WorldWideScience

Sample records for screen printing technology

  1. A Stretchable Electromagnetic Absorber Fabricated Using Screen Printing Technology.

    Science.gov (United States)

    Jeong, Heijun; Lim, Sungjoon

    2017-05-21

    A stretchable electromagnetic absorber fabricated using screen printing technology is proposed in this paper. We used a polydimethylsiloxane (PDMS) substrate to fabricate the stretchable absorber since PDMS exhibits good dielectric properties, flexibility, and restoring capabilities. DuPont PE872 (DuPont, Wilmington, CT, USA), a stretchable silver conductive ink, was used for the screen printing technique. The reflection coefficient of the absorber was measured using a vector network analyzer and a waveguide. The proposed absorber was designed as a rectangular patch unit cell, wherein the top of the unit cell acted as the patch and the bottom formed the ground. The size of the patch was 8 mm × 7 mm. The prototype of the absorber consisted of two unit cells such that it fits into the WR-90 waveguide (dimensions: 22.86 mm × 10.16 mm) for experimental measurement. Before stretching the absorber, the resonant frequency was 11 GHz. When stretched along the x -direction, the resonant frequency shifted by 0.1 GHz, from 11 to 10.9 GHz, demonstrating 99% absorption. Furthermore, when stretched along the y -direction, the resonant frequency shifted by 0.6 GHz, from 11 to 10.4 GHz, demonstrating 99% absorption.

  2. Screen printing technology applied to silicon solar cell fabrication

    Science.gov (United States)

    Thornhill, J. W.; Sipperly, W. E.

    1980-01-01

    The process for producing space qualified solar cells in both the conventional and wraparound configuration using screen printing techniques was investigated. Process modifications were chosen that could be easily automated or mechanized. Work was accomplished to optimize the tradeoffs associated with gridline spacing, gridline definition and junction depth. An extensive search for possible front contact metallization was completed. The back surface field structures along with the screen printed back contacts were optimized to produce open circuit voltages of at least an average of 600 millivolts. After all intended modifications on the process sequence were accomplished, the cells were exhaustively tested. Electrical tests at AMO and 28 C were made before and after boiling water immersion, thermal shock, and storage under conditions of high temperature and high humidity.

  3. Developments and the preliminary tests of Resistive GEMs manufactured by a screen printing technology

    CERN Document Server

    Agócs, G; Oliveira, R; Martinego, P; Peskov, Vladimir; Pietropaolo, P; Picchi, P

    2008-01-01

    We report promising initial results obtained with new resistive-electrode GEM (RETGEM) detectors manufactured, for the first time, using screen printing technology. These new detectors allow one to reach gas gains nearly as high as with ordinary GEM-like detectors with metallic electrodes; however, due to the high resistivity of its electrodes the RETGEM, in contrast to ordinary hole-type detectors, has the advantage of being fully spark protected. We discovered that RETGEMs can operate stably and at high gains in noble gases and in other badly quenched gases, such as mixtures of noble gases with air and in pure air; therefore, a wide range of practical applications, including dosimetry and detection of dangerous gases, is foreseeable. To promote a better understanding of RETGEM technology some comparative studies were completed with metallic-electrode thick GEMs. A primary benefit of these new RETGEMs is that the screen printing technology is easily accessible to many research laboratories. This accessibilit...

  4. A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology.

    Science.gov (United States)

    Ferri, Josue; Lidón-Roger, Jose Vicente; Moreno, Jorge; Martinez, Gabriel; Garcia-Breijo, Eduardo

    2017-12-20

    Among many of the designs used in the detection of 2D gestures for portable technology, the touchpad is one of the most complex and with more functions to implement. Its development has undergone a great push due to its use in displays, but it is not widely used with other technologies. Its application on textiles could allow a wide range of applications in the field of medicine, sports, etc. Obtaining a flexible, robust touchpad with good response and low cost is one of the objectives of this work. A textile touchpad based on a diamond pattern design using screen printing technology has been developed. This technology is widely used in the textile industry and therefore does not require heavy investments. The developed prototypes were analyzed using a particular controller for projected capacitive technologies (pro-cap), which is the most used in gesture detection. Two different designs were used to obtain the best configuration, obtaining a good result in both cases.

  5. Progress in the development of photosensitive GEMs with resistive electrodes manufactured by a screen printing technology

    International Nuclear Information System (INIS)

    Peskov, V.; Martinengo, P.; Nappi, E.; Oliveira, R.; Paic, G.; Pietropaolo, F.; Picchi, P.

    2009-01-01

    An innovative photosensitive gaseous detector, consisting of a GEM-like amplification structure with double-layered electrodes (instead of commonly used metallic ones) coated with a CsI reflective photocathode, is described. In one of our latest designs, the inner electrode consists of a metallic grid and the outer one is made of resistive strips; the latter are manufactured by a screen-printing technology on the top of the metallic strips's grid The inner metallic grid is used for 2-D position measurements whereas the resistive layer provides an efficient spark-protected operation at high gains close to the breakdown limit. Detectors with active areas of 10x10 and 10x20 cm 2 were tested under various conditions including the operation in photosensitive gas mixtures containing ethylferrocene or TMAE vapors. The new technique could have many applications requiring robust and reliable large-area detectors for UV visualization, as for example, in Cherenkov imaging devices.

  6. Progress in the development of photosensitive GEMs with resistive electrodes manufactured by a screen printing technology

    CERN Document Server

    Peskov, V; Nappi, E; Oliveira, R; Paic, G; Pietropaolo, F; Picchi, P

    2009-01-01

    An innovative photosensitive gaseous detector, consisting of a GEM-like amplification structure with double-layered electrodes (instead of commonly used metallic ones) coated with a CsI reflective photocathode, is described. In one of our latest designs, the inner electrode consists of a metallic grid and the outer one is made of resistive strips; the latter are manufactured by a screen-printing technology on the top of the metallic strips's grid The inner metallic grid is used for 2-D position measurements whereas the resistive layer provides an efficient spark-protected operation at high gains close to the breakdown limit. Detectors with active areas of 10×10 and 10×20 cm2 were tested under various conditions including the operation in photosensitive gas mixtures containing ethylferrocene or TMAE vapors. The new technique could have many applications requiring robust and reliable large-area detectors for UV visualization, as for example, in Cherenkov imaging devices.

  7. Optical properties of flexible fluorescent films prepared by screen printing technology

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2018-05-01

    Full Text Available In this work, we prepared a fluorescent film comprised phosphors and silicone on flexible polyethylene terephthalate (PET substrate using a screen printing technology. The effects of mesh number and weight ratio of phosphors to silicone on the optical properties of the flexible films were investigated. The results indicate that the emission intensity of the film increase as the mesh decreased from 400 to 200, but the film surface gradually becomes uneven. The fluorescent film with high emission intensity and smooth surface can be obtained when the weight ratio of phosphor to gel is 2:1, and mesh number is 300. The luminous efficiency of the fabricated LEDs combined the fluorescent films with 460 nm Ga(InN chip module can reach 75 lm/W. The investigation indicates that the approach can be applied in the remote fluorescent film conversion and decreases the requirements of the particle size and the dispersion state of fluorescent materials.

  8. Optical properties of flexible fluorescent films prepared by screen printing technology

    Science.gov (United States)

    Chen, Yan; Ke, Taiyan; Chen, Shuijin; He, Xin; Zhang, Mei; Li, Dong; Deng, Jinfeng; Zeng, Qingguang

    2018-05-01

    In this work, we prepared a fluorescent film comprised phosphors and silicone on flexible polyethylene terephthalate (PET) substrate using a screen printing technology. The effects of mesh number and weight ratio of phosphors to silicone on the optical properties of the flexible films were investigated. The results indicate that the emission intensity of the film increase as the mesh decreased from 400 to 200, but the film surface gradually becomes uneven. The fluorescent film with high emission intensity and smooth surface can be obtained when the weight ratio of phosphor to gel is 2:1, and mesh number is 300. The luminous efficiency of the fabricated LEDs combined the fluorescent films with 460 nm Ga(In)N chip module can reach 75 lm/W. The investigation indicates that the approach can be applied in the remote fluorescent film conversion and decreases the requirements of the particle size and the dispersion state of fluorescent materials.

  9. Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology.

    Science.gov (United States)

    Lidón-Roger, José Vicente; Prats-Boluda, Gema; Ye-Lin, Yiyao; Garcia-Casado, Javier; Garcia-Breijo, Eduardo

    2018-01-21

    Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records

  10. A Stretchable Radio-Frequency Strain Sensor Using Screen Printing Technology.

    Science.gov (United States)

    Jeong, Heijun; Lim, Sungjoon

    2016-11-02

    In this paper, we propose a stretchable radio-frequency (RF) strain sensor fabricated with screen printing technology. The RF sensor is designed using a half-wavelength patch that resonates at 3.7 GHz. The resonant frequency is determined by the length of the patch, and it therefore changes when the patch is stretched. Polydimethylsiloxane (PDMS) is used to create the substrate, because of its stretchable and screen-printable surface. In addition, Dupont PE872 (Dupont, NC, American) silver conductive ink is used to create the stretchable conductive patterns. The sensor performance is demonstrated both with full-wave simulations and with measurements carried out on a fabricated sample. When the length of the patch sensor is increased by a 7.8% stretch, the resonant frequency decreases from 3.7 GHz to 3.43 GHz, evidencing a sensitivity of 3.43 × 10⁷ Hz/%. Stretching the patch along its width does not change the resonant frequency.

  11. Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology

    Directory of Open Access Journals (Sweden)

    José Vicente Lidón-Roger

    2018-01-01

    Full Text Available Among many of the electrode designs used in electrocardiography (ECG, concentric ring electrodes (CREs are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene polystyrene sulfonate; PEDOT:PSS. Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining

  12. Compliance monitoring system using screen printing technology based on conductive ink.

    Science.gov (United States)

    Hoshi, Kenji; Kawakami, Junko; Aoki, Sorama; Hamada, Kouji; Sato, Kenichi

    2012-01-01

    We developed a compliance monitoring system that electrically detects which drug among the multiple prescribed drugs a patient has taken and the date of drug-taking by a patient to prevent the patient from missing doses and taking drugs incorrectly at home. A conductive pattern is screen printed using conductive ink (silver paste) on the surface of a calendar-type pill organizer containing medications for as long as 1 week (4 times per day × 7 days, 28 doses) to create a sensor for detecting the opening of a pill organizer. Whenever the patient opens the pill organizer and removes a dose of the drug (pill), information about which of the 28 locations is opened and the date of opening are recorded in nonvolatile memory. This system is applicable to patients who take multiple drugs, for whom recording of drug-taking behavior is reportedly difficult. Specific benefits are that the user needs no additional manipulation to use the system: the user can take the drug from the pill organizer according to usual procedures.

  13. Inkjet and screen printing for electronic applications

    OpenAIRE

    Medina Rodríguez, Beatriz

    2016-01-01

    Printed electronics (PE) is a set of printing methods used to create electrical devices on various substrates. Printing typically uses common printing equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography, and inkjet. Electrically functional, electronic or optical inks are deposited on the substrate, creating active or passive devices. PE offers a great advantage when compared to traditional processes or microelectronics du...

  14. Realization of superconductive films by screen printing

    International Nuclear Information System (INIS)

    Baudry, H.

    1988-01-01

    Screen printing is a promising method to manufacture superconductive lines making use of superconductive ceramics. An ink has been realized with YBa 2 Cu 3 0 7-x' and the process conditions defined by thermal analysis. A superconductive transition is observed after screen printing on MgO. The firing of the layer is made at 920 0 C followed by a reoxidation step at 420 0 C. The silver electrical contacts are also screen printed [fr

  15. Functional electronic screen printing – electroluminescent smart fabric watch

    OpenAIRE

    de Vos, Marc; Torah, Russel; Beeby, Steve; Tudor, John

    2013-01-01

    Motivation for screen printed smart fabrics.Introduce functional electronic screen printing on fabrics.Printed smart fabric watch design.Printing process for electroluminescent watch.Demonstration video.Conclusions and further work.Examples of other screen printed smart fabrics.

  16. Patterning of PMMA microfluidic parts using screen printing process

    Science.gov (United States)

    Ahari Kaleibar, Aminreza; Rahbar, Mona; Haiducu, Marius; Parameswaran, Ash M.

    2010-02-01

    An inexpensive and rapid micro-fabrication process for producing PMMA microfluidic components has been presented. Our proposed technique takes advantages of commercially available economical technologies such as the silk screen printing and UV patterning of PMMA substrates to produce the microfluidic components. As a demonstration of our proposed technique, we had utilized a homemade deep-UV source, λ=254nm, a silk screen mask made using a local screen-printing shop and Isopropyl alcohol - water mixture (IPA-water) as developer to quickly define the microfluidic patterns. The prototyped devices were successfully bonded, sealed, and the device functionality tested and demonstrated. The screen printing based technique can produce microfluidic channels as small as 50 micrometers quite easily, making this technique the most cost-effective, fairly high precision and at the same time an ultra economical plastic microfluidic components fabrication process reported to date.

  17. Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Akhtar Hayat

    2014-06-01

    Full Text Available Screen printing technology is a widely used technique for the fabrication of electrochemical sensors. This methodology is likely to underpin the progressive drive towards miniaturized, sensitive and portable devices, and has already established its route from “lab-to-market” for a plethora of sensors. The application of these sensors for analysis of environmental samples has been the major focus of research in this field. As a consequence, this work will focus on recent important advances in the design and fabrication of disposable screen printed sensors for the electrochemical detection of environmental contaminants. Special emphasis is given on sensor fabrication methodology, operating details and performance characteristics for environmental applications.

  18. Triaxial MEMS accelerometer with screen printed PZT thick film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Almind, Ninia Sejersen; Brodersen, Simon Hedegaard

    2010-01-01

    . In this work integration of a screen printed piezoelectric PZT thick film with silicon MEMS technology is shown. A high bandwidth triaxial accelerometer has been designed, fabricated and characterized. The voltage sensitivity is 0.31 mV/g in the vertical direction, 0.062 mV/g in the horizontal direction...

  19. Screen printed thick film based pMUT arrays

    DEFF Research Database (Denmark)

    Hedegaard, Tobias; Pedersen, T; Thomsen, Erik Vilain

    2008-01-01

    This article reports on the fabrication and characterization of lambda-pitched piezoelectric micromachined ultrasound transducer (pMUT) arrays fabricated using a unique process combining conventional silicon technology and low cost screen printing of thick film PZT. The pMUTs are designed as 8...

  20. A screen-printed flexible flow sensor

    International Nuclear Information System (INIS)

    Moschos, A; Kaltsas, G; Syrovy, T; Syrova, L

    2017-01-01

    A thermal flow sensor was printed on a flexible plastic substrate using exclusively screen-printing techniques. The presented device was implemented with custom made screen-printed thermistors, which allows simple, cost-efficient production on a variety of flexible substrates while maintaining the typical advantages of thermal flow sensors. Evaluation was performed for both static (zero flow) and dynamic conditions using a combination of electrical measurements and IR imaging techniques in order to determine important characteristics, such as temperature response, output repeatability, etc. The flow sensor was characterized utilizing the hot-wire and calorimetric principles of operation, while the preliminary results appear to be very promising, since the sensor was successfully evaluated and displayed adequate sensitivity in a relatively wide flow range. (paper)

  1. Disposable screen-printed sensors for determination of duloxetine hydrochloride

    Directory of Open Access Journals (Sweden)

    Alarfaj Nawal A

    2012-01-01

    Full Text Available Abstract A screen-printed disposable electrode system for the determination of duloxetine hydrochloride (DL was developed using screen-printing technology. Homemade printing has been characterized and optimized on the basis of effects of the modifier and plasticizers. The fabricated bi-electrode potentiometric strip containing both working and reference electrodes was used as duloxetine hydrochloride sensor. The proposed sensors worked satisfactorily in the concentration range from 1.0 × 10-6-1.0 × 10-2 mol L-1 with detection limit reaching 5.0 × 10-7 mol L-1 and adequate shelf life of 6 months. The method is accurate, precise and economical. The proposed method has been applied successfully for the analysis of the drug in pure and in its dosage forms. In this method, there is no interference from any common pharmaceutical additives and diluents. Results of the analysis were validated statistically by recovery studies.

  2. Screen-printed silver-ink antennas for frequency-reconfigurable architectures in LTE phones

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Holmgaard, Tobias; Christensen, Morten

    2014-01-01

    Screen printing is a proven manufacturing technology enabling high volume production at low cost. This letter investigates the achievable efficiency of a screen-printed silver antenna structure for 4G mobile phone implementation, with a market-ready solution. The contribution of each element...

  3. Batch fabrication of disposable screen printed SERS arrays.

    Science.gov (United States)

    Qu, Lu-Lu; Li, Da-Wei; Xue, Jin-Qun; Zhai, Wen-Lei; Fossey, John S; Long, Yi-Tao

    2012-03-07

    A novel facile method of fabricating disposable and highly reproducible surface-enhanced Raman spectroscopy (SERS) arrays using screen printing was explored. The screen printing ink containing silver nanoparticles was prepared and printed on supporting materials by a screen printing process to fabricate SERS arrays (6 × 10 printed spots) in large batches. The fabrication conditions, SERS performance and application of these arrays were systematically investigated, and a detection limit of 1.6 × 10(-13) M for rhodamine 6G could be achieved. Moreover, the screen printed SERS arrays exhibited high reproducibility and stability, the spot-to-spot SERS signals showed that the intensity variation was less than 10% and SERS performance could be maintained over 12 weeks. Portable high-throughput analysis of biological samples was accomplished using these disposable screen printed SERS arrays.

  4. Screen-printing ink transfer in a sexual assault case.

    Science.gov (United States)

    Amick, Janeice F; Beheim, Chris W

    2002-05-01

    Yellow plastic-like particles were discovered on the clothing and body of a sexual assault victim. These particles were later associated to an athletic jersey with flaking yellow screen-printed numbers and letters, worn by the suspect. Depending on its intended substrate, screen-print ink can vary in color and composition. Particles dislodged from screen-printed garments may exhibit fabric impressions. Screen-printed clothing, commonly encountered in forensic casework, should be viewed as a potential source of trace evidence.

  5. PRINTING TECHNIQUES: RECENT DEVELOPMENTS IN PHARMACEUTICAL TECHNOLOGY.

    Science.gov (United States)

    Jamroz, Witold; Kurek, Mateusz; Lyszczarz, Ewelina; Brniak, Witold; Jachowicz, Renata

    2017-05-01

    In the last few years there has been a huge progress in a development of printing techniques and their application in pharmaceutical sciences and particularly in the pharmaceutical technology. The variety of printing methods makes it necessary to systemize them, explain the principles of operation, and specify the possibilities of their use in pharmaceutical technology. This paper aims to review the printing techniques used in a drug development process. The growing interest in 2D and 3D printing methods results in continuously increasing number of scientific papers. Introduction of the first printed drug Spritam@ to the market seems to be a milestone of the 3D printing development. Thus, a particular aim of this review is to show the latest achievements of the researchers in the field of the printing medicines.

  6. Stabilization of glucose-oxidase in the graphene paste for screen-printed glucose biosensor

    Science.gov (United States)

    Pepłowski, Andrzej; Janczak, Daniel; Jakubowska, Małgorzata

    2015-09-01

    Various methods and materials for enzyme stabilization within screen-printed graphene sensor were analyzed. Main goal was to develop technology allowing immediate printing of the biosensors in single printing process. Factors being considered were: toxicity of the materials used, ability of the material to be screen-printed (squeezed through the printing mesh) and temperatures required in the fabrication process. Performance of the examined sensors was measured using chemical amperometry method, then appropriate analysis of the measurements was conducted. The analysis results were then compared with the medical requirements. Parameters calculated were: correlation coefficient between concentration of the analyte and the measured electrical current (0.986) and variation coefficient for the particular concentrations of the analyte used as the calibration points. Variation of the measured values was significant only in ranges close to 0, decreasing for the concentrations of clinical importance. These outcomes justify further development of the graphene-based biosensors fabricated through printing techniques.

  7. A research on comprehension differences between print and screen reading

    Directory of Open Access Journals (Sweden)

    Szu-Yuan Sun

    2013-12-01

    Full Text Available Since the 1980s, extensive research has been conducted comparing reading comprehension from printed text and computer screens. The conclusions, however, are not very consistent. As reading from computer screens requires a certain degree of individual technical skill, such variables should be objectively taken into consideration when conducting an experiment regarding the comparison between print and screen reading. This study analyses the difference in the level of understanding of the two presentational formats (text on printed pages and hypertext on computer screens for people between 45-54 years of age (i.e. “middleaged” adults. In our experimental findings there were no significant differences between the levels of comprehension for print and screen presentations. With regard to individual differences in gender, age group and educational level, the findings are as follows: gender and education effects on print reading comprehension performance were significant, while those on screen reading comprehension performance were not. For middle-aged computer learners, the main effect of age group on both print and screen reading comprehension performance was insignificant. In contrast, linear texts of traditional paper-based material are better for middle-aged readers’ literal text comprehension, while hypertext is beneficial to their inferential text comprehension. It is also suggested that hypermedia could be used as a cognitive tool for improving middle-aged adults’ inferential abilities on reading comprehension, provided that they were trained adequately to use available computers.

  8. Screen printed nanosized ZnO thick film

    Indian Academy of Sciences (India)

    Unknown

    The ex- tracted powder was screen printed on glass substrates using ethyl cellulose as binder and turpinol as solvent. ... racterized and a thick film paste is prepared by adding suitable .... UV peak and a broad green emission which is usually.

  9. Mod silver metallization: Screen printing and ink-jet printing

    Science.gov (United States)

    Vest, R. W.; Vest, G. M.

    1985-01-01

    Basic material efforts have proven to be very successful. Adherent and conductive films were achieved. A silver neodecanoate/bismuth 2-ethylhexanoate mixture has given the best results in both single and double layer applications. Another effort is continuing to examine the feasibility of applying metallo-organic deposition films by use of an ink jet printer. Direct line writing would result in a saving of process time and materials. So far, some well defined lines have been printed.

  10. Digital Printing Quality Detection and Analysis Technology Based on CCD

    Science.gov (United States)

    He, Ming; Zheng, Liping

    2017-12-01

    With the help of CCD digital printing quality detection and analysis technology, it can carry out rapid evaluation and objective detection of printing quality, and can play a certain control effect on printing quality. It can be said CDD digital printing quality testing and analysis of the rational application of technology, its digital printing and printing materials for a variety of printing equipments to improve the quality of a very positive role. In this paper, we do an in-depth study and discussion based on the CCD digital print quality testing and analysis technology.

  11. High-Performance Screen-Printed Thermoelectric Films on Fabrics.

    Science.gov (United States)

    Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; Ko, Dong-Su; Kim, Hyun-Sik; Kim, Sang Il; Yin, Lu; Schlossberg, Sarah M; Cui, Shuang; You, Jung-Min; Kwon, Soonshin; Zheng, Jianlin; Wang, Joseph; Chen, Renkun

    2017-08-04

    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5 Sb 1.5 Te 3 or n-type Bi 2 Te 2.7 Se 0.3 ), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.

  12. Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications.

    Science.gov (United States)

    Nunes, Jivago Serrado; Castro, Nelson; Gonçalves, Sergio; Pereira, Nélson; Correia, Vitor; Lanceros-Mendez, Senentxu

    2017-12-01

    The market for interactive platforms is rapidly growing, and touchscreens have been incorporated in an increasing number of devices. Thus, the area of smart objects and devices is strongly increasing by adding interactive touch and multimedia content, leading to new uses and capabilities. In this work, a flexible screen printed sensor matrix is fabricated based on silver ink in a polyethylene terephthalate (PET) substrate. Diamond shaped capacitive electrodes coupled with conventional capacitive reading electronics enables fabrication of a highly functional capacitive touchpad, and also allows for the identification of marked objects. For the latter, the capacitive signatures are identified by intersecting points and distances between them. Thus, this work demonstrates the applicability of a low cost method using royalty-free geometries and technologies for the development of flexible multitouch touchpads for the implementation of interactive and object recognition applications.

  13. Micro-motor with screen-printed rotor magnets

    International Nuclear Information System (INIS)

    Speliotis, Thanassis; Niarchos, Dimitris; Meneroud, Patrick; Magnac, G.; Claeyssen, Franck; Pepin, John; Fermon, Claude; Pannetier, M.; Biziere, N.

    2007-01-01

    The feasibility to develop mini- and micro-magnetic electro-mechanical systems (MEMS) has been evaluated by prototyping of a single-phase stepper motor. The main targeted application of such device is the watch industry needing micro-motors in huge quantities at low cost. The motor part that required the greatest efforts has been the magnet, which cannot yet be found in film layer. The screen-printing technology has been used for the production of NdFeB-based magnets whose properties have been characterised. The thick film magnets have been integrated in the stepper motor specially designed for this purpose. The whole motor has been characterised and conclusions are drawn on the possibility of producing thick film magnets for magnetic MEMS

  14. Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications

    Directory of Open Access Journals (Sweden)

    Jivago Serrado Nunes

    2017-12-01

    Full Text Available The market for interactive platforms is rapidly growing, and touchscreens have been incorporated in an increasing number of devices. Thus, the area of smart objects and devices is strongly increasing by adding interactive touch and multimedia content, leading to new uses and capabilities. In this work, a flexible screen printed sensor matrix is fabricated based on silver ink in a polyethylene terephthalate (PET substrate. Diamond shaped capacitive electrodes coupled with conventional capacitive reading electronics enables fabrication of a highly functional capacitive touchpad, and also allows for the identification of marked objects. For the latter, the capacitive signatures are identified by intersecting points and distances between them. Thus, this work demonstrates the applicability of a low cost method using royalty-free geometries and technologies for the development of flexible multitouch touchpads for the implementation of interactive and object recognition applications.

  15. Screen-printed nanoparticles as anti-counterfeiting tags

    Science.gov (United States)

    Campos-Cuerva, Carlos; Zieba, Maciej; Sebastian, Victor; Martínez, Gema; Sese, Javier; Irusta, Silvia; Contamina, Vicente; Arruebo, Manuel; Santamaria, Jesus

    2016-03-01

    Metallic nanoparticles with different physical properties have been screen printed as authentication tags on different types of paper. Gold and silver nanoparticles show unique optical signatures, including sharp emission bandwidths and long lifetimes of the printed label, even under accelerated weathering conditions. Magnetic nanoparticles show distinct physical signals that depend on the size of the nanoparticle itself. They were also screen printed on different substrates and their magnetic signals read out using a magnetic pattern recognition sensor and a vibrating sample magnetometer. The novelty of our work lies in the demonstration that the combination of nanomaterials with optical and magnetic properties on the same printed support is possible, and the resulting combined signals can be used to obtain a user-configurable label, providing a high degree of security in anti-counterfeiting applications using simple commercially-available sensors.

  16. Current Trends on Medical and Pharmaceutical Applications of Inkjet Printing Technology.

    Science.gov (United States)

    Scoutaris, Nicolaos; Ross, Steven; Douroumis, Dennis

    2016-08-01

    Inkjet printing is an attractive material deposition and patterning technology that has received significant attention in the recent years. It has been exploited for novel applications including high throughput screening, pharmaceutical formulations, medical devices and implants. Moreover, inkjet printing has been implemented in cutting-edge 3D-printing healthcare areas such as tissue engineering and regenerative medicine. Recent inkjet advances enabled 3D printing of artificial cartilage and skin, or cell constructs for transplantation therapies. In the coming years inkjet printing is anticipated to revolutionize personalized medicine and push the innovation portfolio by offering new paths in patient - specific treatments.

  17. Printing Technologies for Medical Applications.

    Science.gov (United States)

    Shafiee, Ashkan; Atala, Anthony

    2016-03-01

    Over the past 15 years, printers have been increasingly utilized for biomedical applications in various areas of medicine and tissue engineering. This review discusses the current and future applications of 3D bioprinting. Several 3D printing tools with broad applications from surgical planning to 3D models are being created, such as liver replicas and intermediate splints. Numerous researchers are exploring this technique to pattern cells or fabricate several different tissues and organs, such as blood vessels or cardiac patches. Current investigations in bioprinting applications are yielding further advances. As one of the fastest areas of industry expansion, 3D additive manufacturing will change techniques across biomedical applications, from research and testing models to surgical planning, device manufacturing, and tissue or organ replacement. Copyright © 2016. Published by Elsevier Ltd.

  18. Electroanalytical Sensing of Flunitrazepam Based on Screen Printed Graphene Electrodes

    Directory of Open Access Journals (Sweden)

    Enriqueta Garcia-Gutierrez

    2013-12-01

    Full Text Available We present a new electrochemical sensor for Flunitrazepam using disposable and economic Screen Printed Graphene Electrodes. It was found that the electrochemical response of this sensor was improved compared to Screen Printed Graphite Electrodes and displayed an excellent analytical performance for the detection of Flunitrazepam. Those characteristics could be attributed to the high Flunitrazepam loading capacity on the electrode surface and the outstanding electric conductivity of graphene. The methodology is shown to be useful for quantifying low levels of Flunitrazepam in a buffer solution. The protocol is also shown to be applicable for the sensing of Flunitrazepam in an alcoholic beverage e.g., Gordon’s Gin & Tonic.

  19. Rheological behavior of silver nanowire conductive inks during screen printing

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shohreh; Barkey, Dale P., E-mail: dpb@unh.edu; Gupta, Nivedita [University of New Hampshire, Department of Chemical Engineering (United States)

    2016-08-15

    The rheological behavior of silver nanowire (AgNW) suspensions adapted for screen printing inks was investigated. Aqueous silver nanowire inks consisting of AgNW (length of 30 μm, and diameter of 40 and 90 nm), dispersant and binder were formulated. The effect of AgNW content on the rheological behavior of the ink and the build-up of ink structure after screen printing were examined as they depend on applied shear and temperature. Rheological measurements under conditions that mimic the screen printing process were done to assess viscoelastic properties induced by flow alignment of the wires and the subsequent recovery of the low shear structure. The Stretched Exponential model (SEmo) was used to model the recovery process after screen printing to obtain the characteristic time of the recovery or build-up process. The characteristic time was determined at several temperatures to obtain the activation energy of recovery. The domination of Brownian motion or non-Brownian motion behavior can be characterized by a Peclet number, which is the ratio of shear rate to the rotational diffusion coefficient. The Peclet number and the dimensionless concentration of wires were used to assess the recovery mechanism. The steady viscosity at low and high shear rates was also treated by an activation energy analysis.

  20. Application of polyaniline dispersions by means of screen printing

    Czech Academy of Sciences Publication Activity Database

    Držková, M.; Peřinka, N.; Hajná, Milena; Kaplanová, M.; Stejskal, Jaroslav

    2013-01-01

    Roč. 19, č. 2013 (2013), s. 257-268 ISSN 1211-5541 R&D Projects: GA TA ČR TE01020022 Institutional support: RVO:61389013 Keywords : polyaniline * colloids * screen printing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Screen-printed piezoceramic thick films for miniaturised devices

    DEFF Research Database (Denmark)

    Lou-Moeller, R.; Hindrichsen, Christian Carstensen; Thamdrup, Lasse Højlund

    2007-01-01

    machining. On the other hand, the process of screen printing thick films involves potential problems of thermal matching and chemical compatibility at the processing temperatures between the functional film, the substrate and the electrodes. As an example of such a miniaturised device, a MEMS accelerometer...

  2. Rheological behavior of silver nanowire conductive inks during screen printing

    Science.gov (United States)

    Hemmati, Shohreh; Barkey, Dale P.; Gupta, Nivedita

    2016-08-01

    The rheological behavior of silver nanowire (AgNW) suspensions adapted for screen printing inks was investigated. Aqueous silver nanowire inks consisting of AgNW (length of 30 μm, and diameter of 40 and 90 nm), dispersant and binder were formulated. The effect of AgNW content on the rheological behavior of the ink and the build-up of ink structure after screen printing were examined as they depend on applied shear and temperature. Rheological measurements under conditions that mimic the screen printing process were done to assess viscoelastic properties induced by flow alignment of the wires and the subsequent recovery of the low shear structure. The Stretched Exponential model (SEmo) was used to model the recovery process after screen printing to obtain the characteristic time of the recovery or build-up process. The characteristic time was determined at several temperatures to obtain the activation energy of recovery. The domination of Brownian motion or non-Brownian motion behavior can be characterized by a Peclet number, which is the ratio of shear rate to the rotational diffusion coefficient. The Peclet number and the dimensionless concentration of wires were used to assess the recovery mechanism. The steady viscosity at low and high shear rates was also treated by an activation energy analysis.

  3. Rheological behavior of silver nanowire conductive inks during screen printing

    International Nuclear Information System (INIS)

    Hemmati, Shohreh; Barkey, Dale P.; Gupta, Nivedita

    2016-01-01

    The rheological behavior of silver nanowire (AgNW) suspensions adapted for screen printing inks was investigated. Aqueous silver nanowire inks consisting of AgNW (length of 30 μm, and diameter of 40 and 90 nm), dispersant and binder were formulated. The effect of AgNW content on the rheological behavior of the ink and the build-up of ink structure after screen printing were examined as they depend on applied shear and temperature. Rheological measurements under conditions that mimic the screen printing process were done to assess viscoelastic properties induced by flow alignment of the wires and the subsequent recovery of the low shear structure. The Stretched Exponential model (SEmo) was used to model the recovery process after screen printing to obtain the characteristic time of the recovery or build-up process. The characteristic time was determined at several temperatures to obtain the activation energy of recovery. The domination of Brownian motion or non-Brownian motion behavior can be characterized by a Peclet number, which is the ratio of shear rate to the rotational diffusion coefficient. The Peclet number and the dimensionless concentration of wires were used to assess the recovery mechanism. The steady viscosity at low and high shear rates was also treated by an activation energy analysis.

  4. MEMS Accelerometer with Screen Printed Piezoelectric Thick Film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Lau-Moeller, R.; Bove, T.

    2006-01-01

    A bulk-micromachined piezoelectric MEMS accelerometer with screen printed piezoelectric Pb(ZrxTil )O3(PZT) thick film (TF) as the sensing material has been fabricated and characterized. The accelerometer has a four beam structure with a central seismic mass (3600x3600x500 pm3) and a total chip size...

  5. Screen printed Y and Bi-based superconductors

    Science.gov (United States)

    Haertling, Gene H.; Hsi, Chi-Shiung

    1992-01-01

    High T(sub c) superconducting thick film was prepared by screen printing process. Y-based (YBa2Cu3O(7 - x)) superconducting thick films were printed on 211/Al2O3, SNT/Al2O3, and YSZ substrates. Because of poor adhesion of the superconducting thick films to 211/Al2O3 and SNT/Al2O3 substrates, relatively low T(sub c) and J(sub c) values were obtained from the films printed on these substrates. Critical temperatures of YBa2Cu3O(7 - x) thick films deposited on 211/Al2O3 and SNT/Al2O3 substrates were about 80 K. The critical current densities of these films were less than 2 A/cm(exp 2). Higher T(sub c) and J(sub c) films were printed on the YSZ substrates; T(sub c) = 86.4 K and J(sub c) = 50.4 A/cm(exp 2). Multiple lead samples were also prepared on the YSZ substrates. These showed lower T(sub c) and J(sub c) values than plain samples. The heat treatment conditions of the multiple lead samples are still under investigation. Bi-based superconductor thick films have been obtained so far. Improving the superconducting properties of the BSCCO screen printed thick films will be emphasized in future work.

  6. Flexible screen printed thick film thermoelectric generator with reduced material resistivity

    International Nuclear Information System (INIS)

    Cao, Z; Koukharenko, E; Torah, R N; Tudor, J; Beeby, S P

    2014-01-01

    This work presents a flexible thick-film Bismuth Tellurium/Antimony Tellurium (BiTe/SbTe) thermoelectric generator (TEG) with reduced material resistivity fabricated by screen printing technology. Cold isostatic pressing (CIP) was introduced to lower the resistivity of the printed thermoelectric materials. The Seebeck coefficient (α) and the resistivity (ρ) of printed materials were measured as a function of applied pressure. A prototype TEG with 8 thermocouples was fabricated on flexible polyimide substrate. The dimension of a single printed element was 20 mm × 2 mm × 78.4 pm. The coiled-up prototype produced a voltage of 36.4 mV and a maximum power of 40.3 nW from a temperature gradient of 20 °C

  7. Low irradiance photocatalytic degradation of toluene in air by screen-printed titanium dioxide layers

    International Nuclear Information System (INIS)

    Strini, Alberto; Sanson, Alessandra; Mercadelli, Elisa; Sangiorgi, Alex; Schiavi, Luca

    2013-01-01

    Screen-printed titania photocatalytic layers made from Degussa P25 were studied in order to assess the potential of this deposition technology for the production of catalytic surfaces for airborne pollutant degradation. The deposited catalytic TiO 2 layers were characterized by a low density (about 25% of the titania bulk crystal) typical of very porous films. The study was carried out using toluene at low concentration (12 ppb) as model pollutant and with a low UV-A irradiance level on the sample surface (200 μW cm −2 ). The catalyst layers were deposited on alumina and quartz substrates demonstrating a good catalytic depollution activity. The relationship between the layer thickness and the catalytic activity was studied in the 1 to 6.8 μm range indicating an optimal 3–4 μm film thickness. Thicker layers do not show significant increases in the catalytic activity. The optical transmittance was studied using quartz substrate samples, showing a severely reduced photon flux for layers deeper than 5 μm. The effect of post-printing thermal treatment was studied in the 500–900 °C range, demonstrating good catalytic activity for processing temperatures ≤ 700 °C. These results indicate that the screen-printing process can be a promising technology for the realization of high efficiency photocatalytic materials for air depollution applications at low UV-A irradiance. - Highlights: • Screen-printed TiO 2 has a good catalytic activity in toluene air depollution. • The overall density of screen-printed TiO 2 layer is ∼ 25% of the bulk crystal density. • The catalytic activity is demonstrated at low UV-A irradiance (200 µW cm –2 ). • The catalytic activity is dependent on the layer thickness until ∼ 4 µm thickness. • The catalytic layer has good activity up to 700 °C post-printing thermal treatment

  8. The future of 3D printing technology in biomedicine

    OpenAIRE

    Iraj Nabipour

    2015-01-01

    3D printing, one of the hottest cutting-edge interdisciplinary technologies, is projected to have revenue of $8.4 billion in 2020. #D printing technology will implement the concept of personalized medicine in medical healthcare industry and pharmaceutical fabrication. Organ printing, which it is defined as computer-aided, jet based 3D tissue-engineering of living human organs, is an interesting and challengeable field for 3D printing. Customized implants and prostheses can be produced in any ...

  9. Barium titanate thick films prepared by screen printing technique

    Directory of Open Access Journals (Sweden)

    Mirjana M. Vijatović

    2010-06-01

    Full Text Available The barium titanate (BaTiO3 thick films were prepared by screen printing technique using powders obtained by soft chemical route, modified Pechini process. Three different barium titanate powders were prepared: i pure, ii doped with lanthanum and iii doped with antimony. Pastes for screen printing were prepared using previously obtained powders. The thick films were deposited onto Al2O3 substrates and fired at 850°C together with electrode material (silver/palladium in the moving belt furnace in the air atmosphere. Measurements of thickness and roughness of barium titanate thick films were performed. The electrical properties of thick films such as dielectric constant, dielectric losses, Curie temperature, hysteresis loop were reported. The influence of different factors on electrical properties values was analyzed.

  10. Screen-printed electrode for alkali-metal thermoelectric converter

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Shibata, K.; Tsuchida, K.; Kato, A. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1992-06-01

    An alkali-metal thermoelectric converter (AMTEC) is a device for the direct conversion of thermal to electric energy. An AMTEC contains sodium as working fluid and is divided into a high-temperature region (900-1300 K) and a low-temperature region (400-800 K) by [beta]''-alumina solid electrolyte. A high-performance electrode for an AMTEC must have good electrical conductivity, make a strong physical bond with low contact resistance to [beta]''-alumina, be highly permeable to sodium vapour, resist corrosion by sodium and have a low rate of evaporation at the operating temperature of the AMTEC. We have previously investigated the interaction of nitrides and carbides of some transition-metals (groups IV, V and VI) with [beta],[beta]''-alumina or liquid sodium (about 700degC) with the objective of finding a better electrode material for an AMTEC. The results showed that TiN, TiC, NbN and NbC were good candidates for AMTEC electrodes. We also showed that porous TiN film with low resistance can be prepared by the screen-printing method. In the present work the porous NbN film was prepared by the screen-printing method and the performance as the electrode of an AMTEC was examined. For comparison, the performance of TiN and Mo electrodes prepared by the screen-printing method was also examined. (author).

  11. The future of 3D printing technology in biomedicine

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2015-07-01

    Full Text Available 3D printing, one of the hottest cutting-edge interdisciplinary technologies, is projected to have revenue of $8.4 billion in 2020. #D printing technology will implement the concept of personalized medicine in medical healthcare industry and pharmaceutical fabrication. Organ printing, which it is defined as computer-aided, jet based 3D tissue-engineering of living human organs, is an interesting and challengeable field for 3D printing. Customized implants and prostheses can be produced in any imaginable geometry through the translation of radiological images of patients into digital.stl 3D print files. The creation of anatomical models based on the patient’s pathological conditions using 3D printing technologies would provide good models for training and to design surgical approaches. Hence, 3D printing not only will transform medical healthcare industry but also promises new converging technologies in the field of regenerative medicine.

  12. Influence of Parameters of Screen Printing on Photoluminescence Properties of Nanophotonic Labels for Smart Packaging

    Directory of Open Access Journals (Sweden)

    Olha Hrytsenko

    2017-01-01

    Full Text Available Smart packaging is becoming more popular on world market as a new type of packaging able to react to changes in a packaged product during storage and informs a customer about the safety of consumption of packaged food. This article investigates the main technological issues of the use of nanophotonic printing inks based on ZnO/SiO2 nanoparticles and polyvinylpyrrolidone (PVP for printing active elements of smart packaging on paper substrates, concerning material properties and parameters of screen printing. It is determined that the use of ink compositions with medium content of ZnO/SiO2 nanoparticles allows obtaining blue-green and blue shades of luminescence color of screen printed images by changing ink layer thickness on papers with different contents of optical brightness agents (OBAs. The minimum content of ZnO/SiO2 nanoparticles in the developed fluorescent inks leads to blue luminescence colors regardless the contents of OBAs of the papers and ink layer thickness. The luminescence intensity is directly proportional to ink layer thickness and partly depends on the content of OBAs in the selected paper. In order to fabricate nanophotonic elements of smart packaging with predetermined photoluminescence properties, the influence of investigated factors on photoluminescence properties of printed nanophotonic labels should be taken into account.

  13. Screen printed silver top electrode for efficient inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junwoo [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Duraisamy, Navaneethan [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of); Lee, Taik-Min [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Kim, Inyoung, E-mail: ikim@kimm.re.kr [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Choi, Kyung-Hyun, E-mail: amm@jejunu.ac.kr [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of)

    2015-10-15

    Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinity and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.

  14. Screen printed silver top electrode for efficient inverted organic solar cells

    International Nuclear Information System (INIS)

    Kim, Junwoo; Duraisamy, Navaneethan; Lee, Taik-Min; Kim, Inyoung; Choi, Kyung-Hyun

    2015-01-01

    Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinity and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells

  15. Printed Wiring Board Cleaner Technologies Substitutes Assessment: Making Holes Conductive

    Science.gov (United States)

    This document presents comparative risk, competitiveness, and resource requirements on technologies for performing the “making holes conductive” function during printed wiring board manufacturing.

  16. Thermal Analysis of Braille Formed by Using Screen Printing and Inks with Thermo Powder

    Directory of Open Access Journals (Sweden)

    Svіtlana HAVENKO

    2015-03-01

    Full Text Available In order to improve the integration of blind people into society, suitable conditions should be provided for them. The expansion of Braille (BR use could serve the purpose. Depending on the materials used for Braille, it can be formed or printed in different ways: embossing, screen printing, thermoforming, digital printing. The aim of this research is to determine the effect of thermal properties of screen printing inks and inks with thermo-powder on the qualitative parameters of Braille. Screen printing inks and inks with thermo-powder were chosen for the research. Carrying out the qualitative analysis of printouts with Braille, the thermal stability was evaluated by analyzing the thermograms obtained with derivatograph Q-1500. This paper presents the findings of the thermogravimetric (TG, differential thermogravimetric (DTG and differential thermal analysis (DTA of printouts printed on paperboard Plike and using traditional screen printing inks and screen printing inks with thermo-powder. Based on the testing findings it is determined that thermal stability of printouts printed with thermo-powder ink is higher than printed with screen printing inks. It is determined that the appropriate temperature range of screen printing inks with thermo-powder drying is 98 ºC – 198 ºC because in this case better relief of Braille dots is obtained.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5702

  17. Screen-Printed Flexible Bandstop Filter on Polyethylene Terephthalate Substrate Based on Ag Nanoparticles

    Directory of Open Access Journals (Sweden)

    Rajendra Dhakal

    2015-01-01

    Full Text Available We present a low-power, cost-effective, highly reproducible, and disposable bandstop filter by employing high-throughput screen-printing technology. We apply large-scale printing strategies using silver-nanoparticle-based ink for the metallization of conductive wires to fabricate a bandstop filter on a polyethylene terephthalate (PET substrate. The filter exhibits an attenuation pole at 4.35 GHz with excellent in-and-out band characteristics. These characteristics reflect a rejection depth that is better than −25 dB with a return loss of −0.75 dB at the normal orientation of the PET substrate. In addition, the filter characteristics are observed at various bending angles (0°, 10°, and 20° of the PET substrate with an excellent relative standard deviation of less than 0.5%. These results confirm the accuracy, reproducibility, and independence of the resonance frequency. This screen-printing technology for well-defined nanostructures is more favorable than other complex photolithographic processes because it overcomes signal losses due to uneven surface distributions and thereby reveals a homogeneous distribution. Moreover, the proposed methodology enables incremental steps in the process of producing highly flexible and cost-effective printed-electronic radio devices.

  18. Three-dimensional printing physiology laboratory technology.

    Science.gov (United States)

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  19. Thermal characterization of screen printed conductive pastes for RFID antennas

    Energy Technology Data Exchange (ETDEWEB)

    Janeczek, Kamil, E-mail: kamil.janeczek@itr.org.pl [Tele and Radio Research Institute, 11 Ratuszowa Street, 03-450 Warsaw (Poland); Jakubowska, Malgorzata [Institute of Electronic Materials Technology, 133 Wolczynska Street, 01-919 Warsaw (Poland); Warsaw University of Technology, Institute of Metrology and Biomedical Engineering, 8 Sankt Andrzej Bobola Street, 02-525 Warsaw (Poland); Mlozniak, Anna [Institute of Electronic Materials Technology, 133 Wolczynska Street, 01-919 Warsaw (Poland); Koziol, Grazyna [Tele and Radio Research Institute, 11 Ratuszowa Street, 03-450 Warsaw (Poland)

    2012-09-01

    Thermal resistance is an essential aspect of electronic circuits designing. It leads to unexpected changes in electronic components during their work. In this study, new materials for screen printed RFID tag's antennas were characterized in terms of their resistance to thermal exposure. Polymer materials containing silver flakes, silver nanopowder, carbon nanotubes or conductive polymer PEDOT:PSS were elaborated and used for antenna printing on flexible materials. In order to verify their long term susceptibility to damages caused by the changing environmental conditions, the temperature cycling test was used in three different temperature ranges: +65 Degree-Sign C, -12 Degree-Sign C, -40 Degree-Sign C/+85 Degree-Sign C (3 h in each temp., dwell time 1 h). The highest durability to thermal exposure exhibited the paste with carbon nanotubes dispersed in poly(methyl methacrylate) PMMA and the lowest one - the paste with conductive polymer PEDOT:PSS.

  20. Thermal characterization of screen printed conductive pastes for RFID antennas

    International Nuclear Information System (INIS)

    Janeczek, Kamil; Jakubowska, Małgorzata; Młożniak, Anna; Kozioł, Grażyna

    2012-01-01

    Thermal resistance is an essential aspect of electronic circuits designing. It leads to unexpected changes in electronic components during their work. In this study, new materials for screen printed RFID tag's antennas were characterized in terms of their resistance to thermal exposure. Polymer materials containing silver flakes, silver nanopowder, carbon nanotubes or conductive polymer PEDOT:PSS were elaborated and used for antenna printing on flexible materials. In order to verify their long term susceptibility to damages caused by the changing environmental conditions, the temperature cycling test was used in three different temperature ranges: +65 °C, −12 °C, −40 °C/+85 °C (3 h in each temp., dwell time 1 h). The highest durability to thermal exposure exhibited the paste with carbon nanotubes dispersed in poly(methyl methacrylate) PMMA and the lowest one – the paste with conductive polymer PEDOT:PSS.

  1. Thermal Analysis of Braille Formed by Using Screen Printing and Inks with Thermo Powder

    OpenAIRE

    Svіtlana HAVENKO; Victoria KOCHUBEI; Marta LABETSKA; Svitlana KHADZHYNOVA; Edmundas KIBIRKŠTIS; Ingrida Venytė

    2015-01-01

    In order to improve the integration of blind people into society, suitable conditions should be provided for them. The expansion of Braille (BR) use could serve the purpose. Depending on the materials used for Braille, it can be formed or printed in different ways: embossing, screen printing, thermoforming, digital printing. The aim of this research is to determine the effect of thermal properties of screen printing inks and inks with thermo-powder on the qualitative parameters of Braille. Sc...

  2. Pseudoisochromatic test plate colour representation dependence on printing technology

    International Nuclear Information System (INIS)

    Luse, K; Ozolinsh, M; Fomins, S

    2012-01-01

    The aim of the study is to determine best printing technology for creation of colour vision deficiency tests. Valid tests for protanopia and deuteranopia were created from perceived colour matching experiments from printed colour samples by colour deficient individuals. Calibrated EpsonStylus Pro 7800 printer for ink prints and Noritsu HD 3701 digital printer for photographic prints were used. Multispectral imagery (by tunable liquid crystal filters system CRI Nuance Vis 07) data analysis show that in case of ink prints, the measured pixel colour coordinate dispersion (in the CIExy colour diagram) of similar colour arrays is smaller than in case of photographic printing. The print quality in terms of colour coordinate dispersion for printing methods used is much higher than in case of commercially available colour vision deficiency tests.

  3. Future of printing: changes and challenges, technologies and markets

    Science.gov (United States)

    Kipphan, Helmut

    1998-01-01

    Digitalization within the graphic arts industry is described and it is explained how it is improving and changing the print production strategies and which new kinds of print production systems are developed or can be expected. The relationship of printed media and electronic media is analyzed and a positioning for the next century is given. The state of the art of conventional printing technologies, especially using direct imagine techniques, and their position within the digital workflow are shortly described. Non-impact printing multicolor printing systems are explained, based on general design criteria and linked to existing and newly announced equipment. The use of high-tech components for building up successful systems with high reliability, high quality and low production costs is included with some examples. Digital printing systems open many opportunities in print production: distributed printing, personalization, print and book on demand are explained as examples. The overview of the several printing technologies and their positioning regarding quality and productivity leads to the scenario about the important position of printed media, also in the distant future.

  4. Influence of printing speed on production of embossing tools using FDM 3D printing technology

    Directory of Open Access Journals (Sweden)

    Jelena Žarko

    2017-06-01

    Full Text Available Manufacturing of the embossing tools customary implies use of metals such as zinc, magnesium, copper, and brass. In the case of short run lengths, a conventional manufacturing process and the material itself represent a significant cost, not only in the terms of material costs and the need for using complex technological systems which are necessary for their production, but also in the terms of the production time. Alternatively, 3D printing can be used for manufacturing similar embossing tools with major savings in production time and costs. However, due to properties of materials used in the 3D printing technology, expected results of embossing by 3D printed tools cannot be identical to metal ones. This problem is emphasized in the case of long run lengths and high accuracy requirement for embossed elements. The objective of this paper is primarily focused on investigating the influence of the printing speed on reproduction quality of the embossing tools printed with FDM (Fused Deposition Modelling technology. The obtained results confirmed that printing speed as a process parameter affects the reproduction quality of the embossing tools printed with FDM technology: in the case of deposition rate of 90 mm/s was noted the poorest dimensional accuracy in relation to the 3D model, which is more emphasised in case of circular and square elements. Elements printed with the highest printing speed have a greater dimensional accuracy, but with evident cracks on the surface.

  5. Nanotechnology: A Tool for Improved Performance on Electrochemical Screen-Printed (BioSensors

    Directory of Open Access Journals (Sweden)

    Elena Jubete

    2009-01-01

    Full Text Available Screen-printing technology is a low-cost process, widely used in electronics production, especially in the fabrication of disposable electrodes for (biosensor applications. The pastes used for deposition of the successive layers are based on a polymeric binder with metallic dispersions or graphite, and can also contain functional materials such as cofactors, stabilizers and mediators. More recently metal nanoparticles, nanowires and carbon nanotubes have also been included either in these pastes or as a later stage on the working electrode. This review will summarize the use of nanomaterials to improve the electrochemical sensing capability of screen-printed sensors. It will cover mainly disposable sensors and biosensors for biomedical interest and toxicity monitoring, compiling recent examples where several types of metallic and carbon-based nanostructures are responsible for enhancing the performance of these devices.

  6. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    Science.gov (United States)

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  7. All-printed capacitors with continuous solution dispensing technology

    Science.gov (United States)

    Ge, Yang; Plötner, Matthias; Berndt, Andreas; Kumar, Amit; Voit, Brigitte; Pospiech, Doris; Fischer, Wolf-Joachim

    2017-09-01

    Printed electronics have been introduced into the commercial markets in recent years. Various printing technologies have emerged aiming to process printed electronic devices with low cost, environmental friendliness, and compatibility with large areas and flexible substrates. The aim of this study is to propose a continuous solution dispensing technology for processing all-printed thin-film capacitors on glass substrates using a leading-edge printing instrument. Among all printing technologies, this study provides concrete proof of the following outstanding advantages of this technology: high tolerance to inks, high throughput, low cost, and precise pattern transfers. Ag nanoparticle ink based on glycol ethers was used to print the electrodes. To obtain dielectric ink, a copolymer powder of poly(methyl methacrylate-co-benzoylphenyl methacrylate) containing crosslinkable side groups was dissolved in anisole. Various layouts were designed to support multiple electronic applications. Scanning electron microscopy and atomic force microscopy were used to investigate the all-printed capacitor layers formed using the proposed process. Additionally, the printed capacitors were electrically characterized under direct current and alternating current. The measured electrical properties of the printed capacitors were consistent with the theoretical results.

  8. The challenge of screen printed Ag metallization on nano-scale poly-silicon passivated contacts for silicon solar cells

    Science.gov (United States)

    Jiang, Lin; Song, Lixin; Yan, Li; Becht, Gregory; Zhang, Yi; Hoerteis, Matthias

    2017-08-01

    Passivated contacts can be used to reduce metal-induced recombination for higher energy conversion efficiency for silicon solar cells, and are obtained increasing attentions by PV industries in recent years. The reported thicknesses of passivated contact layers are mostly within tens of nanometer range, and the corresponding metallization methods are realized mainly by plating/evaporation technology. This high cost metallization cannot compete with the screen printing technology, and may affect its market potential comparing with the presently dominant solar cell technology. Very few works have been reported on screen printing metallization on passivated contact solar cells. Hence, there is a rising demand to realize screen printing metallization technology on this topic. In this work, we investigate applying screen printing metallization pastes on poly-silicon passivated contacts. The critical challenge for us is to build low contact resistance that can be competitive to standard technology while restricting the paste penetrations within the thin nano-scale passivated contact layers. The contact resistivity of 1.1mohm-cm2 and the open circuit voltages > 660mV are achieved, and the most appropriate thickness range is estimated to be around 80 150nm.

  9. 3D printing technologies for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.; Swart, Benjamin; Shao, Yuyan; Wu, Gang; Zhou, Chi

    2017-10-01

    Fabrication of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limited capability in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale and from nanowatt to megawatt, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, morphology) and structure with enhanced specific energy and power densities. Moreover, the additive manufacturing nature of 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. With the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nanomaterials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focused on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale from

  10. Printing versus coating - What will be the future production technology for printed electronics?

    Energy Technology Data Exchange (ETDEWEB)

    Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank [KROENERT GmbH and Co KG, Schuetzenstrasse 105, 22761 Hamburg (Germany)

    2015-02-17

    The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.

  11. Screen printed paper-based diagnostic devices with polymeric inks.

    Science.gov (United States)

    Sun, Ju-Yen; Cheng, Chao-Min; Liao, Ying-Chih

    2015-01-01

    A simple and low-cost fabrication method for paper-based diagnostic devices (PBDDs) is described in this study. Street-available polymer solutions were screen printed onto filter papers to create hydrophobic patterns for fluidic channels. In order to obtain fully functional hydrophobic patterns for fluids, the original polymer solutions were diluted with butyl acetate to yield a suitable viscosity range between 30-200 cP for complete patterning on paper. Typical pH and glucose tests with color indicators were performed on the screen printed PBDDs. Images of the PBDDs were analyzed by computers to obtain calibration curves for pH between 2 and 12 and glucose concentration ranging from 10-1000 mmol dm(-3). Detection of formaldehyde in acetone was also carried out to show the possibility of using this PBBD for analytical detection with organic solvents. An exemplar PBDD with simultaneous pH and glucose detection was also used to demonstrate the feasibility of applying this technique for realistic diagnostic applications.

  12. Hydroxyapatite screen-printed thick films: optical and electrical properties

    International Nuclear Information System (INIS)

    Silva, C.C.; Rocha, H.H.B.; Freire, F.N.A.; Santos, M.R.P.; Saboia, K.D.A.; Goes, J.C.; Sombra, A.S.B.

    2005-01-01

    In this paper, we did a study on the structural and electrical properties of bioceramic hydroxiapatite (HA) thick films. The films were prepared in two layers using the screen-printing technique on Al 2 O 3 substrates. Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite to be used in the films. We also look for the effect of the grain size of the HA in the final properties of the film. The samples were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), infrared and Raman scattering spectroscopy and electrical measurements. We did a study of the dielectric permittivity and the loss of the films in the radio-frequency of the spectra. The X-ray diffraction patterns of the films indicate that all the peaks associated to HA phase is present in the films. One can notice that, for all the films there is a decrease of the DC (dielectric constant) with the increase of the frequency. The values of the dielectric constant of the films are in between 4 and 9 (at 1 kHz), as a function of the flux concentration. The loss is decreasing as we increase the frequency for all the films. These results strongly suggest that the screen-printing HA thick films are good candidates for applications in biocompatible coatings of implant materials

  13. Hydroxyapatite screen-printed thick films: optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C.C. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Rocha, H.H.B. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Freire, F.N.A. [Departamento de Quimica Orga-circumflex nica e Inorga-circumflex nica-UFC, Caixa Postal 6030, CEP 60455-760, Fortaleza, Ceara (Brazil); Santos, M.R.P. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Saboia, K.D.A. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Goes, J.C. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Sombra, A.S.B. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil)]. E-mail: sombra@fisica.ufc.br

    2005-07-15

    In this paper, we did a study on the structural and electrical properties of bioceramic hydroxiapatite (HA) thick films. The films were prepared in two layers using the screen-printing technique on Al{sub 2}O{sub 3} substrates. Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite to be used in the films. We also look for the effect of the grain size of the HA in the final properties of the film. The samples were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), infrared and Raman scattering spectroscopy and electrical measurements. We did a study of the dielectric permittivity and the loss of the films in the radio-frequency of the spectra. The X-ray diffraction patterns of the films indicate that all the peaks associated to HA phase is present in the films. One can notice that, for all the films there is a decrease of the DC (dielectric constant) with the increase of the frequency. The values of the dielectric constant of the films are in between 4 and 9 (at 1 kHz), as a function of the flux concentration. The loss is decreasing as we increase the frequency for all the films. These results strongly suggest that the screen-printing HA thick films are good candidates for applications in biocompatible coatings of implant materials.

