram-negative rods (Fusobacterium spp, Prevotella spp, Capnocythophaga spp were mostly found on the Control healing screws.Conclusion Anatase-Bactercline® coated healing screws reduce the number of initially adhering bacteria, formed mainly of Gram-positive microorgnisms, while, on the contrary, the microflora covering the titanium alloy healing screws was, for the

  8. PREFACE: 12th Europhysical Conference on Defects in Insulating Materials (EURODIM 2014)

    Science.gov (United States)

    Alfredsson, M. L.; Chadwick, A. V.; Jackson, R. A.; McCabe, E. E.

    2015-04-01

    The 12th Europhysical Conference on Defects in Insulating Materials (EURODIM14) was held at the University of Kent, UK, from 13-18 July 2014. It was attended by about 120 delegates from around the world, and featured 56 oral presentations and 77 posters. EURODIM14 followed other conferences in the series, held in Pecs (2010), Milan (2006) and Wroclaw (2002), as well as the related ICDIM conferences held in Santa Fe (2012), Aracaju (2008) and Riga (2004). These conferences all have the aim of bringing together scientists to discuss the chemistry and physics of defects in solids, and their role in determining material properties. We would like to thank the International Advisory Committee for suggesting invited speakers, and the Local and Programme Committee for their hard work in planning and running the conference. Finally we would like to thank the authors and referees for their contributions to the proceedings. M L Alfredsson (Conference Chair) A V Chadwick R A Jackson E E McCabe

  9. Radiofrequency-activated PMMA-augmentation through cannulated pedicle screws: A cadaver study to determine the biomechanical benefits in the osteoporotic spine.

    Science.gov (United States)

    Karius, T; Deborre, C; Wirtz, D C; Burger, C; Prescher, A; Fölsch, A; Kabir, K; Pflugmacher, R; Goost, H

    2017-01-01

    PMMA-augmentation of pedicle screws strengthens the bone-screw-interface reducing cut-out risk. Injection of fluid cement bears a higher risk of extravasation, with difficulty of application because of inconsistent viscosity and limited injection time. To test a new method of cement augmentation of pedicle screws using radiofrequency-activated PMMA, which is suspected to be easier to apply and have less extravasations. Twenty-seven fresh-frozen human cadaver lumbar spines were divided into 18 osteoporotic (BMD ≤ 0.8 g/cm2) and 9 non-osteoporotic (BMD > 0.8 g/cm2) vertebral bodies. Bipedicular cannulated pedicle screws were implanted into the vertebral bodies; right screws were augmented with ultra-high viscosity PMMA, whereas un-cemented left pedicle screws served as negative controls. Cement distribution was controlled with fluoroscopy and CT scans. Axial pullout forces of the screws were measured with a material testing machine, and results were analyzed statistically. Fluoroscopy and CT scans showed that in all cases an adequately big cement depot with homogenous form and no signs of extravasation was injected. Pullout forces showed significant differences (p < 0.001) between the augmented and non-augmented pedicle screws for bone densities below 0.8 g/cm2 (661.9 N ± 439) and over 0.8 g/cm2 (744.9 N ± 415). Pullout-forces were significantly increased in osteoporotic as well as in non-osteoporotic vertebral bodies without a significant difference between these groups using this standardized, simple procedure with increased control and less complications like extravasation.

  10. Process and apparatus for optimizing screwing position for closure stud

    International Nuclear Information System (INIS)

    Bourdonne, J.C.; Briand, A.

    1987-01-01

    The stud is fixed to a screwing and unscrewing device. The vertical position and alignment of the stud with the axis of the threated hole is checking. The stud is descended into the hole and rotated in the unscrewing direction. After detection of the point of engagement, the stud is rotated in the screwing direction. When a gamming is detected the descent is stopped and the screwing device is positioned in a new position. When the screwing couple returns below the disconnection couple, the stud is rotated with a reduced speed and then with a normal speed until the end [fr

  11. Grid deformation strategies for CFD analysis of screw compressors

    OpenAIRE

    Rane, S.; Kovacevic, A.; Stosic, N.; Kethidi, M.

    2013-01-01

    Customized grid generation of twin screw machines for CFD analysis is widely used by the refrigeration and air-conditioning industry today, but is currently not suitable for topologies such as those of single screw, variable pitch or tri screw rotors. This paper investigates a technique called key-frame re-meshing that supplies pre-generated unstructured grids to the CFD solver at different time steps. To evaluate its accuracy, the results of an isentropic compression-expansion process in a r...

  12. Locking screw apparatus and method for underwater remote replacement

    International Nuclear Information System (INIS)

    Balog, L.J.

    1987-01-01

    A method is described for locking in place a screw which secures together first and second structures in the internal region of a nuclear reactor core. The first structure has a screw bore with a counterbore portion formed in an outer surface. The method comprises the steps of: forming a lateral recess in the counterbore portion and spaced from the outer surface, providing an elongated screw having an enlarged shoulder flange and an angular drive head with a lateral width substantially less than that of the counterbore portion, disposing the screw through the screw bore in threaded engagement with the second structure and with the shoulder rotatably seated in the counterbore portion. This provides a locking member having an angular opening and disposing it in the counterbore portion against the flange with the drive head received in the opening for engagement with the locking member to prevent rotation. This deforms a portion of the locking member into the recess for engagement to prevent movement of the locking member with respect to the first structure

  13. Correction Capability in the 3 Anatomic Planes of Different Pedicle Screw Designs in Scoliosis Instrumentation.

    Science.gov (United States)

    Wang, Xiaoyu; Aubin, Carl-Eric; Coleman, John; Rawlinson, Jeremy

    2017-05-01

    Computer simulations to compare the correction capabilities of different pedicle screws in adolescent idiopathic scoliosis (AIS) instrumentations. To compare the correction and resulting bone-screw forces associated with different pedicle screws in scoliosis instrumentations. Pedicle screw fixation is widely used in surgical instrumentation for spinal deformity treatment. Screw design, correction philosophies, and surgical techniques are constantly evolving to achieve better control of the vertebrae and correction of the spinal deformity. Yet, there remains a lack of biomechanical studies that quantify the effects and advantages of different screw designs in terms of correction kinematics. The correction capabilities of fixed-angle, multiaxial, uniaxial, and saddle axial screws were kinematically analyzed, simulated, and compared. These simulations were based on the screw patterns and correction techniques proposed by 2 experienced surgeons for 2 AIS cases. Additional instrumentations were assessed to compare the correction and resulting bone-screw forces associated with each type of screw. The fixed-angle, uniaxial and saddle axial screws had similar kinematic behavior and performed better than multiaxial screws in the coronal and transverse planes (8% and 30% greater simulated corrections, respectively). Uniaxial and multiaxial screws were less effective than fixed-angle and saddle axial screws in transmitting compression/distraction to the anterior spine because of their sagittal plane mobility between the screw head and shank. Only the saddle axial screws allow vertebra angle in the sagittal plane to be independently adjusted. Pedicle screws of different designs performed differently for deformity corrections or for compensating screw placement variations in different anatomic planes. For a given AIS case, screw types should be determined based on the particular instrumentation objectives, the deformity's stiffness and characteristics so as to make the best of

  14. Ceramic-polylactide composite material used in a model of healing of osseous defects in rabbits.

    Science.gov (United States)

    Myciński, Paweł; Zarzecka, Joanna; Skórska-Stania, Agnieszka; Jelonek, Agnieszka; Okoń, Krzysztof; Wróbel, Maria

    The growing demand for various kinds of bone regeneration material has in turn increased the desire to find materials with optimal physical, chemical, and biological properties. The objective of the present study was to identify the proportions of ceramic and polylactide components in a bone substitute material prepared in collaboration with the Crystal Chemistry of Drugs Team of the Faculty of Chemistry at the Jagiellonian University, which would be optimal for bone regeneration processes. Another goal was to provide a histological analysis of the influence of a ceramic-polylactide composite on the healing of osseous defects in rabbits. The study was performed on laboratory animals (18 New Zealand White rabbits). The following study groups were formed: - group A (study group, 9 animals) - in this group we performed a histological analysis of healing with a ceramic-polylactide composite based on an 80/20 mix of hydroxyapatite and polylactide; - group B (study group, 9 animals) - in this group we performed a histological analysis of healing with a ceramic-polylactide composite with a reduced amount of hydroxyapatite compared to the previous group, i.e. in a ratio of 61/39; - group K (control, 18 animals) - the control group comprised self-healing, standardised osseous defects prepared in the calvarial bone of the rabbits on the contralateral side. In the assessment of histological samples, we were also able to eliminate individual influences that might have led to differentiation in wound healing. The material used in the histological analysis took the form of rabbit bone tissue samples, containing both defects, with margins of around 0.5 cm, taken 1, 3, and 6 months after the experiment. The osseous defects from groups A and B filled with ceramic-polylactide material healed with less inflammatory infiltration than was the case with control group K. They were also characterised by faster regression, and no resorption or osteonecrosis, which allowed for better

  15. The improvement of screw compressor performance using a newly developed rotor profile

    International Nuclear Information System (INIS)

    Kishi, Takayuki; Nishio, Toshio; Matsui, Akira; Ino, Nobumi

    1994-01-01

    An oil-compression phenomenon occurs at two portions of a conventional oil injected screw compressor that degrades the isothermal efficiency of the screw compressor. Hence a new screw rotor profile and lubricant have been developed in order to avoid the above oil-compression phenomena. Mycom and Fermi National Accelerator Laboratory have measured the performance of a new Mycom compound type screw compressor 2016C using the new profile rotors and the new lubricant. In the experiments, a 33% enhancement rate in the isothermal efficiency of the new screw compressor installed in Fermilab was achieved

  16. Method for quantifying defects in materials by microdensitometry of radiography films

    International Nuclear Information System (INIS)

    Deleuze, M.

    1981-09-01

    This report describes the principle of a method for quantifying defects on metal parts obtained by casting. It is based on the relation expressing the optical density of the image according to the thickness of the material. The three techniques used, to wit: gammagraphy, microdensitometry and data processing, are presented, as is the equipment used and the methodology adopted [fr

  17. A CFD study of Screw Compressor Motor Cooling Analysis

    Science.gov (United States)

    Branch, S.

    2017-08-01

    Screw compressors use electric motors to drive the male screw rotor. They are cooled by the suction refrigerant vapor that flows around the motor. The thermal conditions of the motor can dramatically influence the performance and reliability of the compressor. The more optimized this flow path is, the better the motor performance. For that reason it is important to understand the flow characteristics around the motor and the motor temperatures. Computational fluid dynamics (CFD) can be used to provide a detailed analysis of the refrigerant’s flow behavior and motor temperatures to identify the undesirable hot spots in the motor. CFD analysis can be used further to optimize the flow path and determine the reduction of hot spots and cooling effect. This study compares the CFD solutions of a motor cooling model to a motor installed with thermocouples measured in the lab. The compressor considered for this study is an R134a screw compressor. The CFD simulation of the motor consists of a detailed breakdown of the stator and rotor components. Orthotropic thermal conductivity material properties are used to represent the simplified motor geometry. In addition, the analysis includes the motor casings of the compressor to draw heat away from the motor by conduction. The study will look at different operating conditions and motor speeds. Finally, the CFD study will investigate the predicted motor temperature change by varying the vapor mass flow rates and motor speed. Recommendations for CFD modeling of such intricate heat transfer phenomenon have thus been proposed.

  18. MATERIAL ELEMENT MODEL FOR EXTRINSIC SEMICONDUCTORS WITH DEFECTS OF DISLOCATION

    Directory of Open Access Journals (Sweden)

    Maria Paola Mazzeo

    2011-07-01

    Full Text Available In a previous paper we outlined a geometric model for the thermodynamic description of extrinsic semiconductors with defects of dislocation.Applying a geometrization technique, within the rationalextended irreversible thermodynamics with internal variables, the dynamical system for simple material elements of these media, the expressions of the entropy function and the entropy 1-form were obtained. In this contribution we deepen the study of this geometric model. We give a detailed description of the defective media under consideration and of the dislocation core tensor, we introduce the transformation induced by the process and, applying the closure conditions for the entropy 1-form, we derive the necessary conditions for the existence of the entropy function. These and other results are new in the paper.The derivation of the relevant entropy 1-form is the starting point to introduce an extended thermodynamical phase space.

  19. Numerical study of internal flow in twin screw extruder and its mixing performance analysis

    International Nuclear Information System (INIS)

    Kim, Nak Soo; Kim, Hong Bum; Lee, Jae Wook

    2006-01-01

    We analyzed the non-Newtonian and non-isothermal flow in the melt conveying zone in co-rotating and counter-rotating screw extruder system with the commercial code, STAR-CD, and compared the mixing performance with respect to screw speed and rotating direction. The viscosity of fluid was described by power-law model. The dynamics of mixing was studied numerically by tracking the motion of particles in a twin screw extruder system. The extent of mixing was characterized in terms of the residence time distribution and average strain. The results showed that high screw speed decreases the residence time but increases the shear rate. Therefore higher screw speed increases the strain and has better mixing performance. Counter-rotating screw extruder system and co-rotating screw extruder has the similar shear rate with the same screw speed in spite of different rotating direction. However, the counter-rotating screw has good mixing performance, which is resulted from longer residence time than that of co-rotating screw extruder

  20. Detection and quantification of defects in composite material by using thermal wave method

    International Nuclear Information System (INIS)

    Ranjit, Shrestha; Kim, Won Tae

    2015-01-01

    This paper explored the results of experimental investigation on carbon fiber reinforced polymer (CFRP) composite sample with thermal wave technique. The thermal wave technique combines the advantages of both conventional thermal wave measurement and thermography using a commercial Infrared camera. The sample comprises the artificial inclusions of foreign material to simulate defects of different shape and size at different depths. Lock-in thermography is employed for the detection of defects. The temperature field of the front surface of sample was observed and analysed at several excitation frequencies ranging from 0.562 Hz down to 0.032 Hz. Four-point methodology was applied to extract the amplitude and phase of thermal wave's harmonic component. The phase images are analyzed to find qualitative and quantitative information about the defects

  1. Detection and quantification of defects in composite material by using thermal wave method

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Kim, Won Tae [Dept. of Mechanical Engineering, Kongju National University, Cheonan (Korea, Republic of)

    2015-12-15

    This paper explored the results of experimental investigation on carbon fiber reinforced polymer (CFRP) composite sample with thermal wave technique. The thermal wave technique combines the advantages of both conventional thermal wave measurement and thermography using a commercial Infrared camera. The sample comprises the artificial inclusions of foreign material to simulate defects of different shape and size at different depths. Lock-in thermography is employed for the detection of defects. The temperature field of the front surface of sample was observed and analysed at several excitation frequencies ranging from 0.562 Hz down to 0.032 Hz. Four-point methodology was applied to extract the amplitude and phase of thermal wave's harmonic component. The phase images are analyzed to find qualitative and quantitative information about the defects.

  2. The biomechanical consequences of rod reduction on pedicle screws: should it be avoided?

    Science.gov (United States)

    Paik, Haines; Kang, Daniel G; Lehman, Ronald A; Gaume, Rachel E; Ambati, Divya V; Dmitriev, Anton E

    2013-11-01

    Rod contouring is frequently required to allow for appropriate alignment of pedicle screw-rod constructs. When residual mismatch is still present, a rod persuasion device is often used to achieve further rod reduction. Despite its popularity and widespread use, the biomechanical consequences of this technique have not been evaluated. To evaluate the biomechanical fixation strength of pedicle screws after attempted reduction of a rod-pedicle screw mismatch using a rod persuasion device. Fifteen 3-level, human cadaveric thoracic specimens were prepared and scanned for bone mineral density. Osteoporotic (n=6) and normal (n=9) specimens were instrumented with 5.0-mm-diameter pedicle screws; for each pair of comparison level tested, the bilateral screws were equal in length, and the screw length was determined by the thoracic level and size of the vertebra (35 to 45 mm). Titanium 5.5-mm rods were contoured and secured to the pedicle screws at the proximal and distal levels. For the middle segment, the rod on the right side was intentionally contoured to create a 5-mm residual gap between the inner bushing of the pedicle screw and the rod. A rod persuasion device was then used to engage the setscrew. The left side served as a control with perfect screw/rod alignment. After 30 minutes, constructs were disassembled and vertebrae individually potted. The implants were pulled in-line with the screw axis with peak pullout strength (POS) measured in Newton (N). For the proximal and distal segments, pedicle screws on the right side were taken out and reinserted through the same trajectory to simulate screw depth adjustment as an alternative to rod reduction. Pedicle screws reduced to the rod generated a 48% lower mean POS (495±379 N) relative to the controls (954±237 N) (p.05). In circumstances where a rod is not fully seated within the pedicle screw, the use of a rod persuasion device decreases the overall POS and work energy to failure of the screw or results in outright

  3. Regularities of radiation defects build up on oxide materials surface; Zakonomernosti nakopleniya radiatsionnykh defektov na poverkhnosti oksidnykh materialov

    Energy Technology Data Exchange (ETDEWEB)

    Bitenbaev, M I; Polyakov, A I [Fiziko-Tekhnicheskij Inst., Almaty (Kazakhstan); Tuseev, T [Inst. Yadernoj Fiziki, Almaty (Kazakhstan)

    2005-07-01

    Analysis of experimental data by radiation defects study on different oxide elements (silicon, beryllium, aluminium, rare earth elements) irradiated by the photo-, gamma-, neutron-, alpha- radiation, protons and helium ions show, that gas adsorption process on the surface centers and radiation defects build up in metal oxide correlated between themselves. These processes were described by the equivalent kinetic equations for analysis of radiation defects build up in the different metal oxides. It was revealed in the result of the analysis: number of radiation defects are droningly increasing up to limit value with the treatment temperature growth. Constant of radicals death at ionizing radiation increases as well. Amount of surface defects in different oxides defining absorbing activity of these materials looks as: silicon oxide{yields}beryllium oxide{yields}aluminium oxide. So it was found, that most optimal material for absorbing system preparation is silicon oxide by it power intensity and berylium oxide by it adsorption efficiency.

  4. The Analysis of Soil Resistance During Screw Displacement Pile Installation

    Science.gov (United States)

    Krasinski, Adam

    2015-02-01

    The application of screw displacement piles (SDP) is still increasing due to their high efficiency and many advantages. However, one technological problem is a serious disadvantage of those piles. It relates to the generation of very high soil resistance during screw auger penetration, especially when piles are installed in non-cohesive soils. In many situations this problem causes difficulties in creating piles of designed length and diameter. It is necessary to find a proper method for prediction of soil resistance during screw pile installation. The analysis of screw resistances based on model and field tests is presented in the paper. The investigations were carried out as part of research project, financed by the Polish Ministry of Science and Higher Education. As a result of tests and analyses the empirical method for prediction of rotation resistance (torque) during screw auger penetration in non-cohesive subsoil based on CPT is proposed.

  5. An atomic string model for a screw dislocation in iron: Implications for the development of interatomic potentials

    International Nuclear Information System (INIS)

    Gilbert, M.R.; Dudarev, S.L.; Chiesa, S.; Derlet, P.M.

    2009-01-01

    Thermally activated motion of screw dislocations is the rate-determining mechanism for plastic deformation and fracture of body centred cubic (bcc) metals and alloys. Recent experimental observations by S.G. Roberts' group at Oxford showed that ductile-brittle behaviour of bcc vanadium, tungsten, pure iron, and iron-chromium alloys is controlled by an Arrhenius process in which the energy for thermal activation is proportional to the formation energy for a double kink on a b= 1/2 screw dislocation, where b is the Burgers vector of the dislocation. Interpreting these experimental observations and extending the analysis to the case of irradiated materials requires developing a full quantitative treatment for perfect and kinked screw dislocations. Modelling screw dislocations also presents a challenge for the development of interatomic potentials. Recent density functional theory (DFT) calculations have revealed that the ground-state structure of the core of screw dislocations in all the bcc transition metals is non-degenerate and symmetric, whereas inter-atomic potentials used in molecular dynamics simulations for these metals often predict a degenerate, symmetry-broken core-structure. In this work we show how, by treating the structure of a screw dislocation within a multistring Frenkel-Kontorova model, we can develop a criterion that guarantees the correct symmetric core of the dislocation. Extending this treatment, we find a systematic recipe for constructing Finnis-Sinclair-type potentials that are able, as a matter of routine, produce non-degenerate core structures of 1/2 screw dislocations. Modelling thermally activated mobility of screw dislocations also requires that the transition pathway between stable core positions of a dislocation is accurately reproduced. DFT data indicates that the shape of the 'Peierls energy barrier' is a single-hump curve, including transitional configurations close to the so-called 'hard' structure. Interatomic potentials have, up

  6. Comparison of accuracy of lag screw placement in cephalocondylic nails and sliding hip screw plate fixation for extracapsular fractures of the neck of femur

    OpenAIRE

    Shyam Kumar, A. J.; Parmar, V.; Bankart, J.; Williams, S. C.; Harper, W. M.

    2006-01-01

    This study compared the accuracy of lag screw placement between extracapsular femoral fractures fixed with sliding hip screw plate systems and those fixed with cephalocondylic nails. It involved 75 retrospective radiographs of fractures fixed with either a cephalocondylic nail (32) or a sliding hip screw plate system (43). Postoperative anteroposterior and lateral radiographs of the hip were scanned using a digital X-ray scanner and measured using computer software. Measurements were conducte...

  7. Non-destructive characterization of surface layers on non ferromagnetic materials

    International Nuclear Information System (INIS)

    Marengo, J.A.; Ruch, M.; Spinosa, C.

    1997-01-01

    Electromagnetic nondestructive techniques are usually applied to solve many inspection problems in industry. In particular, eddy currents are used for the detection of defects and the characterization of physical properties of metallic materials and components. One such application is the measurement of thickness of non conductive layers on a conducting substrate. A laboratory device for the quantitative determination of those thicknesses was developed at our laboratory. It works in the range from 0 to 100 μm and was calibrated with a micro metre screw. This task involved the design and construction of the sensors their characterization (working frequency, resolution, sensitivity, etc.) and the setup of the mechanical system and the electronic signal generation and measurement circuit. (author) [es

  8. Process and device for the ultrasonic testing of slotted screws screwed into a head of a nuclear reactor fuel element for cracks

    International Nuclear Information System (INIS)

    Scharpenberg, R.

    1986-01-01

    To achieve correct echo signals, a test head is set separately on each area limited by a slot of the top of the slotted screw and the screw head is ultrasonically sounded in the direction of the suspected cracks. (orig./HP) [de

  9. Defect physics vis-à-vis electrochemical performance in layered mixed-metal oxide cathode materials

    Science.gov (United States)

    Hoang, Khang; Johannes, Michelle

    Layered mixed-metal oxides with different compositions of (Ni,Co,Mn) [NCM] or (Ni,Co,Al) [NCA] have been used in commercial lithium-ion batteries. Yet their defect physics and chemistry is still not well understood, despite having important implications for the electrochemical performance. In this presentation, we report a hybrid density functional study of intrinsic point defects in the compositions LiNi1/3Co1/3Mn1/3O2 (NCM1/3) and LiNi1/3Co1/3Al1/3O2 (NCA1/3) which can also be regarded as model compounds for NCM and NCA. We will discuss defect landscapes in NCM1/3 and NCA1/3 under relevant synthesis conditions with a focus on the formation of metal antisite defects and its implications on the electrochemical properties and ultimately the design of NCM and NCA cathode materials.

  10. Pedicle screw loosening is correlated to chronic subclinical deep implant infection: a retrospective database analysis.

    Science.gov (United States)

    Leitner, Lukas; Malaj, Isabella; Sadoghi, Patrick; Amerstorfer, Florian; Glehr, Mathias; Vander, Klaus; Leithner, Andreas; Radl, Roman

    2018-04-13

    Spinal fusion is used for treatment of spinal deformities, degeneration, infection, malignancy, and trauma. Reduction of motion enables osseous fusion and permanent stabilization of segments, compromised by loosening of the pedicle screws (PS). Deep implant infection, biomechanical, and chemical mechanisms are suspected reasons for loosening of PS. Study objective was to investigate the frequency and impact of deep implant infection on PS loosening. Intraoperative infection screening from wound and explanted material sonication was performed during revision surgeries following dorsal stabilization. Case history events and factors, which might promote implant infections, were included in this retrospective survey. 110 cases of spinal metal explantation were included. In 29.1% of revision cases, infection screening identified a germ, most commonly Staphylococcus (53.1%) and Propionibacterium (40.6%) genus. Patients screened positive had a significant higher number of previous spinal operations and radiologic loosening of screws. Patients revised for adjacent segment failure had a significantly lower rate of positive infection screening than patients revised for directly implant associated reasons. Removal of implants that revealed positive screening effected significant pain relief. Chronic implant infection seems to play a role in PS loosening and ongoing pain, causing revision surgery after spinal fusion. Screw loosening and multiple prior spinal operations should be suspicious for implant infection after spinal fusion when it comes to revision surgery. These slides can be retrieved under Electronic Supplementary Material.

  11. Effect of diameter of the drill hole on torque of screw insertion and pushout strength for headless tapered compression screws in simulated fractures of the lateral condyle of the equine third metacarpal bone.

    Science.gov (United States)

    Carpenter, Ryan S; Galuppo, Larry D; Stover, Susan M

    2006-05-01

    To compare variables for screw insertion, pushout strength, and failure modes for a headless tapered compression screw inserted in standard and oversize holes in a simulated lateral condylar fracture model. 6 pairs of third metacarpal bones from horse cadavers. Simulated lateral condylar fractures were created, reduced, and stabilized with a headless tapered compression screw by use of a standard or oversize hole. Torque, work, and time for drilling, tapping, and screw insertion were measured during site preparation and screw implantation. Axial load and displacement were measured during screw pushout. Effects of drill hole size on variables for screw insertion and screw pushout were assessed by use of Wilcoxon tests. Drill time was 59% greater for oversize holes than for standard holes. Variables for tapping (mean maximum torque, total work, positive work, and time) were 42%, 70%, 73%, and 58% less, respectively, for oversize holes, compared with standard holes. Variables for screw pushout testing (mean yield load, failure load, failure displacement, and failure energy) were 40%, 40%, 47%, and 71% less, respectively, for oversize holes, compared with standard holes. Screws could not be completely inserted in 1 standard and 2 oversize holes. Enlarging the diameter of the drill hole facilitated tapping but decreased overall holding strength of screws. Therefore, holes with a standard diameter are recommended for implantation of variable pitch screws whenever possible. During implantation, care should be taken to ensure that screw threads follow tapped bone threads.

  12. The Analysis of Soil Resistance During Screw Displacement Pile Installation

    Directory of Open Access Journals (Sweden)

    Krasinski Adam

    2015-02-01

    Full Text Available The application of screw displacement piles (SDP is still increasing due to their high efficiency and many advantages. However, one technological problem is a serious disadvantage of those piles. It relates to the generation of very high soil resistance during screw auger penetration, especially when piles are installed in non-cohesive soils. In many situations this problem causes difficulties in creating piles of designed length and diameter. It is necessary to find a proper method for prediction of soil resistance during screw pile installation. The analysis of screw resistances based on model and field tests is presented in the paper. The investigations were carried out as part of research project, financed by the Polish Ministry of Science and Higher Education. As a result of tests and analyses the empirical method for prediction of rotation resistance (torque during screw auger penetration in non-cohesive subsoil based on CPT is proposed.

  13. Preload, Coefficient of Friction, and Thread Friction in an Implant-Abutment-Screw Complex.

    Science.gov (United States)

    Wentaschek, Stefan; Tomalla, Sven; Schmidtmann, Irene; Lehmann, Karl Martin

    To examine the screw preload, coefficient of friction (COF), and tightening torque needed to overcome the thread friction of an implant-abutment-screw complex. In a customized load frame, 25 new implant-abutment-screw complexes including uncoated titanium alloy screws were torqued and untorqued 10 times each, applying 25 Ncm. Mean preload values decreased significantly from 209.8 N to 129.5 N according to the number of repetitions. The overall COF increased correspondingly. There was no comparable trend for the thread friction component. These results suggest that the application of a used implant-abutment-screw complex may be unfavorable for obtaining optimal screw preload.

  14. Comparative endurance testing of the Biomet Matthews Nail and the Dynamic Compression Screw, in simulated condylar and supracondylar femoral fractures

    Directory of Open Access Journals (Sweden)

    Davies Benjamin M

    2008-01-01

    Full Text Available Abstract Background The dynamic compression screw is a plate and screws implant used to treat fractures of the distal femur. The Biomet Matthews Nail is a new retrograde intramedullary nail designed as an alternative surgical option to treat these fractures. The objective of this study was to assess the comparative endurance of both devices. Method The dynamic compression screw (DCS and Biomet Matthews Nail (BMN were implanted into composite femurs, which were subsequently cyclically loaded using a materials testing machine. Simulated fractures were applied to each femur prior to the application of load. Either a Y type fracture or a transverse osteotomy was prepared on each composite femur using a jig to enable consistent positioning of cuts. Results The Biomet Matthews Nail demonstrated a greater endurance limit load over the dynamic compression screw in both fracture configurations. Conclusion The distal locking screws pass through the Biomet Matthews Nail in a unique "cruciate" orientation. This allows for greater purchase in the bone of the femoral condyle and potentially improves the stability of the fracture fixation. As these fractures are usually in weak osteoporotic bone, the Biomet Matthews Nail represents a favourable surgical option in these patients.

  15. Point defects in solids

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The principal properties of point defects are studied: thermodynamics, electronic structure, interactions with etended defects, production by irradiation. Some measuring methods are presented: atomic diffusion, spectroscopic methods, diffuse scattering of neutron and X rays, positron annihilation, molecular dynamics. Then points defects in various materials are investigated: ionic crystals, oxides, semiconductor materials, metals, intermetallic compounds, carbides, nitrides [fr

  16. Translaminar screw fixation in the lumbar spine: technique, indications, results

    OpenAIRE

    Grob, D.; Humke, T.

    1998-01-01

    Translaminar screw fixation of the lumbar spine represents a simple and effective technique for short segment fusion in the degenerative spine. Clinical experience with 173 patients who underwent translaminar screw fixation revealed a fusion rate of 94%. The indications for translaminar screw fixation as a primary fixation procedure are: segmental dysfunction, lumbar spinal stenosis with painful degenerative changes, segmental revision surgery after discectomies, and painful disc-related synd...

  17. Screw elastic intramedullary nail for the management of adult forearm fractures

    Directory of Open Access Journals (Sweden)

    Wasudeo Gadegone

    2012-01-01

    Full Text Available Background: The failure of the conventional nailing of both forearm bones or isolated fractures of radius and ulna pose a potential problem of nail migration and rotational instability, despite the best reduction. The purpose of this paper is to evaluate the results of screw elastic intramedullary nail for the treatment of adult diaphyseal fractures of both forearm bones, which effectively addresses the problems associated with the conventional nailing systems for the forearm fractures. Materials and Methods: Seventy-six adults with forearm fractures (radius and ulna or isolated fracture of the single bone were retrospectively evaluated. Fifty males and 26 females with the mean age of 38 years (range, 18-70 years underwent closed reduction and screw intramedullary nail fixation. Ten patients required limited open reduction. The fractures were classified according to the AO/OTA system. The average followup was 12 months (range, 6 to 18 months. Results: The mean surgical time was 45 minutes (35 to 65 minutes. The meantime to union was 14 weeks (10-21 weeks. The results were graded as excellent in 50, good in 18 patients, and acceptable in eight patients, using the criteria of Grace and Eversman. We had superficial infection in three cases, one case of delayed infection, painful bursa in two cases, delayed union in two cases, malunion with dislocation of the DRUJ in two cases, injury to the extensor tendon of the thumb in one case, and one case of incomplete radioulnar synostosis. Conclusion: Closed reduction and internal fixation of forearm fractures by screw intramedullary nails reestablishes the near normal relationship of the fractured fragments. Screw intramedullary nail effectively controls both rotatory forces and the migration of the nail. It produces excellent clinical results in isolated fractures of either bones, as well as both bones of the forearm in adults.

  18. Mechanical Elongation of the Small Intestine: Evaluation of Techniques for Optimal Screw Placement in a Rodent Model

    Directory of Open Access Journals (Sweden)

    P. A. Hausbrandt

    2013-01-01

    Full Text Available Introduction. The aim of this study was to evaluate techniques and establish an optimal method for mechanical elongation of small intestine (MESI using screws in a rodent model in order to develop a potential therapy for short bowel syndrome (SBS. Material and Methods. Adult female Sprague Dawley rats (n=24 with body weight from 250 to 300 g (Σ=283 were evaluated using 5 different groups in which the basic denominator for the technique involved the fixation of a blind loop of the intestine on the abdominal wall with the placement of a screw in the lumen secured to the abdominal wall. Results. In all groups with accessible screws, the rodents removed the implants despite the use of washers or suits to prevent removal. Subcutaneous placement of the screw combined with antibiotic treatment and dietary modifications was finally successful. In two animals autologous transplantation of the lengthened intestinal segment was successful. Discussion. While the rodent model may provide useful basic information on mechanical intestinal lengthening, further investigations should be performed in larger animals to make use of the translational nature of MESI in human SBS treatment.

  19. In vitro validation of a novel mechanical model for testing the anchorage capacity of pedicle screws using physiological load application.

    Science.gov (United States)

    Liebsch, Christian; Zimmermann, Julia; Graf, Nicolas; Schilling, Christoph; Wilke, Hans-Joachim; Kienle, Annette

    2018-01-01

    Biomechanical in vitro tests analysing screw loosening often include high standard deviations caused by high variabilities in bone mineral density and pedicle geometry, whereas standardized mechanical models made of PU foam often do not integrate anatomical or physiological boundary conditions. The purpose of this study was to develop a most realistic mechanical model for the standardized and reproducible testing of pedicle screws regarding the resistance against screw loosening and the holding force as well as to validate this model by in vitro experiments. The novel mechanical testing model represents all anatomical structures of a human vertebra and is consisting of PU foam to simulate cancellous bone, as well as a novel pedicle model made of short carbon fibre filled epoxy. Six monoaxial cannulated pedicle screws (Ø6.5 × 45mm) were tested using the mechanical testing model as well as human vertebra specimens by applying complex physiological cyclic loading (shear, tension, and bending; 5Hz testing frequency; sinusoidal pulsating forces) in a dynamic materials testing machine with stepwise increasing load after each 50.000 cycles (100.0N shear force + 20.0N per step, 51.0N tension force + 10.2N per step, 4.2Nm bending moment + 0.8Nm per step) until screw loosening was detected. The pedicle screw head was fixed on a firmly clamped rod while the load was applied in the vertebral body. For the in vitro experiments, six human lumbar vertebrae (L1-3, BMD 75.4 ± 4.0mg/cc HA, pedicle width 9.8 ± 0.6mm) were tested after implanting pedicle screws under X-ray control. Relative motions of pedicle screw, specimen fixture, and rod fixture were detected using an optical motion tracking system. Translational motions of the mechanical testing model experiments in the point of load introduction (0.9-2.2mm at 240N shear force) were reproducible within the variation range of the in vitro experiments (0.6-3.5mm at 240N shear force). Screw loosening occurred continuously in

  20. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone

    Directory of Open Access Journals (Sweden)

    Eduardo Aloisio Fleck NEUMANN

    2014-08-01

    Full Text Available Fractured abutment screws may be replaced; however, sometimes, the screw cannot be removed and the entire implant must be surgically removed and replaced. The aim of this study was to compare the fracture resistance of abutment retention screws made of titanium, polyetheretherketone (PEEK and 30% carbon fiber-reinforced PEEK, using an external hexagonal implant/UCLA-type abutment interface assembly. UCLA-type abutments were fixed to implants using titanium screws (Group 1, polyetheretherketone (PEEK screws (Group 2, and 30% carbon fiber-reinforced PEEK screws (Group 3. The assemblies were placed on a stainless steel holding apparatus to allow for loading at 45o off-axis, in a universal testing machine. A 200 N load (static load was applied at the central point of the abutment extremity, at a crosshead speed of 5 mm/minute, until failure. Data was analyzed by ANOVA and Tukey’s range test. The titanium screws had higher fracture resistance, compared with PEEK and 30% carbon fiber-reinforced PEEK screws (p 0.05. Finally, visual analysis of the fractions revealed that 100% of them occurred at the neck of the abutment screw, suggesting that this is the weakest point of this unit. PEEK abutment screws have lower fracture resistance, in comparison with titanium abutment screws.

  1. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone.

    Science.gov (United States)

    Neumann, Eduardo Aloisio Fleck; Villar, Cristina Cunha; França, Fabiana Mantovani Gomes

    2014-01-01

    Fractured abutment screws may be replaced; however, sometimes, the screw cannot be removed and the entire implant must be surgically removed and replaced. The aim of this study was to compare the fracture resistance of abutment retention screws made of titanium, polyetheretherketone (PEEK) and 30% carbon fiber-reinforced PEEK, using an external hexagonal implant/UCLA-type abutment interface assembly. UCLA-type abutments were fixed to implants using titanium screws (Group 1), polyetheretherketone (PEEK) screws (Group 2), and 30% carbon fiber-reinforced PEEK screws (Group 3). The assemblies were placed on a stainless steel holding apparatus to allow for loading at 45o off-axis, in a universal testing machine. A 200 N load (static load) was applied at the central point of the abutment extremity, at a crosshead speed of 5 mm/minute, until failure. Data was analyzed by ANOVA and Tukey's range test. The titanium screws had higher fracture resistance, compared with PEEK and 30% carbon fiber-reinforced PEEK screws (p 0.05). Finally, visual analysis of the fractions revealed that 100% of them occurred at the neck of the abutment screw, suggesting that this is the weakest point of this unit. PEEK abutment screws have lower fracture resistance, in comparison with titanium abutment screws.

  2. In vitro evaluation of allogeneic bone screws for use in internal fixation of transverse fractures created in proximal sesamoid bones obtained from equine cadavers.