  14. Applications of three-dimensional printing technology in urological practice.

    Science.gov (United States)

    Youssef, Ramy F; Spradling, Kyle; Yoon, Renai; Dolan, Benjamin; Chamberlin, Joshua; Okhunov, Zhamshid; Clayman, Ralph; Landman, Jaime

    2015-11-01

    A rapid expansion in the medical applications of three-dimensional (3D)-printing technology has been seen in recent years. This technology is capable of manufacturing low-cost and customisable surgical devices, 3D models for use in preoperative planning and surgical education, and fabricated biomaterials. While several studies have suggested 3D printers may be a useful and cost-effective tool in urological practice, few studies are available that clearly demonstrate the clinical benefit of 3D-printed materials. Nevertheless, 3D-printing technology continues to advance rapidly and promises to play an increasingly larger role in the field of urology. Herein, we review the current urological applications of 3D printing and discuss the potential impact of 3D-printing technology on the future of urological practice. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.

  15. Forensic print extraction using 3D technology and its processing

    Science.gov (United States)

    Rajeev, Srijith; Shreyas, Kamath K. M.; Panetta, Karen; Agaian, Sos S.

    2017-05-01

    Biometric evidence plays a crucial role in criminal scene analysis. Forensic prints can be extracted from any solid surface such as firearms, doorknobs, carpets and mugs. Prints such as fingerprints, palm prints, footprints and lip-prints can be classified into patent, latent, and three-dimensional plastic prints. Traditionally, law enforcement officers capture these forensic traits using an electronic device or extract them manually, and save the data electronically using special scanners. The reliability and accuracy of the method depends on the ability of the officer or the electronic device to extract and analyze the data. Furthermore, the 2-D acquisition and processing system is laborious and cumbersome. This can lead to the increase in false positive and true negative rates in print matching. In this paper, a method and system to extract forensic prints from any surface, irrespective of its shape, is presented. First, a suitable 3-D camera is used to capture images of the forensic print, and then the 3-D image is processed and unwrapped to obtain 2-D equivalent biometric prints. Computer simulations demonstrate the effectiveness of using 3-D technology for biometric matching of fingerprints, palm prints, and lip-prints. This system can be further extended to other biometric and non-biometric modalities.

  16. Advances in cervical screening technology.

    Science.gov (United States)

    Stoler, M H

    2000-03-01

    The Pap smear unquestionably is a successful screening test for cervical cancer. However, recent advances in technology have raised questions regarding whether the conventional Pap smear is still the standard of care. This article relates issues of screening and cost-effectiveness to the state of the art in thin layer preparations, cytology automation, human papillomavirus screening, human papillomavirus vaccines, and other cervical screening adjuncts. Perhaps nowhere in medicine is clinical decision making being more strongly influenced by market and other external forces than in cervical cytopathology.

  17. Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection

    International Nuclear Information System (INIS)

    Lee, Inkyu; Oh, Wan-Kyu; Jang, Jyongsik

    2013-01-01

    Highlights: •We fabricated flexible anthrax sensors with a simple screen-printing method. •The sensors selectively detected B. anthracis biomarker. •The sensors provide the visible alarm against anthrax attack. -- Abstract: Since the 2001 anthrax attacks, efforts have focused on the development of an anthrax detector with rapid response and high selectivity and sensitivity. Here, we demonstrate a fluorescence sensor for detecting anthrax biomarker with high sensitivity and selectivity using a screen-printing method. A lanthanide–ethylenediamine tetraacetic acid complex was printed on a flexible polyethersulfone film. Screen-printing deposition of fluorescent detecting moieties produced fluorescent patterns that acted as a visual alarm against anthrax

  18. Packaging Printing Today

    Directory of Open Access Journals (Sweden)

    Stanislav Bolanča

    2015-12-01

    Full Text Available Printing packaging covers today about 50% of all the printing products. Among the printing products there are printing on labels, printing on flexible packaging, printing on folding boxes, printing on the boxes of corrugated board, printing on glass packaging, synthetic and metal ones. The mentioned packaging are printed in flexo printing technique, offset printing technique, intaglio halftone process, silk – screen printing, ink ball printing, digital printing and hybrid printing process. The possibilities of particular printing techniques for optimal production of the determined packaging were studied in the paper. The problem was viewed from the technological and economical aspect. The possible printing quality and the time necessary for the printing realization were taken as key parameters. An important segment of the production and the way of life is alocation value and it had also found its place in this paper. The events in the field of packaging printing in the whole world were analyzed. The trends of technique developments and the printing technology for packaging printing in near future were also discussed.

  19. 3D-printing technologies for electrochemical applications.

    Science.gov (United States)

    Ambrosi, Adriano; Pumera, Martin

    2016-05-21

    Since its conception during the 80s, 3D-printing, also known as additive manufacturing, has been receiving unprecedented levels of attention and interest from industry and research laboratories. This is in addition to end users, who have benefited from the pervasiveness of desktop-size and relatively cheap printing machines available. 3D-printing enables almost infinite possibilities for rapid prototyping. Therefore, it has been considered for applications in numerous research fields, ranging from mechanical engineering, medicine, and materials science to chemistry. Electrochemistry is another branch of science that can certainly benefit from 3D-printing technologies, paving the way for the design and fabrication of cheaper, higher performing, and ubiquitously available electrochemical devices. Here, we aim to provide a general overview of the most commonly available 3D-printing methods along with a review of recent electrochemistry related studies adopting 3D-printing as a possible rapid prototyping fabrication tool.

  20. Advances in 3D printing & additive manufacturing technologies

    CERN Document Server

    Pandey, Pulak; Kumar, L

    2017-01-01

    This edited volume comprises select chapters on advanced technologies for 3D printing and additive manufacturing and how these technologies have changed the face of direct, digital technologies for rapid production of models, prototypes and patterns. Because of its wide applications, 3D printing and additive manufacturing technology has become a powerful new industrial revolution in the field of manufacturing. The evolution of 3D printing and additive manufacturing technologies has changed design, engineering and manufacturing processes across industries such as consumer products, aerospace, medical devices and automotives. The objective of this book is to help designers, R&D personnel, and practicing engineers understand the state-of-the-art developments in the field of 3D Printing and Additive Manufacturing. .

  1. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.

    Science.gov (United States)

    Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui

    2015-11-02

    Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydrogel bioinks with both high cell survival rate and good printability. This research would be useful for biofabrication researchers to adjust the 3D bioprinting process parameters quickly and as a referable template for designing new bioinks.

  2. Screen-Printing Fabrication and Characterization of Stretchable Electronics.

    Science.gov (United States)

    Suikkola, Jari; Björninen, Toni; Mosallaei, Mahmoud; Kankkunen, Timo; Iso-Ketola, Pekka; Ukkonen, Leena; Vanhala, Jukka; Mäntysalo, Matti

    2016-05-13

    This article focuses on the fabrication and characterization of stretchable interconnects for wearable electronics applications. Interconnects were screen-printed with a stretchable silver-polymer composite ink on 50-μm thick thermoplastic polyurethane. The initial sheet resistances of the manufactured interconnects were an average of 36.2 mΩ/◽, and half the manufactured samples withstood single strains of up to 74%. The strain proportionality of resistance is discussed, and a regression model is introduced. Cycling strain increased resistance. However, the resistances here were almost fully reversible, and this recovery was time-dependent. Normalized resistances to 10%, 15%, and 20% cyclic strains stabilized at 1.3, 1.4, and 1.7. We also tested the validity of our model for radio-frequency applications through characterization of a stretchable radio-frequency identification tag.

  3. Screen-Printing Fabrication and Characterization of Stretchable Electronics

    Science.gov (United States)

    Suikkola, Jari; Björninen, Toni; Mosallaei, Mahmoud; Kankkunen, Timo; Iso-Ketola, Pekka; Ukkonen, Leena; Vanhala, Jukka; Mäntysalo, Matti

    2016-01-01

    This article focuses on the fabrication and characterization of stretchable interconnects for wearable electronics applications. Interconnects were screen-printed with a stretchable silver-polymer composite ink on 50-μm thick thermoplastic polyurethane. The initial sheet resistances of the manufactured interconnects were an average of 36.2 mΩ/◽, and half the manufactured samples withstood single strains of up to 74%. The strain proportionality of resistance is discussed, and a regression model is introduced. Cycling strain increased resistance. However, the resistances here were almost fully reversible, and this recovery was time-dependent. Normalized resistances to 10%, 15%, and 20% cyclic strains stabilized at 1.3, 1.4, and 1.7. We also tested the validity of our model for radio-frequency applications through characterization of a stretchable radio-frequency identification tag. PMID:27173424

  4. Properties of screen-printed modified graphite layers

    Directory of Open Access Journals (Sweden)

    J. Walter

    2010-07-01

    Full Text Available During last years protection of the environment is one of the important problems that should be solved by modern technology. Theimportant problems are toxic gases emitted by conventional power plants. One of the methods that contribute to decreasing air pollution is manufacturing of cheap solar energy devices that could be applied in households. Among different type of fabrication technology of solar cells, DSSC technology looks like one of the interesting because it is relatively simple and low cost technology. Nowadays a lot of researcher groups making investigations to improve its setup, to get the cost reduction. The methods to achieve this goal were proposed in ISE (Germany as a concept of monolithic dye sensitised solar cell. One of the ideas of this solar cells setup is replacing expensive TCO electrode by much cheaper graphite electrode. Replacing TCO glass by graphite layer has to be done only in case of comparable properties of those both electrodes. There are some tested ideas of manufacturing that electrode and some of them are successfully applied. Presented work has been focused on preparation graphite conductive electrode for DSSC technology application, fabricated by screen–printing technique. Investigations concern new graphite past composition suitable for graphite layer preparation. It was been found that applying additive of titanium organic compound (Tyzor GBA to the past composition result in good properties, characterised by low resistance and good adhesion between graphite particles in the printed layer. Some tested layers prepared from proposed paste compositions characterised by better conductivity then applied in conventional DSSC cells counter electrode. The optimal addition of the modifier has not fixed yet.Among tested pastes the most promising results has been achieved for paste contained the biggest amount of Tyzor GBA.

  5. Optimization of screen-printed ruthenium dioxide electrodes for pH measurements

    International Nuclear Information System (INIS)

    Wyzkiewicz, I.

    2002-01-01

    Optimization of disposable, screen-printed pH-sensors based on ruthenium dioxide is described in this paper. The electrodes were prepared with the use of thick-film technology. The pH-sensitive layers were deposited onto polyester foil. Polymer graphite paste containing ruthenium dioxide from 0% to 90% has been investigated. The dependence of the pH-sensitive layers related to ruthenium dioxide content is presented. The investigation proved that the electrodes containing 40-60% ruthenium dioxide exhibit linear high sensitivity (∼ 50 mV/pH) in the wide range of pH (2 - 11) as well as very good reproducibility. (author)

  6. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics.

    Science.gov (United States)

    Hyun, Woo Jin; Secor, Ethan B; Hersam, Mark C; Frisbie, C Daniel; Francis, Lorraine F

    2015-01-07

    High-resolution screen printing of pristine graphene is introduced for the rapid fabrication of conductive lines on flexible substrates. Well-defined silicon stencils and viscosity-controlled inks facilitate the preparation of high-quality graphene patterns as narrow as 40 μm. This strategy provides an efficient method to produce highly flexible graphene electrodes for printed electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Implementing Cleaner Printed Wiring Board Technologies: Surface Finishes

    Science.gov (United States)

    This document describes the problems, solutions, and time and effort involved in implementing alternative surface finish technologies, and this guide is produced as part of the DfE Printed Wiring Board Project

  8. Properties and Printability of Inkjet and Screen-Printed Silver Patterns for RFID Antennas

    Science.gov (United States)

    Salmerón, José F.; Molina-Lopez, Francisco; Briand, Danick; Ruan, Jason J.; Rivadeneyra, Almudena; Carvajal, Miguel A.; Capitán-Vallvey, L. F.; de Rooij, Nico F.; Palma, Alberto J.

    2014-02-01

    We report the modeling, and geometrical and electrical characterization, of inkjet and screen-printed patterns on different polymeric substrates for use as antennas in radio-frequency identification (RFID) applications. We compared the physical and electrical characteristics of two silver nanoparticle-based commercial inkjet-printable inks and one screen-printable silver paste, when deposited on polyimide (PI), polyethylene terephthalate (PET), and polyetherimide (PEI) substrates. First, the thickness of the inkjet-printed patterns was predicted by use of an analytical model based on printing conditions and ink composition. The predicted thickness was confirmed experimentally, and geometrical characterization of the lines was completed by measuring the root-mean-square roughness of the patterns. Second, direct-current electrical characterization was performed to identify the printing conditions yielding the lowest resistivity and sheet resistance. The minimum resistivity for the inkjet-printing method was 8.6 ± 0.8 μΩ cm, obtained by printing four stacked layers of one of the commercial inks on PEI, whereas minimum resistivity of 44 ± 7 μΩ cm and 39 ± 4 μΩ cm were obtained for a single layer of screen-printed ink on polyimide (PI) with 140 threads/cm mesh and 90 threads/cm mesh, respectively. In every case, these minimum values of resistivity were obtained for the largest tested thickness. Coplanar waveguide transmission lines were then designed and characterized to analyze the radio-frequency (RF) performance of the printed patterns; minimum transmission losses of 0.0022 ± 0.0012 dB/mm and 0.0016 ± 0.0012 dB/mm measured at 13.56 MHz, in the high-frequency (HF) band, were achieved by inkjet printing on PEI and screen printing on PI, respectively. At 868 MHz, in the ultra-high-frequency band, the minimum values of transmission loss were 0.0130 ± 0.0014 dB/mm for inkjet printing on PEI and 0.0100 ± 0.0014 dB/mm for screen printing on PI. Although the

  9. The influence of the accelerated ageing on the black screen element of the Electroink prints

    Energy Technology Data Exchange (ETDEWEB)

    Majnaric, I; Bolanca, Z; Mirkovic, I Bolanca, E-mail: majnaric@grf.h, E-mail: zbolanca@grf.h, E-mail: ibolanca@grf.h [University of Zagreb Faculty of Graphic Arts, Getaldiceva 2, 10 000 Zagreb (Croatia)

    2010-06-01

    Printing material and prints undergo changes during ageing which can be recognized in deterioration in the physical, chemical and optical properties. The aim of this work is to determine the optical changes of the prints caused by ageing of the printing material and of the prints obtained by the application of the indirect electrophotography. The change of the screen elements in lighter halftone areas, which was obtained by the usage of the microscopic image analysis, has been discussed in the article. For the preparation of samples the following papers were used: fine art paper, recycled paper and offset paper as well as black Electroink. Three sample series were observed: prints on nonaged paper and ElectroInk, prints on aged paper and ElectroInk and prints on aged paper and nonaged ElectroInk. The investigation results show that by ageing of the uncoated printing substrates the decrease of the dots on prints can be expected, while the printing on the aged paper results in the increased reproduction of the halftone dots. The obtained results are the contribution to the explanation of the influence of the accelerated ageing process of papers which are used for printing and the aged prints on the halftone dot changes. Except the mentioned determined scientific contribution the results are applicable in the area of the printing product quality as well as in the forensic science.

  10. The influence of the accelerated ageing on the black screen element of the Electroink prints

    International Nuclear Information System (INIS)

    Majnaric, I; Bolanca, Z; Mirkovic, I Bolanca

    2010-01-01

    Printing material and prints undergo changes during ageing which can be recognized in deterioration in the physical, chemical and optical properties. The aim of this work is to determine the optical changes of the prints caused by ageing of the printing material and of the prints obtained by the application of the indirect electrophotography. The change of the screen elements in lighter halftone areas, which was obtained by the usage of the microscopic image analysis, has been discussed in the article. For the preparation of samples the following papers were used: fine art paper, recycled paper and offset paper as well as black Electroink. Three sample series were observed: prints on nonaged paper and ElectroInk, prints on aged paper and ElectroInk and prints on aged paper and nonaged ElectroInk. The investigation results show that by ageing of the uncoated printing substrates the decrease of the dots on prints can be expected, while the printing on the aged paper results in the increased reproduction of the halftone dots. The obtained results are the contribution to the explanation of the influence of the accelerated ageing process of papers which are used for printing and the aged prints on the halftone dot changes. Except the mentioned determined scientific contribution the results are applicable in the area of the printing product quality as well as in the forensic science.

  11. [The clinical application of three dimention printing technology].

    Science.gov (United States)

    Zhong, S Z; Fang, C H

    2016-09-01

    In recent years, the three-dimentional(3D)printing technology is gradually applied in medicine.Now, the 3D printing has already play an important role in medical education, surgical device development, prosthesis implantation and so on.There are still many challenges and difficulties in the clinical overall application of 3D printing for some time, but it also contains a huge application prospect.Once with appropriate applications of this technology, it will be a major breakthrough in iatrical history once more.

  12. Personalized development of human organs using 3D printing technology.

    Science.gov (United States)

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Colorectal Cancer Screening and Chinese Americans: Efficacy of Lay Health Worker Outreach and Print Materials.

    Science.gov (United States)

    Nguyen, Tung T; Tsoh, Janice Y; Woo, Kent; Stewart, Susan L; Le, Gem M; Burke, Adam; Gildengorin, Ginny; Pasick, Rena J; Wang, Jun; Chan, Elaine; Fung, Lei-Chun; Jih, Jane; McPhee, Stephen J

    2017-03-01

    Chinese Americans have low colorectal cancer (CRC) screening rates. Evidence-based interventions to increase CRC screening in this population are lacking. This study aims to compare the efficacy of two interventions in increasing CRC screening among Chinese Americans. Cluster randomized comparative trial. From 2010 to 2014, a community-academic team conducted this study in San Francisco, CA with Chinese Americans aged 50-75 years who spoke English, Cantonese, or Mandarin. Lay health worker (LHW) intervention plus in-language brochure (LHW+Print) versus brochure (Print). LHWs in the LHW+Print arm were trained to teach participants about CRC in two small group sessions and two telephone calls. Change in self-reports of ever having had CRC screening and being up to date for CRC screening from baseline to 6 months post-intervention. Statistical analysis was performed from 2014 to 2015. This study recruited 58 LHWs, who in turn recruited 725 participants. The average age of the participants was 62.2 years, with 81.1% women and 99.4% foreign born. Knowledge increase was significant (pPrint group and six in the Print group. Both groups had increases in having ever been screened for CRC (LHW+Print, 73.9%-88.3%, pPrint, 72.3%-79.5%, p=0.0003) and being up to date for CRC screening (LHW+Print, 60.0%-78.1%, pPrint, 58.1%-64.1%, p=0.0003). In multivariable analyses, the intervention OR for LHW+Print versus Print was 1.94 (95% CI=1.34, 2.79) for ever screening and 2.02 (95% CI=1.40, 2.90) for being up to date. Both in-language print materials and LHW outreach plus print materials increased CRC screening among Chinese Americans. The combination of LHW+Print was more effective than Print alone. These findings can guide clinicians and policymakers in choosing appropriate interventions to increase CRC screening among Chinese American immigrants. This study is registered at www.clinicaltrials.gov NCT00947206. Copyright © 2016 American Journal of Preventive Medicine. Published by

  14. Printing technologies for biomolecule and cell-based applications.

    Science.gov (United States)

    Ihalainen, Petri; Määttänen, Anni; Sandler, Niklas

    2015-10-30

    Biomolecules, such as enzymes, proteins and other biomacromolecules (polynucleotides, polypeptides, polysaccharides and DNA) that are immobilized on solid surfaces are relevant to many areas of science and technology. These functionalized surfaces have applications in biosensors, chromatography, diagnostic immunoassays, cell culturing, DNA microarrays and other analytical techniques. Printing technologies offer opportunities in this context. The main interests in printing biomolecules are in immobilizing them on surfaces for sensors and catalysts or for controlled delivery of protein-based drugs. Recently, there have been significant developments in the use of inkjet printing for dispensing of proteins, biomacromolecules and cells. This review discusses the use of roll-to-roll and inkjet printing technologies in manufacturing of biomolecule and cell-based applications. Copyright © 2015. Published by Elsevier B.V.

  15. Glucose biosensor based on disposable electrochemical paper-based transducers fully fabricated by screen-printing.

    Science.gov (United States)

    Lamas-Ardisana, P J; Martínez-Paredes, G; Añorga, L; Grande, H J

    2018-06-30

    This paper describes a new approach for the massive production of electrochemical paper-based analytical devices (ePADs). These devices are fully fabricated by screen-printing technology and consist of a lineal microfluidic channel delimited by hydrophobic walls (patterned with diluted ultraviolet screen-printing ink in chromatographic paper grade 4) and a three-electrode system (printed with carbon and/or Ag/AgCl conductive inks). The printing process was characterised and optimized for pattern each layer with only one squeeze sweep. These ePADs were used as transducers to develop a glucose biosensor. Ionic strength/pH buffering salts, electrochemical mediator (ferricyanide) and enzyme (glucose dehydrogenase FAD-dependent) were separately stored along the microfluidic channel in order to be successively dissolved and mixed after the sample dropping at the entrance. The analyses required only 10 µl and the biosensors showed good reproducibility (RSD = 6.2%, n = 10) and sensitivity (0.426 C/M cm 2 ), wide linear range (0.5-50 mM; r 2 = 0.999) and low limit of detection (0.33 mM). Furthermore, the new biosensor was applied for glucose determination in five commercial soft-drinks without any sample treatment before the analysis. These samples were also analysed with a commercial enzymatic-kit assay. The results indicated that both methods provide accurate results. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Printing technologies in fabrication of drug delivery systems.

    Science.gov (United States)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri; Genina, Natalja; Peltonen, Jouko; Sandler, Niklas

    2013-12-01

    There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way for personalized dosing and tailor-made dosage forms. In this review, the most recent observations and advancements in fabrication of drug delivery systems by utilizing printing technologies are summarized. A general overview of 2D printing techniques is presented including a review of the most recent literature where printing techniques are used in fabrication of drug delivery systems. The future perspectives and possible impacts on formulation strategies, flexible dosing and personalized medication of using printing techniques for fabrication of drug delivery systems are discussed. It is evident that there is an urgent need to meet the challenges of rapidly growing trend of personalization of medicines through development of flexible drug-manufacturing approaches. In this context, various printing technologies, such as inkjet and flexography, can play an important role. Challenges on different levels exist and include: i) technological development of printers and production lines; ii) printable formulations and carrier substrates; iii) quality control and characterization; and iv) regulatory perspectives.

  17. Screen Printing of Highly Loaded Silver Inks on Plastic Substrates Using Silicon Stencils.

    Science.gov (United States)

    Hyun, Woo Jin; Lim, Sooman; Ahn, Bok Yeop; Lewis, Jennifer A; Frisbie, C Daniel; Francis, Lorraine F

    2015-06-17

    Screen printing is a potential technique for mass-production of printed electronics; however, improvement in printing resolution is needed for high integration and performance. In this study, screen printing of highly loaded silver ink (77 wt %) on polyimide films is studied using fine-scale silicon stencils with openings ranging from 5 to 50 μm wide. This approach enables printing of high-resolution silver lines with widths as small as 22 μm. The printed silver lines on polyimide exhibit good electrical properties with a resistivity of 5.5×10(-6) Ω cm and excellent bending tolerance for bending radii greater than 5 mm (tensile strains less than 0.75%).

  18. Inkjet printing technology for OPV applications

    NARCIS (Netherlands)

    Ren, M.; Sweelssen, J.; Grossiord, N.; Gorter, H.; Eggenhuisen, T.M.; Andriessen, H.A.J.M.

    2012-01-01

    Large-scale production of organic photovoltaics (OPVs) at low cost is, still, a future concept thought to promote the market share of solar energy. Working towards the roll-to-roll production of OPVs, different compatible deposition techniques are investigated. Inkjet printing is a promising

  19. Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing

    Science.gov (United States)

    Yafia, Mohamed; Shukla, Saurabh; Najjaran, Homayoun

    2015-05-01

    In this work, a new fabrication method is presented for digital microfluidic (DMF) devices in which the electrodes are generated using the screen printing technique. This method is applicable to both rigid and flexible substrates. The proposed screen printing approach, as a batch printing technique, is advantageous to the widely reported DMF fabrication methods in terms of fabrication time, cost and capability of mass production. Screen printing provides an effective means for printing different types of conductive materials on a variety of substrates. Specifically, screen printing of conductive silver and carbon based inks is performed on paper, glass and wax paper. As a result, the fabricated DMF devices are characterized by being flexible, disposable and incinerable. Hence, the main advantage of screen printing carbon based inks on paper substrates is more pronounced for point-of-care applications that require a large number of low cost DMF chips, and laboratory setups that lack sophisticated microfabrication facilities. The resolution of the printed DMF electrodes generated by this technique is examined for proof of concept using manual screen printing, but higher resolution screens and automated machines are available off-the-shelf, if needed. Another contribution of this research is the improved actuation techniques that facilitate droplet transport in electrode configurations with relatively large electrode spacing to alleviate the disadvantage of lower resolution screens. Thus, we were able to reduce the cost of fabrication significantly without compromising the DMF performance. The paper-based devices have already shown to be effective in continuous microfluidics domain, so the investigation of their applicability in DMF systems is worthwhile. With this in mind, successful integration of a paper-based microchannel with paper-based digital microfluidic chip is demonstrated in this work.

  20. Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing

    International Nuclear Information System (INIS)

    Yafia, Mohamed; Shukla, Saurabh; Najjaran, Homayoun

    2015-01-01

    In this work, a new fabrication method is presented for digital microfluidic (DMF) devices in which the electrodes are generated using the screen printing technique. This method is applicable to both rigid and flexible substrates. The proposed screen printing approach, as a batch printing technique, is advantageous to the widely reported DMF fabrication methods in terms of fabrication time, cost and capability of mass production. Screen printing provides an effective means for printing different types of conductive materials on a variety of substrates. Specifically, screen printing of conductive silver and carbon based inks is performed on paper, glass and wax paper. As a result, the fabricated DMF devices are characterized by being flexible, disposable and incinerable. Hence, the main advantage of screen printing carbon based inks on paper substrates is more pronounced for point-of-care applications that require a large number of low cost DMF chips, and laboratory setups that lack sophisticated microfabrication facilities. The resolution of the printed DMF electrodes generated by this technique is examined for proof of concept using manual screen printing, but higher resolution screens and automated machines are available off-the-shelf, if needed. Another contribution of this research is the improved actuation techniques that facilitate droplet transport in electrode configurations with relatively large electrode spacing to alleviate the disadvantage of lower resolution screens. Thus, we were able to reduce the cost of fabrication significantly without compromising the DMF performance. The paper-based devices have already shown to be effective in continuous microfluidics domain, so the investigation of their applicability in DMF systems is worthwhile. With this in mind, successful integration of a paper-based microchannel with paper-based digital microfluidic chip is demonstrated in this work. (note)

  1. Continuous fine pattern formation by screen-offset printing using a silicone blanket

    Science.gov (United States)

    Nomura, Ken-ichi; Kusaka, Yasuyuki; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Takahashi, Seiya; Nakajima, Shin-ichiro; Iwata, Shiro

    2014-09-01

    Screen-offset printing combines screen-printing on a silicone blanket with transference of the print from the blanket to a substrate. The blanket absorbs organic solvents in the ink, and therefore, the ink does not disperse through the material. This prevents blurring and allows fine patterns with widths of a few tens of micrometres to be produced. However, continuous printing deteriorates the pattern’s shape, which may be a result of decay in the absorption abilities of the blanket. Thus, we have developed a new technique for refreshing the blanket by substituting high-boiling-point solvents present on the blanket surface with low-boiling-point solvents. We analyse the efficacy of this technique, and demonstrate continuous fine pattern formation for 100 screen-offset printing processes.

  2. Continuous fine pattern formation by screen-offset printing using a silicone blanket

    International Nuclear Information System (INIS)

    Nomura, Ken-ichi; Kusaka, Yasuyuki; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Takahashi, Seiya; Nakajima, Shin-ichiro; Iwata, Shiro

    2014-01-01

    Screen-offset printing combines screen-printing on a silicone blanket with transference of the print from the blanket to a substrate. The blanket absorbs organic solvents in the ink, and therefore, the ink does not disperse through the material. This prevents blurring and allows fine patterns with widths of a few tens of micrometres to be produced. However, continuous printing deteriorates the pattern’s shape, which may be a result of decay in the absorption abilities of the blanket. Thus, we have developed a new technique for refreshing the blanket by substituting high-boiling-point solvents present on the blanket surface with low-boiling-point solvents. We analyse the efficacy of this technique, and demonstrate continuous fine pattern formation for 100 screen-offset printing processes. (paper)

  3. Screen-printed electro grafted electrode for trace uranium analysis

    Energy Technology Data Exchange (ETDEWEB)

    Betelu, St.; Vautrin-Ui, Ch.; Chausse, A. [Univ Evry Val Essonne, LAMBE, CNRS CEA, UMR 8587, F-91025 Evry, (France); Ly, J. [CEA, L3MR, Ctr Etud Saclay, DEN DANS DPC SECR, F-91191 Gif Sur Yvette, (France)

    2009-07-01

    This paper reports the interest of the novel 4-carboxyphenyl-grafted screen-printed electrodes (4-CP-SPEs) for sub-nano-molar analysis of uranium in water samples. Electrodes were easily prepared via electrochemically reduction of the corresponding diazonium salt. The stability of the grafted layer has been clearly demonstrated. Uranium detection was then achieved by immersing the grafted electrode into the sample solution, followed by the electrochemical measurement of adsorbed U(VI) by square wave voltammetry. Adsorption time was investigated so as to find the best compromise between analysis time, repeatability and reproducibility. Limit of detection and quantitation reached 7 * 10{sup -10} and 2 * 10{sup -9} mol L{sup -1} respectively. Moreover, interference study was conducted with Zn(II), Cd(II), Pb(II) and Cu(II); no major interference was established. 4-CP-SPEs were finally applied for uranium determination in estuarine water demonstrating the convenience of these electrodes for environmental analysis. (authors)

  4. Graphene screen-printed radio-frequency identification devices on flexible substrates

    NARCIS (Netherlands)

    Arapov, K.; Jaakkola, K.; Ermolov, V.; Bex, G.; Rubingh, E.; Haque, S.; Sandberg, H.; Abbel, R.; de With, G.; Friedrich, H.

    2016-01-01

    Despite the great promise of printed flexible electronics from 2D crystals, and especially graphene, few scalable applications have been reported so far that can be termed roll-to-roll compatible. Here we combine screen printed graphene with photonic annealing to realize radio-frequency

  5. Drug-printing by flexographic printing technology--a new manufacturing process for orodispersible films.

    Science.gov (United States)

    Janssen, Eva Maria; Schliephacke, Ralf; Breitenbach, Armin; Breitkreutz, Jörg

    2013-01-30

    Orodispersible films (ODFs) are intended to disintegrate within seconds when placed onto the tongue. The common way of manufacturing is the solvent casting method. Flexographic printing on drug-free ODFs is introduced as a highly flexible and cost-effective alternative manufacturing method in this study. Rasagiline mesylate and tadalafil were used as model drugs. Printing of rasagiline solutions and tadalafil suspensions was feasible. Up to four printing cycles were performed. The possibility to employ several printing cycles enables a continuous, highly flexible manufacturing process, for example for individualised medicine. The obtained ODFs were characterised regarding their mechanical properties, their disintegration time, API crystallinity and homogeneity. Rasagiline mesylate did not recrystallise after the printing process. Relevant film properties were not affected by printing. Results were comparable to the results of ODFs manufactured with the common solvent casting technique, but the APIs are less stressed through mixing, solvent evaporation and heat. Further, loss of material due to cutting jumbo and daughter rolls can be reduced. Therefore, a versatile new manufacturing technology particularly for processing high-potent low-dose or heat sensitive drugs is introduced in this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. 2016 China Academic Conference on Printing, Packaging Engineering & Media Technology

    CERN Document Server

    Ouyang, Yun; Xu, Min; Yang, Li; Ouyang, Yujie

    2017-01-01

    This book includes a selection of reviewed papers presented at the 2016 China Academic Conference on Printing, Packaging Engineering & Media Technology, held on November 25-27, 2016 in Xi’an, China. The conference was jointly organized by China Academy of Printing Technology, Xi’an University of Technology and Stuttgart Media University of Germany. The proceedings cover the recent outcomes on color science and technology, image processing technology, digital media technology, digital process management technology in packaging and packaging etc. They will be of interest to university researchers, R&D engineers and graduate students in graphic communications, packaging, color science, image science, material science, computer science, digital media and network technology fields.

  7. SCREEN-PRINTED TYROSINASE-CONTAINING ELECTRODES FOR THE BIOSENSING OF ENZYME INHIBITORS

    Science.gov (United States)

    Disposal amperometric inhibition biosensors have been microfabricated by screen printing a tyrosinase-containing carbon ink. The decrease in the substrate (catechol) steady-state current, caused by the addition of various pesticides and herbicides, offers convenient quantitation ...

  8. Detection of Antibiotics and Evaluation of Antibacterial Activity with Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Florentina-Daniela Munteanu

    2018-03-01

    Full Text Available This review provides a brief overview of the fabrication and properties of screen-printed electrodes and details the different opportunities to apply them for the detection of antibiotics, detection of bacteria and antibiotic susceptibility. Among the alternative approaches to costly chromatographic or ELISA methods for antibiotics detection and to lengthy culture methods for bacteria detection, electrochemical biosensors based on screen-printed electrodes present some distinctive advantages. Chemical and (biosensors for the detection of antibiotics and assays coupling detection with screen-printed electrodes with immunomagnetic separation are described. With regards to detection of bacteria, the emphasis is placed on applications targeting viable bacterial cells. While the electrochemical sensors and biosensors face many challenges before replacing standard analysis methods, the potential of screen-printed electrodes is increasingly exploited and more applications are anticipated to advance towards commercial analytical tools.

  9. Possible Applications of 3D Printing Technology on Textile Substrates

    Science.gov (United States)

    Korger, M.; Bergschneider, J.; Lutz, M.; Mahltig, B.; Finsterbusch, K.; Rabe, M.

    2016-07-01

    3D printing is a rapidly emerging additive manufacturing technology which can offer cost efficiency and flexibility in product development and production. In textile production 3D printing can also serve as an add-on process to apply 3D structures on textiles. In this study the low-cost fused deposition modeling (FDM) technique was applied using different thermoplastic printing materials available on the market with focus on flexible filaments such as thermoplastic elastomers (TPE) or Soft PLA. Since a good adhesion and stability of the 3D printed structures on textiles are essential, separation force and abrasion resistance tests were conducted with different kinds of printed woven fabrics demonstrating that a sufficient adhesion can be achieved. The main influencing factor can be attributed to the topography of the textile surface affected by the weave, roughness and hairiness offering formlocking connections followed by the wettability of the textile surface by the molten polymer, which depends on the textile surface energy and can be specifically controlled by washing (desizing), finishing or plasma treatment of the textile before the print. These basic adhesion mechanisms can also be considered crucial for 3D printing on knitwear.

  10. Analysis of the Optical Properties of Screen-Printed and Aerosol-Printed and Plated Fingers of Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    R. Woehl

    2008-01-01

    Full Text Available One main efficiency loss in industrial solar cells is the shading of the cell caused by the metal front side contacts. With the aerosol-printing technique plus an additional light-induced plating (LIP step, not only is the geometrical contact width narrowed compared to screen-printed contacts but also the shape of the finger changes. In this work, the effective shading of different finger types is analysed with two different measurement methods. The essential parameter for characterising the finger is the effective width which can be reduced drastically compared to the geometrical width due to total internal reflection at the glass-air layer and the reflection from the roundish edges of the contact fingers into the cell. This parameter was determined with different methods. It could be shown that for aerosol-printed fingers the effective (optical width is only 38% of its geometrical width, while for standard screen-printed fingers it is 47%. The measured values are compared to a theoretical model for an aerosol-printed and plated finger and are in good agreement.

  11. [Effect of 3D printing technology on pelvic fractures:a Meta-analysis].

    Science.gov (United States)

    Zhang, Yu-Dong; Wu, Ren-Yuan; Xie, Ding-Ding; Zhang, Lei; He, Yi; Zhang, Hong

    2018-05-25

    To evaluate the effect of 3D printing technology applied in the surgical treatment of pelvic fractures through the published literatures by Meta-analysis. The PubMed database, EMCC database, CBM database, CNKI database, VIP database and Wanfang database were searched from the date of database foundation to August 2017 to collect the controlled clinical trials in wich 3D printing technology was applied in preoperative planning of pelvic fracture surgery. The retrieved literatures were screened according to predefined inclusion and exclusion criteria, and quality evaluation were performed. Then, the available data were extracted and analyzed with the RevMan5.3 software. Totally 9 controlled clinical trials including 638 cases were chosen. Among them, 279 cases were assigned to the 3D printing technology group and 359 cases to the conventional group. The Meta-analysis results showed that the operative time[SMD=-2.81, 95%CI(-3.76, -1.85)], intraoperative blood loss[SMD=-3.28, 95%CI(-4.72, -1.85)] and the rate of complication [OR=0.47, 95%CI(0.25, 0.87)] in the 3D printing technology were all lower than those in the conventional group;the excellent and good rate of pelvic fracture reduction[OR=2.09, 95%CI(1.32, 3.30)] and postoperative pelvic functional restoration [OR=1.94, 95%CI(1.15, 3.28) in the 3D printing technology were all superior to those in the conventional group. 3D printing technology applied in the surgical treatment of pelvic fractures has the advantage of shorter operative time, less intraoperative blood loss and lower rate of complication, and can improve the quality of pelvic fracture reduction and the recovery of postoperative pelvic function. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  12. Horseradish peroxidase-screen printed biosensors for determination of Ochratoxin A.

    Science.gov (United States)

    Alonso-Lomillo, M Asunción; Domínguez-Renedo, Olga; Román, Lorena Del Torno-de; Arcos-Martínez, M Julia

    2011-02-28

    This work summarizes the manufacturing procedure of Horseradish peroxidase (HRP) based biosensors for the determination of the mycotoxin Ochratoxin A (OTA). The biosensors have been fabricated using the single technology of screen-printing. That is to say, an HRP containing ink has been directly screen-printed onto carbon electrodes, which offers a higher rapidity and simplicity in the manufacturing process of biosensors for OTA determination. The formal redox potential of the Fe(III/II) moiety of HRP has been used to demonstrate the effective loading of enzyme into the ink. The chronoamperometric oxidation current registered has been successfully related to the concentration of OTA in solution from different samples, including beer ones. Under the optimum conditions of the experimental variables, precision in terms of reproducibility and repeatability has been calculated in the concentration range from 23.85 to 203.28 nM. A relative standard deviation for the slopes of 10% (n = 4) was obtained for reproducibility. In the case of repeatability, the biosensor retained a 30% of the initial sensitivity after the third calibration. The average capability of detection for 0.05% probabilities of false positive and negative was 26.77 ± 3.61 nM (α = 0.05 and β=0.05, n = 3). Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens

    Science.gov (United States)

    Vasilescu, Alina; Nunes, Gilvanda; Hayat, Akhtar; Latif, Usman; Marty, Jean-Louis

    2016-01-01

    Food allergens are proteins from nuts and tree nuts, fish, shellfish, wheat, soy, eggs or milk which trigger severe adverse reactions in the human body, involving IgE-type antibodies. Sensitive detection of allergens in a large variety of food matrices has become increasingly important considering the emergence of functional foods and new food manufacturing technologies. For example, proteins such as casein from milk or lysozyme and ovalbumin from eggs are sometimes used as fining agents in the wine industry. Nonetheless, allergen detection in processed foods is a challenging endeavor, as allergen proteins are degraded during food processing steps involving heating or fermentation. Detection of food allergens was primarily achieved via Enzyme-Linked Immuno Assay (ELISA) or by chromatographic methods. With the advent of biosensors, electrochemical affinity-based biosensors such as those incorporating antibodies and aptamers as biorecognition elements were also reported in the literature. In this review paper, we highlight the success achieved in the design of electrochemical affinity biosensors based on disposable screen-printed electrodes towards detection of protein allergens. We will discuss the analytical figures of merit for various disposable screen-printed affinity sensors in relation to methodologies employed for immobilization of bioreceptors on transducer surface. PMID:27827963

  14. The Boom in 3D-Printed Sensor Technology

    Science.gov (United States)

    Xu, Yuanyuan; Wu, Xiaoyue; Guo, Xiao; Kong, Bin; Zhang, Min; Qian, Xiang; Mi, Shengli; Sun, Wei

    2017-01-01

    Future sensing applications will include high-performance features, such as toxin detection, real-time monitoring of physiological events, advanced diagnostics, and connected feedback. However, such multi-functional sensors require advancements in sensitivity, specificity, and throughput with the simultaneous delivery of multiple detection in a short time. Recent advances in 3D printing and electronics have brought us closer to sensors with multiplex advantages, and additive manufacturing approaches offer a new scope for sensor fabrication. To this end, we review the recent advances in 3D-printed cutting-edge sensors. These achievements demonstrate the successful application of 3D-printing technology in sensor fabrication, and the selected studies deeply explore the potential for creating sensors with higher performance. Further development of multi-process 3D printing is expected to expand future sensor utility and availability. PMID:28534832

  15. Inkjet printing technology and conductive inks synthesis for microfabrication techniques

    International Nuclear Information System (INIS)

    Dang, Mau Chien; Dung Dang, Thi My; Fribourg-Blanc, Eric

    2013-01-01

    Inkjet printing is an advanced technique which reliably reproduces text, images and photos on paper and some other substrates by desktop printers and is now used in the field of materials deposition. This interest in maskless materials deposition is coupled with the development of microfabrication techniques for the realization of circuits or patterns on flexible substrates for which printing techniques are of primary interest. This paper is a review of some results obtained in inkjet printing technology to develop microfabrication techniques at Laboratory for Nanotechnology (LNT). Ink development, in particular conductive ink, study of printed patterns, as well as application of these to the realization of radio-frequency identification (RFID) tags on flexible substrates, are presented. (paper)

  16. Future of the particle replication in nonwetting templates (PRINT) technology.

    Science.gov (United States)

    Xu, Jing; Wong, Dominica H C; Byrne, James D; Chen, Kai; Bowerman, Charles; DeSimone, Joseph M

    2013-06-24

    Particle replication in nonwetting templates (PRINT) is a continuous, roll-to-roll, high-resolution molding technology which allows the design and synthesis of precisely defined micro- and nanoparticles. This technology adapts the lithographic techniques from the microelectronics industry and marries these with the roll-to-roll processes from the photographic film industry to enable researchers to have unprecedented control over particle size, shape, chemical composition, cargo, modulus, and surface properties. In addition, PRINT is a GMP-compliant (GMP=good manufacturing practice) platform amenable for particle fabrication on a large scale. Herein, we describe some of our most recent work involving the PRINT technology for application in the biomedical and material sciences. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Future of laser electrophotographic technology for color document printing

    Science.gov (United States)

    Shahin, Michael M.

    1997-04-01

    Recent years have witnessed the development of laser electrophotography as one of the major technologies for document printing, serving a wide range of market applications. With the evolution of color and market demand for color hard copy, electrophotography is again taking center stage to serve the customer need in quality, cost and convenience. Today, electrophotographic technology is used to offer products for color document printing for desktop, mid-volume and high-speed applications. Total cost of ownership, convenience and quality today favor the use of this technology over alternatives in many applications. Development of higher speed color electrophotographic engines demands very high speed, Raster Input Processors and pre-press applications that are expected to become available in the market during the next five years. This presentation will cover the changing environment of office communication and the continuing role of electrophotography in color document printing.

  18. Investigation of the influence of heat transfer on screen printed textile conductor

    Science.gov (United States)

    Kazani, I.; De Mey, G.; Hertleer, C.; Guxho, G.; Van Langenhove, L.

    2017-10-01

    Two different textile substrates were screen printed with silver-based inks in order to be electrically conductive. In every textile four conductors were printed with different widths in order to investigate the influence of heat transfer on each conductor. This was done, by using the thermo graphic camera and through the evaluation of each conductor’s profile. It was found that the conductors printed on the white textile had higher values of heat transfer compared to the other conductors printed on the dark textiles.

  19. Dynamic Membrane Technology for Printing Wastewater Reuse

    Science.gov (United States)

    Liu, Lin; Lu, Xujie; Chen, Jihua

    As environmental regulations become rigid and the cost of freshwater increases, wastewater is considered as a major resource in China. The paper presented a study on the implementation of the advanced treatment process using dynamic membrane (DM) in reusing of printing wastewater. The DM was well formed by circulating 1.5g/L of PAC in 20 minutes, the trans-membrane pressure of 200 kPa and the cross-flow velocity of 0.75m/s. The printing effluents were treated in effluent treatment plants comprising a physicochemical option followed by biological process. The treated effluent contained chemical oxygen demand (COD), color and turbidity in the range of 45-60 mg/L, 0.030-0.045 (absorbance at 420 nm) and 3-5 NTU. The results showed that the COD, color and turbidity removal efficiencies of the DM permeate were 84%, 85% and 80%, respectively. The wastewater treated by DM was reused as process water and the final concentrated retentate could be discharged directly into sewage treatment works with no additional treatments. Cleaning and regeneration of DM were very convenient if necessary. The proper process was that the polluted DM was cleaned with tap water at high cross-flow velocity. When irreversible pollutants accumulate, it would be rinsed with chemicals tested and the membrane flux would be restored up to 95%. The result showed that DM was considered as a promising method for purification aimed at reuse of printing wastewater, resulting in direct environmental and economic benefits.

  20. Innovative 3D-printing technology in the fashion industry

    OpenAIRE

    Anna Rykavishnikova; Anna Evseeva

    2015-01-01

    This article describes improved methods of 3D-printing technology is their advantage, as well as used in modern fashion-industry. 3D-press began with the image on a fabric, flags, banners, advertising signs, furniture upholstery design, souvenirs. Improved and most commonly used in the fashion industry 3D-printing technology is the selective laser sintering. 3D-press is also used in the production of not only clothing, but also footwear company Nike; glasses, rings and other accessories.

  1. Indirect X-ray Detectors Based on Inkjet-Printed Photodetectors with a Screen-Printed Scintillator Layer.

    Science.gov (United States)

    Oliveira, Juliana; Correia, Vitor; Sowade, Enrico; Etxebarria, Ikerne; Rodriguez, Raul D; Mitra, Kalyan Y; Baumann, Reinhard R; Lanceros-Mendez, Senentxu

    2018-04-18

    Organic photodetectors (PDs) based on printing technologies will allow to expand the current field of PD applications toward large-area and flexible applications in areas such as medical imaging, security, and quality control, among others. Inkjet printing is a powerful digital tool for the deposition of smart and functional materials on various substrates, allowing the development of electronic devices such as PDs on various substrates. In this work, inkjet-printed PD arrays, based on the organic thin-film transistor architecture, have been developed and applied for the indirect detection of X-ray radiation using a scintillator ink as an X-ray absorber. The >90% increase of the photocurrent of the PDs under X-ray radiation, from about 53 nA without the scintillator film to about 102 nA with the scintillator located on top of the PD, proves the suitability of the developed printed device for X-ray detection applications.

  2. Print2Screen Mobile App: Embedding Multimedia in Printed ODL Course Materials Using QR Codes

    Science.gov (United States)

    Abeywardena, Ishan Sudeera

    2017-01-01

    With the rise of OER and multimedia such as YouTube videos, many academic institutions are becoming mindful of the richness they bring into the teaching and learning process. Given that multimedia resources cannot be directly integrated into printed material, the only available alternative is to print hyperlinks, which teachers and learners can…

  3. Duplicating the fine art reproduction process: the technology used for guerilla ink-jet printing

    Science.gov (United States)

    Herron, Stephen

    1998-12-01

    Accurate, automatic color reproduction is the goal of much of color technology. However, there is a need to improve reproduction in only the luminous or gray axis. Quadtone reproduction takes advantage of the four device CMYK color planes to provide greater gray-scale depth within the limitations of 8-bit per channel band-width. 'Quadtone' refers to photos reproduced using four tones of the same colorant. It is the printed imposition of four carefully selected shades of ink that result in a greater number of densities. Guerilla printing is a collection of algorithms using the CMYK channels to simulate traditional photography on an inkjet printer. Guerilla printing increases density values, defines detail and produces near continuous-tone screens.

  4. Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application

    Directory of Open Access Journals (Sweden)

    Keiichiro Yamanaka

    2016-10-01

    Full Text Available In this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly move on to electrochemical biosensors. Drawing from research undertaken in this area, we cover the development of electrochemical DNA biosensors in great detail. Through specific examples, we describe the fabrication and surface modification of printed electrodes for sensitive and selective detection of targeted DNA sequences, as well as integration with reverse transcription-polymerase chain reaction (RT-PCR. For a more rounded approach, we also touch on electrochemical immunosensors and enzyme-based biosensors. Last, we present some electrochemical devices specifically developed for use with SPEs, including USB-powered compact mini potentiostat. The coupling demonstrates the practical use of printable electrode technologies for application at point-of-use. Although tremendous advances have indeed been made in this area, a few challenges remain. One of the main challenges is application of these technologies for on-field analysis, which involves complicated sample matrices.

  5. Development of a Hydrogen Peroxide Sensor Based on Screen-Printed Electrodes Modified with Inkjet-Printed Prussian Blue Nanoparticles

    Directory of Open Access Journals (Sweden)

    Stefano Cinti

    2014-08-01

    Full Text Available A sensor for the simple and sensitive measurement of hydrogen peroxide has been developed which is based on screen printed electrodes (SPEs modified with Prussian blue nanoparticles (PBNPs deposited using piezoelectric inkjet printing. PBNP-modified SPEs were characterized using physical and electrochemical techniques to optimize the PBNP layer thickness and electroanalytical conditions for optimum measurement of hydrogen peroxide. Sensor optimization resulted in a limit of detection of 2 × 10−7 M, a linear range from 0 to 4.5 mM and a sensitivity of 762 μA∙mM–1∙cm–2 which was achieved using 20 layers of printed PBNPs. Sensors also demonstrated excellent reproducibility (<5% rsd.

  6. Packaging Printing Today

    OpenAIRE

    Stanislav Bolanča; Igor Majnarić; Kristijan Golubović

    2015-01-01

    Printing packaging covers today about 50% of all the printing products. Among the printing products there are printing on labels, printing on flexible packaging, printing on folding boxes, printing on the boxes of corrugated board, printing on glass packaging, synthetic and metal ones. The mentioned packaging are printed in flexo printing technique, offset printing technique, intaglio halftone process, silk – screen printing, ink ball printing, digital printing and hybrid printing process. T...

  7. Printing technologies in fabrication of drug delivery systems

    DEFF Research Database (Denmark)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri

    2013-01-01

    INTRODUCTION: There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way...... for personalized dosing and tailor-made dosage forms.\

  8. Fabrication of a Textile-Based Wearable Blood Leakage Sensor Using Screen-Offset Printing

    Directory of Open Access Journals (Sweden)

    Ken-ichi Nomura

    2018-01-01

    Full Text Available We fabricate a wearable blood leakage sensor on a cotton textile by combining two newly developed techniques. First, we employ a screen-offset printing technique that avoids blurring, short circuiting between adjacent conductive patterns, and electrode fracturing to form an interdigitated electrode structure for the sensor on a textile. Furthermore, we develop a scheme to distinguish blood from other substances by utilizing the specific dielectric dispersion of blood observed in the sub-megahertz frequency range. The sensor can detect blood volumes as low as 15 μL, which is significantly lower than those of commercially available products (which can detect approximately 1 mL of blood and comparable to a recently reported value of approximately 10 μL. In this study, we merge two technologies to develop a more practical skin-friendly sensor that can be applied for safe, stress-free blood leakage monitoring during hemodialysis.

  9. The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes.

    Science.gov (United States)

    Randviir, Edward P; Brownson, Dale A C; Metters, Jonathan P; Kadara, Rashid O; Banks, Craig E

    2014-03-14

    We report the fabrication, characterisation (SEM, Raman spectroscopy, XPS and ATR) and electrochemical implementation of novel screen-printed graphene electrodes. Electrochemical characterisation of the fabricated graphene electrodes is undertaken using an array of electroactive redox probes and biologically relevant analytes, namely: potassium ferrocyanide(II), hexaammine-ruthenium(III) chloride, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), β-nicotinamide adenine dinucleotide (NADH), L-ascorbic acid (AA), uric acid (UA) and dopamine hydrochloride (DA). The electroanalytical capabilities of the fabricated electrodes are also considered towards the sensing of AA and DA. The electrochemical and (electro)analytical performances of the fabricated screen-printed graphene electrodes are considered with respect to the relative surface morphologies and material compositions (elucidated via SEM, Raman, XPS and ATR spectroscopy), the density of electronic states (% global coverage of edge-plane like sites/defects) and the specific fabrication conditions utilised. Comparisons are made between two screen-printed graphene electrodes and alternative graphite based screen-printed electrodes. The graphene electrodes are fabricated utilising two different commercially prepared 'graphene' inks, which have long screen ink lifetimes (>3 hours), thus this is the first report of a true mass-reproducible screen-printable graphene ink. Through employment of appropriate controls/comparisons we are able to report a critical assessment of these screen-printed graphene electrodes. This work is of high importance and demonstrates a proof-of-concept approach to screen-printed graphene electrodes that are highly reproducible, paving the way for mass-producible graphene sensing platforms in the future.

  10. Roll-to-Roll Screen Printed Radio Frequency Identification Transponder Antennas for Vehicle Tracking Systems

    Science.gov (United States)

    Zichner, Ralf; Baumann, Reinhard R.

    2013-05-01

    Vehicle tracking systems based on ultra high frequency (UHF) radio frequency identification (RFID) technology are already introduced to control the access to car parks and corporate premises. For this field of application so-called Windshield RFID transponder labels are used, which are applied to the inside of the windshield. State of the art for manufacturing these transponder antennas is the traditional lithography/etching approach. Furthermore the performance of these transponders is limited to a reading distance of approximately 5 m which results in car speed limit of 5 km/h for identification. However, to achieve improved performance compared to existing all-purpose transponders and a dramatic cost reduction, an optimized antenna design is needed which takes into account the special dielectric and in particular metallic car environment of the tag and an roll-to-roll (R2R) printing manufacturing process. In this paper we focus on the development of a customized UHF RFID transponder antenna design, which is adopted for vehicle geometry as well as R2R screen printing manufacturing processes.

  11. Porous screen printed indium tin oxide (ITO) for NOx gas sensing

    International Nuclear Information System (INIS)

    Mbarek, H.; Saadoun, M.; Bessais, B.

    2007-01-01

    Tin-doped Indium Oxide (ITO) films were prepared by the screen printing method. Transparent and conductive ITO thin films were obtained from an organometallic based paste fired in an Infrared furnace. The Screen printed ITO films were found to be granular and porous. This specific morphology was found to be suitable for sensing different gaseous species. This work investigates the possibility of using screen printed (ITO) films as a specific material for efficient NO x gas sensing. It was found that screen printed ITO is highly sensitive and stable towards NO x , especially for gas concentration higher than 50 ppm and starting from a substrate working temperature of about 180 C. The sensitivity of the ITO films increases with increasing NO x concentration and temperature. The sensitivity and stability of the screen printed ITO based sensors were studied within time. The ITO crystallite grain size dimension was found to be a key parameter that influences the gas response characteristics. Maximum gas sensitivity and minimum response time were observed for ITO films having lower crystallite size dimensions. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Smart printing technology for counterfeit deterrence

    Science.gov (United States)

    Harrop, Peter J.

    1996-03-01

    Smart (intelligent) printing is the creation of useful patterns beyond alphanumerics and graphics immediately obvious to the human eye. It employs smart inks, patterns, surfaces and substrates. Recent proliferation of color copiers, personal computers and scanners has facilitated a tenfold increase in counterfeiting in many countries over the past three years. Banknotes, cheques, academic certificates, art work, visitors passes, venue tickets and many other artifacts have been compromised. Paradoxically, the best counterfeits produced by some foreign governments and organized crime are rarely the main problem. The secret services of many countries use forensic science to great effect in pursuing these fairly readily identified sources of limited number. Bad counterfeits usually made on color copiers or computers, with or without color scanners, are the most difficult to combat because they are made by very large numbers of casual counterfeiters who may never commit crime again. For instance, counterfeit banknotes intercepted by the Bundesbank have been photocopies in a fluctuating range of 50 - 84% of cases in the last four reported years. Cheque and other document fraud is also inflated by these burgeoning bad copies and here we must add amateurish alterations using copiers or scanners. For instance, a better academic degree can mean a better job, an interbank transfer form can be 'raised' in value by enormous amounts. The issuer of a 'bad' counterfeit does not mind that it is usually picked up on a second transferral. They are long gone by then or, with banknotes, they can deny that they issued it. First priority in reversing the upward trend of counterfeiting must not therefore be the creation of better secret features traceable by forensic laboratories over extended periods of time. Rather we need better and more obvious optically unique features, not easily emulated, that can be spotted in the split second when several, say, banknotes are handed over in a

  13. Novel screen printed electrode set for routine EEG recordings in patients with altered mental status.

    Science.gov (United States)

    Myllymaa, Sami; Lepola, Pasi; Hukkanen, Taina; Oun, Andre; Mervaala, Esa; Toyras, Juha; Lappalainen, Reijo; Myllymaa, Katja

    2013-01-01

    There is a growing need for an easy to use screening tool for the assessment of brain's electrical function in patients with altered mental status (AMS). The purpose of this study is to give a brief overview of the state-of-the-art in electrode technology, and to present a novel sub-hairline electrode set developed in our research group. Screen-printing technology was utilized to construct the electrode set consisting of ten electroencephalography (EEG) electrodes, two electrooculography (EOG) electrodes, two ground electrodes and two reference electrodes. Electrical characteristics of hydrogel-coated silver ink electrodes were found adequate for clinical EEG recordings as assessed by electrical impedance spectroscopy (EIS). The skin-electrode impedances remain stable and low enough at least two days enabling high-quality long-term recordings. Due to the proper material selection, thin ink layers and detachable zero insertion force (ZIF) - connector, electrode was observed to be CT- and MRI-compatible allowing imaging without removing the electrodes. Pilot EEG recordings gave very promising results and an on-going clinical trial with larger number of patients will show the true feasibility of this approach.