    Science.gov (United States)

    Sasaki, Naoki; Takakuwa, Jun; Yamada, Haruo; Mori, Ryuji

    2010-04-01

    To evaluate effectiveness of allogeneic bone screws and pins for internal fixation of midbody transverse fractures of equine proximal sesamoid bones (PSBs) in vitro. 14 forelimbs from cadavers of 3-year-old Thoroughbreds. Allogeneic cortical bone fragments were collected from the limbs of a male Thoroughbred, and cortical bone screws were prepared from the tissue by use of a precision desktop microlathe programmed with the dimensions of a metal cortical bone screw. A midbody transverse osteotomy of each PSB was performed by use of a bone-shaping oscillating saw and repaired via 1 of 3 internal fixation techniques: 1 allogeneic bone screw with 1 allogeneic bone pin (type I; n = 6 PSBs), 2 allogeneic bone screws (type II; 8), or 1 stainless steel cortical bone screw (control repair; 6). Mechanical tension measurements were obtained by use of a commercially available materials testing system. Mean +/- SD tensile strength (TS) was 668.3 +/- 216.6 N for type I repairs, 854.4 +/- 253.2 N for type II repairs, and 1,150.0 +/- 451.7 N for control repairs. Internal fixation of PSB fractures by the use of allogeneic bone screws and bone pins was successful. Although mean TS of control repairs with stainless steel cortical bone screws was greater than the mean TS of type I and type II repairs, the difference between type II and control repairs was not significant. Allogeneic screws may advance healing and result in fewer complications in a clinical setting.

  3. Screw expander for light duty diesel engines

    Science.gov (United States)

    1983-01-01

    Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.

  4. Migração de parafuso em artroplastia total do joelho: relato clínico Screw migration in total knee arthroplasty: case report

    Directory of Open Access Journals (Sweden)

    Fernando Fonseca

    2010-01-01

    Full Text Available As complicações das artroplastias totais do joelho devidas ao material implantado são raras, exceto o desgaste do polietileno. O relato de migração de parafusos dentro da articulação do joelho é muito raro. Os autores relatam a migração intra-articular de um parafuso de segurança do polietileno numa artroplastia total do joelho com sacrifício do ligamento cruzado posterior (ATJ tipo Performance; Biomet, Warsaw, IN que obrigou a nova cirurgia para remoção do parafuso, substituição do componente de polietileno e aplicação de novo parafuso de fixação.Complications in total knee arthroplasty directly related to the implanted material are rare, with the exception of polyethylene wear. Descriptions of screw migration into the joint cavity are very rare. The authors report an intra-articular migration of a polyethylene safety screw in a total knee arthroplasty, with sacrifice of the posterior cruciate ligament (ATJ Performance type; Biomet, Warsaw, IN requiring a new surgery to remove the screw, replace the polyethylene insert and insert a new fixation screw.

  5. Control of influence of a thread on a bending of screws

    International Nuclear Information System (INIS)

    Proskuriakov, N E; Lopa, I V; Trapeznikov, E V

    2017-01-01

    The influence of the threads and the bending of screw on their moments of inertia of the cross section considered. This problem is actual since existing methods exclude from calculations the influence of supporting the thread, using as the basic geometrical parameter such as the internal diameter of the thread (diameter of cavities). Fundamental difference of a bend of the screw from a bend of a smooth rod consists that moment of inertia of the screw is a variable. It is shown that the change in cross-section moment of inertia along the length of the screw are essential and have periodic character. Analytical interrelation of the bending of the screw and the decreasing of moment of inertia of its cross section is established and equation describing this phenomenon is suggested. The greatest decrease of the moment of inertia occurs in the middle of the screw length, and the lowest - at its ends. Function and approximate coefficients for the main types of thread are proposed, which take into account this change. (paper)

  6. Bioabsorbable metal screws in traumatology: A promising innovation

    Directory of Open Access Journals (Sweden)

    Roland Biber

    2017-04-01

    Full Text Available MAGNEZIX® CS (Syntellix AG, Hanover, Germany is a bioabsorbable compression screw made of a magnesium alloy (MgYREZr. Currently there are only two clinical studies reporting on a limited number of elective patients who received this screw in a hallux valgus operation. We applied MAGNEZIX® CS for fixation of distal fibular fracture in a trauma patient who had sustained a bimalleolar fracture type AO 44-B2.3. Clinical course was uneventful, fracture healing occurred within three months. Follow-up X-rays showed a radiolucent area around the implant for some months, yet this radiolucent area had disappeared in the 17-months follow-up X-ray. Keywords: Magnesium, Bioabsorbable, Compression screw, Osteosynthesis, Ankle fracture

  7. In situ nuclear magnetic resonance study of defect dynamics during deformation of materials

    NARCIS (Netherlands)

    Murty, K.L.; Detemple, K.; Kanert, O.; Peters, G; de Hosson, J.T.M.

    1996-01-01

    Nuclear magnetic resonance techniques can be used to monitor in situ the dynamical behaviour of point and line defects in materials during deformation. These techniques are non-destructive and non-invasive. We report here the atomic transport, in particular the enhanced diffusion during deformation

  8. History of Retractor Technologies for Percutaneous Pedicle Screw Fixation Systems.

    Science.gov (United States)

    Mobbs, Ralph J; Phan, Kevin

    2016-02-01

    Minimally invasive techniques aimed at minimizing surgery-associated risk and morbidity of spinal surgery have increased in popularity in recent years. Their potential advantages include reduced length of hospital stay, blood loss, and requirement for post-operative analgesia and earlier return to work. One such minimally invasive technique is the use of percutaneous pedicle screw fixation, which is paramount for promoting rigid and stable constructs and fusion in the context of trauma, tumors, deformity and degenerative disease. Percutaneous pedicle screw insertion can be an intimidating prospect for surgeons who have only been trained in open techniques. One of the ongoing challenges of this percutaneous system is to provide the surgeon with adequate access to the pedicle entry anatomy and adequate tactile or visual feedback concerning the position and anatomy of the rod and set-screw construct. This review article discusses the history and evolution of percutaneous pedicle screw retractor technologies and outlines the advances over the last decade in the rapidly expanding field of minimal access surgery for posterior pedicle screw based spinal stabilization. As indications for percutaneous pedicle screw techniques expand, the nuances of the minimally invasive surgery techniques and associated technologies will also multiply. It is important that experienced surgeons have access to tools that can improve access with a greater degree of ease, simplicity and safety. We here discuss the technical challenges of percutaneous pedicle screw retractor technologies and a variety of systems with a focus on the pros and cons of various retractor systems. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  9. The Improvement of Bone-Tendon Fixation by Porous Titanium Interference Screw: A Rabbit Animal Model.

    Science.gov (United States)

    Tsai, Pei-I; Chen, Chih-Yu; Huang, Shu-Wei; Yang, Kuo-Yi; Lin, Tzu-Hung; Chen, San-Yuan; Sun, Jui-Sheng

    2018-05-04

    The interference screw is a widely used fixation device in the anterior cruciate ligament (ACL) reconstruction surgeries. Despite the generally satisfactory results, problems of using interference screws were reported. By using additive manufacturing (AM) technology, we developed an innovative titanium alloy (Ti 6 Al 4 V) interference screw with rough surface and inter-connected porous structure designs to improve the bone-tendon fixation. An innovative Ti 6 Al 4 V interference screws were manufactured by AM technology. In vitro mechanical tests were performed to validate its mechanical properties. Twenty-seven New Zealand white rabbits were randomly divided into control and AM screw groups for biomechanical analyses and histological analysis at 4, 8 and 12 weeks postoperatively; while micro-CT analysis was performed at 12 weeks postoperatively. The biomechanical tests showed that the ultimate failure load in the AM interference screw group was significantly higher than that in the control group at all tested periods. These results were also compatible with the findings of micro-CT and histological analyses. In micro-CT analysis, the bone-screw gap was larger in the control group; while for the additive manufactured screw, the screw and bone growth was in close contact. In histological study, the bone-screw gaps were wider in the control group and were almost invisible in the AM screw group. The innovative AM interference screws with surface roughness and inter-connected porous architectures demonstrated better bone-tendon-implant integration, and resulted in stronger biomechanical characteristics when compared to traditional screws. These advantages can be transferred to future interference screw designs to improve their clinical performance. The AM interference screw could improve graft fixation and eventually result in better biomechanical performance of the bone-tendon-screw construct. The innovative AM interference screws can be transferred to future

  10. Open reduction and internal fixation: Screw injury - Retrospective study

    Directory of Open Access Journals (Sweden)

    Preetha Balaji

    2017-01-01

    Full Text Available Background/Aims: Open reduction and internal fixation (ORIF is a standard surgical procedure in jaw trauma and in orthognathic surgery. Insertion of screws is a significant risk for accidental tooth root injury with varying outcomes. Contrary evidences are found in literature due to a variety of study designs. This study was undertaken to address the lacunae and possibly estimate the difference in occurrence of tooth damage during or after ORIF between trauma and planned osteotomies. Materials and Methods: In this retrospective study, the data of ORIF in either trauma or orthognathic surgery fulfilling inclusion and exclusion criteria were collected and analyzed. Results: There were 1632 patients fulfilling the inclusion and exclusion criteria and formed the study group, of which 663 were in orthognathic surgery, of whom 210 had bimaxillary orthognathic surgery. In the trauma group, 358 patients had fractures involving both jaws whereas 272 had maxilla alone and 339 had mandibular fractures alone. On comparing the outcome, of the 9073 screws studied, 93.40% were not involved in any contact with the teeth, 6.3% were in category of potential hits (near apices or the root surfaces, and only 0.28% had evidence of root damage with the screws. It is observed that molar and premolar had a significant difference in terms of the type of surgery (P ≤ 0.05 whereas canine (P = 0.75 and incisor (P = 0.67 showed no statistical difference. Conclusion: ORIF when used as mentioned is a safe way for the management of fractures. The incidence of root injury is not uncommon but can be avoided with careful planning and execution.

  11. The Study of Vibration Processes in Oil Flooded Screw Compressors

    Directory of Open Access Journals (Sweden)

    I. V. Filippov

    2014-01-01

    Full Text Available Vibration processes that accompany most of machines and mechanisms are of interest to the researcher, as a source of information about the technical condition and the nature of the business processes flow. Vibration-based diagnostics of oil flooded screw compressors allows us to estimate the deviation of their operation from the main mode in accordance with changing the settings of vibration processes.The oil flooded screw compressor transition from the main mode of operation to the abnormal one is accompanied by complex gas-dynamic phenomena i.e. the initial gaps and their decays. This leads to changes in the nature of vibration processes, prompting suggestions that there is a relationship to a change of vibration parameters and mode of compressor operation.Studies were conducted by combined method using an analytical calculation of the decay parameters of the initial discontinuity and an experimental one based on the measurement of acceleration on the body of the real oil flooded screw compressor. A virtually adequate reaction of the decay parameters of the initial gap and the peak values of vibration acceleration to the change of operation mode of oil flooded screw compressor has been received. The peak value of the vibration acceleration was selected by the method of Gating being time-coinciding with the beginning discharge phase of the oil flooded screw compressor, and therefore, with the decay time of the initial discontinuity.This indicates a large degree of hypothesis likelihood on an existing initial break in oil flooded screw compressor when operating in abnormal conditions. This work contains the study results of vibration processes and their relationship to the operating mode of the oil flooded screw compressor, which distinguish it from the other works studied vibration processes in reciprocating compressors. The vibration parameters control of operating oil flooded screw compressor allows us to create an automatic capacity control

  12. Decrease in Hydrogen Embrittlement Susceptibility of 10B21 Screws by Bake Aging

    Directory of Open Access Journals (Sweden)

    Kuan-Jen Chen

    2016-08-01

    Full Text Available The effects of baking on the mechanical properties and fracture characteristics of low-carbon boron (10B21 steel screws were investigated. Fracture torque tests and hydrogen content analysis were performed on baked screws to evaluate hydrogen embrittlement (HE susceptibility. The diffusible hydrogen content within 10B21 steel dominated the fracture behavior of the screws. The fracture torque of 10B21 screws baked for a long duration was affected by released hydrogen. Secondary ion mass spectroscopy (SIMS result showed that hydrogen content decreased with increasing baking duration, and thus the HE susceptibility of 10B21 screws improved. Diffusible hydrogen promoted crack propagation in high-stress region. The HE of 10B21 screws can be prevented by long-duration baking.

  13. The effect of DLC-coating deposition method on the reliability and mechanical properties of abutment's screws.

    Science.gov (United States)

    Bordin, Dimorvan; Coelho, Paulo G; Bergamo, Edmara T P; Bonfante, Estevam A; Witek, Lukasz; Del Bel Cury, Altair A

    2018-04-10

    To characterize the mechanical properties of different coating methods of DLC (diamond-like carbon) onto dental implant abutment screws, and their effect on the probability of survival (reliability). Seventy-five abutment screws were allocated into three groups according to the coating method: control (no coating); UMS - DLC applied through unbalanced magnetron sputtering; RFPA-DLC applied through radio frequency plasma-activated (n=25/group). Twelve screws (n=4) were used to determine the hardness and Young's modulus (YM). A 3D finite element model composed of titanium substrate, DLC-layer and a counterpart were constructed. The deformation (μm) and shear stress (MPa) were calculated. The remaining screws of each group were torqued into external hexagon abutments and subjected to step-stress accelerated life-testing (SSALT) (n=21/group). The probability Weibull curves and reliability (probability survival) were calculated considering the mission of 100, 150 and 200N at 50,000 and 100,000 cycles. DLC-coated experimental groups evidenced higher hardness than control (p1 indicating that fatigue contributed to failure. High reliability was depicted at a mission of 100N. At 200N a significant decrease in reliability was detected for all groups (ranging from 39% to 66%). No significant difference was observed among groups regardless of mission. Screw fracture was the chief failure mode. DLC-coating have been used to improve titanium's mechanical properties and increase the reliability of dental implant-supported restorations. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  14. Repairing rabbit radial defects by combining bone marrow stroma stem cells with bone scaffold material comprising a core-cladding structure.

    Science.gov (United States)

    Wu, H; Liu, G H; Wu, Q; Yu, B

    2015-10-05

    We prepared a bone scaffold material comprising a PLGA/β-TCP core and a Type I collagen cladding, and recombined it with bone marrow stroma stem cells (BMSCs) to evaluate its potential for use in bone tissue engineering by in vivo and in vitro experiments. PLGA/β-TCP without a cladding was used for comparison. The adherence rate of the BMSCs to the scaffold was determined by cell counting. Cell proliferation rate was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The osteogenic capability was evaluated by alkaline phosphatase activity. The scaffold materials were recombined with the BMSCs and implanted into a large segmental rabbit radial defect model to evaluate defect repair. Osteogenesis was assessed in the scaffold materials by histological and double immunofluorescence labeling, etc. The adherence number, proliferation number, and alkaline phosphatase expression of the cells on the bone scaffold material with core-cladding structure were significantly higher than the corresponding values in the PLGA/β-TCP composite scaffold material (P structure completely degraded at the bone defect site and bone formation was completed. The rabbit large sentimental radial defect was successfully repaired. The degradation and osteogenesis rates matched well. The bone scaffold with core-cladding structure exhibited better osteogenic activity and capacity to repair a large segmental bone defect compared to the PLGA/β-TCP composite scaffold. The bone scaffold with core-cladding structure has excellent physical properties and biocompatibility. It is an ideal scaffold material for bone tissue engineering.

  15. The movement of screw dislocations in tungsten

    International Nuclear Information System (INIS)

    Tian Xiaogeng; Woo Chungho

    2004-01-01

    Using Acland potential for tungsten, the movement of 1/2a screw dislocation under shear stress was investigated by molecular dynamics simulation. Equilibrated core structure was obtained by relaxation of screw dislocation with proper boundary conditions. We found that the equilibrium dislocation core has three-fold symmetry and spread out in three direction on {1 1 0} planes. The screw dislocation core could not keep the original shape when the shear stress applied. The dislocation could not move until the shear stress became large enough. The dislocation moved in zigzag when the shear stress neared the Peierls stress. When the shear stress became larger, the dislocation moved in zigzag at the beginning and than moved almost in straight line in [2-bar11] direction. The large shear stress applied, the long distance moved before the dislocation stilled in z-direction and the large velocity in y-direction

  16. Screw Remaining Life Prediction Based on Quantum Genetic Algorithm and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xiaochen Zhang

    2017-01-01

    Full Text Available To predict the remaining life of ball screw, a screw remaining life prediction method based on quantum genetic algorithm (QGA and support vector machine (SVM is proposed. A screw accelerated test bench is introduced. Accelerometers are installed to monitor the performance degradation of ball screw. Combined with wavelet packet decomposition and isometric mapping (Isomap, the sensitive feature vectors are obtained and stored in database. Meanwhile, the sensitive feature vectors are randomly chosen from the database and constitute training samples and testing samples. Then the optimal kernel function parameter and penalty factor of SVM are searched with the method of QGA. Finally, the training samples are used to train optimized SVM while testing samples are adopted to test the prediction accuracy of the trained SVM so the screw remaining life prediction model can be got. The experiment results show that the screw remaining life prediction model could effectively predict screw remaining life.

  17. Ball Nut Preload Diagnosis of the Hollow Ball Screw through Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Huang

    2018-01-01

    Full Text Available This paper studies the diagnostic results of hollow ball screws with different ball nut preload through the support vector machine (SVM process. The method is testified by considering the use of ball screw pretension and different ball nut preload. SVM was used to discriminate the hollow ball screw preload status through the vibration signals and servo motor current signals. Maximum dynamic preloads of 2%, 4%, and 6% ball screws were predesigned, manufactured, and conducted experimentally. Signal patterns with different preload features are separatedby SVM. The irregularity development of the ball screw driving motion current and rolling balls vibration of the ball screw can be discriminated via SVM based on complexity perception. The experimental results successfully show that the prognostic status of ball nut preload can be envisaged by the proposed methodology. The smart reasoning for the health of the ball screw is available based on classification of SVM. This diagnostic method satisfies the purposes of prognostic effectiveness on knowing the ball nut preload status

  18. Locking screw-plate interface stability in carbon-fibre reinforced polyetheretherketone proximal humerus plates.

    Science.gov (United States)

    Hak, David J; Fader, Ryan; Baldini, Todd; Chadayammuri, Vivek B S

    2017-09-01

    Carbon-fibre reinforced polyetheretherketone (CFR-PEEK) plates have recently been introduced for proximal humerus fracture treatment. The purpose of this study was to compare the locking screw-plate interface stability in CFR-PEEK versus stainless steel (SS) proximal humerus plates. Locking screw mechanical stability was evaluated independently in proximal and shaft plate holes. Stiffness and load to failure were tested for three conditions: (1) on-axis locking screw insertion in CFR-PEEK versus SS plates, (2) on-axis locking screw insertion, removal, and reinsertion in CFR-PEEK plates, and (3) 10-degree off-axis locking screw insertion in CFR-PEEK plates. Cantilever bending at a rate of 1 mm/minute was produced by an Instron machine and load-displacement data recorded. Shaft locking screw load to failure was significantly greater in CFR-PEEK plates compared to SS plates (746.4 ± 89.7 N versus 596.5 ± 32.6 N, p PEEK plates (p PEEK plates. The mechanical stability of locking screws in CFR-PEEK plates is comparable or superior to locking screws in SS plates.

  19. Comparison of migration behavior between single and dual lag screw implants for intertrochanteric fracture fixation

    Directory of Open Access Journals (Sweden)

    Katonis Pavlos G

    2009-05-01

    Full Text Available Abstract Background Lag screw cut-out failure following fixation of unstable intertrochanteric fractures in osteoporotic bone remains an unsolved challenge. This study tested if resistance to cut-out failure can be improved by using a dual lag screw implant in place of a single lag screw implant. Migration behavior and cut-out resistance of a single and a dual lag screw implant were comparatively evaluated in surrogate specimens using an established laboratory model of hip screw cut-out failure. Methods Five dual lag screw implants (Endovis, Citieffe and five single lag screw implants (DHS, Synthes were tested in the Hip Implant Performance Simulator (HIPS of the Legacy Biomechanics Laboratory. This model simulated osteoporotic bone, an unstable fracture, and biaxial rocking motion representative of hip loading during normal gait. All constructs were loaded up to 20,000 cycles of 1.45 kN peak magnitude under biaxial rocking motion. The migration kinematics was continuously monitored with 6-degrees of freedom motion tracking system and the number of cycles to implant cut-out was recorded. Results The dual lag screw implant exhibited significantly less migration and sustained more loading cycles in comparison to the DHS single lag screw. All DHS constructs failed before 20,000 cycles, on average at 6,638 ± 2,837 cycles either by cut-out or permanent screw bending. At failure, DHS constructs exhibited 10.8 ± 2.3° varus collapse and 15.5 ± 9.5° rotation around the lag screw axis. Four out of five dual screws constructs sustained 20,000 loading cycles. One dual screw specimens sustained cut-out by medial migration of the distal screw after 10,054 cycles. At test end, varus collapse and neck rotation in dual screws implants advanced to 3.7 ± 1.7° and 1.6 ± 1.0°, respectively. Conclusion The single and double lag screw implants demonstrated a significantly different migration resistance in surrogate specimens under gait loading simulation with

  20. Current trends in pedicle screw stimulation techniques: lumbosacral, thoracic, and cervical levels.

    Science.gov (United States)

    Isley, Michael R; Zhang, Xiao-Feng; Balzer, Jeffrey R; Leppanen, Ronald E

    2012-06-01

    Unequivocally, pedicle screw instrumentation has evolved as a primary construct for the treatment of both common and complex spinal disorders. However an inevitable and potentially major complication associated with this type of surgery is misplacement of a pedicle screw(s) which may result in neural and vascular complications, as well as impair the biomechanical stability of the spinal instrumentation resulting in loss of fixation. In light of these potential surgical complications, critical reviews of outcome data for treatment of chronic, low-back pain using pedicle screw instrumentation concluded that "pedicle screw fixation improves radiographically demonstrated fusion rates;" however the expense and complication rates for such constructs are considerable in light of the clinical benefit (Resnick et al. 2005a). Currently, neuromonitoring using free-run and evoked (triggered) electromyography (EMG) is widely used and advocated for safer and more accurate placement of pedicle screws during open instrumentation procedures, and more recently, guiding percutaneous placement (minimally invasive) where the pedicle cannot be easily inspected visually. The latter technique, evoked or triggered EMG when applied to pedicle screw instrumentation surgeries, has been referred to as the pedicle screw stimulation technique. As concluded in the Position Statement by the American Society of Neurophysiological Monitoring (ASNM), multimodality neuromonitoring using free-run EMG and the pedicle screw stimulation technique was considered a practice option and not yet a standard of care (Leppanen 2005). Subsequently, the American Association of Neurological Surgeons/Congress of Neurological Surgeons (AANS/CNS) Joint Section on Disorders of the Spine and Peripheral Nerves published their "Guidelines for the Performance of Fusion Procedures for Degenerative Disease of the Lumbar Spine" (Heary 2005, Resnick et al. 2005a, Resnick et al. 2005b). It was concluded that the "primary

  1. Emission Mechanisms of Si Nanocrystals and Defects in SiO2 Materials

    Directory of Open Access Journals (Sweden)

    José Antonio Rodríguez

    2014-01-01

    Full Text Available Motivated by the necessity to have all silicon optoelectronic circuits, researchers around the world are working with light emitting silicon materials. Such materials are silicon dielectric compounds with silicon content altered, such as silicon oxide or nitride, enriched in different ways with Silicon. Silicon Rich Oxide or silicon dioxide enriched with silicon, and silicon rich nitride are without a doubt the most promising materials to reach this goal. Even though they are subjected to countless studies, the light emission phenomenon has not been completely clarified. So, a review of different proposals presented to understand the light emission phenomenon including emissions related to nanocrystals and to point defects in SiO2 is presented.

  2. Comparative effect of implant-abutment connections, abutment angulations, and screw lengths on preloaded abutment screw using three-dimensional finite element analysis: An in vitro study

    Directory of Open Access Journals (Sweden)

    Krishna Chaitanya Kanneganti

    2018-01-01

    Conclusions: The present study suggests selecting appropriate implant-abutment connection based on the abutment angulation, as well as preferring long screws with more number of threads for effective preload retention by the screws.

  3. Signal enhancement in amperometric peroxide detection by using graphene materials with low number of defects

    International Nuclear Information System (INIS)

    Zöpfl, Alexander; Matysik, Frank-Michael; Hirsch, Thomas; Sisakthi, Masoumeh; Eroms, Jonathan; Strunk, Christoph

    2016-01-01

    Two-dimensional carbon nanomaterials ranging from single-layer graphene to defective structures such as chemically reduced graphene oxide were studied with respect to their use in electrodes and sensors. Their electrochemical properties and utility in terms of fabrication of sensing devices are compared. Specifically, the electrodes have been applied to reductive amperometric determination of hydrogen peroxide. Low-defect graphene (SG) was obtained through mechanical exfoliation of natural graphite, while higher-defect graphenes were produced by chemical vapor deposition (CVDG) and by chemical oxidation of graphite and subsequent reduction (rGO). The carbonaceous materials were mainly characterized by Raman microscopy. They were applied as electrode material and the electrochemical behavior was investigated by chronocoulometry, cyclic voltammetry, electrochemical impedance spectroscopy and amperometry and compared to a carbon disc electrode. It is shown that the quality of the graphene has an enormous impact on the amperometric performance. The use of carbon materials with many defects (like rGO) does not result in a significant improvement in signal compared to a plain carbon disc electrode. The sensitivity is 173 mA · M −1  · cm −2 in case of using CVDG which is about 50 times better than that of a plain carbon disc electrode and about 7 times better than that of rGO. The limit of detection for hydrogen peroxide is 15.1 μM (at a working potential of −0.3 V vs SCE) for CVDG. It is concluded that the application of two-dimensional carbon nanomaterials offers large perspectives in amperometric detection systems due to electrocatalytic effects that result in highly sensitive detection. (author)

  4. Accelerated Tooth Movement with Orthodontic Mini-Screws

    Directory of Open Access Journals (Sweden)

    S. Aksakalli

    2017-01-01

    Full Text Available This case report outlines the possibility of accelerated tooth movement with the combination of microosteoperforation and mini-screws. A 14-year-old male patient presented Class II malocclusion with maxillary incisor protrusion. Upper first premolars were extracted, and after leveling, accelerated canine distalization started. For pre- and postdistalization times, amount of distalization, periodontal health, and root resorption were assessed. Within the limitations of this case report, micro-osteoperforations with mini-screw have a potential for shortening the treatment time.

  5. Open reduction and internal fixation of patellar fractures with tension band wiring through cannulated screws.

    Science.gov (United States)

    Malik, Mudasir; Halwai, Manzoor Ahmad

    2014-10-01

    The purpose of this study was to evaluate effectiveness and safety of a relatively new technique of open reduction and internal fixation of displaced transverse patellar fractures with tension band wiring (TBW) through parallel cannulated compression screws. A total of 30 patients with displaced transverse patellar fracture were enrolled in this prospective study. Of the 30 patients, 20 patients had trauma due to fall, 5 due to road traffic accident, 2 due to fall of heavy object on the knee, 2 due to forced flexion of knee, and 1 had fracture due to being beaten. All 30 patients were treated with vertical skin exposure, fracture open reduction, and internal fixation by anterior TBW through 4.0 mm cannulated screws. The postoperative rehabilitation protocol was standardized. The patients were followed postsurgery to evaluate time required for radiographic bone union, knee joint range of motion (ROM), loss of fracture reduction, material failure, and the overall functional result of knee using Bostman scoring. All the fractures healed radiologically, at an average time of 10.7 weeks (range, 8-12 weeks). The average ROM arc was 129.7 degrees (range, 115-140 degrees). No patient had loss of fracture reduction, implant migration, or material failure. The average Bostman score was 28.6 out of 30. Anterior TBW through cannulated screws for displaced transverse fractures is safe and effective alternative treatment. Good functional results and recovery can be expected. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Screw calciner mechanical direct denitration process for plutonium nitrate to oxide conversion

    International Nuclear Information System (INIS)

    Souply, K.R.; Sperry, W.E.

    1977-01-01

    This report describes a screw calciner direct-denitration process for converting plutonium nitrate to plutonium oxide. The information should be used when making comparisons of alternative plutonium nitrate-to-oxide conversion processes or as a basis for further detailed studies. The report contains process flow sheets with a material balance; a process description; and a discussion of the process including history, advantages and disadvantages, and additional research required

  7. Oral mucosa tissue response to titanium cover screws.

    Science.gov (United States)

    Olmedo, Daniel G; Paparella, María L; Spielberg, Martín; Brandizzi, Daniel; Guglielmotti, María B; Cabrini, Rómulo L

    2012-08-01

    Titanium is the most widely used metal in dental implantology. The release of particles from metal structures into the biologic milieu may be the result of electrochemical processes (corrosion) and/or mechanical disruption during insertion, abutment connection, or removal of failing implants. The aim of the present study is to evaluate tissue response of human oral mucosa adjacent to titanium cover screws. One hundred fifty-three biopsies of the supra-implant oral mucosa adjacent to the cover screw of submerged dental implants were analyzed. Histologic studies were performed to analyze epithelial and connective tissue as well as the presence of metal particles, which were identified using microchemical analysis. Langerhans cells, macrophages, and T lymphocytes were studied using immunohistochemical techniques. The surface of the cover screws was evaluated by scanning electron microscopy (SEM). Forty-one percent of mucosa biopsies exhibited metal particles in different layers of the section thickness. Particle number and size varied greatly among specimens. Immunohistochemical study confirmed the presence of macrophages and T lymphocytes associated with the metal particles. Microchemical analysis revealed the presence of titanium in the particles. On SEM analysis, the surface of the screws exhibited depressions and irregularities. The biologic effects seen in the mucosa in contact with the cover screws might be associated with the presence of titanium or other elements, such as aluminum or vanadium. The potential long-term biologic effects of particles on soft tissues adjacent to metallic devices should be further investigated because these effects might affect the clinical outcome of the implant.

  8. Effectiveness of screw surface coating on the stability of zirconia abutments after cyclic loading.

    Science.gov (United States)

    Basílio, Mariana de Almeida; Butignon, Luis Eduardo; Arioli Filho, João Neudenir

    2012-01-01

    Different surface treatments have been developed in attempts to prevent the loosening of abutment screws. The aim of the current study was to compare the effectiveness of titanium alloy screws with tungsten-doped diamond-like carbon (W-DLC) coating and uncoated screws in providing stability to zirconia (ZrO2) ceramic abutments after cyclic loading. Twenty prefabricated ZrO2 ceramic abutments on their respective external-hex implants were divided into two groups of equal size according to the type of screw used: uncoated titanium alloy screw (Ti) or titanium alloy screw with W-DLC coating (W-DLC/Ti). The removal torque value (preload) of the abutment screw was measured before and after loading. Cyclic loading between 11 and 211 N was applied at an angle of 30 degrees to the long axis of the implants at a frequency of 15 Hz. A target of 0.5 X 106 cycles was defined. Group means were calculated and compared using analysis of variance and the F test (α = .05). Before cyclic loading, the preload for Ti screws was significantly higher than that for W-DLC/Ti screws (P = .021). After cyclic loading, there was no significant difference between them (P = .499). Under the studied conditions, it can be concluded that, after cyclic loading, both abutment screws presented a significant reduction in the mean retained preload and similar effectiveness in maintaining preload.

  9. Is the lag screw sliding effective in the intramedullary nailing in A1 and A2 AO-OTA intertrochanteric fractures? A prospective study of Sliding and None-sliding lag screw in Gamma-III nail

    Directory of Open Access Journals (Sweden)

    Zhu Yi

    2012-09-01

    Full Text Available Abstract Object To compare the Sliding with Non-sliding lag screw of a gamma nail in the treatment of A1 and A2 AO-OTA intertrochanteric fractures. Materials and methods 80 patients were prospectively collected. In each group, AO/OTA 31-A were classified into group A. AO/OTA 31-A2.1 was classified as group B. We classified the A2.2 and A2.3 as group C. According to the set-screw locking formation of Gamma-III, the cases were randomly allocated to Sliding subgroup and Non-sliding subgroup in A, B and C groups. Follow-ups were performed 1, 3, 6 and 12 months postoperatively. Results In the Sliding group, the bone healing rate 3, 6, 12 months postoperatively reached 85.00%, 97.50%, 100% in group A, B and C. Meanwhile, in Non-sliding group, postoperatively, bone healing rate were 90.00%, 95.00% and 97.50% in group A, B and C, respectively. Both differences were not significant. Lower limb discrepancy between Sliding and Non-sliding pattern was significantly different in group C which represent fracture types of AO/OTA 31-A2.2 and A2.3 (0.573 ± 0.019 mm in Non-sliding group, 0.955 mm ± 0.024 mm in Sliding group, P Conclusions As a result, we can conclude that the sliding distance is minimal in Gamma nails and it is related to the comminuted extent of the intertrochanteric area in A1 and A2 AO-OTA intertrochanteric fractures. For treating these kinds of fractures, the sliding of the lag screw of an Gamma nail does not improve any clinical results and in certain cases, such as highly comminuted A1 and A2 fractures, can therefore even benefit from a locked lag screw by tightening the set-screw.

  10. Mechanical comparison between lengthened and short sacroiliac screws in sacral fracture fixation: a finite element analysis.

    Science.gov (United States)

    Zhao, Y; Zhang, S; Sun, T; Wang, D; Lian, W; Tan, J; Zou, D; Zhao, Y

    2013-09-01

    To compare the stability of lengthened sacroiliac screw and standard sacroiliac screw for the treatment of unilateral vertical sacral fractures; to provide reference for clinical applications. A finite element model of Tile type C pelvic ring injury (unilateral Denis type II fracture of the sacrum) was produced. The unilateral sacral fractures were fixed with lengthened sacroiliac screw and sacroiliac screw in six different types of models respectively. The translation and angle displacement of the superior surface of the sacrum (in standing position on both feet) were measured and compared. The stability of one lengthened sacroiliac screw fixation in S1 or S2 segment is superior to that of one sacroiliac screw fixation in the same sacral segment. The stability of one lengthened sacroiliac screw fixation in S1 and S2 segments respectively is superior to that of one sacroiliac screw fixation in S1 and S2 segments respectively. The stability of one lengthened sacroiliac screw fixation in S1 and S2 segments respectively is superior to that of one lengthened sacroiliac screw fixation in S1 or S2 segment. The stability of one sacroiliac screw fixation in S1 and S2 segments respectively is markedly superior to that of one sacroiliac screw fixation in S1 or S2 segment. The vertical and rotational stability of lengthened sacroiliac screw fixation and sacroiliac screw fixation in S2 is superior to that of S1. In a finite element model of type C pelvic ring disruption, S1 and S2 lengthened sacroiliac screws should be utilized for the fixation as regularly as possible and the most stable fixation is the combination of the lengthened sacroiliac screws of S1 and S2 segments. Even if lengthened sacroiliac screws cannot be systematically used due to specific conditions, one sacroiliac screw fixation in S1 and S2 segments respectively is recommended. No matter which kind of sacroiliac screw is used, if only one screw can be implanted, the fixation in S2 segment is more recommended

  11. Correlation between classification and secondary screw penetration in proximal humeral fractures.

    Directory of Open Access Journals (Sweden)

    Qiuke Wang

    Full Text Available In this study, we investigated the correlation between fracture classification and secondary screw penetration.We retrospectively identified 189 patients with displaced proximal humeral fractures treated by ORIF at our hospital between June 2006 and June 2013. All fractures were classified radiographically before surgery and follow-up for least 2 years after surgery was recommended. At each follow-up, radiographs were taken in three orthogonal views to evaluate secondary screw penetration.The study population consisted of 189 patients. Of these, 70 were male and 119 female, with a mean age of 59.1 years; the mean follow-up time was 28.5 months. Secondary screw penetration occurred in 26 patients. The risk of developing secondary screw penetration was 11.3-fold higher in four-part fractures than two-part fractures (P 0.05.Patients with four-part fractures, type C fractures and medial hinges disruption are vulnerable to secondary screw penetration. This allows additional precautions to be instituted and measures to be taken as needed.

  12. Production of palm frond based wood plastic composite by using twin screw extruder

    Science.gov (United States)

    Russita, M.; Bahruddin

    2018-04-01

    Wood plastic composite (WPC) is the blending product from wood as filler and polymer thermoplastic as matric. Palm frond waste is a material with selulose about 68%, so it has potential to be developed as raw material for WPC. The purpose of this research was to learn how to produce WPC based on palm frond use twin screw extruder. It used popropilen as matric. As for aditif, it used Maleated Polypropilene (MAPP) as compatibilizer and paraffin as plasticizer. The size of palm frond is 40 – 80 mesh. WPC is made from blending polipropylene, palm frond, MAPP and paraffin with dry mixing method in room temperature. Then, PP, Palm frond and additive from dry mixing is fed into twin screw extruder at 190°C and 60 rpm. It use palm frond/polypropylene 60/40, MAPP 5% w/w and paraffin 2% w/w. From the result, it shown that WPC based on palm frond met the standards forcommercial WPC. It has tensile strength up to 19.2 MPa, bending strength 43.6 MPa and water adsorption 0,32% w/w. So, WPC based on palm frond has prospective to be developed for commercial WPC.

  13. SISGR: Defect Studies of CZTSSe & Related Thin Film Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Scarpulla, Michael [Univ. of Utah, Salt Lake City, UT (United States)

    2017-03-30

    The research objectives of this project centered around investigations of the basic properties of Cu2ZnSn(S,Se)4 especially the electronic defects in the bulk, at the interface with heterojunction partners used in solar cells, and at the polycrystalline grain boundaries. In the course of the project we addressed many specific sub-areas in 17 peer reviewed publications listed at the end of this report (2 more are also in preparation). The impact of this research is to generate basic but critical materials knowledge about this emerging alloy system that may be capable of photovoltaic efficiency on par with CdTe and CIGS but at lower cost and having the benefit of avoiding constraints on scale-up from rare and expensive elements using earth abundant elements. In the final phase of this project, Prof. Scarpulla worked with Dr. Kirstin Alberi at NREL and rigorously solved a theoretical problem that is general across all semiconductors – the prediction of point defect concentrations in the presence of excess carriers.

  14. Defect Detection of Adhesive Layer of Thermal Insulation Materials Based on Improved Particle Swarm Optimization of ECT.