  14. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals.

    Science.gov (United States)

    Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J; Zhang, Yanliang

    2016-09-12

    Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm(2) with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.

  15. Screen-printed Tin-doped indium oxide (ITO) films for NH3 gas sensing

    International Nuclear Information System (INIS)

    Mbarek, Hedia; Saadoun, Moncef; Bessais, Brahim

    2006-01-01

    Gas sensors using metal oxides have several advantageous features such as simplicity in device structure and low cost fabrication. In this work, Tin-doped indium oxide (ITO) films were prepared by the screen printing technique onto glass substrates. The granular and porous structure of screen-printed ITO are suitable for its use in gas sensing devices. The resistance of the ITO films was found to be strongly dependent on working temperatures and the nature and concentration of the ambient gases. We show that screen-printed ITO films have good sensing properties toward NH 3 vapours. The observed behaviors are explained basing on the oxidizing or the reducer nature of the gaseous species that react on the surface of the heated semi-conducting oxide

  16. Leveling and thixotropic characteristics of concentrated zirconia inks for screen-printing

    DEFF Research Database (Denmark)

    Phair, John; Lundberg, Mats; Kaiser, Andreas

    2009-01-01

    of ethyl cellulose (binder) content upon the thixotropic and leveling characteristics of zirconia inks. While the yield stress (τ 0), extent of recovery R(%), and rate of recovery (K) increase with increasing binder content, so did the surface roughness and thickness of the screen-printed films. Increasing...... the binder content not only increases the network strength of the thick films but also leads to increased leveling time. As a result, rheological modifiers are proposed to be necessary to improve the leveling characteristics of zirconia inks without losing the green strength of the thick films......Screen-printing is a cost-effective method for the mass manufacture of zirconia-based solid oxide fuel cells (SOFCs) and oxygen separation membranes. The present work outlines an investigation into the leveling, thixotropic, and screen-printing characteristics of concentrated zirconia inks...

  17. Disposable screen-printed bismuth electrode modified with multi-walled carbon nanotubes for electrochemical stripping measurements.

    Science.gov (United States)

    Niu, Xiangheng; Zhao, Hongli; Lan, Minbo

    2011-01-01

    Integrating the advantages of screen printing technology with the encouraging electroanalytical characteristic of metallic bismuth, we developed an ultrasensitive and disposable screen-printed bismuth electrode (SPBE) modified with multi-walled carbon nanotubes (MWCNTs) for electrochemical stripping measurements. Metallic bismuth powders and MWCNTs were homogeneously mixed with graphite-carbon ink to mass-prepare screen-printed bismuth electrode doped with multi-walled carbon nanotubes (SPBE/MWCNT). The electroanalytical performance of the prepared SPBE/MWCNT was intensively evaluated by measuring trace Hg(II) with square-wave anodic stripping voltammetry (SWASV). The results indicated that the SPBE modified with 2 wt% MWCNTs could offer a more sensitive response to trace Hg(II) than the bare SPBE. The stripping current obtained at SPBE/MWCNT was linear with Hg(II) concentration in the range from 0.2 to 40 µg/L (R(2) = 0.9976), with a detection limit of 0.09 µg/L (S/N = 3) under 180 s accumulation. The proposed "mercury-free" electrode, with extremely simple preparation and ultrahigh sensitivity, holds wide application prospects in both environmental and industrial monitoring. 2011 © The Japan Society for Analytical Chemistry

  18. Electrochemical characterisation of novel screen-printed carbon paste electrodes for voltammetric measurements

    Directory of Open Access Journals (Sweden)

    Sýs Milan

    2017-01-01

    Full Text Available This work is focused on the homemade screen-printed carbon paste electrode containing basically graphite powder (or glassy carbon powder, poly(vinylbchloride (PVC and paraffin oil. It compares the electrochemical properties of conventional carbon-based electrodes and prepared screen-printed carbon paste electrodes towards [Fe(CN6]3-/[Fe(CN6]4- and quinone/hydroquinone redox couples. Significant attention is paid to the development of the corresponding carbon inks, printing and the surface characterisation of the resulting electrodes by the scanning electron microscopy. An optimization consisted of the selection of the organic solvent, the optimal content of the used polymer with the chosen paste binder, appropriate isolation of electric contact, etc. Very similar properties of the prepared screen-printed electrodes, containing only corresponding carbon powder and 3 % PVC, with their conventional carbon paste electrode and glassy carbon-based electrodes, were observed during their characterisation. Screen-printed electrodes, with the pasting liquid usually provided satisfactory analytical data. Moreover, they can be used in the flow injection analysis and could undoubtedly replace the carbon paste grooved electrodes. It can be assumed that certain progress in the development of electrode materials was achieved by this research.

  19. Performances of screen-printing silver thick films: Rheology, morphology, mechanical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jung-Shiun; Liang, Jau-En; Yi, Han-Liou [Department of Chemical Engineering, National Chung Cheng University, Chia Yi 621, Taiwan, ROC (China); Chen, Shu-Hua [China Steel Corporation, Kaohsiung City 806, Taiwan, ROC (China); Hua, Chi-Chung, E-mail: chmcch@ccu.edu.tw [Department of Chemical Engineering, National Chung Cheng University, Chia Yi 621, Taiwan, ROC (China)

    2016-06-15

    Numerous recent applications with inorganic solar cells and energy storage electrodes make use of silver pastes through processes like screen-printing to fabricate fine conductive lines for electron conducting purpose. To date, however, there have been few studies that systematically revealed the properties of the silver paste in relation to the mechanical and electronic performances of screen-printing thick films. In this work, the rheological properties of a series of model silver pastes made of silver powders of varying size (0.9, 1.3, and 1.5 μm) and shape (irregular and spherical) were explored, and the results were systematically correlated with the morphological feature (scanning electron microscopy, SEM) and mechanical (peeling test) and electronic (transmission line method, TLM) performances of screen-printing dried or sintered thick films. We provided evidence of generally intimate correlations between the powder dispersion state in silver pastes—which is shown to be well captured by the rheological protocols employed herein—and the performances of screen-printing thick films. Overall, this study suggests the powder dispersion state and the associated phase behavior of a paste sample can significantly impact not only the morphological and electronic but also mechanical performances of screen-printing thick films, and, in future perspectives, a proper combination of silver powders of different sizes and even shapes could help reconcile quality and stability of an optimum silver paste. - Highlights: • Powder dispersion correlates well with screen-printing thick film performances. • Rheological fingerprints can be utilized to fathom the powder dispersion state. • Good polymer-powder interactions in the paste ensure good powder dispersion. • Time-dependent gel-like viscoelastic features are found with optimum silver pastes. • The size and shape of functional powder affect the dispersion and film performances.

  20. Three-dimensional printing: technologies, applications, and limitations in neurosurgery.

    Science.gov (United States)

    Pucci, Josephine U; Christophe, Brandon R; Sisti, Jonathan A; Connolly, Edward S

    2017-09-01

    Three-dimensional (3D) printers are a developing technology penetrating a variety of markets, including the medical sector. Since its introduction to the medical field in the late 1980s, 3D printers have constructed a range of devices, such as dentures, hearing aids, and prosthetics. With the ultimate goals of decreasing healthcare costs and improving patient care and outcomes, neurosurgeons are utilizing this dynamic technology, as well. Digital Imaging and Communication in Medicine (DICOM) can be translated into Stereolithography (STL) files, which are then read and methodically built by 3D Printers. Vessels, tumors, and skulls are just a few of the anatomical structures created in a variety of materials, which enable surgeons to conduct research, educate surgeons in training, and improve pre-operative planning without risk to patients. Due to the infancy of the field and a wide range of technologies with varying advantages and disadvantages, there is currently no standard 3D printing process for patient care and medical research. In an effort to enable clinicians to optimize the use of additive manufacturing (AM) technologies, we outline the most suitable 3D printing models and computer-aided design (CAD) software for 3D printing in neurosurgery, their applications, and the limitations that need to be overcome if 3D printers are to become common practice in the neurosurgical field. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Definition of Quality Criteria of the Technological Process of Narrow Web UV-Printing

    OpenAIRE

    Volodymyr Shybanov; Vsevolod Senkivsky; Vyacheslav Repeta; Natalia Gurgal

    2013-01-01

    The application of Narrow Web UV-flexographic printing has several advantages compared with offset printing. In particular, they are the lack of the operation of water-ink balance setting in the technological process, the ability to print on a wide range of materials and so on. Though the imprint quality is clearly based on standards in offset printing, there are no clearly indicated requirements for Narrow Web UV flexographic printing. The absence of such requirements on quality parameters o...

  2. Screen-Printed Electrodes: New Tools for Developing Microbial Electrochemistry at Microscale Level

    Directory of Open Access Journals (Sweden)

    Marta Estevez-Canales

    2015-11-01

    Full Text Available Microbial electrochemical technologies (METs have a number of potential technological applications. In this work, we report the use of screen-printed electrodes (SPEs as a tool to analyze the microbial electroactivity by using Geobacter sulfurreducens as a model microorganism. We took advantage of the small volume required for the assays (75 μL and the disposable nature of the manufactured strips to explore short-term responses of microbial extracellular electron transfer to conductive materials under different scenarios. The system proved to be robust for identifying the bioelectrochemical response, while avoiding complex electrochemical setups, not available in standard biotechnology laboratories. We successfully validated the system for characterizing the response of Geobacter sulfurreducens in different physiological states (exponential phase, stationary phase, and steady state under continuous culture conditions revealing different electron transfer responses. Moreover, a combination of SPE and G. sulfurreducens resulted to be a promising biosensor for quantifying the levels of acetate, as well as for performing studies in real wastewater. In addition, the potential of the technology for identifying electroactive consortia was tested, as an example, with a mixed population with nitrate-reducing capacity. We therefore present SPEs as a novel low-cost platform for assessing microbial electrochemical activity at the microscale level.

  3. Recent Progress in the Development of Printed Thin-Film Transistors and Circuits with High-Resolution Printing Technology.

    Science.gov (United States)

    Fukuda, Kenjiro; Someya, Takao

    2017-07-01

    Printed electronics enable the fabrication of large-scale, low-cost electronic devices and systems, and thus offer significant possibilities in terms of developing new electronics/optics applications in various fields. Almost all electronic applications require information processing using logic circuits. Hence, realizing the high-speed operation of logic circuits is also important for printed devices. This report summarizes recent progress in the development of printed thin-film transistors (TFTs) and integrated circuits in terms of materials, printing technologies, and applications. The first part of this report gives an overview of the development of functional inks such as semiconductors, electrodes, and dielectrics. The second part discusses high-resolution printing technologies and strategies to enable high-resolution patterning. The main focus of this report is on obtaining printed electrodes with high-resolution patterning and the electrical performance of printed TFTs using such printed electrodes. In the final part, some applications of printed electronics are introduced to exemplify their potential. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 3D Printing in Zero-G ISS Technology Demonstration

    Science.gov (United States)

    Johnston, Mallory M.; Werkheiser, Mary J.; Cooper, Kenneth G.; Snyder, Michael P.; Edmunson, Jennifer E.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station. The 3D Printing In Zero-G experiment will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/ objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up specialized manufacturing hardware to perform the entire range of function traditionally machining requires. The technology to produce parts on demand, in space, offers unique design options that are not possible

  5. Inkjet Printed Planar Coil Antenna Analysis for NFC Technology Applications

    Directory of Open Access Journals (Sweden)

    I. Ortego

    2012-01-01

    Full Text Available The aim of this paper is to examine the potential of inkjet printing technology for the fabrication of Near Field Communication (NFC coil antennas. As inkjet printing technology enables deposition of a different number of layers, an accurate adjustment of the printed conductive tracks thickness is possible. As a consequence, input resistance and Q factor can be finely tuned as long as skin depth is not surpassed while keeping the same inductance levels. This allows the removal of the typical damping resistance present in current NFC inductors. A general methodology including design, simulation, fabrication, and measurement is presented for rectangular, planar-spiral inductors working at 13.56 MHz. Analytical formulas, computed numerical models, and measured results for antenna input impedance are compared. Reflection coefficient is designated as a figure of merit to analyze the correlation among them, which is found to be below −10 dB. The obtained results demonstrate the suitability of this technology in the fabrication of low cost, environmentally friendly NFC coils on flexible substrates.

  6. Materials and methods for higher performance screen-printed flexible MRI receive coils.

    Science.gov (United States)

    Corea, Joseph R; Lechene, P Balthazar; Lustig, Michael; Arias, Ana C

    2017-08-01

    To develop methods for characterizing materials used in screen-printed MRI coils and improve signal-to-noise ratio (SNR) with new lower-loss materials. An experimental apparatus was created to characterize dielectric properties of plastic substrates used in receive coils. Coils were fabricated by screen printing conductive ink onto several plastic substrates. Unloaded and sample loaded quality factor (Q Unloaded /Q Loaded ) measurements and scans on a 3T scanner were used to characterize coil performance. An experimental method was developed to describe the relationship between a coil's Q Unloaded and the SNR it provides in images of a phantom. In addition, 3T scans of a phantom and the head of a volunteer were obtained with a proof-of-concept printed eight-channel array, and the results were compared with a commercial 12-channel array. Printed coils with optimized substrates exhibited up to 97% of the image SNR when compared with a traditional coil on a loading phantom. Q Unloaded and the SNR of coils were successfully correlated. The printed array resulted in images comparable to the quality given by the commercial array. Using the proposed methods and materials, the SNR of printed coils approached that of commercial coils while using a new fabrication technique that provided more flexibility and close contact with the patient's body. Magn Reson Med 78:775-783, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Improved Manufacturing Performance of Screen Printed Carbon Electrodes through Material Formulation.

    Science.gov (United States)

    Jewell, Eifion; Philip, Bruce; Greenwood, Peter

    2016-06-27

    Printed carbon graphite materials are the primary common component in the majority of screen printed sensors. Screen printing allows a scalable manufacturing solution, accelerating the means by which novel sensing materials can make the transition from laboratory material to commercial product. A common bottleneck in any thick film printing process is the controlled drying of the carbon paste material. A study has been undertaken which examines the interaction between material solvent, printed film conductivity and process consistency. The study illustrates that it is possible to reduce the solvent boiling point to significantly increase process productivity while maintaining process consistency. The lower boiling point solvent also has a beneficial effect on the conductivity of the film, reducing the sheet resistance. It is proposed that this is a result of greater film stressing increasing charge percolation through greater inter particle contact. Simulations of material performance and drying illustrate that a multi layered printing provides a more time efficient manufacturing method. The findings have implications for the volume manufacturing of the carbon sensor electrodes but also have implications for other applications where conductive carbon is used, such as electrical circuits and photovoltaic devices.

  8. Definition of Quality Criteria of the Technological Process of Narrow Web UV-Printing

    Directory of Open Access Journals (Sweden)

    Volodymyr Shybanov

    2013-11-01

    Full Text Available The application of Narrow Web UV-flexographic printing has several advantages compared with offset printing. In particular, they are the lack of the operation of water-ink balance setting in the technological process, the ability to print on a wide range of materials and so on. Though the imprint quality is clearly based on standards in offset printing, there are no clearly indicated requirements for Narrow Web UV flexographic printing. The absence of such requirements on quality parameters of the technological process of Narrow Web UV-Printing predetermined conducting its analysis with the help of expert surveys.

  9. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology

    Directory of Open Access Journals (Sweden)

    Stefano Razza

    2016-09-01

    Full Text Available To bring perovskite solar cells to the industrial world, performance must be maintained at the photovoltaic module scale. Here we present large-area manufacturing and processing options applicable to large-area cells and modules. Printing and coating techniques, such as blade coating, slot-die coating, spray coating, screen printing, inkjet printing, and gravure printing (as alternatives to spin coating, as well as vacuum or vapor based deposition and laser patterning techniques are being developed for an effective scale-up of the technology. The latter also enables the manufacture of solar modules on flexible substrates, an option beneficial for many applications and for roll-to-roll production.

  10. Fabrication of a wettability-gradient surface on copper by screen-printing techniques

    International Nuclear Information System (INIS)

    Huang, Ding-Jun; Leu, Tzong-Shyng

    2015-01-01

    In this study, a screen-printing technique is utilized to fabricate a wettability-gradient surface on a copper substrate. The pattern definitions on the copper surface were freely fabricated to define the regions with different wettabilities, for which the printing definition technique was developed as an alternative to the existing costly photolithography techniques. This fabrication process using screen printing in tandem with chemical modification methods can easily realize an excellent wettability-gradient surface with superhydrophobicity and superhydrophilicity. Surface analyses were performed to characterize conditions in some fabrication steps. A water droplet movement sequence is provided to clearly demonstrate the droplet-driving effectiveness of the fabricated gradient surface. The droplet-driving efficiency offers a promising solution for condensation heat transfer applications in the foreseeable future. (paper)

  11. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity

    International Nuclear Information System (INIS)

    Webb, Alexander J; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-01-01

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current–voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling. (paper)

  12. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity.

    Science.gov (United States)

    Webb, Alexander J; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-04-26

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.

  13. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity

    Science.gov (United States)

    Webb, Alexander J.; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-04-01

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.

  14. Influence of sintering temperature on screen printed Cu2ZnSnS4 (CZTS) films

    International Nuclear Information System (INIS)

    Wang Yu; Huang Yanhua; Lee, Alex Y.S.; Wang Chiou Fu; Gong Hao

    2012-01-01

    Highlights: ► The influences of sintering temperature on structure and properties of screen printed Cu 2 ZnSnS 4 (CZTS) were investigated. ► It was found that the direct optical band gap increased with increasing the sintering temperature. ► The screen printed CZTS film after sintering at 450 °C had a high photosensitivity (G i − G d )/G d of 14%. ► The hexagonal CuS phase aggregated after sintering at 500 °C and higher temperature. - Abstract: Screen printing is a useful and simple method for coating layers of several solar materials, but care must be taken in preparing stoichiometric CZTS film due to its instability at a high processing temperature and a small chemical potential domain. This paper reports screen printing prepared CZTS films and the influence of sintering temperature on CZTS properties. The thermostability, structural, electronic and optical properties are studied. The direct optical band gap energies of the films vary from 1.39 to 1.60 eV, while the resistivities change from 830 to 6 Ω cm after sintering at different temperatures up to 550 °C. A high photosensitivity of 14% is achieved for the sample sintered at 450 °C. The phenomena observed are also discussed.

  15. MammaPrint Pre-screen Algorithm (MPA) reduces chemotherapy in ...

    African Journals Online (AJOL)

    MammaPrint Pre-screen Algorithm (MPA) reduces chemotherapy in patients with early-stage breast cancer. ... An implementation study was designed to take advantage of the fact that the 70-gene profile excludes analysis of hormone receptor and human epidermal growth factor receptor 2 (HER2) status, which form part of ...

  16. A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Jørgensen, Mikkel; Norrman, Kion

    2009-01-01

    , complete processing in air using commonly available screen printing, and finally, simple mechanical encapsulation using a flexible packaging material and electrical contacting post-production using crimped contacts. We detail the production of more than 2000 modules in one production run and show......A complete polymer solar cell module prepared in the ambient atmosphere under industrial conditions is presented. The versatility of the polymer solar cell technology is demonstrated through the use of abstract forms for the active area, a flexible substrate, processing entirely from solution...

  17. Augmented Reality as a Technology Bringing Interactivity to Print Products

    DEFF Research Database (Denmark)

    Seisto, Anu; Aikala, Maiju; Vatrapu, Ravi

    2012-01-01

    Augmented Reality (AR) is the technique of superimposing virtual objects in the user's view of the real world, providing a novel visualization technology for a wide range of applications. Hence, it is a user interface technology that combines the perception of real environments with digital...... owner, Sinebrychoff) and technology experts (Undo and VTT). The whole process was carried out in close contact with the readers and their viewpoints were taken into account in several parts of the design process. Based on the results, more than the easiness of the application, the readers...... of the magazine studied valued the inspiration and connectedness that the use of the application offered. The overall rating of the application was positive and encouraging for the future use of the technology. It may also be concluded that the use of AR applications in conjunction with print products makes...

  18. [Research advances of three-dimension printing technology in vertebrae and intervertebral disc tissue engineering].

    Science.gov (United States)

    Yang, Zechuan; Li, Chunde; Sun, Haolin

    2016-03-01

    Three-dimensional (3D) printing technology is characterized by "inside-out" stack manufacturing. Compared with conventional technologies, 3D printing has the advantage of personalization and precision. Therefore, the shape and internal structure of the scaffolds made by 3D printing technology are highly biomimetic. Besides, 3D bioprinting can precisely deposit the biomaterials, seeding cells and cytokines at the same time, which is a breakthrough in printing technique and material science. With the development of 3D printing, it will make great contributions to the reconstruction of vertebrae and intervertebral disc in the future.

  19. Impact of Technology on Work and Jobs in the Printing Industry--Implications for Vocational Curriculum.

    Science.gov (United States)

    Lewis, Theodore

    1997-01-01

    Printing industry workers, managers, and union representatives and college vocational printing programs were interviewed (n=48). Technological changes were devaluing craftwork, but computers offered new challenges. Companies were changing faster than colleges could respond. A need to identify principles that transcend printing media was…

  20. [Flexible print circuit technology application in biomedical engineering].

    Science.gov (United States)

    Jiang, Lihua; Cao, Yi; Zheng, Xiaolin

    2013-06-01

    Flexible print circuit (FPC) technology has been widely applied in variety of electric circuits with high precision due to its advantages, such as low-cost, high specific fabrication ability, and good flexibility, etc. Recently, this technology has also been used in biomedical engineering, especially in the development of microfluidic chip and microelectrode array. The high specific fabrication can help making microelectrode and other micro-structure equipment. And good flexibility allows the micro devices based on FPC technique to be easily packaged with other parts. In addition, it also reduces the damage of microelectrodes to the tissue. In this paper, the application of FPC technology in biomedical engineering is introduced. Moreover, the important parameters of FPC technique and the development trend of prosperous applications is also discussed.

  1. Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes.

    Science.gov (United States)

    Bernalte, E; Marín Sánchez, C; Pinilla Gil, E

    2011-03-09

    The applicability of commercial screen-printed gold electrodes (SPGEs) for the determination of Hg(II) in ambient water samples by square wave anodic stripping voltammetry has been demonstrated. Electrode conditioning procedures, chemical and instrumental variables have been optimized to develop a reliable method capable of measuring dissolved mercury in the low ng mL(-1) range (detection limit 1.1 ng mL(-1)), useful for pollution monitoring or screening purposes. The proposed method was tested with the NIST 1641d Mercury in Water Standard Reference Material (recoveries 90.0-110%) and the NCS ZC 76303 Mercury in Water Certified Reference Material (recoveries 82.5-90.6%). Waste water samples from industrial origin and fortified rain water samples were assayed for mercury by the proposed method and by a reference ICP-MS method, with good agreement. Screen printing technology thus opens a useful way for the construction of reliable electrochemical sensors for decentralized or even field Hg(II) testing. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Screen Printed Carbon Electrode Based Electrochemical Immunosensor for the Detection of Dengue NS1 Antigen

    Directory of Open Access Journals (Sweden)

    Om Parkash

    2014-11-01

    Full Text Available An electrochemical immunosensor modified with the streptavidin/biotin system on screen printed carbon electrodes (SPCEs for the detection of the dengue NS1 antigen was developed in this study. Monoclonal anti-NS1 capture antibody was immobilized on streptavidin-modified SPCEs to increase the sensitivity of the assay. Subsequently, a direct sandwich enzyme linked immunosorbent assay (ELISA format was developed and optimized. An anti-NS1 detection antibody conjugated with horseradish peroxidase enzyme (HRP and 3,3,5,5'-tetramethybezidine dihydrochloride (TMB/H2O2 was used as an enzyme mediator. Electrochemical detection was conducted using the chronoamperometric technique, and electrochemical responses were generated at −200 mV reduction potential. The calibration curve of the immunosensor showed a linear response between 0.5 µg/mL and 2 µg/mL and a detection limit of 0.03 µg/mL. Incorporation of a streptavidin/biotin system resulted in a well-oriented antibody immobilization of the capture antibody and consequently enhanced the sensitivity of the assay. In conclusion, this immunosensor is a promising technology for the rapid and convenient detection of acute dengue infection in real serum samples.

  3. The application of digital medical 3D printing technology on tumor operation

    Science.gov (United States)

    Chen, Jimin; Jiang, Yijian; Li, Yangsheng

    2016-04-01

    Digital medical 3D printing technology is a new hi-tech which combines traditional medical and digital design, computer science, bio technology and 3D print technology. At the present time there are four levels application: The printed 3D model is the first and simple application. The surgery makes use of the model to plan the processing before operation. The second is customized operation tools such as implant guide. It helps doctor to operate with special tools rather than the normal medical tools. The third level application of 3D printing in medical area is to print artificial bones or teeth to implant into human body. The big challenge is the fourth level which is to print organs with 3D printing technology. In this paper we introduced an application of 3D printing technology in tumor operation. We use 3D printing to print guide for invasion operation. Puncture needles were guided by printed guide in face tumors operation. It is concluded that this new type guide is dominantly advantageous.

  4. A review of non-contact micro- and nano-printing technologies

    International Nuclear Information System (INIS)

    Ru, Changhai; Sun, Yu; Luo, Jun; Xie, Shaorong

    2014-01-01

    Printing technologies have undergone signficant development because they are an enabler in science and engineering research; they also have significant practical applications in manufacturing. Micro- and nano-printing techniques have found a number of applications in electronics, biotechnology, and material synthesis/patterning. In this review, we look at the important printing methods, including high precision traditional printing methods as well as recently emerging techniques. We also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing. (topical review)

  5. A review of non-contact micro- and nano-printing technologies

    Science.gov (United States)

    Ru, Changhai; Luo, Jun; Xie, Shaorong; Sun, Yu

    2014-05-01

    Printing technologies have undergone signficant development because they are an enabler in science and engineering research; they also have significant practical applications in manufacturing. Micro- and nano-printing techniques have found a number of applications in electronics, biotechnology, and material synthesis/patterning. In this review, we look at the important printing methods, including high precision traditional printing methods as well as recently emerging techniques. We also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing.

  6. Characterization of polymer silver pastes for screen printed flexible RFID antennas

    Science.gov (United States)

    Janeczek, Kamil; Jakubowska, Małgorzata; Futera, Konrad; MłoŻniak, Anna; Kozioł, GraŻyna; Araźna, Aneta

    Radio Frequency Identification (RFID) systems have become more and more popular in the last few years because of their wide application fields, such as supply chain management and logistics. To continue their development further investigations of new conductive materials for fabrication of RFID transponders' antennas are necessary to be carried out. These materials should provide high flexibility and good radiation performance of printed antennas. In this paper, two polymer silver pastes based on silver flakes were characterized with regard to manufacturing of flexible RFID antennas with screen printing technique. Foil and paper were used as a substrate materials. Surface profile of the printed antennas was measured using an optical profilometer and their resistance was measured with a four-point-probe method. Antenna flexibility was evaluated in cyclic bending tests and its performance with reflection coefficient measurements with the use of differential probe connected to a vector network analyzer. In addition, a maximum read distance of a fabricated RFID transponder was measured.

  7. Printed photodetectors

    International Nuclear Information System (INIS)

    Pace, Giuseppina; Grimoldi, Andrea; Sampietro, Marco; Natali, Dario; Caironi, Mario

    2015-01-01

    Photodetectors convert light pulses into electrical signals and are fundamental building blocks for any opto-electronic system adopting light as a probe or information carrier. They have widespread technological applications, from telecommunications to sensors in industrial, medical and civil environments. Further opportunities are plastic short-range communications systems, interactive large-area surfaces and light-weight, flexible, digital imagers. These applications would greatly benefit from the cost-effective fabrication processes enabled by printing technology. While organic semiconductors are the most investigated materials for printed photodetectors, and are the main focus of the present review, there are notable examples of other inorganic or hybrid printable semiconductors for opto-electronic systems, such as quantum-dots and nanowires. Here we propose an overview on printed photodetectors, including three-terminal phototransistors. We first give a brief account of the working mechanism of these light sensitive devices, and then we review the recent progress achieved with scalable printing techniques such as screen-printing, inkjet and other non-contact technologies in the development of all-printed or hybrid systems. (paper)

  8. Printed photodetectors

    Science.gov (United States)

    Pace, Giuseppina; Grimoldi, Andrea; Sampietro, Marco; Natali, Dario; Caironi, Mario

    2015-10-01

    Photodetectors convert light pulses into electrical signals and are fundamental building blocks for any opto-electronic system adopting light as a probe or information carrier. They have widespread technological applications, from telecommunications to sensors in industrial, medical and civil environments. Further opportunities are plastic short-range communications systems, interactive large-area surfaces and light-weight, flexible, digital imagers. These applications would greatly benefit from the cost-effective fabrication processes enabled by printing technology. While organic semiconductors are the most investigated materials for printed photodetectors, and are the main focus of the present review, there are notable examples of other inorganic or hybrid printable semiconductors for opto-electronic systems, such as quantum-dots and nanowires. Here we propose an overview on printed photodetectors, including three-terminal phototransistors. We first give a brief account of the working mechanism of these light sensitive devices, and then we review the recent progress achieved with scalable printing techniques such as screen-printing, inkjet and other non-contact technologies in the development of all-printed or hybrid systems.

  9. Performance characterization of screen printed radio frequency identification antennas with silver nanopaste

    International Nuclear Information System (INIS)

    Shin, Dong-Youn; Lee, Yongshik; Kim, Chung Hwan

    2009-01-01

    The era of wireless communication has come and it is going to flourish in the form of radio frequency identification (RFID) tags. The employment of RFID tags in daily commodities, however, is constrained due to the manufacturing cost. Therefore, industries in the field have sought for alternative manufacturing methods at an ultra low cost and various printing processes have been considered such as inkjet, gravure, flexo, off-set and screen. Although such printing processes are age-old, their applications have been mainly limited to graphic arts and design rules for electronic appliances have not been fully established yet. In this paper, the selection of ink and printing process to fabricate RFID antennas is discussed. The developed silver nanopaste in the range of 20 to 50 nm without the inclusion of microparticles and flakes was sintered at 120 o C for 1 min, which is lower than that of conventional silver paste with microparticles and flakes, and its resistivity was found to be approximately 3 μΩ cm. The radiation performances of various screen printed RFID antennas with silver nanopaste were found comparable to those of copper etched ones.

  10. Performance characterization of screen printed radio frequency identification antennas with silver nanopaste

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Youn, E-mail: dongyoun.shin@gmail.co [Nanomachine Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Lee, Yongshik, E-mail: yongshik.lee@yonsei.ac.k [School of Electrical and Electronic Engineering, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul, 120-749 (Korea, Republic of); Kim, Chung Hwan, E-mail: chkim@kimm.re.k [Nanomachine Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2009-09-01

    The era of wireless communication has come and it is going to flourish in the form of radio frequency identification (RFID) tags. The employment of RFID tags in daily commodities, however, is constrained due to the manufacturing cost. Therefore, industries in the field have sought for alternative manufacturing methods at an ultra low cost and various printing processes have been considered such as inkjet, gravure, flexo, off-set and screen. Although such printing processes are age-old, their applications have been mainly limited to graphic arts and design rules for electronic appliances have not been fully established yet. In this paper, the selection of ink and printing process to fabricate RFID antennas is discussed. The developed silver nanopaste in the range of 20 to 50 nm without the inclusion of microparticles and flakes was sintered at 120 {sup o}C for 1 min, which is lower than that of conventional silver paste with microparticles and flakes, and its resistivity was found to be approximately 3 {mu}{Omega} cm. The radiation performances of various screen printed RFID antennas with silver nanopaste were found comparable to those of copper etched ones.

  11. Performance Study of Screen-Printed Textile Antennas after Repeated Washing

    Directory of Open Access Journals (Sweden)

    Kazani I.

    2014-06-01

    Full Text Available The stability of wearable textile antennas after 20 reference washing cycles was evaluated by measuring the reflection coefficient of different antenna prototypes. The prototypes’ conductive parts were screen-printed on several textile substrates using two different silver-based conductive inks. The necessity of coating the antennas with a thermoplastic polyurethane (TPU coating was investigated by comparing coated with uncoated antennas. It is shown that covering the antennas with the TPU layer not only protects the screen-printed conductive area but also prevents delamination of the multilayered textile fabric substrates, making the antennas washable for up to 20 cycles. Furthermore, it is proven that coating is not necessary for maintaining antenna operation and this up to 20 washing cycles. However, connector detachment caused by friction during the washing process was the main problem of antenna performance degradation. Hence, other flexible, durable methods should be developed for establishing a stable electrical connection.

  12. Disposable screen printed graphite electrode for the direct electrochemical determination of ibuprofen in surface water

    KAUST Repository

    Amin, Sidra

    2014-08-01

    The potential of square wave voltammetry (SWV) for the determination of ibuprofen in aqueous solution, applying baseline correction, is reported. A screen printed graphite electrodes (SPGEs), especially pretreated for this purpose, were used to investigate the electrochemical oxidation and detection of ibuprofen. After optimization of SWV parameters, measurements were carried out at 200 Hz modulation frequency, 4 mV step potential and 40 mV pulse amplitude for the determination of ibuprofen. The surfaces of both untreated and pretreated SPGEs were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electro-catalytic properties of both the electrodes were correlated with the surface treatment. The pretreated screen printed graphite electrode exhibited a high sensitivity toward ibuprofen even in low concentration. The developed method was found rapid, cost-effective and reproducible for in-field ibuprofen detection.

  13. Disposable screen printed graphite electrode for the direct electrochemical determination of ibuprofen in surface water

    KAUST Repository

    Amin, Sidra; Soomro, M. Tahir; Memon, Najma; Solangi, Amber R.; Sirajuddin; Qureshi, Tahira; Behzad, Ali Reza

    2014-01-01

    The potential of square wave voltammetry (SWV) for the determination of ibuprofen in aqueous solution, applying baseline correction, is reported. A screen printed graphite electrodes (SPGEs), especially pretreated for this purpose, were used to investigate the electrochemical oxidation and detection of ibuprofen. After optimization of SWV parameters, measurements were carried out at 200 Hz modulation frequency, 4 mV step potential and 40 mV pulse amplitude for the determination of ibuprofen. The surfaces of both untreated and pretreated SPGEs were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electro-catalytic properties of both the electrodes were correlated with the surface treatment. The pretreated screen printed graphite electrode exhibited a high sensitivity toward ibuprofen even in low concentration. The developed method was found rapid, cost-effective and reproducible for in-field ibuprofen detection.

  14. Packaging strategy for maximizing the performance of a screen printed piezoelectric energy harvester

    International Nuclear Information System (INIS)

    Zhang, Z; Zhu, D; Tudor, M J; Beeby, S P

    2013-01-01

    This paper reports the extended design and simulation of a screen printed piezoelectric energy harvester. The proposed design was based on a previous credit card sized smart tag sensor node, and packages the power conditioning circuit in the free space above the tungsten proof mass layer. This approach enables electronic components to be mounted onto the cantilever beam, which provides additional weight at the tip of the cantilever structure. The design structure contains a T-shape cantilever beam with size of 47 mm × 30 mm × 0.85 mm which is fabricated using screen printing. ANSYS simulation results predict the revised architecture can generate 421.9 μW approximately twice of the RMS power produced by the original design along with a higher open-circuit RMS Voltage of 8.0 V while the resonant frequency is dropped to 53.4 Hz

  15. The performance of silicon solar cells prepared by screen-printing technique

    International Nuclear Information System (INIS)

    Mursyidah; Mohamed Yahaya; Muhammad Mohd Salleh

    2000-01-01

    Screen-printing technique is known to produce low cost solar cells. A study has been done to prepare silicon solar cells of n + -p and n + -p-p + structures. The p-type silicon wafers were used as substrates. The phosphorous layer was deposited on top of the substrate using the screen-printing technique. The wafer was then annealed at temperature 1000 degree C for 10 minutes, so that phosphorous atoms are thermally diffused into the wafer to form an n + -p junction. Meanwhile the boron film was deposited at the back surface of the substrate and annealed at temperature 900 degree C for 10 minutes to form a p + layer in the n + -p-p + device. The back and front metal contacts were made using screen-printing technique. The performance of the devices was evaluated from I-V curves measured in the dark and under illumination. It was found that the n + -p-p + device with short circuit current, I SC = 32 mA, open circuit voltage, V OC = 0.46 volt, fill factor, FF=0.63 and efficiency, η = 2.3%, was better than that of the n + -p device. The performance of the n + -p-p + device was successfully improved by depositing titanium dioxide on top of the device as anti-reflection coating using the screen-printing technique. The improved performance was I SC = 38 mA, V OC = 0.48 volt, FF = 0.67 and η = 3. 1%. (Author)

  16. Methodology and technological aspects of the flexible substrate preparation for ink-jet printing technology

    Science.gov (United States)

    Tarapata, Grzegorz; Marzecki, Michał

    2013-10-01

    The ink-jet printing technology becomes especially promising for wide volume of production of cheap sensors, consumable electronics and other dedicated applications of everyday life like smart packaging, smart textiles, smart labels, etc. To achieve this goal new materials compatible with ink-jet printing should be developed. Currently on the market there is a growing number of inks with different properties, but their use requires many tests related to its printability and their interaction with other materials. The paper presents technological problems that are encountered by people associated with fabrication of various devices with using of inkjet printing techniques. Results presented in the paper show the influence of surface preparation techniques on the quality of achieved shapes, the impact of other materials already deposited and the impact of another external factors. During carried out experiments the printer Dimatix DMP 2831 and several inks base on nanosilver or dielectric UV curable was used.

  17. Glucose biosensors based on a gold nanodendrite modified screen-printed electrode

    International Nuclear Information System (INIS)

    Liu, Hsi-Chien; Tsai, Chung-Che; Wang, Gou-Jen

    2013-01-01

    In this study, an enzymatic glucose biosensor based on a three-dimensional gold nanodendrite (GND) modified screen-printed electrode was developed. The GNDs were electrochemically synthesized on the working electrode component of a commercially available screen-printed electrode using a solution acquired by dissolving bulk gold in aqua regia as the precursor. The 3D GND electrode greatly enhanced the effective sensing area of the biosensor, which improved the sensitivity of glucose detection. Actual glucose detections demonstrated that the fabricated devices could perform at a sensitivity of 46.76 μA mM −1 cm −2 with a linear detection range from 28 μM–8.4 mM and detection limit of 7 μM. A fast response time (∼3 s) was also observed. Moreover, only a 20 μl glucose oxidase is required for detection owing to the incorporation of the commercially available screen-printed electrode. (paper)

  18. Screen-printed sensor for batch and flow injection potentiometric chromium(VI) monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Moreno, Raul A.; Gismera, M.J.; Sevilla, M.T.; Procopio, Jesus R. [Facultad de Ciencias, Universidad Autonoma de Madrid, Departamento de Quimica Analitica y Analisis Instrumental, Madrid (Spain)

    2010-05-15

    A disposable screen-printed electrode was designed and evaluated for direct detection of chromium(VI) in batch and flow analysis. The carbon screen-printed electrode was modified with a graphite-epoxy composite. The optimal graphite-epoxy matrix contains 37.5% graphite powder, 12.5% diphenylcarbohydrazide, a selective compound for chromium(VI), and 50% epoxy resin. The principal analytical parameters of the potentiometric response in batch and flow analysis were optimized and calculated. The screen-printed sensor exhibits a response time of 20 {+-} 1 s. In flow analysis, the analytical frequency of sampling is 70 injections per hour using 0.1 M NaNO{sub 3} solution at pH 3 as the carrier, a flow rate of 2.5 mL.min{sup -1}, and an injection sample volume of 0.50 mL. The sensor shows potentiometric responses that are very selective for chromium(VI) ions and optimal detection limits in both static mode (2.1 x 10{sup -7} M) and online analysis (9.4 x 10{sup -7} M). The disposable potentiometric sensor was employed to determine toxicity levels of chromium(VI) in mineral, tap, and river waters by flow-injection potentiometry and batch potentiometry. Chromium(VI) determination was also carried out with successful results in leachates from municipal solid waste landfills. (orig.)

  19. Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes

    Directory of Open Access Journals (Sweden)

    Junqiao Lee

    2016-07-01

    Full Text Available The viability of mechanical polishing as a surface pre-treatment method for commercially available platinum screen-printed electrodes (SPEs was investigated and compared to a range of other pre-treatment methods (UV-Ozone treatment, soaking in N,N-dimethylformamide, soaking and anodizing in aqueous NaOH solution, and ultrasonication in tetrahydrofuran. Conventional electrochemical activation of platinum SPEs in 0.5 M H2SO4 solution was ineffective for the removal of contaminants found to be passivating the screen-printed surfaces. However, mechanical polishing showed a significant improvement in hydrogen adsorption and in electrochemically active surface areas (probed by two different redox couples due to the effective removal of surface contaminants. Results are also presented that suggest that SPEs are highly susceptible to degradation by strong acidic or caustic solutions, and could potentially lead to instability in long-term applications due to continual etching of the binding materials. The ability of SPEs to be polished effectively extends the reusability of these traditionally “single-use” devices. Keywords: Screen-printed electrodes, Polishing, Platinum, Activation, Pre-treatment, Cyclic voltammetry

  20. Cathode material for lithium ion accumulators prepared by screen printing for Smart Textile applications

    Science.gov (United States)

    Syrový, T.; Kazda, T.; Syrová, L.; Vondrák, J.; Kubáč, L.; Sedlaříková, M.

    2016-03-01

    The presented study is focused on the development of LiFePO4 based cathode for thin and flexible screen printed secondary lithium based accumulators. An ink formulation was developed for the screen printing technique, which enabled mass production of accumulator's cathode for Smart Label and Smart Textile applications. The screen printed cathode was compared with an electrode prepared by the bar coating technique using an ink formulation based on the standard approach of ink composition. Obtained LiFePO4 cathode layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and galvanostatic charge/discharge measurements at different loads. The discharge capacity, capacity retention and stability at a high C rate of the LiFePO4 cathode were improved when Super P and PVDF were replaced by conductive polymers PEDOT:PSS. The achieved capacity during cycling at various C rates was approximately the same at the beginning and at the end, and it was about 151 mAh/g for cycling under 1C. The obtained results of this novelty electrode layer exceed the parameters of several electrode layers based on LiFePO4 published in literature in terms of capacity, cycling stability and overcomes them in terms of simplicity/industrial process ability of cathode layer fabrication and electrode material preparation.

  1. Laser micromachining of screen-printed graphene for forming electrode structures

    International Nuclear Information System (INIS)

    Chang, Tien-Li; Chen, Zhao-Chi; Tseng, Shih-Feng

    2016-01-01

    Highlights: • Homogeneous graphene films were prepared by the screen-printing process. • Optimal single-line ablation was performed by ultraviolet nanosecond laser pulses. • Influence of ablation parameters on graphene/glass substrate was clarified. • Electrical measurements of ablated graphene-based device can be investigated. - Abstract: There has been increasing research interest in electronic applications of graphene-based devices fabricated using electrode patterning techniques. This study presents a laser ablation technique along with a screen printing process for fabricating graphene patterns on a glass substrate. First, homogeneous multilayer films on the glass substrate are coated with graphene ink by using the screen printing process. Subsequently, optimal ablation was performed using an ultraviolet nanosecond laser, and the effective number of pulses decreased with an increase in the scanning speed and a decrease in the overlapping rate. Here, the pulsed overlap of a laser spot was determined to be approximately 90% for 75 pulses at a scanning speed of 250 mm/s. Experimental results showed continuous single-line ablation along the laser scanning path in the graphene films. Furthermore, linear current–voltage (I–V) curves showed the multilayer graphene characteristics of ablated devices for forming electrode structures.

  2. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    International Nuclear Information System (INIS)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose; Martin-Pernia, Alberto; Costa-Garcia, Agustin

    2008-01-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru 3+ did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode

  3. CdTe polycrystalline films on Ni foil substrates by screen printing and their photoelectric performance

    International Nuclear Information System (INIS)

    Yao, Huizhen; Ma, Jinwen; Mu, Yannan; Su, Shi; Lv, Pin; Zhang, Xiaoling; Zhou, Liying; Li, Xue; Liu, Li; Fu, Wuyou; Yang, Haibin

    2015-01-01

    Highlights: • The sintered CdTe polycrystalline films by a simple screen printing. • The flexible Ni foil was chose as substrates to reduce the weight of the electrode. • The compact CdTe film was obtained at 550 °C sintering temperature. • The photoelectric activity of the CdTe polycrystalline films was excellent. - Abstract: CdTe polycrystalline films were prepared on flexible Ni foil substrates by sequential screen printing and sintering in a nitrogen atmosphere for the first time. The effect of temperature on the quality of the screen-printed film was investigated in our work. The high-quality CdTe films were obtained after sintering at 550 °C for 2 h. The properties of the sintered CdTe films were characterized by scanning electron microscopy, X-ray diffraction pattern and UV–visible spectroscopy. The high-quality CdTe films have the photocurrent was 2.04 mA/cm 2 , which is higher than that of samples prepared at other temperatures. Furthermore, CdCl 2 treatment reduced the band gap of the CdTe film due to the larger grain size. The photocurrent of photoelectrode based on high crystalline CdTe polycrystalline films after CdCl 2 treatment improved to 2.97 mA/cm 2 , indicating a potential application in photovoltaic devices

  4. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Martin-Pernia, Alberto [Departamento de Ingenieria Electrica, Electronica de Computadores y Sistemas, Universidad de Oviedo, 33204 Gijon, Asturias (Spain); Costa-Garcia, Agustin [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain)], E-mail: costa@fq.uniovi.es

    2008-04-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru{sup 3+} did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode.

  5. Clinical Application of Three-Dimensional Printing Technology in Craniofacial Plastic Surgery

    Directory of Open Access Journals (Sweden)

    Jong Woo Choi

    2015-05-01

    Full Text Available Three-dimensional (3D printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models.

  6. Clinical Application of Three-Dimensional Printing Technology in Craniofacial Plastic Surgery

    Science.gov (United States)

    Kim, Namkug

    2015-01-01

    Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models. PMID:26015880

  7. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    Directory of Open Access Journals (Sweden)

    Anastasios Economou

    2018-03-01

    Full Text Available This work reviews the field of screen-printed electrodes (SPEs modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  8. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  9. INJECTION TECHNOLOGY RESEARCH OF THE PROTECTIVE SCREEN

    Directory of Open Access Journals (Sweden)

    MENEJLYUK A. I.

    2016-12-01

    Full Text Available Formulation of the problem. This article contains information about the methods and the planning principles used in experimental research study of the injection technology of impervious screen. Today, there are ways to create impervious screens and curtains solve soil protection issues in the field impermeable layer arrangement at a shallow depth. However, for Ukraine, in the burial sites of radiation and other wastes is urgent issue of protection of underground space in places with deep impermeable layer. Classical methods can not fully solve such problems. To solve them, you need to develop innovative technology to create such a screen, which will lie authentic sole object to be protected, at the project depth. For the experiments, it is necessary to choose the most important indicator, and technological factors affecting it. This is due to the fact that the proposed technology provides for lesser known technical solutions, the use of which should ultimately result in impervious screens with desired properties. Goal. The aim of this study is the selection of technological parameters of injection, design of experiments and the selection of indicators characterizing the efficient operation of the screen. Such constructs must first have almost zero permeability. In this paper, it was of interest to study the influence of process parameters on the filtration rate of the protective screen. Conclusion. As a result of the design of experiments, the basic technological factors that have a significant effect on the studied parameters. varying levels of these factors are also identified, which in turn makes it possible to determine the optimum process parameters creating a screen that meets all the desired properties and characteristics. Based on a series of experiments it is possible to obtain optimal formulations for different types of soils.

  10. Introduction of 3D Printing Technology in the Classroom for Visually Impaired Students

    Science.gov (United States)

    Jo, Wonjin; I, Jang Hee; Harianto, Rachel Ananda; So, Ji Hyun; Lee, Hyebin; Lee, Heon Ju; Moon, Myoung-Woon

    2016-01-01

    The authors investigate how 3D printing technology could be utilized for instructional materials that allow visually impaired students to have full access to high-quality instruction in history class. Researchers from the 3D Printing Group of the Korea Institute of Science and Technology (KIST) provided the Seoul National School for the Blind with…

  11. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin

    Directory of Open Access Journals (Sweden)

    Changyong Liu

    2018-06-01

    Full Text Available 3D printing has attracted a lot of attention in recent years. Over the past three decades, various 3D printing technologies have been developed including photopolymerization-based, materials extrusion-based, sheet lamination-based, binder jetting-based, power bed fusion-based and direct energy deposition-based processes. 3D printing offers unparalleled flexibility and simplicity in the fabrication of highly complex 3D objects. Tactile sensors that emulate human tactile perceptions are used to translate mechanical signals such as force, pressure, strain, shear, torsion, bend, vibration, etc. into electrical signals and play a crucial role toward the realization of wearable electronics and electronic skin. To date, many types of 3D printing technologies have been applied in the manufacturing of various types of tactile sensors including piezoresistive, capacitive and piezoelectric sensors. This review attempts to summarize the current state-of-the-art 3D printing technologies and their applications in tactile sensors for wearable electronics and electronic skin. The applications are categorized into five aspects: 3D-printed molds for microstructuring substrate, electrodes and sensing element; 3D-printed flexible sensor substrate and sensor body for tactile sensors; 3D-printed sensing element; 3D-printed flexible and stretchable electrodes for tactile sensors; and fully 3D-printed tactile sensors. Latest advances in the fabrication of tactile sensors by 3D printing are reviewed and the advantages and limitations of various 3D printing technologies and printable materials are discussed. Finally, future development of 3D-printed tactile sensors is discussed.

  12. High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate

    International Nuclear Information System (INIS)

    Tam, Sze Kee; Ng, Ka Ming

    2015-01-01

    This study presents a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics. This method offers three advantages. Firstly, copper loading in the synthesis reaction can be as high as 1 M, offering high productivity in large-scale production. Secondly, the size of the copper nanoparticles can be controlled from 12 to 99 nm. Thirdly, the surface polarity of the particles can be modified. Thus, a tailor-made product can be synthesized. The synthesis of copper nanoparticles coated with various capping agents, including dodecanethiol, lauric acid, nonanoic acid, polyacrylic acid, and polyvinyl pyrrolidone, was demonstrated. The nonanoic acid-coated copper nanoparticles were formulated as a screen-printing conductive paste. The particles were readily dispersed in terpineol, and the paste could be screen printed onto flexible polyester. The electrical resistivity of patterns after a low-temperature (120 °C) sintering treatment was around 5.8 × 10 −5  Ω cm.Graphical Abstract

  13. High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Sze Kee; Ng, Ka Ming, E-mail: kekmng@ust.hk [The Hong Kong University of Science and Technology, Department of Chemical and Biomolecular Engineering (Hong Kong)

    2015-12-15

    This study presents a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics. This method offers three advantages. Firstly, copper loading in the synthesis reaction can be as high as 1 M, offering high productivity in large-scale production. Secondly, the size of the copper nanoparticles can be controlled from 12 to 99 nm. Thirdly, the surface polarity of the particles can be modified. Thus, a tailor-made product can be synthesized. The synthesis of copper nanoparticles coated with various capping agents, including dodecanethiol, lauric acid, nonanoic acid, polyacrylic acid, and polyvinyl pyrrolidone, was demonstrated. The nonanoic acid-coated copper nanoparticles were formulated as a screen-printing conductive paste. The particles were readily dispersed in terpineol, and the paste could be screen printed onto flexible polyester. The electrical resistivity of patterns after a low-temperature (120 °C) sintering treatment was around 5.8 × 10{sup −5} Ω cm.Graphical Abstract.

  14. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing.

    Science.gov (United States)

    Mohammadi, Saeed; Maeki, Masatoshi; Mohamadi, Reza M; Ishida, Akihiko; Tani, Hirofumi; Tokeshi, Manabu

    2015-10-07

    This paper describes a simple and instrument-free screen-printing method to fabricate hydrophilic channels by patterning polydimethylsiloxane (PDMS) onto chromatography paper. Clearly recognizable border lines were formed between hydrophilic and hydrophobic areas. The minimum width of the printed channel to deliver an aqueous sample was 600 μm, as obtained by this method. Fabricated microfluidic paper-based analytical devices (μPADs) were tested for several colorimetric assays of pH, glucose, and protein in both buffer and artificial urine samples and results were obtained in less than 30 min. The limits of detection (LODs) for glucose and bovine serum albumin (BSA) were 5 mM and 8 μM, respectively. Furthermore, the pH values of different solutions were visually recognised with the naked eye by using a sensitive ink. Ultimately, it is expected that this PDMS-screen-printing (PSP) methodology for μPADs can be readily translated to other colorimetric detection and hydrophilic channels surrounded by a hydrophobic polymer can be formed to transport fluids toward target zones.

  15. ScreenCube: A 3D Printed System for Rapid and Cost-Effective Chemical Screening in Adult Zebrafish.

    Science.gov (United States)

    Monstad-Rios, Adrian T; Watson, Claire J; Kwon, Ronald Y

    2018-02-01

    Phenotype-based small molecule screens in zebrafish embryos and larvae have been successful in accelerating pathway and therapeutic discovery for diverse biological processes. Yet, the application of chemical screens to adult physiologies has been relatively limited due to additional demands on cost, space, and labor associated with screens in adult animals. In this study, we present a 3D printed system and methods for intermittent drug dosing that enable rapid and cost-effective chemical administration in adult zebrafish. Using prefilled screening plates, the system enables dosing of 96 fish in ∼3 min, with a 10-fold reduction in drug quantity compared to that used in previous chemical screens in adult zebrafish. We characterize water quality kinetics during immersion in the system and use these kinetics to rationally design intermittent dosing regimens that result in 100% fish survival. As a demonstration of system fidelity, we show the potential to identify two known chemical inhibitors of adult tail fin regeneration, cyclopamine and dorsomorphin. By developing methods for rapid and cost-effective chemical administration in adult zebrafish, this study expands the potential for small molecule discovery in postembryonic models of development, disease, and regeneration.

  16. Application of Ammonium Bechromate and Potassium Bechromate as PhotoSensitive Emulsion to Sunlight Irradiation on Printing Screen for Textile

    International Nuclear Information System (INIS)

    Santoso-Sastrosoeparno

    2000-01-01

    The paste of photo sensitive emulsion that has been used in thepreparation for producing ready used printing screen contained two materials,namely the paste from monomer solution to be polymerized for strengtheningthe printing screen, and material for photo sensitive emulsion, usingammonium or potassium bichromate as common agent. From the previous studyabout producing printing screen from polyester, by using vinyl alcohol (VA)and polyvinyl acetate (PVAc) as polymeric material, as well as ammoniumbichromate as photo sensitive emulsion, has obtained the best combination forpolymer mixture from 80% of vinyl alcohol and 20% of polyvinyl acetate. Inthis research study, the same activity will be subjected to either ammoniumor potassium bichromate, with assumption that there will be differentproperties between ammonium and potassium cations which might have influenceto the printing screen from polyester. Some various mixture of VA and PVAc aspolymeric materials were carried out in this study, and to each of thepolymeric paste was added the photo sensitive emulsion, either ammoniumbe-chromate or potassium bichromate, stirring to homogeneous condition,coating the surface of flat printing screen, allow to dry in the dark room(no light), apply to sunlight irradiation for few minutes, and followed bycuring process to become ready used as printing screen. The printing screenproduced in this experiment was then subjected to various testing, such asstiffness, strength retention and shearing strength in either length andwidth directions of the screen. It was shown from the testing results thatthe coated screen with potassium bichromate as photo sensitive emulsion willgain better properties in stiffness, strength retention as well as shearingstrength, in all polymeric mixtures, compared to the ones with ammoniumbe-chromate. (author)

  17. A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine.

    Science.gov (United States)

    Yao, Yong; Zhang, Chunsun

    2016-10-01

    A novel screen-printed microfluidic paper-based analytical device with all-carbon electrode-enabled electrochemical assay (SP-ACE-EC-μPAD) has been developed. The fabrication of these devices involved wax screen-printing, which was simple, low-cost and energy-efficient. The working, counter and reference electrodes were screen-printed using carbon ink on the patterned paper devices. Different wax screen-printing processes were examined and optimized, which led to an improved method with a shorter heating time (~5 s) and a lower heating temperature (75 °C). Different printing screens were examined, with a 300-mesh polyester screen yielding the highest quality wax screen-prints. The carbon electrodes were screen-printed on the μPADs and then examined using cyclic voltammetry. The analytical performance of the SP-ACE-EC-μPADs for the detection of glucose and uric acid in standard solutions was investigated. The results were reproducible, with a linear relationship [R(2) = 0.9987 (glucose) or 0.9997 (uric acid)] within the concentration range of interest, and with detection limits as low as 0.35 mM (glucose) and 0.08 mM (uric acid). To determine the clinical utility of the μPADs, chronoamperometry was used to analyze glucose and uric acid in real urine samples using the standard addition method. Our devices were able to detect the analytes of interest in complex real-world biological samples, and have the potential for use in a wide variety of applications.

  18. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®.

    Science.gov (United States)

    Cinti, Stefano; Mazzaracchio, Vincenzo; Cacciotti, Ilaria; Moscone, Danila; Arduini, Fabiana

    2017-10-03

    Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M ® (Heathrow Scientific, Vernon Hills, IL, USA) as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  19. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®

    Directory of Open Access Journals (Sweden)

    Stefano Cinti

    2017-10-01

    Full Text Available Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M® (Heathrow Scientific, Vernon Hills, IL, USA as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  20. Evaluation of vibrant muscles over the shoulder region among workers of the hand screen printing industry.

    Science.gov (United States)

    Subramaniam, Shankar; Raju, Naveenkumar; Jeganathan, Karthick; Periyasamy, Mohankumar

    2018-06-01

    This study focuses on evaluation of the muscle activities associated with shoulder pain among workers of the hand screen printing (HSP) industry. Activities of three major muscles which showed higher muscle activity for a HSP job were observed for fatigue using surface electromyography (SEMG). The anatomical sites were chosen on the basis of a statistical survey and a visual inspection conducted before the experiment. Activities of the deltoid, teres major and infraspinatus were recorded using SEMG and the nature of muscle activities was studied for about 50 m of cloth printing. Data collected were processed using LabVIEW 2014 and the activities were analyzed using statistical tests and regression analyses. The results showed an increased risk of shoulder disorders with an increase in working time. Some of the risks which might cause disorders were predicted from the results; inspection and possible mitigations were suggested.

  1. Fabrication of a nano-structured PbO2 electrode by using printing technology: surface characterization and application

    International Nuclear Information System (INIS)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S.

    2014-01-01

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO 2 electrode and its application to a cerium redox transfer process. The new method of nano-size PbO 2 preparation demonstrated that nano-PbO 2 could be obtained in less time and at less cost at room temperature. The prepared nano-PbO 2 screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO 2 particles. Gravure printing of nano-PbO 2 on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO 2 powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO 2 electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO 2 should pave the way to promising applications in electrochemical and sensor fields.

  2. Fabrication of a nano-structured PbO{sub 2} electrode by using printing technology: surface characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S. [Sunchon National University, Suncheon (Korea, Republic of)

    2014-08-15

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO{sub 2} electrode and its application to a cerium redox transfer process. The new method of nano-size PbO{sub 2} preparation demonstrated that nano-PbO{sub 2} could be obtained in less time and at less cost at room temperature. The prepared nano-PbO{sub 2} screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO{sub 2} particles. Gravure printing of nano-PbO{sub 2} on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO{sub 2} powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO{sub 2} electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO{sub 2} should pave the way to promising applications in electrochemical and sensor fields.

  3. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies

    International Nuclear Information System (INIS)

    Grunwald, Ingo; Groth, Esther; Wirth, Ingo; Schumacher, Julian; Maiwald, Marcus; Zoellmer, Volker; Busse, Matthias

    2010-01-01

    The work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate. In this way, it is possible to focus the aerosol stream at a distance of about 5 mm from the printhead to the surface. This technology is useful for printing fluorescence-marked proteins and printing enzymes without affecting their biological activity. Furthermore, higher molecular weight DNA can be printed without shearing. The advantages, such as printing on complex, non-planar 3D structured surfaces, and disadvantages of the aerosol printing technology are also discussed and are compared with other printing technologies. In addition, miniaturized sensor structures with line thicknesses in the range of a few micrometers are fabricated by applying a silver sensor structure to glass. After sintering using an integrated laser or in an oven process, electrical conductivity is achieved within the sensor structure. Finally, we printed BSA in small micrometre-sized areas within the sensor structure using the same deposition system. The aerosol printing technology combined with material development offers great advantages for future-oriented applications involving biological surface functionalization on small areas. This is important for innovative biomedical micro-device development and for production solutions which bridge the disciplines of biology and electronics.

  4. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies.

    Science.gov (United States)

    Grunwald, Ingo; Groth, Esther; Wirth, Ingo; Schumacher, Julian; Maiwald, Marcus; Zoellmer, Volker; Busse, Matthias

    2010-03-01

    The work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate. In this way, it is possible to focus the aerosol stream at a distance of about 5 mm from the printhead to the surface. This technology is useful for printing fluorescence-marked proteins and printing enzymes without affecting their biological activity. Furthermore, higher molecular weight DNA can be printed without shearing. The advantages, such as printing on complex, non-planar 3D structured surfaces, and disadvantages of the aerosol printing technology are also discussed and are compared with other printing technologies. In addition, miniaturized sensor structures with line thicknesses in the range of a few micrometers are fabricated by applying a silver sensor structure to glass. After sintering using an integrated laser or in an oven process, electrical conductivity is achieved within the sensor structure. Finally, we printed BSA in small micrometre-sized areas within the sensor structure using the same deposition system. The aerosol printing technology combined with material development offers great advantages for future-oriented applications involving biological surface functionalization on small areas. This is important for innovative biomedical micro-device development and for production solutions which bridge the disciplines of biology and electronics.

  5. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Ingo; Groth, Esther; Wirth, Ingo; Schumacher, Julian; Maiwald, Marcus; Zoellmer, Volker; Busse, Matthias, E-mail: ingo.wirth@ifam.frauhofer.d [Fraunhofer Institute for Manufacturing Technology and Applied Materials Research (IFAM), Wiener Strasse 12, 28359 Bremen (Germany)

    2010-03-15

    The work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate. In this way, it is possible to focus the aerosol stream at a distance of about 5 mm from the printhead to the surface. This technology is useful for printing fluorescence-marked proteins and printing enzymes without affecting their biological activity. Furthermore, higher molecular weight DNA can be printed without shearing. The advantages, such as printing on complex, non-planar 3D structured surfaces, and disadvantages of the aerosol printing technology are also discussed and are compared with other printing technologies. In addition, miniaturized sensor structures with line thicknesses in the range of a few micrometers are fabricated by applying a silver sensor structure to glass. After sintering using an integrated laser or in an oven process, electrical conductivity is achieved within the sensor structure. Finally, we printed BSA in small micrometre-sized areas within the sensor structure using the same deposition system. The aerosol printing technology combined with material development offers great advantages for future-oriented applications involving biological surface functionalization on small areas. This is important for innovative biomedical micro-device development and for production solutions which bridge the disciplines of biology and electronics.

  6. Personalized Development of Human Organs using 3D Printing Technology

    OpenAIRE

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2015-01-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of o...

  7. AFFINITY BIOSENSOR BASED ON SCREEN-PRINTED ELECTRODE MODIFIED WITH DNA FOR GENOTOXIC COMPOUNDS DETECTION

    Directory of Open Access Journals (Sweden)

    Bambang Kuswandi

    2010-06-01

    Full Text Available An electrochemical method for the detection of the genotoxic compounds using a DNA-modified electrode was developed. This electrode was successfully used for the electrochemical detection of genotoxic compounds in water samples. The electrochemical results clearly demonstrated that, the development is related to the molecular interaction between the surface-linked DNA obtained from calf thymus and the target compounds, such as pollutants, in order to develop a simple device for rapid screening of genotoxic compounds in environmental samples. The detection of such compounds was measured by their effect on the oxidation signal of the guanine peak of the DNA immobilised on the surface of carbon based Screen-Printed Electrode (SPE in disposable mode, and monitored by square-wave voltametric analysis. The DNA biosensor is able to detect known intercalating and groove-binding genotoxic compounds such as Dioxin, Bisphenol A, PCBs, and Phtalates. Application to real water samples is discussed and reported.   Keywords: electrochemical, screen-printed electrode, DNA biosensor, genotoxic compounds

  8. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications

    Directory of Open Access Journals (Sweden)

    Xuelin Wang

    2016-11-01

    Full Text Available This article presents an overview on typical properties, technologies, and applications of liquid metal based flexible printed electronics. The core manufacturing material—room-temperature liquid metal, currently mainly represented by gallium and its alloys with the properties of excellent resistivity, enormous bendability, low adhesion, and large surface tension, was focused on in particular. In addition, a series of recently developed printing technologies spanning from personal electronic circuit printing (direct painting or writing, mechanical system printing, mask layer based printing, high-resolution nanoimprinting, etc. to 3D room temperature liquid metal printing is comprehensively reviewed. Applications of these planar or three-dimensional printing technologies and the related liquid metal alloy inks in making flexible electronics, such as electronical components, health care sensors, and other functional devices were discussed. The significantly different adhesions of liquid metal inks on various substrates under different oxidation degrees, weakness of circuits, difficulty of fabricating high-accuracy devices, and low rate of good product—all of which are challenges faced by current liquid metal flexible printed electronics—are discussed. Prospects for liquid metal flexible printed electronics to develop ending user electronics and more extensive applications in the future are given.

  9. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    Science.gov (United States)

    de Vos, Marc; Torah, Russel; Tudor, John

    2016-04-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.

  10. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    International Nuclear Information System (INIS)

    De Vos, Marc; Torah, Russel; Tudor, John

    2016-01-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps. (paper)

  11. Study on Gas Sensing Performance of TiO2 Screen Printed Thick Films

    Directory of Open Access Journals (Sweden)

    C. G. DIGHAVKAR

    2009-02-01

    Full Text Available Titanium dioxide (TiO2 thick films were prepared on alumina substrate by using screen printing technique. After preparation, the films were fired at temperature range 600 -1000 ºC for two hour. Morphological, compositional and structural properties of the film samples were performed by means of several techniques, including scanning electron microscopy (SEM, Energy dispersive spectroscopy (EDS, X-ray diffraction techniques. We explore the various gases to study the sensing performance of the TiO2 thick films. The maximum response was reported to film fired at 800 0C for LPG gas at 350 0C operating temperature.

  12. Influence of Dry Cleaning on the Electrical Resistance of Screen Printed Conductors on Textiles

    Directory of Open Access Journals (Sweden)

    Kazani Ilda

    2016-09-01

    Full Text Available Electrically conducting inks were screen printed on various textile substrates. The samples were dry cleaned with the usual chemicals in order to investigate the influence of the mechanical treatment on the electrical conductivity. It was found that dry cleaning has a tremendous influence on this electrical conductivity. For several samples, it is observed that the electrical resistance increases with the square of the number of dry cleaning cycles. In order to explain this observation a theoretical model and a numerical simulation have been carried out, by assuming that dry cleaning cycles introduce a crack in the conducting layer. The theoretical analysis and the numerical analysis both confirmed the experimental observations.

  13. Analysis of Gas Leakage and Current Loss of Solid Oxide Fuel Cells by Screen Printing

    DEFF Research Database (Denmark)

    Jia, Chuan; Han, Minfang; Chen, Ming

    2017-01-01

    Two types of anode supported solid oxide fuel cell (SOFC) NiO-YSZ/YSZ/GDC/LSCF with the same structure and different manufacturing process were tested. Gas leakage was suspected for cells manufactured with screen printing technique. Effective leak current densities for both types of cells were...... calculated. Their performances of electrochemical impedance spectroscopy (EIS) were compared and distribution function of relaxation times (DRT) technique was also used to find the clue of gas leakage. Finally, thinning and penetrating holes were observed in electrolyte layer, which confirmed the occurrence...

  14. Comparison between mixed and spatially separated remote phosphor fabricated via a screen-printing process

    Science.gov (United States)

    Kim, Byung-Ho; Hwang, Jonghee; Lee, Young Jin; Kim, Jin-Ho; Jeon, Dae-Woo; Lee, Mi Jai

    2016-08-01

    We developed a fabrication method for remote phosphor by a screen-printing process, using green phosphor, red phosphor, and thermally stable glass frit. The glass frit was introduced for long-term stability. The optical properties of the remote phosphor were observed via an integrating sphere; the photoluminescence spectrum dramatically changed on incorporating a minor amount of the red phosphor. These unique optical properties were elucidated using four factors: phosphor ratio, scattering induced by packing density, light intensity per unit volume, and reabsorption. The thermal stability of the remote phosphor was investigated at 500°C, demonstrating its outstanding thermal properties.

  15. Performance of glass RPC with industrial silk-screen-printed electrodes

    International Nuclear Information System (INIS)

    Ambrosio, M.; Candela, A.; De Deo, M.; D'Incecco, M.; Gamba, D.; Giuliano, A.; Gustavino, C.; Morganti, S.; Redaelli, N.; Tonazzo, A.; Trinchero, G.C.

    2003-01-01

    In this paper we describe the performance of several Glass RPCs, where the water-based graphite coating is replaced by a synthetic coating applied using the screen printing technique. As expected, the performance of the detectors is good and reproducible due to the accurate control of the coating resistivity value. The resistance of the coating to the action of mechanical and chemical agents permits an easy electrode cleaning and mounting with respect to the RPC coated with the graphite varnish. This coating, together with the use of float glass as electrode material, allows an industrial production, where the detector characteristics can be tailored as a function of the experiment requirements

  16. A screen-printed circular-type paper-based glucose/O2 biofuel cell

    Science.gov (United States)

    Shitanda, Isao; Nohara, Saki; Hoshi, Yoshinao; Itagaki, Masayuki; Tsujimura, Seiya

    2017-08-01

    The printable paper-based enzymatic biofuel cell (PBFC) to directly power small devices is an important objective for realizing cost-effective and disposable energy harvesting devices. In the present study, a screen-printed circular-type PBFC, composed of a series of 5 individual cells, was constructed. The PBFC exhibited the open circuit potential of 2.65 V and maximum power of 350 μW at 1.55 V, which were sufficient to illuminate an LED without requiring a booster circuit. The output voltage of this PBFC can also be easily adjusted as required.

  17. Introducing Thermal Wave Transport Analysis (TWTA): A Thermal Technique for Dopamine Detection by Screen-Printed Electrodes Functionalized with Molecularly Imprinted Polymer (MIP) Particles.

    Science.gov (United States)

    Peeters, Marloes M; van Grinsven, Bart; Foster, Christopher W; Cleij, Thomas J; Banks, Craig E

    2016-04-26

    A novel procedure is developed for producing bulk modified Molecularly Imprinted Polymer (MIP) screen-printed electrodes (SPEs), which involves the direct mixing of the polymer particles within the screen-printed ink. This allowed reduction of the sample preparation time from 45 min to 1 min, and resulted in higher reproducibility of the electrodes. The samples are measured with a novel detection method, namely, thermal wave transport analysis (TWTA), relying on the analysis of thermal waves through a functional interface. As a first proof-of-principle, MIPs for dopamine are developed and successfully incorporated within a bulk modified MIP SPE. The detection limits of dopamine within buffer solutions for the MIP SPEs are determined via three independent techniques. With cyclic voltammetry this was determined to be 4.7 × 10(-6) M, whereas by using the heat-transfer method (HTM) 0.35 × 10(-6) M was obtained, and with the novel TWTA concept 0.26 × 10(-6) M is possible. This TWTA technique is measured simultaneously with HTM and has the benefits of reducing measurement time to less than 5 min and increasing effect size by nearly a factor of two. The two thermal methods are able to enhance dopamine detection by one order of magnitude compared to the electrochemical method. In previous research, it was not possible to measure neurotransmitters in complex samples with HTM, but with the improved signal-to-noise of TWTA for the first time, spiked dopamine concentrations were determined in a relevant food sample. In summary, novel concepts are presented for both the sensor functionalization side by employing screen-printing technology, and on the sensing side, the novel TWTA thermal technique is reported. The developed bio-sensing platform is cost-effective and suitable for mass-production due to the nature of screen-printing technology, which makes it very interesting for neurotransmitter detection in clinical diagnostic applications.

  18. 3D Printing and Bioprinting in MEMS Technology

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2017-07-01

    Full Text Available 3D printing and bioprinting have advanced significantly in printing resolution in recent years, which presents a great potential for fabricating small and complex features suitable for microelectromechanical systems (MEMS with new functionalities. This special issue aims to give a glimpse into the future of this research field.

  19. Developing a Pre-Engineering Curriculum for 3D Printing Skills for High School Technology Education

    Science.gov (United States)

    Chien, Yu-Hung

    2017-01-01

    This study developed an integrated-STEM CO[subscript 2] dragster design course using 3D printing technology. After developing a pre-engineering curriculum, we conducted a teaching experiment to assess students' differences in creativity, race forecast accuracy, and learning performance. We compared student performance in both 3D printing and…

  20. The Use of 3D Printing Technology in the Ilizarov Method Treatment: Pilot Study.

    Science.gov (United States)

    Burzyńska, Karolina; Morasiewicz, Piotr; Filipiak, Jarosław

    2016-01-01

    Significant developments in additive manufacturing technology have occurred in recent years. 3D printing techniques can also be helpful in the Ilizarov method treatment. The aim of this study was to evaluate the usefulness of 3D printing technology in the Ilizarov method treatment. Physical models of bones used to plan the spatial design of Ilizarov external fixator were manufactured by FDM (Fused Deposition Modeling) spatial printing technology. Bone models were made of poly(L-lactide) (PLA). Printed 3D models of both lower leg bones allow doctors to prepare in advance for the Ilizarov method treatment: detailed consideration of the spatial configuration of the external fixation, experimental assembly of the Ilizarov external fixator onto the physical models of bones prior to surgery, planning individual osteotomy level and Kirschner wires introduction sites. Printed 3D bone models allow for accurate preparation of the Ilizarov apparatus spatially matched to the size of the bones and prospective bone distortion. Employment of the printed 3D models of bone will enable a more precise design of the apparatus, which is especially useful in multiplanar distortion and in the treatment of axis distortion and limb length discrepancy in young children. In the course of planning the use of physical models manufactured with additive technology, attention should be paid to certain technical aspects of model printing that have an impact on the accuracy of mapping of the geometry and physical properties of the model. 3D printing technique is very useful in 3D planning of the Ilizarov method treatment.

  1. Applying Hand-Held 3D Printing Technology to the Teaching of VSEPR Theory

    Science.gov (United States)

    Dean, Natalie L.; Ewan, Corrina; McIndoe, J. Scott

    2016-01-01

    The use of hand-held 3D printing technology provides a unique and engaging approach to learning VSEPR theory by enabling students to draw three-dimensional depictions of different molecular geometries, giving them an appreciation of the shapes of the building blocks of complex molecular structures. Students are provided with 3D printing pens and…

  2. Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Fyenbo, Jan; Jørgensen, Mikkel

    2010-01-01

    The improvement of the performance of roll-to-roll processed polymer solar cell modules through miniaturization of the device outline is described. The devices were prepared using full roll-to-roll processing comprising flexographic printing, slot-die coating and rotary screen printing to create ......HT:[70]PCBM. The solar cell modules were used to demonstrate the complete manufacture of a small lamp entirely using techniques of flexible electronics. The solar cell module was used to charge a polymer lithium ion battery through a blocking diode. The entire process was fully automated...

  3. Environmental and risk screening for prioritizing pollution prevention opportunities in the U.S. printed wiring board manufacturing industry.

    Science.gov (United States)

    Lam, Carl W; Lim, Seong-Rin; Schoenung, Julie M

    2011-05-15

    Modern manufacturing of printed wiring boards (PWBs) involves extensive use of various hazardous chemicals in different manufacturing steps such as board preparation, circuit design transfer, etching and plating processes. Two complementary environmental screening methods developed by the U.S. EPA, namely: (i) the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) and (ii) Risk-Screening Environmental Indicators (RSEI), are used to quantify geographic and chemical environmental impacts in the U.S. PWB manufacturing industry based on Toxics Release Inventory (TRI) data. Although the release weight percentages of industrial chemicals such as methanol, glycol ethers and dimethylformamide comprise the larger fraction of reported air and water emissions, results indicate that lead, copper and their compounds' releases correspond to the highest environmental impact from toxicity potentials and risk-screening scores. Combining these results with further knowledge of PWB manufacturing, select alternative chemical processes and materials for pollution prevention are discussed. Examples of effective pollution prevention options in the PWB industry include spent etchant recovery technologies, and process and material substitutions. In addition, geographic assessment of environmental burden highlights states where promotion of pollution prevention strategies and emissions regulations can have the greatest effect to curb the PWB industry's toxic release impacts. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Clinical Application of Three-Dimensional Printing Technology in Craniofacial Plastic Surgery

    OpenAIRE

    Choi, Jong Woo; Kim, Namkug

    2015-01-01

    Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to m...

  5. Performance, stability and operation voltage optimization of screen-printed aqueous supercapacitors.

    Science.gov (United States)

    Lehtimäki, Suvi; Railanmaa, Anna; Keskinen, Jari; Kujala, Manu; Tuukkanen, Sampo; Lupo, Donald

    2017-04-06

    Harvesting micropower energy from the ambient environment requires an intermediate energy storage, for which printed aqueous supercapacitors are well suited due to their low cost and environmental friendliness. In this work, a systematic study of a large set of devices is used to investigate the effect of process variability and operating voltage on the performance and stability of screen printed aqueous supercapacitors. The current collectors and active layers are printed with graphite and activated carbon inks, respectively, and aqueous NaCl used as the electrolyte. The devices are characterized through galvanostatic discharge measurements for quantitative determination of capacitance and equivalent series resistance (ESR), as well as impedance spectroscopy for a detailed study of the factors contributing to ESR. The capacitances are 200-360 mF and the ESRs 7.9-12.7 Ω, depending on the layer thicknesses. The ESR is found to be dominated by the resistance of the graphite current collectors and is compatible with applications in low-power distributed electronics. The effects of different operating voltages on the capacitance, leakage and aging rate of the supercapacitors are tested, and 1.0 V found to be the optimal choice for using the devices in energy harvesting applications.

  6. Disruptive innovation potential of the value propositions of 3D printing technology startups

    DEFF Research Database (Denmark)

    Jensen, Søren; Tanev, Stoyan; Hahn, Finn

    2014-01-01

    3D printing (or additive manufacturing) is a term used to describe the production of tangible products by using digitally controlled machine tools. The novelty of this manufacturing approach consists in the selective addition of materials layer-upon-layer, rather than through machining from solid...... material objects, moulding or casting. 3D printing (3DP) technologies have the potential to change the traditional manufacturing paradigm as well as to enable the emergence of new innovation practices based on mass customization, user design and distributed product innovation. As a result, 3DP...... potential of 3DP technology startups. The objective of this research is to empirically examine the existing business opportunities in the 3D printing technology sector. To meet this objective we have addressed two research questions: a) How do technology startups integrate new 3D printing technologies...

  7. A global sustainability perspective on 3D printing technologies

    International Nuclear Information System (INIS)

    Gebler, Malte; Schoot Uiterkamp, Anton J.M.; Visser, Cindy

    2014-01-01

    Three-dimensional printing (3DP) represents a relative novel technology in manufacturing which is associated with potentially strong stimuli for sustainable development. Until now, research has merely assessed case study-related potentials of 3DP and described specific aspects of 3DP. This study represents the first comprehensive assessment of 3DP from a global sustainability perspective. It contains a qualitative assessment of 3DP-induced sustainability implications and quantifies changes in life cycle costs, energy and CO 2 emissions globally by 2025. 3DP is identified to cost-effectively lower manufacturing inputs and outputs in markets with low volume, customized and high-value production chains as aerospace and medical component manufacturing. This lowers energy use, resource demands and related CO 2 emissions over the entire product life cycle, induces changes in labour structures and generates shifts towards more digital and localized supply chains. The model calculations show that 3DP contains the potential to reduce costs by 170–593 billion US $, the total primary energy supply by 2.54–9.30 EJ and CO 2 emissions by 130.5–525.5 Mt by 2025. The great range within the saving potentials can be explained with the immature state of the technology and the associated uncertainties of predicting market and technology developments. The energy and CO 2 emission intensities of industrial manufacturing are reducible by maximally 5% through 3DP by 2025, as 3DP remains a niche technology. If 3DP was applicable to larger production volumes in consumer products or automotive manufacturing, it contains the (theoretical) potential to absolutely decouple energy and CO 2 emission from economic activity. - Highlights: • Global sustainability aspects of 3DP in manufacturing are assessed in two ways. • 3DP will strongly influence manufacturing in aerospace, medical components, tooling. • 3DP re-shifts production to consumer countries due to decreased labour costs.

  8. 96X Screen-Printed Gold Electrode Platform to Evaluate Electroactive Polymers as Marine Antifouling Coatings.

    Science.gov (United States)

    Brisset, Hugues; Briand, Jean-François; Barry-Martinet, Raphaëlle; Duong, The Hy; Frère, Pierre; Gohier, Frédéric; Leriche, Philippe; Bressy, Christine

    2018-04-17

    Several alternatives are currently investigated to prevent and control the natural process of colonization of any seawater submerged surfaces by marine organisms. Since few years we develop an approach based on addressable electroactive coatings containing conducting polymers or polymers with lateral redox groups. In this article we describe the use of a screen-printed plate formed by 96 three-electrode electrochemical cells to assess the potential of these electroactive coatings to prevent the adhesion of marine bacteria. This novel platform is intended to control and record the redox properties of the electroactive coating in each well during the bioassay (15 h) and to allow screening its antiadhesion activity with enough replicates to support significant conclusions. Validation of this platform was carried out with poly(ethylenedioxythiophene) (PEDOT) as electroactive coating obtained by electropolymerization of EDOT monomer in artificial seawater electrolyte on the working electrode of each electrochemical cell of the 96-well microplate.

  9. Printed and tablet e-paper newspaper from an environmental perspective - A screening life cycle assessment

    International Nuclear Information System (INIS)

    Moberg, Asa; Johansson, Martin; Finnveden, Goeran; Jonsson, Alex

    2010-01-01

    Viable alternatives to conventional newspapers, such as electronic papers, e-papers or e-readers, are intended to have many of the qualities of paper, such as reading using reflective light, high resolution, 180 deg. viewing angle. It has been suggested that the environmental impact of e-paper can be lower than for printed and internet-based newspapers. However, in order to find the facts of the matter, a thorough life cycle perspective covering raw material acquisition, production, use and disposal should preferably be used to study the environmental performance of the different products. A screening life cycle assessment was performed to describe the potential environmental impacts of two product systems; printed on paper and tablet e-paper newspapers. Results show that the most significant phase of the life cycle for both product systems was the production of substrate or platform. Accordingly, key aspects that may affect the resulting environmental performance of newspaper product systems were for the printed newspaper number of readers per copy and number of pages per issue and for the tablet e-paper newspaper lifetime and multi-use of the device. The printed newspaper in general had a higher energy use, higher emissions of gases contributing to climate change and several other impact categories than the tablet e-paper newspaper. It was concluded that tablet e-paper has the potential to decrease the environmental impact of newspaper consumption. However, further studies regarding the environmental impact of production and waste management of electronic devices and internet use, as well as more comprehensive assessment of toxicological impacts are needed. As the data on the electronic devices becomes more comprehensive this may prove to be a major limitation of electronic newspaper systems. Developers are suggested to strive towards minimisation of toxic and rare substances in production.

  10. [The influence of printing technology conditions on the accuracy and reproducibility of printed contrast panels for assessing contrast sensitivity].

    Science.gov (United States)

    Raabe, T; Jung, U; Wilhelm, H

    2014-08-01

    Contrast studies can provide important knowledge for treatment decisions before surgery or for assessing the driving ability of professional drivers. Accordingly, high demands are placed on contrast panels to obtain reliable and reproducible results. The aim of the study is to find out if the contrast panels on the market meet the requirements. On the basis of measurement evaluation and schematic presentations potential sources of error can be identified. These sources of error may have a decisive influence on the assessment of contrast vision. Far-reaching analyses have shown that three parameters can have a significant influence on the accuracy and reproducibility of printed contrast panels. This holds for certain properties of the printing substrate, the type of representation of display element, and the choice of the colourant. Only the correct interaction between the substrate and the print colour effects an angle-independent contrast. A matt substrate is necessary, which has a low difference to the printed contrast element in respect of glow, so that possible angle differences have no influence on the contrast assessment. The contrast elements of a contrast panel vary in brightness. Conventional methods for typographical representation of different brightnesses use the method of screening. This causes undesirable edges, which weaken in particular the lower-contrast elements unintentionally. Use of special colours can avoid this effect. In the visible wavelength range the studied contrast elements have an irregular absorption behaviour. Because of differences between the lighting surroundings, this can lead to a differentiated stimulation of cones in practice. Appropriate colourants have a constant absorption behaviour. To get representative results of contrast studies the production of contrast panels needs more knowledge about the interaction between paper and colour than is typically required for print products. On the basis of a prototype optimisation

  11. 3D printing technology used in severe hip deformity.

    Science.gov (United States)

    Wang, Shanshan; Wang, Li; Liu, Yan; Ren, Yongfang; Jiang, Li; Li, Yan; Zhou, Hao; Chen, Jie; Jia, Wenxiao; Li, Hui

    2017-09-01

    This study was designed to assess the use of a 3D printing technique in total hip arthroplasty (THA) for severe hip deformities, where new and improved approaches are needed. THAs were performed from January 2015 to December 2016. Bioprosthesis artificial hip joints were used in both conventional and 3D printing hip arthroplasties. A total of 74 patients (57 cases undergoing conventional hip replacements and 17 undergoing 3D printing hip replacements) were followed-up for an average of 24 months. The average age of the patients was 62.7 years. Clinical data between the patients treated with different approaches were compared. Results showed that the time to postoperative weight bearing and the Harris scores of the patients in the 3D printing group were better than those for patients in the conventional hip replacement group. Unfortunately, the postoperative infection and loosening rates were higher in the 3D printing group. However, there were no significant differences in femoral neck anteversion, neck shaft, acetabular or sharp angles between ipsilateral and contralateral sides in the 3D printing group (P>0.05). The femoral neck anteversion angle was significantly different between the two sides in the conventional hip replacement group (P3D printing approach provides a better short-term curative effect that is more consistent with the physiological structure and anatomical characteristics of the patient, and we anticipate that its use will help improve the lives of many patients.

  12. NADH oxidation on screen-printed electrode modified with a new phenothiazine diazonium salt

    Energy Technology Data Exchange (ETDEWEB)

    Doumeche, Bastien; Blum, Loic J. [GEMBAS, Genie Enzymatique, Membranes Biomimetiques et Assemblages Supramoleculaires, ICBMS UMR 5246, Universite Lyon 1, 43 bd du 11 Novembre 1918, 69622 Villeurbanne (France)

    2010-10-15

    NADH oxidation catalysts are extremely important in the field of electrochemical biosensors and enzymatic biofuel cells. Based on the growing diazonium chemistry, we synthesized the diazonium salt of the well-known NADH mediator toluidine blue O. The electrochemical reduction of the diazonium moiety by cyclic voltammetry onto a screen-printed electrode leads to an electrocatalyst suitable for the oxidation of NADH. The amperometric response for its oxidation shows a maximal current of 1.2 {mu}A ([NADH] = 100 {mu}M). Based on electrochemical measurements, the surface coverage is found to be 3.78 x 10{sup -11} mol cm{sup -2} and the heterogeneous standard rate constant k{sub h} is 1.21 {+-} 0.16 s{sup -1}. The sensitive layer for the oxidation of NADH is improved by electrografting the diazonium salt with a potentiostatic method. Both the surface coverage and the heterogeneous standard rate constant k{sub h} are improved and found to be 6.08 {+-} 0.63 x 10{sup -11} mol cm{sup -2} and {proportional_to} 5.02 s{sup -} {sup 1}, respectively. The amperometric response is also improved by an 8 fold factor, reaching 9.87 {mu}A ([NADH] = 120 {mu}M). These remarkably high values for screen-printed electrodes are comparable to glassy carbon electrodes making this method suitable for low-cost bioelectronical devices. (author)

  13. Reproduction of Bela Krajina Ornaments on Linen Fabrics by Screen Printing

    Directory of Open Access Journals (Sweden)

    Tatjana Rijavec

    2017-07-01

    Full Text Available Decorated Bela Krajina (White Carniolan towels called “otirači” are historical textiles, which represent an important cultural heritage of the Slovenian nation. This article presents the research of the suitability of the screen printing technique for reproducing ornaments from Bela Krajina towels, originally made with a technique called “tkaničenje”. The basic characteristics of woven fabrics, the colours of ornaments from Bela Krajina towels and the linen fabric, suitable for kitchen textiles, were analysed. Two Bela Krajina motifs were chosen for the decoration, namely a diamond and an eight-arm star. A comparison of the the colour diff erences, DE*ab , of the replica ornaments and the ornaments on the original towels made in blue and red colours showed a good match even after washing. It was confi rmed that the screen printing technique is suitable for decorating linen textiles with the original Bela Krajina ornaments, wherein the ornaments retaining their aesthetic and message values.

  14. A novel screen-printed electrode array for rapid high-throughput detection.

    Science.gov (United States)

    Mu, Shuai; Wang, Xiao; Li, Yuan-Ting; Wang, Yang; Li, Da-Wei; Long, Yi-Tao

    2012-07-21

    A novel multi-channel electrode array sensing device was fabricated by screen-printing techniques using 96-well plate as the template. To confirm its practical value, we developed a one-step preparation of multi-walled carbon nanotubes (MWCNTs) doped electrode array by an ink containing MWCNTs, which was applied to the simultaneous detection of a variety of biological samples and environmental pollutants. Results demonstrated that the designed sensing device could carry out the multiple measurements of different analytes at the same time, while MWCNTs enhanced the electrocatalytic activity of electrodes toward electroactive molecules. The required amount of each sample was only ∼200 μL. Moreover, the excellent differential pulse voltammetric (DPV) response toward dopamine, hydroquinone and catechol was obtained and the detection limits was determined to be 0.337, 0.289 and 0.369 μM, respectively. Comparing it with the traditional screen-printed electrode (SPE), this sensing device possesses the advantages of high-throughput, fast electron transfer rate for electrodes, short-time analysis and low sample consumption.

  15. A thiophene-modified screen printed electrode for detection of dengue virus NS1 protein.

    Science.gov (United States)

    Silva, M M S; Dias, A C M S; Cordeiro, M T; Marques, E; Goulart, M O F; Dutra, R F

    2014-10-01

    A thiophene-modified screen printed electrode (SPE) for detection of the Dengue virus non-structural protein 1 (NS1), an important marker for acute phase diagnosis, is described. A sulfur-containing heterocyclic compound, the thiophene was incorporated to a carbon ink to prepare reproducible screen printed electrodes. After cured, the thiophene SPE was coated by gold nanoparticles conjugated to Protein A to form a nanostrutured surface. The Anti-NS1 antibodies immobilized via their Fc portions via Protein A, leaving their antigen specific sites free circumventing the problem of a random antibodies immobilization. Amperometric responses to the NS1 protein of dengue virus were obtained by cyclic voltammetries performed in presence of ferrocyanide/ferricyanide as redox probe. The calibration curve of immunosensor showed a linear response from 0.04 µg mL(-1) to 0.6 µg mL(-1) of NS1 with a good linear correlation (r=0.991, pink enhanced the electroanalytical properties of the SPEs, increasing their reproducibility and sensitivity. This point-of-care testing represents a great potential for use in epidemic situations, facilitating the early diagnosis in acute phase of dengue virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Thin-layer voltammetry of soluble species on screen-printed electrodes: proof of concept.

    Science.gov (United States)

    Botasini, S; Martí, A C; Méndez, E

    2016-10-17

    Thin-layer diffusion conditions were accomplished on screen-printed electrodes by placing a controlled-weight onto the cast solution and allowing for its natural spreading. The restricted diffusive conditions were assessed by cyclic voltammetry at low voltage scan rates and electrochemical impedance spectroscopy. The relationship between the weight exerted over the drop and the thin-layer thickness achieved was determined, in such a way that the simple experimental set-up designed for this work could be developed into a commercial device with variable control of the thin-layer conditions. The experimental results obtained resemble those reported for the voltammetric features of electroactive soluble species employing electrodes modified with carbon nanotubes or graphene layers, suggesting that the attainment of the benefits reported for these nanomaterials could be done simply by forcing the solution to spread over the screen-printed electrodic system to form a thin layer solution. The advantages of thin-layer voltammetry in the kinetic characterization of quasi-reversible and irreversible processes are highlighted.

  17. A quartz-based micro catalytic methane sensor by high resolution screen printing

    Science.gov (United States)

    Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong

    2016-02-01

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH4. A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH4, 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection.

  18. A quartz-based micro catalytic methane sensor by high resolution screen printing

    International Nuclear Information System (INIS)

    Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong

    2016-01-01

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH 4 . A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH 4 , 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection. (paper)

  19. Screen-Printed Carbon Electrodes Modified with Cobalt Phthalocyanine for Selective Sulfur Detection in Cosmetic Products

    Directory of Open Access Journals (Sweden)

    Ying Shih

    2011-06-01

    Full Text Available Cobalt phthalocyanine (CoPc films were deposited on the surface of a screen-printed carbon electrode using a simple drop coating method. The cyclic voltammogram of the resulting CoPc modified screen-printed electrode (CoPc/SPE prepared under optimum conditions shows a well-behaved redox couple due to the (CoI/CoII system. The CoPc/SPE surface demonstrates excellent electrochemical activity towards the oxidation of sulfur in a 0.01 mol·L−1 NaOH. A linear calibration curve with the detection limit (DL, S/N = 3 of 0.325 mg·L−1 was achieved by CoPc/SPE coupled with flow injection analysis of the sulfur concentration ranging from 4 to 1120 mg·L−1. The precision of the system response was evaluated (3.60% and 3.52% RSD for 12 repeated injections, in the range of 64 and 480 mg·L−1 sulfur. The applicability of the method was successfully demonstrated in a real sample analysis of sulfur in anti-acne creams, and good recovery was obtained. The CoPc/SPE displayed several advantages in sulfur determination including easy fabrication, high stability, and low cost.

  20. Anodic Voltammetric determination of gemifloxacin using screen-printed carbon electrode

    Directory of Open Access Journals (Sweden)

    Abd-Elgawad Radi

    2013-04-01

    Full Text Available The electrochemical oxidation behavior and voltammetric assay of gemifloxacin were investigated using differential-pulse and cyclic voltammetry on a screen-printed carbon electrode. The effects of pH, scan rates, and concentration of the drug on the anodic peak current were studied. Voltammograms of gemifloxacin in Tris–HCl buffer (pH 7.0 exhibited a well-defined single oxidation peak. A differential-pulse voltammetric procedure for the quantitation of gemifloxacin has been developed and suitably validated with respect to linearity, limits of detection and quantification, accuracy, precision, specificity, and robustness. The calibration was linear from 0.5 to 10.0 μM, and the limits of detection and quantification were 0.15 and 5.0 μM. Recoveries ranging from 96.26% to 103.64% were obtained. The method was successfully applied to the determination of gemifloxacin in pharmaceutical tablets without any pre-treatment. Excipients present in the tablets did not interfere in the assay. Keywords: Screen-printed carbon electrode, Voltammetry, Gemifloxacin, Pharmaceutical analysis

  1. Detection of Abrin by Electrochemiluminescence Biosensor Based on Screen Printed Electrode

    Directory of Open Access Journals (Sweden)

    Shuai Liu

    2018-01-01

    Full Text Available For the convenience of fast measurement in the outdoor environment, a portable electrochemiluminescence biosensor with the screen-printed electrode as the reaction center was developed, which possesses the characteristics of high sensitivity, small scale, simplified operation and so on, and has been used for in situ detection of abrin. First, combining with magnetic separation technique, the “biotin-avidin” method was used to immobilize the polyclonal antibody (pcAb on the magnetic microspheres surface as the capture probe. Secondly, the Ru(bpy32+-labeled monoclonal antibody (mcAb was used as the specific electrochemiluminescence signal probe. Then, the “mcAb-toxin-pcAb” sandwich model was built to actualize the quantitative detection of abrin on the surface of the screen-printed electrode. The linear detection range was 0.5–1000 ng/mL; the regression equation was Y = 89.251lgX + 104.978 (R = 0.9989, n = 7, p < 0.0001; and the limit of detection (LOD was 0.1 ng/mL. The sensing system showed high sensitivity, excellent specificity and good anti-interference ability, and could be used for the analysis of trace abrin in various environmental samples with good recovery and reproducibility. Compared with the traditional electrochemiluminescence sensing device, its miniaturization and portability gives it potential to satisfy the requirement of in situ detection.

  2. Dual Approach to Amplify Anodic Stripping Voltammetric Signals Recorded Using Screen Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Agnieszka KRÓLICKA

    2016-12-01

    Full Text Available Screen printed electrodes plated with bismuth were used to record anodic stripping voltammograms of Pb(II, In(III and Cd(II. Using two bismuth precursors: Bi2O3 dispersed in the electrode body and Bi(III ions spiked into the tested solution it was possible to deposit bismuth layers, demonstrating exceptional ability to accumulate metals forming alloys with bismuth. The voltammetric signals were amplified by adjusting the electrode location with respect to rotating magnetic field. The electrode response was influenced by vertical and horizontal distance between the magnet center and the sensing area of screen printed electrode as well as the angle between the magnet surface and the electrode. When the electrode was moved away from the magnet center the recorded peaks were increasingly smaller and almost not affected by the presence of bismuth ions. It was shown that to obtain well-shaped signals a favourable morphology of bismuth deposits is of key importance. Hypotheses explaining processes responsible for the amplification of voltammetric signals were proposed.

  3. Discharge of viscous UV-curable resin droplets by screen printing for UV nanoimprint lithography

    Science.gov (United States)

    Tanabe, Akira; Uehara, Takuya; Nagase, Kazuro; Ikedo, Hiroaki; Hiroshiba, Nobuya; Nakamura, Takahiro; Nakagawa, Masaru

    2016-06-01

    We demonstrated a coating method of screen printing for discharging droplets of a high-viscosity resin on a substrate for ultraviolet (UV) nanoimprint lithography (NIL). Compared with a spin-coated resin film on a silicon substrate, discharged resin droplets on a silicon substrate were effective in terms of the uniformity of residual layer thickness (RLT) in contact with a mold with various pattern densities. Fluorescence microscope observations with a fluorescent-dye-containing UV-curable resin enabled the evaluation of the shapes of resin droplets discharged on a substrate surface. Widely used screen mesh plates composed of a stainless mesh covered with a patterned emulsion film caused defects of undischarged parts, whereas defects-free resin droplets with a narrow size distribution were discharged by mesh-free plates prepared with laser ablation. The pitch-to-diameter ratio in the configuration of 10-µm-diameter holes needs to be larger than 2.5 times for printing a resin having a viscosity of 12,800 mPa s.

  4. Photosensitive space charge limited current in screen printed CdTe thin films

    Science.gov (United States)

    Vyas, C. U.; Pataniya, Pratik; Zankat, Chetan K.; Patel, Alkesh B.; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2018-05-01

    Group II-VI Compounds have emerged out as most suitable in the class of photo sensitive material. They represent a strong position in terms of their applications in the field of detectors as well as photo voltaic devices. Cadmium telluride is the prime member of this Group, because of high acceptance of this material as active component in opto-electronic devices. In this paper we report preparation and characterization of CdTe thin films by using a most economical screen printing technique in association with sintering at 510°C temperature. Surface morphology and smoothness are prime parameters of any deposited to be used as an active region of devices. Thus, we studied of the screen printed thin film by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM) for this purpose. However, growth processes induced intrinsic defects in fabricated films work as charge traps and affect the conduction process significantly. So the conduction mechanism of deposited CdTe thin film is studied under dark as well as illuminated conditions. It is found that the deposited films showed the space charge limited conduction (SCLC) mechanism and hence various parameters of space charge limited conduction (SCLC) of CdTe film were evaluated and discussed and the photo responsive resistance is also presented in this paper.

  5. Effect of Nanoparticles on Modified Screen Printed Inhibition Superoxide Dismutase Electrodes for Aluminum

    Directory of Open Access Journals (Sweden)

    Miriam Barquero-Quirós

    2016-09-01

    Full Text Available A novel amperometric biosensor for the determination of Al(III based on the inhibition of the enzyme superoxide dismutase has been developed. The oxidation signal of epinephrine substrate was affected by the presence of Al(III ions leading to a decrease in its amperometric current. The immobilization of the enzyme was performed with glutaraldehyde on screen-printed carbon electrodes modifiedwith tetrathiofulvalene (TTF and different types ofnanoparticles. Nanoparticles of gold, platinum, rhodium and palladium were deposited on screen printed carbon electrodes by means of two electrochemical procedures. Nanoparticles were characterized trough scanning electronic microscopy, X-rays fluorescence, and atomic force microscopy. Palladium nanoparticles showed lower atomic force microscopy parameters and higher slope of aluminum calibration curves and were selected to perform sensor validation. The developed biosensor has a detection limit of 2.0 ± 0.2 μM for Al(III, with a reproducibility of 7.9% (n = 5. Recovery of standard reference material spiked to buffer solution was 103.8% with a relative standard deviation of 4.8% (n = 5. Recovery of tap water spiked with the standard reference material was 100.5 with a relative standard deviation of 3.4% (n = 3. The study of interfering ions has also been carried out.

  6. Characterization of Screen-Printed Organic Electrochemical Transistors to Detect Cations of Different Sizes

    Directory of Open Access Journals (Sweden)

    Laura Contat-Rodrigo

    2016-09-01

    Full Text Available A novel screen-printing fabrication method was used to prepare organic electrochemical transistors (OECTs based on poly(3,4-ethylenedioxythiophene doped with polysterene sulfonate (PEDOT:PSS. Initially, three types of these screen-printed OECTs with a different channel and gate areas ratio were compared in terms of output characteristics, transfer characteristics, and current modulation in a phosphate buffered saline (PBS solution. Results confirm that transistors with a gate electrode larger than the channel exhibit higher modulation. OECTs with this geometry were therefore chosen to investigate their ion-sensitive properties in aqueous solutions of cations of different sizes (sodium and rhodamine B. The effect of the gate electrode was additionally studied by comparing these all-PEDOT:PSS transistors with OECTs with the same geometry but with a non-polarizable metal gate (Ag. The operation of the all-PEDOT:PSS OECTs yields a response that is not dependent on a Na+ or rhodamine concentration. The weak modulation of these transistors can be explained assuming that PEDOT:PSS behaves like a supercapacitor. In contrast, the operation of Ag-Gate OECTs yields a response that is dependent on ion concentration due to the redox reaction taking place at the gate electrode with Cl− counter-ions. This indicates that, for cation detection, the response is maximized in OECTs with non-polarizable gate electrodes.

  7. Comparative study of different alcohol sensors based on Screen-Printed Carbon Electrodes.

    Science.gov (United States)

    Costa Rama, Estefanía; Biscay, Julien; González García, María Begoña; Julio Reviejo, A; Pingarrón Carrazón, José Manuel; Costa García, Agustín

    2012-05-30

    Different very simple single-use alcohol enzyme sensors were developed using alcohol oxidase (AOX) from three different yeast, Hansenula sp., Pichia pastoris and Candida boidinii, and employing three different commercial mediator-based Screen-Printed Carbon Electrodes as transducers. The mediators tested, Prussian Blue, Ferrocyanide and Co-phthalocyanine were included into the ink of the working electrode. The procedure to obtain these sensors consists of the immobilization of the enzyme on the electrode surface by adsorption. For the immobilization, an AOX solution is deposited on the working electrode and left until dried (1h) at room temperature. The best results were obtained with the biosensor using Screen-Printed Co-phthalocyanine/Carbon Electrode and AOX from Hansenula sp. The reduced cobalt-phthalocyanine form is amperometrically detected at +0.4V (vs. Ag pseudo reference electrode). This sensor shows good sensitivity (1211 nA mM(-1)), high precision (2.1% RSD value for the slope value of the calibration plot) and wide linear response (0.05-1.00 mM) for ethanol determination. The sensor provides also accurate results for ethanol quantification in alcoholic drinks. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A microband lactate biosensor fabricated using a water-based screen-printed carbon ink.

    Science.gov (United States)

    Rawson, F J; Purcell, W M; Xu, J; Pemberton, R M; Fielden, P R; Biddle, N; Hart, J P

    2009-01-15

    The present study demonstrated for the first time that screen-printed carbon microband electrodes fabricated from water-based ink can readily detect H(2)O(2) and that the same ink, with the addition of lactate oxidase, can be used to construct microband biosensors to measure lactate. These microband devices were fabricated by a simple cutting procedure using conventional sized screen-printed carbon electrodes (SPCEs) containing the electrocatalyst cobalt phthalocyanine (CoPC). These devices were characterised with H(2)O(2) using several electrochemical techniques. Cyclic voltammograms were found to be sigmoidal; a current density value of 4.2 mA cm(-2) was obtained. A scan rate study revealed that the mass transport mechanism was a mixture of radial and planar diffusion. However, a further amperometric study under quiescent and hydrodynamic conditions indicated that radial diffusion predominated. A chronoamperometric study indicated that steady-state currents were obtained with these devices for a variety of H(2)O(2) concentrations and that the currents were proportional to the analyte concentration. Lactate microband biosensors were then fabricated by incorporating lactate oxidase into the water-based formulation prior to printing and then cutting as described. Voltammograms demonstrated that lactate oxidase did not compromise the integrity of the electrode for H(2)O(2) detection. A potential of +400 mV was selected for a calibration study, which showed that lactate could be measured over a dynamic range of 1-10mM which was linear up to 6mM; a calculated lower limit of detection of 289 microM was ascertained. This study provides a platform for monitoring cell metabolism in-vitro by measuring lactate electrochemically via a microband biosensor.

  9. Screen printing as a holistic manufacturing method for multifunctional microsystems and microreactors

    International Nuclear Information System (INIS)

    Bejarano, D; Lozano, P; Mata, D; Cito, S; Constantí, M; Katakis, I

    2009-01-01

    Microsystems are commonly manufactured by photolithographic or injection moulding techniques in a variety of realizations and on almost any material. A perennial problem in the manufacturing of microsystems is the difficulty to obtain hybrid devices that incorporate distinct materials with different functionalities. In most of the cases, cumbersome prototyping and high investment needed for manufacturing are additional problems that add to the cost of the final product. Such drawbacks are true not only for lab-on-a-chip but also for certain microreactor applications. Most importantly, in many commercial applications where an intermediate product between full fluidics control and a 'strip' is needed, such restraints prohibit the feasibility of reduction to practice. Screen printing on the other hand is a low cost technique that has been used for years in mass producing two-dimensional low cost reproductions of a mask pattern for circuits and art incorporates prototyping in production and allows the use of an almost limitless variety of materials as 'inks'. In this work it is demonstrated that taking advantage of the deposited ink's three-dimensional nature, screen printing can be used as a versatile and low cost technique for the fabrication of microchannels. Microchannels with dimensions in the order of 100 µm were fabricated that could readily incorporate functionalities through the choice of the materials used to create the microstructure. Variables have been investigated through a factorial experimental design as important process parameters that affect the resolution and print thickness of the resulting microchannels that incorporate electroactive elements. Such studies can lead to the optimization of the process for custom applications

  10. Compilation of Existing Neutron Screen Technology

    Directory of Open Access Journals (Sweden)

    N. Chrysanthopoulou

    2014-01-01

    Full Text Available The presence of fast neutron spectra in new reactors is expected to induce a strong impact on the contained materials, including structural materials, nuclear fuels, neutron reflecting materials, and tritium breeding materials. Therefore, introduction of these reactors into operation will require extensive testing of their components, which must be performed under neutronic conditions representative of those expected to prevail inside the reactor cores when in operation. Due to limited availability of fast reactors, testing of future reactor materials will mostly take place in water cooled material test reactors (MTRs by tailoring the neutron spectrum via neutron screens. The latter rely on the utilization of materials capable of absorbing neutrons at specific energy. A large but fragmented experience is available on that topic. In this work a comprehensive compilation of the existing neutron screen technology is attempted, focusing on neutron screens developed in order to locally enhance the fast over thermal neutron flux ratio in a reactor core.

  11. The Center for Environmental Technology Innovative Technology Screening Process

    International Nuclear Information System (INIS)

    Bertrand, C.M.

    1995-02-01

    The Center for Environmental Technology's (CET) mission is to provide a fully integrated system for accelerated evaluation, development, commercialization, and public acceptance of creative environmental solutions which match the foremost demands in today's environmentally sensitive world. In short, CET will create a means to provide quick, effective solutions for environmental needs. To meet this mission objective, CET has created a unique and innovative approach to eliminating the usual barriers in developing and testing environmental technologies. The approach paves the way for these emerging, cutting-edge technologies by coordinating environmental restoration and waste management activities of industry, universities, and the government to: efficiently and effectively transfer technology to these users, provide market-driven, cost-effective technology programs to the public and DOE, and aid in developing innovative ideas by initiating efforts between DOE facilities and private industry. The central part to this mission is selecting and evaluating specific innovative technologies for demonstration and application at United States Department of Energy (DOE) installations. The methodology and criteria used for this selection, which is called the CET Innovative Technology Screening Process, is the subject of this paper. The selection criteria used for the screening process were modeled after other DOE technology transfer programs and were further developed by CET's Technology Screening and Evaluation Board (TSEB). The process benefits both CET and the proposing vendors by providing objective selection procedures based on predefined criteria. The selection process ensures a rapid response to proposing vendors, all technologies will have the opportunity to enter the selection process, and all technologies are evaluated on the same scale and with identical criteria

  12. Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Alstrup, J.; Spanggaard, H.

    2004-01-01

    The possibility of making large area (100 cm(2)) polymer solar cells based on the conjugated polymer poly 1,4-(2-methoxy-5-ethylhexyloxy)phenylenevinylene (MEH-PPV) was demonstrated. Devices were prepared by etching an electrode pattern on ITO covered polyethyleneterephthalate (PET) substrates....... A pattern of conducting silver epoxy allowing for electrical contacts to the device was silk screen printed and hardened. Subsequently a pattern of MEH-PPV was silk screen printed in registry with the ITO electrode pattern on top of the substrate. Final evaporation of an aluminum electrode or sublimation......). The half-life based on I-sc in air for the devices were 63 h. The cells were laminated in a 125 mum PET encasement. Lamination had a negative effect on the lifetime. We demonstrate the feasibility of industrial production of large area solar cells (1 m(2)) by silk screen printing and envisage...

  13. 3D Modelling and Printing Technology to Produce Patient-Specific 3D Models.

    Science.gov (United States)

    Birbara, Nicolette S; Otton, James M; Pather, Nalini

    2017-11-10

    A comprehensive knowledge of mitral valve (MV) anatomy is crucial in the assessment of MV disease. While the use of three-dimensional (3D) modelling and printing in MV assessment has undergone early clinical evaluation, the precision and usefulness of this technology requires further investigation. This study aimed to assess and validate 3D modelling and printing technology to produce patient-specific 3D MV models. A prototype method for MV 3D modelling and printing was developed from computed tomography (CT) scans of a plastinated human heart. Mitral valve models were printed using four 3D printing methods and validated to assess precision. Cardiac CT and 3D echocardiography imaging data of four MV disease patients was used to produce patient-specific 3D printed models, and 40 cardiac health professionals (CHPs) were surveyed on the perceived value and potential uses of 3D models in a clinical setting. The prototype method demonstrated submillimetre precision for all four 3D printing methods used, and statistical analysis showed a significant difference (p3D printed models, particularly using multiple print materials, were considered useful by CHPs for preoperative planning, as well as other applications such as teaching and training. This study suggests that, with further advances in 3D modelling and printing technology, patient-specific 3D MV models could serve as a useful clinical tool. The findings also highlight the potential of this technology to be applied in a variety of medical areas within both clinical and educational settings. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  14. CLOUD PRINTING: AN INNOVATINE TECHNOLOGY USING MOBILE PHONE

    OpenAIRE

    Shammi Mehra*1, Azad Singh2 & Sandeep Boora3

    2017-01-01

    In recent years, cloud printing is becoming a popular topic in the field of communication and the organizations (public or private) are shifting their physical infrastructure to cloud storage. Mobile phones are the dominant access device for consumer and have been an essential part of life. Mobile phones with smart features are the recent driver behind the cloud printing. Now mobile phones can be attached wirelessly to the printers from any location and anytime in the world via cloud technolo...

  15. Formulation and screen printing of water based conductive flake silver pastes onto green ceramic tapes for electronic applications

    International Nuclear Information System (INIS)

    Faddoul, Rita; Reverdy-Bruas, Nadège; Blayo, Anne

    2012-01-01

    Highlights: ► Formulation of water-based pastes. ► Viscosity, yield stress, elastic and viscous modulus determination. ► Screen printing onto green ceramic tapes. ► Rheology effect on line dimensions and electrical properties. ► Resistivity ∼18–33 nΩ m. Minimum width ∼60 μm after sintering. - Abstract: Environmentally friendly, water-based silver pastes, adapted for screen printing, were formulated with different silver contents (67–75%). These pastes allowed screen printing onto low temperature co-fired ceramic (LTCC) of narrow conductive tracks with a 60 μm line width and a 3 × 10 −8 Ω m electrical resistivity. Inks were formulated with a mixture of spherical and flake shape silver particles with 2–4 μm mean diameter. Rheological behaviour of pastes was studied in order to determine its effect on printed lines properties. Prepared inks were then screen printed and sintered under normal atmosphere at 875 °C. As expected, electrical properties depended on silver content. Resistivity values varying from 1.6 × 10 −8 to 3.3 × 10 −8 Ω m were calculated over 36.3 cm line length. These values are very close to bulk silver resistivity (1.6 × 10 −8 Ω m). Compared to previous research and commercial pastes, the newly formulated pastes reached equivalent or even better conductivities with lower silver content (70% by weight).

  16. Facile synthesis of amorphous FeOOH/MnO2 composites as screen-printed electrode materials for all-printed solid-state flexible supercapacitors

    Science.gov (United States)

    Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei

    2017-09-01

    More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.

  17. Innovation-Prototype. Making hydraulic and/or pneumatic plates using 3D printing technology

    Science.gov (United States)

    Alexa, V.; Rațiu, S. A.; Kiss, I.; Cioată, V. G.; Rackov, M.

    2018-01-01

    Start 3D printing allows hydraulic and/or pneumatic plates to be obtained from a single technological process without requiring further post-production operations. 3D printing with innovative materials in a rich colour range has several advantages such as: time-saving, cost is the same for any type of plate and its reported just to volume, fast and impossible realization of hydraulic and/or pneumatic links compared to traditional and high accuracy technologies.

  18. [Applications of 3D printing technology in teaching of oromaxillofacial head and neck surgical oncology].

    Science.gov (United States)

    Ruan, Min; Ji, Tong; Zhang, Chen-Ping

    2016-12-01

    With the increasing maturation of 3D printing technology, as well as its application in various industries, investigation of 3D printing technology into clinic medical education becomes an important task of the current medical education. The teaching content of oromaxillofacial head and neck surgical oncology is complicated and diverse, making lower understanding/memorizing efficiency and insufficient skill training. To overcome the disadvantage of traditional teaching method, it is necessary to introduce 3D printing technique into teaching of oromaxillofacial head and neck surgical oncology, in order to improve the teaching quality and problem solving capabilities, and finally promote cultivation of skilled and innovative talents.

  19. Initial investment to 3D printing technologies in a construction company

    OpenAIRE

    Cernohorsky, Zdenek; Matejka, Petr

    2017-01-01

    This article deals with an initial investment to 3D printing technologies in a construction company. The investment refers to the use of building information models and their integration with 3D printing technology within a construction company. In the first part, there will be discussed an introduction of 3D printing scheme in a construction company from a lifecycle perspective in general. As a part of this scheme, the ideal variant of an initial investment will be considered a.k.a a pilot p...

  20. The development of a web- and a print-based decision aid for prostate cancer screening

    Directory of Open Access Journals (Sweden)

    Schwartz Marc D

    2010-03-01

    Full Text Available Abstract Background Whether early detection and treatment of prostate cancer (PCa will reduce disease-related mortality remains uncertain. As a result, tools are needed to facilitate informed decision making. While there have been several decision aids (DAs developed and tested, very few have included an exercise to help men clarify their values and preferences about PCa screening. Further, only one DA has utilized an interactive web-based format, which allows for an expansion and customization of the material. We describe the development of two DAs, a booklet and an interactive website, each with a values clarification component and designed for use in diverse settings. Methods We conducted two feasibility studies to assess men's (45-70 years Internet access and their willingness to use a web- vs. a print-based tool. The booklet was adapted from two previous versions evaluated in randomized controlled trials (RCTs and the website was created to closely match the content of the revised booklet. Usability testing was conducted to obtain feedback regarding draft versions of the materials. The tools were also reviewed by a plain language expert and the interdisciplinary research team. Feedback on the content and presentation led to iterative modifications of the tools. Results The feasibility studies confirmed that the Internet was a viable medium, as the majority of men used a computer, had access to the Internet, and Internet use increased over time. Feedback from the usability testing on the length, presentation, and content of the materials was incorporated into the final versions of the booklet and website. Both the feasibility studies and the usability testing highlighted the need to address men's informed decision making regarding screening. Conclusions Informed decision making for PCa screening is crucial at present and may be important for some time, particularly if a definitive recommendation either for or against screening does not

  1. Screen-printed carbon-containing electrode modified with formazan for determining copper, lead, cadmium, and zinc

    International Nuclear Information System (INIS)

    Stozhko, N.Yu.; Aleshina, L.V.; Brajnina, Kh.Z.; Lipunova, G.N.; Maslakova, T.I.