    Science.gov (United States)

    Wen, Yintang; Jia, Yao; Zhang, Yuyan; Luo, Xiaoyuan; Wang, Hongrui

    2017-10-25

    This paper studies the defect detection problem of adhesive layer of thermal insulation materials. A novel detection method based on an improved particle swarm optimization (PSO) algorithm of Electrical Capacitance Tomography (ECT) is presented. Firstly, a least squares support vector machine is applied for data processing of measured capacitance values. Then, the improved PSO algorithm is proposed and applied for image reconstruction. Finally, some experiments are provided to verify the effectiveness of the proposed method in defect detection for adhesive layer of thermal insulation materials. The performance comparisons demonstrate that the proposed method has higher precision by comparing with traditional ECT algorithms.

  15. Percutaneous Iliac Screws for Minimally Invasive Spinal Deformity Surgery

    Directory of Open Access Journals (Sweden)

    Michael Y. Wang

    2012-01-01

    Full Text Available Introduction. Adult spinal deformity (ASD surgeries carry significant morbidity, and this has led many surgeons to apply minimally invasive surgery (MIS techniques to reduce the blood loss, infections, and other peri-operative complications. A spectrum of techniques for MIS correction of ASD has thus evolved, most recently the application of percutaneous iliac screws. Methods. Over an 18 months 10 patients with thoracolumbar scoliosis underwent MIS surgery. The mean age was 73 years (70% females. Patients were treated with multi-level facet osteotomies and interbody fusion using expandable cages followed by percutaneous screw fixation. Percutaneous iliac screws were placed bilaterally using the obturator outlet view to target the ischial body. Results. All patients were successfully instrumented without conversion to an open technique. Mean operative time was 302 minutes and the mean blood loss was 480 cc, with no intraoperative complications. A total of 20 screws were placed successfully as judged by CT scanning to confirm no bony violations. Complications included: two asymptomatic medial breaches at T10 and L5, and one patient requiring delayed epidural hematoma evacuation. Conclusions. Percutaneous iliac screws can be placed safely in patients with ASD. This MIS technique allows for successful caudal anchoring to stress-shield the sacrum and L5-S1 fusion site in long-segment constructs.

  16. Theoretical investigation of flash vaporisation in a screw expander

    Science.gov (United States)

    Vasuthevan, Hanushan; Brümmer, Andreas

    2017-08-01

    In the present study flash vaporisation of liquid injection in a twin screw expander for a Trilateral Flash Cycle (TFC) is examined theoretically. The TFC process comprises a pressure increase in the working fluid, followed by heating the liquid close to boiling point. The hot liquid is injected into the working chamber of a screw expander. During this process the pressure of the liquid drops below the saturation pressure, while the temperature of the liquid remains virtually constant. Hence the liquid is superheated and in a metastable state. The liquid jet seeks to achieve a stable state in thermodynamic equilibrium and is therefore partially vaporised. This effect is referred to as flash vaporisation. Accordingly, a two-phase mixture, consisting of vapour and liquid, exists in the working chamber. Thermodynamic simulations were carried out using water as the working fluid for representative screw expander geometry. The simulations presented are performed from two different aspects during the filling process of a screw expander. The first case is the vaporisation of the injected liquid in a state of thermodynamic equilibrium, whereby the two-phase mixture is treated entirely as a compressible and homogeneous gas. The second case considers flashing efficiency. It describes the quantity of flashed vapour and consists of a liquid and vapour domain. Both models are compared and analysed with respect to the operational behaviour of a screw expander.

  17. Sacroiliac secure corridor: analysis for safe insertion of iliosacral screws

    Directory of Open Access Journals (Sweden)

    Henrique Alves Cruz

    2013-08-01

    Full Text Available OBJECTIVE: Posterior pelvic lesions, especially of the sacral-iliac joint, have high mortality and morbidity risks. Definitive fixation is necessary for the joint stabilization, and one option is the sacral percutaneous pinning with screws. Proximity to important structures to this region brings risks to the fixation procedure; therefore, it is important to know the tridimensional anatomy of the pelvis posterior region. Deviations of the surgeon's hand of four degrees may target the screws to those structures; dimorphisms of the upper sacrum and a poor lesion reduction may redound in a screw malpositioning. This study is aimed to evaluate the dimensions of a safe surgical corridor for safe sacroiliac screw insertion and relations with age and sex of the patients. METHOD: One hundred randomly selected pelvis CTs of patients with no pelvic diseases, seen at a tertiary care teaching Hospital. Measurements were made by computer and the safest area for screw insertion was calculated by two methods. The results were expressed in mm (not in degrees, in order to be a further surgical reference. RESULTS: There was a significant size difference in the analyzed sacral vertebra, differing on a wider size in men than in women. There was no significant statistical difference between vertebral size and age. By both methods, a safe area for screw insertion could be defined. CONCLUSION: Age does not influence the width of the surgical corridor. The surgeon has a safe corridor considered narrower when inserting screws in a female pelvis than when in a male one. However, as the smallest vertebra found (feminine was considered for statics, it was concluded that this corridor is 20 mm wide in any direction, taking as a reference the centrum of the vertebra.

  18. Dorsal bridge plating or transarticular screws for Lisfranc fracture dislocations.

    Science.gov (United States)

    Kirzner, N; Zotov, P; Goldbloom, D; Curry, H; Bedi, H

    2018-04-01

    Aims The aim of this retrospective study was to compare the functional and radiological outcomes of bridge plating, screw fixation, and a combination of both methods for the treatment of Lisfranc fracture dislocations. Patients and Methods A total of 108 patients were treated for a Lisfranc fracture dislocation over a period of nine years. Of these, 38 underwent transarticular screw fixation, 45 dorsal bridge plating, and 25 a combination technique. Injuries were assessed preoperatively according to the Myerson classification system. The outcome measures included the American Orthopaedic Foot and Ankle Society (AOFAS) score, the validated Manchester Oxford Foot Questionnaire (MOXFQ) functional tool, and the radiological Wilppula classification of anatomical reduction. Results Significantly better functional outcomes were seen in the bridge plate group. These patients had a mean AOFAS score of 82.5 points, compared with 71.0 for the screw group and 63.3 for the combination group (p bridge plate group, 38.1 in the screw group, and 45.5 in the combination group (p bridge plating have better functional and radiological outcomes than those treated with transarticular screws or a combination technique. Cite this article: Bone Joint J 2018;100-B:468-74.

  19. Studies on positive conveying in helically channeled single screw extruders

    Directory of Open Access Journals (Sweden)

    L. Pan

    2012-07-01

    Full Text Available A solids conveying theory called double-flight driving theory was proposed for helically channeled single screw extruders. In the extruder, screw channel rotates against static barrel channel, which behaves as cooperative embedded twin-screws for the positive conveying. They turn as two parallel arc plates, between which an arc-plate solid-plug was assumed. By analyzing the forces on the solid-plug in the barrel channel and screw channel, the boundary conditions when the solid-plug is waived of being cut off on barrel wall, were found to have the capacity of the positive conveying. Experimental data were obtained using a specially designed extruder with a helically channeled barrel in the feeding zone and a pressure-adjustable die. The effects of the barrel channel geometry and friction coefficients on the conveying mechanism were presented and compared with the experimental results. The simulations showed that the positive conveying could be achieved after optimizing extruder designs. Compared with the traditional design with the friction-drag conveying, the throughput is higher while screw torque and energy consumption are decreased. Besides, the design criteria of the barrel channel were also discussed.

  20. Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine.

    Directory of Open Access Journals (Sweden)

    Fei Guo

    Full Text Available Pedicle screw fixation in the upper cervical spine is a difficult and high-risk procedure. The screw is difficult to place rapidly and accurately, and can lead to serious injury of spinal cord or vertebral artery. The aim of this study was to design an individualized 3D printing navigation template for pedicle screw fixation in the upper cervical spine.Using CT thin slices data, we employed computer software to design the navigation template for pedicle screw fixation in the upper cervical spine (atlas and axis. The upper cervical spine models and navigation templates were produced by 3D printer with equal proportion, two sets for each case. In one set (Test group, pedicle screws fixation were guided by the navigation template; in the second set (Control group, the screws were fixed under fluoroscopy. According to the degree of pedicle cortex perforation and whether the screw needed to be refitted, the fixation effects were divided into 3 types: Type I, screw is fully located within the vertebral pedicle; Type II, degree of pedicle cortex perforation is 1 mm or with the poor internal fixation stability and in need of renovation. Type I and Type II were acceptable placements; Type III placements were unacceptable.A total of 19 upper cervical spine and 19 navigation templates were printed, and 37 pedicle screws were fixed in each group. Type I screw-placements in the test group totaled 32; Type II totaled 3; and Type III totaled 2; with an acceptable rate of 94.60%. Type I screw placements in the control group totaled 23; Type II totaled 3; and Type III totaled 11, with an acceptable rate of 70.27%. The acceptability rate in test group was higher than the rate in control group. The operation time and fluoroscopic frequency for each screw were decreased, compared with control group.The individualized 3D printing navigation template for pedicle screw fixation is easy and safe, with a high success rate in the upper cervical spine surgery.

  1. The use of a continuous-action centrifugal-screw mixer for improving the quality of flour baking mixes for functional purposes

    Directory of Open Access Journals (Sweden)

    D. M. Borodulin

    2018-01-01

    flour will amount to 0.39 rubles. The prime cost of raw materials for the preparation of 1 kilogram of enriched flour bakery mixture is 50.39 rubles. The payback period of the centrifugal-screw mixer will be 0.02 year.

  2. Detecting the honeycomb sandwich composite material's moisture impregnating defects by using infrared thermography technique

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Koo Ahn; Choi, Man Yong; Park, Jeong Hak; Choi, Won Jae [Safety Measurement Center, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Park, Hee Sang [R and D, Korea Research Institute of Smart Material and Structures System Association, Daejeon (Korea, Republic of)

    2017-04-15

    Many composite materials are used in the aerospace industry because of their excellent mechanical properties. However, the nature of aviation exposes these materials to high temperature and high moisture conditions depending on climate, location, and altitude. Therefore, the molecular arrangement chemical properties, and mechanical properties of composite materials can be changed under these conditions. As a result, surface disruptions and cracks can be created. Consequently, moisture-impregnating defects can be induced due to the crack and delamination of composite materials as they are repeatedly exposed to moisture absorption moisture release, fatigue environment, temperature changes, and fluid pressure changes. This study evaluates the possibility of detecting the moisture-impregnating defects of CFRP and GFRP honeycomb structure sandwich composite materials, which are the composite materials in the aircraft structure, by using an active infrared thermography technology among non-destructive testing methods. In all experiments, it was possible to distinguish the area and a number of CFRP composite materials more clearly than those of GFRP composite material. The highest detection rate was observed in the heating duration of 50 mHz and the low detection rate was at the heating duration of over 500 mHz. The reflection method showed a higher detection rate than the transmission method.

  3. Noninvasive method for retrieval of broken dental implant abutment screw

    Directory of Open Access Journals (Sweden)

    Jagadish Reddy Gooty

    2014-01-01

    Full Text Available Dental implants made of titanium for replacement of missing teeth are widely used because of ease of technical procedure and high success rate, but are not free of complications and may fail. Fracturing of the prosthetic screw continues to be a problem in restorative practice and great challenge to remove the fractured screw conservatively. This case report describes and demonstrates the technique of using an ultrasonic scaler in the removal of the fracture screw fragment as a noninvasive method without damaging the hex of implants.

  4. Design of platform for removing screws from LCD display shields

    Science.gov (United States)

    Tu, Zimei; Qin, Qin; Dou, Jianfang; Zhu, Dongdong

    2017-11-01

    Removing the screws on the sides of a shield is a necessary process in disassembling a computer LCD display. To solve this issue, a platform has been designed for removing the screws on display shields. This platform uses virtual instrument technology with LabVIEW as the development environment to design the mechanical structure with the technologies of motion control, human-computer interaction and target recognition. This platform removes the screws from the sides of the shield of an LCD display mechanically thus to guarantee follow-up separation and recycle.

  5. Study of residue type defect formation mechanism and the effect of advanced defect reduction (ADR) rinse process

    Science.gov (United States)

    Arima, Hiroshi; Yoshida, Yuichi; Yoshihara, Kosuke; Shibata, Tsuyoshi; Kushida, Yuki; Nakagawa, Hiroki; Nishimura, Yukio; Yamaguchi, Yoshikazu

    2009-03-01

    Residue type defect is one of yield detractors in lithography process. It is known that occurrence of the residue type defect is dependent on resist development process and the defect is reduced by optimized rinsing condition. However, the defect formation is affected by resist materials and substrate conditions. Therefore, it is necessary to optimize the development process condition by each mask level. Those optimization steps require a large amount of time and effort. The formation mechanism is investigated from viewpoint of both material and process. The defect formation is affected by resist material types, substrate condition and development process condition (D.I.W. rinse step). Optimized resist formulation and new rinse technology significantly reduce the residue type defect.

  6. [Three-dimensional computed tomography analysis and clinical application of sacroiliac screw placement].

    Science.gov (United States)

    Yin, Y C; Zhang, R P; Li, S L; Hou, Z Y; Chen, W; Zhang, Y Z

    2018-03-01

    Objective: To evaluate the possibility of transverse sacroiliac screw placement in different segments of the sacrum. Methods: Data of 80 pelvic CT scans (slice thickness ≤1.0 mm) archived in CT department of the Third Hospital of Hebei Medical University from September 2016 to October 2017 were retrospectively collected. Mimics software was used to rebuild the pelvis three-dimensional model. According to whether the sacral 1(S(1)) segment could place the transverse sacroiliac screws or not, all the sacrums were divided into normal group ( n =55) and dysmorphic group ( n =25). Simulation the S(1), sacral 2(S(2)) transverse sacroiliac screw placement in 3-Matic software. Analysis whether there was any difference in maximum diameter and length of S(2) transverse sacroiliac screw between the normal group and the dysmorphic group. The pelvic CT data of the dysmorphic group were measured, and the optimal tilt angle and length of the oblique S(1) screw were obtained. The feasibility of transverse sacroiliac screw insertion in sacral 3(S(3)) segment was evaluated. t -test, rank sum test, and χ(2) test was used to analyze data, respectively. Results: In the dysmorphic group, the largest diameter of the S(1) transverse screw was (4.9±1.6)mm, and the normal group was (13.6±3.6)mm ( t =-15.07, P =0.00). In the dysmorphic group, the largest diameter of S(2) transverse screw was (13.8±3.0)mm, and was (12.4±2.2)mm in the normal group( t =2.11, P =0.04). There was no significant difference in the length of S(2) transverse sacroiliac screw between the two groups ( t =0.47, P =0.64). In the dysmorphic group, the anterior vertebral height of S(1) was (23.1±4.0)mm, which was significantly higher than that of the normal group ((14.1±4.2)mm)( t =9.01, P =0.00). The angle of S(1)S(2) in the dysmorphic group was 10.9°(3.8°, 17.6°), which was significantly larger than that of the normal group (2.0°(1.0°, 2.0°) ( Z =-4.03, P =0.00). In the dysmorphic group, the incline angle

  7. Influence of the implant abutment types and the dynamic loading on initial screw loosening

    Science.gov (United States)

    Kim, Eun-Sook

    2013-01-01

    PURPOSE This study examined the effects of the abutment types and dynamic loading on the stability of implant prostheses with three types of implant abutments prepared using different fabrication methods by measuring removal torque both before and after dynamic loading. MATERIALS AND METHODS Three groups of abutments were produced using different types of fabrication methods; stock abutment, gold cast abutment, and CAD/CAM custom abutment. A customized jig was fabricated to apply the load at 30° to the long axis. The implant fixtures were fixed to the jig, and connected to the abutments with a 30 Ncm tightening torque. A sine curved dynamic load was applied for 105 cycles between 25 and 250 N at 14 Hz. Removal torque before loading and after loading were evaluated. The SPSS was used for statistical analysis of the results. A Kruskal-Wallis test was performed to compare screw loosening between the abutment systems. A Wilcoxon signed-rank test was performed to compare screw loosening between before and after loading in each group (α=0.05). RESULTS Removal torque value before loading and after loading was the highest in stock abutment, which was then followed by gold cast abutment and CAD/CAM custom abutment, but there were no significant differences. CONCLUSION The abutment types did not have a significant influence on short term screw loosening. On the other hand, after 105 cycles dynamic loading, CAD/CAM custom abutment affected the initial screw loosening, but stock abutment and gold cast abutment did not. PMID:23509006

  8. Micro-CT evaluation and histological analysis of screw-bone interface of expansive pedicle screw in osteoporotic sheep.

    Science.gov (United States)

    Wan, Shi-yong; Lei, Wei; Wu, Zi-xiang; Lv, Rong; Wang, Jun; Fu, Suo-chao; Li, Bo; Zhan, Ce

    2008-04-01

    To investigate the properties of screw-bone interface of expansive pedicle screw (EPS) in osteoporotic sheep by micro-CT and histological observation. Six female sheep with bilateral ovariectomy-induced osteoporosis were employed in this experiment. After EPS insertion in each femoral condyle, the sheep were randomly divided into two groups: 3 sheep were bred for 3 months (Group A), while the other 3 were bred for 6 months (Group B). After the animals being killed, the femoral condyles with EPS were obtained, which were three-dimensionally-imaged and reconstructed by micro-CT. Histological evaluation was made thereafter. The trabecular microstructure was denser at the screw-bone interface than in the distant parts in expansive section, especially within the spiral marking. In the non-expansive section, however, there was no significant difference between the interface and the distant parts. The regions of interest (ROI) adjacent to EPS were reconstructed and analyzed by micro-CT with the same thresholds. The three-dimensional (3-D) parameters, including tissue mineral density (TMD), bone volume fraction (BVF, BV/TV), bone surface/bone volume (BS/BV) ratio, trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp), were significantly better in expansive sections than non-expansive sections (P less than 0.05). Histologically, newly-formed bony trabeculae crawled along the expansive fissures and into the center of EPS. The newly-formed bones, as well as the bones at the bone-screw interface, closely contacted with the EPS and constructed four compartments. The findings of the current study, based on micro-CT and histological evaluation, suggest that EPS can significantly provide stabilization in osteoporotic cancellous bones.

  9. Fine defective structure of silicon carbide powders obtained from different starting materials

    Directory of Open Access Journals (Sweden)

    Tomila T.V.

    2006-01-01

    Full Text Available The fine defective structure of silicon carbide powders obtained from silicic acid-saccharose, aerosil-saccharose, aerosil-carbon black, and hydrated cellulose-silicic acid gel systems was investigated. The relation between IR absorption characteristics and the microstructure of SiC particles obtained from different starting materials was established. The numerical relationship between the lattice parameter a and the frequency νTO is presented.

  10. Biomechanical Comparison of External Fixation and Compression Screws for Transverse Tarsal Joint Arthrodesis.

    Science.gov (United States)

    Latt, L Daniel; Glisson, Richard R; Adams, Samuel B; Schuh, Reinhard; Narron, John A; Easley, Mark E

    2015-10-01

    Transverse tarsal joint arthrodesis is commonly performed in the operative treatment of hindfoot arthritis and acquired flatfoot deformity. While fixation is typically achieved using screws, failure to obtain and maintain joint compression sometimes occurs, potentially leading to nonunion. External fixation is an alternate method of achieving arthrodesis site compression and has the advantage of allowing postoperative compression adjustment when necessary. However, its performance relative to standard screw fixation has not been quantified in this application. We hypothesized that external fixation could provide transverse tarsal joint compression exceeding that possible with screw fixation. Transverse tarsal joint fixation was performed sequentially, first with a circular external fixator and then with compression screws, on 9 fresh-frozen cadaveric legs. The external fixator was attached in abutting rings fixed to the tibia and the hindfoot and a third anterior ring parallel to the hindfoot ring using transverse wires and half-pins in the tibial diaphysis, calcaneus, and metatarsals. Screw fixation comprised two 4.3 mm headless compression screws traversing the talonavicular joint and 1 across the calcaneocuboid joint. Compressive forces generated during incremental fixator foot ring displacement to 20 mm and incremental screw tightening were measured using a custom-fabricated instrumented miniature external fixator spanning the transverse tarsal joint. The maximum compressive force generated by the external fixator averaged 186% of that produced by the screws (range, 104%-391%). Fixator compression surpassed that obtainable with screws at 12 mm of ring displacement and decreased when the tibial ring was detached. No correlation was found between bone density and the compressive force achievable by either fusion method. The compression across the transverse tarsal joint that can be obtained with a circular external fixator including a tibial ring exceeds that

  11. Mini-Fragment Fixation Is Equivalent to Bicortical Screw Fixation for Horizontal Medial Malleolus Fractures.

    Science.gov (United States)

    Wegner, Adam M; Wolinsky, Philip R; Robbins, Michael A; Garcia, Tanya C; Amanatullah, Derek F

    2018-05-01

    Horizontal fractures of the medial malleolus occur through application of valgus or abduction force through the ankle that creates a tension failure of the medial malleolus. The authors hypothesize that mini-fragment T-plates may offer improved fixation, but the optimal fixation construct for these fractures remains unclear. Forty synthetic distal tibiae with identical osteotomies were randomized into 4 fixation constructs: (1) two parallel unicortical cancellous screws; (2) two parallel bicortical cortical screws; (3) a contoured mini-fragment T-plate with 2 unicortical screws in the fragment and 2 bicortical screws in the shaft; and (4) a contoured mini-fragment T-plate with 2 bicortical screws in the fragment and 2 unicortical screws in the shaft. Specimens were subjected to offset axial tension loading on a servohydraulic testing system and tracked using high-resolution video. Failure was defined as 2 mm of articular displacement. Analysis of variance followed by a Tukey-Kramer post hoc test was used to assess for differences between groups, with significance defined as Pfragment T-plate constructs (239±83 N/mm and 190±37 N/mm) and the bicortical screw construct (240±17 N/mm) were not statistically different. The mean stiffness values of both mini-fragment T-plate constructs and the bicortical screw construct were higher than that of a parallel unicortical screw construct (102±20 N/mm). Contoured T-plate constructs provide stiffer initial fixation than a unicortical cancellous screw construct. The T-plate is biomechanically equivalent to a bicortical screw construct, but may be superior in capturing small fragments of bone. [Orthopedics. 2018; 41(3):e395-e399.]. Copyright 2018, SLACK Incorporated.

  12. Repair of microdamage in osteonal cortical bone adjacent to bone screw.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Up to date, little is known about the repair mode of microdamage in osteonal cortical bone resulting from bone screw implantation. In this study, self-tapping titanium cortical bone screws were inserted into the tibial diaphyses of 24 adult male rabbits. The animals were sacrificed at 1 day, 2 weeks, 1 month and 2 months after surgery. Histomorphometric measurement and confocal microscopy were performed on basic fuchsin stained bone sections to examine the morphological characteristics of microdamage, bone resorption activity and spatial relationship between microdamage and bone resorption. Diffuse and linear cracks were coexisted in peri-screw bone. Intracortical bone resorption was significantly increased 2 weeks after screw installation and reach to the maximum at 1 month. There was no significant difference in bone resorption between 1-month and 2-months groups. Microdamage was significantly decreased within 1 month after surgery. Bone resorption was predisposed to occur in the region of <100 µm from the bone-screw interface, where had extensive diffuse damage mixed with linear cracks. Different patterns of resorption cavities appeared in peri-screw bone. These data suggest that 1 the complex microdamage composed of diffuse damage and linear cracks is a strong stimulator for initiating targeted bone remodeling; 2 bone resorption activities taking place on the surfaces of differently oriented Haversian and Volkmann canals work in a team for the repair of extensive microdamage; 3 targeted bone remodeling is a short-term reaction to microdamage and thereby it may not be able to remove all microdamage resulting from bone screw insertion.

  13. The effect of infection and lag screw fixation on the union of membranous bone grafts in a rabbit model.

    Science.gov (United States)

    Fialkov, J A; Phillips, J H; Walmsley, S L

    1994-03-01

    Infection complicating craniofacial procedures contributes significantly to patient morbidity and health care costs. The role of fixation materials in this setting remains unclear. As foreign material, does fixation hardware increase patients' susceptibility to developing postoperative infection? Furthermore, once infection is established, should fixation hardware be removed? To answer these questions, we performed an onlay membranous bone grafting procedure to the mandible in 94 New Zealand White rabbits, applied lag-screw fixation in half the animals, and inoculated the wounds with different bacterial doses. We quantified the differential rates of infection and rates of graft union in the presence of infection. The infection rates for the rigidly fixated group were not significantly different from the rates for the nonfixated group for a range of bacterial inoculum doses. There was no significant difference in the rates of resolution of infection and sepsis between the two groups. Gross and histologic assessments revealed a significantly lower union rate for infected grafts when compared with uninfected grafts. Furthermore, grafts rigidly fixated with a lag screw showed a higher rate of union when compared with nonfixated grafts in the presence of infection. In the absence of infection, the union rates for fixated and nonfixated groups did not differ significantly. While fixation hardware has been cited as a risk factor for postoperative infection, we were unable to show that lag-screw fixation contributes to this risk. Although infection impaired the union of membranous bone grafts to the recipient mandible, fixation of the grafts with a lag screw significantly decreased this deleterious effect of infection.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. The use of blocking screws with internal lengthening nail and reverse rule of thumb for blocking screws in limb lengthening and deformity correction surgery

    Directory of Open Access Journals (Sweden)

    Saravanaraja Muthusamy

    2016-09-01

    Full Text Available Abstract Internal lengthening nail (ILN is a recent development in limb lengthening and deformity correction specialty. The ILN has the distinct advantage of combining acute deformity correction with gradual lengthening of bone. While using ILN, the short metaphyseal bone fragment may develop a deformity at the time of osteotomy and nail insertion or during bone lengthening because of the wide medullary canal. These deformities are typically predictable, and blocking screws (Poller screws are helpful in these situations. This manuscript describes the common deformities that occur in femur and tibia with osteotomies at different locations while using ILN in antegrade and retrograde nailing technique. Also, a systematic approach to the appropriate use of blocking screws in these deformities is described. In addition, the “reverse rule of thumb” is introduced as a quick reference to determine the ideal location(s and number of blocking screws. These principles are applicable to limb lengthening and deformity correction as well as fracture fixation using intramedullary nails.

  15. The use of blocking screws with internal lengthening nail and reverse rule of thumb for blocking screws in limb lengthening and deformity correction surgery.

    Science.gov (United States)

    Muthusamy, Saravanaraja; Rozbruch, S Robert; Fragomen, Austin T

    2016-11-01

    Internal lengthening nail (ILN) is a recent development in limb lengthening and deformity correction specialty. The ILN has the distinct advantage of combining acute deformity correction with gradual lengthening of bone. While using ILN, the short metaphyseal bone fragment may develop a deformity at the time of osteotomy and nail insertion or during bone lengthening because of the wide medullary canal. These deformities are typically predictable, and blocking screws (Poller screws) are helpful in these situations. This manuscript describes the common deformities that occur in femur and tibia with osteotomies at different locations while using ILN in antegrade and retrograde nailing technique. Also, a systematic approach to the appropriate use of blocking screws in these deformities is described. In addition, the "reverse rule of thumb" is introduced as a quick reference to determine the ideal location(s) and number of blocking screws. These principles are applicable to limb lengthening and deformity correction as well as fracture fixation using intramedullary nails.

  16. Clinical application of platelet-rich fibrin as the sole grafting material in periodontal intrabony defects

    Directory of Open Access Journals (Sweden)

    Yu-Chao Chang

    2011-09-01

    Conclusions: From a clinical and radiologic point of view at 6 months after surgery, the use of PRF as the sole grafting material seems to be an effective modality of regenerative treatment for periodontal intrabony defects.

  17. Research on energy conversion mechanism of a screw centrifugal pump under the water

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Han, W; Cheng, X R; Shen, Z J; Su, Q M

    2013-01-01

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase

  18. Posterior pelvic ring fractures: Closed reduction and percutaneous CT-guided sacroiliac screw fixation

    International Nuclear Information System (INIS)

    Jacob, Augustinus Ludwig; Messmer, Peter; Stock, Klaus-Wilhelm; Suhm, Norbert; Baumann, Bernard; Regazzoni, Pietro; Steinbrich, Wolfgang

    1997-01-01

    Purpose. To assess the midterm results of closed reduction and percutaneous fixation (CRPF) with computed tomography (CT)-guided sacroiliac screw fixation in longitudinal posterior pelvic ring fractures. Methods. Thirteen patients with 15 fractures were treated. Eleven patients received a unilateral, two a bilateral, screw fixation. Twenty-seven screws were implanted. Continuous on-table traction was used in six cases. Mean radiological follow-up was 13 months. Results. Twenty-five (93%) screws were placed correctly. There was no impingement of screws on neurovascular structures. Union occurred in 12 (80%), delayed union in 2 (13%), and nonunion in 1 of 15 (7%) fractures. There was one screw breakage and two axial dislocations. Conclusion. Sacroiliac CRPF of longitudinal fractures of the posterior pelvic ring is technically simple, minimally invasive, well localized, and stable. It should be done by an interventional/surgical team. CT is an excellent guiding modality. Closed reduction may be a problem and succeeds best when performed as early as possible

  19. The Peierls stress of the moving [Formula: see text] screw dislocation in Ta.

    Science.gov (United States)

    Liu, Ruiping; Wang, Shaofeng; Wu, Xiaozhi

    2009-08-26

    The Peierls stress of the moving [Formula: see text] screw dislocation with a planar and non-dissociated core structure in Ta has been calculated. The elastic strain energy which is associated with the discrete effect of the lattice and ignored in classical Peierls-Nabarro (P-N) theory has been taken into account in calculating the Peierls stress, and it can make the Peierls stress become smaller. The Peierls stress we obtain is very close to the experimental data. As shown in the numerical calculations and atomistic simulations, the core structure of the screw dislocation undergoes significant changes under the explicit stress before the screw dislocation moves. Moreover, the mechanism of the screw dislocation is revealed by our results and the experimental data that the screw dislocation retracts its extension in three {110} planes and transforms its dissociated core structure into a planar configuration. Therefore, the core structure of the moving [Formula: see text] screw dislocation in Ta is proposed to be planar.

  20. The Peierls stress of the moving 1/2{110} screw dislocation in Ta

    International Nuclear Information System (INIS)

    Liu Ruiping; Wang Shaofeng; Wu Xiaozhi

    2009-01-01

    The Peierls stress of the moving 1/2 {110} screw dislocation with a planar and non-dissociated core structure in Ta has been calculated. The elastic strain energy which is associated with the discrete effect of the lattice and ignored in classical Peierls-Nabarro (P-N) theory has been taken into account in calculating the Peierls stress, and it can make the Peierls stress become smaller. The Peierls stress we obtain is very close to the experimental data. As shown in the numerical calculations and atomistic simulations, the core structure of the screw dislocation undergoes significant changes under the explicit stress before the screw dislocation moves. Moreover, the mechanism of the screw dislocation is revealed by our results and the experimental data that the screw dislocation retracts its extension in three {110} planes and transforms its dissociated core structure into a planar configuration. Therefore, the core structure of the moving 1/2 {110} screw dislocation in Ta is proposed to be planar.

  1. Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine.

    Science.gov (United States)

    Guo, Fei; Dai, Jianhao; Zhang, Junxiang; Ma, Yichuan; Zhu, Guanghui; Shen, Junjie; Niu, Guoqi

    2017-01-01

    Pedicle screw fixation in the upper cervical spine is a difficult and high-risk procedure. The screw is difficult to place rapidly and accurately, and can lead to serious injury of spinal cord or vertebral artery. The aim of this study was to design an individualized 3D printing navigation template for pedicle screw fixation in the upper cervical spine. Using CT thin slices data, we employed computer software to design the navigation template for pedicle screw fixation in the upper cervical spine (atlas and axis). The upper cervical spine models and navigation templates were produced by 3D printer with equal proportion, two sets for each case. In one set (Test group), pedicle screws fixation were guided by the navigation template; in the second set (Control group), the screws were fixed under fluoroscopy. According to the degree of pedicle cortex perforation and whether the screw needed to be refitted, the fixation effects were divided into 3 types: Type I, screw is fully located within the vertebral pedicle; Type II, degree of pedicle cortex perforation is stability and no need to renovate; Type III, degree of pedicle cortex perforation is >1 mm or with the poor internal fixation stability and in need of renovation. Type I and Type II were acceptable placements; Type III placements were unacceptable. A total of 19 upper cervical spine and 19 navigation templates were printed, and 37 pedicle screws were fixed in each group. Type I screw-placements in the test group totaled 32; Type II totaled 3; and Type III totaled 2; with an acceptable rate of 94.60%. Type I screw placements in the control group totaled 23; Type II totaled 3; and Type III totaled 11, with an acceptable rate of 70.27%. The acceptability rate in test group was higher than the rate in control group. The operation time and fluoroscopic frequency for each screw were decreased, compared with control group. The individualized 3D printing navigation template for pedicle screw fixation is easy and safe

  2. Comparison of the Pullout Strength of Different Pedicle Screw Designs and Augmentation Techniques in an Osteoporotic Bone Model.

    Science.gov (United States)

    Kiyak, Gorkem; Balikci, Tevfik; Heydar, Ahmed Majid; Bezer, Murat

    2018-02-01

    Mechanical study. To compare the pullout strength of different screw designs and augmentation techniques in an osteoporotic bone model. Adequate bone screw pullout strength is a common problem among osteoporotic patients. Various screw designs and augmentation techniques have been developed to improve the biomechanical characteristics of the bone-screw interface. Polyurethane blocks were used to mimic human osteoporotic cancellous bone, and six different screw designs were tested. Five standard and expandable screws without augmentation, eight expandable screws with polymethylmethacrylate (PMMA) or calcium phosphate augmentation, and distal cannulated screws with PMMA and calcium phosphate augmentation were tested. Mechanical tests were performed on 10 unused new screws of each group. Screws with or without augmentation were inserted in a block that was held in a fixture frame, and a longitudinal extraction force was applied to the screw head at a loading rate of 5 mm/min. Maximum load was recorded in a load displacement curve. The peak pullout force of all tested screws with or without augmentation was significantly greater than that of the standard pedicle screw. The greatest pullout force was observed with 40-mm expandable pedicle screws with four fins and PMMA augmentation. Augmented distal cannulated screws did not have a greater peak pullout force than nonaugmented expandable screws. PMMA augmentation provided a greater peak pullout force than calcium phosphate augmentation. Expandable pedicle screws had greater peak pullout forces than standard pedicle screws and had the advantage of augmentation with either PMMA or calcium phosphate cement. Although calcium phosphate cement is biodegradable, osteoconductive, and nonexothermic, PMMA provided a significantly greater peak pullout force. PMMA-augmented expandable 40-mm four-fin pedicle screws had the greatest peak pullout force.

  3. Screw-vector bond graphs for kinetic-static modelling and analysis of mechanisms

    International Nuclear Information System (INIS)

    Bidard, Catherine

    1994-01-01

    This dissertation deals with the kinetic-static modelling and analysis of spatial mechanisms used in robotics systems. A framework is proposed, which embodies a geometrical and a network approach for kinetic-static modelling. For this purpose we use screw theory and bond graphs. A new form of bond graphs is introduced: the screw-vector bond graph, whose power variables are defined to be wrenches and twists expressed as intrinsic screw-vectors. The mechanism is then identified as a network, whose components are kinematic pairs and whose topology is described by a directed graph. A screw-vector Simple Junction Structure represents the topological constraints. Kinematic pairs are represented by one-port elements, defined by two reciprocal screw-vector spaces. Using dual bases of screw-vectors, a generic decomposition of kinematic pair elements is given. The reduction of kinetic-static models of series and parallel kinematic chains is used in order to derive kinetic-static functional models in geometric form. Thereupon, the computational causality assignment is adapted for the graphical analysis of the mobility and the functioning of spatial mechanisms, based on completely or incompletely specified models. (author) [fr

  4. Cement Augmentation in Sacroiliac Screw Fixation Offers Modest Biomechanical Advantages in a Cadaver Model.

    Science.gov (United States)

    Osterhoff, Georg; Dodd, Andrew E; Unno, Florence; Wong, Angus; Amiri, Shahram; Lefaivre, Kelly A; Guy, Pierre

    2016-11-01

    Sacroiliac screw fixation in elderly patients with pelvic fractures is prone to failure owing to impaired bone quality. Cement augmentation has been proposed as a possible solution, because in other anatomic areas this has been shown to reduce screw loosening. However, to our knowledge, this has not been evaluated for sacroiliac screws. We investigated the potential biomechanical benefit of cement augmentation of sacroiliac screw fixation in a cadaver model of osteoporotic bone, specifically with respect to screw loosening, construct survival, and fracture-site motion. Standardized complete sacral ala fractures with intact posterior ligaments in combination with ipsilateral upper and lower pubic rami fractures were created in osteoporotic cadaver pelves and stabilized by three fixation techniques: sacroiliac (n = 5) with sacroiliac screws in S1 and S2, cemented (n = 5) with addition of cement augmentation, and transsacral (n = 5) with a single transsacral screw in S1. A cyclic loading protocol was applied with torque (1.5 Nm) and increasing axial force (250-750 N). Screw loosening, construct survival, and sacral fracture-site motion were measured by optoelectric motion tracking. A sample-size calculation revealed five samples per group to be required to achieve a power of 0.80 to detect 50% reduction in screw loosening. Screw motion in relation to the sacrum during loading with 250 N/1.5 Nm was not different among the three groups (sacroiliac: 1.2 mm, range, 0.6-1.9; cemented: 0.7 mm, range, 0.5-1.3; transsacral: 1.1 mm, range, 0.6-2.3) (p = 0.940). Screw subsidence was less in the cemented group (3.0 mm, range, 1.2-3.7) compared with the sacroiliac (5.7 mm, range, 4.7-10.4) or transsacral group (5.6 mm, range, 3.8-10.5) (p = 0.031). There was no difference with the numbers available in the median number of cycles needed until failure; this was 2921 cycles (range, 2586-5450) in the cemented group, 2570 cycles (range, 2500-5107) for the sacroiliac specimens, and

  5. Ordinary Cannulated Compression Screws or Headless Cannulated Compression Screws? A Synthetic Bone Biomechanical Research in the Internal Fixation of Vertical Femoral Neck Fracture

    Directory of Open Access Journals (Sweden)

    Baokun Zhang

    2018-01-01

    Full Text Available Purpose. The purpose of this study is to verify whether the headless cannulated compression screw (HCCS has higher biomechanical stability than the ordinary cannulated compression screw (OCCS in the treatment of vertical femoral neck fractures. Materials and Methods. 30 synthetic femur models were equally divided into 2 groups, with 50°, 60°, and 70° Pauwels angle of femoral neck fracture, under 3D printed guiding plates and C-arm fluoroscopic guidance. The femur molds were fixed with three parallel OCCSs as OCCS group and three parallel HCCSs as HCCS group. All specimens were tested for compressive strength and maximum load to failure with a loading rate of 2 mm/min. Results. The result showed that there was no significant difference with the compressive strength in the Pauwels angle of 50° and 60°. However, we observed that the maximum load to failure with the Pauwels angle of 50°, 60°, and 70° and the compressive strength with 70° of HCCS group showed better performance than the OCCS group. Conclusion. HCCS performs with better biomechanical stability than OCCS in the treatment of vertical femoral neck fracture, especially with the Pauwels angle of 70°.

  6. In vitro effect of chlorhexidine gel on torque and detorque values of implant abutment screw

    Directory of Open Access Journals (Sweden)

    Hamid Neshandar Asli

    2017-01-01

    Full Text Available Purpose: Use of chlorhexidine (CHX gel to eliminate the malodor of implant cavity may decrease the friction coefficient and effective preload and result in abutment screw loosening. This study aimed to assess the effect of CHX gel on the preload, torque, and detorque values. Materials and Methods: This in vitro experimental study was conducted on three groups of five implants. Group A (G1 was the control group and no material was applied to the implant cavity. In Group B (G2, implant cavity was filled with saliva before abutment screw tightening. In Group C (G3, implant cavity was first filled with saliva and then with CHX gel. The abutments were torqued to 24 N/cm2 according to the manufacturer's instructions and were then loosened. These processes were repeated five times. The ratio of the mean percentage of detorque to torque values was measured in all groups. The collected data were analyzed using ANOVA and post hoc Tukey's test. Results: No significant difference was noted between G1 and G2. Group G2 had significantly higher detorque value (p < 0.05. ANOVA detected a significant difference in the mean torque (p < 0.05 and detorque (p < 0.001 values among the three groups. G3 showed maximum difference between torque and detorque values; the minimum difference was noted in G2. Conclusion: Application of CHX gel (to decrease the malodor of the implant cavity decreases the detorque and preload values and increases the risk of screw loosening.

  7. Percutaneous Screw Fixation of Distal Tibia Fractures – Functional Results in Sixteen Patients

    OpenAIRE

    Kaftandziev, Igor; Trpeski, Simon; Arsovski, Oliver; Spasov, Marko

    2014-01-01

    INTRODUCTION: An important feature of distal tibia fractures is the relevance of the soft tissue coverage. In order to maintain good functional outcome, several operative techniques have been established. Among them, percutaneous screw fixation has the advantage of causing less biological damage of the soft tissues with lower rates of complications. MATERIAL AND METHODS: We reviewed 16 patients with distal tibia fracture. Operative treatment consisted of indirect reduction and percutaneou...

  8. Evaluation of two styles of slotted, flat-head screws

    International Nuclear Information System (INIS)

    Reeves, C.A. Jr.; Johnson, W.B.

    1979-01-01

    A series of torque tests were performed to evaluate the relative merits of two different flat-head screws fabricated from a uranium--6% niobium alloy. The screws tested were machined with both normal, straight-through slots in the head and with slots having radiused bottoms. Test results indicate that both designs easily surpass the required 20-inch-pound-proof torque

  9. Covering the screw-access holes of implant restorations in the esthetic zone: a clinical report.

    Directory of Open Access Journals (Sweden)

    Abolfazl Saboury

    2014-12-01

    Full Text Available Screw-retained implant restorations have an advantage of predictable retention as well as retrievability, and obviate the risk of excessive sub-gingival cement commonly associated with cement retained implant restorations. Screw-retained restorations generally have screw access holes, which can compromise esthetics and weaken the porcelain around the holes. The purpose of this study is to describe the use of a separate overcasting crown design to cover the screw access hole of implant screw-retained prosthesis for improved esthetics.

  10. Screw-System-Based Mobility Analysis of a Family of Fully Translational Parallel Manipulators

    Directory of Open Access Journals (Sweden)

    Ernesto Rodriguez-Leal

    2013-01-01

    Full Text Available This paper investigates the mobility of a family of fully translational parallel manipulators based on screw system analysis by identifying the common constraint and redundant constraints, providing a case study of this approach. The paper presents the branch motion-screws for the 3-RP̲C-Y parallel manipulator, the 3-RCC-Y (or 3-RP̲RC-Y parallel manipulator, and a newly proposed 3-RP̲C-T parallel manipulator. Then the paper determines the sets of platform constraint-screws for each of these three manipulators. The constraints exerted on the platforms of the 3-RP̲C architectures and the 3-RCC-Y manipulators are analyzed using the screw system approach and have been identified as couples. A similarity has been identified with the axes of couples: they are perpendicular to the R joint axes, but in the former the axes are coplanar with the base and in the latter the axes are perpendicular to the limb. The remaining couples act about the axis that is normal to the base. The motion-screw system and constraint-screw system analysis leads to the insightful understanding of the mobility of the platform that is then obtained by determining the reciprocal screws to the platform constraint screw sets, resulting in three independent instantaneous translational degrees-of-freedom. To validate the mobility analysis of the three parallel manipulators, the paper includes motion simulations which use a commercially available kinematics software.

  11. Analysis Strategy for Fracture Assessment of Defects in Ductile Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, Peter; Andersson, Magnus; Sattari-Far, Iradj; Weilin Zang (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    The main purpose of this work is to investigate the significance of the residual stresses for defects (cracks) in ductile materials with nuclear applications, when the applied primary (mechanical) loads are high. The treatment of weld-induced stresses as expressed in the SACC/ProSACC handbook and other fracture assessment procedures such as the ASME XI code and the R6-method is believed to be conservative for ductile materials. This is because of the general approach not to account for the improved fracture resistance caused by ductile tearing. Furthermore, there is experimental evidence that the contribution of residual stresses to fracture diminishes as the degree of yielding increases to a high level. However, neglecting weld-induced stresses in general, though, is doubtful for loads that are mostly secondary (e.g. thermal shocks) and for materials which are not ductile enough to be limit load controlled. Both thin-walled and thick-walled pipes containing surface cracks are studied here. This is done by calculating the relative contribution from the weld residual stresses to CTOD and the J-integral. Both circumferential and axial cracks are analysed. Three different crack geometries are studied here by using the finite element method (FEM). (i) 2D axisymmetric modelling of a V-joint weld in a thin-walled pipe. (ii) 2D axisymmetric modelling of a V-joint weld in a thick-walled pipe. (iii) 3D modelling of a X-joint weld in a thick-walled pipe. t. Each crack configuration is analysed for two load cases; (1) Only primary (mechanical) loading is applied to the model, (2) Both secondary stresses and primary loading are applied to the model. Also presented in this report are some published experimental investigations conducted on cracked components of ductile materials subjected to both primary and secondary stresses. Based on the outcome of this study, an analysis strategy for fracture assessment of defects in ductile materials of nuclear components is proposed. A new

  12. Analysis Strategy for Fracture Assessment of Defects in Ductile Materials

    International Nuclear Information System (INIS)

    Dillstroem, Peter; Andersson, Magnus; Sattari-Far, Iradj; Weilin Zang

    2009-06-01

    The main purpose of this work is to investigate the significance of the residual stresses for defects (cracks) in ductile materials with nuclear applications, when the applied primary (mechanical) loads are high. The treatment of weld-induced stresses as expressed in the SACC/ProSACC handbook and other fracture assessment procedures such as the ASME XI code and the R6-method is believed to be conservative for ductile materials. This is because of the general approach not to account for the improved fracture resistance caused by ductile tearing. Furthermore, there is experimental evidence that the contribution of residual stresses to fracture diminishes as the degree of yielding increases to a high level. However, neglecting weld-induced stresses in general, though, is doubtful for loads that are mostly secondary (e.g. thermal shocks) and for materials which are not ductile enough to be limit load controlled. Both thin-walled and thick-walled pipes containing surface cracks are studied here. This is done by calculating the relative contribution from the weld residual stresses to CTOD and the J-integral. Both circumferential and axial cracks are analysed. Three different crack geometries are studied here by using the finite element method (FEM). (i) 2D axisymmetric modelling of a V-joint weld in a thin-walled pipe. (ii) 2D axisymmetric modelling of a V-joint weld in a thick-walled pipe. (iii) 3D modelling of a X-joint weld in a thick-walled pipe. t. Each crack configuration is analysed for two load cases; (1) Only primary (mechanical) loading is applied to the model, (2) Both secondary stresses and primary loading are applied to the model. Also presented in this report are some published experimental investigations conducted on cracked components of ductile materials subjected to both primary and secondary stresses. Based on the outcome of this study, an analysis strategy for fracture assessment of defects in ductile materials of nuclear components is proposed. A new

  13. Application of Learning Methods to Local Electric Field Distributions in Defected Dielectric Materials

    Science.gov (United States)

    Ferris, Kim; Jones, Dumont

    2014-03-01

    Local electric fields reflect the structural and dielectric fluctuations in a semiconductor, and affect the material performance both for electron transport and carrier lifetime properties. In this paper, we use the LOCALF methodology with periodic boundary conditions to examine the local electric field distributions and its perturbations for II-VI (CdTe, Cd(1-x)Zn(x)Te) semiconductors, containing Te inclusions and small fluctuations in the local dielectric susceptibility. With inclusion of the induced-field term, the electric field distribution shows enhancements and diminishments compared to the macroscopic applied field, reflecting the microstructure characteristics of the dielectric. Learning methods are applied to these distributions to assess the spatial extent of the perturbation, and determine an electric field defined defect size as compared to its physical dimension. Critical concentrations of defects are assessed in terms of defect formation energies. This work was supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-08-X-00872-e. This support does not constitute an express or implied endorsement on the part of the Gov't.

  14. Intraoperative insertion torque of lumbar pedicle screw and postoperative radiographic evaluation. Short-term observation

    International Nuclear Information System (INIS)

    Mizuno, Koichi; Shinomiya, Kenichi; Otani, Kazuyuki

    2005-01-01

    The correlation between the insertion torque of a lumbar pedicle screw and the mechanical stability of the screw in the bone has been mentioned in in vitro studies. The purpose of this study was to confirm the factors affecting the insertion torque of such screws in vivo. Also, the contribution of insertion torque to the initial stability of the fusion area was to be analyzed in vivo. A series of 23 cases representing 50 lumbar vertebrae were included in this study, in which we examined bone mineral density using quantitative computed tomography (CT) prior to operation. Two screw shapes were utilized, with the insertion torque for each screw measured at two points in time. The correlation between insertion torque and mineral density was investigated. Screw positions were confirmed on postoperative CT scans, and the effect of the screw thread cutting into the cortex bone was investigated. Radiographic changes at three points during a period of 3 months were also measured, and we then evaluated the interrelations between these changes and insertion torque. Furthermore, the relation between insertion torque and instability at 3 months was investigated. Correlations of insertion torque and bone mineral density depended on screw shape. There was no correlation found with mineral density in the case of cylindrical screws. Insertion torque was not affected by the screw thread cutting into the cortex of bone. As for postoperative alignment changes, no definitive trends could be ascertained, and no interrelations with torque and alignment changes were observed. There is a possibility that insertion torque was related to early-stage stability, but no statistical relation could be determined. (author)

  15. Twin Screw Mixer/Fine Grind Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 40-mm Twin-Screw Mixer/Extruder (TSE) pilot plant is a continuous, remotely operated, flexible facility that can significantly enhance safety and environmental...

  16. A biomechanical comparison of headless tapered variable pitch and AO cortical bone screws for fixation of a simulated slab fracture in equine third carpal bones.

    Science.gov (United States)

    Bueno, Aloisio C D; Galuppo, Larry D; Taylor, Kenneth T; Jensen, David G; Stover, Susan M

    2003-01-01

    To compare the mechanical shear strengths and stiffnesses obtained from in vitro testing of a simulated complete third carpal bone (C3) frontal plane radial facet slab fracture (osteotomy) stabilized with either a 4/5 Acutrak (AT) compression screw or a 4.5-mm AO cortical bone (AO) screw inserted in lag fashion. Drilling, tapping, and screw insertion torques, forces, and times also were compared between AT and AO implants. In vitro biomechanical assessment of site preparation, screw insertion, and shear failure test variables of bone screw stabilized simulated C3 slab fracture in paired cadaveric equine carpi. Eight pairs of cadaveric equine C3 without orthopedic abnormalities. Standardized simulated C3 slab fractures were repaired with either AO or AT screws (AO/C3 and AT/C3 groups, respectively). Drilling, tapping, and screw insertion torques, forces, and times were measured with a materials testing machine for each screw type. Repaired specimens were tested in axially oriented shear until failure. Paired Students t-tests were used to assess differences between site preparation, screw insertion, and shear testing variables. Significance was set at P bone fragment measurements of the standardized simulated C3 slab fractures created for AO or AT screws. There were no significant differences for mean and maximum drilling torques; however, the tapered AT drill had greater maximum drilling force compared with the 3.2-mm and 4.5-mm AO drill bits. Mean insertion torque and force measured from the self-tapping AT screw were not significantly different compared with the 4.5-mm AO tap. There were no significant differences in maximum screw torque among constructs. Total procedure time was significantly longer for the AT group (5.8 +/- 1.6 minutes) compared with the AO group (2.9 +/- 1.1 minutes; P =.001). AT stabilized specimens had significantly greater mean +/- SD initial shear stiffness (3.64 +/- 1.08 kN/mm) than AO specimens (1.64 +/- 0.73 kN/mm; P =.005). All other

  17. [Measurement of screw length through drilling technique in osteosynthesis of the proximal humerus fractures].

    Science.gov (United States)

    Avcı, Cem Coşkun; Gülabi, Deniz; Sağlam, Necdet; Kurtulmuş, Tuhan; Saka, Gürsel

    2013-01-01

    This study aims to investigate the efficacy of screw length measurement through drilling technique on the reduction of intraarticular screw penetration and fluoroscopy time in osteosynthesis of proximal humerus fractures. Between January 2008 and June 2012, 98 patients (34 males, 64 females; mean age 64.4 years; range 35 to 81 years) who underwent osteosynthesis using locking anatomical proximal humerus plates (PHILOS) in our clinic with the diagnosis of Neer type 2, 3 or 4 were included. Two different surgical techniques were used to measure proximal screw length in the plate and patients were divided into two groups based on the technique used. In group 1, screw length was determined by a 3 mm blunt tipped Kirschner wire without fluoroscopic control. In group 2, bilateral fluoroscopic images for each screw at least were obtained. Intraarticular screw penetration was detected in five patients (10.6%) in group 1, and in 19 patients (37.3%) in group 2. The mean fluoroscopic imaging time was 10.6 seconds in group 1 and 24.8 seconds in group 2, indicating a statistically significant difference. Screw length measurement through the drilling technique significantly reduces the intraarticular screw penetration and fluoroscopy time in osteosynthesis of proximal humerus fractures using PHILOS plates.

  18. The use of small (2.7 mm) screws for arthroscopically guided repair of carpal chip fractures.

    Science.gov (United States)

    Wright, I M; Smith, M R W

    2011-05-01

    Removal of large chip fractures of the carpal bones and the osteochondral deficits that result, have been associated with a worse prognosis than removal of small fragments in similar locations. Reducing the articular defects by repair of large osteochondral fragments may have advantages over removal. Horses with osteochondral chip fractures that were of sufficient size and infrastructure to be repaired with small (2.7 mm diameter) AO/ASIF cortex screws were identified and repair effected by arthroscopically guided internal fixation. Thirty-three horses underwent surgery to repair 35 fractures of the dorsodistal radial carpal bone (n = 25), the dorsal margin of the radial facet of the third carpal bone (n = 9) and the intermediate facet of the distal radius (n = 1). There were no surgical complications and fractures healed satisfactorily in 26 of 28 horses and 23 horses returned to racing performance. Arthroscopically guided repair of carpal chip fractures with small diameter cortex screws is technically feasible and experiences with 33 cases suggest that this may have advantages over fragment removal in managing such cases. Surgeons treating horses with large chip fractures of the carpal bones should consider arthroscopically guided internal fixation as an alternative to removal. © 2010 EVJ Ltd.

  19. Comparison of defects in crystalline oxide semiconductor materials by electron spin resonance

    International Nuclear Information System (INIS)

    Matsuda, Tokiyoshi; Kimura, Mutsumi

    2015-01-01

    Defects in crystalline InGaZnO 4 (IGZO) induced by plasma were investigated using electron spin resonance (ESR). Thermal stabilities and g factors of two ESR signals (A and B observed at g = 1.939 and 2.003, respectively) in IGZO were different from those of the ESR signals observed in component materials such as Ga 2 O 3 (signal observed at g = 1.969), In 2 O 3 (no signal), and ZnO (signal observed at g = 1.957). Signal A in IGZO increased upon annealing at 300 °C for 1 h, but decreased when annealing was continued for more than 2 h. On the other hand, signal B decreased upon annealing at 300 °C for 1 h. The ESR signal in ZnO decayed in accordance with a second-order decay model with a rate constant of 2.1 × 10 −4 s −1 ; however, this phenomenon was not observed in other materials. This difference might have been due to randomly formed IGZO lattices such as asymmetrical (Ga, Zn)O and In-O layers. Defects in signals A and B in IGZO were formed in trap states (at the deep level) and tail states, respectively

  20. Biomechanical evaluation of a second generation headless compression screw for ankle arthrodesis in a cadaver model.

    Science.gov (United States)

    Somberg, Andrew Max; Whiteside, William K; Nilssen, Erik; Murawski, Daniel; Liu, Wei

    2016-03-01

    Many types of screws, plates, and strut grafts have been utilized for ankle arthrodesis. Biomechanical testing has shown that these constructs can have variable stiffness. More recently, headless compression screws have emerged as an evolving method of achieving compression in various applications but there is limited literature regarding ankle arthrodesis. The aim of this study was to determine the biomechanical stability provided by a second generation fully threaded headless compression screw compared to a standard headed, partially threaded cancellous screw in a cadaveric ankle arthrodesis model. Twenty fresh frozen human cadaver specimens were subjected to simulated ankle arthrodesis with either three standard cancellous-bone screws (InFix 7.3mm) or with three headless compression screws (Acumed Acutrak 2 7.5mm). The specimens were subjected to cyclic loading and unloading at a rate of 1Hz, compression of 525 Newtons (N) and distraction of 20N for a total of 500 cycles using an electromechanical load frame (Instron). The amount of maximum distraction was recorded as well as the amount of motion that occurred through 1, 10, 50, 100, and 500 cycles. No significant difference (p=0.412) was seen in the amount of distraction that occurred across the fusion site for either screw. The average maximum distraction after 500 cycles was 201.9μm for the Acutrak 2 screw and 235.4μm for the InFix screw. No difference was seen throughout each cycle over time for the Acutrak 2 screw (p-value=0.988) or the InFix screw (p-value=0.991). Both the traditional InFix type screw and the second generation Acumed Acutrak headless compression screws provide adequate fixation during ankle arthrodesis under submaximal loads. There is no demonstrable difference between traditional cannulated partially threaded screws and headless compression screws studied in this model. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  1. Pedicle Screw Insertion Accuracy Using O-Arm, Robotic Guidance, or Freehand Technique: A Comparative Study.

    Science.gov (United States)

    Laudato, Pietro Aniello; Pierzchala, Katarzyna; Schizas, Constantin

    2018-03-15

    A retrospective radiological study. The aim of this study was to evaluate the accuracy of pedicle screw insertion using O-Arm navigation, robotic assistance, or a freehand fluoroscopic technique. Pedicle screw insertion using either "O-Arm" navigation or robotic devices is gaining popularity. Although several studies are available evaluating each of those techniques separately, no direct comparison has been attempted. Eighty-four patients undergoing implantation of 569 lumbar and thoracic screws were divided into three groups. Eleven patients (64 screws) had screws inserted using robotic assistance, 25 patients (191 screws) using the O-arm, while 48 patients (314 screws) had screws inserted using lateral fluoroscopy in a freehand technique. A single experienced spine surgeon assisted by a spinal fellow performed all procedures. Screw placement accuracy was assessed by two independent observers on postoperative computed tomography (CTs) according to the A to D Rampersaud criteria. No statistically significant difference was noted between the three groups. About 70.4% of screws in the freehand group, 69.6% in the O arm group, and 78.8% in the robotic group were placed completely within the pedicle margins (grade A) (P > 0.05). About 6.4% of screws were considered misplaced (grades C&D) in the freehand group, 4.2% in the O-arm group, and 4.7% in the robotic group (P > 0.05). The spinal fellow inserted screws with the same accuracy as the senior surgeon (P > 0.05). The advent of new technologies does not appear to alter accuracy of screw placement in our setting. Under supervision, spinal fellows might perform equally well to experienced surgeons using new tools. The lack of difference in accuracy does not imply that the above-mentioned techniques have no added advantages. Other issues, such as surgeon/patient radiation, fiddle factor, teaching suitability, etc., outside the scope of our present study, need further assessment. 3.

  2. A technique for the management of screw access opening in cement-retained implant restorations

    Directory of Open Access Journals (Sweden)

    Hamid Kermanshah

    2014-01-01

    Full Text Available Introduction: Abutment screw loosening has been considered as a common complication of implant-supported dental prostheses. This problem is more important in cement-retained implant restorations due to their invisible position of the screw access opening. Case Report: This report describes a modified retrievability method for cement-retained implant restorations in the event of abutment screw loosening. The screw access opening was marked with ceramic stain and its porcelain surface was treated using hydrofluoric acid (HF, silane, and adhesive to bond to composite resin. Discussion: The present modified technique facilitates screw access opening and improves the bond between the porcelain and composite resin.

  3. MACRO DEFECT FREE MATERIALS; THE CHALLENGE OF MECHANOCHEMICAL ACTIVATION

    Directory of Open Access Journals (Sweden)

    MILAN DRÁBIK

    2012-12-01

    Full Text Available Macro-defect-free (MDF materials belong, according to Odler’s categorisation, to the type of materials where polymers may be successfully combined with cements and water to produce also the parameters of technological novelty and interests. A challenge, which has not been followed or indicated by now, is the option to intensify mixing of dry cement and polymer. The mechanochemical pre-reactions of dry MDF raw mixes consisting of Portland cement and polyphosphate, together with the model of atomic-level interpretations of the formed functional interfaces are proposed, experimentally tested and discussed in the present paper. The results ultimately show the activation of studied system due to the mechanochemical treatment, which consists in the initiation and measurable formation of Al(Fe–O–P cross-links already in the treated raw mixes. The mechanochemical activation of raw mixes in the high energy planetary mill for the duration of 5 minutes is proposed as the specific mixing and activation / pre-reaction step within the entire MDF synthesis procedure.

  4. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.

    Science.gov (United States)

    Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan

    2018-01-01

    Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may

  5. [Clinical application of atlas translaminar screws fixation in treatment of atlatoaxial instability].

    Science.gov (United States)

    Wang, Guoyou; Fu, Shijie; Shen, Huarui; Guan, Taiyuan; Xu, Ping

    2013-10-01

    To explore the effectiveness of fixation of atlas translaminar screws in the treatment of atlatoaxial instability. A retrospective analysis was made on the clinical data of 32 patients with atlatoaxial instability treated with atlantoaxial trans-pedicle screws between March 2007 and August 2009. Of them, 7 patients underwent atlas translaminar screws combined with axis transpedicle screws fixation because of fracture types, anatomic variation, and intraoperative reason, including 5 males and 2 females with an average age of 48.2 years (range, 35-69 years). A total of 9 translaminar screws were inserted. Injury was caused by traffic accident in 4 cases, falling from height in 2 cases, and crushing in 1 case. Two cases had simple odontoid fracture (Anderson type II), and 5 cases had odontoid fracture combined with other injuries (massa lateralis atlantis fracture in 2, atlantoaxial dislocation in 1, and Hangman fracture in 2). The interval between injury and operation was 4-9 days (mean, 6 days). The preoperative Japanese Orthopaedic Association (JOA) score was 8.29 +/- 1.60. The X-ray films showed good position of the screws. Healing of incision by first intention was obtained, and no patient had injuries of the spinal cord injury, nerve root, and vertebral artery. Seven cases were followed up 9-26 months (mean, 14 months). Good bone fusion was observed at 8 months on average (range, 6-11 months). No loosening, displacement, and breakage of internal fixation, re-dislocation and instability of atlantoaxial joint, or penetrating of pedicle screw into the spinal canal and the spinal cord occurred. The JOA score was significantly improved to 15.29 +/- 1.38 at 6 months after operation (t = 32.078, P = 0.000). Atlas translaminar screws fixation has the advantages of firm fixation, simple operating techniques, and relative safety, so it may be a remedial measure of atlatoaxial instability.

  6. Influence of screw holes and gamma sterilization on properties of phosphate glass fiber-reinforced composite bone plates.

    Science.gov (United States)

    Han, Na; Ahmed, Ifty; Parsons, Andrew J; Harper, Lee; Scotchford, Colin A; Scammell, Brigitte E; Rudd, Chris D

    2013-05-01

    Polymers prepared from polylactic acid (PLA) have found a multitude of uses as medical devices. For a material that degrades, the main advantage is that an implant would not necessitate a second surgical event for removal. In this study, fibers produced from a quaternary phosphate-based glass (PBG) in the system 50P2O5-40CaO-5Na2O-5Fe2O3 were used to reinforce PLA polymer. The purpose of this study was to assess the effect of screw holes in a range of PBG-reinforced PLA composites with varying fiber layup and volume fraction. The flexural properties obtained showed that the strength and modulus values increased with increasing fiber volume fraction; from 96 MPa to 320 MPa for strength and between 4 GPa and 24 GPa for modulus. Furthermore, utilizing a larger number of thinner unidirectional (UD) fiber prepreg layers provided a significant increase in mechanical properties, which was attributed to enhanced wet out and thus better fiber dispersion during production. The effect of gamma sterilization via flexural tests showed no statistically significant difference between the sterilized and nonsterilized samples, with the exception of the modulus values for samples with screw holes. Degradation profiles revealed that samples with screw holes degraded faster than those without screw holes due to an increased surface area for the plates with screw holes in PBS up to 30 days. Scanning electron microscope (SEM) analysis revealed fiber pullout before and after degradation. Compared with various fiber impregnation samples, with 25% volume fraction, 8 thinner unidirectional prepreg stacked samples had the shortest fiber pull-out lengths in comparison to the other samples investigated.

  7. Clinical accuracy of three-dimensional fluoroscopy (IsoC-3D)-assisted upper thoracic pedicle screw insertion

    International Nuclear Information System (INIS)

    Sugimoto, Yoshihisa; Ito, Yasuo; Shimokawa, Tetsuya; Shiozaki, Yasuyuki; Mazaki, Tetsuro; Tomioka, Masao; Tanaka, Masato

    2010-01-01

    Correct screw placement is especially difficult in the upper thoracic vertebrae. At the cervicothoracic junction (C7-T2), problems can arise because of the narrowness of the pedicle and the difficulty of using a lateral image intensifier there. Other upper thoracic vertebrae (T3-6) pose a problem for screw insertion also because of the narrower pedicle. We inserted 154 pedicle screws into 78 vertebrae (C7 to T6) in 38 patients. Screws were placed using intraoperative data acquisition by an isocentric C-arm fluoroscope (Siremobile Iso-C3D) and computer navigation. Out of 90 pedicle screws inserted into 45 vertebrae between C7 and T2, 87 of the 90 (96.7%) screws were classified as grade 1 (no perforation). Of 64 pedicle screws inserted into 33 vertebrae between T3 and T6, 61 of 64 (95.3%) screws were classified as grade 1. In this study, we reduced pedicle screw misplacement at the level of the C7 and upper thoracic (T1-6) vertebrae using the three-dimensional fluoroscopy navigation system. (author)

  8. Pedicle Screw Fixation Study in Immature Porcine Spines to Improve Pullout Resistance during Animal Testing.

    Directory of Open Access Journals (Sweden)

    Sophie Le Cann

    Full Text Available The porcine model is frequently used during development and validation of new spinal devices, because of its likeness to the human spine. These spinal devices are frequently composed of pedicle screws with a reputation for stable fixation but which can suffer pullouts during preclinical implantation on young animals, leading to high morbidity. With a view to identifying the best choices to optimize pedicle screw fixation in the porcine model, this study evaluates ex vivo the impact of weight (age of the animal, the level of the vertebrae (lumbar or thoracic and the type of screw anchorage (mono- or bi-cortical on pedicle screw pullouts. Among the 80 pig vertebrae (90- and 140-day-old tested in this study, the average screw pullout forces ranged between 419.9N and 1341.2N. In addition, statistical differences were found between test groups, pointing out the influence of the three parameters stated above. We found that the the more caudally the screws are positioned (lumbar level, the greater their pullout resistance is, moreover, screw stability increases with the age, and finally, the screws implanted with a mono-cortical anchorage sustained lower pullout forces than those implanted with a bi-cortical anchorage. We conclude that the best anchorage can be obtained with older animals, using a lumbar fixation and long screws traversing the vertebra and inducing bi-cortical anchorage. In very young animals, pedicle screw fixations need to be bi-cortical and more numerous to prevent pullout.

  9. Pedicle Screw Fixation Study in Immature Porcine Spines to Improve Pullout Resistance during Animal Testing.

    Science.gov (United States)

    Le Cann, Sophie; Cachon, Thibaut; Viguier, Eric; Miladi, Lotfi; Odent, Thierry; Rossi, Jean-Marie; Chabrand, Patrick

    2015-01-01

    The porcine model is frequently used during development and validation of new spinal devices, because of its likeness to the human spine. These spinal devices are frequently composed of pedicle screws with a reputation for stable fixation but which can suffer pullouts during preclinical implantation on young animals, leading to high morbidity. With a view to identifying the best choices to optimize pedicle screw fixation in the porcine model, this study evaluates ex vivo the impact of weight (age) of the animal, the level of the vertebrae (lumbar or thoracic) and the type of screw anchorage (mono- or bi-cortical) on pedicle screw pullouts. Among the 80 pig vertebrae (90- and 140-day-old) tested in this study, the average screw pullout forces ranged between 419.9N and 1341.2N. In addition, statistical differences were found between test groups, pointing out the influence of the three parameters stated above. We found that the the more caudally the screws are positioned (lumbar level), the greater their pullout resistance is, moreover, screw stability increases with the age, and finally, the screws implanted with a mono-cortical anchorage sustained lower pullout forces than those implanted with a bi-cortical anchorage. We conclude that the best anchorage can be obtained with older animals, using a lumbar fixation and long screws traversing the vertebra and inducing bi-cortical anchorage. In very young animals, pedicle screw fixations need to be bi-cortical and more numerous to prevent pullout.

  10. Inspection of defects of composite materials in inner cylindrical surfaces using endoscopic shearography

    Science.gov (United States)

    Macedo, Fabiano Jorge; Benedet, Mauro Eduardo; Fantin, Analucia Vieira; Willemann, Daniel Pedro; da Silva, Fábio Aparecido Alves; Albertazzi, Armando

    2018-05-01

    This work presents the development of a special shearography system with radial sensitivity and explores its applicability for detecting adhesion flaws on internal surfaces of flanged joints of composite material pipes. The inspection is performed from the inner surface of the tube where the flange is adhered. The system uses two conical mirrors to achieve radial sensitivity. A primary 45° conical mirror is responsible for promoting the inspection of the internal tubular surface on its 360° A special Michelson interferometer is formed replacing one of the plane mirrors by a conical mirror. The image reflected by this conical mirror is shifted away from the image center in a radial way and a radial shear is produced on the images. The concept was developed and a prototype built and tested. First, two tubular steel specimens internally coated with composite material and having known artificial defects were analyzed to test the ability of the system to detect the flaws. After the principle validation, two flanged joints were then analyzed: (a) a reference one, without any artificial defects and (b) a test one with known artificial defects, simulating adhesion failures with different dimensions and locations. In all cases, thermal loading was applied through a hot air blower on the outer surface of the joint. The system presented very good results on all inspected specimens, being able to detect adhesion flaws present in the flanged joints. The experimental results obtained in this work are promising and open a new front for inspections of inner surfaces of pipes with shearography.

  11. Influence of abutment screw preload on stress distribution in marginal bone.

    Science.gov (United States)

    Khraisat, Ameen

    2012-01-01

    Changes in an implant assembly after abutment connection might possibly cause deformation in the implant/abutment joint and even in the marginal bone. The aim of this study was to evaluate the influence of abutment screw preload through the implant collar on marginal bone stress without external load application. Models of three implant parts made of titanium (implant, abutment, and abutment screw) and cortical bone were built and positioned with computer-aided design software. Meshing and generation of boundary conditions, loads, and interactions were performed. Each part was meshed independently. The sole load applied to the model was a torque of 32 Ncm on the abutment screw about its axis of rotation. The implant collar was deformed axially after the screw was tightened (3 μm). This deformation resulted in 60 MPa of stress in the marginal bone. Moreover, pressure on the marginal bone in a radial direction was observed. It can be concluded that, without any external load application, abutment screw preload exerts stresses on the implant collar and the marginal bone. These findings should help guide the development of new implant/abutment joint designs that exert less stress on the marginal bone.

  12. Analysis of irradiated materials in Ul-chin unit 5

    International Nuclear Information System (INIS)

    Jung, Y. H.; Yoo, B. O.; Kim, H. M.; Joo, Y. S.

    2007-02-01

    The microstructure examination, the fracture surface observation, the composition analysis and the micro-hardness measurement were carried out for investigation of debris apart from structure in Ul-chin uint 5. As the results of investigation, those of debris were found out screw bolts and the washer. The screw bolts and the washer were coincident with materials from ASTM A-193 by quantitative analysis. The screw bolts and the washer were made by STS 304. Finally, all of screw bolts were parts of the LPSI pump case even though one of them was found in different place. The washer was part of the heat exchanger

  13. Defect detection using transient thermography

    International Nuclear Information System (INIS)

    Mohd Zaki Umar; Ibrahim Ahmad; Ab Razak Hamzah; Wan Saffiey Wan Abdullah

    2008-08-01

    An experimental research had been carried out to study the potential of transient thermography in detecting sub-surface defect of non-metal material. In this research, eight pieces of bakelite material were used as samples. Each samples had a sub-surface defect in the circular shape with different diameters and depths. Experiment was conducted using one-sided Pulsed Thermal technique. Heating of samples were done using 30 kWatt adjustable quartz lamp while infra red (IR) images of samples were recorded using THV 550 IR camera. These IR images were then analysed with ThermofitTMPro software to obtain the Maximum Absolute Differential Temperature Signal value, ΔΤ m ax and the time of its appearance, τ m ax (ΔΤ). Result showed that all defects were able to be detected even for the smallest and deepest defect (diameter = 5 mm and depth = 4 mm). However the highest value of Differential Temperature Signal (ΔΤ m ax), were obtained at defect with the largest diameter, 20 mm and at the shallowest depth, 1 mm. As a conclusion, the sensitivity of the pulsed thermography technique to detect sub-surface defects of bakelite material is proportionately related with the size of defect diameter if the defects are at the same depth. On the contrary, the sensitivity of the pulsed thermography technique inversely related with the depth of defect if the defects have similar diameter size. (Author)

  14. Performance Characteristics of a 4 × 6 Oil-Free Twin-Screw Compressor

    Directory of Open Access Journals (Sweden)

    Sun-Seok Byeon

    2017-07-01

    Full Text Available The screw compressor in the early stage of development is generally known as the oil-injection type. However, escalating environmental problems and advances in electronic components have spurred continuous R & D to minimize the oil content in compressed air. The oil-free twin-screw compressor is continuously compressed by inner volumetric change between rotors and casing. For this reason, in order to predict the overall performance of the screw compressor at the early stage of the design process, industry still relies on the empirical method. However, it is difficult using the existing empirical method to gain more information of the inner fluid flow of the twin-screw compressor. Flow simulation techniques using CFD are required. This study presents applications of a recently proposed overset grid method to the solution of the flow around a moving boundary. In order to analyze the performance of a 4 × 6 oil-free screw compressor, the 3-D, unsteady and compressible flow fields were numerically calculated with a shear stress transport (SST turbulence model, and implemented by the commercial software, Star-CCM+. The pressure distributions were calculated and graphically depicted. Results also showed that the volumetric and adiabatic efficiencies of the screw compressor measured by the experiments were 78% and 71%, respectively.

  15. Bioresorbable composite screws manufactured via forging process: pull-out, shear, flexural and degradation characteristics.