    2004-01-01

    The electrochemical behavior of some hetarylated formazans introduced into the bulk of carbon-containing inks of screen-printed electrodes was studied. The compositions of complexes formed at the electrode surface were found, and their stability constants were estimated. It was shown that the modification of carbon-containing screen-printed electrode with 1-(o-chlorophenyl-3-phenyl-5-(6-methyl-4-oxo-pyrimidinyl-2)formazan improves its sensitivity, lowers detection limits for Pb(II), Cu(II), Cd(II), and Zn(II), and ensures high precision of the results of voltammetric analysis [ru

  2. Impact electrochemistry on screen-printed electrodes for the detection of monodispersed silver nanoparticles of sizes 10-107 nm.

    Science.gov (United States)

    Nasir, Muhammad Zafir Mohamad; Pumera, Martin

    2016-10-12

    Impact electrochemistry provides a useful alternative technique for the detection of silver nanoparticles in solutions. The combined use of impact electrochemistry on screen-printed electrodes (SPEs) for the successful detection of silver nanoparticles provides an avenue for future on-site, point-of-care detection devices to be made for environmental, medicinal and biological uses. Here we discuss the use of screen-printed electrodes for the detection of well-defined monodispersed silver nanoparticles of sizes 10, 20, 40, 80, and 107 nm.

  3. The role and impact of 3D printing technologies in casting

    Directory of Open Access Journals (Sweden)

    Jin-wu Kang

    2017-05-01

    Full Text Available 3D printing is such a magical technology that it extends into almost every sector relating to manufacturing, not to mention casting production. In this paper, the past, present and future of 3D printing in the foundry sector are profoundly reviewed. 3D printing has the potential to supplement or partially replace the casting method. Today, some castings can be directly printed by metal powders, for example, titanium alloys, nickel alloys and steel parts. Meanwhile, 3D printing has found an unique position in other casting aspects as well, such as printing the wax pattern, ceramic shell, sand core, sand mould, etc. Most importantly, 3D printing is not just a manufacturing method, it will also revolutionize the design of products, assemblies and parts, such as castings, patterns, cores, moulds and shells in casting production. The solid structure of castings and moulds will be redesigned in future into truss or spatially open and skeleton structures. This kind of revolution is just sprouting, but it will bring unimaginable impact on manufacturing including casting production. Nobody doubts the potential of 3D printing technologies in manufacturing, but they do have limitations and drawbacks.

  4. Water Fastness of Screen Printed Pearl Luster Pigments based on Synthetic and Natural Mica on Polyvinyl Chloride Foil and Rich Mineral Paper

    Directory of Open Access Journals (Sweden)

    Mirica Karlovits

    2013-01-01

    Full Text Available The present study attempts to examine water fastness of screen printed pearl luster pigments based on synthetic and natural mica on polyvinyl chloride foil and Rich Mineral Paper. Three types of pearl luster pigments were used, each different from the other in composition, interference colour and particle size: one pigment based on synthetic mica (Pigment 1 and two pigments based on natural mica (Pigment 2 and Pigment 3. Pearl luster pigments were applied to the printing base (PVC transparent base in 15wt.% concentration and printed by means of screen printing technique. The test of water fastness was made on prints, where the samples were soaked in distilled water for 6 and 12 days. It was established that this water treatment did not have any significant impact on the durability of screen printed pearl luster pigments. The pigments could demonstrate slightly better water fastness after being printed on Rich Mineral Paper.

  5. An Overview of the Past, Present, and Future of 3D Printing Technology with an Emphasis on the Present

    Science.gov (United States)

    Snyder, Robin M.

    2014-01-01

    Just as the cost of high quality laser printing started in the tens of thousands of dollar and can now be purchased for under $100, so too has 3D printing technology started in the tens of thousands of dollars and is now in the thousand dollar range. Current 3D printing technology takes 2D printing into a third dimension. Many 3D printers are…

  6. A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors.

    Science.gov (United States)

    Liang, Jiajie; Tong, Kwing; Pei, Qibing

    2016-07-01

    A water-based silver-nanowire (AgNW) ink is formulated for screen printing. Screen-printed AgNW patterns have uniform sharp edges, ≈50 μm resolution, and electrical conductivity as high as 4.67 × 10(4) S cm(-1) . The screen-printed AgNW patterns are used to fabricate a stretchable composite conductor, and a fully printed and intrinsically stretchable thin-film transistor array is also realized. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing.

    Science.gov (United States)

    Qu, Lu-Lu; Song, Qi-Xia; Li, Yuan-Ting; Peng, Mao-Pan; Li, Da-Wei; Chen, Li-Xia; Fossey, John S; Long, Yi-Tao

    2013-08-20

    Au-Ag bimetallic microfluidic, dumbbell-shaped, surface enhanced Raman scattering (SERS) sensors were fabricated on cellulose paper by screen printing. These printed sensors rely on a sample droplet injection zone, and a SERS detection zone at either end of the dumbbell motif, fabricated by printing silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs) successively with microscale precision. The microfluidic channel was patterned using an insulating ink to connect these two zones and form a hydrophobic circuit. Owing to capillary action of paper in the millimeter-sized channels, the sensor could enable self-filtering of fluids to remove suspended particles within wastewater without pumping. This sensor also allows sensitive SERS detection, due to advantageous combination of the strong surface enhancement of Ag NPs and excellent chemical stability of Au NPs. The SERS performance of the sensors was investigated by employing the probe rhodamine 6G, a limit of detection (LOD) of 1.1×10(-13)M and an enhancement factor of 8.6×10(6) could be achieved. Moreover, the dumbbell-shaped bimetallic sensors exhibited good stability with SERS performance being maintained over 14 weeks in air, and high reproducibility with less than 15% variation in spot-to-spot SERS intensity. Using these dumbbell-shaped bimetallic sensors, substituted aromatic pollutants in wastewater samples could be quantitatively analyzed, which demonstrated their excellent capability for rapid trace pollutant detection in wastewater samples in the field without pre-separation. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    was patterned into stripes and juxtaposed with the ITO layer. The fourth layer comprised screen-printed or slot-die-coated PEDOT:PSS and the fifth and the final layer comprised a screen-printed or slot-die-coated silver electrode. The final module dimensions were 28 cm×32 cm and presented four individual solar...

  9. Patterned direct-write and screen-printing of NIR-to-visible upconverting inks for security applications.

    Science.gov (United States)

    Blumenthal, Tyler; Meruga, Jeevan; Stanley May, P; Kellar, Jon; Cross, William; Ankireddy, Krishnamraju; Vunnam, Swathi; Luu, Quocanh N

    2012-05-11

    Two methods of direct-write printing for producing highly resolved features of a polymer impregnated with luminescent upconversion phosphors for security applications are presented. The printed polymer structures range in shape from features to text. The thin polymer features were deposited by direct-write printing of atomized material as well as by screen-printing techniques. These films contain highly luminescent lanthanide-doped, rare-earth nanocrystals, β-NaYF₄:3%Er, 17%Yb, which are capped with oleic acid. This capping agent allows the nanocrystals to disperse throughout the films for full detailing of printed features. Upconversion of deposited features was obtained using a 980 nm wavelength laser with emission of upconverted light in the visible region at both 540 and 660 nm. Features were deposited onto high bond paper, Kapton®, and glass to demonstrate possible covert and forensic security printing applications, as they are printed in various features and invisible to 'naked-eye' viewing at low concentrations of nanocrystals.

  10. Patterned direct-write and screen-printing of NIR-to-visible upconverting inks for security applications

    International Nuclear Information System (INIS)

    Blumenthal, Tyler; Meruga, Jeevan; Kellar, Jon; Cross, William; Ankireddy, Krishnamraju; Vunnam, Swathi; Stanley May, P; Luu, QuocAnh N

    2012-01-01

    Two methods of direct-write printing for producing highly resolved features of a polymer impregnated with luminescent upconversion phosphors for security applications are presented. The printed polymer structures range in shape from features to text. The thin polymer features were deposited by direct-write printing of atomized material as well as by screen-printing techniques. These films contain highly luminescent lanthanide-doped, rare-earth nanocrystals, β-NaYF 4 :3%Er, 17%Yb, which are capped with oleic acid. This capping agent allows the nanocrystals to disperse throughout the films for full detailing of printed features. Upconversion of deposited features was obtained using a 980 nm wavelength laser with emission of upconverted light in the visible region at both 540 and 660 nm. Features were deposited onto high bond paper, Kapton ® , and glass to demonstrate possible covert and forensic security printing applications, as they are printed in various features and invisible to ‘naked-eye’ viewing at low concentrations of nanocrystals. (paper)

  11. Patterned direct-write and screen-printing of NIR-to-visible upconverting inks for security applications

    Science.gov (United States)

    Blumenthal, Tyler; Meruga, Jeevan; May, P. Stanley; Kellar, Jon; Cross, William; Ankireddy, Krishnamraju; Vunnam, Swathi; Luu, QuocAnh N.

    2012-05-01

    Two methods of direct-write printing for producing highly resolved features of a polymer impregnated with luminescent upconversion phosphors for security applications are presented. The printed polymer structures range in shape from features to text. The thin polymer features were deposited by direct-write printing of atomized material as well as by screen-printing techniques. These films contain highly luminescent lanthanide-doped, rare-earth nanocrystals, β-NaYF4:3%Er, 17%Yb, which are capped with oleic acid. This capping agent allows the nanocrystals to disperse throughout the films for full detailing of printed features. Upconversion of deposited features was obtained using a 980 nm wavelength laser with emission of upconverted light in the visible region at both 540 and 660 nm. Features were deposited onto high bond paper, Kapton®, and glass to demonstrate possible covert and forensic security printing applications, as they are printed in various features and invisible to ‘naked-eye’ viewing at low concentrations of nanocrystals.

  12. Screen-Printed Photochromic Textiles through New Inks Based on SiO2@naphthopyran Nanoparticles.

    Science.gov (United States)

    Pinto, Tânia V; Costa, Paula; Sousa, Céu M; Sousa, Carlos A D; Pereira, Clara; Silva, Carla J S M; Pereira, Manuel Fernando R; Coelho, Paulo J; Freire, Cristina

    2016-10-26

    Photochromic silica nanoparticles (SiO 2 @NPT), fabricated through the covalent immobilization of silylated naphthopyrans (NPTs) based on 2H-naphtho[1,2-b]pyran (S1, S2) and 3H-naphtho[2,1-b]pyran (S3, S4) or through the direct adsorption of the parent naphthopyrans (1, 3) onto silica nanoparticles (SiO 2 NPs), were successfully incorporated onto cotton fabrics by a screen-printing process. Two aqueous acrylic- (AC-) and polyurethane- (PU-) based inks were used as dispersing media. All textiles exhibited reversible photochromism under UV and solar irradiation, developing fast responses and intense coloration. The fabrics coated with SiO 2 @S1 and SiO 2 @S2 showed rapid color changes and high contrasts (ΔE* ab = 39-52), despite presenting slower bleaching kinetics (2-3 h to fade to the original color), whereas the textiles coated with SiO 2 @S3 and SiO 2 @S4 exhibited excellent engagement between coloration and decoloration rates (coloration and fading times of 1 and 2 min, respectively; ΔE* ab = 27-53). The PU-based fabrics showed excellent results during the washing fastness tests, whereas the AC-based textiles evidenced good results only when a protective transfer film was applied over the printed design.

  13. Properties of screen printed electrocardiography smartware electrodes investigated in an electro-chemical cell.

    Science.gov (United States)

    Rattfält, Linda; Björefors, Fredrik; Nilsson, David; Wang, Xin; Norberg, Petronella; Ask, Per

    2013-07-05

    ECG (Electrocardiogram) measurements in home health care demands new sensor solutions. In this study, six different configurations of screen printed conductive ink electrodes have been evaluated with respect to electrode potential variations and electrode impedance. The electrode surfaces consisted of a Ag/AgCl-based ink with a conduction line of carbon or Ag-based ink underneath. On top, a lacquer layer was used to define the electrode area and to cover the conduction lines. Measurements were performed under well-defined electro-chemical conditions in a physiologic saline solution. The results showed that all printed electrodes were stable and have a very small potential drift (less than 3 mV/30 min). The contribution to the total impedance was 2% of the set maximal allowed impedance (maximally 1 kΩ at 50 Hz), assuming common values of input impedance and common mode rejection ratio of a regular amplifier. Our conclusions are that the tested electrodes show satisfying properties to be used as elements in a skin electrode design that could be suitable for further investigations by applying the electrodes on the skin.

  14. A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing.

    Science.gov (United States)

    Tang, Aimin; Liu, Yuan; Wang, Qinwen; Chen, Ruisong; Liu, Wangyu; Fang, Zhiqiang; Wang, Lishi

    2016-09-05

    CdS quantum dots with excellent photoelectrical properties embedded in nanocellulose could be exploited for use in photoelectrical ink. In this work, nanocellulose/CdS quantum dot composites were fabricated by controlling the carboxylate content of the nanocellulose and the molar ratio of Cd(2+)/-COOH. New photoelectric inks were prepared based on the composites, in which the CdS quantum dots acted as the pigment and the nanocellulose as the binder. The results of the photocurrent of the composites showed that the photocurrent could be tailored by the carboxylate content and the molar ratio of Cd(2+)/-COOH. And the photocurrent could be as high as 2μA. The surface tension of the photoelectric ink was 27.80±0.03mN/m and its viscosity was 30.3mPas. The photoelectric ink was stable with excellent fluidity and rheology, it could therefore be applied to screen-printing and three-dimensional (3D) printing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Carbon Nanotube Modified Screen Printed Electrodes: Pyranose Oxidase Immobilization Platform for Amperometric Enzyme Sensors

    Directory of Open Access Journals (Sweden)

    Dilek ODACI DEMIRKOL

    2017-03-01

    Full Text Available Here, a novel enzymatic biosensor was developed using multiwalled carbon nanotube including screen printed electrodes (MWCNT-SPE. Pyranose oxidase (PyOx was immobilized on the electrode surface by way of gelatin membrane and then cross-linked using glutaraldehyde. Glucose was detected at -0.7 V (vs. Ag/AgCl by watching consumed oxygen in enzymatic reaction after addition substrate. After optimization of pH and enzyme loading, the linearity was found in the range of 0.1–1.0 mM of glucose. After that, the effect of MCNT on the current was tested. Also the enzymatic biosensor including glucose oxidase instead of pyranose oxidase was prepared and the biosensor response followed for glucose. Furthermore, this system was tested for glucose analysis in soft drinks.

  16. Integrated Affinity Biosensing Platforms on Screen-Printed Electrodes Electrografted with Diazonium Salts

    Directory of Open Access Journals (Sweden)

    Paloma Yáñez-Sedeño

    2018-02-01

    Full Text Available Adequate selection of the electrode surface and the strategies for its modification to enable subsequent immobilization of biomolecules and/or nanomaterials integration play a major role in the performance of electrochemical affinity biosensors. Because of the simplicity, rapidity and versatility, electrografting using diazonium salt reduction is among the most currently used functionalization methods to provide the attachment of an organic layer to a conductive substrate. This particular chemistry has demonstrated to be a powerful tool to covalently immobilize in a stable and reproducible way a wide range of biomolecules or nanomaterials onto different electrode surfaces. Considering the great progress and interesting features arisen in the last years, this paper outlines the potential of diazonium chemistry to prepare single or multianalyte electrochemical affinity biosensors on screen-printed electrodes (SPEs and points out the existing challenges and future directions in this field.

  17. Integrated Affinity Biosensing Platforms on Screen-Printed Electrodes Electrografted with Diazonium Salts.

    Science.gov (United States)

    Yáñez-Sedeño, Paloma; Campuzano, Susana; Pingarrón, José M

    2018-02-24

    Adequate selection of the electrode surface and the strategies for its modification to enable subsequent immobilization of biomolecules and/or nanomaterials integration play a major role in the performance of electrochemical affinity biosensors. Because of the simplicity, rapidity and versatility, electrografting using diazonium salt reduction is among the most currently used functionalization methods to provide the attachment of an organic layer to a conductive substrate. This particular chemistry has demonstrated to be a powerful tool to covalently immobilize in a stable and reproducible way a wide range of biomolecules or nanomaterials onto different electrode surfaces. Considering the great progress and interesting features arisen in the last years, this paper outlines the potential of diazonium chemistry to prepare single or multianalyte electrochemical affinity biosensors on screen-printed electrodes (SPEs) and points out the existing challenges and future directions in this field.

  18. Immobilization of Acetylcholinesterase on Screen-Printed Electrodes. Application to the Determination of Arsenic(III

    Directory of Open Access Journals (Sweden)

    M. Julia Arcos-Martínez

    2010-03-01

    Full Text Available Enzymatic amperometric procedures for measuring arsenic, based on the inhibitive action of this metal on acetylcholinesterase enzyme activity, have been developed. Screen-printed carbon electrodes (SPCEs were used with acetylcholinesterase covalently bonded directly to its surface. The amperometric response of acetylcholinesterase was affected by the presence of arsenic ions, which caused a decrease in the current intensity. The experimental optimum working conditions of pH, substrate concentration and potential applied, were established. Under these conditions, repeatability and reproducibility of biosensors were determined, reaching values below 4% in terms of relative standard deviation. The detection limit obtained for arsenic was 1.1 × 10−8 M for Ach/SPCE biosensor. Analysis of the possible effect of the presence of foreign ions in the solution was performed. The method was applied to determine levels of arsenic in spiked tap water samples.

  19. Detection of cadmium sulphide nanoparticles by using screen-printed electrodes and a handheld device

    International Nuclear Information System (INIS)

    Merkoci, Arben; Marcolino-Junior, Luiz Humberto; MarIn, Sergio; Fatibello-Filho, Orlando; Alegret, Salvador

    2007-01-01

    A simple method based on screen-printed electrodes and a handheld potentiostatic device is reported for the detection of water soluble CdS quantum dots modified with glutathione. The detection method is based on the stripping of electrochemically reduced cadmium at pH 7.0 by using square wave voltammetry. Various parameters that affect the sensitivity of the method are optimized. QD suspension volumes of 20 μl and a number of around 2 x 10 11 CdS quantum dots have been able to be detected. The proposed method should be of special interest for bioanalytical assays, where CdS quantum dots can be used as electrochemical tracers

  20. Impedance Based Characterization of a High-Coupled Screen Printed PZT Thick Film Unimorph Energy Harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, R.; Borregaard, L. M.

    2014-01-01

    The single degree of freedom mass-spring-damper system is the most common approach for deriving a full electromechanical model for the piezoelectric vibration energy harvester. In this paper, we revisit this standard electromechanical model by focusing on the impedance of the piezoelectric device...... parameters which, by means of the piezoelectric impedance expression, all can be determined accurately by electrical measurements. It is shown how four of five lumped parameters can be determined from a single impedance measurement scan, considerably reducing the characterization effort. The remaining...... parameter is determined from shaker measurements, and a highly accurate agreement is found between model and measurements on a unimorph MEMS-based screen printed PZT harvester. With a high coupling term K-2 Q similar or equal to 7, the harvester exhibits two optimum load points. The peak power performance...

  1. Realization of hexagonal barium ferrite thick films on Si substrates using a screen printing technique

    International Nuclear Information System (INIS)

    Chen Yajie; Smith, Ian; Geiler, Anton L; Vittoria, Carmine; Harris, Vincent G; Zagorodnii, Volodymyr; Celinski, Zbigniew

    2008-01-01

    Hexagonal barium ferrite thick films (50-200 μm) have been deposited on Si and Al 2 O 3 /Si substrates using a screen printing technique. X-ray diffractometry, scanning electron microscopy and magnetometry were used to characterize and correlate the ferrite films' microstructure and magnetic properties. The experiments indicated that an Al 2 O 3 underlayer was effective in preventing silicon diffusion into the barium ferrite films during a final sintering treatment at temperatures above 1100 deg. C. A two-stage sintering process allowed a reasonable tradeoff between mechanical and magnetic properties. This work reveals the feasibility of fabrication of thick ferrite films on large substrates (up to 25 mm in diameter) for future planar microwave devices compatible with semiconductor integrated circuits processing

  2. Screen-printed electrodes for environmental monitoring of heavy metal ions: a review

    International Nuclear Information System (INIS)

    Barton, John; González García, María Begoña; Hernández Santos, David; Fanjul-Bolado, Pablo; Ribotti, Alberto; Magni, Paolo; McCaul, Margaret; Diamond, Dermot

    2016-01-01

    Heavy metals such as lead, mercury, cadmium, zinc and copper are among the most important pollutants because of their non-biodegradability and toxicity above certain thresholds. Here, we review methods for sensing heavy metal ions (HMI) in water samples using screen-printed electrodes (SPEs) as transducers. The review (with 107 refs.) starts with an introduction into the topic, and this is followed by sections on (a) mercury-coated SPEs, (b) bismuth-coated SPEs, (c) gold-coated SPEs (d) chemically modified and non-modified carbon SPEs, (e) enzyme inhibition-based SPEs, and (f) an overview of commercially available electrochemical portable heavy metal analyzers. The review reveals the significance of SPEs in terms of decentralized and of in situ analysis of heavy metal ions in environmental monitoring. (author)

  3. Argon plasma treatment to enhance the electrochemical reactivity of screen-printed carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F.; Luais, E. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Thobie-Gautier, C. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Tessier, P.-Y. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France)], E-mail: mohammed.boujtita@univ-nantes.fr

    2009-04-15

    Radiofrequency argon plasma was used for screen-printed carbon electrodes (SPCE) surface treatment. The cyclic voltammetry of ferri/ferrocyanide as redox couple showed a remarkable improvement of the electrochemical reactivity of the SPCE after the plasma treatment. The effect of the plasma growth conditions on the efficiency of the treatment procedure was evaluated in term of electrochemical reactivity of the SPCE surface. The electrochemical study showed that the electrochemical reactivity of the treated electrodes was strongly dependant on radiofrequency power, treatment time and argon gas pressure. X-ray photoelectron spectroscopy (XPS) analysis showed a considerable evolution on the surface chemistry of the treated electrodes. Our results clearly showed that the argon plasma treatment induces a significant increase in the C{sub sp2}/C{sub sp3} ratio. The scanning electron micrograph (SEM) also showed a drastic change on the surface morphology of the treated SPCEs.

  4. Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes

    International Nuclear Information System (INIS)

    Dominguez Renedo, Olga; Arcos Martinez, M. Julia

    2007-01-01

    Carbon screen-printed electrodes (CSPE) modified with gold nanoparticles present an interesting alternative in the determination of antimony using differential pulse anodic stripping voltammetry. Metallic gold nanoparticles deposits have been obtained by direct electrochemical deposition. Scanning electron microscopy measurements show that the electrochemically synthesized gold nanoparticles are deposited in aggregated form. Any undue effects caused by the presence of foreign ions in the solution were also analyzed to ensure that common interferents in the determination of antimony by ASV. The detection limit for Sb(III) obtained was 9.44 x 10 -10 M. In terms of reproducibility, the precision of the above mentioned method in %R.S.D. values was calculated at 2.69% (n = 10). The method was applied to determine levels of antimony in seawater samples and pharmaceutical preparations

  5. SnO2/PPy Screen-Printed Multilayer CO2 Gas Sensor

    Directory of Open Access Journals (Sweden)

    S.A. WAGHULEY

    2007-05-01

    Full Text Available Tin dioxide (SnO2 plays a dominant role in solid state gas sensors and exhibit sensitivity towards oxidizing and reducing gases by a variation of its electrical properties. The electrical conducting polymer-polypyrrole (PPy has high anisotropy of electrical conduction and used as a gas sensor. SnO2/PPy multilayer, pure SnO2, pure PPy sensors were prepared by screen-printing method on Al2O3 layer followed by glass substrate. The sensors were used for different concentration (ppm of CO2 gas investigation at room temperature (303 K. The sensitivity of SnO2/PPy multilayer sensor was found to be higher, compared with pure SnO2 and pure PPy sensors. The multilayer sensor exhibited improved stability. The response and recovery time of multilayer sensor were found to be ~2 min and ~10 min respectively.

  6. Influence of the UV radiation on the screen-printed pH-sensitive layers based on graphene and ruthenium dioxide

    Science.gov (United States)

    Pepłowski, A.; Grudziński, D.; Raczyński, T.; Wróblewski, G.; Janczak, D.; Jakubowska, M.

    2017-08-01

    Electrodes for measuring pH of the solution were fabricated by the means of screen-printing technology. Potentiometric sensors' layers comprised of composite with polymer matrix and graphene nanoplatelets/ruthenium (IV) oxide nanopowder as functional phase. Transceivers were printed on the elastic PMMA foil. Regarding potential application of the sensors in the wearable devices, dynamic response of the electrodes to changing ultraviolet radiation levels was assessed, since RuO2 is reported to be UV-sensitive. Observed changes of the electrodes' potential were of sub-millivolt magnitude, being comparable to simultaneously observed signal drift. Given this stability under varying UV conditions and previously verified good flexibility, fabricated sensors meet the requirements for wearable applications.

  7. Speciation of chromium using chronoamperometric biosensors based on screen-printed electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Calvo-Pérez, Ana, E-mail: anacp@ubu.es; Domínguez-Renedo, Olga, E-mail: olgado@ubu.es; Alonso-Lomillo, MAsunción, E-mail: malomillo@ubu.es; Arcos-Martínez, MJulia, E-mail: jarcos@ubu.es

    2014-06-23

    Highlights: • Chronoamperometric determination of Cr(III) on tyrosinase based biosensors using SPCEs. • Chronoamperometric determination of Cr(VI) on GOx based biosensors using SPCEs. • High degree of sensitivity and selectivity in the analysis of both chromium species. • Bipotentiostatic chronoamperometric determination of both chromium species in the same sample. - Abstract: Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPC{sub TTF}E response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0 ± 0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPC{sub Pt}Es) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5 ± 7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPC{sub TTF}E and a GOx/SPC{sub Pt}E connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples.

  8. Fabrication and characterization of all-covalent nanocomposite functionalized screen-printed voltammetric sensors

    International Nuclear Information System (INIS)

    Jasmin, Jean-Philippe; Cannizzo, Caroline; Dumas, Eddy; Chaussé, Annie

    2014-01-01

    Highlights: • Screen printed electrodes were covalently functionalized by gold nanoparticles. • The covalent grafting of AuNPs was achieved via diazonium salt chemistry. • Two grafting methods and two types of AuNPs were compared. • Carboxylate ligands were grafted on these nanostructured electrodes. • Good preliminary responses towards lead analysis were obtained by SW-ASV. - Abstract: We report in this paper an all-covalent method to obtain highly nanostructured carbon screen printed electrodes (SPEs) bearing gold nanoparticles (AuNPs) functionalized by complexing groups using diazonium salts chemistry. SPEs were first modified with 4-aminophenyl functions (SPE-Ph-NH 2 ). The amino moieties were then converted into diazonium salts (SPE-Ph-N 2 + Cl − ). These reactive SPEs were then used to immobilize AuNPs by electrochemical or spontaneous method. The spontaneous method proved to be a more efficient grafting approach. Two types of AuNPs suspensions were compared: AuNPs obtained via the well-known Turkevich method, citrate-stabilized and having a diameter of about 20 nm, and AuNPs obtained by the method recently described by Eah et al., stabilizer-free with an average diameter of 4 nm. We show that the size of the Au-NPs, their concentration and their surface properties are key parameters that affect the electrochemical properties of the final nanostructured SPEs. The covalent grafting of 4-carboxyphenyl ligands through diazonium chemistry, able to complex metallic cations, at the surface of SPE-Ph-AuNPs allowed their use for the detection of Pb(II). Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, Scanning Electron Microscopy, Rutherford Backscattering and X-ray Photoelectron Spectroscopy were used to characterize these nanostructured materials

  9. Humidity sensing properties of WO3 thick film resistor prepared by screen printing technique

    International Nuclear Information System (INIS)

    Garde, Arun S

    2014-01-01

    Highlights: • Polycrystalline WO 3 Thick films are fabricated by screen printing technique. • Monoclinic phases were the majority in formation of films. • The peak at 1643 cm −1 shows stretching vibrations attributed to W-OH of adsorbed H 2 O. • Absorption peaks in the range 879–650 cm −1 are attributed to the stretching W-O-W bonds. • Increase in resistance with decrease in RH when exposed to 20–100% RH. - Abstract: Thick films of tungsten oxide based were prepared using standard screen printing technique. To study the effect of temperature on the thick films were fired at different temperature for 30 min in air atmosphere. The WO 3 thick films were characterized with X-ray diffraction, scanning electron microscopy and EDAX for elemental analysis. The formation of mixed phases of the film together with majority of monoclinic phase was observed. IR spectra confirm the peak at 1643 cm −1 clearly shows stretching vibrations attributed to the W-OH bending vibration mode of the adsorbed water molecules. The absorption peaks in the range 879–650 cm −1 are attributed to the stretching W-O-W bonds (i.e. ν [W-O inter -W]). The peak located at 983 cm −1 belong to W=O terminal of cluster boundaries. A change in the resistance was observed with respect to the relative humidity when the WO 3 thick films were exposed to a wide humidity range of 20–100%. An increasing firing temperature of WO 3 film increases with the sensitivity. The parameters such as sensitivity and hysteresis of the WO 3 film sensors have been evaluated

  10. Speciation of chromium using chronoamperometric biosensors based on screen-printed electrodes

    International Nuclear Information System (INIS)

    Calvo-Pérez, Ana; Domínguez-Renedo, Olga; Alonso-Lomillo, MAsunción; Arcos-Martínez, MJulia

    2014-01-01

    Highlights: • Chronoamperometric determination of Cr(III) on tyrosinase based biosensors using SPCEs. • Chronoamperometric determination of Cr(VI) on GOx based biosensors using SPCEs. • High degree of sensitivity and selectivity in the analysis of both chromium species. • Bipotentiostatic chronoamperometric determination of both chromium species in the same sample. - Abstract: Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPC TTF E response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0 ± 0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPC Pt Es) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5 ± 7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPC TTF E and a GOx/SPC Pt E connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples

  11. Applications of three-dimensional printing technology in the cardiovascular field.

    Science.gov (United States)

    Shi, Di; Liu, Kai; Zhang, Xin; Liao, Hang; Chen, Xiaoping

    2015-10-01

    Three-dimensional (3-D) printing technology has rapidly developed in the last few decades. Meanwhile, the application of this technology has reached beyond the engineering field and expanded to almost all disciplines, including medicine. There has been much research on the medical applications of 3-D printing in neurosurgery, orthopedics, maxillofacial surgery, plastic surgery, tissue engineering, as well as other fields. Because of the complexity of the cardiovascular system, the application of this technology is limited and difficult, as compared to other disciplines, and thus there is much room for future development. Many of the difficulties associated with this technology must be overcome. Nonetheless, there is no doubt that 3-D printing technology will benefit patients with cardiovascular diseases in the near future.

  12. Printing nanotube/nanowire for flexible microsystems

    Science.gov (United States)

    Tortorich, Ryan P.; Choi, Jin-Woo

    2014-04-01

    Printing has become an emerging manufacturing technology for mechanics, electronics, and consumer products. Additionally, both nanotubes and nanowires have recently been used as materials for sensors and electrodes due to their unique electrical and mechanical properties. Printed electrodes and conductive traces particularly offer versatility of fabricating low-cost, disposable, and flexible electrical devices and microsystems. While various printing methods such as screen printing have been conventional methods for printing conductive traces and electrodes, inkjet printing has recently attracted great attention due to its unique advantages including no template requirement, rapid printing at low cost, on-demand printing capability, and precise control of the printed material. Computer generated conductive traces or electrode patterns can simply be printed on a thin film substrate with proper conductive ink consisting of nanotubes or nanowires. However, in order to develop nanotube or nanowire ink, there are a few challenges that need to be addressed. The most difficult obstacle to overcome is that of nanotube/nanowire dispersion within a solution. Other challenges include adjusting surface tension and controlling viscosity of the ink as well as treating the surface of the printing substrate. In an attempt to pave the way for nanomaterial inkjet printing, we present a method for preparing carbon nanotube ink as well as its printing technique. A fully printed electrochemical sensor using inkjet-printed carbon nanotube electrodes is also demonstrated as an example of the possibilities for this technology.

  13. The ALU+ concept: n-type silicon solar cells with surface passivated screen-printed aluminum-alloyed rear emitter

    NARCIS (Netherlands)

    Bock, R.; Schmidt, J.; Mau, S.; Hoex, B.; Kessels, W.M.M.; Brendel, R.

    2009-01-01

    Aluminum-doped p-type (Al-p+) silicon emitters fabricated by means of screen-printing and firing are effectively passivated by plasma-enhanced chemicalvapor deposited (PECVD) amorphous silicon (a-Si) and atomic-layer-deposited (ALD) aluminum oxide (Al2O3) as well as Al2O3/SiNx stacks, where the

  14. Fluorescence imaging technology (FI) for high-throughput screening of selenide-modified nano-TiO2 catalysts.

    Science.gov (United States)

    Wang, Liping; Lee, Jianchao; Zhang, Meijuan; Duan, Qiannan; Zhang, Jiarui; Qi, Hailang

    2016-02-18

    A high-throughput screening (HTS) method based on fluorescence imaging (FI) was implemented to evaluate the catalytic performance of selenide-modified nano-TiO2. Chemical ink-jet printing (IJP) technology was reformed to fabricate a catalyst library comprising 1405 (Ni(a)Cu(b)Cd(c)Ce(d)In(e)Y(f))Se(x)/TiO2 (M6Se/Ti) composite photocatalysts. Nineteen M6Se/Tis were screened out from the 1405 candidates efficiently.

  15. Initial investment to 3D printing technologies in a construction company

    Directory of Open Access Journals (Sweden)

    Cernohorsky, Zdenek

    2017-06-01

    Full Text Available This article deals with an initial investment to 3D printing technologies in a construction company. The investment refers to the use of building information models and their integration with 3D printing technology within a construction company. In the first part, there will be discussed an introduction of 3D printing scheme in a construction company from a lifecycle perspective in general. As a part of this scheme, the ideal variant of an initial investment will be considered a.k.a a pilot project. In the second part, there will be a more detailed discussion of the pilot project, more about each activities which should be its parts and which should analyze cost categories. These categories will be about particular lifecycle stages of the pilot project. In the third part, a summary is done. This article could be a handout for a construction company in a term of an initial investment to 3D printing.

  16. Pharmacological screening technologies for venom peptide discovery.

    Science.gov (United States)

    Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina

    2017-12-01

    Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Three dimensional printing technology and materials for treatment of elbow fractures.

    Science.gov (United States)

    Yang, Long; Grottkau, Brian; He, Zhixu; Ye, Chuan

    2017-11-01

    3D printing is a rapid prototyping technology that uses a 3D digital model to physically build an object. The aim of this study was to evaluate the peri-operative effect of 3D printing in treating complex elbow fractures and its role in physician-patient communication and determine which material is best for surgical model printing. Forty patients with elbow fractures were randomly divided into a 3D printing-assisted surgery group (n = 20) and a conventional surgery group (n = 20). Surgery duration, intra-operative blood loss, anatomic reduction rate, incidence of complications and elbow function score were compared between the two groups. The printing parameters, the advantages and the disadvantages of PLA and ABS were also compared. The independent-samples t-test was used to compare the data between groups. A questionnaire was designed for orthopaedic surgeons to evaluate the verisimilitude, the appearance of being true or real, and effectiveness of the 3D printing fracture model. Another questionnaire was designed to evaluate physician-patient communication effectiveness. The 3D group showed shorter surgical duration, lower blood loss and higher elbow function score, compared with the conventional group. PLA is an environmentally friendly material, whereas ABS produce an odour in the printing process. Curling edges occurred easily in the printing process with ABS and were observed in four of ten ABS models but in only one PLA model. The overall scores given by the surgeons about the verisimilitude and effectiveness of the 3D model were relatively high. Patient satisfaction scores for the 3D model were higher than those for the 2D imaging data during physician-patient discussions. 3D-printed models can accurately depict the anatomic characteristics of fracture sites, help surgeons determine a surgical plan and represent an effective tool for physician-patient communication. PLA is more suitable for desktop fused deposition printing in surgical modeling

  18. Printing polymer optical waveguides on conditioned transparent flexible foils by using the aerosol jet technology

    Science.gov (United States)

    Reitberger, Thomas; Hoffmann, Gerd-Albert; Wolfer, Tim; Overmeyer, Ludger; Franke, Joerg

    2016-09-01

    The optical data transfer is considered as the future of signal transfer due to its various advantages compared to conventional copper-based technologies. The Aerosol Jet Printing (AJP) technology offers the opportunity to print materials with high viscosities, such as liquid transparent polymer adhesives (epoxy resins), on almost any possible substrate material and even in third dimension. This paper introduces a new flexible and comparatively cost-effective way of generating polymer optical waveguides through AJP. Furthermore, the conditioning of the substrate material and the printing process of planar waveguides are presented. In the first step, two lines with hydrophobic behavior are applied on foil material (PMMA, PVC, PI) by using a flexographic printing machine. These silicone based patterns containing functional polymer form barriers for the core material due to their low surface energy after curing. In the second step, the core material (liquid polymer, varnish) is printed between the barrier lines. Because of the hydrophobic behavior of the lines, the contact angle between the substrate surface and the liquid core material is increased which yields to higher aspect ratio. The distance between the barrier lines is at least 100 μm, which defines the width of the waveguide. The minimum height of the core shall be 50 μm. After UV-curing of the core polymer, the cladding material is printed on the top. This is also applied by using the AJP technology. Various tests were performed to achieve the optimal surface properties for adequate adhesion and machine process parameters.

  19. 3D Printing is a Transformative Technology in Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Shafkat Anwar, MD

    2018-04-01

    Full Text Available Summary: Survival in congenital heart disease has steadily improved since 1938, when Dr. Robert Gross successfully ligated for the first time a patent ductus arteriosus in a 7-year-old child. To continue the gains made over the past 80 years, transformative changes with broad impact are needed in management of congenital heart disease. Three-dimensional printing is an emerging technology that is fundamentally affecting patient care, research, trainee education, and interactions among medical teams, patients, and caregivers. This paper first reviews key clinical cases where the technology has affected patient care. It then discusses 3-dimensional printing in trainee education. Thereafter, the role of this technology in communication with multidisciplinary teams, patients, and caregivers is described. Finally, the paper reviews translational technologies on the horizon that promise to take this nascent field even further. Key Words: cardiac imaging, cardiothoracic surgery, congenital heart disease, simulation, 3D printing

  20. The use of three-dimensional printing technology in orthopaedic surgery.

    Science.gov (United States)

    Wong, Tak Man; Jin, Jimmy; Lau, Tak Wing; Fang, Christian; Yan, Chun Hoi; Yeung, Kelvin; To, Michael; Leung, Frankie

    2017-01-01

    Three-dimensional (3-D) printing or additive manufacturing, an advanced technology that 3-D physical models are created, has been wildly applied in medical industries, including cardiothoracic surgery, cranio-maxillo-facial surgery and orthopaedic surgery. The physical models made by 3-D printing technology give surgeons a realistic impression of complex structures, allowing surgical planning and simulation before operations. In orthopaedic surgery, this technique is mainly applied in surgical planning especially revision and reconstructive surgeries, making patient-specific instruments or implants, and bone tissue engineering. This article reviews this technology and its application in orthopaedic surgery.

  1. Digital Textile Printing

    OpenAIRE

    Moltchanova, Julia

    2011-01-01

    Rapidly evolving technology of digital printing opens new opportunities on many markets. One of them is the printed fabric market where printing companies as well as clients benefit from new printing methods. This thesis focuses on the digital textile printing technology and its implementation for fabric-on-demand printing service in Finland. The purpose of this project was to study the technology behind digital textile printing, areas of application of this technology, the requirements ...

  2. Application of 3D-printing technology in the treatment of humeral intercondylar fractures.

    Science.gov (United States)

    Zheng, W; Su, J; Cai, L; Lou, Y; Wang, J; Guo, X; Tang, J; Chen, H

    2018-02-01

    This study was aimed to compare conventional surgery and surgery assisted by 3D-printing technology in the treatment of humeral intercondylar fractures. In addition, we also investigated the effect of 3D-printing technology on the communication between doctors and patients. A total of 91 patients with humeral intercondylar fracture were enrolled in the study from March 2013 to August 2015. They were divided into two groups: 43 cases of 3D-printing group, 48 cases of conventional group. The individual models were used to simulate the surgical procedures and carry out the surgery according to plan. Operation duration, blood loss volume, fluoroscopy times and time to fracture union were recorded. The final functional outcomes, including the motion of the elbow, MEPS and DASH were also evaluated. Besides, we made a simple questionnaire to verify the effectiveness of the 3D-printed model for both doctors and patients. The operation duration, blood loss volume and fluoroscopy times for 3D-printing group was 76.6±7.9minutes, 231.1±18.1mL and 5.3±1.9 times, and for conventional group was 92.0±10.5minutes, 278.6±23.0mL and 8.7±2.7 times respectively. There was statistically significant difference between the conventional group and 3D-printing group (p3D-printing model. This study suggested the clinical feasibility of 3D-printing technology in treatment of humeral intercondylar fractures. Level II prospective randomized study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Electrochemical Study of Delta-9-Tetrahydrocannabinol by Cyclic Voltammetry Using Screen Printed Electrode, Improvements in Forensic Analysis

    Directory of Open Access Journals (Sweden)

    Marco Antonio BALBINO

    2016-12-01

    Full Text Available Rapid screening of seized drugs is a continuing problem for governmental laboratories and customs agents. Recently new and cheaper methods based on electrochemical sensing have been developed for the detection of illicit drugs. Screen printed electrodes are particularly useful in this regard and can provide excellent sensitivity. In this study, a carbon screen printed electrode for the voltammetric analysis of D9-THC was developed. The analysis was performed using cyclic voltammetry with 0.15 mol×L-1 potassium nitrate as a supporting electrolyte. In the analysis, a D9-THC standard solution was added to the surface electrode by a drop coating method. A study of scan rate, time of pre-concentration, and concentration influence parameters showed versatility during the investigation. The high sensitivity, quantitative capability and low limit of detection (1.0 µmol×L-1 demonstrate that this electrochemical method should be an attractive alternative in forensic investigations of seized samples.

  4. A comparison of web-based versus print-based decision AIDS for prostate cancer screening: participants' evaluation and utilization.

    Science.gov (United States)

    Tomko, Catherine; Davis, Kimberly M; Luta, George; Krist, Alexander H; Woolf, Steven H; Taylor, Kathryn L

    2015-01-01

    Patient decision aids facilitate informed decision making for medical tests and procedures that have uncertain benefits. To describe participants' evaluation and utilization of print-based and web-based prostate cancer screening decision aids that were found to improve decisional outcomes in a prior randomized controlled trial. Men completed brief telephone interviews at baseline, one month, and 13 months post-randomization. Participants were primary care patients, 45-70 years old, who received the print-based (N = 628) or web-based decision aid (N = 625) and completed the follow-up assessments. We assessed men's baseline preference for web-based or print-based materials, time spent using the decision aids, comprehension of the overall message, and ratings of the content. Decision aid use was self-reported by 64.3 % (web) and 81.8 % (print) of participants. Significant predictors of decision aid use were race (white vs. non-white, OR = 2.43, 95 % CI: 1.77, 3.35), higher education (OR = 1.68, 95 % CI: 1.06, 2.70) and trial arm (print vs. web, OR = 2.78, 95 % CI: 2.03, 3.83). Multivariable analyses indicated that web-arm participants were more likely to use the website when they preferred web-based materials (OR: 1.91, CI: 1.17, 3.12), whereas use of the print materials was not significantly impacted by a preference for print-based materials (OR: 0.69, CI: 0.38, 1.25). Comprehension of the decision aid message (i.e., screening is an individual decision) did not significantly differ between arms in adjusted analyses (print: 61.9 % and web: 68.2 %, p = 0.42). Decision aid use was independently influenced by race, education, and the decision aid medium, findings consistent with the 'digital divide.' These results suggest that when it is not possible to provide this age cohort with their preferred decision aid medium, print materials will be more highly used than web-based materials. Although there are many advantages to web-based decision aids, providing an option for

  5. Could the 3D Printing Technology be a Useful Strategy to Obtain Customized Nutrition?

    Science.gov (United States)

    Severini, Carla; Derossi, Antonio

    Within the concept of personalized nutrition we want to introduce the terms of "customized food formula" which refers to the preparation (at home) or the production (at industrial level) of new food formulations having nutrients and functional compounds necessary to prevent diseases or to reduce the risk for each subject (or subjects category) who exhibit a susceptibility to diseases. Three-dimensional (3D) printing is a group of technologies of growing interest able to produce, slice by slice, materials with any desired shape, dimension, and structure properties. The application of 3D printing in food science, as called "3D food printing," is a pioneering technology that could allow to build personalized foods by depositing nutrients and functional compounds or soft-materials obtained by their mixture. Also by 3D food printing it is expected to obtain personalized food formula having desired shape, dimension, and microstructure. This would be useful for people having swallowing problems. In this paper we analyzed the first examples of 3D food printing available in literature as well as we reported our results focused on the production of 3D printed wheat-based snacks enriched with insect powder (Tenebrio molitor) with the aim to improve the quality and the content of proteins.

  6. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration.

    Science.gov (United States)

    Nyberg, Ethan L; Farris, Ashley L; Hung, Ben P; Dias, Miguel; Garcia, Juan R; Dorafshar, Amir H; Grayson, Warren L

    2017-01-01

    The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are three key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects.

  7. Applications of Organic and Printed Electronics A Technology-Enabled Revolution

    CERN Document Server

    2013-01-01

    Organic and printed electronics can enable a revolution in the applications of electronics and this book offers readers an overview of the state-of-the-art in this rapidly evolving domain.  The potentially low cost, compatibility with flexible substrates and the wealth of devices that characterize organic and printed electronics will make possible applications that go far beyond the well-known displays made with large-area silicon electronics. Since organic electronics are still in their early stage, undergoing transition from lab-scale and prototype activities to production, this book serves as a valuable snapshot of the current landscape of the different devices enabled by this technology, reviewing all applications that are developing and those can be foreseen.   Provides a complete roadmap for organic and printed electronics research and development for the next several years; Includes an overview of the printing processes for organic electronics, along with state of the art applications, such as solar ...

  8. Determination of Lead(II), Cadmium(II) and Copper(II) in Waste-Water and Soil Extracts on Mercury Film Screen-Printed Carbon Electrodes Sensor

    International Nuclear Information System (INIS)

    Mohd Fairulnizal Md Noh; Tothill, I.E.

    2011-01-01

    A sensor incorporating a three electrodes configuration have been fabricated using low cost screen-printing technology. These electrodes couples with Square Wave Stripping Voltammetry (SWSV) has provided a convenient screening tool for on-site detection of trace levels of Pb(II), Cd(II) and Cu(II). Modification of the graphite carbon surface based on in situ deposition of mercury film has been carried out. By appropriate choice of supporting medium and optimized parameters setting such as amount of mercury used the deposition potential, deposition time, frequency and scan rate, well resolved and reproducible response for Pb(II), Cd(II) and Cu(II) were obtained. The performance characteristics of the developed mercury film screen printed carbon electrode (MFSPCE) for 120 s deposition time showed that the linear range for Cd(II), Pb(II) and Cu(II) were 10 to 200 μg L -1 . The detection limit recorded for Cd(II), Pb(II) and Cu(II) were 2, 1 and 5 μg L -1 with relative standard deviation (RSD) of 6.5 %, 6.9 % and 7.5 %, respectively. Successful applications of the sensing device to waste-water and extracted soil samples were demonstrated. (author)

  9. The Papers Printing Quality Complex Assessment Algorithm Development Taking into Account the Composition and Production Technological Features

    Science.gov (United States)

    Babakhanova, Kh A.; Varepo, L. G.; Nagornova, I. V.; Babluyk, E. B.; Kondratov, A. P.

    2018-04-01

    Paper is one of the printing system key components causing the high-quality printed products output. Providing the printing companies with the specified printing properties paper, while simultaneously increasing the paper products range and volume by means of the forecasting methods application and evaluation during the production process, is certainly a relevant problem. The paper presents the printing quality control algorithm taking into consideration the paper printing properties quality assessment depending on the manufacture technological features and composition variation. The information system including raw material and paper properties data and making possible pulp and paper enterprises to select paper composition optimal formulation is proposed taking into account the printing process procedure peculiarities of the paper manufacturing with specified printing properties.

  10. LPG and NH3 Sensing Properties of SnO2 Thick Film Resistors Prepared by Screen Printing Technique

    Directory of Open Access Journals (Sweden)

    A. S. GARDE

    2010-11-01

    Full Text Available The gas sensing behavior of SnO2 thick film resistors deposited on alumina substrates has been investigated for LPG and NH3 gas. The standard screen printing technology was used to prepare the thick films. The films were fired at optimized temperature of 780 0C for 30 minutes. The material characterization was performed by XRD, SEM, FTIR, UV and EDAX for elemental analysis. IR spectroscopy analysis at 2949.26 cm-1 showed the peak assigned to the –Sn-H vibration due to the effect of hybridization i.e. sp3 and the sharp peak at 3734.31 cm-1 assigned to –Sn-OH stretching vibration due to hydrogen bonding. The variation of D.C electrical resistance of SnO2 film samples was measured in air as well as in LPG and NH3 gas atmosphere as a function of temperature. The SnO2 film samples show negative temperature coefficient of résistance. The SnO2 film samples showed the highest sensitivity to 600 ppm of LPG at 230 0C and NH3 at 370 0C. The effect of microstructure on sensitivity, response time and recovery time of the sensor in the presence of LPG and NH3 gases were studied and discussed.

  11. Development of conductive coated polyester film as RPC electrodes using screen printing

    Science.gov (United States)

    Kalmani, S. D.; Mondal, N. K.; Satyanarayana, B.; Verma, P.; Datar, V. M.

    2009-05-01

    Each of the three 16 kton ICAL detector modules at the India-based Neutrino Observatory (INO) will use RPCs as the active element, sandwiched between 6 cm thick soft iron plates, for measurements on atmospheric neutrinos. The electrodes of the RPC are float glass sheets having a volume resistivity of about 10 12-10 13 Ω cm (at room temperature) covered with carbon/graphite or a conductive paint with a surface resistivity of ˜800 kΩ/square to 1 MΩ/square to apply high voltage on the glass surface, so that this surface does not shield the discharge signal from the external pickup plates and is small compared to the resistivity of the glass to provide a uniform potential across the entire surface. We initially coated the surface with locally available graphite powder, mixed with lacquer and thinner, and were able to get a few hundred kΩ/square resistivity. However, we observed a drastic reduction in surface resistivity with time and it came unstuck from the glass. Subsequently a conductive paint developed by Kansai-Nerolac was used. This paint uses modified acrylic resin as binder, conductive black pigment and solvents, which include aromatic hydrocarbons and alcohols. At room temperature, the surface dries in 10 minutes, while complete drying takes ˜18 hours. The spraying is done at a pressure of 4 kg/cm 2 with the glass plate kept at a distance of 8-10 in. Using this paint, we are able to achieve the required resistance of ˜ few hundred kΩ/square. We still need to study the long term stability and best curing method. We need to automate the procedure to get a uniform coat and to coat a large number of glasses for the final detector. While robotic systems are available abroad costing about 5 000 000 rupees, we are exploring other alternatives. In particular, we are in the process of developing a polyester film, with a conductive coating on one side, which can be glued on to the glass. The coating was done using on a local commercial screen printing machine

  12. Development of conductive coated polyester film as RPC electrodes using screen printing

    International Nuclear Information System (INIS)

    Kalmani, S.D.; Mondal, N.K.; Satyanarayana, B.; Verma, P.; Datar, V.M.

    2009-01-01

    Each of the three 16 kton ICAL detector modules at the India-based Neutrino Observatory (INO) will use RPCs as the active element, sandwiched between 6 cm thick soft iron plates, for measurements on atmospheric neutrinos. The electrodes of the RPC are float glass sheets having a volume resistivity of about 10 12 -10 13 Ω cm (at room temperature) covered with carbon/graphite or a conductive paint with a surface resistivity of ∼800 kΩ/square to 1 MΩ/square to apply high voltage on the glass surface, so that this surface does not shield the discharge signal from the external pickup plates and is small compared to the resistivity of the glass to provide a uniform potential across the entire surface. We initially coated the surface with locally available graphite powder, mixed with lacquer and thinner, and were able to get a few hundred kΩ/square resistivity. However, we observed a drastic reduction in surface resistivity with time and it came unstuck from the glass. Subsequently a conductive paint developed by Kansai-Nerolac was used. This paint uses modified acrylic resin as binder, conductive black pigment and solvents, which include aromatic hydrocarbons and alcohols. At room temperature, the surface dries in 10 minutes, while complete drying takes ∼18 hours. The spraying is done at a pressure of 4 kg/cm 2 with the glass plate kept at a distance of 8-10 in. Using this paint, we are able to achieve the required resistance of ∼ few hundred kΩ/square. We still need to study the long term stability and best curing method. We need to automate the procedure to get a uniform coat and to coat a large number of glasses for the final detector. While robotic systems are available abroad costing about 5 000 000 rupees, we are exploring other alternatives. In particular, we are in the process of developing a polyester film, with a conductive coating on one side, which can be glued on to the glass. The coating was done using on a local commercial screen printing

  13. Identification of Novel "Inks" for 3D Printing Using High-Throughput Screening: Bioresorbable Photocurable Polymers for Controlled Drug Delivery.

    Science.gov (United States)

    Louzao, Iria; Koch, Britta; Taresco, Vincenzo; Ruiz-Cantu, Laura; Irvine, Derek J; Roberts, Clive J; Tuck, Christopher; Alexander, Cameron; Hague, Richard; Wildman, Ricky; Alexander, Morgan R

    2018-02-28

    A robust methodology is presented to identify novel biomaterials suitable for three-dimensional (3D) printing. Currently, the application of additive manufacturing is limited by the availability of functional inks, especially in the area of biomaterials; this is the first time when this method is used to tackle this problem, allowing hundreds of formulations to be readily assessed. Several functional properties, including the release of an antidepressive drug (paroxetine), cytotoxicity, and printability, are screened for 253 new ink formulations in a high-throughput format as well as mechanical properties. The selected candidates with the desirable properties are successfully scaled up using 3D printing into a range of object architectures. A full drug release study and degradability and tensile modulus experiments are presented on a simple architecture to validating the suitability of this methodology to identify printable inks for 3D printing devices with bespoke properties.

  14. From CT scanning to 3-D printing technology for the preoperative planning in laparoscopic splenectomy.

    Science.gov (United States)

    Pietrabissa, Andrea; Marconi, Stefania; Peri, Andrea; Pugliese, Luigi; Cavazzi, Emma; Vinci, Alessio; Botti, Marta; Auricchio, Ferdinando

    2016-01-01

    Three-dimensional printing technology is rapidly changing the way we produce all sort of objects, having also included medical applications. We embarked in a pilot study to assess the value of patient-specific 3-D physical manufacturing of spleno-pancreatic anatomy in helping during patient's counseling and for preoperative planning. Twelve patients scheduled for a laparoscopic splenectomy underwent contrast CT and subsequent post-processing to create virtual 3-D models of the target anatomy, and 3-D printing of the relative solid objects. The printing process, its cost and encountered problems were monitored and recorded. Patients were asked to rate the value of 3-D objects on a 1-5 scale in facilitating their understanding of the proposed procedure. Also 10 surgical residents were required to evaluate the perceived extra value of 3-D printing in the preoperative planning process. The post-processing analysis required an average of 2; 20 h was needed to physically print each model and 4 additional hours to finalize each object. The cost for the material employed for each object was around 300 euros. Ten patients gave a score of 5, two a score of 4. Six residents gave a score of 5, four a score of 4. Three-dimensional printing is helpful in understanding complex anatomy for educational purposes at all levels. Cost and working time to produce good quality objects are still considerable.

  15. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.

    Science.gov (United States)

    Xu, Tao; Zhao, Weixin; Zhu, Jian-Ming; Albanna, Mohammad Z; Yoo, James J; Atala, Anthony

    2013-01-01

    This study was designed to develop a versatile method for fabricating complex and heterogeneous three-dimensional (3D) tissue constructs using simultaneous ink-jetting of multiple cell types. Human amniotic fluid-derived stem cells (hAFSCs), canine smooth muscle cells (dSMCs), and bovine aortic endothelial cells (bECs), were separately mixed with ionic cross-linker calcium chloride (CaCl(2)), loaded into separate ink cartridges and printed using a modified thermal inkjet printer. The three cell types were delivered layer-by-layer to pre-determined locations in a sodium alginate-collagen composite located in a chamber under the printer. The reaction between CaCl(2) and sodium alginate resulted in a rapid formation of a solid composite gel and the printed cells were anchored in designated areas within the gel. The printing process was repeated for several cycles leading to a complex 3D multi-cell hybrid construct. The biological functions of the 3D printed constructs were evaluated in vitro and in vivo. Each of the printed cell types maintained their viability and normal proliferation rates, phenotypic expression, and physiological functions within the heterogeneous constructs. The bioprinted constructs were able to survive and mature into functional tissues with adequate vascularization in vivo. These findings demonstrate the feasibility of fabricating complex heterogeneous tissue constructs containing multiple cell types using inkjet printing technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode

    International Nuclear Information System (INIS)

    Li, Guang; Lyu, Xiaofeng; Wang, Zhan; Rong, Yuanzhen; Hu, Ruifen; Wang, You; Luo, Zhiyuan

    2017-01-01

    A novel disposable all-solid-state carbonate-selective electrode based on a screen-printed carbon paste electrode using poly(3-octylthiophene-2,5-diyl) (POT) as an ion-to-electron transducer has been developed. The POT was dropped onto the reaction area of the carbon paste electrode covered by the poly(vinyl chloride) (PVC) membrane, which contains N,N-Dioctyl-3 α ,12 α -bis(4-trifluoroacetylbenzoyloxy)-5 β -cholan-24-amide as a carbonate ionophore. The electrode showed a near-Nernstian slope of  −27.5 mV/decade with a detection limit of 3.6 * 10 −5 mol l −1 . Generally, the detection time was 30 s. Because these electrodes are fast, convenient and low in cost, they have the potential to be mass produced and used in on-site testing as disposable sensors. Furthermore, the repeatability, reproducibility and stability have been studied to evaluate the properties of the electrodes. Measurement of the carbonate was also conducted in a human blood solution and achieved good performance. (paper)

  17. Study of Microstructural Parameters of Screen Printed ZnO Thick Film Sensors

    Directory of Open Access Journals (Sweden)

    A. V. PATIL

    2010-06-01

    Full Text Available This paper explores the compositional, morphological and structural properties of ZnO thick films prepared by a standard screen printing method and fired between 650 oC to 900 oC for 2 hours in an air atmosphere. The material characterization was done using X-ray energy dispersive analysis (EDX, X-ray diffraction (XRD and a scanning electron microscope (SEM. The deposited films were polycrystalline in nature having the wurtzite (hexagonal structure with a preferred orientation along the (101 plane. The result shows that the wt. % of Zn was found to be 80.39, 82.66 and 83.47 % for firing temperatures of 700, 800 and 900 oC respectively may be due to the release of excess oxygen. The effect of the firing temperature on structural parameters such as the crystallite size, specific surface area, texture coefficient, RMSmicrostrain, dislocation density and stacking fault probability have been studied. The results indicate that grain growth can be increased by increasing the firing temperature which is responsible for decreasing the RMSmicrostrain, stacking fault probability and dislocation density in ZnO thick films. The crystallite size changes from 18.58 nm to 37.23 nm with respect to the increase in the firing temperature.