    Science.gov (United States)

    Felfel, R M; Ahmed, I; Parsons, A J; Rudd, C D

    2013-02-01

    Bioresorbable screws have the potential to overcome some of the complications associated with metallic screws currently in use. Removal of metallic screws after bone has healed is a serious issue which can lead to refracture due to the presence of screw holes. Poly lactic acid (PLA), fully 40 mol% P(2)O(5) containing phosphate unidirectional (P40UD) and a mixture of UD and short chopped strand random fibre mats (P40 70%UD/30%RM) composite screws were prepared via forging composite bars. Water uptake and mass loss for the composite screws manufactured increased significantly to ∼1.25% (P=0.0002) and ∼1.1% (P<0.0001), respectively, after 42 days of immersion in PBS at 37 °C. The initial maximum flexural load for P40 UD/RM and P40 UD composite screws was ∼60% (P=0.0047) and ∼100% (P=0.0037) higher than for the PLA screws (∼190 N), whilst the shear load was slightly higher in comparison to PLA (∼2.2 kN). The initial pull-out strengths for the P40 UD/RM and PLA screws were similar whereas that for P40 UD screws was ∼75% higher (P=0.022). Mechanical properties for the composite screws decreased initially after 3 days of immersion and this reduction was ascribed to the degradation of the fibre/matrix interface. After 3 days interval the mechanical properties (flexural, shear and pull-out) maintained their integrity for the duration of the study (at 42 days). This property retention was attributed to the chemical durability of the fibres used and stability of the matrix properties during the degradation process. It was also deemed necessary to enhance the fibre/matrix interface via use of a coupling agent in order to maintain the initial mechanical properties acquired for the required period of time. Lastly, it is also suggested that the degrading reinforcement fibres may have the potential to buffer any acidic products released from the PLA matrix. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Numerical simulation of a twin screw expander for performance prediction

    Science.gov (United States)

    Papes, Iva; Degroote, Joris; Vierendeels, Jan

    2015-08-01

    With the increasing use of twin screw expanders in waste heat recovery applications, the performance prediction of these machines plays an important role. This paper presents a mathematical model for calculating the performance of a twin screw expander. From the mass and energy conservation laws, differential equations are derived which are then solved together with the appropriate Equation of State in the instantaneous control volumes. Different flow processes that occur inside the screw expander such as filling (accompanied by a substantial pressure loss) and leakage flows through the clearances are accounted for in the model. The mathematical model employs all geometrical parameters such as chamber volume, suction and leakage areas. With R245fa as working fluid, the Aungier Redlich-Kwong Equation of State has been used in order to include real gas effects. To calculate the mass flow rates through the leakage paths formed inside the screw expander, flow coefficients are considered as constant and they are derived from 3D Computational Fluid Dynamic calculations at given working conditions and applied to all other working conditions. The outcome of the mathematical model is the P-V indicator diagram which is compared to CFD results of the same twin screw expander. Since CFD calculations require significant computational time, developed mathematical model can be used for the faster performance prediction.

  17. New concept single screw compressors and their manufacture technology

    Science.gov (United States)

    Feng, Q.; Liu, F.; Chang, L.; Feng, C.; Peng, C.; Xie, J.; van den Broek, M.

    2017-08-01

    Single screw compressors were generally acknowledged as one of the nearly perfect machines by compressor researchers and manufacturers. However the rapid wear of the star-wheel in a single screw compressor during operation is a key reason why it hasn’t previously joined the main current compressors’ market. After more than ten years of effective work, the authors of this paper have proposed a new concept single screw compressor whose mesh-couple profile is enveloped with multi-column. Also a new design method and manufacture equipment for this kind of compressor have been developed and are described in this paper. A lot of prototype tests and a long period of industrial operations under full loading conditions have shown that the mesh-couple profiles of the new concept single compressors have excellent anti-wearness.

  18. Screw engine used as an expander in ORC for low-potential heat utilization

    Science.gov (United States)

    Richter, Lukáš

    2017-09-01

    This paper deals with a screw motor that is used as an expander in an ORC (Organic Rankin Cycle) system, whose organic working substance allows the transformation of low-potential heat (waste heat, solar and geothermal energy) into electrical energy. The article describes the specific properties of an organic substance and a screw motor that must be considered when designing and assembling a complete power unit. Screw machines are not commonly used as expansion devices, so it is necessary to perform an analysis that makes it possible to adapt the screw machine to the expansion process in terms of profiling and design.

  19. The Research of Screw Thread Parameter Measurement Based on Position Sensitive Detector and Laser

    International Nuclear Information System (INIS)

    Tong, Q B; Ding, Z L; Chen, J C; Ai, L L; Yuan, F

    2006-01-01

    A technique and system of measuring screw thread parameter based on the theory of laser measurement is presented in this paper, which can be carried out the automated measurement of screw thread parameter. An inspection instrument was designed and produced, which included exterior imaging system of optical path, transverse displacement measurement system, axial displacement measurement system, and a module to deal with, control and assess the data in the upper system. The inspection and estimate of the screw thread contour curve were completed by using position sensitive device (PSD) as photoelectric detector to measure the coordinate data of the screw thread contour curve in the transverse section, and using precise raster to measure the axial displacement of the precision worktable under the screw thread test criterion., computer can gives a measured result according to coordinate data of the screw thread obtained by PSD. The relation between measured spot and image is established, and optimum design of the system organization are introduced, including the image length of receiving lens focal length optical system and the choice of PSD , and some main factor affected measuring precision are analyzed. The experimental results show that the measurement uncertainty of screw thread minor diameter can reach 0. 5μm, which can meet most requests for the measurement of screw thread parameter

  20. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  1. Dynamic modelling and PID loop control of an oil-injected screw compressor package

    Science.gov (United States)

    Poli, G. W.; Milligan, W. J.; McKenna, P.

    2017-08-01

    A significant amount of time is spent tuning the PID (Proportional, Integral and Derivative) control loops of a screw compressor package due to the unique characteristics of the system. Common mistakes incurred during the tuning of a PID control loop include improper PID algorithm selection and unsuitable tuning parameters of the system resulting in erratic and inefficient operation. This paper details the design and development of software that aims to dynamically model the operation of a single stage oil injected screw compressor package deployed in upstream oil and gas applications. The developed software will be used to assess and accurately tune PID control loops present on the screw compressor package employed in controlling the oil pressures, temperatures and gas pressures, in a bid to improve control of the operation of the screw compressor package. Other applications of the modelling software will include its use as an evaluation tool that can estimate compressor package performance during start up, shutdown and emergency shutdown processes. The paper first details the study into the fundamental operational characteristics of each of the components present on the API 619 screw compressor package and then discusses the creation of a dynamic screw compressor model within the MATLAB/Simulink software suite. The paper concludes by verifying and assessing the accuracy of the created compressor model using data collected from physical screw compressor packages.

  2. Factors influencing success of cement versus screw-retained implant restorations: a clinical review

    Directory of Open Access Journals (Sweden)

    Ahmad Manawar

    2012-10-01

    Full Text Available Aim: As more and more dental practitioners are focusing on implant-supported fixed restorations, some clinicians favor the use of cement retained restorations while others consider screw retained prosthesis to be the best choice. Discussion: In screw-retained restorations, the fastening screw provides a solid joint between the restoration and the implant abutment, while in cement-retained prostheses the restorative screw is eliminated to enhance esthetics, occlusal stability, and passive fit of the restorations. The factors that influence the type of fixation of the prostheses to the implants like passivity of the framework, ease of fabrication, occlusion, esthetics, accessibility, retention and retrievability are discussed in this article with scientific studies demonstrating superior outcomes of one technique over another. Screwretained implant restorations have an advantage of predictable retention, retrievability and lack of potentially retained subgingival cement. However, a few disadvantages exist such as precise placement of the implant for optimal and esthetic location of the screw access hole and obtaining passive fit. On the other hand, cement retained restorations eliminate unesthetic screw access holes, have passive fit of castings, reduced complexity of clinical and lab procedures, enhanced esthetics, reduced cost factors and non disrupted morphology of the occlusal table. Conclusion: This article compares the advantages, potential disadvantages and limitations of screw and cement retained restorations and their specific implications in the most common clinical situation.

  3. In-situ X-ray Nanocharacterization of Defect Kinetics in Chalcogenide Solar Cell Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bertoni, Mariana [Arizona State Univ., Tempe, AZ (United States); Lai, Barry [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Masser, Jorg [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-21

    For decades the optimization of polycrystalline absorbers has been done using an Edisonian approach, where trial and error and complex design of experiments in large parameter spaces have driven efficiencies to the record values we see today – CIGS at 22.5%, 22.1% for CdTe, 21.3% for high purity multi-crystalline silicon. Appropriate growth parameters are critical to ensure good quality crystals with low concentration of structural defects - low dislocation density and large grain sizes. However, to bridge the gap between the efficiencies today and the fundamental Shockley-Queisser limit for these materials a much more fundamental understanding of the role and interaction between composition, structure, defect density and electrical properties is required. In recent years multiple novel characterization techniques have shown the potential that nanoscale characterization can have in deciphering the composition of grain boundaries in materials like CIGS and CdTe. However, high resolution has come at the cost of small sampling areas and number of specimens, making it extremely difficult to draw conclusions based on the characteristic small sampling sizes. The missing links thus far have been: (1) the lack of statistical meaningfulness of the nanosclae studies and (2) the direct correlation of compositional variations to electrical performance with nanoscale resolution. In this work we present the use of synchrotron-based nano-X-ray fluorescence microscopy (nano-XRF), x-ray absorption nanospectroscopy (nano-XAS) coupled with nano-x-ray beam induced current (nano-XBIC) as ideal tools for investigating elemental, chemical and electrical properties of large areas of solar cell materials at the sub-micron scale with very high sensitivity. We show how the technique can provide statistical valuable information regarding the elemental segregation in CIGS and the direct correlation to current collection. For example, we demonstrate that Cu and Ga (and with that, CGI and GGI

  4. Metal Artifacts Reduction of Pedicle Screws on Spine Computed Tomography Images Using Variable Thresholding Technique

    International Nuclear Information System (INIS)

    Kaewlek, T.; Koolpiruck, D.; Thongvigitmanee, S.; Mongkolsuk, M.; Chiewvit, P.; Thammakittiphan, S.

    2012-01-01

    Metal artifacts are one of significant problems in computed tomography (CT). The streak lines and air gaps arise from metal implants of orthopedic patients, such as prosthesis, dental bucket, and pedicle screws that cause incorrect diagnosis and local treatment planning. A common technique to suppressed artifacts is by adjusting windows, but those artifacts still remain on the images. To improve the detail of spine CT images, the variable thresholding technique is proposed in this paper. Three medical cases of spine CT images categorized by the severity of artifacts (screws head, one full screw, and two full screws) were investigated. Metal regions were segmented by k-mean clustering, then transformed into a sinogram domain. The metal sinogram was identified by the variable thresholding method, and then replaced the new estimated values by linear interpolation. The modified sinogram was reconstructed by the filtered back- projection algorithm, and added the metal region back to the modified reconstructed image in order to reproduce the final image. The image quality of the proposed technique, the automatic thresholding (Kalender) technique, and window adjustment technique was compared in term of noise and signal to noise ratio (SNR). The propose method can reduce metal artifacts between pedicle screws. After processing by our proposed technique, noise in the modified images is reduced (screws head 121.15 to73.83, one full screw 160.88 to 94.04, and two full screws 199.73 to 110.05 from the initial image) and SNR is increased (screws head 0.87 to 1.88, one full screw 1.54 to 2.82, and two full screws 0.32 to 0.41 from the initial image). The variable thresholding technique can identify the suitable boundary for restoring the missing data. The efficiency of the metal artifacts reduction is indicated on the case of partial and full pedicle screws. Our technique can improve the detail of spine CT images better than automatic thresholding (Kalender) technique, and

  5. To retain or remove the syndesmotic screw: a review of literature

    NARCIS (Netherlands)

    T. Schepers (Tim)

    2011-01-01

    textabstractIntroduction: Syndesmotic positioning screws are frequently placed in unstable ankle fractures. Many facets of adequate placement techniques have been the subject of various studies. Whether or not the syndesmosis screw should be removed prior to weight-bearing is still debated. In this

  6. Atomistic simulations of cross-slip of jogged screw dislocations in copper

    DEFF Research Database (Denmark)

    Vegge, T.; Rasmussen, T.; Leffers, T.

    2001-01-01

    We have performed atomic-scare simulations of cross-slip processes of screw dislocations in copper, simulating jog-free dislocations as well as different types of jogged screw dislocations. Minimum-energy paths and corresponding transition state energies are obtained using the nudged-elastic...

  7. Surgical strategies to improve fixation in the osteoporotic spine: the effects of tapping, cement augmentation, and screw trajectory.

    Science.gov (United States)

    Kuhns, Craig A; Reiter, Michael; Pfeiffer, Ferris; Choma, Theodore J

    2014-02-01

    Study Design Biomechanical study of pedicle screw fixation in osteoporotic bone. Objective To investigate whether it is better to tap or not tap osteoporotic bone prior to placing a cement-augmented pedicle screw. Methods Initially, we evaluated load to failure of screws placed in cancellous bone blocks with or without prior tapping as well as after varying the depths of tapping prior to screw insertion. Then we evaluated load to failure of screws placed in bone block models with a straight-ahead screw trajectory as well as with screws having a 23-degree cephalad trajectory (toward the end plate). These techniques were tested with nonaugmented (NA) screws as well as with bioactive cement (BioC) augmentation prior to screw insertion. Results In the NA group, pretapping decreased fixation strength in a dose-dependent fashion. In the BioC group, the tapped screws had significantly greater loads to failure (p tapping prior to cement augmentation will substantially improve fixation when compared with not tapping. Angulating screws more cephalad also seems to enhance aging spine fixation.

  8. Performance Characteristics of a 4 × 6 Oil-Free Twin-Screw Compressor

    OpenAIRE

    Sun-Seok Byeon; Jae-Young Lee; Youn-Jea Kim

    2017-01-01

    The screw compressor in the early stage of development is generally known as the oil-injection type. However, escalating environmental problems and advances in electronic components have spurred continuous R & D to minimize the oil content in compressed air. The oil-free twin-screw compressor is continuously compressed by inner volumetric change between rotors and casing. For this reason, in order to predict the overall performance of the screw compressor at the early stage of the design ...

  9. A power recirculating test rig for ball screw endurance tests

    Directory of Open Access Journals (Sweden)

    Giberti Hermes

    2016-01-01

    Full Text Available A conceptual design of an innovative test rig for endurance tests of ball screws is presented in this paper. The test rig layout is based on the power recirculating principle and it also allows to overtake the main critical issues of the ball screw endurance tests. Among these there are the high power required to make the test, the lengthy duration of the same and the high loads between the screw and the frame that holds it. The article describes the test rig designed scheme, the kinematic expedients to be adopted in order to obtain the required performance and functionality and the sizing procedure to choose the actuation system.

  10. Interpretation and Regulation of Electronic Defects in IGZO TFTs Through Materials & Processes

    Science.gov (United States)

    Mudgal, Tarun

    The recent rise in the market for consumer electronics has fueled extensive research in the field of display. Thin-Film Transistors (TFTs) are used as active matrix switching devices for flat panel displays such as LCD and OLED. The following investigation involves an amorphous metal-oxide semiconductor that has the potential for improved performance over current technology, while maintaining high manufacturability. Indium-Gallium-Zinc-Oxide (IGZO) is a semiconductor material which is at the onset of commercialization. The low-temperature large-area deposition compatibility of IGZO makes it an attractive technology from a manufacturing standpoint, with an electron mobility that is 10 times higher than current amorphous silicon technology. The stability of IGZO TFTs continues to be a challenge due to the presence of defect states and problems associated with interface passivation. The goal of this dissertation is to further the understanding of the role of defect states in IGZO, and investigate materials and processes needed to regulate defects to the level at which the associated influence on device operation is controlled. The relationships between processes associated with IGZO TFT operation including IGZO sputter deposition, annealing conditions and back-channel passivation are established through process experimentation, materials analysis, electrical characterization, and modeling of electronic properties and transistor behavior. Each of these components has been essential in formulating and testing several hypotheses on the mechanisms involved, and directing efforts towards achieving the goal. Key accomplishments and quantified results are summarized as follows: • XPS analysis identified differences in oxygen vacancies in samples before and after oxidizing ambient annealing at 400 °C, showing a drop in relative integrated area of the O-1s peak from 32% to 19%, which experimentally translates to over a thousand fold decrease in the channel free electron

  11. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  12. The best location for proximal locking screw for femur interlocking nailing: A biomechanical study

    Directory of Open Access Journals (Sweden)

    Ahmet A Karaarslan

    2016-01-01

    Conclusion: According to our findings, there is twice as much difference in locking screw bending resistance between these two application levels. To avoid proximal locking screw deformation, locking screws should be placed in the level of the lesser trochanter in nailing of 1/3 middle and distal femur fractures.

  13. The improvement of the edge screw connection in OSB and conventional particleboard

    Directory of Open Access Journals (Sweden)

    Popović Mlađan

    2006-01-01

    Full Text Available This work presents the method for improvement of direct screw connection performance in conventional particleboard (PB and oriented strand board (OSB. It is conceived on adhesive insertion into the pilot hole prior to embedment of the screw. The tests were carried out on the PB and OSB, both presenting interior boards and with the same nominal thickness of 18 mm. Particleboard screws of the 5 mm in diameter were inserted in the edge of the board. Pilot hole diameters were 2,5 mm and 3,0 mm and the depth of embedment was 30 mm for all tests. The chosen PVAc adhesive (type 3 with the addition of wood flour as consolidator in the range from 3-10% was inserted into pilot-hole. Tests were also obtained after consequent reassembly of the screw connection in order to examine the ratio of loss in withdrawal forces in such case. It was found that the insertion of PVAc adhesive into the pilot hole and the addition of wood flour have the positive effects on the screw withdrawal force in the tested boards.

  14. Influence of extruder screws speed and process temperature on the extrudate shape changes of the maize-spelt blends

    Directory of Open Access Journals (Sweden)

    Tomasz Żelaziński

    2018-01-01

    Full Text Available The objective of the study was examination of changes in the shape factors of extruded products, which occur as a result of different settings of the extrusion process variables. Samples analysed included products created by means of the extrusion process from a mixture of spelt flour and cornmeal, with the share of spelt at 70 to 100%. The samples were made with the use of a co-rotating twin screw extruder. Two speeds of extruder screw rotation (300 and 350 rpm as well as two levels of temperature (120 and 140°C were set during the investigation. The samples obtained were photographed in a light box, following which they underwent an image analysis with the use of specialist vision software. Four shape-related factors were determined: area, elongation factor, Heywood circularity factor and compactness factor. It was determined that the product shape changed significantly depending on the share of spelt flour in the mixture. Moreover, it was observed that change in the screw rotation speed within the analysed range may cause material changes in the shape of particular extrudates.

  15. Design of three-dimensional visualization based on the posterior lumbar pedicle screw fixation

    Directory of Open Access Journals (Sweden)

    Kai XU

    2011-09-01

    Full Text Available Objective To establish a three-dimensional visualization model of posterior lumbar pedicle screw fixation.Methods A patient with lumbar intervertebral disc hernia and another patient with compression fracture of lumbar vertebra were involved in the present study.Both patients underwent multi-slice spiral CT scan before and after lumbar pedicle screw fixation.The degree of preoperative vertebral compression,vertebral morphology before and after surgery,postoperative pedicle screw position,and decompression effects were observed.The original data of the multi-slice spiral CT were inputted into the computer.The three-dimensional reconstructed images of the lumbar and implanted screws were obtained using the software Amira 4.1 to show the three-dimensional shape of the lumbar vertebrae before and after surgery and the location of the implanted screws.Results The morphology and structure of the lumbar vertebrae before and after surgery and of the implanted screws were reconstructed using the digital navigation platform.The reconstructed 3D images could be displayed in multicolor,transparent,or arbitrary combinations.In the 3D surface reconstruction images,the location and structure of the implanted screws could be clearly observed,and the decompression of the spinal cord or nerve roots and the severity of the fracture and the compression of lumbar vertebrae could be fully evaluated.The reconstructed images before operation revealed the position of the vertebral pedicles and provided reference for intraoperative localization.Conclusions The three-dimensional computerized reconstructions of lumbar pedicle screw fixation may be valuable in basic research,clinical experiment,and surgical planning.The software Amira is one of the bases of three-dimensional reconstruction.

  16. Experimental Investigation of the Role of Defects in Detonation Sensitivity of Energetic Materials: Development of Techniques for Characterization

    Science.gov (United States)

    2009-12-31

    materials. The initial work was focused on design and construction of an apparatus for injecting defects into the crystals using PZT ceramics ...in the energy partitioning (Table 2), which offers some insight into the nature of the energetic texture of crystalline materials not apparent in

  17. First-Principles Investigations of Defects in Minerals

    Science.gov (United States)

    Verma, Ashok K.

    2011-07-01

    The ideal crystal has an infinite 3-dimensional repetition of identical units which may be atoms or molecules. But real crystals are limited in size and they have disorder in stacking which as called defects. Basically three types of defects exist in solids: 1) point defects, 2) line defects, and 3) surface defects. Common point defects are vacant lattice sites, interstitial atoms and impurities and these are known to influence strongly many solid-state transport properties such as diffusion, electrical conduction, creep, etc. In thermal equilibrium point defects concentrations are determined by their formation enthalpies and their movement by their migration barriers. Line and surface defects are though absent from the ideal crystal in thermal equilibrium due to higher energy costs but they are invariably present in all real crystals. Line defects include edge-, screw- and mixed-dislocations and their presence is essential in explaining the mechanical strength and deformation of real crystals. Surface defects may arise at the boundary between two grains, or small crystals, within a larger crystal. A wide variety of grain boundaries can form in a polycrystal depending on factors such growth conditions and thermal treatment. In this talk we will present our first-principles density functional theory based defect studies of SiO2 polymorphs (stishovite, CaCl2-, α-PbO2-, and pyrite-type), Mg2SiO4 polymorphs (forsterite, wadsleyite and ringwoodite) and MgO [1-3]. Briefly, several native point defects including vacancies, interstitials, and their complexes were studied in silica polymorphs upto 200 GPa. Their values increase by a factor of 2 over the entire pressure range studied with large differences in some cases between different phases. The Schottky defects are energetically most favorable at zero pressure whereas O-Frenkel pairs become systematically more favorable at pressures higher than 20 GPa. The geometric and electronic structures of defects and migrating

  18. Upscaling of a Batch De-Vulcanization Process for Ground Car Tire Rubber to a Continuous Process in a Twin Screw Extruder

    Directory of Open Access Journals (Sweden)

    Sitisaiyidah Saiwari

    2016-08-01

    Full Text Available As a means to decrease the amount of waste tires and to re-use tire rubber for new tires, devulcanization of ground passenger car tires is a promising process. Being an established process for NR and EPDM, earlier work has shown that for ground passenger car tire rubber with a relatively high amount of SBR, a devulcanization process can be formulated, as well. This was proven for a laboratory-scale batch process in an internal mixer, using diphenyl disulfide as the devulcanization aid and powder-sized material. In this paper, the devulcanization process for passenger car tire rubber is upscaled from 15 g per batch and transformed into a continuous process in a co-rotating twin screw extruder with a capacity of 2 kg/h. As SBR is rather sensitive to devulcanization process conditions, such as thermal and mechanical energy input, the screw design was based on a low shear concept. A granulate with particle sizes from 1–3.5 mm was chosen for purity, as well as economic reasons. The devulcanization process conditions were fine-tuned in terms of: devulcanization conditions (time/temperature profile, concentration of devulcanization aid, extruder parameters (screw configuration, screw speed, fill factor and ancillary equipment (pre-treatment, extrudate handling. The influence of these parameters on the devulcanization efficiency and the quality of the final product will be discussed. The ratio of random to crosslink scission as determined by a Horikx plot was taken for the evaluation of the process and material. A best practice for continuous devulcanization will be given.

  19. Bone anchors or interference screws? A biomechanical evaluation for autograft ankle stabilization.

    Science.gov (United States)

    Jeys, Lee; Korrosis, Sotiris; Stewart, Todd; Harris, Nicholas J

    2004-01-01

    Autograft stabilization uses free semitendinosus tendon grafts to anatomically reconstruct the anterior talofibular ligament. Study aims were to evaluate the biomechanical properties of Mitek GII anchors compared with the Arthrex Bio-Tenodesis Screw for free tendon reconstruction of the anterior talofibular ligament. There are no differences in load to failure and percentage specimen elongation at failure between the 2 methods. Controlled laboratory study using porcine models. Sixty porcine tendon constructs were failure tested. Re-creating the pull of the anterior talofibular ligament, loads were applied at 70 degrees to the bones. Thirty-six tendons were fixed to porcine tali and tested using a single pull to failure; 10 were secured with anchors and No. 2 Ethibond, 10 with anchors and FiberWire, 10 with screws and Fiberwire, and 6 with partially gripped screws. Cyclic preloading was conducted on 6 tendons fixed by anchors and on 6 tendons fixed by screws before failure testing. Two groups of 6 components fixed to the fibula were also tested. The talus single-pull anchor group produced a mean load of 114 N and elongation of 37% at failure. The talus single-pull screw group produced a mean load of 227 N and elongation of 22% at failure (P anchors. The improved biomechanics of interference screws suggests that these may be more suited to in vivo reconstruction of the anterior talofibular ligament than are bone anchors.

  20. To retain or remove the syndesmotic screw: a review of literature

    NARCIS (Netherlands)

    Schepers, T.

    2011-01-01

    Syndesmotic positioning screws are frequently placed in unstable ankle fractures. Many facets of adequate placement techniques have been the subject of various studies. Whether or not the syndesmosis screw should be removed prior to weight-bearing is still debated. In this study, the recent

  1. Ball tip method for thoracic pedicle screw placement in patients with adolescent idiopathic scoliosis

    International Nuclear Information System (INIS)

    Watanabe, Kota; Matsumoto, Morio; Iizuka, Shingo

    2008-01-01

    The purpose of this study was to evaluate the efficacy of ball tip method for thoracic pedicle screw placements in idiopathic scoliosis patients. 24 patients with adolescent idiopathic scoliosis were included in this study. Conventional method was performed in 12 patients. Ball tip method was performed in 12 patients. Accuracy of the pedicle screw placement was evaluated based on the postoperative CT. In the ball tip method, a probe which was consisted of ball tip with flexible shaft was used. After removing of cortical bone at a starting point, the probe was inserted manually or sometimes with gently tapping by hammer. During the maneuver, the probe will gradually progress into cancellous bone in the pedicle, without perforating cortical bone in the pedicle. Following expansion of the hole by a rigid gear shift probe, screw was placed in the pedicle. 65.1% of screws were located within pedicle in the conventional group and 86.5% in the ball tip group. 5.3% of screws were located out of pedicle within 2 mm in the conventional group and 8.2% in the ball tip group. 15.8% of screws were located out of pedicle beyond 2 mm and 1.8% in the ball tip group. The ball tip method enhanced the accuracy of thoracic pedicle screw placements in adolescent idiopathic scoliosis patients. The ball tip method may be effective for accurate pedicle screw placement in patients with adolescent idiopathic scoliosis. (author)

  2. Reliability analysis of digital radiography systems in the testing of real material defects

    International Nuclear Information System (INIS)

    Kanzler, Daniel

    2016-01-01

    Nondestructive testing (ndt) systems are essential for areas in our lives, in which there is a high risk for failures that would induce high costs or even damage to people and the environment (i.e. transportation, energy production, chemical industry). It is necessary to find and to characterise every defect in the material which might jeopardise the functionality of the tested part. But in the praxis the testing system will be used at their limits, i.e. for detecting small defects. Thus, there is a probability that critical defects might be overseen, which must be quantified. The evaluation is especially important for safety-relevant areas. The probability of detection (POD) characteristic is an objective number, which is widely used in these cases. It is used to provide a statement about the tested ndt system. The POD can provide the statement whether the system is working well enough to be accepted to find the defects. The original POD method was developed for one-dimensional defects in thin parts used in the aircraft industry. In reality, the evaluation is a compromise between statistics and costs. On the one hand, the real testing situation should be evaluated for the later use. On the other hand, the evaluation of real defects including the metallography and the comparison with the signals is a complex and expensive task. To find a coordinate system to compare the data is, therefore, an important prerequisite, before starting to evaluate. Therefore, this thesis will present a practical approach. The research community, as well, sees the POD of the real defects as a challenge. It is necessary to extend the one-parametric POD approach by evaluating the whole NDT indication. The area of the NDT indication is one important fact which should be included. The thesis will introduce two new aspects to the calculation of the POD: 1. The area of the indication will be introduced by using a smoothing algorithm, which is based on the known Observer-POD. The Observer

  3. Dual small fragment plating improves screw-to-screw load sharing for mid-diaphyseal humeral fracture fixation: a finite element study.

    Science.gov (United States)

    Kosmopoulos, Victor; Luedke, Colten; Nana, Arvind D

    2015-01-01

    A smaller humerus in some patients makes the use of a large fragment fixation plate difficult. Dual small fragment plate constructs have been suggested as an alternative. This study compares the biomechanical performance of three single and one dual plate construct for mid-diaphyseal humeral fracture fixation. Five humeral shaft finite element models (1 intact and 4 fixation) were loaded in torsion, compression, posterior-anterior (PA) bending, and lateral-medial (LM) bending. A comminuted fracture was simulated by a 1-cm gap. Fracture fixation was modelled by: (A) 4.5-mm 9-hole large fragment plate (wide), (B) 4.5-mm 9-hole large fragment plate (narrow), (C) 3.5-mm 9-hole small fragment plate, and (D) one 3.5-mm 9-hole small fragment plate and one 3.5-mm 7-hole small fragment plate. Model A showed the best outcomes in torsion and PA bending, whereas Model D outperformed the others in compression and LM bending. Stress concentrations were located near and around the unused screw holes for each of the single plate models and at the neck of the screws just below the plates for all the models studied. Other than in PA bending, Model D showed the best overall screw-to-screw load sharing characteristics. The results support using a dual small fragment locking plate construct as an alternative in cases where crutch weight-bearing (compression) tolerance may be important and where anatomy limits the size of the humerus bone segment available for large fragment plate fixation.

  4. Computed tomography fluoroscopy-guided placement of iliosacral screws in patients with unstable posterior pelvic fractures

    International Nuclear Information System (INIS)

    Iguchi, Toshihiro; Ogawa, Ken-Ichi; Doi, Takeshi; Munetomo, Kazuo; Miyasho, Koji; Hiraki, Takao; Kanazawa, Susumu; Ozaki, Toshifumi

    2010-01-01

    The purpose of this study was to evaluate retrospectively the safety and effectiveness of the computed tomography (CT) fluoroscopy-guided placement of iliosacral screws in patients with unstable posterior pelvic fractures. Six patients (four women and two men; mean age 55.8 years; range 35-77 years) with unstable posterior pelvic fractures underwent iliosacral screw placement under CT fluoroscopy guidance between November 2007 and August 2008. Unstable pelvic ring injury (AO types B and C) was the indication for this procedure. In all the six patients except one, CT fluoroscopy-guided placement had been technically successful. In one patient, a second screw had been inserted, with a tilt to the caudal site, and slightly advanced into the extrasacral body; afterward, it could be exchanged safely for a shorter screw. Five patients and one patient underwent placement of two screws and one screw, respectively. The mean duration of the procedure was 15.0 min (range 9-30 min) per screw; the duration was 12.3 min and 18.2 min for the first and second screws, respectively. No complications requiring treatment occurred during or after the procedure. The mean clinical and radiologic follow-up period was 14 months (range 6-21 months). All pelvic injuries had healed satisfactorily, without complication, and all patients are now doing well clinically and can walk. CT fluoroscopy-guided placement of iliosacral screws is a safe and effective treatment in patients with unstable posterior pelvic fractures. (orig.)

  5. Virtual surgery simulation versus traditional approaches in training of residents in cervical pedicle screw placement.

    Science.gov (United States)

    Hou, Yang; Shi, Jiangang; Lin, Yanping; Chen, Huajiang; Yuan, Wen

    2018-06-01

    The cervical screw placement is one of the most difficult procedures in spine surgery, which often needs a long period of repeated practices and could cause screw placement-related complications. We performed this cadaver study to investigate the effectiveness of virtual surgical training system (VSTS) on cervical pedicle screw instrumentation for residents. A total of ten novice residents were randomly assigned to two groups: the simulation training (ST) group (n = 5) and control group (n = 5). The ST group received a surgical training of cervical pedicle screw placement on VSTS and the control group was given an introductory teaching session before cadaver test. Ten fresh adult spine specimens including 6 males and 4 females were collected, and were randomly allocated to the two groups. The bilateral C3-C6 pedicle screw instrumentation was performed in the specimens of the two groups, respectively. After instrumentation, screw positions of the two groups were evaluated by image examinations. There was significantly statistical difference in screw penetration rates between the ST (10%) and control group (62.5%, P VSTS as an advanced training tool exhibited promising effects on improving performance of novice residents in cervical pedicle screw placement compared with the traditional teaching methods.

  6. Comparison of defects in crystalline oxide semiconductor materials by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Tokiyoshi, E-mail: toki@rins.ryukoku.ac.jp; Kimura, Mutsumi [Department of Electronics and Informatics, Faculty of Science and Technology, Ryukoku University, 1-438, 1-5 Yokotani, Seta Oe-Cho, Otsu, Shiga 520-2194, Japan and Joint Research Center for Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-Cho, Otsu, Shiga 520-2194 (Japan)

    2015-03-15

    Defects in crystalline InGaZnO{sub 4} (IGZO) induced by plasma were investigated using electron spin resonance (ESR). Thermal stabilities and g factors of two ESR signals (A and B observed at g = 1.939 and 2.003, respectively) in IGZO were different from those of the ESR signals observed in component materials such as Ga{sub 2}O{sub 3} (signal observed at g = 1.969), In{sub 2}O{sub 3} (no signal), and ZnO (signal observed at g = 1.957). Signal A in IGZO increased upon annealing at 300 °C for 1 h, but decreased when annealing was continued for more than 2 h. On the other hand, signal B decreased upon annealing at 300 °C for 1 h. The ESR signal in ZnO decayed in accordance with a second-order decay model with a rate constant of 2.1 × 10{sup −4} s{sup −1}; however, this phenomenon was not observed in other materials. This difference might have been due to randomly formed IGZO lattices such as asymmetrical (Ga, Zn)O and In-O layers. Defects in signals A and B in IGZO were formed in trap states (at the deep level) and tail states, respectively.

  7. Calculating the optical properties of defects and surfaces in wide band gap materials

    Science.gov (United States)

    Deák, Peter

    2018-04-01

    The optical properties of a material critically depend on its defects, and understanding that requires substantial and accurate input from theory. This paper describes recent developments in the electronic structure theory of defects in wide band gap materials, where the standard local or semi-local approximations of density functional theory fail. The success of the HSE06 screened hybrid functional is analyzed in case of Group-IV semiconductors and TiO2, and shown that it is the consequence of error compensation between semi-local and non-local exchange, resulting in a proper derivative discontinuity (reproduction of the band gap) and a total energy which is a linear function of the fractional occupation numbers (removing most of the electron self-interaction). This allows the calculation of electronic transitions with accuracy unseen before, as demonstrated on the single-photon emitter NV(-) center in diamond and on polaronic states in TiO2. Having a reliable tool for electronic structure calculations, theory can contribute to the understanding of complicated cases of light-matter interaction. Two examples are considered here: surface termination effects on the blinking and bleaching of the light-emission of the NV(-) center in diamond, and on the efficiency of photocatalytic water-splitting by TiO2. Finally, an outlook is presented for the application of hybrid functionals in other materials, as, e.g., ZnO, Ga2O3 or CuGaS2.

  8. Twin Screw Extruders as Continuous Mixers for Thermal Processing: a Technical and Historical Perspective.

    Science.gov (United States)

    Martin, Charlie

    2016-02-01

    Developed approximately 100 years ago for natural rubber/plastics applications, processes via twin screw extrusion (TSE) now generate some of the most cutting-edge drug delivery systems available. After 25 or so years of usage in pharmaceutical environments, it has become evident why TSE processing offers significant advantages as compared to other manufacturing techniques. The well-characterized nature of the TSE process lends itself to ease of scale-up and process optimization while also affording the benefits of continuous manufacturing. Interestingly, the evolution of twin screw extrusion for pharmaceutical products has followed a similar path as previously trodden by plastics processing pioneers. Almost every plastic has been processed at some stage in the manufacturing train on a twin screw extruder, which is utilized to mix materials together to impart desired properties into a final part. The evolution of processing via TSEs since the early/mid 1900s is recounted for plastics and also for pharmaceuticals from the late 1980s until today. The similarities are apparent. The basic theory and development of continuous mixing via corotating and counterrotating TSEs for plastics and drug is also described. The similarities between plastics and pharmaceutical applications are striking. The superior mixing characteristics inherent with a TSE have allowed this device to dominate other continuous mixers and spurred intensive development efforts and experimentation that spawned highly engineered formulations for the commodity and high-tech plastic products we use every day. Today, twin screw extrusion is a battle hardened, well-proven, manufacturing process that has been validated in 24-h/day industrial settings. The same thing is happening today with new extrusion technologies being applied to advanced drug delivery systems to facilitate commodity, targeted, and alternative delivery systems. It seems that the "extrusion evolution" will continue for wide

  9. Intertrochanteric fractures in elderly high risk patients treated with Ender nails and compression screw

    Directory of Open Access Journals (Sweden)

    Gangadharan Sidhartha

    2010-01-01

    Full Text Available Background: Ender and Simon Weidner popularized the concept of closed condylocephlic nailing for intertrochanteric fractures in 1970. The clinical experience of authors revealed that Ender nailing alone cannot provide secure fixation in elderly patients with osteoporosis. Hence we conducted a study to evaluate the efficacy of a combined fixation procedure using Ender nails and a cannulated compression screw for intertrochanteric fractures. Materials and Methods: 76 patients with intertrochanteric fractures were treated using intramedullary Ender nails and cannulated compression screw from January 2004 to December 2007. The mean age of the patients was 80 years (range 70-105 years.Using the Evan′s system of classification 49 were stable and 27 unstable fractures. Inclusion criteria was high risk elderly patients (age > 70 years with intertrochanteric fracture. The exclusion criteria included patients with pressure sores over the trochanteric region. Many patients had pre-existing co-morbidities like diabetes mellitus, hypertension, COPD, ischemic heart disease, CVA and coronary artery bypass surgery. The two Ender nails of 4.5mm each were passed across the fracture site into the proximal neck. This was reinforced with a 6.5 mm cannulated compression screw passed from the sub trochanteric region, across the fracture into the head. Results: The mean follow-up was 14 months (range 9-19 months Average time to fracture union was 10 weeks (range 6-16 weeks. The mean knee ROM was 130o (± 5o. There was no case of nail penetration into hip joint. In five cases with advanced osteoporosis there was minimal migration of Ender nails distally. Conclusions: The Ender nailing combined with compression screw fixation in cases of intertrochanteric fractures in high risk elderly patients could achieve reliable fracture stability with minimal complications.

  10. Radiological assessment of cervical lateral mass screw angulations in Asian patients

    Directory of Open Access Journals (Sweden)

    Mariapan Sureisen

    2011-01-01

    Full Text Available Background: Various lateral mass screw fixation methods have been described in the literature with various levels of safety in relation to the anterior neurovascular structures. This study was designed to radiologically determine the minimum lateral angulations of the screw to avoid penetration of the vertebral artery canalusing three of the most common techniques: Roy-Camille, An, and Magerl. Materials and Methods: Sixty normal cervical CT scans were reviewed. A minimum lateral angulation of a 3.5 mm lateral mass screw which was required to avoid penetration of the vertebral artery canal at each level of vertebra were measured. Results: The mean lateral angulations of the lateral mass screws (with 95% confidence interval to avoid vertebral artery canal penetration, in relation to the starting point at the midpoint (Roy-Camille, 1 mm medial (An, and 2 mm medial (Magerl to the midpoint of lateral mass were 6.8° (range, 6.3-7.4°, 10.3° (range, 9.8-10.8°, and 14.1° (range, 13.6-14.6° at C3 vertebrae; 6.8° (range, 6.2-7.5°, 10.7° (range, 10.0-11.5°, and 14.1° (range, 13.4-14.8° at C4 vertebrae; 6.6° (range, 6.0-7.2°, 10.1° (range, 9.3-10.8°, and 13.5° (range, 12.8-14.3° at C5 vertebrae and 7.6° (range, 6.9-8.3°, 10.9° (range, 10.3-11.6°, and 14.3° (range, 13.7-15.0° at C6 vertebrae. The recommended lateral angulations for Roy-Camille, Magerl, and An are 10°, 25°,and 30°, respectively. Statistically, there is a higher risk of vertebral foramen violation with the Roy-Camille technique at C3, C4 and C6 levels, P < 0.05. Conclusions: Magerl and An techniques have a wide margin of safety. Caution should be practised with Roy-Camille′s technique at C3, C4, and C6 levels to avoid vertebral vessels injury in Asian population.

  11. Experimental results of single screw mechanical tests: a follow-up to SAND2005-6036.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sandwook; Lee, Kenneth L.; Korellis, John S.; McFadden, Sam X.

    2006-08-01

    The work reported here was conducted to address issues raised regarding mechanical testing of attachment screws described in SAND2005-6036, as well as to increase the understanding of screw behavior through additional testing. Efforts were made to evaluate fixture modifications and address issues of interest, including: fabrication of 45{sup o} test fixtures, measurement of the frictional load from the angled fixture guide, employment of electromechanical displacement transducers, development of a single-shear test, and study the affect of thread start orientation on single-shear behavior. A286 and 302HQ, No.10-32 socket-head cap screws were tested having orientations with respect to the primary loading axis of 0{sup 0}, 45{sup o}, 60{sup o}, 75{sup o} and 90{sup o} at stroke speeds 0,001 and 10 in/sec. The frictional load resulting from the angled screw fixture guide was insignificant. Load-displacement curves of A286 screws did not show a minimum value in displacement to failure (DTF) for 60{sup o} shear tests. Tests of 302HQ screws did not produce a consistent trend in DTF with load angle. The effect of displacement rate on DTF became larger as shear angle increased for both A286 and 302HQ screws.

  12. A locking compression plate versus the gold-standard non-locking plate with lag screw for first metatarsophalangeal fusion: A biomechanical comparison.

    Science.gov (United States)

    Mandell, Daniel; Karbassi, John; Zhou, Hanbing; Burroughs, Brian; Aurigemma, Philip; Patel, Abhay R

    2018-03-01

    The treatment of end-stage first metatarso-phalangeal joint (MTP) arthritis has been arthrodesis. A dorsal non-locking plate with a lag screw has been the standard traditional fixation method. This study compares the biomechanical strength of a locking compression plate (LCP) with and without internal compression versus this known gold standard. In group 1, six matched pairs of cadaver great toes were used to compare the standard non-locking dorsal plate and 3.5mm lag screw to an anatomic locking compression plate in which a lag screw was utilized rather than the internal compression features of the plate. In group 2, another six matched pairs of cadaver great toes were used to compare the gold standard to the locking compression plate, utilizing the plate's internal compression feature instead of a lag screw. A material testing system (MTS) machine applied loads to the MTP joints and measured displacement and stiffness of the constructs. The stiffness of the constructs (Young's modulus) was calculated from the force-displacement curves, and the displacement was measured. The locking compression plate group that used the compression features of the plate, without the lag screw, had less joint displacement and higher stiffness than control (p<0.05). The same plating construct in which a lag screw was used rather than internal compression of the plate was found to be stiffer than the control (p<0.05), but displacement was not statistically significant. The results suggest that a locking compression plate alone provides the stiffest construct for a first MTP joint fusion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Combining Simulated and Experimental Data to Simulate Ultrasonic Array Data From Defects in Materials With High Structural Noise.

    Science.gov (United States)

    Bloxham, Harry A; Velichko, Alexander; Wilcox, Paul David

    2016-12-01

    Ultrasonic nondestructive testing inspections using phased arrays are performed on a wide range of components and materials. All real inspections suffer, to varying extents, from coherent noise, including image artifacts and speckle caused by complex geometries and grain scatter, respectively. By its nature, this noise is not reduced by averaging; however, it degrades the signal-to-noise ratio of defects and ultimately limits their detectability. When evaluating the effectiveness of an inspection, a large pool of data from samples containing a range of different defects are important to estimate the probability of detection of defects and to help characterize them. For a given inspection, coherent noise is easy to measure experimentally but hard to model realistically. Conversely, the ultrasonic response of defects can be simulated relatively easily. This paper proposes a novel method of simulating realistic array data by combining noise-free simulations of defect responses with coherent noise taken from experimental data. This removes the need for costly physical samples with known defects to be made and allows for large data sets to be created easily.

  14. Deformations of the spin currents by topological screw dislocation and cosmic dispiration

    International Nuclear Information System (INIS)

    Wang, Jianhua; Ma, Kai; Li, Kang; Fan, Huawei

    2015-01-01

    We study the spin currents induced by topological screw dislocation and cosmic dispiration. By using the extended Drude model, we find that the spin dependent forces are modified by the nontrivial geometry. For the topological screw dislocation, only the direction of spin current is bent by deforming the spin polarization vector. In contrast, the force induced by cosmic dispiration could affect both the direction and magnitude of the spin current. As a consequence, the spin-Hall conductivity does not receive corrections from screw dislocation.

  15. Deformations of the spin currents by topological screw dislocation and cosmic dispiration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhua [School of Physics Science, Shaanxi University of Technology, Hanzhong 723000, Shaanxi (China); Ma, Kai, E-mail: makainca@gmail.com [School of Physics Science, Shaanxi University of Technology, Hanzhong 723000, Shaanxi (China); Li, Kang [Department of Physics, Hangzhou Normal University, Hangzhou 310036, Zhejiang (China); Fan, Huawei [School of Physics and Information Technology, Shaanxi Normal University, Xian 710000, Shaanxi (China)

    2015-11-15

    We study the spin currents induced by topological screw dislocation and cosmic dispiration. By using the extended Drude model, we find that the spin dependent forces are modified by the nontrivial geometry. For the topological screw dislocation, only the direction of spin current is bent by deforming the spin polarization vector. In contrast, the force induced by cosmic dispiration could affect both the direction and magnitude of the spin current. As a consequence, the spin-Hall conductivity does not receive corrections from screw dislocation.

  16. Synthetic Defects for Vibrothermography

    Science.gov (United States)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  17. Optoelectronic and Defect Properties in Earth Abundant Photovoltaic Materials: First-principle Calculations

    Science.gov (United States)

    Shi, Tingting

    In this dissertation, a series of earth-abundant photovoltaic materials including lead halide perovskites, copper based compounds, and silicon are investigated via density functional theory (DFT). Firstly, we study the unique optoelectronic properties of perovskite CH3NH3PbI3 and CH3NH3PbBr 3. First-principle calculations show that CH3NH3PbI 3 perovskite solar cells exhibit remarkable optoelectronic properties that account for the high open circuit voltage (Voc) and long electron-hole diffusion lengths. Our results reveal that for intrinsic doping, dominant point defects produce only shallow levels. Therefore lead halide perovskites are expected to exhibit intrinsic low non-radiative recombination rates. The conductivity of perovskites can be tuned from p-type to n-type by controlling the growth conditions. For extrinsic defects, the p-type perovskites can be achieved by doping group-IA, -IB, or -VIA elements, such as Na, K, Rb, Cu, and O at I-rich growth conditions. We further show that despite a large band gap of 2.2 eV, the dominant defects in CH3 NH3PbBr3 also create only shallow levels. The photovoltaic properties of CH3NH3PbBr3 - based perovskite absorbers can be tuned via defect engineering. Highly conductive p-type CH3NH3PbBr3 can be synthesized under Br-rich growth conditions. Such CH3NH3PbBr 3 may be potential low-cost hole transporting materials for lead halide perovskite solar cells. All these unique defect properties of perovskites are largely due to the strong Pb lone-pair s orbital and I p (Br p) orbital antibonding coupling and the high ionicity of CH3NH3PbX3 (X=I, Br). Secondly, we study the optoelectronic properties of Cu-V-VI earth abundant compounds. These low cost thin films may have the good electronic and optical properties. We have studied the structural, electronic and optical properties of Cu3-V-VI4 compounds. After testing four different crystal structures, enargite, wurtzite-PMCA, famatinite and zinc-blend-PMCA, we find that Cu3PS4 and

  18. Influence of bacterial colonization of the healing screws on peri-implant tissue

    Directory of Open Access Journals (Sweden)

    Simonetta D'Ercole

    2013-06-01

    Conclusion: The healing screws left in situ for a period of 90 days caused a peri-implant inflammation and the presence of periodontal pathogenic bacteria in the peri-implant sulcus, due to the plaque accumulation on screw surfaces.

  19. Interference screw versus Endoscrew fixation for anterior cruciate ligament reconstruction: A biomechanical comparative study in sawbones and porcine knees

    Directory of Open Access Journals (Sweden)

    Chu-Chih Hung

    2014-04-01

    Full Text Available Interference screw fixation is one of the most common methods for ligament reconstruction. Although the advantages and clinical outcomes of this procedure have been widely reported, post-surgical complications often arise. The purpose of this study was to evaluate a new femoral fixation device, the Endoscrew, for anterior cruciate ligament (ACL reconstruction. We performed a mechanical test in accordance with American Society for Testing and Materials (ASTM standards and an in vitro biomechanical study. An axial pullout test was conducted to evaluate the mechanical properties of the new device and the interference screw when implanted in solid rigid polyurethane foam test blocks. The biomechanical test used porcine femora to evaluate the initial fixation strength between these two implants. The maximum pullout force of the interference screw group [722.05 ± 130.49 N (N] was significantly greater (p < 0.01 than the Endoscrew group (440.79 ± 26.54 N when implanted in polyurethane foam 320 kg/m3 density. With polyurethane foam 160 kg/m3 density, the maximum pullout forces were (242.61 ± 37.36 N (p < 0.001 and (99.33 ± 30.01 N for the interference screw group and Endoscrew group, respectively. In the in vitro mechanical study, the Endoscrew (646.39 ± 72.38 N required a significantly greater ultimate load prior to failure (p < 0.05 when compared with the interference screw (489.72 ± 138.64 N. With regard to pullout stiffness, there was no statistically significant difference (p < 0.13 between the Endoscrew group (99.15 ± 12.16 N/mm and the interference screw group (87.96 ± 11.12 N/mm. The cyclic stiffness was also not significantly different (p < 0.44 between the Endoscrew group (93.09 ± 16.07 N/mm and the interference screw group (85.78 ± 14.76 N/mm. The axial pullout test showed that the strength of the Endoscrew was close to the fixation strength required for daily activities, but it is

  20. Increase of operational reliability and durability of square sectoral working bodies of flexible screw conveyors

    Directory of Open Access Journals (Sweden)

    O.L. Lyashuk

    2017-12-01

    Full Text Available The construction of the device for guiding screw sectional working bodies of increased operational reliability and durability and the method of determination of the force of guiding the design parameters are given. Two main methods of manufacturing screw mechanisms of machines of various service purposes were investigated and it was established that twisted screws, in terms of their strength and performance, considerably exceed rolling stock. The design of the device for manufacturing screw working bodies of conveyors by means of cutting by periodic and continuous methods, as the most reliable in operation, is developed. The specifics of their work are due to various operations of technological processes, as well as physical and mechanical properties of goods, determine the nomenclature and design parameters of screw mechanisms (SM. In studying the processes of forming screw spirals, the basic precision characteristics of the methods of drilling and rolling are established. A comparative study of two main methods in terms of their operational and durable capabilities has been carried out. An important factor determining the reliability and durability of a screw is the difference in the thickness of the inner and outer edges.

  1. Investigation of a Ball Screw Feed Drive System Based on Dynamic Modeling for Motion Control

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Huang

    2017-06-01

    Full Text Available This paper examines the frequency response relationship between the ball screw nut preload, ball screw torsional stiffness variations and table mass effect for a single-axis feed drive system. Identification for the frequency response of an industrial ball screw drive system is very important for the precision motion when the vibration modes of the system are critical for controller design. In this study, there is translation and rotation modes of a ball screw feed drive system when positioning table is actuated by a servo motor. A lumped dynamic model to study the ball nut preload variation and torsional stiffness of the ball screw drive system is derived first. The mathematical modeling and numerical simulation provide the information of peak frequency response as the different levels of ball nut preload, ball screw torsional stiffness and table mass. The trend of increasing preload will indicate the abrupt peak change in frequency response spectrum analysis in some mode shapes. This study provides an approach to investigate the dynamic frequency response of a ball screw drive system, which provides significant information for better control performance when precise motion control is concerned.

  2. Non-symmetric approach to single-screw expander and compressor modeling

    Science.gov (United States)

    Ziviani, Davide; Groll, Eckhard A.; Braun, James E.; Horton, W. Travis; De Paepe, M.; van den Broek, M.

    2017-08-01

    Single-screw type volumetric machines are employed both as compressors in refrigeration systems and, more recently, as expanders in organic Rankine cycle (ORC) applications. The single-screw machine is characterized by having a central grooved rotor and two mating toothed starwheels that isolate the working chambers. One of the main features of such machine is related to the simultaneous occurrence of the compression or expansion processes on both sides of the main rotor which results in a more balanced loading on the main shaft bearings with respect to twin-screw machines. However, the meshing between starwheels and main rotor is a critical aspect as it heavily affects the volumetric performance of the machine. To allow flow interactions between the two sides of the rotor, a non-symmetric modelling approach has been established to obtain a more comprehensive model of the single-screw machine. The resulting mechanistic model includes in-chamber governing equations, leakage flow models, heat transfer mechanisms, viscous and mechanical losses. Forces and moments balances are used to estimate the loads on the main shaft bearings as well as on the starwheel bearings. An 11 kWe single-screw expander (SSE) adapted from an air compressor operating with R245fa as working fluid is used to validate the model. A total of 60 steady-steady points at four different rotational speeds have been collected to characterize the performance of the machine. The maximum electrical power output and overall isentropic efficiency measured were 7.31 kW and 51.91%, respectively.

  3. Clinical and radiological studies upon a combined method for guided bone regeneration in experimental mandibular defects in dogs - a preliminary communication

    International Nuclear Information System (INIS)

    Borissov, I.; Uzunov, N.; Paskalev, M.

    2004-01-01

    The treated bone defects were compared clinically and radiologically. After a 3-month period of survey, the best results were obtained in the group treated with partially demineralized bone matrix, enzymatically processed and lyophilized dura mater and mucoperiosteal flap. The placement of titanium screw dental implants did not impair the guided bone regeneration, that was confirmed by their good osteointegration

  4. [Basic laws of blood screw motion in human common carotid arteries].

    Science.gov (United States)

    Kulikov, V P; Kirsanov, R I

    2008-08-01

    The basic laws of blood screw motion in common carotid arteries in people were determined by means of modern ultrasound techniques for the first time. 92 healthy adults, aged 18-30, were examined. The blood flow in the middle one-third of common carotid arteries was registered by means of Color Doppler Imaging and impulse Doppler with the help of ultrasound Medison 8000EX scanner by linear transducer of 5-9 MHz. The steady registration of blood screw motion in both common carotid arteries in Color Doppler Imaging regimen was observed in 54.3 % of cases. The direction of screw stream rotation in most cases (54%) was multi-directed: in the right common carotid artery it was right, in the left common carotid artery--left (48%), and in 6% of cases it was reverse. For 46% of cases blood rotation in both common carotid arteries was one-directed (26%--right, 20%--left). The velocity parameters of rotation component of blood motion were determined, maximum velocity being 19.68 +/- 5.84 cm/sec, minimum--4.57 +/- 2.89 cm/sec, average--7.48 +/- 2.49 cm/sec, angular--10.7 +/- 2.49 sec(-1). The rated velocity of blood cells motion in screw motion with regard of screw current lines to the vessel vertical axis makes up from 158.67 +/- 32.79 to 224.39 +/- 46.37 cm/sec.

  5. Defect relaxation in disordered materials

    International Nuclear Information System (INIS)

    Crandell, R.S.

    1989-01-01

    Using an exponential distribution of activation barriers, annealing data for metastable effects in hydrogenated amorphous silicon, a-Si:H, are quantitatively explained. This includes the stretched exponential time dependence of annealing and a Meyer-Neldel rule for the annealing time constant. An exponential distribution of annealing energies arises because defects are frozen in during growth at high temperature. Mechanisms that lead to an exponential distribution of annealing energies are weak bond-breaking and charge trapping

  6. Comparison of 3D displacements of screw-retained zirconia implant crowns into implants with different internal connections with respect to screw tightening.

    Science.gov (United States)

    Rebeeah, Hanadi A; Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin; Clelland, Nancy; Brantley, William

    2018-01-01

    Internal conical implant-abutment connections without horizontal platforms may lead to crown displacement during screw tightening and torque application. This displacement may affect the proximal contacts and occlusion of the definitive prosthesis. The purpose of this in vitro study was to evaluate the displacement of custom screw-retained zirconia single crowns into a recently introduced internal conical seal implant-abutment connection in 3D during hand and torque driver screw tightening. Stereolithic acrylic resin models were printed using computed tomography data from a patient missing the maxillary right central incisor. Two different internal connection implant systems (both ∼11.5 mm) were placed in the edentulous site in each model using a surgical guide. Five screw-retained single zirconia computer-aided design and computer-aided manufacturing (CAD-CAM) crowns were fabricated for each system. A pair of high-resolution digital cameras was used to record the relationship of the crown to the model. The crowns were tightened according to the manufacturers' specifications using a torque driver, and the cameras recorded their relative position again. Three-dimensional image correlation was used to measure and compare crown positions, first hand tightened and then torque driven. The displacement test was repeated 3 times for each crown. Commercial image correlation software was used to extract the data and compare the amount of displacement vertically, mesiodistally, and buccolingually. Repeated-measures ANOVA calculated the relative displacements for all 5 specimens for each implant for both crown screw hand tightening and after applied torque. A Student t test with Bonferroni correction was used for pairwise comparison of interest to determine statistical differences between the 2 implants (α=.05). The mean vertical displacements were statistically higher than the mean displacements in the mesiodistal and buccolingual directions for both implants

  7. Screw compressor analysis from a vibration point-of-view

    Science.gov (United States)

    Hübel, D.; Žitek, P.

    2017-09-01

    Vibrations are a very typical feature of all compressors and are given great attention in the industry. The reason for this interest is primarily the negative influence that it can have on both the operating staff and the entire machine's service life. The purpose of this work is to describe the methodology of screw compressor analysis from a vibration point-of-view. This analysis is an essential part of the design of vibro-diagnostics of screw compressors with regard to their service life.

  8. Lubrication of dislocation glide in MgO by hydrous defects

    Science.gov (United States)

    Skelton, Richard; Walker, Andrew M.

    2018-02-01

    Water-related defects, principally in the form of protonated cation vacancies, are potentially able to weaken minerals under high-stress or low-temperature conditions by reducing the Peierls stress required to initiate dislocation glide. In this study, we use the Peierls-Nabarro (PN) model to determine the effect of protonated Mg vacancies on the 1/2{110} and 1/2{100} slip systems in MgO. This PN model is parameterized using generalized stacking fault energies calculated using plane-wave density functional theory, with and without protonated Mg vacancies present at the glide plane. It found that these defects increase dislocation core widths and reduce the Peierls stress over the entire pressure range 0-125 GPa. Furthermore, 1/2{110} slip is found to be more sensitive to the presence of protonated vacancies which increases in the pressure at which {100} becomes the easy glide plane for 1/2 screw dislocations. These results demonstrate, for a simple mineral system, that water-related defects can alter the deformation behavior of minerals in the glide-creep regime by reducing the stress required to move dislocations by glide. (Mg, Fe)O is the most anisotropic mineral in the Earth's lower mantle, so the differential sensitivity of the major slip systems in MgO to hydrous defects has potential implications for the interpretation of the seismic anisotropy in this region.

  9. Anomalous Quasiparticle Symmetries and Non-Abelian Defects on Symmetrically Gapped Surfaces of Weak Topological Insulators.

    Science.gov (United States)

    Mross, David F; Essin, Andrew; Alicea, Jason; Stern, Ady

    2016-01-22

    We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z_{4} parafermion zero modes.

  10. Research on the performance of water-injection twin screw compressor

    International Nuclear Information System (INIS)

    Li Jianfeng; Wu Huagen; Wang Bingming; Xing Ziwen; Shu Pengcheng

    2009-01-01

    Due to the development of the automotive fuel cell systems, the study on water-injection twin screw compressor has been aroused again. Twin screw compressors with water injection can be used to supply the clean compressed air for the Proton Exchange Membrane (PEM) fuel cell systems. In this research, a thermodynamic model of the working process of water-injection twin screw compressor was established based on the equations of conservation of mass and energy. The effects of internal leakage and air-water heat transfer were taken into account simultaneously in the present mathematical model. The experiments of the performance of a prototype compressor operating under various conditions were conducted to verify the model. The results show that the predictions of the model are in reasonable agreement with the experimental data.

  11. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    Science.gov (United States)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  12. Biomechanical comparison of force levels in spinal instrumentation using monoaxial versus multi degree of freedom postloading pedicle screws.

    Science.gov (United States)

    Wang, Xiaoyu; Aubin, Carl-Eric; Crandall, Dennis; Labelle, Hubert

    2011-01-15

    biomechanical analysis and simulations of correction mechanisms and force levels during scoliosis instrumentation using two types of pedicle screws and primary correction maneuvers. to biomechanically analyze implant-vertebra and inter-vertebral forces during scoliosis correction, to address the hypothesis that multi degree of freedom (MDOF) postloading screws with a direct incremental segmental translation (DIST) correction technique significantly reduce the loads as compared with monoaxial (MA) tulip-top design screws with a rod derotation technique (RDT). MA screw is widely used for spinal instrumentation. The MDOF screw was introduced as a refinement of the correction philosophy based on multiaxial screws. The kinematics of the MDOF construct is fundamentally different and offers more degrees of freedom than that of the MA construct; however, a systematic comparison of their biomechanics has not been done so far. a biomechanical model was developed to simulate the instrumentation of six scoliotic patients, first with the MDOF screws and DIST. Then, the instrumentation with MA screws and RDT was simulated using the same cases. Thirty more simulations were done to study the force-level sensitivity to small implant placement variation. there was a small average difference of 7°, 5°, and 4° between the two simulated systems for the computed main thoracic Cobb angle, kyphosis, and apical axial rotation, respectively. On average, the mean, standard deviation (SD), and maximum values of the implant-vertebra forces for MDOF screws were 56%, 59%, and 59%, respectively, lower than those for the MA screws, while the intervertebral forces for the MDOF screws were 31%, 37%, and 36% lower, respectively. Under the same set of random small implant placement changes, the mean, SD, and maximum values of implant-vertebra force magnitude changes for MDOF screws were 93%, 92%, and 95%, respectively, lower than those for MA screws. with MDOF screws and DIST, it is possible for

  13. Scapula fracture incidence in reverse total shoulder arthroplasty using screws above or below metaglene central cage: clinical and biomechanical outcomes.

    Science.gov (United States)

    Kennon, Justin C; Lu, Caroline; McGee-Lawrence, Meghan E; Crosby, Lynn A

    2017-06-01

    Reverse total shoulder arthroplasty (RTSA) is a viable treatment option for rotator cuff tear arthropathy but carries a complication risk of scapular fracture. We hypothesized that using screws above the central glenoid axis for metaglene fixation creates a stress riser contributing to increased scapula fracture incidence. Clinical type III scapular fracture incidence was determined with screw placement correlation: superior screw vs. screws placed exclusively below the glenoid midpoint. Cadaveric RTSA biomechanical modeling was employed to analyze scapular fractures. We reviewed 318 single-surgeon single-implant RTSAs with screw correlation to identify type III scapular fractures. Seventeen cadaveric scapula specimens were matched for bone mineral density, metaglenes implanted, and fixation with 2 screw configurations: inferior screws alone (group 1 INF ) vs. inferior screws with one additional superior screw (group 2 SUP ). Biomechanical load to failure was analyzed. Of 206 patients, 9 (4.4%) from the superior screw group experienced scapula fractures (type III); 0 fractures (0/112; 0%) were identified in the inferior screw group. Biomechanically, superior screw constructs (group 2 SUP ) demonstrated significantly (P < .05) lower load to failure (1077 N vs. 1970 N) compared with constructs with no superior screws (group 1 INF ). There was no significant age or bone mineral density discrepancy. Clinical scapular fracture incidence significantly decreased (P < .05) for patients with no screws placed above the central cage compared with patients with superior metaglene screws. Biomechanical modeling demonstrates significant construct compromise when screws are used above the central cage, fracturing at nearly half the ultimate load of the inferior screw constructs. We recommend use of inferior screws, all positioned below the central glenoid axis, unless necessary to stabilize the metaglene construct. Copyright © 2016 Journal of Shoulder and Elbow Surgery

  14. Impact of screw and edge dislocations on the thermal conductivity of individual nanowires and bulk GaN: a molecular dynamics study.

    Science.gov (United States)

    Termentzidis, Konstantinos; Isaiev, Mykola; Salnikova, Anastasiia; Belabbas, Imad; Lacroix, David; Kioseoglou, Joseph

    2018-02-14

    We report the thermal transport properties of wurtzite GaN in the presence of dislocations using molecular dynamics simulations. A variety of isolated dislocations in a nanowire configuration are analyzed and found to considerably reduce the thermal conductivity while impacting its temperature dependence in a different manner. Isolated screw dislocations reduce the thermal conductivity by a factor of two, while the influence of edge dislocations is less pronounced. The relative reduction of thermal conductivity is correlated with the strain energy of each of the five studied types of dislocations and the nature of the bonds around the dislocation core. The temperature dependence of the thermal conductivity follows a physical law described by a T -1 variation in combination with an exponent factor that depends on the material's nature, type and the structural characteristics of the dislocation core. Furthermore, the impact of the dislocation density on the thermal conductivity of bulk GaN is examined. The variation and absolute values of the total thermal conductivity as a function of the dislocation density are similar for defected systems with both screw and edge dislocations. Nevertheless, we reveal that the thermal conductivity tensors along the parallel and perpendicular directions to the dislocation lines are different. The discrepancy of the anisotropy of the thermal conductivity grows with increasing density of dislocations and it is more pronounced for the systems with edge dislocations. Besides the fundamental insights of the presented results, these could also be used for the identification of the type of dislocations when one experimentally obtains the evolution of thermal conductivity with temperature since each type of dislocation has a different signature, or one could extract the density of dislocations with a simple measurement of thermal anisotropy.

  15. Accuracy of navigated pedicle screw insertion by a junior spine surgeon without spinal surgery experience

    International Nuclear Information System (INIS)

    Yamazaki, Hironori; Kotani, Toshiaki; Motegi, Hiroyuki; Nemoto, Tetsuharu; Koshi, Takana; Nagahara, Ken; Minami, Syohei

    2010-01-01

    The purpose of this study was to investigate pedicle screw placement accuracy during navigated surgery by a junior spine surgeon who had no spinal surgery experience. A junior spine surgeon with no spinal surgery experience implanted a total of 137 pedicle screws by using a navigation system. Postoperative computerized tomography was performed to evaluate screw placement, and the pedicle perforation rate was 2.2%. There were no neurologic or vascular complications related to the pedicle screws. The results demonstrated that pedicle screws can be placed safely and effectively by a junior spine surgeon who has no spinal surgery experience when instructed by a senior spine surgeon. The results of this study suggest that navigation can be used as a surgical training tool for junior spine surgeons. (author)

  16. Calculation of the Doppler broadening of the electron-positron annihilation radiation in defect-free bulk materials

    International Nuclear Information System (INIS)

    Ghosh, V. J.; Alatalo, M.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.; Kruseman, A. C.; Mijnarends, P. E.

    2000-01-01

    Results of a calculation of the Doppler broadening of the positron-electron annihilation radiation and positron lifetimes in a large number of elemental defect-free materials are presented. A simple scheme based on the method of superimposed atoms is used for these calculations. Calculated values of the Doppler broadening are compared with experimental data for a number of elemental materials, and qualitative agreement is obtained. These results provide a database which can be used for characterizing materials and identifying impurity-vacancy complexes. (c) 2000 The American Physical Society

  17. Edge screw withdrawal resistance in conventional particleboard and OSB: Influence of the particles type

    Directory of Open Access Journals (Sweden)

    Miljković Jovan

    2007-01-01

    Full Text Available This research was based on presumption that the changes in size and shape of wood particles are expected to have certain impact on the particleboard quality in general. Since the conventional particleboard (PB and oriented strand board (OSB were built of the quite diverse wood particles, they present interesting specimens in the comparison tests. In this work, the influence of the wood particles type on the edge screw holding performance of conventional particleboard and OSB was investigated. Those tests were obtained with the screw diameters of 4.0 mm, 4.5 mm and 5 mm. Depth of embedment was 30 mm for all tests and with the pilot-hole diameter kept in the range of 80-90% in respect of the screw root diameter. Additional tests of the thickness density profile and tensile strength perpendicular to the surface of the board were conducted. Since the middle layer structure of the particleboard embeds the screw body, both mentioned parameters are considered important in the aspect of the quality of the edge screw holding performance. In order to have further insight into the conformation of the middle layer the image survey was obtained on the split board section presenting the surface of the middle layer. Significant differences in the SWR performance of OSB and PB was recorded at all screw diameters. For the screw withdrawal tests parameters OSB samples showed 56-73% superior mean values then conventional PB. On the other hand, the OSB showed wider dispersions of measured withdrawal forces at all screw diameters, which might present some of the problems in certain engineering and project calculations.

  18. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials

    DEFF Research Database (Denmark)

    Jensen, Simon Storgård; Terheyden, Hendrik

    2009-01-01

    PURPOSE: The objective of this review was to evaluate the efficacy of different grafting protocols for the augmentation of localized alveolar ridge defects. MATERIALS AND METHODS: A MEDLINE search and an additional hand search of selected journals were performed to identify all levels of clinical...... evidence except expert opinions. Any publication written in English and including 10 or more patients with at least 12 months of follow-up after loading of the implants was eligible for this review. The results were categorized according to the presenting defect type: (1) dehiscence and fenestration...... periods. The heterogeneity of the available data did not allow identifying one superior grafting protocol for any of the osseous defect types under investigation. However, a series of grafting materials can be considered well-documented for different indications based on this review. There is a high level...

  19. Percutaneous Cement-Augmented Screws Fixation in the Fractures of the Aging Spine: Is It the Solution?

    Directory of Open Access Journals (Sweden)

    Sébastien Pesenti

    2014-01-01

    Full Text Available Introduction. Management of elderly patients with thoracolumbar fractures is still challenging due to frequent osteoporosis and risk of screws pull-out. The aim of this study was to evaluate results of a percutaneous-only procedure to treat these fragile patients using cement-augmented screws. Methods. 12 patients diagnosed with a thoracolumbar fracture associated with an important loss of bone stock were included in this prospective study. Surgical procedure included systematically a percutaneous osteosynthesis using cemented fenestrated screws. When necessary, additional anterior support was performed using a kyphoplasty procedure. Clinical and radiographic evaluations were performed using CT scan. Results. On the whole series, 15 fractures were diagnosed and 96 cemented screws were inserted. The difference between the pre- and postoperative vertebral kyphosis was statistically significant (12.9° versus 4.4°, P=0.0006. No extrapedicular screw was reported and one patient was diagnosed with a cement-related pulmonary embolism. During follow-up period, no infectious complications, implant failures, or pull-out screws were noticed. Discussion. Aging spine is becoming an increasing public health issue. Management of these patients requires specific attention due to the augmented risk of complications. Using percutaneous-only screws fixation with cemented screw provides satisfactory results. A rigorous technique is mandatory in order to achieve best outcomes.

  20. Design of Cold-Formed Steel Screw Connections with Gypsum Sheathing at Ambient and Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-09-01

    Full Text Available Load-bearing cold-formed steel (CFS walls sheathed with double layers of gypsum plasterboard on both sides have demonstrated good fire resistance and attracted increasing interest for use in mid-rise CFS structures. As the main connection method, screw connections between CFS and gypsum sheathing play an important role in both the structural design and fire resistance of this wall system. However, studies on the mechanical behavior of screw connections with double-layer gypsum sheathing are still limited. In this study, 200 monotonic tests of screw connections with single- or double-layer gypsum sheathing at both ambient and elevated temperatures were conducted. The failure of screw connections with double-layer gypsum sheathing in shear was different from that of single-layer gypsum sheathing connections at ambient temperature, and it could be described as the breaking of the loaded sheathing edge combined with significant screw tilting and the loaded sheathing edge flexing fracture. However, the screw tilting and flexing fracture of the loaded sheathing edge gradually disappear at elevated temperatures. In addition, the influence of the loaded edge distance, double-layer sheathing and elevated temperatures is discussed in detail with clear conclusions. A unified design formula for the shear strength of screw connections with gypsum sheathing is proposed for ambient and elevated temperatures with adequate accuracy. A simplified load–displacement model with the post-peak branch is developed to evaluate the load–displacement response of screw connections with gypsum sheathing at ambient and elevated temperatures.

  1. In vivo degradation of a new concept of magnesium-based rivet-screws in the minipig mandibular bone

    Energy Technology Data Exchange (ETDEWEB)

    Schaller, Benoit [Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital and University of Bern, CH-3010 Bern (Switzerland); National Dental Centre Singapore, 168938 (Singapore); Saulacic, Nikola [Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital and University of Bern, CH-3010 Bern (Switzerland); Beck, Stefan, E-mail: SBECK2@its.jnj.com [Synthes Biomaterials, Eimattstr. 3, CH-4436 Oberdorf (Switzerland); Imwinkelried, Thomas [RMS Foundation, Bischmattstr. 12, CH-2544 Bettlach (Switzerland); Goh, Bee Tin [National Dental Centre Singapore, 168938 (Singapore); Nakahara, Ken [Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital and University of Bern, CH-3010 Bern (Switzerland); Hofstetter, Willy [Department of Clinical Research, University of Bern, CH-3010 Bern (Switzerland); Iizuka, Tateyuki [Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital and University of Bern, CH-3010 Bern (Switzerland)

    2016-12-01

    Self-tapping of magnesium screws in hard bone may be a challenge due to the limited torsional strength of magnesium alloys in comparison with titanium. To avoid screw failure upon implantation, the new concept of a rivet-screw was applied to a WE43 magnesium alloy. Hollow cylinders with threads on the outside were expanded inside drill holes of minipig mandibles. During the expansion with a hexagonal mandrel, the threads engaged the surrounding bone and the inside of the screw transformed into a hexagonal screw drive to allow further screwing in or out of the implant. The in vivo degradation of the magnesium implants and the performance of the used coating were studied in a human standard-sized animal model. Four magnesium alloy rivet-screws were implanted in each mandible of 12 minipigs. Six animals received the plasmaelectrolytically coated magnesium alloy implants; another six received the uncoated magnesium alloy rivet-screws. Two further animals received one titanium rivet-screw each as control. In vivo radiologic examination was performed at one, four, and eight weeks. Euthanasia was performed for one group of seven animals (three animals with coated, three with uncoated magnesium alloy implants and one with titanium implant) at 12 weeks and for the remaining seven animals at 24 weeks. After euthanasia, micro-computed tomography and histological examination with histomorphometry were performed. Significantly less void formation as well as higher bone volume density (BV/TV) and bone-implant contact area (BIC) were measured around the coated implants compared to the uncoated ones. The surface coating was effective in delaying degradation despite plastic deformation. The results showed potential for further development of magnesium hollow coated screws for bone fixation. - Highlights: • A new concept of rivet screws as an alternative to classical screws is presented • The rivet screw concept was tested in vivo in a mini-pig pilot study • Un-coated and

  2. In vivo degradation of a new concept of magnesium-based rivet-screws in the minipig mandibular bone

    International Nuclear Information System (INIS)

    Schaller, Benoit; Saulacic, Nikola; Beck, Stefan; Imwinkelried, Thomas; Goh, Bee Tin; Nakahara, Ken; Hofstetter, Willy; Iizuka, Tateyuki

    2016-01-01

    Self-tapping of magnesium screws in hard bone may be a challenge due to the limited torsional strength of magnesium alloys in comparison with titanium. To avoid screw failure upon implantation, the new concept of a rivet-screw was applied to a WE43 magnesium alloy. Hollow cylinders with threads on the outside were expanded inside drill holes of minipig mandibles. During the expansion with a hexagonal mandrel, the threads engaged the surrounding bone and the inside of the screw transformed into a hexagonal screw drive to allow further screwing in or out of the implant. The in vivo degradation of the magnesium implants and the performance of the used coating were studied in a human standard-sized animal model. Four magnesium alloy rivet-screws were implanted in each mandible of 12 minipigs. Six animals received the plasmaelectrolytically coated magnesium alloy implants; another six received the uncoated magnesium alloy rivet-screws. Two further animals received one titanium rivet-screw each as control. In vivo radiologic examination was performed at one, four, and eight weeks. Euthanasia was performed for one group of seven animals (three animals with coated, three with uncoated magnesium alloy implants and one with titanium implant) at 12 weeks and for the remaining seven animals at 24 weeks. After euthanasia, micro-computed tomography and histological examination with histomorphometry were performed. Significantly less void formation as well as higher bone volume density (BV/TV) and bone-implant contact area (BIC) were measured around the coated implants compared to the uncoated ones. The surface coating was effective in delaying degradation despite plastic deformation. The results showed potential for further development of magnesium hollow coated screws for bone fixation. - Highlights: • A new concept of rivet screws as an alternative to classical screws is presented • The rivet screw concept was tested in vivo in a mini-pig pilot study • Un-coated and

  3. Defects of polar, semipolar and nonpolar (In)GaN - a comparison

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Lukas; Schwarz, Ulrich [Department of Microsystems Engeneering, IMTEK, University Freiburg (Germany); Fraunhofer Institute for Applied Solid State Physics (Germany); Wernicke, Tim; Rass, Jens; Ploch, Simon [Institute of Solid State Physics, Technical University Berlin (Germany); Forghani, Kamran [Institute for Optoelectronics, University Ulm (Germany); University of Wisconsin, Madison (United States); Kirste, Lutz [Fraunhofer Institute for Applied Solid State Physics (Germany); Weyers, Markus [Ferdinand-Braun-Institut, Berlin (Germany); Kneissl, Michael [Institute of Solid State Physics, Technical University Berlin (Germany); Ferdinand-Braun-Institut, Berlin (Germany); Scholz, Ferdinand [Institute for Optoelectronics, University Ulm (Germany)

    2013-07-01

    The GaN/InGaN material system is used to realize light emitting diodes from UV-A to the green-yellow spectral region. However, even on quasi bulk GaN substrates threading dislocations (TDs) are present with a density of 10{sup 7} cm{sup -2}. Here, we examine the influence of TDs on the luminescence intensity and transition energy. The impact caused by nonradiative recombination centers and strain fields is analyzed by micro photoluminescence and white light interferometry. We compare TDs in differently oriented GaN layers and InGaN QWs. Three types of burgers vectors are typically observed in GaN: a, c and a+c. When the surface orientation is changed from (0001) c-plane to (10 anti 10) m-plane, their character changes from edge to screw type and vice versa. We studied TDs and V-defects associated to them in polar, semipolar and nonpolar GaN and InGaN QWs. Additionally, we will present the effect of Si doping onto the strain field in (0001) GaN edge dislocations. In undoped GaN, the strain around such a dislocation forms a symmetric dipole. With Si doping, the strain dipole becomes asymmetric.