  18. Portable electrochemical system using screen-printed electrodes for monitoring corrosion inhibitors.

    Science.gov (United States)

    Squissato, André L; Silva, Weberson P; Del Claro, Augusto T S; Rocha, Diego P; Dornellas, Rafael M; Richter, Eduardo M; Foster, Christopher W; Banks, Craig E; Munoz, Rodrigo A A

    2017-11-01

    This work presents a portable electrochemical system for the continuous monitoring of corrosion inhibitors in a wide range of matrices including ethanol, seawater and mineral oil following simple dilution of the samples. Proof-of-concept is demonstrated for the sensing of 2,5-dimercapto-1,3,5-thiadiazole (DMCT), an important corrosion inhibitor. Disposable screen-printed graphitic electrodes (SPGEs) associated with a portable batch-injection cell are proposed for the amperometric determination of DMCT following sample dilution with electrolyte (95% v/v ethanol + 5% v/v 0.1molL -1 H 2 SO 4 solution). This electrolyte was compatible with all samples and the organic-resistant SPGE could be used continuously for more than 200 injections (100µL injected at 193µLs -1 ) free from effects of adsorption of DMCT, which have a great affinity for metallic surfaces, and dissolution of the other reported SPGE inks which has hampered prior research efforts. Fast (180h -1 ) and precise responses (RSD < 3% n = 10) with a detection limit of 0.3µmolL -1 was obtained. The accuracy of the proposed method was attested through recovery tests (93-106%) and the reasonable agreement of results of DMCT concentrations in samples analyzed by both proposed and spectrophotometric (comparative) methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Electrochemical Sensor for Bilirubin Detection Using Screen Printed Electrodes Functionalized with Carbon Nanotubes and Graphene.

    Science.gov (United States)

    Thangamuthu, Madasamy; Gabriel, Willimann Eric; Santschi, Christian; Martin, Olivier J F

    2018-03-07

    Practice oriented point-of-care diagnostics require easy-to-handle, miniaturized, and low-cost analytical tools. In a novel approach, screen printed carbon electrodes (SPEs), which were functionalized with nanomaterials, are employed for selective measurements of bilirubin, which is an important biomarker for jaundice. Multi-walled carbon nanotubes (MWCNT) and graphene separately deposited on SPEs provide the core of an electrochemical sensor for bilirubin. The electrocatalytic activity towards bilirubin oxidation (bilirubin to biliverdin) was observed at +0.25 V. In addition, a further peak corresponding to the electrochemical conversion of biliverdin into purpurin appeared at +0.48 V. When compared to MWCNT, the graphene type shows a 3-fold lower detection limit (0.3 ± 0.022 nM and 0.1 ± 0.018 nM, respectively), moreover, the graphene type exhibits a larger linear range (0.1-600 µM) than MWCNT (0.5-500 µM) with a two-fold better sensitivity, i.e., 30 nA µM -1 cm -2 , and 15 nA µM -1 cm -2 , respectively. The viability is validated through measurements of bilirubin in blood serum samples and the selectivity is ensured by inhibiting common interfering biological substrates using an ionic nafion membrane. The presented approach enables the design and implementation of low cost and miniaturized electrochemical sensors.

  20. Electrochemical determination of glutathione in plasma at carbon nanotubes based screen printed electrodes.

    Science.gov (United States)

    Turunc, Ezgi; Karadeniz, Hakan; Armagan, Guliz; Erdem, Arzum; Yalcin, Ayfer

    2013-11-01

    Glutathione (GSH) is a major endogenous antioxidant highly active in human tissues and plays a key role in controlling cellular thiol redox system, maintaining the immune and detoxification system. The determination of GSH levels in tissue is important to estimate endogenous defenses against oxidative stress. In our study, the multi-walled carbon nanotube modified screen-printed electrodes (MWCNT-SPEs) were used to determine the levels of GSH in trichloroacetic acid (TCA)-treated or untreated samples of rat plasma. It was found that the deproteinization of samples with TCA improved the electrochemical detection of GSH particularly in plasma. The oxidation of GSH was measured by using differential pulse voltammetry (DPV) method in combination with MWCNT-SPE (n=3), and the detection limit of GSH was found to be 0.47 µM (S/N=3). The GSH levels in plasma samples were also measured spectrophotometrically in order to compare the effectiveness of electrochemical method and we obtained a high correlation between the two methods (R(2)=0.976).

  1. Impedimetric Label-Free Immunosensor on Disposable Modified Screen-Printed Electrodes for Ochratoxin A

    Directory of Open Access Journals (Sweden)

    Francesca Malvano

    2016-06-01

    Full Text Available An impedimetric label-free immunosensor on disposable screen-printed carbon electrodes (SPCE for quantitative determination of Ochratoxin A (OTA has been developed. After modification of the SPCE surface with gold nanoparticles (AuNPs, the anti-OTA was immobilized on the working electrode through a cysteamine layer. After each coating step, the modified surfaces were characterized by cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS. The capacitance was chosen as the best parameter that describes the reproducible change in electrical properties of the electrode surface at different OTA concentrations and it was used to investigate the analytical parameters of the developed immunosensor. Under optimized conditions, the immunosensor showed a linear relationship between 0.3 and 20 ng/mL with a low detection limit of 0.25 ng/mL, making it suitable to control OTA content in many common food products. Lastly, the immunosensor was used to measure OTA in red wine samples and the results were compared with those registered with a competitive ELISA kit. The immunosensor was sensitive to OTA lower than 2 μg/kg, which represents the lower acceptable limit of OTA established by European legislation for common food products.

  2. Electrochemical Sensor for Bilirubin Detection Using Screen Printed Electrodes Functionalized with Carbon Nanotubes and Graphene

    Directory of Open Access Journals (Sweden)

    Madasamy Thangamuthu

    2018-03-01

    Full Text Available Practice oriented point-of-care diagnostics require easy-to-handle, miniaturized, and low-cost analytical tools. In a novel approach, screen printed carbon electrodes (SPEs, which were functionalized with nanomaterials, are employed for selective measurements of bilirubin, which is an important biomarker for jaundice. Multi-walled carbon nanotubes (MWCNT and graphene separately deposited on SPEs provide the core of an electrochemical sensor for bilirubin. The electrocatalytic activity towards bilirubin oxidation (bilirubin to biliverdin was observed at +0.25 V. In addition, a further peak corresponding to the electrochemical conversion of biliverdin into purpurin appeared at +0.48 V. When compared to MWCNT, the graphene type shows a 3-fold lower detection limit (0.3 ± 0.022 nM and 0.1 ± 0.018 nM, respectively, moreover, the graphene type exhibits a larger linear range (0.1–600 µM than MWCNT (0.5–500 µM with a two-fold better sensitivity, i.e., 30 nA µM−1 cm−2, and 15 nA µM−1 cm−2, respectively. The viability is validated through measurements of bilirubin in blood serum samples and the selectivity is ensured by inhibiting common interfering biological substrates using an ionic nafion membrane. The presented approach enables the design and implementation of low cost and miniaturized electrochemical sensors.

  3. A highly stable and sensitive chemically modified screen-printed electrode for sulfide analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, D.-M. [Department of Chemistry, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40217, Taiwan (China); Kumar, Annamalai Senthil [Department of Chemistry, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40217, Taiwan (China); Zen, J.-M. [Department of Chemistry, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40217, Taiwan (China)]. E-mail: jmzen@dragon.nchu.edu.tw

    2006-01-18

    We report here a highly stable and sensitive chemically modified screen-printed carbon electrode (CMSPE) for sulfide analysis. The CMSPE was prepared by first ion-exchanging ferricyanide into a Tosflex anion-exchange polymer and then sealing with a tetraethyl orthosilicate sol-gel layer. The sol-gel overlayer coating was crucial to stabilize the electron mediator (i.e., Fe(China){sub 6} {sup 3-}) from leaching. The strong interaction between the oxy-hydroxy functional group of sol-gel and the hydrophilic sites of Tosflex makes the composite highly rigid to trap the ferricyanide mediator. An obvious electrocatalytic sulfide oxidation current signal at {approx}0.20 V versus Ag/AgCl in pH 7 phosphate buffer solution was observed at the CMSPE. A linear calibration plot over a wide range of 0.1 {mu}M to 1 mM with a slope of 5.6 nA/{mu}M was obtained by flow injection analysis. The detection limit (S/N = 3) was 8.9 nM (i.e., 25.6 ppt). Practical utility of the system was applied to the determination of sulfide trapped from cigarette smoke and sulfide content in hot spring water.

  4. Fabrication of dielectrophoretic microfluidic chips using a facile screen-printing technique for microparticle trapping

    International Nuclear Information System (INIS)

    Wee, Wei Hong; Kadri, Nahrizul Adib; Pingguan-Murphy, Belinda; Li, Zedong; Hu, Jie; Xu, Feng; Li, Fei

    2015-01-01

    Trapping of microparticles finds wide applications in numerous fields. Microfluidic chips based on a dielectrophoresis (DEP) technique hold several advantages for trapping microparticles, such as fast result processing, a small amount of sample required, high spatial resolution, and high accuracy of target selection. There is an unmet need to develop DEP microfluidic chips on different substrates for different applications in a low cost, facile, and rapid way. This study develops a new facile method based on a screen-printing technique for fabrication of electrodes of DEP chips on three types of substrates (i.e. polymethyl-methacrylate (PMMA), poly(ethylene terephthalate) and A4 paper). The fabricated PMMA-based DEP microfluidic chip was selected as an example and successfully used to trap and align polystyrene microparticles in a suspension and cardiac fibroblasts in a cell culture solution. The developed electrode fabrication method is compatible with different kinds of DEP substrates, which could expand the future application field of DEP microfluidic chips, including new forms of point-of care diagnostics and trapping circulating tumor cells. (paper)

  5. Measurement of labile copper in wine by medium exchange stripping potentiometry utilising screen printed carbon electrodes.

    Science.gov (United States)

    Clark, Andrew C; Kontoudakis, Nikolaos; Barril, Celia; Schmidtke, Leigh M; Scollary, Geoffrey R

    2016-07-01

    The presence of copper in wine is known to impact the reductive, oxidative and colloidal stability of wine, and techniques enabling measurement of different forms of copper in wine are of particular interest in understanding these spoilage processes. Electrochemical stripping techniques developed to date require significant pretreatment of wine, potentially disturbing the copper binding equilibria. A thin mercury film on a screen printed carbon electrode was utilised in a flow system for the direct analysis of labile copper in red and white wine by constant current stripping potentiometry with medium exchange. Under the optimised conditions, including an enrichment time of 500s and constant current of 1.0μA, the response range was linear from 0.015 to 0.200mg/L. The analysis of 52 red and white wines showed that this technique generally provided lower labile copper concentrations than reported for batch measurement by related techniques. Studies in a model system and in finished wines showed that the copper sulfide was not measured as labile copper, and that loss of hydrogen sulfide via volatilisation induced an increase in labile copper within the model wine system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Electron field emission from screen-printed graphene/DWCNT composite films

    International Nuclear Information System (INIS)

    Xu, Jinzhuo; Pan, Rong; Chen, Yiwei; Piao, Xianqin; Qian, Min; Feng, Tao; Sun, Zhuo

    2013-01-01

    Highlights: ► The field emission performance improved significantly when adding graphene into DWCNTs as the emission material. ► We set up a model of pure DWCNT films and graphene/DWCNT composite films. ► We discussed the contact barrier between emission films and electric substrates by considering the Fermi energies of silver, DWCNT and graphene. - Abstract: The electron field emission properties of graphene/double-walled carbon nanotube (DWCNT) composite films prepared by screen printing have been systematically studied. Comparing with the pure DWCNT films and pure graphene films, a significant enhancement of electron emission performance of the composite films are observed, such as lower turn-on field, higher emission current density, higher field enhancement factor, and long-term stability. The optimized composite films with 20% weight ratio of graphene show the best electron emission performance with a low turn-on field of 0.62 V μm −1 (at 1 μA cm −2 ) and a high field enhancement factor β of 13,000. A model of the graphene/DWCNT composite films is proposed, which indicate that a certain amount of graphene will contribute the electron transmission in the silver substrate/composite films interface and in the interior of composite films, and finally improve the electron emission performance of the graphene/DWCNT composite films.

  7. Glucose sensing on graphite screen-printed electrode modified by sparking of copper nickel alloys.

    Science.gov (United States)

    Riman, Daniel; Spyrou, Konstantinos; Karantzalis, Alexandros E; Hrbac, Jan; Prodromidis, Mamas I

    2017-04-01

    Electric spark discharge was employed as a green, fast and extremely facile method to modify disposable graphite screen-printed electrodes (SPEs) with copper, nickel and mixed copper/nickel nanoparticles (NPs) in order to be used as nonenzymatic glucose sensors. Direct SPEs-to-metal (copper, nickel or copper/nickel alloys with 25/75, 50/50 and 75/25wt% compositions) sparking at 1.2kV was conducted in the absence of any solutions under ambient conditions. Morphological characterization of the sparked surfaces was performed by scanning electron microscopy, while the chemical composition of the sparked NPs was evaluated with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The performance of the various sparked SPEs towards the electro oxidation of glucose in alkaline media and the critical role of hydroxyl ions were evaluated with cyclic voltammetry and kinetic studies. Results indicated a mixed charge transfer- and hyroxyl ion transport-limited process. Best performing sensors fabricated by Cu/Ni 50/50wt% alloy showed linear response over the concentration range 2-400μM glucose and they were successfully applied to the amperometric determination of glucose in blood. The detection limit (S/N 3) and the relative standard deviation of the method were 0.6µM and green methods in sensor's development. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions

    International Nuclear Information System (INIS)

    Niu, Pengfei; Gich, Martí; Roig, Anna; Fernández-Sánchez, César; Navarro- Hernández, Carla; Fanjul-Bolado, Pablo

    2016-01-01

    This work reports on the simplified fabrication and on the characterization of bismuth-based screen-printed electrodes (SPEs) for use in heavy metal detection. A nanocomposite consisting of bismuth nanoparticles and amorphous carbon was synthesized by a combined one-step sol-gel and pyrolysis process and milled down to a specific particle size distribution as required for the preparation of an ink formulation to be used in screen printing. The resulting electrochemical devices were applied to the detection of Pb(II) and Cd(II) ions in water samples. The porous structure of carbon and the high surface area of the bismuth nanoparticles allow for the detection of Pb(II) and Cd(II) at concentration levels below 4 ppb. The application of the SPEs was demonstrated by quantifying these ions in tap drinking water and wastewater collected from an influent of an urban wastewater treatment plant. (author)

  9. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  10. Sulfite oxidase biosensors based on tetrathiafulvalene modified screen-printed carbon electrodes for sulfite determination in wine.

    Science.gov (United States)

    Molinero-Abad, Begoña; Alonso-Lomillo, M Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, M Julia

    2014-02-17

    Screen-printed carbon electrodes have been modified with tetrathiafulvalene and sulfite oxidase enzyme for the sensitive and selective detection of sulfite. Amperometric experimental conditions were optimized taking into account the importance of quantifying sulfite in wine samples and the inherent complexity of these samples, particularly red wine. The biosensor responds to sulfite giving a cathodic current (at +200 mV vs screen-printed Ag/AgCl electrode and pH 6) in a wide concentration range, with a capability of detection of 6 μM (α=β=0.05) at 60°C. The method has been applied to the determination of sulfite in white and red samples, with averages recoveries of 101.5% to 101.8%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Screen-printed calcium-birnessite electrodes for water oxidation at neutral pH and an "electrochemical harriman series".

    Science.gov (United States)

    Lee, Seung Y; González-Flores, Diego; Ohms, Jonas; Trost, Tim; Dau, Holger; Zaharieva, Ivelina; Kurz, Philipp

    2014-12-01

    A mild screen-printing method was developed to coat conductive oxide surfaces (here: fluorine-doped tin oxide) with micrometer-thick layers of presynthesized calcium manganese oxide (Ca-birnessite) particles. After optimization steps concerning the printing process and layer thickness, electrodes were obtained that could be used as corrosion-stable water-oxidizing anodes at pH 7 to yield current densities of 1 mA cm(-2) at an overpotential of less than 500 mV. Analyses of the electrode coatings of optimal thickness (≈10 μm) indicated that composition, oxide phase, and morphology of the synthetic Ca-birnessite particles were hardly affected by the screen-printing procedure. However, a more detailed analysis by X-ray absorption spectroscopy revealed small modifications of both the Mn redox state and the structure at the atomic level, which could affect functional properties such as proton conductivity. Furthermore, the versatile new screen-printing method was used for a comparative study of various transition-metal oxides concerning electrochemical water oxidation under "artificial leaf conditions" (neutral pH, fairly low overpotential and current density), for which a general activity ranking of RuO2 >Co3 O4 ≈(Ca)MnOx ≈NiO was observed. Within the group of screened manganese oxides, Ca-birnessite performed better than "Mn-only materials" such as Mn2 O3 and MnO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    OpenAIRE

    Anastasios Economou

    2018-01-01

    This work reviews the field of screen-printed electrodes (SPEs) modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have ...

  13. Direct printing of miniscule aluminum alloy droplets and 3D structures by StarJet technology

    Science.gov (United States)

    Gerdes, B.; Zengerle, R.; Koltay, P.; Riegger, L.

    2018-07-01

    Drop-on demand printing of molten metal droplets could be used for prototyping 3D objects as a promising alternative to laser melting technologies. However, to date, only few printheads have been investigated for this purpose, and they used only a limited range of materials. The pneumatically actuated StarJet technology enables the direct and non-contact printing of molten metal microdroplets from metal melts at high temperatures. StarJet printheads utilize nozzle chips featuring a star-shaped orifice geometry that leads to formation of droplets inside the nozzle with high precision. In this paper, we present a novel StarJet printhead for printing aluminum (Al) alloys featuring a hybrid design with a ceramic reservoir for the molten metal and an outer shell fabricated from stainless steel. The micro machined nozzle chip is made from silicon carbide (SiC). This printhead can be operated at up to 950 °C, and is capable of printing high melting point metals like Al alloys in standard laboratory conditions. In this work, an aluminum–silicon alloy that features 12% silicon (AlSi12) is printed. The printhead, nozzle, and peripheral actuation system are optimized for stable generation of AlSi12 droplets with high monodispersity, low angular deviation, and miniaturized droplet diameters. As a result, a stable drop-on-demand printing of droplets exhibiting diameters of d droplet  =  702 µm  ±  1% is demonstrated at 5 Hz with a low angular deviation of 0.3°, when a nozzle chip with 500 µm orifice diameter is used. Furthermore, AlSi12 droplets featuring d droplet  =  176 µm  ±  7% are printed when using a nozzle chip with an orifice diameter of 130 µm. Moreover, we present directly printed objects from molten Al alloy droplets, such as high aspect ratio, free-standing walls (aspect ratio 12:1), and directly printed, flexible springs, to demonstrate the principle of 3D printing with molten metal droplets.

  14. Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL

    2014-01-01

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

  15. Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shitanda, Isao [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)], E-mail: shitanda@rs.noda.tus.ac.jp; Takamatsu, Satoshi; Watanabe, Kunihiro; Itagaki, Masayuki [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2009-08-30

    A screen-printed algal biosensor was fabricated for evaluation of toxicity of chemicals. An algal ink was prepared by mixing unicellular microalga Chlorella vulgaris cells, carbon nanotubes and sodium alginate solution. The algal ink was immobilized directly on a screen-printed carbon electrode surface using screen-printing technique. Photosynthetically generated oxygen of the immobilized algae was monitored amperometically. Responses of the algal biosensor to four toxic compounds, 6-chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine (atrazine) and 3-(3,4-dichlorophenyl)-1,1-diethylurea (DCMU) were evaluated as inhibition ratios of the reduction current. The concentrations that gave 50% inhibition of the oxygen reduction current (IC{sup '}{sub 50}) for atrazine and DCMU were 12 and 1 {mu}mol dm{sup -3}, respectively. In comparison with the conventional algal biosensors, in which the algal cells were entrapped in an alginate gel and immobilized on the surface of a transparent indium tin oxide electrode, the present sensor is much smaller and less expensive, with the shorter assay time.

  16. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes

    International Nuclear Information System (INIS)

    Fanjul-Bolado, Pablo; Lamas-Ardisana, Pedro Jose; Hernandez-Santos, David; Costa-Garcia, Agustin

    2009-01-01

    Acetaminophenol or paracetamol is one of the most commonly used analgesics in pharmaceutical formulations. Acetaminophen is electroactive and voltammetric mechanistic studies for the electrode processes of the acetaminophenol/N-acetyl-p-quinoneimine redox system are presented. Carbon nanotubes modified screen-printed electrodes with enhanced electron transfer properties are used for the study of the electrochemical-chemical oxidation mechanism of paracetamol at pH 2.0. Quantitative analysis of paracetamol by using its oxidation process (in a Britton-Robinson buffer solution pH 10.0) at +0.20 V (vs. an Ag pseudoreference electrode) on an untreated screen-printed carbon electrode (SPCE) was carried out. Thus, a cyclic voltammetric based reproducible determination of acetaminophen (R.S.D., 2.2%) in the range 2.5 x 10 -6 M to 1 x 10 -3 M, was obtained. However, when SPCEs are used as amperometric detectors coupled to a flow injection analysis (FIA) system, the detection limit achieved for paracetamol was 1 x 10 -7 M, one order of magnitude lower than that obtained by voltammetric analysis. The repeatability of the amperometric detection with the same SPCE is 2% for 15 successive injections of 10 -5 M acetaminophen and do not present any memory effect. Finally, the applicability of using screen-printed carbon electrodes for the electrochemical detection of paracetamol (i.e. for quality control analysis) was demonstrated by using two commercial pharmaceutical products.

  17. Pulsed Polarization-Based NOx Sensors of YSZ Films Produced by the Aerosol Deposition Method and by Screen-Printing.

    Science.gov (United States)

    Exner, Jörg; Albrecht, Gaby; Schönauer-Kamin, Daniela; Kita, Jaroslaw; Moos, Ralf

    2017-07-26

    The pulsed polarization technique on solid electrolytes is based on alternating potential pulses interrupted by self-discharge pauses. Since even small concentrations of nitrogen oxides (NO x ) in the ppm range significantly change the polarization and discharge behavior, pulsed polarization sensors are well suited to measure low amounts of NO x . In contrast to all previous investigations, planar pulsed polarization sensors were built using an electrolyte thick film and platinum interdigital electrodes on alumina substrates. Two different sensor layouts were investigated, the first with buried Pt electrodes under the electrolyte and the second one with conventional overlying Pt electrodes. Electrolyte thick films were either formed by aerosol deposition or by screen-printing, therefore exhibiting a dense or porous microstructure, respectively. For screen-printed electrolytes, the influence of the electrolyte resistance on the NO x sensing ability was investigated as well. Sensors with buried electrodes showed little to no response even at higher NO x concentrations, in good agreement with the intended sensor mechanism. Electrolyte films with overlying electrodes, however, allowed the quantitative detection of NO x . In particular, aerosol deposited electrolytes exhibited high sensitivities with a sensor output signal Δ U of 50 mV and 75 mV for 3 ppm of NO and NO₂, respectively. For screen-printed electrolytes, a clear trend indicated a decrease in sensitivity with increased electrolyte resistance.

  18. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Fanjul-Bolado, Pablo [DropSens, S.L., Edificio Severo Ochoa, Campus El Cristo, 33006 Oviedo, Asturias (Spain); Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo, Asturias (Spain); Hernandez-Santos, David [DropSens, S.L., Edificio Severo Ochoa, Campus El Cristo, 33006 Oviedo, Asturias (Spain); Costa-Garcia, Agustin, E-mail: costa@fq.uniovi.es [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo, Asturias (Spain)

    2009-04-13

    Acetaminophenol or paracetamol is one of the most commonly used analgesics in pharmaceutical formulations. Acetaminophen is electroactive and voltammetric mechanistic studies for the electrode processes of the acetaminophenol/N-acetyl-p-quinoneimine redox system are presented. Carbon nanotubes modified screen-printed electrodes with enhanced electron transfer properties are used for the study of the electrochemical-chemical oxidation mechanism of paracetamol at pH 2.0. Quantitative analysis of paracetamol by using its oxidation process (in a Britton-Robinson buffer solution pH 10.0) at +0.20 V (vs. an Ag pseudoreference electrode) on an untreated screen-printed carbon electrode (SPCE) was carried out. Thus, a cyclic voltammetric based reproducible determination of acetaminophen (R.S.D., 2.2%) in the range 2.5 x 10{sup -6} M to 1 x 10{sup -3} M, was obtained. However, when SPCEs are used as amperometric detectors coupled to a flow injection analysis (FIA) system, the detection limit achieved for paracetamol was 1 x 10{sup -7} M, one order of magnitude lower than that obtained by voltammetric analysis. The repeatability of the amperometric detection with the same SPCE is 2% for 15 successive injections of 10{sup -5} M acetaminophen and do not present any memory effect. Finally, the applicability of using screen-printed carbon electrodes for the electrochemical detection of paracetamol (i.e. for quality control analysis) was demonstrated by using two commercial pharmaceutical products.

  19. Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds

    International Nuclear Information System (INIS)

    Shitanda, Isao; Takamatsu, Satoshi; Watanabe, Kunihiro; Itagaki, Masayuki

    2009-01-01

    A screen-printed algal biosensor was fabricated for evaluation of toxicity of chemicals. An algal ink was prepared by mixing unicellular microalga Chlorella vulgaris cells, carbon nanotubes and sodium alginate solution. The algal ink was immobilized directly on a screen-printed carbon electrode surface using screen-printing technique. Photosynthetically generated oxygen of the immobilized algae was monitored amperometically. Responses of the algal biosensor to four toxic compounds, 6-chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine (atrazine) and 3-(3,4-dichlorophenyl)-1,1-diethylurea (DCMU) were evaluated as inhibition ratios of the reduction current. The concentrations that gave 50% inhibition of the oxygen reduction current (IC ' 50 ) for atrazine and DCMU were 12 and 1 μmol dm -3 , respectively. In comparison with the conventional algal biosensors, in which the algal cells were entrapped in an alginate gel and immobilized on the surface of a transparent indium tin oxide electrode, the present sensor is much smaller and less expensive, with the shorter assay time.

  20. Functional screen printed radio frequency identification tags on flexible substrates, facilitating low-cost and integrated point-of-care diagnostics

    CSIR Research Space (South Africa)

    Smith, Suzanne

    2018-05-01

    Full Text Available This work explores the practical functionality of ultra-high frequency (UHF) radio frequency identification (RFID) tags screen printed onto various low-cost, flexible substrates. The need for integrated and automated low-cost point...

  1. USABILITY OF ADDITIVE MANUFACTURING (THREEDIMENSIONAL PRINTING) TECHNOLOGIES IN EDUCATION

    OpenAIRE

    ÖZSOY, KORAY; DUMAN, BURHAN

    2017-01-01

    Additive manufacturing technologies which are emerge in 1980’s years, they are using for prototip production in first time for that reason their denomination rapid prototyping . Nowadays it called additive manufacturing because of it using for end use functional part’s production. In additive manufacturing, the basic rationales the same, but many different technologies have been developed to manufacture with different approaches. The most common additive manufacturing technologies are stereol...

  2. Collaboration for the Advancement of Indirect 3D Printing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Zachary C [ORNL; Elliott, Amy M [ORNL

    2016-06-14

    Amorphous powders often possess high hardness values and other useful mechanical properties. However, densifying these powders into complex shapes while retaining their unique properties is a challenge with standard processing routes. Pressureless sintering, for example, can densify intricate green parts composed of rapidly-solidified powders. But this process typically involves long exposures to elevated temperatures, during which the non-equilibrium microstructure of the powder can evolve towards lower energy configurations with inferior properties. Pressure-assisted compaction techniques, by contrast, can consolidate green parts with simple shapes while preserving the microstructure and properties of the powder feedstock. But parts made with these processes generally require additional post-processing, including machining, which introduces new challenges due to the high hardness of these materials. One processing route that can potentially avoid these issues is Indirect 3D Printing (I-3DP; aka Binder Jetting) followed by melt infiltration. In I-3DP, an organic binder is used to join powder feedstock, layer-by-layer, into a green part. In melt infiltration, this green preform is densified by placing it in contact with a molten alloy that wets the preform and wicks into the pores as a result of capillary forces. When these processes are paired together, they offer two key advantages for the densification of rapidly-solidified powders. The first advantage is that the timescale associated with melt infiltration is on the order of seconds for parts with cm-scale dimensions. So in many instances, infiltration requires only a brief thermal excursion that does not degrade the feedstock’s microstructure. The second advantage is that the combination of binder-jet 3D printing and melt infiltration gives fully-dense net shape objects, minimizing the need for subsequent post-processing. In this work, fully-dense, net shape objects have been fabricated from an amorphous

  3. Digital Inkjet Textile Printing

    OpenAIRE

    Wang, Meichun

    2017-01-01

    Digital inkjet textile printing is an emerging technology developed with the rise of the digital world. It offers a possibility to print high-resolution images with unlimited color selection on fabrics. Digital inkjet printing brings a revolutionary chance for the textile printing industry. The history of textile printing shows the law how new technology replaces the traditional way of printing. This indicates the future of digital inkjet textile printing is relatively positive. Differen...

  4. [Evaluation and selection of VOCs treatment technologies in packaging and printing industry].

    Science.gov (United States)

    Wang, Hai-Lin; Wang, Jun-Hui; Zhu, Chun-Lei; Nie, Lei; Hao, Zheng-Ping

    2014-07-01

    Volatile organic compounds (VOCs) play an important role in urban air pollution. Activities of industries including the packaging and printing industries are regarded as the major sources. How to select the suitable treating techniques is the major problem for emission control. In this article, based on the VOCs emission characteristics of the packaging and printing industry and the existing treatment technologies, using the analytic hierarchy process (AHP) model, an evaluation system for VOCs selection was established and all the technologies used for treatment were assessed. It showed that the priority selection was in the following order: Carbon Fiber Adsorption-Desorption > Granular Carbon Adsorption-Desorption > Thermal Combustion > Regenerative Combustion > Catalytic combustion > Rotary adsorption-concentration and combustion > Granular Carbon adsorption-concentration and combustion. Carbon Fiber Adsorption-Desorption was selected as the best available technology due to its highest weight among those technologies.

  5. 3D printing – a key technology for tailored biomedical cell culture lab ware

    Directory of Open Access Journals (Sweden)

    Schmieder Florian

    2016-09-01

    Full Text Available Today’s 3D printing technologies offer great possibilities for biomedical researchers to create their own specific laboratory equipment. With respect to the generation of ex vivo vascular perfusion systems this will enable new types of products that will embed complex 3D structures possibly coupled with cell loaded scaffolds closely reflecting the in-vivo environment. Moreover this could lead to microfluidic devices that should be available in small numbers of pieces at moderate prices. Here, we will present first results of such 3D printed cell culture systems made from plastics and show their use for scaffold based applications.

  6. Structural, optical and gas sensing properties of screen-printed nanostructured Sr-doped SnO2 thick film sensor

    International Nuclear Information System (INIS)

    Shaikh, F.I.; Chikhale, L.P.; Patil, J.Y.; Rajgure, A.V.; Suryavanshi, S.S.; Mulla, I.S.

    2013-01-01

    The nanocrystalline materials of strontium doped tin oxide powders were synthesized by conventional co-precipitation method. Synthesized nanophase SnO 2 powders were used to fabricate thick films of pure and Sr-doped SnO 2 using screen-printing technology and investigated for their gas sensing properties towards LPG, ethanol, ammonia and acetone vapor. The crystal structure and phase of the sintered powders were characterized by X-ray diffractometer (XRD) and microstructure by scanning electron microscopy (SEM). All the doped and undoped SnO 2 compositions revealed single phase and solid solution formation. X-ray diffractometer (XRD) results indicated that well crystallized Sr-doped SnO 2 particles of size about 10 nm were obtained at sintering temperature 700℃. The optical properties viz. UV-Vis, FTIR and Raman were used to characterize various physico-chemical properties of samples. The reduction of grain size in metal oxide is a key factor to enhance the gas sensing properties. The doping of Sr in SnO 2 has reduced the grain size and improved the gas response. The results of gas sensing measurements showed that the thick films deposited on alumina substrates using screen-printing technique exhibited high gas response, quick response time and fast recovery time to acetone gas at a working temperature of 250℃. Further, the selectivity of sensor towards acetone with respect to other reducing gases (LPG, ethanol, ammonia) was studied. (author)

  7. Stripping chronopotentiometric measurements of lead(II) and cadmium(II) in soils extracts and wastewaters using a bismuth film screen-printed electrode assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kadara, Rashid O.; Tothill, Ibtisam E. [Cranfield Biotechnology Centre, Cranfield University, MK45 4DT, Silsoe, Bedfordshire (United Kingdom)

    2004-02-01

    The key to remediative processes is the ability to measure toxic contaminants on-site using simple and cheap sensing devices, which are field-portable and can facilitate more rapid decision-making. A three-electrode configuration system has been fabricated using low-cost screen-printing (thick-film) technology and this coupled with a portable electrochemical instrument has provided a a relatively inexpensive on-site detector for trace levels of toxic metals. The carbon surface of the screen-printed working electrode is used as a substrate for in situ deposition of a metallic film of bismuth, which allows the electrochemical preconcentration of metal ions. Lead and cadmium were simultaneously detected using stripping chronopotentiometry at the bismuth film electrode. Detection limits of 8 and 10 ppb were obtained for cadmium(II) and lead(II), respectively, for a deposition time of 120 s. The developed method was applied to the determination of lead and cadmium in soils extracts and wastewaters obtained from polluted sites. For comparison purposes, a mercury film electrode and ICP-MS were also used for validation. (orig.)

  8. Facile synthesis of Prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips.

    Science.gov (United States)

    Yang, Pengqi; Peng, Jingmeng; Chu, Zhenyu; Jiang, Danfeng; Jin, Wanqin

    2017-06-15

    The large-scale fabrication of nanocomposite based biosensors is always a challenge in the technology commercialization from laboratory to industry. In order to address this issue, we have designed a facile chemical method of fabricated nanocomposite ink applied to the screen-printed biosensor chip. This ink can be derived in the water through the in-situ growth of Prussian blue nanocubes (PBNCs) on the silver nanowires (AgNWs) to construct a composite nanostructure by a facile chemical method. Then a miniature flexible biosensor chip was screen-printed by using the prepared nanocomposite ink. Due to the synergic effects of the large specific surface area, high conductivity and electrocatalytic activity from AgNWs and PBNCs, the as-prepared biosensor chip exhibited a fast response (biosensor chip exhibited excellent stability, good reproducibility and high anti-interference ability towards physiological substances under a very low working potential of -0.05. Hence, the proposed biosensor chip also showed a promising potential for the application in practical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology

    Science.gov (United States)

    Roberson, Luke; Williams, Martha; Tate, LaNetra; Fortier, Craig; Smith, David; Davia, Kyle; Gibson, Tracy; Snyder, Sarah

    2013-01-01

    Inkjet printing is a common commercial process. In addition to the familiar use in printing documents from computers, it is also used in some industrial applications. For example, wire manufacturers are required by law to print the wire type, gauge, and safety information on the exterior of each foot of manufactured wire, and this is typically done with inkjet or laser printers. The goal of this work was the creation of conductive inks that can be applied to a wire or flexible substrates via inkjet printing methods. The use of inkjet printing technology to print conductive inks has been in testing for several years. While researchers have been able to get the printing system to mechanically work, the application of conductive inks on substrates has not consistently produced adequate low resistances in the kilohm range. Conductive materials can be applied using a printer in single or multiple passes onto a substrate including textiles, polymer films, and paper. The conductive materials are composed of electrical conductors such as carbon nanotubes (including functionalized carbon nanotubes and metal-coated carbon nanotubes); graphene, a polycyclic aromatic hydrocarbon (e.g., pentacene and bisperipentacene); metal nanoparticles; inherently conductive polymers (ICP); and combinations thereof. Once the conductive materials are applied, the materials are dried and sintered to form adherent conductive materials on the substrate. For certain formulations, increased conductivity can be achieved by printing on substrates supported by low levels of magnetic field alignment. The adherent conductive materials can be used in applications such as damage detection, dust particle removal, smart coating systems, and flexible electronic circuitry. By applying alternating layers of different electrical conductors to form a layered composite material, a single homogeneous layer can be produced with improved electrical properties. It is believed that patterning alternate layers of

  10. Thermoelectric properties of P-type Sb2Te3 thick film processed by a screen-printing technique and a subsequent annealing process

    International Nuclear Information System (INIS)

    Kim, Sun Jin; We, Ju Hyung; Kim, Jin Sang; Kim, Gyung Soo; Cho, Byung Jin

    2014-01-01

    Highlights: • We report on thermoelectric properties of screen-printed Sb 2 Te 3 thick film. • Subsequent annealing process determines thermoelectric properties of Sb 2 Te 3 film. • Annealing in tellurium powder ambient contributes to tellurium-rich Sb 2 Te 3 film. • Annealing in tellurium powder ambient enhances carrier mobility of Sb 2 Te 3 film. -- Abstract: We herein report the thermoelectric properties of Sb 2 Te 3 thick film fabricated by a screen-printing technique and a subsequent annealing process. Each step of the screen-printing fabrication process of Sb 2 Te 3 thick film is described in detail. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of the screen-printed film. The results show that the annealing of the screen-printed Sb 2 Te 3 thick film together with tellurium powder in the same process chamber significantly improves the carrier mobility by increasing the average scattering time of the carrier in the film, resulting in a large improvement of the power factor. By optimizing the annealing process, we achieved a maximum thermoelectric figure-of-merit, ZT, of 0.32 at room temperature, which is slightly higher than that of bulk Sb 2 Te 3 . Because screen-printing is a simple and low-cost process and given that it is easy to scale up to large sizes, this result will be useful for the realization of large, film-type thermoelectric devices

  11. Step-by-step guide to building an inexpensive 3D printed motorized positioning stage for automated high-content screening microscopy.

    Science.gov (United States)

    Schneidereit, Dominik; Kraus, Larissa; Meier, Jochen C; Friedrich, Oliver; Gilbert, Daniel F

    2017-06-15

    High-content screening microscopy relies on automation infrastructure that is typically proprietary, non-customizable, costly and requires a high level of skill to use and maintain. The increasing availability of rapid prototyping technology makes it possible to quickly engineer alternatives to conventional automation infrastructure that are low-cost and user-friendly. Here, we describe a 3D printed inexpensive open source and scalable motorized positioning stage for automated high-content screening microscopy and provide detailed step-by-step instructions to re-building the device, including a comprehensive parts list, 3D design files in STEP (Standard for the Exchange of Product model data) and STL (Standard Tessellation Language) format, electronic circuits and wiring diagrams as well as software code. System assembly including 3D printing requires approx. 30h. The fully assembled device is light-weight (1.1kg), small (33×20×8cm) and extremely low-cost (approx. EUR 250). We describe positioning characteristics of the stage, including spatial resolution, accuracy and repeatability, compare imaging data generated with our device to data obtained using a commercially available microplate reader, demonstrate its suitability to high-content microscopy in 96-well high-throughput screening format and validate its applicability to automated functional Cl - - and Ca 2+ -imaging with recombinant HEK293 cells as a model system. A time-lapse video of the stage during operation and as part of a custom assembled screening robot can be found at https://vimeo.com/158813199. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Single Frequency Impedance Analysis on Reduced Graphene Oxide Screen-Printed Electrode for Biomolecular Detection.

    Science.gov (United States)

    Rajesh; Singal, Shobhita; Kotnala, Ravinder K

    2017-10-01

    A biofunctionalized reduced graphene oxide (rGO)-modified screen-printed carbon electrode (SPCE) was constructed as an immunosensor for C-reactive protein (CRP) detection, a biomarker released in early stage acute myocardial infarction. A different approach of single frequency analysis (SFA) study was utilized for the biomolecular sensing, by monitoring the response in phase angle changes obtained at an optimized frequency resulting from antigen-antibody interactions. A set of measurements were carried out to optimize a frequency where a maximum change in phase angle was observed, and in this case, we found it at around 10 Hz. The bioelectrode was characterized by contact angle measurements, scanning electron microscopy, and electrochemical techniques. A concentration-dependent response of immunosensor to CRP with the change in phase angle, at a fixed frequency of 10 Hz, was found to be in the range of 10 ng mL -1 to 10 μg mL -1 in PBS and was fit quantitative well with the Hill-Langmuir equation. Based on the concentration-response data, the dissociation constant (K d ) was found to be 3.5 nM (with a Hill coefficient n = 0.57), which indicated a negative cooperativity with high anti-CRP (antibody)-CRP (antigen) binding at the electrode surface. A low-frequency analysis of sensing with an ease of measurement on a disposable electroactive rGO-modified electrode with high selectivity and sensitivity makes it a potential tool for biological sensors.

  13. Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection.

    Science.gov (United States)

    Ji, Daizong; Liu, Lei; Li, Shuang; Chen, Chen; Lu, Yanli; Wu, Jiajia; Liu, Qingjun

    2017-12-15

    Smartphone-based electrochemical devices have such advantages as the low price, miniaturization, and obtaining the real-time data. As a popular electrochemical method, cyclic voltammetry (CV) has shown its great practicability for quantitative detection and electrodes modification. In this study, a smartphone-based CV system with a simple method of electrode modification was constructed to perform electrochemical detections. The system was composed of these main portions: modified electrodes, portable electrochemical detector and smartphone. Among them, the detector was comprised of an energy transformation module applying the stimuli signals, and a low-cost potentiostat module for CV measurements with a Bluetooth module for transmitting data and commands. With an Application (App), the smartphone was used as the controller and displayer of the system. Through controlling of different scan rates, the smartphone-based system could perform CV detections for redox couples with test errors less than 3.8% compared to that of commercial electrochemical workstation. Also, the reduced graphene oxide (rGO) and sensitive substance could be modified by the system on the screen printed electrodes for detections. As a demonstration, 3-amino phenylboronic acid (APBA) was used as the sensitive substance to fabricate a glucose sensor. Finally, the experimental data of the system were shown the linear, sensitive, and specific responses to glucose at different doses, even in blood serum as low as about 0.026mM with 3δ/slope calculation. Thus, the system could show great potentials of detection and modification of electrodes in various fields, such as public health, water monitoring, and food quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Fabrication of graphene/gold-modified screen-printed electrode for detection of carcinoembryonic antigen

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.F. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor (Malaysia); Lim, H.N., E-mail: janetlimhn@gmail.com [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor (Malaysia); Shams, N. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor (Malaysia); Jayabal, S.; Pandikumar, A.; Huang, N.M. [Low Dimensional Materials Research Centre (LDMRC), Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-01-01

    Immunosensors based on gold nanoparticles and reduced graphene oxide (AuNPs/rGO)-modified screen-printed electrodes (SPEs) were successfully synthesized using an electrochemical deposition method. The modified SPEs were characterized using a field emission scanning electron microscope (FESEM) and Raman spectroscopy to analyze the morphology and composition of AuNPs and rGO. Both the FESEM and Raman spectroscopy revealed that the AuNPs were successfully anchored on the thin film of rGO deposited on the surface of the SPEs. Characterization with a ferri–ferrocyanide couple [Fe(CN){sub 6}{sup 3−/4−}] showed that the electron transfer kinetic between the analyte and electrode was enhanced after the modification with the AuNPs/rGO composite on the electrode surface, in addition to increasing the effective surface area of the electrode. The modified SPE was immobilized with a sandwich type immunosensor to mimic the ELISA (enzyme-linked immunosorbent assay) immunoassay. The modified SPE that was fortified with the sandwich type immunosensor exhibited double electrochemical responses in the detection of carcinoembryonic antigen (CEA), with linear ranges of 0.5–50 ng/mL and 250–2000 ng/mL and limits of detection of 0.28 ng/mL and 181.5 ng/mL, respectively. - Highlights: • An AuNP/rGO-modified SPE is prepared via an in-situ electrodeposition method. • It is introduced in a sandwich-type immunoassay for the detection of CEA. • The LODs for CEA are 0.28 ng/mL for 0.5–25 ng/mL, and 181.5 ng/mL for 250–2000 ng/mL.

  15. Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of pH.

    Science.gov (United States)

    Galdino, Flávia E; Smith, Jamie P; Kwamou, Sophie I; Kampouris, Dimitrios K; Iniesta, Jesus; Smith, Graham C; Bonacin, Juliano A; Banks, Craig E

    2015-12-01

    A reagentless pH sensor based upon disposable and economical graphite screen-printed electrodes (GSPEs) is demonstrated for the first time. The voltammetric pH sensor utilizes GSPEs which are chemically pretreated to form surface immobilized oxygenated species that, when their redox behavior is monitored, give a Nernstian response over a large pH range (1-13). An excellent experimental correlation is observed between the voltammetric potential and pH over the entire pH range of 1-13 providing a simple approach with which to monitor solution pH. Such a linear response over this dynamic pH range is not usually expected but rather deviation from linearity is encountered at alkaline pH values; absence of this has previously been attributed to a change in the pKa value of surface immobilized groups from that of solution phase species. This non-deviation, which is observed here in the case of our facile produced reagentless pH sensor and also reported in the literature for pH sensitive compounds immobilized upon carbon electrodes/surfaces, where a linear response is observed over the entire pH range, is explained alternatively for the first time. The performance of the GSPE pH sensor is also directly compared with a glass pH probe and applied to the measurement of pH in "real" unbuffered samples where an excellent correlation between the two protocols is observed validating the proposed GSPE pH sensor.

  16. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene

    Science.gov (United States)

    Tu, Dandan; He, Yu; Rong, Yuanzhen; Wang, You; Li, Guang

    2016-04-01

    In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K3[Fe(CN)6]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM-1 cm-2) when working at a low working potential (0.15 V). The linear range was 0.5 mM-15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications.

  17. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene

    International Nuclear Information System (INIS)

    Tu, Dandan; He, Yu; Rong, Yuanzhen; Wang, You; Li, Guang

    2016-01-01

    In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K 3 [Fe(CN) 6 ]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM −1 cm −2 ) when working at a low working potential (0.15 V). The linear range was 0.5 mM–15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications. (paper)

  18. Processing parameters for ZnO-based thick film varistors obtained by screen printing

    Directory of Open Access Journals (Sweden)

    de la Rubia, M. A.

    2006-06-01

    Full Text Available Thick film varistors based on the ZnO-Bi2O3-Sb2O3 system have been prepared by screen printing on dense alumina substrates. Different processing parameters like the paste viscosity, burn out and sintering cycles, green and sintered thickness, have been studied to improve the processing of ZnO-based thick film varistors. Starting powders were pre-treated in two different ways in order to control both the Bi-rich liquid phase formation and the excessive volatilization of Bi2O3 during sintering due to the high area/volume ratio of the thick films. Significant changes have been observed in the electrical properties related to the different firing schedule and selection of the starting powders.

    Se han preparado varistores basados en el sistema ZnO-Bi2O3-Sb2O3 en forma de lámina gruesa sobre sustratos de alúmina densa. Diferentes parámetros del procesamiento como la viscosidad de la pasta, los ciclos de calcinación y sinterización y el espesor en verde y sinterizado han sido estudiados para mejorar el procesamiento de los varistores basados en ZnO preparados en forma de lámina gruesa. Los polvos de partida fueron pretratados de dos formas diferentes con el objetivo de controlar la formación de la fase líquida rica en bismuto y la excesiva volatilización de Bi2O3 durante la sinterización debida a la alta relación área-volumen de las láminas gruesas. Se han observado cambios significativos en las propiedades eléctricas relacionadas con los diferentes ciclos de calcinado y con la selección de los polvos de partida.

  19. Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors.

    Science.gov (United States)

    Cao, Xuan; Lau, Christian; Liu, Yihang; Wu, Fanqi; Gui, Hui; Liu, Qingzhou; Ma, Yuqiang; Wan, Haochuan; Amer, Moh R; Zhou, Chongwu

    2016-11-22

    Semiconducting single-wall carbon nanotubes are ideal semiconductors for printed electronics due to their advantageous electrical and mechanical properties, intrinsic printability in solution, and desirable stability in air. However, fully printed, large-area, high-performance, and flexible carbon nanotube active-matrix backplanes are still difficult to realize for future displays and sensing applications. Here, we report fully screen-printed active-matrix electrochromic displays employing carbon nanotube thin-film transistors. Our fully printed backplane shows high electrical performance with mobility of 3.92 ± 1.08 cm 2 V -1 s -1 , on-off current ratio I on /I off ∼ 10 4 , and good uniformity. The printed backplane was then monolithically integrated with an array of printed electrochromic pixels, resulting in an entirely screen-printed active-matrix electrochromic display (AMECD) with good switching characteristics, facile manufacturing, and long-term stability. Overall, our fully screen-printed AMECD is promising for the mass production of large-area and low-cost flexible displays for applications such as disposable tags, medical electronics, and smart home appliances.

  20. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing.

    Science.gov (United States)

    Li, Jia; Rossignol, Fabrice; Macdonald, Joanne

    2015-06-21

    Inkjet printing is emerging at the forefront of biosensor fabrication technologies. Parallel advances in both ink chemistry and printers have led to a biosensor manufacturing approach that is simple, rapid, flexible, high resolution, low cost, efficient for mass production, and extends the capabilities of devices beyond other manufacturing technologies. Here we review for the first time the factors behind successful inkjet biosensor fabrication, including printers, inks, patterning methods, and matrix types. We discuss technical considerations that are important when moving beyond theoretical knowledge to practical implementation. We also highlight significant advances in biosensor functionality that have been realised through inkjet printing. Finally, we consider future possibilities for biosensors enabled by this novel combination of chemistry and technology.

  1. High performance screen-printed electrodes prepared by a green solvent approach for lithium-ion batteries

    Science.gov (United States)

    Gören, A.; Mendes, J.; Rodrigues, H. M.; Sousa, R. E.; Oliveira, J.; Hilliou, L.; Costa, C. M.; Silva, M. M.; Lanceros-Méndez, S.

    2016-12-01

    New inks based on lithium iron phosphate and graphite for cathode and anode, respectively, were developed for printable lithium-ion batteries using the "green solvent" N,N‧-dimethylpropyleneurea (DMPU) and poly(vinylidene fluoride), PVDF, as a binder. The results were compared with the ones from inks developed with the conventionally used solvent N-methyl-2-pyrrolidone, NMP. The rheological properties of the PVDF/DMPU binder solution shows a more pronounced shear thinning behavior than the PVDF/NMP solution. Cathode inks prepared with 2.25 mL and 2.50 mL of DMPU for 1 g of electrode mass show an apparent viscosity of 3 Pa s and 2 Pa s for a shear rate of 100 s-1, respectively, being therefore processable by screen-printing or doctor blade techniques. The electrodes prepared with DMPU and processed by screen-printing show a capacity of 52 mAh g-1 at 2C for the cathode and 349 mAh g-1 at C/5 for the anode, after 45 charge-discharge cycles. The electrochemical performance of both electrodes was evaluated in a full-cell and after 9 cycles, the discharge capacity value is 81 mAh g-1, showing a discharge capacity retention of 64%. The new inks presented in this work are thus suitable for the development of printed batteries and represent a step forward towards more environmental friendly processes.

  2. 3D Printing in Technology and Engineering Education

    Science.gov (United States)

    Martin, Robert L.; Bowden, Nicholas S.; Merrill, Chris

    2014-01-01

    In the past five years, there has been tremendous growth in the production and use of desktop 3D printers. This growth has been driven by the increasing availability of inexpensive computing and electronics technologies. The ability to rapidly share ideas and intelligence over the Internet has also played a key role in the growth. Growth is also…

  3. Lay health educators and print materials for the promotion of colorectal cancer screening among Korean Americans: A randomized comparative effectiveness study.

    Science.gov (United States)

    Jo, Angela M; Nguyen, Tung T; Stewart, Susan; Sung, Min J; Gildengorin, Ginny; Tsoh, Janice Y; Tong, Elisa K; Lo, Penny; Cuaresma, Charlene; Sy, Angela; Lam, Hy; Wong, Ching; Jeong, Matthew; Chen, Moon S; Kagawa-Singer, Marjorie

    2017-07-15

    Colorectal cancer (CRC) is the second most commonly diagnosed cancer among Korean American men and women. Although CRC screening is effective in reducing the burden of this disease, studies have shown that Korean Americans have low screening rates. The authors conducted a 2-arm cluster randomized controlled trial comparing a brochure (print) with a brochure and lay health educator (LHE) outreach (print + LHE) in increasing CRC screening rates among Korean American individuals. Self-administered written surveys at baseline and at 6 months assessed knowledge of CRC and its screening, ever screening, and being up to date with screening. A total of 28 LHEs recruited 348 participants aged 50 to 75 years from their social networks. Significant percentages of participants reported not having health insurance (29.3%) or a usual source of care (35.6%). At 6 months postintervention, the print + LHE participants had a greater increase in knowledge compared with those in the print arm (P = .0013). In multivariable analyses, both groups had significant increases in ever screening (print plus LHE: odds ratio [OR], 1.60 [95% confidence interval (95% CI), 1.26-2.03] and print: OR, 1.42 [95% CI, 1.10-1.82]) and being up to date with screening (print plus LHE: OR, 1.63 [95% CI, 1.23-2.16] and print: OR, 1.40 [95% CI, 1.04-1.89]). However, these increases did not differ significantly between the study arms. Having insurance and having seen a provider within the past year were found to be positively associated with screening. Compared with a brochure, LHE outreach yielded greater increases in knowledge but resulted in similar increases in CRC screening in a Korean American population with barriers to health care access. More work is needed to appropriately address logistical and system barriers in this community. Cancer 2017;123:2705-15. © 2017 American Cancer Society. © 2017 American Cancer Society.

  4. Tissue vascularization through 3D printing: Will technology bring us flow?

    Science.gov (United States)

    Paulsen, S J; Miller, J S

    2015-05-01

    Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.

  5. 3D Printing of Tissue Engineered Constructs for in vitro Modeling of Disease Progression and Drug Screening

    Science.gov (United States)

    Vanderburgh, Joseph; Sterling, Julie A.

    2016-01-01

    2D cell culture and preclinical animal models have traditionally been implemented for investigating the underlying cellular mechanisms of human disease progression. However, the increasing significance of 3D versus 2D cell culture has initiated a new era in cell culture research in which 3D in vitro models are emerging as a bridge between traditional 2D cell culture and in vivo animal models. Additive manufacturing (AM, also known as 3D printing), defined as the layer-by-layer fabrication of parts directed by digital information from a 3D computer-aided design (CAD) file, offers the advantages of simultaneous rapid prototyping and biofunctionalization as well as the precise placement of cells and extracellular matrix with high resolution. In this review, we highlight recent advances in 3D printing of tissue engineered constructs (TECs) that recapitulate the physical and cellular properties of the tissue microenvironment for investigating mechanisms of disease progression and for screening drugs. PMID:27169894

  6. Effect of sintering temperatures and screen printing types on TiO2 layers in DSSC applications

    Science.gov (United States)

    Supriyanto, Agus; Furqoni, Lutfi; Nurosyid, Fahru; Hidayat, Jojo; Suryana, Risa

    2016-03-01

    Dye-Sensitized Solar Cell (DSSC) is a candidate solar cell, which has a big potential in the future due to its eco-friendly material. This research is conducted to study the effect of sintering temperature and the type of screen-printing toward the characteristics of TiO2 layer as a working electrode in DSSC. TiO2 layers were fabricated using a screen-printing method with a mesh size of T-49, T-55, and T-61. TiO2 layers were sintered at temperatures of 600°C and 650°C for 60 min. DSSC structure was composed of TiO2 as semiconductors, ruthenium complex as dyes, and carbon as counter electrodes. The morphology of TiO2 layer was observed by using Nikon E2 Digital Camera Microscopy. The efficiencies of DSSC were calculated from the I-V curves. The highest efficiency is 0.015% at TiO2 layer fabricated with screen type T-61 and at a sintering temperature of 650°C.

  7. Effect of sintering temperatures and screen printing types on TiO{sub 2} layers in DSSC applications

    Energy Technology Data Exchange (ETDEWEB)

    Supriyanto, Agus; Furqoni, Lutfi; Nurosyid, Fahru, E-mail: nurosyid@yahoo.com; Suryana, Risa [Department of Physics, Faculty of Mathematics and Natural Sciences, Sebel as Maret University Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Hidayat, Jojo [Research Center for Electronics and Telecommunication, Indonesian Institute of Sciences (PPET-LIPI) Kampus LIPI Gd. 20 Jl. Sangkuriang Bandung (Indonesia)

    2016-03-29

    Dye-Sensitized Solar Cell (DSSC) is a candidate solar cell, which has a big potential in the future due to its eco-friendly material. This research is conducted to study the effect of sintering temperature and the type of screen-printing toward the characteristics of TiO{sub 2} layer as a working electrode in DSSC. TiO{sub 2} layers were fabricated using a screen-printing method with a mesh size of T-49, T-55, and T-61. TiO{sub 2} layers were sintered at temperatures of 600°C and 650°C for 60 min. DSSC structure was composed of TiO{sub 2} as semiconductors, ruthenium complex as dyes, and carbon as counter electrodes. The morphology of TiO{sub 2} layer was observed by using Nikon E2 Digital Camera Microscopy. The efficiencies of DSSC were calculated from the I-V curves. The highest efficiency is 0.015% at TiO{sub 2} layer fabricated with screen type T-61 and at a sintering temperature of 650°C.

  8. Reaction of photochemical resists used in screen printing under the influence of digitally modulated ultra violet light

    Science.gov (United States)

    Gmuender, T.

    2017-02-01

    Different chemical photo-reactive emulsions are used in screen printing for stencil production. Depending on the bandwidth, optical power and depth of field from the optical system, the reaction / exposure speed has a diverse value. In this paper, the emulsions get categorized and validated in a first step. After that a mathematical model gets developed and adapted due to heuristic experience to estimate the exposure speed under the influence of digitally modulated ultra violet (UV) light. The main intention is to use the technical specifications (intended wavelength, exposure time, distance to the stencil, electrical power, stencil configuration) in the emulsion data sheet primary written down with an uncertainty factor for the end user operating with large projector arc lamps and photo films. These five parameters are the inputs for a mathematical formula which gives as an output the exposure speed for the Computer to Screen (CTS) machine calculated for each emulsion / stencil setup. The importance of this work relies in the possibility to rate with just a few boundaries the performance and capacity of an exposure system used in screen printing instead of processing a long test series for each emulsion / stencil configuration.

  9. Effect of sintering temperatures and screen printing types on TiO_2 layers in DSSC applications

    International Nuclear Information System (INIS)

    Supriyanto, Agus; Furqoni, Lutfi; Nurosyid, Fahru; Suryana, Risa; Hidayat, Jojo

    2016-01-01

    Dye-Sensitized Solar Cell (DSSC) is a candidate solar cell, which has a big potential in the future due to its eco-friendly material. This research is conducted to study the effect of sintering temperature and the type of screen-printing toward the characteristics of TiO_2 layer as a working electrode in DSSC. TiO_2 layers were fabricated using a screen-printing method with a mesh size of T-49, T-55, and T-61. TiO_2 layers were sintered at temperatures of 600°C and 650°C for 60 min. DSSC structure was composed of TiO_2 as semiconductors, ruthenium complex as dyes, and carbon as counter electrodes. The morphology of TiO_2 layer was observed by using Nikon E2 Digital Camera Microscopy. The efficiencies of DSSC were calculated from the I-V curves. The highest efficiency is 0.015% at TiO_2 layer fabricated with screen type T-61 and at a sintering temperature of 650°C.

  10. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    International Nuclear Information System (INIS)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-01-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications. (paper)

  11. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    Science.gov (United States)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-07-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.

  12. Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection

    Energy Technology Data Exchange (ETDEWEB)

    Calvo Quintana, Josefina [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy); Arduini, Fabiana, E-mail: fabiana.arduini@uniroma2.it [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy); Amine, Aziz [Faculte des Sciences et Techniques, B.P.146, Mohammadia, Morocco, Rome (Italy); Punzo, Francesco; Destri, Giovanni Li [LAMSUN and CSGI at Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95125, Catania (Italy); Bianchini, Chiara [Dipartimento di Ingegneria Chimica Materiali Ambienti dell' Universita degli Studi ' La Sapienza' di Roma, via Eudossiana 18, 00184 Rome (Italy); Zane, Daniela; Curulli, Antonella [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR,via del Castro Laurenziano 7, 00161 Rome (Italy); Palleschi, Giuseppe; Moscone, Danila [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer 'In situ' Bi-SPE has higher sensitivity than 'ex situ' Bi-SPE and 'Bi{sub 2}O{sub 3} bulk' SPE. Black-Right-Pointing-Pointer Electrochemical treatment of SPE before Bi film deposition allows one to reach low LOD. Black-Right-Pointing-Pointer The linearity of Pb{sup 2+} in HCl and HClO{sub 4} is greatly affected by the ionic strength. Black-Right-Pointing-Pointer Satisfactory values of the recovery percentage were obtained in drinking water samples. - Abstract: Lead determination was carried out in the frame of the European Union project Biocop ( (www.biocop.org)) using a bismuth-modified screen-printed electrode (Bi-SPE) and the stripping analysis technique. In order to choose a sensitive Bi-SPE for lead detection, an analytical comparative study of electrodes modified by Bi using 'in situ', 'ex situ' and 'bulk' procedures was carried out. On the basis of the results obtained, we confirmed that the 'in situ' procedure resulted in better analytical performances with respect to not only 'ex situ' but also to 'Bi{sub 2}O{sub 3} bulk' modified electrodes, allowing for a linear range of lead ion concentration from 0.5 to 100 {mu}g L{sup -1} and a detection limit of 0.15 {mu}g L{sup -1}. We demonstrated that, before the Bi film deposition, an oxidative electrochemical pre-treatment of the working electrode could be useful because it eliminates traces of lead in the graphite-ink, as shown with stripping measurements. It also improves the electrochemical performance of the electrodes as demonstrated with Electrochemical Impedance Spectroscopy (EIS) measurements. The influence of different analytical parameters, such as the electrolyte solution composition (acetate buffer, chloridric acid, nitric acid, perchloric acid) and the ionic strength was investigated in order to evaluate how to treat the sample before the analysis. The morphology of

  13. Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection

    International Nuclear Information System (INIS)

    Calvo Quintana, Josefina; Arduini, Fabiana; Amine, Aziz; Punzo, Francesco; Destri, Giovanni Li; Bianchini, Chiara; Zane, Daniela; Curulli, Antonella; Palleschi, Giuseppe; Moscone, Danila

    2011-01-01

    Highlights: ► “In situ” Bi-SPE has higher sensitivity than “ex situ” Bi-SPE and “Bi 2 O 3 bulk” SPE. ► Electrochemical treatment of SPE before Bi film deposition allows one to reach low LOD. ► The linearity of Pb 2+ in HCl and HClO 4 is greatly affected by the ionic strength. ► Satisfactory values of the recovery percentage were obtained in drinking water samples. - Abstract: Lead determination was carried out in the frame of the European Union project Biocop ( (www.biocop.org)) using a bismuth-modified screen-printed electrode (Bi-SPE) and the stripping analysis technique. In order to choose a sensitive Bi-SPE for lead detection, an analytical comparative study of electrodes modified by Bi using “in situ”, “ex situ” and “bulk” procedures was carried out. On the basis of the results obtained, we confirmed that the “in situ” procedure resulted in better analytical performances with respect to not only “ex situ” but also to “Bi 2 O 3 bulk” modified electrodes, allowing for a linear range of lead ion concentration from 0.5 to 100 μg L −1 and a detection limit of 0.15 μg L −1 . We demonstrated that, before the Bi film deposition, an oxidative electrochemical pre-treatment of the working electrode could be useful because it eliminates traces of lead in the graphite-ink, as shown with stripping measurements. It also improves the electrochemical performance of the electrodes as demonstrated with Electrochemical Impedance Spectroscopy (EIS) measurements. The influence of different analytical parameters, such as the electrolyte solution composition (acetate buffer, chloridric acid, nitric acid, perchloric acid) and the ionic strength was investigated in order to evaluate how to treat the sample before the analysis. The morphology of prepared “in situ” Bi-SPEs was also characterized by Atomic Force Microscopy (AFM). Finally, the Bi-SPEs were used to determine the concentration of lead ions in tap and commercial water

  14. Technology Transfer Opportunities: On-Demand Printing in Support of National Geospatial Data

    Science.gov (United States)

    ,

    1997-01-01

    The U.S. Geological Survey (USGS) and the 3M Company of St. Paul, Minnesota, have entered into a cooperative research and development agreement (CRADA) to investigate maps-on-demand technology to support the production of USGS mapping products. The CRADA will potentially help the USGS to develop on-demand alternatives to lithographic maps and help 3M to develop a series of commercial instant map-printing systems.

  15. Application of 3-Dimensional Printing Technology to Construct an Eye Model for Fundus Viewing Study

    OpenAIRE

    Xie, Ping; Hu, Zizhong; Zhang, Xiaojun; Li, Xinhua; Gao, Zhishan; Yuan, Dongqing; Liu, Qinghuai

    2014-01-01

    Objective To construct a life-sized eye model using the three-dimensional (3D) printing technology for fundus viewing study of the viewing system. Methods We devised our schematic model eye based on Navarro's eye and redesigned some parameters because of the change of the corneal material and the implantation of intraocular lenses (IOLs). Optical performance of our schematic model eye was compared with Navarro's schematic eye and other two reported physical model eyes using the ZEMAX optical ...

  16. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels

    International Nuclear Information System (INIS)

    Almeida, Eduardo S.; Silva, Luiz A.J.; Sousa, Raquel M.F.; Richter, Eduardo M.; Foster, Christopher W.; Banks, Craig E.; Munoz, Rodrigo A.A.

    2016-01-01

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L −1 HClO 4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. - Highlights: • Organic-resistant screen-printed graphitic electrodes (SPGE) for (bio)fuels. • Screen-printing of conductive and insulator inks on thin polyester substrate. • Continuous detection of antioxidants in electrolyte with 99% v/v ethanol. • SPGE coupled with batch-injection analysis allows over 200 injections (100 μL). • Similar results to GC and HPLC analyses of biodiesel and aviation jet fuels.

  17. Study on Gas Sensing Performance of In2O3 Thick Film Resistors Prepared by Screen Printing Technique

    Directory of Open Access Journals (Sweden)

    S. C. KULKARNI

    2011-02-01

    Full Text Available Indium Oxide (In2O3 thick films were prepared on alumina substrate by using standard screen printing technique. These films were dried and fired at temperatures between 750 0C to 950 0C for two hours in air atmosphere. The compositional, morphological and structural properties of In2O3 films were performed by Energy Dispersive Spectroscopy (EDX, XRD, and Scanning electron Microscopy respectively. We explore the various gases to study sensing performance of In2O3 thick films. The maximum response was reported to film fired at 750 0C for H2S gas at 150 0C operating temperature.

  18. Influence of hydroxyl content of binders on rheological properties of cerium-gadolinium oxide (CGO) screen printing inks

    DEFF Research Database (Denmark)

    Marani, Debora; Gadea, Christophe; Hjelm, Johan

    2015-01-01

    vinyl resins) were selected and characterized in solution via viscosimetry method. A high degree of hyper-entanglement was observed for ethyl cellulose polymers, whereas a mitigated effect characterized the two vinyl resins. Cerium-gadolinium oxides (CGO)-based inks, prepared using the selected binders......The influence of hydroxyl content of binders on rheological properties of screen printing inks is investigated. The actual amount of hydroxyl groups is correlated to the level of hyper-entanglement that characterizes the binders in solution. Three of the most used binders (ethyl cellulose, and two...

  19. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Eduardo S.; Silva, Luiz A.J.; Sousa, Raquel M.F.; Richter, Eduardo M. [Universidade Federal de Uberlândia, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38408100 (Brazil); Foster, Christopher W.; Banks, Craig E. [Manchester Metropolitan University, Faculty of Science and the Environment, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester, M1 5GD, England (United Kingdom); Munoz, Rodrigo A.A., E-mail: raamunoz@iqufu.ufu.br [Universidade Federal de Uberlândia, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38408100 (Brazil)

    2016-08-31

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L{sup −1} HClO{sub 4} (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. - Highlights: • Organic-resistant screen-printed graphitic electrodes (SPGE) for (bio)fuels. • Screen-printing of conductive and insulator inks on thin polyester substrate. • Continuous detection of antioxidants in electrolyte with 99% v/v ethanol. • SPGE coupled with batch-injection analysis allows over 200 injections (100 μL). • Similar results to GC and HPLC analyses of biodiesel and aviation jet fuels.

  20. Production of accurate skeletal models of domestic animals using three-dimensional scanning and printing technology.

    Science.gov (United States)

    Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling

    2018-01-01

    Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the fifth rib, and the sixth cervical (C6) vertebra were used to produce digital models. These were then used to produce 1:1 scale physical models with the FDM printer. The anatomical features of the digital models and three-dimensional (3D) printed models were then compared with those of the original skeletal specimens. The results of this study demonstrated that both digital and physical scale models of animal skeletal components could be rapidly produced using 3D printing technology. In terms of accuracy between models and original specimens, the standard deviations of the femur and the fifth rib measurements were 0.0351 and 0.0572, respectively. All of the features except the nutrient foramina on the original bone specimens could be identified in the digital and 3D printed models. Moreover, the 3D printed models could serve as a viable alternative to original bone specimens when used in anatomy education, as determined from student surveys. This study demonstrated an important example of reproducing bone models to be used in anatomy education and veterinary clinical training. Anat Sci Educ 11: 73-80. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  1. Fabrication of interdigitated electrodes by inkjet printing technology for apllication in ammonia sensing

    International Nuclear Information System (INIS)

    Le, Duy Dam; Nguyen, Thi Ngoc Nhien; Doan, Duc Chanh Tin; Dang, Thi My Dung; Dang, Mau Chien

    2016-01-01

    In this paper interdigitated electrodes for gas sensors were fabricated by inkjet printing technology. Silver electrodes were inkjet printed on Si/SiO 2 substrates instead of traditional photolithography method. The inkjet printing parameters to obtain desired dimensions, thickness of the electrodes and distance between the interdigitated electrodes were optimized in this study. The fabricated interdigitated silver electrodes were tested for application in ammonia gas sensors. Conductive polyaniline (PANI) layer was coated on the silver interdigitated electrodes by drop-coating. Ammonia detection of the PANI-coated chips was characterized with a gas measurement system in which humidity and ammonia concentrations were well-controlled. The electrical conductivity of the PANI films coated on the electrodes was measured when the PANI films were exposed to nitrogen and ammonia. The conductivity of the PANI films decreased significantly due to the deprotonation process of PANI upon ammonia expodure. The recovery time was about 15 min by heating up the polymer chip at 60 °C. The results showed that the silver electrodes fabricated by inkjet printing technique could be used as a sensor platform for ammonia detection. (paper)

  2. Design of mulitlevel OLF approach ("V"-shaped decompressive laminoplasty) based on 3D printing technology.

    Science.gov (United States)

    Ling, Qinjie; He, Erxing; Ouyang, Hanbin; Guo, Jing; Yin, Zhixun; Huang, Wenhua

    2017-07-27

    To introduce a new surgical approach to the multilevel ossification of the ligamentum flavum (OLF) aided by three-dimensional (3D) printing technology. A multilevel OLF patient (male, 66 years) was scanned using computed tomography (CT). His saved DICOM format data were inputted to the Mimics14.0 3D reconstruction software (Materialise, Belgium). The resulting 3D model was used to observe the anatomical features of the multilevel OLF area and to design the surgical approach. At the base of the spinous process, two channels were created using an osteotomy bilaterally to create a "V" shape to remove the bone ligamentous complex (BLC). The decompressive laminoplasty using mini-plate fixation was simulated with the computer. The physical model was manufactured using 3D printing technology. The patient was subsequently treated using the designed surgery. The operation was completed successfully without any complications. The operative time was 90 min, and blood loss was 200 ml. One month after the operation, neurologic function was recovered well, and the JOA score was improved from 6 preoperatively to 10. Postoperative CT scanning showed that the OLF was totally removed, and the replanted BLC had not subsided. 3D printing technology is an effective, reliable, and minimally invasive method to design operations. The technique can be an option for multilevel OLF surgical treatment. This can provide sufficient decompression with minimum damage to the spine and other intact anatomical structures.

  3. High-speed autoverifying technology for printed wiring boards

    Science.gov (United States)

    Ando, Moritoshi; Oka, Hiroshi; Okada, Hideo; Sakashita, Yorihiro; Shibutani, Nobumi

    1996-10-01

    We have developed an automated pattern verification technique. The output of an automated optical inspection system contains many false alarms. Verification is needed to distinguish between minor irregularities and serious defects. In the past, this verification was usually done manually, which led to unsatisfactory product quality. The goal of our new automated verification system is to detect pattern features on surface mount technology boards. In our system, we employ a new illumination method, which uses multiple colors and multiple direction illumination. Images are captured with a CCD camera. We have developed a new algorithm that uses CAD data for both pattern matching and pattern structure determination. This helps to search for patterns around a defect and to examine defect definition rules. These are processed with a high speed workstation and a hard-wired circuits. The system can verify a defect within 1.5 seconds. The verification system was tested in a factory. It verified 1,500 defective samples and detected all significant defects with only a 0.1 percent of error rate (false alarm).

  4. 3D technology in fine art and craft exploring 3D printing, scanning, sculpting and milling

    CERN Document Server

    Mongeon, Bridgette

    2015-01-01

    The possibilities for creation are endless with 3D printing, sculpting, scanning, and milling, and new opportunities are popping up faster than artists can keep up with them. 3D Technology in Fine Art and Craft takes the mystery out of these exciting new processes by demonstrating how to navigate their digital components and showing their real world applications. Artists will learn to incorporate these new technologies into their studio work and see their creations come to life in a physical form never before possible. Featuring a primer on 3D basics for beginners,interviews, tutorials, and ar

  5. Inkjet printing of paracetamol and indomethacin using electromagnetic technology: Rheological compatibility and polymorphic selectivity.

    Science.gov (United States)

    Kollamaram, Gayathri; Hopkins, Simon C; Glowacki, Bartek A; Croker, Denise M; Walker, Gavin M

    2018-03-30

    Drop-on-demand inkjet printing is a potential enabling technology both for continuous manufacturing of pharmaceuticals and for personalized medicine, but its use is often restricted to low-viscosity solutions and nano-suspensions. In the present study, a robust electromagnetic (valvejet) inkjet technology has been successfully applied to deposit prototype dosage forms from solutions with a wide range of viscosities, and from suspensions with particle sizes exceeding 2 μm. A detailed solid-state study of paracetamol, printed from a solution ink on hydroxypropyl methylcellulose (HPMC), revealed that the morphology of the substrate and its chemical interactions can have a considerable influence on polymorphic selectivity. Paracetamol ink crystallized exclusively into form II when printed on a smooth polyethylene terephthalate substrate, and exclusively into form I when in sufficient proximity to the rough surface of the HPMC substrate to be influenced by confinement in pores and chemical interactions. The relative standard deviation in the strength of the dosage forms was fixed dose combinations are of particular interest. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Comparison of the Conventional Surgery and the Surgery Assisted by 3d Printing Technology in the Treatment of Calcaneal Fractures.

    Science.gov (United States)

    Zheng, Wenhao; Tao, Zhenyu; Lou, Yiting; Feng, Zhenhua; Li, Hang; Cheng, Liang; Zhang, Hui; Wang, Jianshun; Guo, Xiaoshan; Chen, Hua

    2017-09-19

    This study was aimed to compare conventional surgery and surgery assisted by 3D printing technology in the treatment of calcaneal fractures. In addition, we also investigated the effect of 3D printing technology on the communication between doctors and patients. we enrolled 75 patients with calcaneal fracture from April 2014 to August 2016. They were divided randomly into two groups: 35 cases of 3D printing group, 40 cases of conventional group. The individual models were used to simulate the surgical procedures and carry out the surgery according to plan in 3D printing group. Operation duration, blood loss volume during the surgery, number of intraoperative fluoroscopy and fracture union time were recorded. The radiographic outcomes Böhler angle, Gissane angle, calcaneal width and calcaneal height and final functional outcomes including VAS and AOFAS score as well as the complications were also evaluated. Besides, we made a simple questionnaire to verify the effectiveness of the 3D-printed model for both doctors and patients. The operation duration, blood loss volume and number of intraoperative fluoroscopy for 3D printing group was 71.4 ± 6.8 minutes, 226.1 ± 22.6 ml and 5.6 ± 1.9 times, and for conventional group was 91.3 ± 11.2 minutes, 288.7 ± 34.8 ml and 8.6 ± 2.7 times respectively. There was statistically significant difference between the conventional group and 3D printing group (p 3D printing group achieved significantly better radiographic results than conventional group both postoperatively and at the final follow-up (p 3D printing model. This study suggested the clinical feasibility of 3D printing technology in treatment of calcaneal fractures.

  7. Trace lead analysis based on carbon-screen-printed-electrodes modified via 4-carboxy-phenyl diazonium salt electroreduction

    International Nuclear Information System (INIS)

    Bouden, Sarra; Chausse, Annie; Dorbes, Stephane; El Tall, Omar; Bellakhal, Nizar; Dachraoui, Mohamed; Vautrin-Ul, Christine

    2013-01-01

    This paper describes the use of 4-carboxyphenyl-grafted screen-printed carbon electrodes (4-CP-SPEs) for trace lead analysis.These novel and simple use of electrodes were easily prepared by the electrochemical reduction of the corresponding diazonium salt. Pb detection was then performed by a three-steps method in order to avoid oxygen interference:(i)immersion of the grafted screen-printed electrode (SPE) in the sample and adsorption of Pb(II), (ii)reduction of adsorbed Pb(II) by chrono-amperometry (CA), and (iii) oxidation of Pb by Anodic Square Wave Voltammetry (SWV).The re-oxidation response was exploited for lead detection and quantification. In order to optimize the analytical responses, the influence of the adsorption medium pH and the adsorption time were investigated. Moreover, an interference study was carried out with Cu(II), Hg(II), Al(III), Mn(II), Zn(II), Cd(II) and no major interference can be expected to quantify Pb(II). The described method provided a limit of detection and a limit of quantification of 1.2*10 9 M and 4.1*10 9 M, respectively. These performances indicate that the 4-CP-SPE could be considered as an efficient tool for environmental analysis. (authors)

  8. Effects of Homogenization Scheme of TiO2 Screen-Printing Paste for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2012-01-01

    Full Text Available TiO2 porous electrodes have been fabricated for photoelectrodes in dye-sensitized solar cells (DSCs using TiO2 screen-printing paste from nanocrystalline TiO2 powder dried from the synthesized sol. We prepared the TiO2 screen-printing paste by two different methods to disperse the nanocrystalline TiO2 powder: a “ball-milling route” and a “mortal-grinding route.” The TiO2 ball-milling (TiO2-BM route gave monodisperse TiO2 nanoparticles, resulting in high photocurrent density (14.2 mA cm−2 and high photoconversion efficiency (8.27%. On the other hand, the TiO2 mortal-grinding (TiO2-MG route gave large aggregate of TiO2 nanoparticles, resulting in low photocurrent density (11.5 mA cm−2 and low photoconversion efficiency (6.43%. To analyze the photovoltaic characteristics, we measured the incident photon-to-current efficiency, light absorption spectroscopy, and electrical impedance spectroscopy of DSCs.

  9. A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink.

    Science.gov (United States)

    Crouch, Eric; Cowell, David C; Hoskins, Stephen; Pittson, Robin W; Hart, John P

    2005-11-15

    Screen-printed amperometric glucose biosensors have been fabricated using a water-based carbon ink. The enzyme glucose oxidase (GOD) and the electro-catalyst cobalt phthalocyanine were mixed with the carbon ink prior to the screen-printing process; therefore, biosensors are prepared in a one-step fabrication procedure. Optimisation of the biosensor performance was achieved by studying the effects of pH, buffer strength, and applied potential on the analytical response. Calibration studies were performed under optimum conditions, using amperometry in stirred solution, with an operating potential of +500 mV versus SCE. The sensitivity was found to be 1170 nA mM(-1), with a linear range of 0.025-2 mM; the former represents the detection limit. The disposable amperometric biosensor was evaluated by carrying out replicate determinations on a sample of bovine serum. This was achieved by the method of multiple standard additions and included a correction for background currents arising from oxidizable serum components. The mean serum concentration was calculated to be 8.63 mM and compared well with the supplier's value of 8.3 mM; the coefficient of variation was calculated to be 3.3% (n=6).

  10. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    Science.gov (United States)

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  11. Evaluation of electrochemical, UV/VIS and Raman spectroelectrochemical detection of Naratriptan with screen-printed electrodes.

    Science.gov (United States)

    Hernández, Carla Navarro; Martín-Yerga, Daniel; González-García, María Begoña; Hernández-Santos, David; Fanjul-Bolado, Pablo

    2018-02-01

    Naratriptan, active pharmaceutical ingredient with antimigraine activity was electrochemically detected in untreated screen-printed carbon electrodes (SPCEs). Cyclic voltammetry and differential pulse voltammetry were used to carry out quantitative analysis of this molecule (in a Britton-Robinson buffer solution at pH 3.0) through its irreversible oxidation (diffusion controlled) at a potential of +0.75V (vs. Ag pseudoreference electrode). Naratriptan oxidation product is an indole based dimer with a yellowish colour (maximum absorption at 320nm) so UV-VIS spectroelectrochemistry technique was used for the very first time as an in situ characterization and quantification technique for this molecule. A reflection configuration approach allowed its measurement over the untreated carbon based electrode. Finally, time resolved Raman Spectroelectrochemistry is used as a powerful technique to carry out qualitative and quantitative analysis of Naratriptan. Electrochemically treated silver screen-printed electrodes are shown as easy to use and cost-effective SERS substrates for the analysis of Naratriptan. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Won-Yong Jeon

    2015-12-01

    Full Text Available Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO electrodes (DSPNCE were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH2/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV, scanning from 0–1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM, X-ray photoelectron spectroscopy (XPS, and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0–10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA or ascorbic acid (AA. Therefore, this approach allowed the development of a simple, disposable glucose biosensor.

  13. A disposable electrochemical immunosensor based on carbon screen-printed electrodes for the detection of prostate specific antigen.

    Science.gov (United States)

    Yan, Mei; Zang, Dejin; Ge, Shenguang; Ge, Lei; Yu, Jinghua

    2012-01-01

    A novel screen-printed electrode (SPEs) on sheets of vegetable parchment was prepared. The obtained SPEs were stable, convenient, inexpensive and suitable for large-area screen-printing. With these SPEs, we explored the fabrication of a novel, disposable and highly sensitive electro-analytical immunosensor using graphene nanosheets (GS) and horseradish peroxidase (HRP)-labeled signal antibody functionalized with gold nanoparticles (HRP-Ab(2)/Au NPs). GS was used to increase the conductivity and stability of this immunosensor due to its fast electron transportation and good biocompatibility. Au NPs could not only provide a large surface area for the immobilization of HRP-Ab(2) but also enhance the electroreduction between HRP and H(2)O(2) to amplify the electrochemical signal on the sandwich immuno-complexes modified SPEs. The proposed SPEs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical methods involving cyclic voltammetry (CV), and electrochemical impedence method. Using prostate specific antigen (PSA) as a model analyte, this immunosensor showed a wide linear range over 6 orders of magnitude with the minimum value down to 2 pg mL(-1). In addition, this immunosensor could avoid the need of deoxygenation for the electrochemical immunoassay. Thus, it provided a promising potential in clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Electrochemical impedance spectroscopy versus cyclic voltammetry for the electroanalytical sensing of capsaicin utilising screen printed carbon nanotube electrodes.

    Science.gov (United States)

    Randviir, Edward P; Metters, Jonathan P; Stainton, John; Banks, Craig E

    2013-05-21

    Screen printed carbon nanotube electrodes (SPEs) are explored as electroanalytical sensing platforms for the detection of capsaicin in both synthetic capsaicin solutions and capsaicin extracted from chillies and chilli sauces utilising both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is found that the technique which is most applicable to the electroanalytical detection of capsaicin depends upon the analyte concentration: for the case of low capsaicin concentrations, CV is a more appropriate method as capsaicin exhibits characteristic voltammetric waves of peak heights relevant to the capsaicin concentration; but for the case of high capsaicin concentrations where the voltammetric waves merge and migrate out of the potential window, EIS is shown to be a more appropriate technique, owing to the observed linear increases in R(ct) with increasing concentration. Furthermore, we explore different types of screen printed carbon nanotube electrodes, namely single- and multi- walled carbon nanotubes, finding that they are technique-specific: for the case of low capsaicin concentrations, single-walled carbon nanotube SPEs are preferable (SW-SPE); yet for the case of EIS at high capsaicin concentrations, multi-walled carbon nanotube SPEs (MW-SPE) are preferred, based upon analytical responses. The analytical performance of CV and EIS is applied to the sensing of capsaicin in grown chillies and chilli sauces and is critically compared to 'gold standard' HPLC analysis.

  15. Nafion® modified-screen printed gold electrodes and their carbon nanostructuration for electrochemical sensors applications.

    Science.gov (United States)

    García-González, Raquel; Fernández-Abedul, M Teresa; Costa-García, Agustín

    2013-03-30

    Screen printed electrodes are frequently used in electroanalytical applications because of their properties such as small size, low detection limit, fast response time, high reproducibility and disposable nature. On the other hand, since the discovery of carbon nanotubes there has been enormous interest in exploring and exploiting their properties, especially for their use in chemical (bio)sensors and nanoscale electronic devices. This paper reports the characterization of gold screen printed electrodes, modified with Nafion(®) and nanostructured with carbon nanotubes and carbon nanofibers dispersed on Nafion(®). The dispersing agent and the nanostructure have a marked effect on the analytical signal that, in turn depends on the intrinsic characteristics of the analyte. Several model analytes have been employed in this study. Anionic, cationic and neutral species such as methylene blue, dopamine, iron (III) sulfate, potassium ferrycianide and urea were considered. The importance for the development of nanostructured sensors relies on the fact that depending on these factors the situation may vary from a notorious enhancement of the signal to a blocking or even decrease. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Microstructure and thermoelectric properties of screen-printed thick-films of misfit-layered cobalt oxides with Ag addition

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Samson, Alfred Junio; Pryds, Nini

    2012-01-01

    Thermoelectric properties of thick (~60 μm) films prepared by a screen-printing technique using p-type misfit-layered cobalt oxide Ca3Co4O9+δ with Ag addition have been studied. The screen-printed films were sintered in air at various temperatures ranging from 973 K to 1223 K. After each sintering...... process, crystal and microstructure analyses were carried out to determine the optimal sintering condition. The results show that the thermoelectric properties of pure Ca3Co4O9+δ thick film are comparable to those of cold isostatic pressing (CIP) samples. We found that the maximum power factor...... was improved by about 67% (to 0.3 mW/m K2) for film with proper silver (Ag) metallic inclusions as compared with 0.18 mW/m K2 for pure Ca3Co4O9+δ film under the same sintering condition of 1223 K for 2 h in air....

  17. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  18. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes.

    Science.gov (United States)

    Jeon, Won-Yong; Choi, Young-Bong; Kim, Hyug-Han

    2015-12-10

    Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO) electrodes (DSPNCE) were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH)₂/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV), scanning from 0-1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0-10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA) or ascorbic acid (AA). Therefore, this approach allowed the development of a simple, disposable glucose biosensor.

  19. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.

    Science.gov (United States)

    Cao, Xuan; Chen, Haitian; Gu, Xiaofei; Liu, Bilu; Wang, Wenli; Cao, Yu; Wu, Fanqi; Zhou, Chongwu

    2014-12-23

    Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.

  20. Barriers to adoption of recent technology in cervical screening

    Directory of Open Access Journals (Sweden)

    Jhala Darshana

    2007-01-01

    Full Text Available Abstract The Pap smear is one of the modern success stories in the field of preventive medicine. Since its introduction as a screening test, there has been a dramatic reduction in the incidence of cervical cancer. However, the search for a better screening test continues. The new technologies, including liquid-based cytology (LBC, Human Papilloma Virus (HPV testing and automated or machine-assisted screening have been introduced. However, there is continuous debate about whether society's limited resources are better spent on reaching the underserved rather than on these technologies. Another question is whether these technologies create yet another kind of disparity in delivering preventive care. For example, despite the wide use of LBC (99% of tests submitted to our laboratory are LBC, conventional Pap smears are still used to screen/follow up some women. It is not clear why some providers continue to prefer conventional smear over LBC and what are the barriers for adopting LBC in cervical cancer screening. We hypothesize the lower cost of conventional compared to LBC Pap testing, patient's lower socio-economic indices, a patient's medical history and provider's subspecialty/training all appear to play a role in the choice of using conventional Pap testing rather than LBC. Unintentionally, this choice results in repeat testing, delayed treatment and potentially higher costs than intended. The ultimate goal of this review article is to understand and explore possible barriers and disparities to adopting new technology in cancer screening.

  1. Development of conventional and single-chamber planar solid oxide fuel cells by screen-printing; Developpement de piles a combustible de type SOFC, conventionnelles et mono-chambres, en technologie planaire par serigraphie

    Energy Technology Data Exchange (ETDEWEB)

    Rotureau, D.

    2005-06-15

    This work is the first of a new research theme of the laboratory in the field of solid oxide planar fuel cells. With his high experience in the sensor field, the objectives were to realize prototypes using a 'low cost' technology like screen-printing, using classical materials in the field of fuel cells, rather than researching new materials having optimum properties which may be damaged during the realisation of the complete fuel cell. These materials are yttria stabilised zirconia (YSZ) for electrolyte, strontium doped lanthanum manganite (LSM) for cathode and a nickel oxide-YSZ cermet (NiO-YSZ) for anode. The first part of the study consists in structural and electrical characterizations of chosen materials, both on dense pellets and on screen-printed layers of YSZ, LSM or NiO-YSZ. These characterizations showed a good adequation of our materials for a fuel cell application. The second part consists in testing realised prototypes on electrolyte support and on anode support with screen-printed electrodes and electrolyte. The weak obtained performances are mainly due to the low functional temperature (800 C), the thickness of the electrolyte support (about 1 mm) and the porosity of the YSZ screen-printed layers. Finally, we tested in the same time an original device in which both electrodes are exposed to a fuel and air mixture. This promising device inspired from the research on potentiometric sensors developed in the team by N. Guillet (2001), avoids the tightness problem encountered with two gaseous chambers. Moreover, the performances obtained are just twice below than those obtained with a conventional fuel cell with two gaseous chambers. (author)

  2. Photovoltaic and Impedance Spectroscopy Study of Screen-Printed TiO₂ Based CdS Quantum Dot Sensitized Solar Cells.

    Science.gov (United States)

    Atif, M; Farooq, W A; Fatehmulla, Amanullah; Aslam, M; Ali, Syed Mansoor

    2015-01-19

    Cadmium sulphide (CdS) quantum dot sensitized solar cells (QDSSCs) based on screen-printed TiO₂ were assembled using a screen-printing technique. The CdS quantum dots (QDs) were grown by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The optical properties were studied by UV-Vis absorbance spectroscopy. Photovoltaic characteristics and impedance spectroscopic measurements of CdS QDSSCs were carried out under air mass 1.5 illuminations. The experimental results of capacitance against voltage indicate a trend from positive to negative capacitance because of the injection of electrons from the Fluorine doped tin oxide (FTO) electrode into TiO₂.

  3. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.

    Science.gov (United States)

    Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon

    2016-07-28

    Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Current status and application of fine screening technology in China

    Science.gov (United States)

    Chernova, E. V.; Chernov, D. V.

    2017-10-01

    The paper presents data on the design and technical parameters of high frequency vibrating screens, which are produced by Chinese manufacturer - company Landsky Tech Ltd. The technology of high frequency vibration is widely used at mining and metallurgical industries to separate fine and ultra-fine particles from the flow of dry material or pulp. The paper contains different types of screening systems, description, advantages and disadvantages of equipment and test results from mineral processing plants.

  5. Application of 3-dimensional printing technology to construct an eye model for fundus viewing study.

    Directory of Open Access Journals (Sweden)

    Ping Xie

    Full Text Available To construct a life-sized eye model using the three-dimensional (3D printing technology for fundus viewing study of the viewing system.We devised our schematic model eye based on Navarro's eye and redesigned some parameters because of the change of the corneal material and the implantation of intraocular lenses (IOLs. Optical performance of our schematic model eye was compared with Navarro's schematic eye and other two reported physical model eyes using the ZEMAX optical design software. With computer aided design (CAD software, we designed the 3D digital model of the main structure of the physical model eye, which was used for three-dimensional (3D printing. Together with the main printed structure, polymethyl methacrylate(PMMA aspherical cornea, variable iris, and IOLs were assembled to a physical eye model. Angle scale bars were glued from posterior to periphery of the retina. Then we fabricated other three physical models with different states of ammetropia. Optical parameters of these physical eye models were measured to verify the 3D printing accuracy.In on-axis calculations, our schematic model eye possessed similar size of spot diagram compared with Navarro's and Bakaraju's model eye, much smaller than Arianpour's model eye. Moreover, the spherical aberration of our schematic eye was much less than other three model eyes. While in off- axis simulation, it possessed a bit higher coma and similar astigmatism, field curvature and distortion. The MTF curves showed that all the model eyes diminished in resolution with increasing field of view, and the diminished tendency of resolution of our physical eye model was similar to the Navarro's eye. The measured parameters of our eye models with different status of ametropia were in line with the theoretical value.The schematic eye model we designed can well simulate the optical performance of the human eye, and the fabricated physical one can be used as a tool in fundus range viewing research.

  6. Application of 3-dimensional printing technology to construct an eye model for fundus viewing study.

    Science.gov (United States)

    Xie, Ping; Hu, Zizhong; Zhang, Xiaojun; Li, Xinhua; Gao, Zhishan; Yuan, Dongqing; Liu, Qinghuai

    2014-01-01

    To construct a life-sized eye model using the three-dimensional (3D) printing technology for fundus viewing study of the viewing system. We devised our schematic model eye based on Navarro's eye and redesigned some parameters because of the change of the corneal material and the implantation of intraocular lenses (IOLs). Optical performance of our schematic model eye was compared with Navarro's schematic eye and other two reported physical model eyes using the ZEMAX optical design software. With computer aided design (CAD) software, we designed the 3D digital model of the main structure of the physical model eye, which was used for three-dimensional (3D) printing. Together with the main printed structure, polymethyl methacrylate(PMMA) aspherical cornea, variable iris, and IOLs were assembled to a physical eye model. Angle scale bars were glued from posterior to periphery of the retina. Then we fabricated other three physical models with different states of ammetropia. Optical parameters of these physical eye models were measured to verify the 3D printing accuracy. In on-axis calculations, our schematic model eye possessed similar size of spot diagram compared with Navarro's and Bakaraju's model eye, much smaller than Arianpour's model eye. Moreover, the spherical aberration of our schematic eye was much less than other three model eyes. While in off- axis simulation, it possessed a bit higher coma and similar astigmatism, field curvature and distortion. The MTF curves showed that all the model eyes diminished in resolution with increasing field of view, and the diminished tendency of resolution of our physical eye model was similar to the Navarro's eye. The measured parameters of our eye models with different status of ametropia were in line with the theoretical value. The schematic eye model we designed can well simulate the optical performance of the human eye, and the fabricated physical one can be used as a tool in fundus range viewing research.

  7. The role of 3D-printing technology in the diagnosis of Eagle syndrome: A case report.

    Science.gov (United States)

    Lee, Dong Hoon; Yoon, Tae Mi; Lee, Joon Kyoo; Lim, Sang Chul

    2018-03-01

    Eagle syndrome is a rare clinical condition that can be associated with elongation of the styloid process. A 55-year-old man was presented with vague throat discomfort for several years. 3-dimentional (3D) computed tomography (CT) reconstruction, and printing revealed bilateral elongated styloid processes. The patient has been treated medically, and continues to demonstrate improvement with conservative treatment for 2 years. We report usefulness of 3D CT and 3D printing technology for diagnosis of Eagle syndrome. 3D CT reconstruction, and printing are beneficial in determining appropriate surgical strategy, and allowing the physician to better explain the lesion, and surgical details to patients.

  8. Digital printing

    Science.gov (United States)

    Sobotka, Werner K.

    1997-02-01

    Digital printing is described as a tool to replace conventional printing machines completely. Still this goal was not reached until now with any of the digital printing technologies to be described in the paper. Productivity and costs are still the main parameters and are not really solved until now. Quality in digital printing is no problem anymore. Definition of digital printing is to transfer digital datas directly on the paper surface. This step can be carried out directly or with the use of an intermediate image carrier. Keywords in digital printing are: computer- to-press; erasable image carrier; image carrier with memory. Digital printing is also the logical development of the new digital area as it is pointed out in Nicholas Negropotes book 'Being Digital' and also the answer to networking and Internet technologies. Creating images text and color in one country and publishing the datas in another country or continent is the main advantage. Printing on demand another big advantage and last but not least personalization the last big advantage. Costs and being able to coop with this new world of prepress technology is the biggest disadvantage. Therefore the very optimistic growth rates for the next few years are really nonexistent. The development of complete new markets is too slow and the replacing of old markets is too small.

  9. Outcomes in cervical screening using various cytology technologies

    DEFF Research Database (Denmark)

    Barken, Sidsel S; Rebolj, Matejka; Lynge, Elsebeth

    2013-01-01

    of samples with atypical squamous cells of undetermined significance or worse (≥ASCUS) by age and technology phase. We included 391 140 samples. The proportion of ≥ASCUS increased steadily from 3.8% in phase 1 to 6.0% in phase 5. This pattern varied considerably across age groups. In women aged 23-34 years......Unlike for human papillomavirus screening, little is known about the possible age-dependent variation in the outcomes of cervical cytology screening. The aim of our study was to describe age-related outcomes of five cytological technologies in a population-based screening program targeting women...... aged 23-59 years. All cervical cytology from women residing in Copenhagen has been analyzed in the laboratory of the Department of Pathology, Hvidovre University Hospital. We studied five technology phases: (1) conventional cytology with manual reading, (2) conventional cytology with 50% automatically...

  10. Large core plastic planar optical splitter fabricated by 3D printing technology

    Science.gov (United States)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  11. Large-area printed supercapacitor technology for low-cost domestic green energy storage

    International Nuclear Information System (INIS)

    Tehrani, Z.; Thomas, D.J.; Korochkina, T.; Phillips, C.O.; Lupo, D.; Lehtimäki, S.; O'Mahony, J.; Gethin, D.T.

    2017-01-01

    In this research we demonstrate that a flexible ultra-thin supercapacitor can be fabricated using high volume screen printing process. This has enabled the sequential deposition of current collector, electrode, electrolyte materials and adhesive onto a Polyethylene terephthalate (PET) substrate in order to form flexible electrodes for reliable energy storage applications. The electrodes were based on an activated carbon ink and gel electrolyte each of which were formulated for this application. Supercapacitors that have surface areas from 100 to 1600 mm"2 and an assembled device thickness of 375 μm were demonstrated. The capacitance ranged from 50 to 400 mF. Capacitance of printed carbon electrodes is rarely reported in literature and no references were found. The chemistry developed during this study displayed long-term cycling potential and demonstrated the stability of the capacitor for continued usage. The gel electrolyte developed within this work showed comparable performance to that of a liquid counterpart. This improvement resulted in the reduction in gel resistance from 90Ω to 0.5Ω. Significant reduction was observed for all resistances. The solid-state supercapacitors with the gel electrolyte showed comparable performance to the supercapacitors that used a liquid electrolyte. This large area printed device can be used in future houses for reliable green energy storage. - Highlights: • It has been demonstrated that a flexible supercapacitors with large area storage has been developed. • The simplified architecture has the potential to lead to a new class of printable, thin storage devices. • The specific capacitance of 21 F/g was measured.

  12. High throughput miniature drug-screening platform using bioprinting technology

    International Nuclear Information System (INIS)

    Rodríguez-Dévora, Jorge I; Reyna, Daniel; Xu Tao; Zhang Bimeng; Shi Zhidong

    2012-01-01

    In the pharmaceutical industry, new drugs are tested to find appropriate compounds for therapeutic purposes for contemporary diseases. Unfortunately, novel compounds emerge at expensive prices and current target evaluation processes have limited throughput, thus leading to an increase of cost and time for drug development. This work shows the development of the novel inkjet-based deposition method for assembling a miniature drug-screening platform, which can realistically and inexpensively evaluate biochemical reactions in a picoliter-scale volume at a high speed rate. As proof of concept, applying a modified Hewlett Packard model 5360 compact disc printer, green fluorescent protein expressing Escherichia coli cells along with alginate gel solution have been arrayed on a coverslip chip under a repeatable volume of 180% ± 26% picoliters per droplet; subsequently, different antibiotic droplets were patterned on the spots of cells to evaluate the inhibition of bacteria for antibiotic screening. The proposed platform was compared to the current screening process, validating its effectiveness. The viability and basic function of the printed cells were evaluated, resulting in cell viability above 98% and insignificant or no DNA damage to human kidney cells transfected. Based on the reduction of investment and compound volume used by this platform, this technique has the potential to improve the actual drug discovery process at its target evaluation stage. (paper)

  13. Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution.

    Science.gov (United States)

    Ding, Jin; Liu, Jun; Tian, Qingyong; Wu, Zhaohui; Yao, Weijing; Dai, Zhigao; Liu, Li; Wu, Wei

    2016-12-01

    A facile one-step polyol method is employed to synthesize the Ag nanoparticles (NPs) in large scale. The Ag NPs with different average diameter (from 52 to 120 nm) and particle size distribution are prepared by changing the mass ratio of AgNO3 and PVP. Furthermore, the as-obtained Ag NPs are prepared as conductive inks, which could be screen printed on various flexible substrates and formed as conductive patterns after sintering treatment. During the reaction process, PVP is used as the capping reagent for preventing the agglomeration of Ag NPs, and the influence of the mass ratio of AgNO3 and PVP to the size distribution of Ag NPs is investigated. The results of electronic properties reveal that the conductivity of printed patterns is highly dependent on the size distribution of as-obtained Ag NPs. Among all the samples, the optimal conductivity is obtained when the mass ratio of AgNO3 and PVP is 1:0.4. Subsequently, the sintering time and temperature are further investigated for obtaining the best conductivity; the optimal electrical resistivity value of 3.83 μΩ · cm is achieved at 160 °C for 75 min, which is close to the resistivity value of the bulk silver (1.58 μΩ · cm). Significantly, there are many potential advantages in printed electronics applications because of the as-synthesized Ag NPs with a low sintering temperature and low electrical resistivity.

  14. Magnetic properties of screen-printed (Y0.5Sm0.5)Co5 magnet arrays

    International Nuclear Information System (INIS)

    Bueno-Baques, D.; Maldonado-Chavez, L.; Hidalgo-Gonzalez, J.L.; Matutes-Aquino, J.A.; Corral-Flores, V.

    2007-01-01

    (Y 0.5 Sm 0.5 )Co 5 magnet arrays of square μdots of 300 μm were prepared by screen printing. A well controlled paste like ink prepared with the (Y 0.5 Sm 0.5 )Co 5 nanoparticles and a mixture of organic solvent and polymer was used to print different pattern arrays. (Y 0.5 Sm 0.5 )Co 5 nanoparticles were obtained by mechanical milling starting from arc melted ingots and heat treated in Ar atmosphere. Two different heat treatment were considered, resulting in powders with different magnetic properties. The microstructure of the magnet arrays was studied by scanning electron microscopy (SEM). An isotropic homogeneous distribution of the nanoparticles inside the μdots was observed. The final shape of the μdots in the array was found to be highly dependent on the squeeze pressure and speed over the mesh. Magnetic properties were studied by pulsed field magnetometry and vibrating sample magnetometry at room temperature. The micro size arrays showed lower saturation magnetization and a slightly increase in the coercive field. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. An Electrochemical Enzyme Biosensor for 3-Hydroxybutyrate Detection Using Screen-Printed Electrodes Modified by Reduced Graphene Oxide and Thionine

    Directory of Open Access Journals (Sweden)

    Gonzalo Martínez-García

    2017-11-01

    Full Text Available A biosensor for 3-hydroxybutyrate (3-HB involving immobilization of the enzyme 3-hydroxybutyrate dehydrogenase onto a screen-printed carbon electrode modified with reduced graphene oxide (GO and thionine (THI is reported here. After addition of 3-hydroxybutyrate or the sample in the presence of NAD+ cofactor, the generated NADH could be detected amperometrically at 0.0 V vs. Ag pseudo reference electrode. Under the optimized experimental conditions, a calibration plot for 3-HB was constructed showing a wide linear range between 0.010 and 0.400 mM 3-HB which covers the clinically relevant levels for diluted serum samples. In addition, a limit of detection of 1.0 µM, much lower than that reported using other biosensors, was achieved. The analytical usefulness of the developed biosensor was demonstrated via application to spiked serum samples.

  16. Voltammetric Determination of Anti-Hypertensive Drug Hydrochlorothiazide Using Screen-Printed Electrodes Modified with L-Glutamic Acid

    Directory of Open Access Journals (Sweden)

    Camilo González-Vargas

    2017-09-01

    Full Text Available This work deals with the development of screen-printed carbon electrodes modified with L-glutamic acid via two different approaches: electropolymerization (SPCE/PGA and aryl diazonium electrochemical grafting (SPCE/EGA. SPCE/PGA and SPCE/EGA were analytically compared in the determination of hydrochlorothiazide (HCTZ by differential pulse voltammetry. Both electrochemical characterization and analytical performance indicate that SPCE/EGA is a much better sensor for HCTZ. The detection and quantification limits were at the level of μmol L−1 with a very good linearity in the studied concentration range. In addition, the proposed SPCE/EGA was successfully applied for the determination of HCTZ in an anti-hypertensive drug with high reproducibility and good trueness.

  17. Sensitive and stable monitoring of lead and cadmium in seawater using screen-printed electrode and electrochemical stripping analysis

    International Nuclear Information System (INIS)

    Gueell, Raquel; Aragay, Gemma; Fontas, Claudia; Antico, Enriqueta; Merkoci, Arben

    2008-01-01

    Sensitive and stable monitoring of heavy metals in seawater using screen-printed electrodes (SPE) is presented. The analytical performance of SPE coupled with square wave anodic stripping voltammetry (SWASV) for the simultaneous determination of Pb and Cd in seawater samples, in the low μg L -1 range, is evaluated. The stripping response for the heavy metals following 2 min deposition was linear over the concentration range examined (10-2000 μg L -1 ) with detection limits of 1.8 and 2.9 μg L -1 for Pb and Cd, respectively. The accuracy of the method was validated by analyzing metal contents in different spiked seawater samples and comparing these results to those obtained with the well-established anodic stripping voltammetry using the hanging mercury drop electrode. Moreover, a certified reference material was also used and the results obtained were satisfactory

  18. Determination of total and electrolabile copper in agricultural soil by using disposable modified-carbon screen-printed electrodes.

    Science.gov (United States)

    Faucher, Stéphane; Cugnet, Cyril; Authier, Laurent; Lespes, Gaëtane

    2014-02-01

    The objective of the study is to evaluate modified-carbon screen-printed working electrodes (SPE) combined with square wave anodic stripping voltammetry (SWASV) to determine electrolabile and total copper in soils with the perspective to assess the environmental hazard resulting from copper anthropogenic contamination. The voltammetric method was investigated using a mineralized certified reference soil such that it can be assumed that the copper was totally under electrolabile form in the solution of mineralized soil. In optimal conditions, a copper recovery of 97% and a relative standard deviation (RSD) of 9% were found. The limits of detection and quantification for copper were 0.4 and 1.3 μg L(-1), respectively. Finally, the method was applied on soil leachates, which allowed evaluating the cupric transfer from the soil to the leachates and quantifying the electrolabile copper part in leachates.

  19. The effect of baking conditions on the effective contact areas of screen-printed silver layer on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tietun Sun; Jianmin Miao; Rongming Lin; Yongqing Fu [Nanyang Technological Univ., Micromachines Lab., Singapore (Singapore)

    2005-01-01

    In this paper, Ag-based paste was screen-printed on polished as well as on textured p-type (100) single crystalline silicon wafers. Three types of baking processes were studied: the tube furnace, the belt furnace and the hot plate baking. The effective contact areas of Ag/Si system were measured with a novel method, namely metal insulator semiconductor structure measurement. The results show that after baking on the hot plate at 400 deg C for 5 min, the size and number of pores in the Ag film layer as well as at the interface between silver layer and silicon decreases significantly, the effective contact area also increases about 20%, particularly on the textured silicon substrate. (Author)

  20. The effect of baking conditions on the effective contact areas of screen-printed silver layer on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Tietun; Miao, Jianmin; Lin, Rongming; Fu, Yongqing [Micromachines Laboratory, School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2005-01-01

    In this paper, Ag-based paste was screen-printed on the polished as well as on the textured p-type (100) single crystalline silicon wafers. Three types of baking processes were studied: the tube furnace, the belt furnace and the hot plate baking. The effective contact areas of Ag/Si system were measured with a novel method, namely metal insulator semiconductor structure measurement. The results show that after baking on the hot plate at 400{sup o}C for 5min, the size and number of pores in the Ag film layer as well as at the interface between silver layer and silicon decreases significantly, the effective contact area also increases about 20%, particularly on the textured silicon substrate.

  1. Fabrication, characterization and screen printing of conductive ink based on carbon@Ag core-shell nanoparticles.

    Science.gov (United States)

    Wu, Wei; Yang, Shuanglei; Zhang, Shaofeng; Zhang, Hongbo; Jiang, Changzhong

    2014-08-01

    The large-scale synthesis and characterization of carbon-core/Ag-shell (C@Ag) nanoparticles by the successive reduction of silver ammonia are described. The resultant C@Ag nanoparticles had a mean core diameter of 360 nm and a controllable shell thickness from 10 to 40 nm by simple adjustments of repeat coating times. Various analysis techniques confirmed that the carbon cores were fully covered by Ag nanoshells. The results also show that C/Ag composite nanomaterials-based conductive inks, which can be easily produced on a large scale and possess outstanding electronic properties, have great potential for the convenient fabrication of flexible and low-cost carbon-based electronic devices and replace the traditional pure silver paste, by using a simple screen printing technique. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Modification of Screen Printed Carbon Electrode (SPCE with Polypyrrole (Ppy-SiO2 for Phenol Determination

    Directory of Open Access Journals (Sweden)

    Ani Mulyasuryani

    2018-01-01

    Full Text Available Electrode modification on screen printed carbon electrode (SPCE with polypyrrole (Ppy-SiO2 was done by electropolymerization. Polypyrrole (Ppy-SiO2 was used for phenol determination. The analysis of this material was done by using Scanning Electron Microscopy (SEM, cyclic voltammetry method and differential pulse voltammetry. In a cyclic voltammetry analysis, we used potential range of -1 to 1 V with Ag/AgCl comparator electrode at scan rate of 100 mV/sec, while in differential pulse voltammetry method the potential range was 0 to 1 V toward Ag/AgCl, the scan rate of 50 mV/sec, the pulse rate is 0,2 V and the pulse width is 50 ms. From the analysis result with SEM, cyclic voltammetry and differential pulse voltammetry method, Polypyrrole (Ppy -SiO2 is the best material and can be used as phenol measurement.

  3. Sensitive and stable monitoring of lead and cadmium in seawater using screen-printed electrode and electrochemical stripping analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gueell, Raquel [ICREA and Nanobioelectronics and Biosensors Group, Institut Catala de Nanotecnologia, Bellaterra, Barcelona (Spain); Department of Chemistry, Universitat Autonoma de Barcelona, Bellaterra, Barcelona (Spain); Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Aragay, Gemma [ICREA and Nanobioelectronics and Biosensors Group, Institut Catala de Nanotecnologia, Bellaterra, Barcelona (Spain); Department of Chemistry, Universitat Autonoma de Barcelona, Bellaterra, Barcelona (Spain); Fontas, Claudia; Antico, Enriqueta [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Merkoci, Arben [ICREA and Nanobioelectronics and Biosensors Group, Institut Catala de Nanotecnologia, Bellaterra, Barcelona (Spain); Department of Chemistry, Universitat Autonoma de Barcelona, Bellaterra, Barcelona (Spain)], E-mail: arben.merkoci.icn@uab.es

    2008-10-10

    Sensitive and stable monitoring of heavy metals in seawater using screen-printed electrodes (SPE) is presented. The analytical performance of SPE coupled with square wave anodic stripping voltammetry (SWASV) for the simultaneous determination of Pb and Cd in seawater samples, in the low {mu}g L{sup -1} range, is evaluated. The stripping response for the heavy metals following 2 min deposition was linear over the concentration range examined (10-2000 {mu}g L{sup -1}) with detection limits of 1.8 and 2.9 {mu}g L{sup -1} for Pb and Cd, respectively. The accuracy of the method was validated by analyzing metal contents in different spiked seawater samples and comparing these results to those obtained with the well-established anodic stripping voltammetry using the hanging mercury drop electrode. Moreover, a certified reference material was also used and the results obtained were satisfactory.

  4. A Highly Thermostable In2O3/ITO Thin Film Thermocouple Prepared via Screen Printing for High Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Yantao Liu

    2018-03-01

    Full Text Available An In2O3/ITO thin film thermocouple was prepared via screen printing. Glass additives were added to improve the sintering process and to increase the density of the In2O3/ITO films. The surface and cross-sectional images indicate that both the grain size and densification of the ITO and In2O3 films increased with the increase in annealing time. The thermoelectric voltage of the In2O3/ITO thermocouple was 53.5 mV at 1270 °C at the hot junction. The average Seebeck coefficient of the thermocouple was calculated as 44.5 μV/°C. The drift rate of the In2O3/ITO thermocouple was 5.44 °C/h at a measuring time of 10 h at 1270 °C.

  5. Towards Washable Wearable Antennas: A Comparison of Coating Materials for Screen-Printed Textile-Based UHF RFID Tags

    Directory of Open Access Journals (Sweden)

    Tiiti Kellomäki

    2012-01-01

    Full Text Available (Radio frequency identification RFID tags integrated into clothing enable monitoring of people without their conscious effort. This requires tags to be an unnoticeable part of clothing and comfortable to wear. In this study, RFID antennas were screen printed on two different fabrics, six different coating materials for the (integrated circuits ICs were applied, and the reliability of these RFID tags was tested with moisture and laundry tests. Generally, glue-type coating materials were easier to handle and could be spread precisely. All the tags were operational immediately after the coatings were applied, and five of the coating materials were seen to protect the IC from detaching in the laundry. It was found that the uneven fabric surface caused discontinuities and breaks in narrow conductors, and thus hard coatings may also be needed to keep the tag from breaking in laundry.

  6. Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes

    International Nuclear Information System (INIS)

    Tran, Lam Dai; Nguyen, Binh Hai; Van Hieu, Nguyen; Tran, Hoang Vinh; Nguyen, Huy Le; Nguyen, Phuc Xuan

    2011-01-01

    In this study, a novel CS/Fe 3 O 4 nanobiocomposite-based platform for electrochemical detection of HIV-1 was developed. The most attractive feature of this system is a suitable microenvironment (Fe 3 O 4 nanoparticles) which could contribute to electron transfer and thus sensitivity enhancement when using methylene blue (MB) as an external mediator and Square Wave Voltammetry (SWV), Electrochemical Impedance Spectroscopy (EIS) techniques. The proposed screen printed electrode (SPE) had a low detection limit (as low as 50 pM), acceptable stability and good reproducibility, which would be valuable for clinical diagnosis. In addition, this sensing interface may be feasibly adapted for multiplexed detection of other species of bacterial pathogens.