  4. Treatment of intrabony defects with resorbable materials, non-resorbable materials and flap debridement.

    Science.gov (United States)

    Zybutz, M D; Laurell, L; Rapoport, D A; Persson, G R

    2000-03-01

    Different types of barriers are used in guided tissue regenerative procedures. This prospective study compared resorbable citric acid ester softened polylactic acid membranes (RM) and non-resorbable expanded polytetrafluoroethylene (ePTFE) barriers (NRM) in GTR treatment of intrabony defects. 29 subjects were randomly assigned to the RM group or NRM group. Each patient received one GTR procedure. An open flap debridement (FD) was performed at another site 2 weeks later to evaluate healing potential. Clinical treatment outcomes were finally evaluated 12 months after surgery for changes of pocket depth PD, probing attachment level PAL, and probing bone level PBL, and radiographically for bone change using standardised radiographs. No differences in healing patters after surgery were found between patients in the 2 study groups as evaluated from the FD surgical procedures. NRM treated sites showed less signs of post-surgical inflammation during the 1st 4 weeks of healing than did RM treated sites (p<0.05). GTR-treated defects in the RM group, initially 7.0+/-2.2 mm deep, showed PD reduction of 3.3+/-2.2 mm, PAL gain of 2.4+/-1.8 mm, PBL gain of 2.4+/-3.7 mm (28%) and a radiographic bone fill of 2.3+/-2.4 mm. Defects treated with the NRM exhibited PD reduction of 3.1+/-2.1 mm, PAL gain of 2.4+/-0.8 mm, PBL gain of 2.2+/-1.7 mm (25%) and a radiographic bone fill of 3.3+/-2.2 mm. All improvements were statistically significant (p<0.01) but there was no difference between RM and NRM treatments for any of the efficacy variables. The results of this study indicated that there was no clinically significant difference in treatment outcomes following GTR treatment of intrabony defects with citric acid ester softened polylactic acid membranes as compared to ePTFE barriers. The overall mean inter-proximal vertical bone defect fill at 12 months as assessed from intra-oral radiographs was 44% of the original mean defect depth. Thus, no clinically significant difference in

  5. Defect thiospinels: a new class of reversible cathode material

    Science.gov (United States)

    James, A. C. W. P.; Goodenough, J. B.

    1989-05-01

    The defect thiospinel Cu 0.07[Ti 2]S 4 was prepared by low-temperature oxidative extraction of copper from Cu[Ti 2]S 4. Up to two equivalents of lithium can be inserted into Cu 0.07[Ti 2]S 4 reversibly with fast electrochemical kinetics at room temperature; the defect thiospinel is, therefore, a highly promising alternative to layered TiS 2 as a cathode material for lithium secondary batteries. Samples of Cu 1- x [Ti 2]S 4 (0⩽ x ⩽ 0.93) and Li xCu 0.07[Ti 2]S 4 (0 < x < 2) were prepared and characterised by 65Cu and 7Li solid-state NMR, neutron powder diffraction, and electrochemical measurements. Cu 0.07[Ti 2]S 4 is a semimetal with the residual copper located on the normal spinel A-cation sites. The lithium in Li xCu 0.07[Ti 2]S 4 is located only in the 16c octahedral sites of the spinel framework at all lithium compositions. The open-circuit voltage of Li xCu 0.07[Ti 2]S 4versus lithium metal is nearly identical to that of layered Li xTiS 2 over the whole lithium-composition range. The chemical diffusion constant of lithium in Li xCu 0.07[Ti 2]S 4 (0.5 ⩽ x⩽ 1.5) was found to be 1 × 10 -9 cm 2 s -1, which is comparable with that in layered Li xTiS 2.

  6. Screwing or unscrewing device for studs or bolls of big dimension

    International Nuclear Information System (INIS)

    Sevelinge, G.; Bourdonne, J.C.

    1988-01-01

    The device for screwing or unscrewing large studs or bolts has a system determining the optimun screwing position and orientation of the bolt, a variable speed bidirectional drive a pin holding the bolt axially and system compensating the weight of the bolt with an hydraulic jack with a pressure detector to which the drive is slaved [fr

  7. On damping of screw dislocation bending vibrations in dissipative crystal: limiting cases

    Science.gov (United States)

    Dezhin, V. V.

    2018-03-01

    The expression for the generalized susceptibility of the dislocation obtained earlier was used. The electronic drag mechanism of dislocations is considered. The study of small dislocation oscillations was limited. The contribution of the attenuation of low-frequency bending screw dislocation vibrations to the overall coefficient of dynamic dislocation drag in the long-wave and short-wave limits is calculated. The damping of short-wave bending screw dislocation vibrations caused by an external action of an arbitrary frequency has been investigated. The contribution of long-wave bending screw dislocation vibrations damping in the total drag coefficient at an arbitrary frequency is found.

  8. Radiographic and histological study of perennial bone defect repair in rat calvaria after treatment with blocks of porous bovine organic graft material.

    Science.gov (United States)

    Marins, Lucele Vieira; Cestari, Tania Mary; Sottovia, André Dotto; Granjeiro, José Mauro; Taga, Rumio

    2004-03-01

    Over the last few years, various bone graft materials of bovine origin to be used in oromaxillofacial surgeries have entered the market. In the present study, we determined the capacity of a block organic bone graft material (Gen-ox, Baumer SA, Brazil) prepared from bovine cancellous bone to promote the repair of critical size bone injuries in rat calvaria. A transosseous defect measuring approximately 8mm in diameter was performed with a surgical trephine in the parietal bone of 25 rats. In 15 animals, the defects were filled with a block of graft material measuring 8mm in diameter and soaked in the animal's own blood, and in the other 10 animals the defects were only filled with blood clots. The calvariae of rats receiving the material were collected 1, 3 and 6 months after surgery, and those of animals receiving the blood clots were collected immediately and 6 months after surgery. During surgery, the graft material was found to be of easy handling and to adapt perfectly to the receptor bed after soaking in blood. The results showed that, in most animals treated, the material was slowly resorbed and served as a space filling and maintenance material, favoring angiogenesis, cell migration and adhesion, and bone neoformation from the borders of the lesion. However, a foreign body-type granulomatous reaction, with the presence of numerous giant cells preventing local bone neoformation, was observed in two animals of the 1-month subgroup and in one animal of the 3-month subgroup. These cases were interpreted as resulting from the absence of demineralization and the lack of removal of potential antigen factors during production of the biomaterial. We conclude that, with improvement in the quality control of the material production, block organic bone matrix will become a good alternative for bone defect repair in the oromaxillofacial region due to its high osteoconductive capacity.

  9. Thermodynamic performance of multi-stage gradational lead screw vacuum pump

    Science.gov (United States)

    Zhao, Fan; Zhang, Shiwei; Sun, Kun; Zhang, Zhijun

    2018-02-01

    As a kind of dry mechanical vacuum pump, the twin-screw vacuum pump has an outstanding pumping performance during operation, widely used in the semiconductor industry. Compared with the constant lead screw (CLS) vacuum pump, the gradational lead screw (GLS) vacuum pump is more popularly applied in recent years. Nevertheless, not many comparative studies on the thermodynamic performance of GLS vacuum pump can be found in the literature. Our study focuses on one type of GLS vacuum pump, the multi-stage gradational lead screw (MGLS) vacuum pump, gives a detailed description of its construction and illustrates it with the drawing. Based on the structural analysis, the thermodynamic procedure is divided into four distinctive processes, including sucking process, transferring (compressing) process, backlashing process and exhausting process. The internal mechanism of each process is qualitatively illustrated and the mathematical expressions of seven thermodynamic parameters are given under the ideal situation. The performance curves of MGLS vacuum pump are plotted by MATLAB software and compared with those of the CLS vacuum pump in the same case. The results can well explain why the MGLS vacuum pump has more favorable pumping performance than the CLS vacuum pump in saving energy, reducing noise and heat dissipation.

  10. A modified transcondylar screw to accommodate anatomical skull base variations.

    Science.gov (United States)

    Ghaly, R F; Lissounov, A

    2017-01-01

    Occipitocervical instability may be attributed to congenital, bony/ligamentous abnormalities, trauma, neoplasm, degenerative bone disease, and failed atlantoaxial fixation. Indications for occipitocervical fixation include the prevention of disabling pain, cranial nerve dysfunction, paralysis, or even sudden death. The screw trajectory for the modified transcondylar screw (mTCS) is optimally planned utilizing a three-dimensional skull reconstructed image. The modified mTCS technique is helpful where there is a loss of bone, such as after prior suboccipital craniotomy and/or an inadequate occipital condyle. The new proposed technique is similar to the classical transcondylar screw placement but follows a deeper course along the bony lip of foramen magnum toward clivus from a dorsolateral approach. The modified mTCS technique allows for direct visualization and, therefore, helps to avoid damage to the hypoglossal nerve and lateral aspect of brain stem.

  11. The value of 18F-fluoride PET/CT in the assessment of screw loosening in patients after intervertebral fusion stabilization

    International Nuclear Information System (INIS)

    Seifen, Tanja; Rodrigues, Margarida; Rettenbacher, Lukas; Holzmannhofer, Johannes; Pirich, Christian; Piotrowski, Wolfgang; Mc Coy, Mark

    2015-01-01

    We evaluated 18 F-fluoride PET/CT for the diagnosis of screw loosening after intervertebral fusion stabilization and compared the results with those from functional radiography. A group of 59 patients with pain in the region of previous intervertebral fusion stabilization and suspicion of implant instability due to screw loosening were investigated with 18 F-fluoride PET/CT and functional radiography, 30.1 ± 3.4 and 29.3 ± 3.2 months, respectively, after surgery. The criterion for loosening was increased focal uptake surrounding the screw entry point and shaft. SUV max and SUV mean were measured in a region of interest (ROI) drawn around each screw (334 screws analysed). The final diagnosis was established by surgical exploration in 27 patients and clinical follow-up after intervertebral fusion stabilization in 32 patients. Of the 59 patients, 20 were proven positive for implant failure due to screw loosening and 39 were confirmed negative. The sensitivity, specificity and accuracy of 18 F-fluoride PET/CT were 75 %, 97.4 % and 89.8 % in the patient-based analysis, and 45.6 %, 100 % and 80 % in the screw-based analysis, respectively. The positive and negative predictive values were 93.8 % and 100 % in the patient-based analysis, and 88.4 and 76 % in the screw-based analysis, respectively. CT signs in PET/CT allowed screw breakage to be detected in three patients. SUV max , SUV mean and SUV max /SUV mean ratios in screw ROIs and respective values in reference regions were all found to be significantly different between screws positive for loosening (58 screws) and screws negative for loosening (276 screws). The ratio between SUV max in screw ROIs and the values in reference regions was the most significant parameter for distinguishing screws positive and screws negative for loosening. 18 F-Fluoride PET/CT imaging is useful for the diagnosis of screw loosening in patients with persistent symptoms after intervertebral fusion stabilization. (orig.)

  12. Ipsilateral proximal femur and shaft fractures treated with hip screws and a reamed retrograde intramedullary nail.

    Science.gov (United States)

    Ostrum, Robert F; Tornetta, Paul; Watson, J Tracy; Christiano, Anthony; Vafek, Emily

    2014-09-01

    Although not common, proximal femoral fractures associated with ipsilateral shaft fractures present a difficult management problem. A variety of surgical options have been employed with varying results. We investigated the use of hip screws and a reamed retrograde intramedullary (IM) nail for the treatment of this combined fracture pattern in terms of postoperative alignment (malunion), nonunion, and complications. Between May 2002 and October 2011, a total of 95 proximal femoral fractures with associated shaft fractures were treated at three participating Level 1 trauma centers; all were treated with hip screw fixation (cannulated screws or sliding hip screws) and retrograde reamed IM nails. The medical records of these patients were reviewed retrospectively for alignment, malunion, nonunion, and complications. Followup was available on 92 of 95 (97%) of the patients treated with hip screws and a retrograde nail. Forty were treated with a sliding hip screw, and 52 were treated with cannulated screws. There were five proximal malunions in this series (5%). The union rate was 98% (90 of 92) for the femoral neck fractures and 91.3% (84 of 92) for the femoral shaft fractures after the initial surgery. There were two nonunions of comminuted femoral neck fractures after cannulated screw fixation. There was no difference in femoral neck union or alignment when comparing cannulated screws to a sliding hip screw. Four open comminuted femoral shaft fractures went on to nonunion and required secondary surgery to obtain union, and one patient developed symptomatic avascular necrosis. The treatment of ipsilateral proximal femoral neck and shaft fractures with hip screw fixation and a reamed retrograde nail demonstrated a high likelihood of union for the femoral neck fractures and a low risk of malunion. Comminution and initial displacement of the proximal femoral fracture may still lead to a small incidence of malunion or nonunion, and open comminuted femoral shaft fractures

  13. Screw-in forces during instrumentation by various file systems.

    Science.gov (United States)

    Ha, Jung-Hong; Kwak, Sang Won; Kim, Sung-Kyo; Kim, Hyeon-Cheol

    2016-11-01

    The purpose of this study was to compare the maximum screw-in forces generated during the movement of various Nickel-Titanium (NiTi) file systems. Forty simulated canals in resin blocks were randomly divided into 4 groups for the following instruments: Mtwo size 25/0.07 (MTW, VDW GmbH), Reciproc R25 (RPR, VDW GmbH), ProTaper Universal F2 (PTU, Dentsply Maillefer), and ProTaper Next X2 (PTN, Dentsply Maillefer, n = 10). All the artificial canals were prepared to obtain a standardized lumen by using ProTaper Universal F1. Screw-in forces were measured using a custom-made experimental device (AEndoS- k , DMJ system) during instrumentation with each NiTi file system using the designated movement. The rotation speed was set at 350 rpm with an automatic 4 mm pecking motion at a speed of 1 mm/sec. The pecking depth was increased by 1 mm for each pecking motion until the file reach the working length. Forces were recorded during file movement, and the maximum force was extracted from the data. Maximum screw-in forces were analyzed by one-way ANOVA and Tukey's post hoc comparison at a significance level of 95%. Reciproc and ProTaper Universal files generated the highest maximum screw-in forces among all the instruments while M-two and ProTaper Next showed the lowest ( p files with smaller cross-sectional area for higher flexibility is recommended.

  14. Computer-assisted surgery for screw insertion into the distal sesamoid bone in horses: an in vitro study.

    Science.gov (United States)

    Gygax, Diego; Lischer, Christoph; Auer, Joerg A

    2006-10-01

    To compare the precision of computer-assisted surgery with a conventional technique (CV) using a special guiding device for screw insertion into the distal sesamoid bone in horses. In vitro experimental study. Cadaveric forelimb specimens. Insertion of a 3.5 mm cortex screw in lag fashion along the longitudinal axis of intact (non-fractured) distal sesamoid bones was evaluated in 2 groups (8 limbs each): CV and computer-assisted surgery (CAS). For CV, the screw was inserted using a special guiding device and fluoroscopy, whereas for CAS, the screw was inserted using computer-assisted navigation. The accuracy of screw placement was verified by radiography, computed tomography, and specimen dissection. Surgical precision was better in CAS compared with CV. CAS improves the accuracy of lateromedial screw insertion, in lag fashion, into the distal sesamoid bone. The CAS technique should be considered for improved accuracy of screw insertion in fractures of the distal sesamoid bone.

  15. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy, Quick, and Safe Technique

    OpenAIRE

    Gupta, Ravi; Singh, Harpreet; Singh, Amit; Garg, Sudhir

    2014-01-01

    Removal of jammed titanium screws can be difficult due to the problem of stripping of the hexagonal heads of the screws. We present a technique of extraction of stripped screws with the use of a standard 4.5 mm stainless steel hollow mill in a patient of peri-implant fracture of the radius fixed with a titanium locking plate 2 years back. The technique is quick, safe, and cost effective.

  16. Radiographic study of the fifth metatarsal for optimal intramedullary screw fixation of Jones fracture.

    Science.gov (United States)

    Ochenjele, George; Ho, Bryant; Switaj, Paul J; Fuchs, Daniel; Goyal, Nitin; Kadakia, Anish R

    2015-03-01

    Jones fractures occur in the relatively avascular metadiaphyseal junction of the fifth metatarsal (MT), which predisposes these fractures to delayed union and nonunion. Operative treatment with intramedullary (IM) screw fixation is recommended in certain cases. Incorrect screw selection can lead to refractures, nonunion, and cortical blowout fractures. A better understanding of the anatomy of the fifth MT could aid in preoperative planning, guide screw size selection, and minimize complications. We retrospectively identified foot computed tomographic (CT) scans of 119 patients that met inclusion criteria. Using interactive 3-dimensional (3-D) models, the following measurements were calculated: MT length, "straight segment length" (distance from the base of the MT to the shaft curvature), and canal diameter. The diaphysis had a lateroplantar curvature where the medullary canal began to taper. The average straight segment length was 52 mm, and corresponded to 68% of the overall length of the MT from its proximal end. The medullary canal cross-section was elliptical rather than circular, with widest width in the sagittal plane and narrowest in coronal plane. The average coronal canal diameter at the isthmus was 5.0 mm. A coronal diameter greater than 4.5 mm at the isthmus was present in 81% of males and 74% of females. To our knowledge, this is the first anatomic description of the fifth metatarsal based on 3-D imaging. Excessive screw length could be avoided by keeping screw length less than 68% of the length of the fifth metatarsal. A greater than 4.5 mm diameter screw might be needed to provide adequate fixation for most study patients since the isthmus of the medullary canal for most were greater than 4.5 mm. Our results provide an improved understanding of the fifth metatarsal anatomy to guide screw diameter and length selection to maximize screw fixation and minimize complications. © The Author(s) 2014.

  17. Idealized Compression Ratio for a Screw Briquetting Press

    Directory of Open Access Journals (Sweden)

    Peter Biath

    2012-01-01

    Full Text Available This paper deals with issues in determining the ideal compression ratio for a screw briquetting press. First, the principles of operation and a basic description of the main parts of a screw briquetting press are introduced. The next section describes the pressing space by means of 3D software. The pressing space was created using a Boolean subtract function. The final section of the paper measures the partial volumes of the pressing chamber in CATIA V5 by function of measuring. The measured values are substituted into the formula for the compression ratio, and the resulting evaluations are presented in the diagram in the conclusion of this paper.

  18. Usefulness and radiological evaluation of accuracy of innovative "Smart" hand technique for pedicle screw placement: an anatomical study.

    Science.gov (United States)

    Comert, Ayhan; Dogan, İhsan; Çaglar, Y Sukru

    2017-11-01

    The aim of this study is to use a smartphone application during pedicle screw placement navigation and examine the accuracy of this application on anatomical dry vertebrae model. 76 dry vertebrae were used for this study and pedicle entry points, projections of pedicle screw trajectory lines in lateral and superior aspect of vertebral body were identified and drawn for each vertebra bilaterally. In each position, all angulations were measured directly before the procedure manually. 152 pedicle screws were inserted as a simulation of screw placement with the guidance of angle-meter smart app. Accuracy of the method was tested according to the occurrence of bone penetration and angular deviation of the inserted screws was evaluated in computed tomography images. Mean deviation of pedicle screws of 76 pedicle screws in right side in horizontal plane was measured 2.30°±1.78°; in sagittal plane 2.17°±1.57° and in left side in horizontal plane 3.01°±1.83°; in sagittal plane 2.38°±1.68°. No bone penetration was occurred during 152 pedicle screw placements. According to the t-test results, there were significant differences between two groups in craniocaudal direction of the right side pedicle screws and in craniocaudal direction of left side pedicle screws. The free smartphone application presented here as angle-meter can be interpreted as a safe digital device for spinal instrumentation procedures. As a prototype of future pedicle screw fixation systems, it should be improved in terms of its feasibility and compatibility with screw probes. This may lead to apply mobile digital angle meter in spinal procedure.

  19. Risks to the Superior Gluteal Neurovascular Bundle During Iliosacral and Transsacral Screw Fixation: A Computed Tomogram Arteriography Study.

    Science.gov (United States)

    Maslow, Jed; Collinge, Cory A

    2017-12-01

    Iliosacral (IS) and transsacral (TS) screws are popular techniques to repair complicated injuries to the pelvis. The anatomy of the superior gluteal neurovasculature (SG NV bundle) is well described as running along the posterior ilium, providing innervation and perfusion to important abductor muscles. The method of pelvis fixation least likely to injure the SG NV bundle is unknown. Twenty uninjured patients with a contrasted computed tomogram of the pelvis and lower extremities (CTA) were evaluated. Starting points for an S1 IS screw and S1 and S2 TS screws were estimated on the "ghost" lateral CTA image for those pelvi with safe corridors (>9 mm diameter). The distance from the projected screw to the SG artery was measured. A distance of <3.65 mm (half of a 7.3-mm screw's diameter) was considered likely for NV bundle injury. Of 40 pelvi CTAs (single sides), 10 pelvi (25%) were determined to be inappropriate for an S1 TS screw. The average distances from the screw starting point and the artery were 25.3 mm (±9.2) for S1 IS, 12.4 mm (±9.0) for S1 TS, and 23.5 mm (±10.7) for S2 TS screws, respectively. Ten S1 TS screws (25%) and no S1 IS or S2 TS screws were projected to have caused injury to the SG NV bundle (P < 0.001). Inserting S1 IS and S2 TS screws put the SG NV anatomy at significantly less risk than S1 TS screws. This information may aid in choosing the "best" fixation option for patients with pelvic ring trauma requiring surgery.

  20. Fixation strength analysis of cup to bone material using finite element simulation

    NARCIS (Netherlands)

    Anwar, Iwan Budiwan; Saputra, Eko; Ismail, Rifky; Jamari, J.; Van Der Heide, Emile

    2016-01-01

    Fixation of acetabular cup to bone material is an important initial stability for artificial hip joint. In general, the fixation in cement less-type acetabular cup uses press-fit and screw methods. These methods can be applied alone or together. Based on literature survey, the additional screw

  1. Chitosan-coated Stainless Steel Screws for Fixation in Contaminated Fractures

    OpenAIRE

    Greene, Alex H.; Bumgardner, Joel D.; Yang, Yunzhi; Moseley, Jon; Haggard, Warren O.

    2008-01-01

    Stainless steel screws and other internal fixation devices are used routinely to stabilize bacteria-contaminated bone fractures from multiple injury mechanisms. In this preliminary study, we hypothesize that a chitosan coating either unloaded or loaded with an antibiotic, gentamicin, could lessen or prevent these devices from becoming an initial nidus for infection. The questions investigated for this hypothesis were: (1) how much of the sterilized coating remains on the screw with simulated ...

  2. Energy saving screw compressor technology; Energiebesparende schroefcompressortechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, A. [RefComp, Lonigo (Italy); Neus, M. [Delta Technics Engineering, Breda (Netherlands)

    2011-03-15

    Smart solutions to reduce the energy consumption are continuously part of investigation in the refrigeration technology. This article subscribed the technology on which way energy can be saved at the operation of screw compressors which are used in air conditioners and refrigerating machinery. The combination of frequency control and Vi-control (intrinsic volumetric ratio) such as researched in the laboratory of RefComp is for the user attractive because the energy efficiency during part load operation is much better. Smart uses of thermodynamics, electric technology and electronic control are the basics of these applications. According to the manufacturer's information it is possible with these new generation screw compressors to save approx. 26% energy in comparison with the standard screw compressor. [Dutch] In dit artikel wordt de technologie omschreven waarmee veel energie bespaard kan worden bij schroefcompressoren die worden gebruikt in airconditioningsystemen en koel- en vriesinstallaties. De combinatie van frequentieregeling en Vi- regeling (Vi is de intrinsieke volumetrische verhouding) zoals onderzocht in het laboratorium van RefComp biedt de gebruiker veel voordelen doordat de energie-efficintie van de compressor tijdens deellast enorm wordt verbeterd. Slim gebruik van thermodynamika, elektrotechniek en elektronica vormen de basis van deze toepassing. Volgens de fabrikant kan met deze nieuwe generatie schroefcompressoren circa 26 procent op het energiegebruik tijdens deellast worden bespaard in vergelijking met de standaard serie schroefcompressoren.

  3. d = 2 transverse-field Ising model under the screw-boundary condition: an optimization of the screw pitch

    International Nuclear Information System (INIS)

    Nishiyama, Yoshihiro

    2011-01-01

    A length-N spin chain with the √N(=v)th neighbor interaction is identical to a two-dimensional (d = 2) model under the screw-boundary (SB) condition. The SB condition provides a flexible scheme to construct a d ≥ 2 cluster from an arbitrary number of spins; the numerical diagonalization combined with the SB condition admits a potential applicability to a class of systems intractable with the quantum Monte Carlo method due to the negative-sign problem. However, the simulation results suffer from characteristic finite-size corrections inherent in SB. In order to suppress these corrections, we adjust the screw pitch v(N) so as to minimize the excitation gap for each N. This idea is adapted to the transverse-field Ising model on the triangular lattice with N ≤ 32 spins. As a demonstration, the correlation-length critical exponent ν is analyzed in some detail

  4. Causes and treatments of lag screw's cut out after intramedullary nailing osteosinthesis for trochanteric fractures.

    Science.gov (United States)

    Gazzotti, Gabriele; Matino, Giovanni; Tsatsis, Christos; Sacchetti, GianLuigi; Baudi, Paolo; Catani, Fabio

    2014-08-20

    Background. Superior cut-out of a lag screw remains a serious complication in the treatment of trochanteric or subtrochanteric fractures and it is related to many factors: the type of fracture, osteoporosis and the stability of fracture reduction. Little is known about the outcome after revision surgery for complications of the gamma nail. We assessed the outcome in patients who had revision surgery because of lag screw's cut out after gamma nailing for a trochanteric fracture.Material and Method. We present a study of 20 consecutive patients who underwent treatment after 20 cut-out of the lag screw fixation of a trochanteric fracture with Gamma Locking Nail from September 2004 to November 2010. In 16 patients hip prothesis was performed, in 1 the removal of the implant and in 3 the reosteosynthesis. We reviewed 13 patients: 10 total hip arthroplasty, 2 endoprothesis and 1 reosteosynthesis of nail and lag screw (mean follow up: 26 months, mean age: 73 years old), 7 patients died. Patients were reviewed retrospectively by an independent observer. Clinical evaluation was performed, Oxford score and Harris Hip score were measured. X-Ray examination was performed after a minimum of 12 months of follow up.Results. Mean Harris Hip Score mean was 67 and mean Oxford score was 32 in hip prothesis group (12 patients). We had several complications, Implant-related complications were: 2 ipometria > 2cm, 2 recurrent hip arthroplasty dislocations (1 reoperated), 4 persistent thigh pain. In only 4 patients none complications were observed. Another patient,  who had been subjected to reosteosinthesis, obtained better results (HHS:95, Oxford score:45) but with a 2 cm ipometria and occasional pain in the thigh.Conclusion. Cut out after gamma nail is consequent to biological or mechanical causes. Treatment of this complication is hip prosthesis (parzial or total hip arthroplasty), reosteosynthesis of the lag screw and/or the nail and the removal of the implant. Conversion to total

  5. Comparison Of Lateral Mass Screw Fixation Technique And Hartshill Rectangle Technique In The Treatment Of Sub-Axial Cervical Spine Fractures

    Directory of Open Access Journals (Sweden)

    Mohit KM

    2012-11-01

    Full Text Available INTRODUCTION: Cervical injury in a polytrauma patient is one of the most critical injuries. The aim of this study was to compare the lateral mass screw technique with the Hartshill rectangle technique for treatment of such cases. MATERIALS AND METHODS: This prospective study consisted of 40 patients. Both groups were followed for three years clinically and radiologically. RESULTS: In the lateral mass technique, there were no cases of vertebral artery injury, radiculopathy, screw pullout, dural tears, residual kyphosis or persistent pain. In the Hartshill technique 3 patients experienced intra- operative dural tears, 1 case of wire breakage at the six months follow up, 6 patients with persistent neck pain and 1 with worsening neurological status. One hundred per cent fusion was achieved in both groups. There was significant radiation exposure in the lateral mass group. Post-operative immobilisation was required only in the Hartshill. CONCLUSION: Lateral mass screw technique is definitely a relatively better procedure. But Hartshill rectangle still stands out in certain practical situations.

  6. Accuracy of percutaneous pedicle screws for thoracic and lumbar spine fractures compared with open technique.

    Science.gov (United States)

    Paredes, Igor; Panero, Irene; Cepeda, Santiago; Castaño-Leon, Ana M; Jimenez-Roldan, Luis; Perez-Nuñez, Ángel; Alén, Jose A; Lagares, Alfonso

    2018-06-14

    This study aimed to compare the accuracy of screw placement between open pedicle screw fixation and percutaneous pedicle screw fixation (MIS) for the treatment of thoracolumbar spine fractures (TSF). Forty-nine patients with acute TSF who were treated with transpedicular screw fixation from January 2013 to December 2016 were retrospectively reviewed. The patients were divided into Open and MIS groups. Laminectomy was performed in either group if needed. The accuracy of the screw placement, the evolution of the Cobb sagital angle postoperatively and at 12-month follow up and the neurological status were recorded. AO type of fracture and TLICS score were also recorded. Mean age was 42 years old. Mean TLICS score was 6,29 and 5,96 for open and MIS groups respectively. Twenty five MIS and 24 open surgeries were performed, and 350 (175 in each group) screws were inserted (7,14 per patient). Twenty-four and 13 screws were considered ̈out ̈ in the open and MIS groups respectively (Odds ratio 1,98. 0,97-4,03 p=0,056). The Cobb sagittal angle went from 13,3o to 4,5o and from 14,9o to 8,2o in the Open and MIS groups respectively (both popen and MIS groups respectively. No neurological worsening was observed. For the treatment of acute thoracolumbar fractures, the MIS technique seems to achieve similar results to the open technique in relation to neurological improvement and deformity correction, while placing the screws more accurately.

  7. [Effectiveness of U-shape titanium screw-rod fixation system with bone autografting for lumbar spondylolysis of young adults].

    Science.gov (United States)

    Pu, Xiaobing; Yang, Shuangshi; Cao, Haiquan; Jing, Xingquan; Yin, Jun

    2014-03-01

    To investigate the effectiveness of U-shape titanium screw-rod fixation system with bone autografting for lumbar spondylolysis of young adults. Between January 2008 and December 2011, 32 patients with lumbar spondylolysis underwent U-shape titanium screw-rod fixation system with bone autografting. All patients were male with an average age of 22 years (range, 19-32 years). The disease duration ranged from 3 to 24 months (mean, 14 months). L3 was involved in spondylolysis in 2 cases, L4 in 10 cases, and L5 in 20 cases. The preoperative visual analogue scale (VAS) and Oswestry disability index (ODI) scores were 8.0 +/- 1.1 and 75.3 +/- 11.2, respectively. The operation time was 80-120 minutes (mean, 85 minutes), and the blood loss was 150-250 mL (mean, 210 mL). Primary healing of incision was obtained in all patients without complications of infection and nerve symptom. Thirty-two patients were followed up 12-24 months (mean, 14 months). Low back pain was significantly alleviated after operation. The VAS and ODI scores at 3 months after operation were 1.0 +/- 0.5 and 17.6 +/- 3.4, respectively, showing significant differences when compared with preoperative ones (t = 30.523, P = 0.000; t = 45.312, P = 0.000). X-ray films and CT showed bone fusion in the area of isthmus defects, with the bone fusion time of 6-12 months (mean, 9 months). During follow-up, no secondary lumbar spondyloly, adjacent segment degeneration, or loosening or breaking of internal fixator was found. The U-shape titanium screw-rod fixation system with bone autografting is a reliable treatment for lumbar spondylolysis of young adults because of a high fusion rate, minimal invasive, and maximum retention of lumbar range of motion.

  8. Size Effect of Defects on the Mechanical Properties of Graphene

    Science.gov (United States)

    Park, Youngho; Hyun, Sangil

    2018-03-01

    Graphene, a two-dimensional material, has been studied and utilized for its excellent material properties. In reality, achieving a pure single-crystalline structure in graphene is difficult, so usually graphene may have various types of defects in it. Vacancies, Stone-Wales defects, and grain boundaries can drastically change the material properties of graphene. Graphene with vacancy defects has been of interest because it is a two-dimensional analogy of three-dimensional porous materials. It has efficient material properties, and can function as a part of modern devices. The mechanical properties have been studied by using molecular dynamics for either a single vacancy defect with various sizes or multiple vacancy defects with same defect ratios. However, it is not clear which one has more influence on the mechanical properties between the size of the defects and the defect ratio. Therefore, we investigated the hole-size effect on the mechanical properties of single-crystalline graphene at various defect ratios. A void defect with large size can have a rather high tensile modulus with a low fracture strain compared to a void defect with small size. We numerically found that the tensile properties of scattered single vacancies is similar to that of amorphous graphene. We suspect that this is due to the local orbital change of the carbon atoms near the boundary of the void defects, so-called the interfacial phase.

  9. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  10. Thermal Analysis of Ball screw Systems by Explicit Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Min, Bog Ki [Hanyang Univ., Seoul (Korea, Republic of); Park, Chun Hong; Chung, Sung Chong [KIMM, Daejeon (Korea, Republic of)

    2016-01-15

    Friction generated from balls and grooves incurs temperature rise in the ball screw system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ball screw shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ball screw. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.

  11. SHEARING STRENGTH TEST OF ORTOPEDIC TITANIUM ALLOY SCREW PRODUCED IN THE PROCESS OF 3D TECHNOLOGY PRINTING

    Directory of Open Access Journals (Sweden)

    Patrycja Ruszniak

    2016-03-01

    Full Text Available The aim of the present dissertation is the assessment of technical shear resistance (technological shear of orthopedic screw made of titanium alloy Ti6Al4V, produced using incremental technology in the process of 3D printing process. The first part of the work presents incremental techniques in production engineering. The second part of the present work contains specification of the 3D printing process of samples as well as the description of the used material. The fundamental part of the article is composed out of endurance tests for orthopaedic screws as well as the analysis of the obtained results and conclusions. The method of incremental production SLM using SLM 280HL metal printer was used during the technological process. The resistance tests were performed using ZWICK/ROELL Z150 machines. Identical endurance trials were performed for monolithic bars made of titanium alloys (of bar core size made on a wire electric discharge machine Sodick SL600Q for comparative purposes. The obtained test results enabled comparative assessment of the value of shear resistance Rt in the conditions of technological shear. According to the performed tests, the shear resistance Rt of orthopaedic screws is nearly 33% lower than of monolithic bars of the same core size.

  12. Defects in semiconductors

    International Nuclear Information System (INIS)

    Pimentel, C.A.F.

    1983-01-01

    Some problems openned in the study of defects in semiconductors are presented. In particular, a review is made of the more important problems in Si monocrystals of basic and technological interest: microdefects and the presence of oxigen and carbon. The techniques usually utilized in the semiconductor material characterization are emphatized according its potentialities. Some applications of x-ray techniques in the epitaxial shell characterization in heterostructures, importants in electronic optics, are shown. The increase in the efficiency of these defect analysis methods in semiconductor materials with the use of synchrotron x-ray sources is shown. (L.C.) [pt

  13. Feasibility of translaminar screw placement in Korean population: morphometric analysis of cervical spine.

    Science.gov (United States)

    Ji, Gyu Yeul; Oh, Chang Hyun; Park, Sang Hyuk; Kurniawan, Ferry; Lee, Junho; Jeon, Jae Kyun; Shin, Dong Ah; Kim, Keung Nyun

    2015-01-01

    To analyze the feasibility of unilateral and bilateral translaminar screw placement in Koran population, and compare the acceptance rate using previously reported data in American population. The translaminar lengths, thickness, heights, and sagittal-diagonal measurements were performed. The feasibility analysis was performed using unilateral and bilateral 3.5 mm cervical screw placement on the CT scans within 0.5 mm of safety margin. We also performed radiographic analysis of the morphometric dimensions and the feasibility of unilateral and bilateral translaminar screw placement at C3-C7. Korean population had similar or significantly shorter translaminar lengths and thickness (lengths and thickness in C7 among males; lengths in C6-C7 and thickness in C4 among females) than American population, but had similar or significantly longer translaminar heights and sagittal-diagonal measurements (heights in C3-C7 and sagittal-diagonal measurements in C3-C6 among males; heights in C7 and sagittal-diagonal measurements in C3-C7 among females). Unilaterally, translaminar screw acceptance rates in C3-C7 were similar between Korean and American male population, but the rates in C4-C6 were significantly smaller between Korean and American female population. Bilaterally, translaminar screw acceptance rates in C3 and C5-C6 were significantly larger between Korean and American male population, but the rates in C3-C7 were similar between Korean and American female population. The feasibility of unilateral and bilateral translaminar screw placement is different depending on different ethnics. Subaxial cervical unilateral translaminar screw placement among Korean male population and bilateral placement at C4-C7 among Korean female population are more acceptable than American population.

  14. Comparison of multiple linear regression and artificial neural network in developing the objective functions of the orthopaedic screws.

    Science.gov (United States)

    Hsu, Ching-Chi; Lin, Jinn; Chao, Ching-Kong

    2011-12-01

    Optimizing the orthopaedic screws can greatly improve their biomechanical performances. However, a methodical design optimization approach requires a long time to search the best design. Thus, the surrogate objective functions of the orthopaedic screws should be accurately developed. To our knowledge, there is no study to evaluate the strengths and limitations of the surrogate methods in developing the objective functions of the orthopaedic screws. Three-dimensional finite element models for both the tibial locking screws and the spinal pedicle screws were constructed and analyzed. Then, the learning data were prepared according to the arrangement of the Taguchi orthogonal array, and the verification data were selected with use of a randomized selection. Finally, the surrogate objective functions were developed by using either the multiple linear regression or the artificial neural network. The applicability and accuracy of those surrogate methods were evaluated and discussed. The multiple linear regression method could successfully construct the objective function of the tibial locking screws, but it failed to develop the objective function of the spinal pedicle screws. The artificial neural network method showed a greater capacity of prediction in developing the objective functions for the tibial locking screws and the spinal pedicle screws than the multiple linear regression method. The artificial neural network method may be a useful option for developing the objective functions of the orthopaedic screws with a greater structural complexity. The surrogate objective functions of the orthopaedic screws could effectively decrease the time and effort required for the design optimization process. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Percutaneous CT and Fluoroscopy-Guided Screw Fixation of Pathological Fractures in the Shoulder Girdle: Technical Report of 3 Cases

    Energy Technology Data Exchange (ETDEWEB)

    Garnon, Julien, E-mail: juliengarnon@gmail.com; Koch, Guillaume, E-mail: Guillaume.koch@gmail.com [University Hospital of Strasbourg, Department of Interventional Radiology (France); Ramamurthy, Nitin, E-mail: Nitin-ramamurthy@hotmail.com [Norfolk and Norwich University Hospital, Department of Radiology (United Kingdom); Caudrelier, Jean, E-mail: caudjean@yahoo.fr [University Hospital of Strasbourg, Department of Interventional Radiology (France); Rao, Pramod, E-mail: pramodrao@me.com [University of Strasbourg, ICube (France); Tsoumakidou, Georgia, E-mail: Georgia.tsoumakidou@chru-strasbourg.fr; Cazzato, Roberto Luigi, E-mail: gigicazzato@hotmail.it; Gangi, Afshin, E-mail: Afshin.gangi@chru-strasbourg.fr [University Hospital of Strasbourg, Department of Interventional Radiology (France)

    2016-09-15

    ObjectiveTo review our initial experience with percutaneous CT and fluoroscopy-guided screw fixation of pathological shoulder-girdle fractures.Materials and MethodsBetween May 2014 and June 2015, three consecutive oncologic patients (mean age 65 years; range 57–75 years) with symptomatic pathological shoulder-girdle fractures unsuitable for surgery and radiotherapy underwent percutaneous image-guided screw fixation. Fractures occurred through metastases (n = 2) or a post-ablation cavity (n = 1). Mechanical properties of osteosynthesis were adjudged superior to stand-alone cementoplasty in each case. Cannulated screws were placed under combined CT and fluoroscopic guidance with complementary radiofrequency ablation or cementoplasty to optimise local palliation and secure screw fixation, respectively, in two cases. Follow-up was undertaken every few weeks until mortality or most recent appointment.ResultsFour pathological fractures were treated in three patients (2 acromion, 1 clavicular, 1 coracoid). Mean size of associated lesion was 2.6 cm (range 1–4.5 cm). Technical success was achieved in all cases (100 %), without complications. Good palliation and restoration of mobility were observed in two cases at 2–3 months; one case could not be followed due to early post-procedural oncologic mortality.ConclusionPercutaneous image-guided shoulder-girdle osteosynthesis appears technically feasible with good short-term efficacy in this complex patient subset. Further studies are warranted to confirm these promising initial results.

  16. Percutaneous CT and Fluoroscopy-Guided Screw Fixation of Pathological Fractures in the Shoulder Girdle: Technical Report of 3 Cases

    International Nuclear Information System (INIS)

    Garnon, Julien; Koch, Guillaume; Ramamurthy, Nitin; Caudrelier, Jean; Rao, Pramod; Tsoumakidou, Georgia; Cazzato, Roberto Luigi; Gangi, Afshin

    2016-01-01

    ObjectiveTo review our initial experience with percutaneous CT and fluoroscopy-guided screw fixation of pathological shoulder-girdle fractures.Materials and MethodsBetween May 2014 and June 2015, three consecutive oncologic patients (mean age 65 years; range 57–75 years) with symptomatic pathological shoulder-girdle fractures unsuitable for surgery and radiotherapy underwent percutaneous image-guided screw fixation. Fractures occurred through metastases (n = 2) or a post-ablation cavity (n = 1). Mechanical properties of osteosynthesis were adjudged superior to stand-alone cementoplasty in each case. Cannulated screws were placed under combined CT and fluoroscopic guidance with complementary radiofrequency ablation or cementoplasty to optimise local palliation and secure screw fixation, respectively, in two cases. Follow-up was undertaken every few weeks until mortality or most recent appointment.ResultsFour pathological fractures were treated in three patients (2 acromion, 1 clavicular, 1 coracoid). Mean size of associated lesion was 2.6 cm (range 1–4.5 cm). Technical success was achieved in all cases (100 %), without complications. Good palliation and restoration of mobility were observed in two cases at 2–3 months; one case could not be followed due to early post-procedural oncologic mortality.ConclusionPercutaneous image-guided shoulder-girdle osteosynthesis appears technically feasible with good short-term efficacy in this complex patient subset. Further studies are warranted to confirm these promising initial results.

  17. Analysis of Modeling Parameters on Threaded Screws.

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, Miquela S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vangoethem, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

  18. Computer simulation of migration atomic mechanism and substitutional impurity interaction with screw dislocation core in bcc lattice

    International Nuclear Information System (INIS)

    Klyavin, O.V.; Likhodedov, N.P.; Orlov, A.N.

    1986-01-01

    Distribution and migration of substitutional impurity atoms (He and C) in the screw dislocation core of the 1/2 type is studied in α-Fe. The atomic mechanism of impurity atom diffusion over screw dislocation core, consisting in the fact that impurity migration proceeds in a screw trajectory, is discovered and analyzed. It is shown that tubular He diffusion over screw dislocation may proceed at T <= 300 K

  19. Treating Simple Tibia Fractures with Poly-DL-Lactic Acid Screw as a ...

    African Journals Online (AJOL)

    Purpose: To investigate the curative effect of poly-DL-lactic acid (PDLLA) absorbable screw as a locked intramedullary nail for simple tibia fractures. Methods: In this study, 35 patients treated with the PDLLA screw were observed, and another 35 patients treated with a traditional locking intramedullary nail were treated as ...

  20. Axial loading screw fixation for chevron type osteotomies of the distal first metatarsal: a retrospective outcomes analysis.

    Science.gov (United States)

    Murphy, Ryan M; Fallat, Lawrence M; Kish, John P

    2014-01-01

    The distal chevron osteotomy is a widely accepted technique for the treatment of hallux abductovalgus deformity. Although the osteotomy is considered to be stable, displacements of the capital fragment has been described. We propose a new method for fixation of the osteotomy involving the axial loading screw (ALS) used in addition to single screw fixation. We believe this method will provide a more mechanically stable construct. We reviewed the charts of 46 patients in whom 52 feet underwent a distal chevron osteotomy that was fixated with either 1 screw or 2 screws that included the ALS. We hypothesized that the ALS group would have fewer displacements and would heal more quickly than the single screw fixation group. We found that the group with ALS fixation had healed at a mean of 6.5 weeks and that the group with single screw fixation had healed at 9.53 weeks (p = .001). Also, 8 cases occurred of displacement of the capital fragment in the single screw, control group compared with 2 cases of displacement in the ALS group. However, this finding was not statistically significant. The addition of the ALS to single screw fixation allowed the patients to heal approximately 3 weeks earlier than single screw fixation alone. The ALS is a fixation option for the surgeon to consider when osseous correction of hallux abducto valgus is performed. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Biomechanical Analysis of Suture Anchor vs Tenodesis Screw for FHL Transfer.

    Science.gov (United States)

    Drakos, Mark C; Gott, Michael; Karnovsky, Sydney C; Murphy, Conor I; DeSandis, Bridget A; Chinitz, Noah; Grande, Daniel; Chahine, Nadeen

    2017-07-01

    Chronic Achilles injury is often treated with flexor hallucis longus (FHL) tendon transfer to the calcaneus using 1 or 2 incisions. A single incision avoids the risks of extended dissections yet yields smaller grafts, which may limit fixation options. We investigated the required length of FHL autograft and biomechanical profiles for suture anchor and biotenodesis screw fixation. Single-incision FHL transfer with suture anchor or biotenodesis screw fixation to the calcaneus was performed on 20 fresh cadaveric specimens. Specimens were cyclically loaded until maximal load to failure. Length of FHL tendon harvest, ultimate load, stiffness, and mode of failure were recorded. Tendon harvest length needed for suture anchor fixation was 16.8 ± 2.1 mm vs 29.6 ± 2.4 mm for biotenodesis screw ( P = .002). Ultimate load to failure was not significantly different between groups. A significant inverse correlation existed between failure load and donor age when all specimens were pooled (ρ = -0.49, P Anchor failure occurred mostly by suture breakage (n = 8). Adequate FHL tendon length could be harvested through a single posterior incision for fixation to the calcaneus with either fixation option, but suture anchor required significantly less graft length. Stiffness, fixation strength, and load to failure were comparable between groups. An inverse correlation existed between failure load and donor age. Younger specimens with screw fixation demonstrated significantly greater failure loads. Adequate harvest length for FHL transfer could be achieved with a single posterior incision. There was no difference in strength of fixation between suture anchor and biotenodesis screw.

  2. Automatic on-line detection system design research on internal defects of metal materials based on optical fiber F-P sensing technology

    Science.gov (United States)

    Xia, Liu; Shan, Ning; Chao, Ban; Caoshan, Wang

    2016-10-01

    Metal materials have been used in aerospace and other industrial fields widely because of its excellent characteristics, so its internal defects detection is very important. Ultrasound technology is used widely in the fields of nondestructive detection because of its excellent characteristic. But the conventional detection instrument for ultrasound, which has shortcomings such as low intelligent level and long development cycles, limits its development. In this paper, the theory of ultrasound detection is analyzed. A computational method of the defects distributional position is given. The non-contact type optical fiber F-P interference cavity structure is designed and the length of origin cavity is given. The real-time on-line ultrasound detecting experiment devices for internal defects of metal materials is established based on the optical fiber F-P sensing system. The virtual instrument of automation ultrasound detection internal defects is developed based on LabVIEW software and the experimental study is carried out. The results show that this system can be used in internal defect real-time on-line locating of engineering structures effectively. This system has higher measurement precision. Relative error is 6.7%. It can be met the requirement of engineering practice. The system is characterized by simple operation, easy realization. The software has a friendly interface, good expansibility, and high intelligent level.

  3. Clinical Outcomes of Posterior C1 and C2 Screw-Rod Fixation for Atlantoaxial Instability.

    Science.gov (United States)

    Işik, Hasan Serdar; Sandal, Evren; Çağli, Sedat

    2017-06-14

    In this study, we aimed at sharing our experiences and contributing to the literature by making a retrospective analysis of the patients we operated with screw-rod system for atlantoaxial instability in our clinic. Archive files of adult patients, who were operated for posterior C1-C2 stabilization with screw and rod in our clinic between January 2006 and January 2016, were analyzed. 28 patients, who had pre and post-operative images, follow-up forms and who were followed for at least one year, were analyzed. Preoperative clinical and radiological records, preoperative observations, postoperative complications, and clinical responses were evaluated. The average age of 28 patients (F:13 M:19) was 44.7 (21-73). Fixation was performed with C1-C2 screw-rod system on the basis of the following diagnoses; type 2 odontoid fracture (16), basilar invagination (5), C1-C2 instability (5), and atlantoaxial subluxation secondary to rheumatoid arthritis (2). Lateral mass screws were inserted at C1 segment. C2 screws inserted were bilateral pedicle in 12 cases, bilateral pars in 4, bilateral laminar in 8 and one side pars, one side laminar in 4 cases. There was no screw malposition. Neither implant failure nor recurrent instability was observed during follow-up. Significant clinical improvement was reported according to the assessments done with JOA and VAS scores. C1-C2 screw fixation is regarded as a more successful and safe method than other fixation methods in surgical treatment of atlantoaxial instability considering complications, success in reduction, fusion and fixation strength. C2 laminar screw technique is as successful as the other alternatives in fixation and fusion.

  4. Use of a life-size three-dimensional-printed spine model for pedicle screw instrumentation training.

    Science.gov (United States)

    Park, Hyun Jin; Wang, Chenyu; Choi, Kyung Ho; Kim, Hyong Nyun

    2018-04-16

    Training beginners of the pedicle screw instrumentation technique in the operating room is limited because of issues related to patient safety and surgical efficiency. Three-dimensional (3D) printing enables training or simulation surgery on a real-size replica of deformed spine, which is difficult to perform in the usual cadaver or surrogate plastic models. The purpose of this study was to evaluate the educational effect of using a real-size 3D-printed spine model for training beginners of the free-hand pedicle screw instrumentation technique. We asked whether the use of a 3D spine model can improve (1) screw instrumentation accuracy and (2) length of procedure. Twenty life-size 3D-printed lumbar spine models were made from 10 volunteers (two models for each volunteer). Two novice surgeons who had no experience of free-hand pedicle screw instrumentation technique were instructed by an experienced surgeon, and each surgeon inserted 10 pedicle screws for each lumbar spine model. Computed tomography scans of the spine models were obtained to evaluate screw instrumentation accuracy. The length of time in completing the procedure was recorded. The results of the latter 10 spine models were compared with those of the former 10 models to evaluate learning effect. A total of 37/200 screws (18.5%) perforated the pedicle cortex with a mean of 1.7 mm (range, 1.2-3.3 mm). However, the latter half of the models had significantly less violation than the former half (10/100 vs. 27/100, p 3D-printed spine model can be an excellent tool for training beginners of the free-hand pedicle screw instrumentation.

  5. Unconventional fixation Thoracolumbar fractures using round hole boneplates and transpedicular screws

    International Nuclear Information System (INIS)

    Behairy, Yaser M.

    2001-01-01

    In an attempt to contain the high cost of commercially available pediclescrew systems, several authors have used unconventional alternatives such aslocally made plates or dynamic compression plates (DCP) along with cancellousscrews for transpedicular fixation of the thoracolumbar spine. These plates,however, allow for a wide range of motion at the plate-screw interphase andthe construct does not provide stability in the sagittal plane. Round holebone plates, on the other hand, allow much less mobility at the plate-screwinterphase and the final construct offers better stability in the sagittalplane. Our objective was to determine the clinical, radiologic and functionalstatus of patients who underwent posterior fracture fixation using round holebone plates and cancellous screws and evaluate the construct's ability tomaintain reduction of the fracture. This was a postoperative follow-up ofpatients with fractures around the thoracolumbar junction fixed using roundhole bone plates and cancellous transpedicular screws. Round hole bone platesalong with 6.5 mm transpedicular cancellous screws were used for posteriorspinal instrumentation in neurologically intact patients with isolatedunstable fractures of the last thoracic or first lumbar vertebra. Seventeenpatients were included in this study. There mean follow-up was 10 months(range 5 to 12). All had evidence of fusion at a mean of 5 months (range 4 to7). No patients had breakage or loosening of the screws and none had breakageof the plate. The mean kyphosis angle at the fracture site was 34 degreepreoperatively, -4 degree in the immediate postoperative period, and 3 degreeon final follow-up radiographs. The percentage loss of anterior vertebralbody height was 51% in the immediate postoperative period and 16% on finalfollow-up radiographs. The use of round hole bone plates along with 6.5 mmcancellous screws inserted into the pedicles provides an angle-stableconstruct that allows for better stability in the sagittal plane

  6. [Polymethylmethacrylate augmentation of bone cement-injectable cannulated pedicle screws for the treatment of degenerative lumbar diseases with osteoporosis].

    Science.gov (United States)

    Sun, H L; Li, C D; Yang, Z C; Yi, X D; Liu, H; Lu, H L; Li, H; Wang, Y

    2016-12-18

    To describe the application of polymethylmethacrylate augmentation of bone cement-injectable cannulated pedicle screws for the treatment of degenerative lumbar diseases with osteoporosis. Observation group included 14 cases of degenerative lumbar diseases with osteoporosis received polymethylmethacrylate augmentation of bone cement-injectable cannulated pedicle screws from November 2014 to July 2015, control group included 12 cases of degenerative lumbar diseases with osteoporosis received polymethylmethacrylate augmentation with traditional pedicle screws.The operation time, blood loss, number of pedicle screws and number of augmented pedicle screws in the two groups were compared. The bone cement leakage and pulmonary bone cement embolism in the two groups were also compared. The fusion rate and pedicle screws loosening by lumbar X ray and dynamic X ray were evaluated. The clinical results were assessed by visual analog scale (VAS) of pain on lumbar and lower limbers, lumbar Japanese Orthopaedic Association scores (JOA), Prolo functional scores and Oswestry disability (ODI) scores. Differences of operation time and blood loss in the two groups were not statistically significant. The average number of pedicle screws was 9.9±4.7 and the average number of augmented pedicle screws was 5.9±2.6 in observation group while the average number of pedicle screws was 7.1±2.8 and the average number of augmented pedicle screws was 3.0±1.9 in control group. The ratio of augmented pedicle screws was higher in observation group than in control group (0.69±0.30 vs.0.47±0.30,Pdegenerative lumbar diseases with osteoporosis was effective, with simple working processes and lower risk of bone cement leakage. The short-term clinical result was good.

  7. Sub-surface defect detection using transient thermography

    International Nuclear Information System (INIS)

    Mohd Zaki Umar; Huda Abdullah; Abdul Razak Hamzah; Wan Saffiey Wan Abdullah; Ibrahim Ahmad; Vavilov, Vladimir

    2009-04-01

    An experimental research had been carried out to study the potential of transient thermography in detecting sub-surface defect of non-metal material. In this research, eight pieces of bakelite material were used as samples. Each samples had a sub-surface defect in the circular shape with different diameters and depths. Experiment was conducted using one-sided Pulsed Thermal technique. Heating of samples were done using 30 k Watt adjustable quartz lamp while infra red (IR) images of samples were recorded using THV 550 IR camera. These IR images were then analysed with thermo fit TM Pro software to obtain the Maximum Absolute Differential Temperature Signal value, ΔT max and the time of its appearance, τ max (ΔT). Result showed that all defects were able to be detected even for the smallest and deepest defect (diameter = 5 mm and depth = 4 mm). However the highest value of Differential Temperature Signal (ΔT max ), were obtained at defect with the largest diameter, 20 mm and at the shallowest depth, 1 mm. As a conclusion, the sensitivity of the pulsed thermography technique to detect sub-surface defects of bakelite material is proportionately related with the size of defect diameter if the defect area at the same depth. On the contrary, the sensitivity of the pulsed thermography technique inversely related with the depth of defect if the defects have similar diameter size. (author)

  8. Unilateral pedicle screws asymmetric tethering: an innovative method to create idiopathic deformity

    Directory of Open Access Journals (Sweden)

    Zhang Xuesong

    2007-10-01

    Full Text Available Abstract Objective To evaluate the feasibility of the method that unilateral pedicle screws asymmetric tethering in concave side in combination with convex rib resection for creating idiopathic deformity. Summary of background data Various methods are performed to create idiopathic deformity. Among these methods, posterior asmmetric tethering of the spine shows satisfying result, but some drawbacks related to the current posterior asymmetric tether were still evident. Materials and methods Unilateral pedicle screws asymmetric tethering was performed to 14 female goats (age: 5–8 week-old, weight: 6–8 kg in concave side in combination with convex rib resection. Dorsoventral and lateral plain radiographs were taken of each thoracic spine in the frontal and sagittal planes right after the surgery and later every 4 weeks. Results All animals ambulated freely after surgery. For technical reasons, 2 goats were excluded (one animal died for anesthetic during the surgery, and one animal was lost for instrumental fail due to postoperative infection. Radiography showed that 11 goats exhibited scoliosis with convex toward to the right side, and as the curve increased with time, only 1 goat showed nonprogressive. The initial scoliosis generated in the progressors after the procedures measured 29.0° on average (range 23.0°–38.5° and increased to 43.0° on average (range 36.0°–58.0° over 8 to 10 weeks. The average progression of 14.0° was measured. The curvature immediately after tethering surgery (the initial Cobb angle did have a highly significant correlation with the final curvature (p Conclusion Unilateral pedicle screws asymmetric tethering is a practical method to create experimental scoliosis, especially for those who would like to study the correction of this deformity.

  9. Fuzzy batch controller for granular materials

    Directory of Open Access Journals (Sweden)

    Zamyatin Nikolaj

    2018-01-01

    Full Text Available The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy inference is proposed for controlling the speed of the screw that feeds mixture components. As related to production of building materials based on fluoride anhydrite, this method is used for the first time. A fuzzy controller is proven to be effective in controlling the filling level of the supply hopper. In addition, the authors determined optimal parameters of the batching process to ensure smooth operation and production of fluorine anhydrite materials of specified properties that can compete with gypsum-based products.

  10. Theoretical prediction of pullout strengths for dental and orthopaedic screws with conical profile and buttress threads.

    Science.gov (United States)

    Shih, Kao-Shang; Hou, Sheng-Mou; Lin, Shang-Chih

    2017-12-01

    The pullout strength of a screw is an indicator of how secure bone fragments are being held in place. Such bone-purchasing ability is sensitive to bone quality, thread design, and the pilot hole, and is often evaluated by experimental and numerical methods. Historically, there are some mathematical formulae to simulate the screw withdrawal from the synthetic bone. There are great variations in screw specifications. However, extensive investigation of the correlation between experimental and analytical results has not been reported in literature. Referring to the literature formulae, this study aims to evaluate the differences in the calculated pullout strengths. The pullout tests of the surgical screws are measured and the sawbone is used as the testing block. The absolute errors and correlation coefficients of the experimental and analytical results are calculated as the comparison baselines of the formulae. The absolute error of the dental, traumatic, and spinal groups are 21.7%, 95.5%, and 37.0%, respectively. For the screws with a conical profile and/or tiny threads, the calculated and measured results are not well correlated. The formulae are not accurate indicators of the pullout strengths of the screws where the design parameters are slightly varied. However, the experimental and numerical results are highly correlated for the cylindrical screws. The pullout strength of a conical screw is higher than that of its counterpart, but all formulae consistently predict the opposite results. In general, the bony purchase of the buttress threads is securer than that of the symmetric thread. An absolute error of up to 51.4% indicates the theoretical results cannot predict the actual value of the pullout strength. Only thread diameter, pitch, and depth are considered in the investigated formulae. The thread profile and shape should be formulated to modify the slippage mechanism at the bone-screw interfaces and simulate the strength change in the squeezed bones

  11. Potential risks of using cement-augmented screws for spinal fusion in patients with low bone quality.

    Science.gov (United States)

    Martín-Fernández, M; López-Herradón, A; Piñera, A R; Tomé-Bermejo, F; Duart, J M; Vlad, M D; Rodríguez-Arguisjuela, M G; Alvarez-Galovich, L

    2017-08-01

    Dramatic increases in the average life expectancy have led to increases in the variety of degenerative changes and deformities observed in the aging spine. The elderly population can present challenges for spine surgeons, not only because of increased comorbidities, but also because of the quality of their bones. Pedicle screws are the implants used most commonly in spinal surgery for fixation, but their efficacy depends directly on bone quality. Although polymethyl methacrylate (PMMA)-augmented screws represent an alternative for patients with osteoporotic vertebrae, their use has raised some concerns because of the possible association between cement leakages (CLs) and other morbidities. To analyze potential complications related to the use of cement-augmented screws for spinal fusion and to investigate the effectiveness of using these screws in the treatment of patients with low bone quality. A retrospective single-center study. This study included 313 consecutive patients who underwent spinal fusion using a total of 1,780 cement-augmented screws. We analyzed potential complications related to the use of cement-augmented screws, including CL, vascular injury, infection, screw extraction problems, revision surgery, and instrument failure. There are no financial conflicts of interest to report. A total of 1,043 vertebrae were instrumented. Cement leakage was observed in 650 vertebrae (62.3%). There were no major clinical complications related to CL, but two patients (0.6%) had radicular pain related to CL at the S1 foramina. Of the 13 patients (4.1%) who developed deep infections requiring surgical debridement, two with chronic infections had possible spondylitis that required instrument removal. All patients responded well to antibiotic therapy. Revision surgery was performed in 56 patients (17.9%), most of whom had long construction. A total of 180 screws were removed as a result of revision. There were no problems with screw extraction. These results

  12. Platelet rich fibrin in jaw defects

    Science.gov (United States)

    Nica, Diana; Ianes, Emilia; Pricop, Marius

    2016-03-01

    Platelet rich fibrin (PRF) is a tissue product of autologous origin abundant in growth factors, widely used in regenerative procedures. Aim of the study: Evaluation of the regenerative effect of PRF added in the bony defects (after tooth removal or after cystectomy) Material and methods: The comparative nonrandomized study included 22 patients divided into 2 groups. The first group (the test group) included 10 patients where the bony defects were treated without any harvesting material. The second group included 12 patients where the bony defects were filled with PRF. The bony defect design was not critical, with one to two walls missing. After the surgeries, a close clinically monitoring was carried out. The selected cases were investigated using both cone beam computer tomography (CBCT) and radiographic techniques after 10 weeks postoperatively. Results: Faster bone regeneration was observed in the bony defects filled with PRF comparing with the not grafted bony defects. Conclusions: PRF added in the bony defects accelerates the bone regeneration. This simplifies the surgical procedures and decreases the economic costs.

  13. Cortical bone trajectory screw fixation versus traditional pedicle screw fixation for 2-level posterior lumbar interbody fusion: comparison of surgical outcomes for 2-level degenerative lumbar spondylolisthesis.

    Science.gov (United States)

    Sakaura, Hironobu; Miwa, Toshitada; Yamashita, Tomoya; Kuroda, Yusuke; Ohwada, Tetsuo

    2018-01-01

    OBJECTIVE The cortical bone trajectory (CBT) screw technique is a new nontraditional pedicle screw (PS) insertion method. However, the biomechanical behavior of multilevel CBT screw/rod fixation remains unclear, and surgical outcomes in patients after 2-level posterior lumbar interbody fusion (PLIF) using CBT screw fixation have not been reported. Thus, the purposes of this study were to examine the clinical and radiological outcomes after 2-level PLIF using CBT screw fixation for 2-level degenerative lumbar spondylolisthesis (DS) and to compare these outcomes with those after 2-level PLIF using traditional PS fixation. METHODS The study included 22 consecutively treated patients who underwent 2-level PLIF with CBT screw fixation for 2-level DS (CBT group, mean follow-up 39 months) and a historical control group of 20 consecutively treated patients who underwent 2-level PLIF using traditional PS fixation for 2-level DS (PS group, mean follow-up 35 months). Clinical symptoms were evaluated using the Japanese Orthopaedic Association (JOA) scoring system. Bony union was assessed by dynamic plain radiographs and CT images. Surgery-related complications, including symptomatic adjacent-segment disease (ASD), were examined. RESULTS The mean operative duration and intraoperative blood loss were 192 minutes and 495 ml in the CBT group and 218 minutes and 612 ml in the PS group, respectively (p 0.05, respectively). The mean JOA score improved significantly from 12.3 points before surgery to 21.1 points (mean recovery rate 54.4%) at the latest follow-up in the CBT group and from 12.8 points before surgery to 20.4 points (mean recovery rate 51.8%) at the latest follow-up in the PS group (p > 0.05). Solid bony union was achieved at 90.9% of segments in the CBT group and 95.0% of segments in the PS group (p > 0.05). Symptomatic ASD developed in 2 patients in the CBT group (9.1%) and 4 patients in the PS group (20.0%, p > 0.05). CONCLUSIONS Two-level PLIF with CBT screw fixation

  14. Precision insertion of percutaneous sacroiliac screws using a novel augmented reality-based navigation system: a pilot study.

    Science.gov (United States)

    Wang, Huixiang; Wang, Fang; Leong, Anthony Peng Yew; Xu, Lu; Chen, Xiaojun; Wang, Qiugen

    2016-09-01

    Augmented reality (AR) enables superimposition of virtual images onto the real world. The aim of this study is to present a novel AR-based navigation system for sacroiliac screw insertion and to evaluate its feasibility and accuracy in cadaveric experiments. Six cadavers with intact pelvises were employed in our study. They were CT scanned and the pelvis and vessels were segmented into 3D models. The ideal trajectory of the sacroiliac screw was planned and represented visually as a cylinder. For the intervention, the head mounted display created a real-time AR environment by superimposing the virtual 3D models onto the surgeon's field of view. The screws were drilled into the pelvis as guided by the trajectory represented by the cylinder. Following the intervention, a repeat CT scan was performed to evaluate the accuracy of the system, by assessing the screw positions and the deviations between the planned trajectories and inserted screws. Post-operative CT images showed that all 12 screws were correctly placed with no perforation. The mean deviation between the planned trajectories and the inserted screws was 2.7 ± 1.2 mm at the bony entry point, 3.7 ± 1.1 mm at the screw tip, and the mean angular deviation between the two trajectories was 2.9° ± 1.1°. The mean deviation at the nerve root tunnels region on the sagittal plane was 3.6 ± 1.0 mm. This study suggests an intuitive approach for guiding screw placement by way of AR-based navigation. This approach was feasible and accurate. It may serve as a valuable tool for assisting percutaneous sacroiliac screw insertion in live surgery.

  15. Identification of explosives and drugs and inspection of material defects with THz radiation

    Science.gov (United States)

    Zhang, Cunlin; Mu, Kaijun; Jiang, Xue; Jiao, Yueying; Zhang, Liangliang; Zhou, Qingli; Zhang, Yan; Shen, Jingling; Zhao, Guoshong; Zhang, X.-C.

    2008-03-01

    We report the sensing of explosive materials and illicit drugs by using terahertz time-domain spectroscopy (THz-TDS) and imaging. Several explosive materials, such as γ-HNIW, RDX, 2,4-DNT, TNT, Nitro-aniline, and illicit drugs, such as methamphetamine (MA) etc were researched here. Non-destructive testing, as one of the major applications of THz imaging, can be applied to an area of critical need: the testing of aerospace materials. Composite materials such as carbon fiber are widely used in this industry. The nature of their use requires technologies that are able to differentiate between safe and unsafe materials, due to either manufacturing tolerance or damage acquired while in use. In this paper, we discuss the applicability of terahertz (THz) imaging systems to this purpose, focusing on graphite fiber composite materials, carbon silicon composite materials and so on. We applied THz imaging technology to evaluate the fire damage to a variety of carbon fiber composite samples. Major carbon fiber materials have polarization-dependent reflectivity in THz frequency range, and we show how the polarization dependence changes versus the burned damage level. Additionally, time domain information acquired through a THz time-domain spectroscopy (TDS) system provides further information with which to characterize the damage. We also detect fuel tank insulation foam panel defects with pulse and continuous-wave (CW) terahertz system.

  16. Optimization and Numerical Simulation of Outlet of Twin Screw Extruder

    Directory of Open Access Journals (Sweden)

    Zhang Yuan

    2018-01-01

    Full Text Available In view of the unreasonable design of non-intermeshing counter-rotating twin screw extruder die, the problem of productivity reduction was discussed. Firstly, the mathematical model of extruder productivity was established. The extruder die model was improved. Secondly, the force analysis of twin screw extruder physical model was carried out. Meanwhile, A combination of mechanical analysis and numerical simulation was adopted. The velocity field, pressure field and viscosity field were calculated by Mini-Element interpolation method, linear interpolation method and Picard iterative convergence method respectively. The influence of die model on the quantity of each field before and after improvement was analyzed. The results show that the improved model had increased the rheological parameters of the flow field, the leakage and reverse flow decreased. Through post-processing calculation, the productivity of the third dies extruder was 10% higher than before. The research results provide a theoretical basis for the design and optimization of die model of non intermeshing counter-rotating twin screw extruder.

  17. Characterization of vacancy type defects in Electronic Materials by Positron Lifetime and Age-Momentum Correlation Spectroscopy

    Science.gov (United States)

    Suzuki, Ryoichi; Ohdaira, Toshiyuki

    2002-03-01

    Positron annihilation spectroscopy is known to be sensitive to vacancy type defects. At the National Institute of Advanced Industrial Science and Technology (AIST) Japan, the authors have developed a measurement system which enables us to perform depth-selective positron annihilation lifetime spectroscopy (PALS) and positron age-momentum correlation (AMOC) spectroscopy with an intense slow positron beam. PALS gives us information on the size of vacancies whereas AMOC gives us information on not only vacancy sizes but also impurities or chemical environments. Using this system, we have carried out defect characterization experiments on various electronic materials, e.g. ion implanted Si, SiO2/Si, MOS, CVD or SOD (spin-on-dielectric) grown low dielectric insulator films, etc.

  18. Recurrent Laryngeal Edema Imitating Angioedema Caused by Dislocated Screw after Anterior Spine Surgery

    Directory of Open Access Journals (Sweden)

    Piotr Wójtowicz

    2015-01-01

    Full Text Available The anterior cervical spine surgery is a common procedure to stabilize vertebrae damaged by various diseases. The plates and screws are usually used in the spine fixation. This kind of instrumentation may detach from the bones which is a rare but well-known complication. A 77-year-old male presented to the otorhinolaryngology department with throat pain, choking, and dysphagia. At first the angioedema was diagnosed and he was treated conservatively. The endoscopy revealed laryngeal edema, being more defined on the right side with right vocal fold paresis. CT scans showed the stabilizing plate with two screws attached tightly and the back-out of the third screw toward soft tissue of the neck. In the meantime, his condition deteriorated and he needed tracheotomy. In few days the surgical removal of the dislocated screw was performed successfully. Although two-month follow-up reported no obstruction of the larynx, the vocal folds paresis with gradual functional improvement was observed. Long-term complication of anterior spine surgery sometimes may suggest laryngeal angioedema at first. If the conservative treatment is ineffective and there is a history of anterior spine surgery, the clinicians should consider the displacement of the plate or screws in differential diagnosis.

  19. Conceptual framework for model-based analysis of residence time distribution in twin-screw granulation

    DEFF Research Database (Denmark)

    Kumar, Ashish; Vercruysse, Jurgen; Vanhoorne, Valerie

    2015-01-01

    Twin-screw granulation is a promising continuous alternative for traditional batchwise wet granulation processes. The twin-screw granulator (TSG) screws consist of transport and kneading element modules. Therefore, the granulation to a large extent is governed by the residence time distribution...... within each module where different granulation rate processes dominate over others. Currently, experimental data is used to determine the residence time distributions. In this study, a conceptual model based on classical chemical engineering methods is proposed to better understand and simulate...... the residence time distribution in a TSG. The experimental data were compared with the proposed most suitable conceptual model to estimate the parameters of the model and to analyse and predict the effects of changes in number of kneading discs and their stagger angle, screw speed and powder feed rate...

  20. Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals

    Directory of Open Access Journals (Sweden)

    Jung-Hong Ha

    2012-11-01

    Full Text Available Objectives The purpose of this study was to investigate the screw-in effect and torque generation depending on the size of glide path during root canal preparation. Materials and Methods Forty Endo-Training Blocks (REF A 0177, Dentsply Maillefer were used. They were divided into 4 groups. For groups 1, 2, 3, and 4, the glide path was established with ISO #13 Path File (Dentsply Maillefer, #15 NiTi K-file NITIFLEX (Dentsply Maillefer, modified #16 Path File (equivalent to #18, and #20 NiTi K-file NITIFLEX, respectively. The screw-in force and resultant torque were measured using a custom-made experimental apparatus while canals were instrumented with ProTaper S1 (Dentsply Maillefer at a constant speed of 300 rpm with an automated pecking motion. A statistical analysis was performed using one-way analysis of variance and the Duncan post hoc comparison test. Results Group 4 showed lowest screw-in effect (2.796 ± 0.134 among the groups (p < 0.05. Torque was inversely proportional to the glide path of each group. In #20 glide path group, the screw-in effect and torque decreased at the last 1 mm from the apical terminus. However, in the other groups, the decrease of the screw-in effect and torque did not occur in the last 1 mm from the apical terminus. Conclusions The establishment of a larger glide path before NiTi rotary instrumentation appears to be appropriate for safely shaping the canal. It is recommended to establish #20 glide path with NiTi file when using ProTaper NiTi rotary instruments system safely.