  7. Treatment of Die-Punch Fractures with 3D Printing Technology.

    Science.gov (United States)

    Chen, Chunhui; Cai, Leyi; Zhang, Chuanxu; Wang, Jianshun; Guo, Xiaoshan; Zhou, Yifei

    2017-07-19

    We evaluated the feasibility, accuracy and effectiveness of applying three-dimensional (3D) printing technology for preoperative planning for die-punch fractures. A total of 107 patients who underwent die-punch fracture surgery were enrolled in the study. They were randomly divided into two groups: 52 cases in the 3D model group and 55 cases in the routine group. A 3D digital model of each die-punch fracture was reconstructed in the 3D group. The 3D digital model was imported to a 3D printer to build the full solid model. The operation time, blood loss volume, and the number of intraoperative fluoroscopy were recorded. Follow-up was performed to evaluate the patients' surgical outcomes. Treatment of die-punch fractures using the 3D printing approach reduced the number of intraoperative fluoroscopy, blood loss volume, and operation time, but did not improve wrist function compared to those in the routine group. The patients wanted the doctor to use the 3D model to introduce the condition and operative plan because it was easier for them to understand. The orthopedic surgeons thought that the 3D model was useful for communicating with their patients, but their satisfaction with the preoperative plan was much lower than the benefit of using the 3D model to communicate with their patients. 3D printing technology produced more accurate morphometric information for orthopedists to provide personalized surgical planning and communicate better with their patients. However, it is difficult to use widely in the department of orthopedics.

  8. Silver-Nanoparticle-Based Screen-Printing and Film Characterization of a Disposable, Dual-Band, Bandstop Filter on a Flexible Polyethylene Terephthalate Substrate

    Directory of Open Access Journals (Sweden)

    Kishor Kumar Adhikari

    2015-01-01

    Full Text Available This paper presents a silver-nanoparticle-based, screen-printed, high-performance, dual-band, bandstop filter (DBBSF on a flexible polyethylene terephthalate (PET substrate. Using screen-printing techniques to process a highly viscous silver printing ink, high-conductivity printed lines were implemented at a web transfer speed of 5 m/min. Characterized by X-ray diffraction (XRD, optical microscopy, atomic force microscopy (AFM, and scanning electron microscopy (SEM, the printed lines were shown to be characterized by smooth surfaces with a root mean square roughness of 7.986 nm; a significantly higher thickness (12.2 μm than the skin depth; and a high conductivity of 2×107 S/m. These excellent printed line characteristics enabled the implementation of a high-selectivity DBBSF using shunt-connected uniform impedance resonators (UIRs. Additionally, the inductive loading effect of T-shaped stubs on the UIRs, which were analyzed using S-parameters based on lumped parameter calculations, was used to improve the return losses of the geometrically optimized DBBSF. The measured minimum return loss and maximum insertion loss of 28.26 and 1.58 dB, respectively, at the central frequencies of 2.56 and 5.29 GHz of a protocol screen-printed DBBSF demonstrated the excellent performance of the material and its significant potential for use in future cost-effective, flexible WiMax and WLAN applications.

  9. All-solid-state potentiometric sensors for ascorbic acid by using a screen-printed compatible solid contact

    International Nuclear Information System (INIS)

    Veltsistas, Panayotis G.; Prodromidis, Mamas I.; Efstathiou, Constantinos

    2004-01-01

    The development of all-solid-state potentiometric ion selective electrodes for monitoring of ascorbic acid, by using a screen-printed compatible solid contact is described. The applied methodology is based on the use of PVC membrane modified with some firstly-tested ionophores (triphenyltin(IV)chloride, triphenyltin(IV)hydroxide and palmitoyl-L-ascorbic acid) and a novel one synthesized in our laboratory (dibutyltin(IV) diascorbate). Synthesis protocol and some preliminary identification studies are given. A conductive graphite-based polymer thick film ink was used as an internal solid contact between the graphite electrode and the PVC membrane. The presence and the nature of the solid contact (plain or doped with lanthanum 2,6-dichlorophenolindophenol (DCPI)) seem to enhance the analytical performance of the electrodes in terms of sensitivity, dynamic range, and response time. The analytical performance of the constructed electrodes was evaluated with potentiometry, constant-current chronopotentiometry and electrochemical impedance spectroscopy (EIS). The interference effect of various compounds was also tested. The potential response of the optimized Ph 3 SnCl-based electrode was linear against ascorbic acid concentration range 0.005-5.0 mM. The applicability of the proposed sensors in real samples was also tested. The detection limit was 0.002 mM ascorbic acid (50 mM phosphate, pH 5 in 50 mM KCl). The slope of the electrodes was super-Nernstian and pH dependent, indicating a mechanism involving a combination of charge transfer and ion exchange processes. Fabrication of screen-printed ascorbate ISEs has also been demonstrated

  10. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels.

    Science.gov (United States)

    Almeida, Eduardo S; Silva, Luiz A J; Sousa, Raquel M F; Richter, Eduardo M; Foster, Christopher W; Banks, Craig E; Munoz, Rodrigo A A

    2016-08-31

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L(-1) HClO4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Screen-Printed Graphite Electrodes as Low-Cost Devices for Oxygen Gas Detection in Room-Temperature Ionic Liquids.

    Science.gov (United States)

    Lee, Junqiao; Hussain, Ghulam; Banks, Craig E; Silvester, Debbie S

    2017-11-26

    Screen-printed graphite electrodes (SPGEs) have been used for the first time as platforms to detect oxygen gas in room-temperature ionic liquids (RTILs). Up until now, carbon-based SPEs have shown inferior behaviour compared to platinum and gold SPEs for gas sensing with RTIL solvents. The electrochemical reduction of oxygen (O₂) in a range of RTILs has therefore been explored on home-made SPGEs, and is compared to the behaviour on commercially-available carbon SPEs (C-SPEs). Six common RTILs are initially employed for O₂ detection using cyclic voltammetry (CV), and two RTILs ([C₂mim][NTf₂] and [C₄mim][PF₆]) chosen for further detailed analytical studies. Long-term chronoamperometry (LTCA) was also performed to test the ability of the sensor surface for real-time gas monitoring. Both CV and LTCA gave linear calibration graphs-for CV in the 10-100% vol. range, and for LTCA in the 0.1-20% vol. range-on the SPGE. The responses on the SPGE were far superior to the commercial C-SPEs; more instability in the electrochemical responses were observed on the C-SPEs, together with some breaking-up or dissolution of the electrode surface materials. This study highlights that not all screen-printed ink formulations are compatible with RTIL solvents for longer-term electrochemical experiments, and that the choice of RTIL is also important. Overall, the low-cost SPGEs appear to be promising platforms for the detection of O₂, particularly in [C₄mim][PF₆].

  12. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode.

    Science.gov (United States)

    Ping, Jianfeng; Wu, Jian; Wang, Yixian; Ying, Yibin

    2012-04-15

    A disposable and sensitive screen-printed electrode using an ink containing graphene was developed. This electrode combined the advantages of graphene and the disposable characteristic of electrode, which possessed wide potential window, low background current and fast electron transfer kinetics. Compared with the electrodes made from other inks, screen-printed graphene electrode (SPGNE) showed excellent electrocatalytic activity for the oxidation of ascorbic acid (AA), dopamine (DA), and uric acid (UA). Three well-defined sharp and fully resolved anodic peaks were found at the developed electrode. Differential pulse voltammetry was used to simultaneous determination of AA, DA, and UA in their ternary mixture. In the co-existence system of these three species, the linear response ranges for the determination of AA, DA, and UA were 4.0-4500 μM, 0.5-2000 μM, and 0.8-2500 μM, respectively. The detection limits (S/N=3) were found to be 0.95 μM, 0.12 μM, and 0.20 μM for the determination of AA, DA, and UA, respectively. Furthermore, the SPGNE displayed high reproducibility and stability for these species determination. The feasibility of the developed electrode for real sample analysis was investigated. Results showed that the SPGNE could be used as a sensitive and selective sensor for simultaneous determination of AA, DA, and UA in biological samples, which may provide a promising alternative in routine sensing applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Screen-Printed Graphite Electrodes as Low-Cost Devices for Oxygen Gas Detection in Room-Temperature Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Junqiao Lee

    2017-11-01

    Full Text Available Screen-printed graphite electrodes (SPGEs have been used for the first time as platforms to detect oxygen gas in room-temperature ionic liquids (RTILs. Up until now, carbon-based SPEs have shown inferior behaviour compared to platinum and gold SPEs for gas sensing with RTIL solvents. The electrochemical reduction of oxygen (O2 in a range of RTILs has therefore been explored on home-made SPGEs, and is compared to the behaviour on commercially-available carbon SPEs (C-SPEs. Six common RTILs are initially employed for O2 detection using cyclic voltammetry (CV, and two RTILs ([C2mim][NTf2] and [C4mim][PF6] chosen for further detailed analytical studies. Long-term chronoamperometry (LTCA was also performed to test the ability of the sensor surface for real-time gas monitoring. Both CV and LTCA gave linear calibration graphs—for CV in the 10–100% vol. range, and for LTCA in the 0.1–20% vol. range—on the SPGE. The responses on the SPGE were far superior to the commercial C-SPEs; more instability in the electrochemical responses were observed on the C-SPEs, together with some breaking-up or dissolution of the electrode surface materials. This study highlights that not all screen-printed ink formulations are compatible with RTIL solvents for longer-term electrochemical experiments, and that the choice of RTIL is also important. Overall, the low-cost SPGEs appear to be promising platforms for the detection of O2, particularly in [C4mim][PF6].

  14. Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development.

    Science.gov (United States)

    Talarico, Daria; Arduini, Fabiana; Amine, Aziz; Cacciotti, Ilaria; Moscone, Danila; Palleschi, Giuseppe

    2016-10-01

    We report a screen-printed electrode (SPE) modified with a dispersion of carbon black (CB) and chitosan by drop casting. A cyclic voltammetry technique towards ferricyanide, caffeic acid, hydroquinone, and thiocholine was performed and an improvement of the electrochemical response with respect to bare SPE as well as SPE modified only with chitosan was observed. The possibility to detect thiocholine at a low applied potential with high sensitivity was exploited and an acetylcholinesterase (AChE) biosensor was developed. A dispersion of CB, chitosan, and AChE was used to fabricate this biosensor in one step by drop casting. The enzymatic activity of the immobilized AChE was determined measuring the enzymatic product thiocholine at +300 mV. Owing to the capability of organophosphorus pesticides to inhibit AChE, this biosensor was used to detect these pollutants, and paraoxon was taken as model compound. The enzyme inhibition was linearly related to the concentration of paraoxon up to 0.5 μg L(-1), and a low detection limit equal to 0.05 μg L(-1) (calculated as 10% of inhibition) was achieved. This biosensor was challenged for paraoxon detection in drinking waters with satisfactory recovery values. The use of AChE embedded in a dispersion of CB and chitosan allowed an easy and fast production of a sensitive biosensor suitable for paraoxon detection in drinking waters at legal limit levels. Graphical Abstract Biosensors based on screen-printed electrodes modified with Acetylcholinesterase, Carbon Black, and Chitosan for organophosphorus pesticide detection.

  15. Development of Lab-to-Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Dam, Henrik Friis; Krebs, Frederik C

    2015-01-01

    We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll-to-roll m...

  16. Internet printing

    Science.gov (United States)

    Rahgozar, M. Armon; Hastings, Tom; McCue, Daniel L.

    1997-04-01

    The Internet is rapidly changing the traditional means of creation, distribution and retrieval of information. Today, information publishers leverage the capabilities provided by Internet technologies to rapidly communicate information to a much wider audience in unique customized ways. As a result, the volume of published content has been astronomically increasing. This, in addition to the ease of distribution afforded by the Internet has resulted in more and more documents being printed. This paper introduces several axes along which Internet printing may be examined and addresses some of the technological challenges that lay ahead. Some of these axes include: (1) submission--the use of the Internet protocols for selecting printers and submitting documents for print, (2) administration--the management and monitoring of printing engines and other print resources via Web pages, and (3) formats--printing document formats whose spectrum now includes HTML documents with simple text, layout-enhanced documents with Style Sheets, documents that contain audio, graphics and other active objects as well as the existing desktop and PDL formats. The format axis of the Internet Printing becomes even more exciting when one considers that the Web documents are inherently compound and the traversal into the various pieces may uncover various formats. The paper also examines some imaging specific issues that are paramount to Internet Printing. These include formats and structures for representing raster documents and images, compression, fonts rendering and color spaces.

  17. Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing

    OpenAIRE

    Wittbrodt, Jonas N.; Liebel, Urban; Gehrig, Jochen

    2014-01-01

    Background The zebrafish has been established as the main vertebrate model system for whole organism screening applications. However, the lack of consistent positioning of zebrafish embryos within wells of microtiter plates remains an obstacle for the comparative analysis of images acquired in automated screening assays. While technical solutions to the orientation problem exist, dissemination is often hindered by the lack of simple and inexpensive ways of distributing and duplicating tools. ...

  18. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    Directory of Open Access Journals (Sweden)

    Feifei Yan

    2014-03-01

    Full Text Available The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  19. 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors.

    Science.gov (United States)

    Parra-Cabrera, Cesar; Achille, Clement; Kuhn, Simon; Ameloot, Rob

    2018-01-02

    Computer-aided fabrication technologies combined with simulation and data processing approaches are changing our way of manufacturing and designing functional objects. Also in the field of catalytic technology and chemical engineering the impact of additive manufacturing, also referred to as 3D printing, is steadily increasing thanks to a rapidly decreasing equipment threshold. Although still in an early stage, the rapid and seamless transition between digital data and physical objects enabled by these fabrication tools will benefit both research and manufacture of reactors and structured catalysts. Additive manufacturing closes the gap between theory and experiment, by enabling accurate fabrication of geometries optimized through computational fluid dynamics and the experimental evaluation of their properties. This review highlights the research using 3D printing and computational modeling as digital tools for the design and fabrication of reactors and structured catalysts. The goal of this contribution is to stimulate interactions at the crossroads of chemistry and materials science on the one hand and digital fabrication and computational modeling on the other.

  20. Cell-printing and transfer technology applications for bone defects in mice.

    Science.gov (United States)

    Tsugawa, Junichi; Komaki, Motohiro; Yoshida, Tomoko; Nakahama, Ken-ichi; Amagasa, Teruo; Morita, Ikuo

    2011-10-01

    Bone regeneration therapy based on the delivery of osteogenic factors and/or cells has received a lot of attention in recent years since the discovery of pluripotent stem cells. We reported previously that the implantation of capillary networks engineered ex vivo by the use of cell-printing technology could improve blood perfusion. Here, we developed a new substrate prepared by coating glass with polyethylene glycol (PEG) to create a non-adhesive surface and subsequent photo-lithography to finely tune the adhesive property for efficient cell transfer. We examined the cell-transfer efficiency onto amniotic membrane and bone regenerative efficiency in murine calvarial bone defect. Cell transfer of KUSA-A1 cells (murine osteoblasts) to amniotic membrane was performed for 1 h using the substrates. Cell transfer using the substrate facilitated cell engraftment onto the amniotic membrane compared to that by direct cell inoculation. KUSA-A1 cells transferred onto the amniotic membrane were applied to critical-sized calvarial bone defects in mice. Micro-computed tomography (micro-CT) analysis showed rapid and effective bone formation by the cell-equipped amniotic membrane. These results indicate that the cell-printing and transfer technology used to create the cell-equipped amniotic membrane was beneficial for the cell delivery system. Our findings support the development of a biologically stable and effective bone regeneration therapy. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Application to printed resistors

    International Nuclear Information System (INIS)

    Hachiyanagi, Yoshimi; Uraki, Hisatsugu; Sawamura, Masashi

    1989-01-01

    Most of printed circuit boards are made at present by etching copper foils which are laminated on insulating composite boards of paper/phenol resin or glass nonwoven fabric/epoxy rein. This is called subtractive process, and since this is a wet process, the problem of coping with the pollution due to etching solution, plating solution and others is involved. As the method of solving this problem, attention has been paid to the dry process which forms conductor patterns by screen printing using electro-conductive paste. For such resin substrates, generally polymer thick films (PTF) using thermosetting resin as the binder are used. Also the research on the formation of resistors, condensers and other parts by printing using the technology of cermet thick films (CTF) and PTF is active, and it is partially put in practical use. The problems are the deformation and deterioration of substrates, therefore, as the countermeasures, electron beam hardening type PTF has been studied, and various pastes have been developed. In this paper, electron beam hardening type printed resistors are reported. The features, resistance paste, and a number of the experiments on printed resistors are described. (K.I.)

  2. Fabricating Simple Wax Screen-Printing Paper-Based Analytical Devices to Demonstrate the Concept of Limiting Reagent in Acid- Base Reactions

    Science.gov (United States)

    Namwong, Pithakpong; Jarujamrus, Purim; Amatatongchai, Maliwan; Chairam, Sanoe

    2018-01-01

    In this article, a low-cost, simple, and rapid fabrication of paper-based analytical devices (PADs) using a wax screen-printing method is reported here. The acid-base reaction is implemented in the simple PADs to demonstrate to students the chemistry concept of a limiting reagent. When a fixed concentration of base reacts with a gradually…

  3. Chip-based generation of carbon nanodots via electrochemical oxidation of screen printed carbon electrodes and the applications for efficient cell imaging and electrochemiluminescence enhancement.

    Science.gov (United States)

    Xu, Yuanhong; Liu, Jingquan; Zhang, Jizhen; Zong, Xidan; Jia, Xiaofang; Li, Dan; Wang, Erkang

    2015-06-07

    A portable lab-on-a-chip methodology to generate ionic liquid-functionalized carbon nanodots (CNDs) was developed via electrochemical oxidation of screen printed carbon electrodes. The CNDs can be successfully applied for efficient cell imaging and solid-state electrochemiluminescence sensor fabrication on the paper-based chips.

  4. Fabrication of Metal Nanoparticle-Modified Screen Printed Carbon Electrodes for the Evaluation of Hydrogen Peroxide Content in Teeth Whitening Strips

    Science.gov (United States)

    Popa, Adriana; Abenojar, Eric C.; Vianna, Adam; Buenviaje, Czarina Y. A.; Yang, Jiahua; Pascual, Cherrie B.; Samia, Anna Cristina S.

    2015-01-01

    A laboratory experiment in which students synthesize Ag, Au, and Pt nanoparticles (NPs) and use them to modify screen printed carbon electrodes for the electroanalysis of the hydrogen peroxide content in commercially available teeth whitening strips is described. This experiment is designed for two 3-h laboratory periods and can be adapted for…

  5. Comparison of Fast Roll-to-Roll Flexographic, Inkjet, Flatbed, and Rotary Screen Printing of Metal Back Electrodes for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Søndergaard, Roar R.; Angmo, Dechan

    2013-01-01

    carbon[5] and copper has been discussed whereas copper is unlikely to yield the necessary cost reduction and resistance to oxidation. Most reports have employed flatbed or rotary screen printing whereas other methods are available and described later on. The important question to answer is which...

  6. TfR Binding Peptide Screened by Phage Display Technology ...

    African Journals Online (AJOL)

    Purpose: To screen an hTfR affinity peptide and investigate its activity in vitro. Methods: hTfR ... Keywords: Peptide, hTfR, Transferrin receptor, Phage display technology, Enhanced green ..... mediated uptake of peptides that bind the human.

  7. Experimental investigation of centrifugal fans for personal protection equipment - effect of used 3D printing technologies

    Science.gov (United States)

    Dvořák, Václav; Votrubec, Radek; Šafka, Jiří; Kracík, Jan

    2018-06-01

    The aim of the research is experimental investigation of centrifugal fans for a personal protection equipment. The aim of the fan is to drive the contaminated air containing harmful or irritating particles through the filters and then into the mask of workers, such as a fireman, a labourer or a lab worker. The fan is measured on the test stand, the characteristics and performances are evaluated, i.e. the dependencies of the working pressure on the flow rate. The characteristics are measured for three constant speed settings. The characteristics of the wheels produced by the different 3D printing technology are compared. It is found that the production technology has only a minimal effect, the performance of the wheels is more influenced by the position of the impeller on the motor shaft and hence by the mutual position of the impeller and the diffuser.

  8. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    International Nuclear Information System (INIS)

    Zou, W; Swann, B; Siderits, R; McKenna, M; Khan, A; Yue, N; Zhang, M; Fisher, T

    2014-01-01

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carried out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice

  9. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, W; Swann, B; Siderits, R; McKenna, M; Khan, A; Yue, N; Zhang, M [Rutgers University, New Brunswick, NJ (United States); Fisher, T [Memorial Medical Center, Modesto, CA (United States)

    2014-06-15

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carried out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice.

  10. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    International Nuclear Information System (INIS)

    Huang Qi-Zhang; Zhu Yan-Qing; Shi Ji-Fu; Wang Lei-Lei; Zhong Liu-Wen; Xu Gang

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition. (paper)

  11. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    Institute of Scientific and Technical Information of China (English)

    Qi-Zhang Huang; Yan-Qing Zhu; Ji-Fu Shi; Lei-Lei Wang; Liu-Wen Zhong; Gang Xu

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module.The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%.Additionally,with the 3D-printed microfluidic device serving as water cooling,the temperature of the DSC can be effectively controlled,which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module.Moreover,the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%.The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.

  12. Live demonstration: Screen printed, microwave based level sensor for automated drug delivery

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-02

    Level sensors find numerous applications in many industries to automate the processes involving chemicals. Recently, some commercial ultrasound based level sensors are also being used to automate the drug delivery process [1]. Some of the most desirable features of level sensors to be used for medical use are their non-intrusiveness, low cost and consistent performance. In this demo, we will present a completely new method of sensing the liquid level using microwaves. It is a common stereotype to consider microwaves sensing mechanism as being expensive. Unlike usual expensive, intrusive and bulky microwave methods of level sensing using guided radars, we will present an extremely low cost printed, non-intrusive microwave sensor to reliably sense the liquid level.

  13. Evaluation of Shear Strength of RC Beams with Multiple Interfaces Formed before Initial Setting Using 3D Printing Technology

    Directory of Open Access Journals (Sweden)

    Kyeongjin Kim

    2017-11-01

    Full Text Available With the recent development of 3D printing technology, concrete materials are sometimes used in 3D printing. Concrete structures based on 3D printing have been characterized to have the form of multiple layer build-up. Unlike general concrete structures, therefore, the 3D-printed concrete can be regarded as an orthotropic material. The material property of the 3D-printed concrete’s interface between layers is expected to be far different from that of general concrete bodies since there are no aggregate interlocks and weak chemical bonding. Such a difference finally affects the structural performance of concrete structures even though the interfaces are formed before initial setting of the concrete. The current study mainly reviewed the changes in fracture energy (toughness with respect to various environmental conditions of such interface. Changes in fracture energies of interfaces between concrete layers were measured using low-speed Crack Mouth Opening Displacement (CMOD closed loop concrete fracture test. The experimental results indicated reduction in fracture energy as well as tensile strengths. To improve the tensile strength of interfaces, the use of bridging materials is suggested. Since it was assumed that reduction in fracture energy could be a cause of shear strength, to evaluate the reduced structural performance of concrete structure constructed with multiple interfaces by 3D printing technology, the shear strength of RC beam by 3D printing technology was predicted and compared with that of plain RC beam. Based on the fracture energy measured in this study, Modified Compression Field Theory (MCFT theory-applied Vector 2 program was employed to predict the degree of reduction in shear strength without considering stirrups. Reduction factors were presented based on the obtained results to predict the reduction in shear strength due to interfaces before initial setting of the concrete.

  14. Amperometric biosensor based on prussian blue and nafion modified screen-printed electrode for screening of potential xanthine oxidase inhibitors from medicinal plants.

    Science.gov (United States)

    El Harrad, Loubna; Amine, Aziz

    2016-04-01

    A simple and sensitive amperometric biosensor was developed for the screening of potential xanthine oxidase inhibitors from medicinal plants. This biosensor was prepared by immobilization of xanthine oxidase on the surface of prussian blue modified screen-printed electrodes using nafion and glutaraldehyde. The developed biosensor showed a linear amperometric response at an applied potential of +0.05 V toward the detection of hypoxanthine from 5 μM to 45 μM with a detection limit of 0.4 μM (S/N=3) and its sensitivity was found to be 600 mA M(-1) cm(-2). In addition, the biosensor exhibited a good storage stability. The inhibition of xanthine oxidase by allopurinol was studied under the optimized conditions. The linear range of allopurinol concentration is obtained up to 2.5 μM with an estimated 50% of inhibitionI50=1.8 μM. The developed biosensor was successfully applied to the screening of xanthine oxidase inhibitors from 13 medicinal plants belonging to different families. Indeed, Moroccan people traditionally use these plants as infusion for the treatment of gout and its related symptoms. For this purpose, water extracts obtained from the infusion of these plants were used for the experiments. In this work, 13 extracts were assayed and several of them demonstrated xanthine oxidase inhibitory effect, with an inhibition greater than 50% compared to spectrophotometry measurements that only few extracts showed an inhibition greater than 50%. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A Compact Inductive Position Sensor Made by Inkjet Printing Technology on a Flexible Substrate

    Directory of Open Access Journals (Sweden)

    Nataša Samardžić

    2012-01-01

    Full Text Available This paper describes the design, simulation and fabrication of an inductive angular position sensor on a flexible substrate. The sensor is composed of meandering silver coils printed on a flexible substrate (Kapton film using inkjet technology. The flexibility enables that after printing in the plane, the coils could be rolled and put inside each other. By changing the angular position of the internal coil (rotor related to the external one (stator, the mutual inductance is changed and consequently the impedance. It is possible to determine the angular position from the measured real and imaginary part of the impedance, in our case in the frequency range from 1 MHz to 10 MHz. Experimental results were compared with simulation results obtained by in-house developed software tool, and very good agreement has been achieved. Thanks to the simple design and fabrication, smaller package space requirements and weight, the presented sensor represents a cost-effective alternative to the other sensors currently used in series production applications.

  16. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology.

    Science.gov (United States)

    Radonić, Vasa; Birgermajer, Slobodan; Kitić, Goran

    2017-04-18

    In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG) sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor's operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG) structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM) 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene-methanol mixture where various concentrations of toluene were analysed.

  17. Microfluidic EBG Sensor Based on Phase-Shift Method Realized Using 3D Printing Technology

    Directory of Open Access Journals (Sweden)

    Vasa Radonić

    2017-04-01

    Full Text Available In this article, we propose a novel microfluidic microstrip electromagnetic band gap (EBG sensor realized using cost-effective 3D printing technology. Microstrip sensor allows monitoring of the fluid properties flowing in the microchannel embedded between the microstrip line and ground plane. The sensor’s operating principle is based on the phase-shift method, which allows the characterization at a single operating frequency of 6 GHz. The defected electromagnetic band gap (EBG structure is realized as a pattern in the microstrip ground plane to improve sensor sensitivity. The designed microfluidic channel is fabricated using a fused deposition modelling (FDM 3D printing process without additional supporting layers, while the conductive layers are realized using sticky aluminium tape. The measurement results show that the change of permittivity of the fluid in the microfluidic channel from 1 to 80 results in the phase-shift difference of almost 90°. The potential application is demonstrated through the implementation of a proposed sensor for the detection of toluene concentration in toluene–methanol mixture where various concentrations of toluene were analysed.

  18. 3D Printing Technology in Planning Thumb Reconstructions with Second Toe Transplant.

    Science.gov (United States)

    Zang, Cheng-Wu; Zhang, Jian-Lei; Meng, Ze-Zu; Liu, Lin-Feng; Zhang, Wen-Zhi; Chen, Yong-Xiang; Cong, Rui

    2017-05-01

    To report preoperative planning using 3D printing to plan thumb reconstructions with second toe transplant. Between December 2013 and October 2015, the thumbs of five patients with grade 3 thumb defects were reconstructed using a wrap-around flap and second toe transplant aided by 3D printing technology. CT scans of hands and feet were analyzed using Boholo surgical simulator software (www.boholo.com). This allowed for the creation of a mirror image of the healthy thumb using the uninjured thumb. Using 3D images of the reconstructed thumb, a model of the big toe and the second toe was created to understand the dimensions of the donor site. This model was also used to repair the donor site defect by designing appropriate iliac bone and superficial circumflex iliac artery flaps. The polylactic acid model of the donor toes and reconstructed thumb was produced using 3D printing. Surgically, the wrap-around flap of the first dorsal metatarsal artery and vein combined with the joint and bone of the second toe was based upon the model donor site. Sensation was reconstructed by anastomosing the dorsal nerve of the foot and the plantar digital nerve of the great toe. Patients commenced exercises 2 weeks after surgery. All reconstructed thumbs survived, although partial flap necrosis occurred in one case. This was managed with regular dressing changes. Patients were followed up for 3-15 months. The lengths of the reconstructed thumbs are 34-49 mm. The widths of the thumb nail beds are 16-19 mm, and the thickness of the digital pulp is 16-20 mm. The thumb opposition function was 0-1.5 cm; the extension angle was 5°-20° (mean, 16°), and the angle of flexion was 38°-55° (mean, 47°). Two-point discrimination was 9-11 mm (mean, 9.6 mm). The reconstructed thumbs had good appearance, function and sensation. Based on the criteria set forth by the Standard on Approval of Reconstructed Thumb and Finger Functional Assessment of the Chinese Medical Association, the results were

  19. Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium

    International Nuclear Information System (INIS)

    Kostaki, Vasiliki T.; Florou, Ageliki B.; Prodromidis, Mamas I.

    2011-01-01

    Highlights: → Electrochemical treatment endows analytical characteristics to SPEs. → A sensitive chemical sensor for uranium is described. → Performance is due to a synergy between electrochemical treatment and ink's solvents. → The amount of the solvent controls the achievable sensitivity. - Abstract: We report for the first time on the possibility to develop chemical sensors based on electrochemically treated, non-modified, graphite screen-printed electrodes (SPEs). The applied galvanostatic treatment (5 μA for 6 min in 0.1 M H 2 SO 4 ) is demonstrated to be effective for the development of chemical sensors for the determination of uranium in aqueous solutions. A detailed study of the effect of various parameters related to the fabrication of SPEs on the performance of the resulting sensors along with some diagnostic experiments on conventional graphite electrodes showed that the inducible analytical characteristics are due to a synergy between electrochemical treatment and ink's solvents. Indeed, the amount of the latter onto the printed working layer controls the achievable sensitivity. The preconcentration of the analyte was performed in an electroless mode in an aqueous solutions of U(VI), pH 4.6, and then, the accumulated species was reduced by means of a differential pulse voltammetry scan in 0.1 M H 3 BO 3 , pH 3. Under selected experimental conditions, a linear calibration curve over the range 5 x 10 -9 to 10 -7 M U(VI) was constructed. The 3σ limit of detection at a preconcentration time of 30 min, and the relative standard deviation of the method were 4.5 x 10 -9 M U(VI) and >12% (n = 5, 5 x 10 -8 M U(VI)), respectively. The effect of potential interferences was also examined.

  20. Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates

    Science.gov (United States)

    Almusallam, A.; Yang, K.; Zhu, D.; Torah, R. N.; Komolafe, A.; Tudor, J.; Beeby, S. P.

    2015-11-01

    This paper introduces a new flexible lead zirconate titanate (PZT)/polymer composite material that can be screen-printed onto fabrics and flexible substrates, and investigates the clamping effect of these substrates on the characterization of the piezoelectric material. Experimental results showed that the optimum blend of PZT/polymer binder with a weight ratio of 12:1 provides a dielectric constant of 146. The measured value of the piezoelectric coefficient d33 was found to depend on the substrate used. Measured d33clp values of 70, 40, 36 pC N-1 were obtained from the optimum formulation printed on Polyester-cotton with an interface layer, Kapton and alumina substrates, respectively. The variation in the measured d33clp values occurs because of the effect of the mechanical boundary conditions of the substrate. The piezoelectric film is mechanically bonded to the surface of the substrate and this constrains the film in the plane of the substrate (the 1-direction). This constraint means that the perpendicular forces (applied in the 3-direction) used to measure d33 introduce a strain in the 1-direction that produces a charge of the opposite polarity to that induced by the d33 effect. This is due to the negative sign of the d31 coefficient and has the effect of reducing the measured d33 value. Theoretical and experimental investigations confirm a reduction of 13%, 50% and 55% in the estimated freestanding d33fs values (80 pC N-1) on Polyester-cotton, Kapton and alumina substrates, respectively. These results demonstrate the effect of the boundary conditions of the substrate/PZT interface on the piezoelectric response of the PZT/polymer film and in particular the reduced effect of fabric substrates due to their lowered stiffness.

  1. [COMPUTER ASSISTED DESIGN AND ELECTRON BEAMMELTING RAPID PROTOTYPING METAL THREE-DIMENSIONAL PRINTING TECHNOLOGY FOR PREPARATION OF INDIVIDUALIZED FEMORAL PROSTHESIS].

    Science.gov (United States)

    Liu, Hongwei; Weng, Yiping; Zhang, Yunkun; Xu, Nanwei; Tong, Jing; Wang, Caimei

    2015-09-01

    To study the feasibility of preparation of the individualized femoral prosthesis through computer assisted design and electron beammelting rapid prototyping (EBM-RP) metal three-dimensional (3D) printing technology. One adult male left femur specimen was used for scanning with 64-slice spiral CT; tomographic image data were imported into Mimics15.0 software to reconstruct femoral 3D model, then the 3D model of individualized femoral prosthesis was designed through UG8.0 software. Finally the 3D model data were imported into EBM-RP metal 3D printer to print the individualized sleeve. According to the 3D model of individualized prosthesis, customized sleeve was successfully prepared through the EBM-RP metal 3D printing technology, assembled with the standard handle component of SR modular femoral prosthesis to make the individualized femoral prosthesis. Customized femoral prosthesis accurately matching with metaphyseal cavity can be designed through the thin slice CT scanning and computer assisted design technology. Titanium alloy personalized prosthesis with complex 3D shape, pore surface, and good matching with metaphyseal cavity can be manufactured by the technology of EBM-RP metal 3D printing, and the technology has convenient, rapid, and accurate advantages.

  2. Relationships between environmentally sound technologies and competitiveness of companies in the value chain of printed paper from forest to market

    Energy Technology Data Exchange (ETDEWEB)

    Perkioe, S.

    2007-07-01

    Technologies play a well-known role in creating competitive advantages for companies as well as in controlling environmental impacts. This study deals with the relationship between environmentally sound technologies and the competitiveness of companies in the value chain of printed paper from forest to market. These connections are important to understand, because the technology is an important solution in facing environmental requirements. This study answers the following five questions: Which environmentally sound technologies are the most important for environmental impacts in the value chain of printed paper? How do they impact on the competitiveness of companies? How do these technologies differ across the value chain. Do they impact on competitiveness of companies in the other part of the value chain? The fifth research question involves studying differences between function mechanisms of pollution-prevention technology and pollution-abatement technology in facing legal requirements. This is studied as a part of the so-called 'Porter Hypothesis'. A term, environmental value creation, has been defined as 'performing activities by managing environmental aspects so that the value of goods and services to consumers or to customers increases.' Data was collected from the value chain of printed paper and were divided into the following parts: forest harvesting, pulp mill, paper mill and printing house. Eight experts were interviewed resulting in 69 environmentally sound technologies during the time periods 1980-1999 and 2000-2019. The data was analysed by non-parametrical statistical tests. As a result of this study, automation, measurement and information technologies, closing-up technologies and energy technologies were found to be the most important for environmental impacts and frequently mentioned responses of environmentally sound technologies in the value chain of printed paper. The cost factors of raw material and staff and

  3. Thermo-cleavable solvents for printing conjugated polymers: Application in polymer solar cells

    DEFF Research Database (Denmark)

    Jørgensen, Mikkel; Hagemann, Ole; Alstrup, Jan

    2009-01-01

    large-scale production of polymer solar cells using screen printing. Screen-printed solar cells are still very inferior to state of the art P3HT/PCBM technology, but it is our view that it is necessary to explore these printing technologies if polymer solar cells are to ever become commercial products.......The synthesis and characterization of a number of so-called thermo-cleavable solvents are described with their application in all-air, all-solution and all-screen-printed polymer solar cells. These solvents were developed to meet some requirements for printing techniques such as long “open time...... (TGA) and high-temperature NMR established the onset temperature of decomposition, the rate of the reaction and the nature of the products. Printing experiments with inks based on these solvents together with conjugated polymers are exemplified for polymer solar cell devices to show how they enable...

  4. Screening Technologies for Target Identification in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Michl, Patrick, E-mail: michlp@med.uni-marburg.de; Ripka, Stefanie; Gress, Thomas; Buchholz, Malte [Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University Marburg, Baldinger Strasse, D-35043 Marburg (Germany)

    2010-12-29

    Pancreatic cancer exhibits an extraordinarily high level of resistance to almost any kind of systemic therapy evaluated in clinical trials so far. Therefore, the identification of novel therapeutic targets is urgently required. High-throughput screens have emerged as an important tool to identify putative targets for diagnosis and therapy in an unbiased manner. More than a decade ago, microarray technology was introduced to identify differentially expressed genes in pancreatic cancer as compared to normal pancreas, chronic pancreatitis and other cancer types located in close proximity to the pancreas. In addition, proteomic screens have facilitated the identification of differentially secreted proteins in body fluids of pancreatic cancer patients, serving as possible biomarkers. Recently, RNA interference-based loss-of-function screens have been used to identify functionally relevant genes, whose knock-down has impact on pancreatic cancer cell viability, thereby representing potential new targets for therapeutic intervention. This review summarizes recent results of transcriptional, proteomic and functional screens in pancreatic cancer and discusses potentials and limitations of the respective technologies as well as their impact on future therapeutic developments.

  5. Screening Technologies for Target Identification in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Michl, Patrick; Ripka, Stefanie; Gress, Thomas; Buchholz, Malte

    2010-01-01

    Pancreatic cancer exhibits an extraordinarily high level of resistance to almost any kind of systemic therapy evaluated in clinical trials so far. Therefore, the identification of novel therapeutic targets is urgently required. High-throughput screens have emerged as an important tool to identify putative targets for diagnosis and therapy in an unbiased manner. More than a decade ago, microarray technology was introduced to identify differentially expressed genes in pancreatic cancer as compared to normal pancreas, chronic pancreatitis and other cancer types located in close proximity to the pancreas. In addition, proteomic screens have facilitated the identification of differentially secreted proteins in body fluids of pancreatic cancer patients, serving as possible biomarkers. Recently, RNA interference-based loss-of-function screens have been used to identify functionally relevant genes, whose knock-down has impact on pancreatic cancer cell viability, thereby representing potential new targets for therapeutic intervention. This review summarizes recent results of transcriptional, proteomic and functional screens in pancreatic cancer and discusses potentials and limitations of the respective technologies as well as their impact on future therapeutic developments

  6. Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human-Machine Interaction.

    Science.gov (United States)

    Cao, Ran; Pu, Xianjie; Du, Xinyu; Yang, Wei; Wang, Jiaona; Guo, Hengyu; Zhao, Shuyu; Yuan, Zuqing; Zhang, Chi; Li, Congju; Wang, Zhong Lin

    2018-05-22

    Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human-machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human-machine interfacing.

  7. Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles

    International Nuclear Information System (INIS)

    Dhara, Keerthy; Thiagarajan, Ramachandran; Thekkedath, Gopalakrishnan Satheesh Babu; Nair, Bipin G.

    2015-01-01

    A nanocomposite consisting of reduced graphene oxide decorated with palladium-copper oxide nanoparticles (Pd-CuO/rGO) was synthesized by single-step chemical reduction. The morphology and crystal structure of the nanocomposite were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy and X-ray diffraction analysis. A 3-electrode system was fabricated by screen printing technology and the Pd-CuO/rGO nanocomposite was drop cast on the carbon working electrode. The catalytic activity towards glucose in 0.2 M NaOH solutions was analyzed by linear sweep voltammetry and amperometry. The steady state current obtained at a constant potential of +0.6 V (vs. Ag/AgCl) showed the modified electrode to possess a wide analytical range (6 μM to 22 mM), a rather low limit of detection (30 nM), excellent sensitivity (3355 μA∙mM −1 ∙cm −2 ) and good selectivity over commonly interfering species and other sugars including fructose, sucrose and lactose. The sensor was successfully employed to the determination of glucose in blood serum. (author)

  8. Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis

    International Nuclear Information System (INIS)

    Petroni, Jacqueline Marques; Lucca, Bruno Gabriel; Ferreira, Valdir Souza

    2017-01-01

    This paper describes a simple method for the fabrication of screen-printed based electrodes for amperometric detection on microchip electrophoresis (ME) devices. The procedure developed is quite simple and does not require expensive instrumentation or sophisticated protocols commonly employed on the production of amperometric sensors, such as photolithography or sputtering steps. The electrodes were fabricated through manual deposition of home-made conductive carbon ink over patterned acrylic substrate. Morphological structure and electrochemical behavior of the carbon electrodes were investigated by scanning electron microscopy and cyclic voltammetry. The produced amperometric sensors were coupled to polydimethylsiloxane (PDMS) microchips at end-channel configuration in order to evaluate their analytical performance. For this purpose, electrophoretic experiments were carried out using nitrite and ascorbic acid as model analytes. Separation of these substances was successfully performed within 50s with good resolution (R = 1.2) and sensitivities (713.5 pA/μM for nitrite and 255.4 pA/μM for ascorbate). The reproducibility of the fabrication method was evaluated and revealed good values concerning the peak currents obtained (8.7% for nitrite and 9.3% for ascorbate). The electrodes obtained through this method exhibited satisfactory lifetime (ca. 400 runs) over low fabrication cost (less than $1 per piece). The feasibility of the proposed device for real analysis was demonstrated through the determination of nitrite concentration levels in drinking water samples. Based on the results achieved, the approach proposed here shows itself as an interesting alternative for simple fabrication of carbon-based electrodes. Furthermore, the devices indicate great promise for other kind of analytical applications involving ME devices. - Highlights: • A novel method to fabricate screen-printed electrodes for amperometric detection in ME is demonstrated. • No sophisticated

  9. Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, Jacqueline Marques [Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79074-460 (Brazil); Lucca, Bruno Gabriel, E-mail: bruno.lucca@ufes.br [Departamento de Ciências Naturais, Universidade Federal do Espírito Santo, São Mateus, ES, 29932-540 (Brazil); Ferreira, Valdir Souza [Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79074-460 (Brazil)

    2017-02-15

    This paper describes a simple method for the fabrication of screen-printed based electrodes for amperometric detection on microchip electrophoresis (ME) devices. The procedure developed is quite simple and does not require expensive instrumentation or sophisticated protocols commonly employed on the production of amperometric sensors, such as photolithography or sputtering steps. The electrodes were fabricated through manual deposition of home-made conductive carbon ink over patterned acrylic substrate. Morphological structure and electrochemical behavior of the carbon electrodes were investigated by scanning electron microscopy and cyclic voltammetry. The produced amperometric sensors were coupled to polydimethylsiloxane (PDMS) microchips at end-channel configuration in order to evaluate their analytical performance. For this purpose, electrophoretic experiments were carried out using nitrite and ascorbic acid as model analytes. Separation of these substances was successfully performed within 50s with good resolution (R = 1.2) and sensitivities (713.5 pA/μM for nitrite and 255.4 pA/μM for ascorbate). The reproducibility of the fabrication method was evaluated and revealed good values concerning the peak currents obtained (8.7% for nitrite and 9.3% for ascorbate). The electrodes obtained through this method exhibited satisfactory lifetime (ca. 400 runs) over low fabrication cost (less than $1 per piece). The feasibility of the proposed device for real analysis was demonstrated through the determination of nitrite concentration levels in drinking water samples. Based on the results achieved, the approach proposed here shows itself as an interesting alternative for simple fabrication of carbon-based electrodes. Furthermore, the devices indicate great promise for other kind of analytical applications involving ME devices. - Highlights: • A novel method to fabricate screen-printed electrodes for amperometric detection in ME is demonstrated. • No sophisticated

  10. Direct and mediated electrochemistry of peroxidase and its electrocatalysis on a variety of screen-printed carbon electrodes: amperometric hydrogen peroxide and phenols biosensor.

    Science.gov (United States)

    Chekin, Fereshteh; Gorton, Lo; Tapsobea, Issa

    2015-01-01

    This study compares the behaviour of direct and mediated electrochemistry of horseradish peroxidase (HRP) immobilised on screen-printed carbon electrodes (SPCEs), screen-printed carbon electrodes modified with carboxyl-functionalised multi-wall carbon nanotubes (MWCNT-SPCEs) and screen-printed carbon electrodes modified with carboxyl-functionalised single-wall carbon nanotubes (SWCNT-SPCEs). The techniques of cyclic voltammetry and amperometry in the flow mode were used to characterise the properties of the HRP immobilised on screen-printed electrodes. From measurements of the mediated and mediatorless currents of hydrogen peroxide reduction at the HRP-modified electrodes, it was concluded that the fraction of enzyme molecules in direct electron transfer (DET) contact with the electrode varies substantially for the different electrodes. It was observed that the screen-printed carbon electrodes modified with carbon nanotubes (MWCNT-SPCEs and SWCNT-SPCEs) demonstrated a substantially higher percentage (≈100 %) of HRP molecules in DET contact than the screen-printed carbon electrodes (≈60 %). The HRP-modified electrodes were used for determination of hydrogen peroxide in mediatorless mode. The SWCNT-SPCE gave the lowest detection limit (0.40 ± 0.09 μM) followed by MWCNT-SPCE (0.48 ± 0.07 μM) and SPCE (0.98 ± 0.2 μM). These modified electrodes were additionally developed for amperometric determination of phenolic compounds. It was found that the SWCNT-SPCE gave a detection limit for catechol of 110.2 ± 3.6 nM, dopamine of 640.2 ± 9.2 nM, octopamine of 3341 ± 15 nM, pyrogallol of 50.10 ± 2.9 nM and 3,4-dihydroxy-L-phenylalanine of 980.7 ± 8.7 nM using 50 μM H2O2 in the flow carrier.

  11. Infant Imitation from Television Using Novel Touch Screen Technology

    Science.gov (United States)

    Zack, Elizabeth; Barr, Rachel; Gerhardstein, Peter; Dickerson, Kelly; Meltzoff, Andrew N.

    2009-01-01

    Infants learn less from a televised demonstration than from a live demonstration, the "video deficit effect." The present study employs a novel approach, using touch screen technology to examine 15-month olds' transfer of learning. Infants were randomly assigned either to within-dimension (2D/2D or 3D/3D) or cross-dimension (3D/2D or 2D/3D)…

  12. Microstrain and residual stress in thin-films made from silver nanoparticles deposited by inkjet-printing technology

    NARCIS (Netherlands)

    Cauchois, R.; Borbély, A.; Gergaud, P.; Saadaoui, M.; Inal, K.

    2014-01-01

    Colloidal suspensions of nanoparticles are increasingly employed in the fabrication process of electronic devices using inkjet-printing technology and a consecutive thermal treatment. The evolution of internal stresses during the conversion of silver nanoparticle-based ink into a metallic thin-film

  13. Screening applications in drug discovery based on microfluidic technology.

    Science.gov (United States)

    Eribol, P; Uguz, A K; Ulgen, K O

    2016-01-01

    Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays.

  14. Screening applications in drug discovery based on microfluidic technology

    Science.gov (United States)

    Eribol, P.; Uguz, A. K.; Ulgen, K. O.

    2016-01-01

    Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays. PMID:26865904

  15. 76 FR 45645 - 10-Day Notice of Proposed Information Collection: Technology Security/Clearance Plans, Screening...

    Science.gov (United States)

    2011-07-29

    ...: Technology Security/Clearance Plans, Screening Records, and Non-Disclosure Agreements ACTION: Notice of... Information Collection: Technology Security/ Clearance Plans, Screening Records, and Non-Disclosure Agreements...: None. Respondents: Business and Nonprofit Organizations, Foreign Governments. Estimated Number of...

  16. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    Science.gov (United States)

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

  17. Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: application to grain samples.

    Science.gov (United States)

    Della Pelle, Flavio; Angelini, Claudia; Sergi, Manuel; Del Carlo, Michele; Pepe, Alessia; Compagnone, Dario

    2018-08-15

    An electrochemical screening assay for the detection of phenyl carbamates (i.e. carbaryl, carbofuran, isoprocarb and fenobucarb) was developed and applied to grains samples (i.e. durum wheat, soft wheat and maize). Nano carbon black (CB) was strategically employed to realize an effective, reproducible, fouling resistant, low cost, delocalisable screen printed sensor (CB-SPE). CB-SPEs morphology (SEM and FEM) and electrochemical property (CV and EIS) were studied. The final pesticides analysis protocol consist of: (i) extraction of the analyte (just by mixing), (ii) alkaline hydrolysis (10 min R.T.), (iii) DPV detection directly of 100 µL of extract on the CB-SPE surface. Linear range between 1.0 × 10 -7 and 1.0 × 10 -4 mol L -1 , good determination coefficients (R 2 ≥ 0.9971) and satisfactory sensitivity (≥ 3.90 × 10 -1 A M -1 cm -2 ) and LODs (≤ 8.0 × 10 -8 mol L -1 ) were obtained for all the analytes. Excellent recoveries (78-102%) and accuracy (relative error vs. HPLC-MS/MS between 9.0% and -7.8%) resulted from the analysis of grains samples. The proposed CB-SPE based approach has demonstrated to be able to detect carbaryl at Maximum residue limits levels (MRLs), allowing class selective detection of commonly employed phenyl carbamates in food samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Processing and characterization of screen printing Ba 0.5 Sr 0.5 Co ...

    Indian Academy of Sciences (India)

    Author Affiliations. MAGDALENA GROMADA1 DAVIDE GARDINI2 PIETRO GALIZIA2 CARMEN GALASSI1. Institute of Power Engineering Ceramic Department CEREL, Research Institute, 1 Techniczna St., 36-040 Boguchwała, Poland; National Research Council (CNR)—Institute of Science and Technology for Ceramics ...

  19. Fabrication and properties of meso-macroporous electrodes screen-printed from mesoporous titania nanoparticles for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ma Liang; Liu Min; Peng Tianyou; Fan Ke; Lu Lanlan; Dai Ke

    2009-01-01

    A meso-macroporous TiO 2 film electrode was fabricated by using mesoporous TiO 2 (m-TiO 2 ) nanoparticles through a screen-printing technique in order to efficiently control the main fabrication step of dye-sensitized solar cells (DSSCs). The qualities of the screen-printed m-TiO 2 films were characterized by means of spectroscopy, electron microscopy, nitrogen adsorption-desorption and photoelectrochemical measurements. Under the optimal paste composition and printing conditions, the DSSC based on the meso-macroporous m-TiO 2 film electrode exhibits an energy conversion efficiency of 4.14%, which is improved by 1.70% in comparison with DSSC made with commercially available nonporous TiO 2 nanoparticles (P25, Degussa) electrode printed with a similar paste composition. The meso-macroporous structure within the m-TiO 2 film is of great benefit to the dye adsorption, light absorption and the electrolyte transportation, and then to the improvement of the overall energy conversion efficiency of DSSC.

  20. Adsorptive Stripping Voltammetric Determination of Amaranth and Tartrazine in Drinks and Gelatins Using a Screen-Printed Carbon Electrode

    Science.gov (United States)

    Perdomo, Yeny; Arancibia, Verónica; Nagles, Edgar

    2017-01-01

    A fast, sensitive, and selective method for the simultaneous determination of one pair of synthetic colorants commonly found mixed in food products, Amaranth (AM) and Tartrazine (TZ), based on their adsorption and oxidation on a screen-printed electrode (SPE) is presented. The variation of peak current with pH, supporting electrolyte, adsorption time, and adsorption potential were optimized using square wave adsorptive voltammetry. The optimal conditions were found to be: pH 3.2 (PBS), Eads 0.00 V, and tads 30 s. Under these conditions, the AM and TZ signals were observed at 0.56 and 0.74 V, respectively. A linear response were found over the 0.15 to 1.20 µmol L−1 and 0.15 to 0.80 µmol L−1 concentrations, with detection limits (3σ/slope) of 26 and 70 nmol L−1 for AM and TZ, respectively. Reproducibility for 17.7 µmol L–1 AM and TZ solutions were 2.5 and 3.0% (n = 7), respectively, using three different electrodes. The method was validated by determining AM and TZ in spiked tap water and unflavored gelatin spiked with AM and TZ. Because a beverage containing both AM and TZ was not found, the method was applied to the determination of AM in a kola soft drink and TZ in an orange jelly and a soft drink powder. PMID:29156561

  1. Fast and Sensitive Detection of Pb2+ in Foods Using Disposable Screen-Printed Electrode Modified by Reduced Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Qiang Cai

    2013-09-01

    Full Text Available In this study, reduced graphene oxide (rGO was electrochemically deposited on the surface of screen-printed carbon electrodes (SPCE to prepare a disposable sensor for fast detection of Pb2+ in foods. The SEM images showed that the rGO was homogeneously deposited onto the electrode surface with a wrinkled nanostructure, which provided 2D bridges for electron transport and a larger active area for Pb2+ adsorption. Results showed that rGO modification enhanced the activity of the electrode surface, and significantly improved the electrochemical properties of SPCE. The rGO modified SPCE (rGO-SPCE was applied to detect Pb2+ in standard aqueous solution, showing a sharp stripping peak and a relatively constant peak potential in square wave anodic stripping voltammetry (SWASV. The linear range for Pb2+ detection was 5~200 ppb (R2 = 0.9923 with a low detection limit of 1 ppb (S/N = 3. The interference of Cd2+ and Cu2+ at low concentrations was effectively avoided. Finally, the rGO-SPCE was used for determination of lead in real tap water, juice, preserved eggs and tea samples. Compared with results from graphite furnace atomic absorption spectroscopy (GFAAS, the results based on rGO-SPCE were both accurate and reliable, suggesting that the disposable sensor has great potential in application for fast, sensitive and low-cost detection of Pb2+ in foods.

  2. Synthesis and Characterization of Nanostructured ZnO Thick Film Gas Sensors Prepared by Screen Printing Method

    Directory of Open Access Journals (Sweden)

    R. Y. BORSE

    2010-12-01

    Full Text Available Nanosized ZnO was prepared by self propagating solution combustion synthesis method. The synthesized ZnO thick films were deposited on alumina substrate by using standard screen printing technique and fired at 700 0C. The films were characterized by X-ray diffractometer (XRD, Scanning Electron Microscopy (SEM and energy dispersive analysis of X-ray (EDAX. The electrical behaviors of ZnO thick films were investigated. From XRD spectra it is revealed that ZnO films are polycrystalline in nature. The average grain size of 87.44 nm has been estimated for the film fired at 700 0C using Scherrer’s formula. EDAX clearly shows the peaks corresponding to Zn and O element which confirms the successful growth of ZnO films. Gas sensing study for these samples shows high sensitivity and selectivity towards NO2 at all operating temperatures. The resistivity, TCR and activation energy of the ZnO films have been evaluated and discussed.

  3. A new amperometric glucose biosensor based on screen printed carbon electrodes with rhenium(IV - oxide as a mediator

    Directory of Open Access Journals (Sweden)

    ALBANA VESELI

    2012-11-01

    Full Text Available Rhenium(IV-oxide, ReO2, was used as a mediator for carbon paste (CPE and screen printed carbon (SPCE electrodes for the catalytic amperometric determination of hydro-gen peroxide, whose overpotential for the reduction could be lowered to -0.1 V vs. Ag/AgCl in flow injection analysis (FIA using phosphate buffer (0.1 M, pH=7.5 as a carrier. For hydrogen peroxide a detection limit (3σ of 0.8 mg L-1 could be obtained.ReO2-modified SPCEs were used to design biosensors with a template enzyme, i.e. glucose oxidase, entrapped in a Nafion membrane. The resulting glucose sensor showed a linear dynamic range up to 200 mg L-1 glucose with a detection limit (3σ of 0.6 mg L-1. The repeatability was 2.1 % RSD (n = 5 measurements, the reproducibility 5.4 % (n = 5 sensors. The sensor could be applied for the determination of glucose in blood serum in good agreement with a reference method.

  4. Straightforward grafting approach for cyclam-functionalized screen-printed electrodes for selective Cu(II) determination

    International Nuclear Information System (INIS)

    Jasmin, Jean-Philippe; Ouhenia-Ouadahi, Karima; Miserque, Frédéric; Dumas, Eddy; Cannizzo, Caroline; Chaussé, Annie

    2016-01-01

    We report in this paper an original way to covalently bind the macrocyclic ligand, 1,4,8,11-tetraazacyclotetradecane (cyclam), through diazonium salt chemistry, on the surface of carbon screen-printed electrodes (SPEs). The in situ synthesis of the diazonium salt obtained from the amine precursor derived from the cyclam and its electrografting are described. X-ray Photoelectron Spectroscopy was used to characterize this functionalized surface. Owing to the strong cyclam–Cu(II) affinity, the so called SPE-cyclam can be used as electrochemical sensors for Cu(II) determination at trace levels. The influence of electroanalysis parameters such as the accumulation time and the pH of the medium were investigated. An interference study was carried out with numerous metallic cations and few interference was found for Cu(II) quantification. The described method provided a limit of detection and a limit of quantification of 1.3 × 10"−"8 M and 4.0 × 10"−"8 M, respectively. Interference study and performances show that SPE-cyclam could be considered as efficient sensors for environmental analysis.

  5. A New Sensor Based on Graphite Screen Printed Electrode Modified With Cu-Nanocomplex for Determination of Paracetamol

    Directory of Open Access Journals (Sweden)

    Hadi Beitollai

    2017-01-01

    Full Text Available Paracetamol is a non-steroidal anti-inflammatory drug used as an antipyretic agent for the alternative to aspirin. Conversely, the overdoses of paracetamol can cause hepatic toxicity and kidney damage. Hence, the determination of paracetamol receives much more attention in biological samples and also in pharmaceutical formulations. Here, we report a rapid and sensitive detection of the paracetamol based on screen-printed modified electrode (SPE with Cu nanocomplex (Cu in pH=7.0. The paracetamol is not stable in strong acidic and strong alkaline media, and is hydrolyzed and hydroxylated. However, it is stable in intermediate pHs due to the dimerization of paracetamol. The kinetics of the paracetamol oxidation was briefly studied and documented in the schemes. In addition, the characterization of Cu nanocomplex was probed by Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray spectroscopy (EDX. Moreover, the voltammetry determined the paracetamol with the linear concentration ranging from 10.0 to 1000.0 μM and the lower detection limit of 1.0 μM. This method was also successfully used to detect the concentration of paracetamol in pharmaceutical formulations and urine samples.

  6. Effect of Firing Temperature on the Composition and Structural Parameters of Screen Printed ZrO2 Thick Film Sensors

    Directory of Open Access Journals (Sweden)

    S. J. PATIL

    2010-12-01

    Full Text Available The compositional, morphological and structural properties of ZrO2 thick films prepared by a standard screen printing method and fired between 800 oC to 1000 oC for 2 hours in an air atmosphere. The material characterization was done using X-ray energy dispersive analysis (EDX, X-ray diffraction (XRD and a scanning electron microscope (SEM. The deposited films were polycrystalline in nature having the monoclinic, tetragonal- cubic structure with a preferred orientation along the (1’11 plane. The result shows that the mass % of Zr was found to be 79.10, 82.14 and 82.04 % for firing temperatures of 800, 900 and 1000 0C respectively may be due to the release of excess oxygen. The effect of the firing temperature on structural parameters such as the crystallite size, percentage of phases, texture coefficient, RMSmicrostrain, dislocation density and stacking fault probability have been studied. The results indicate that grain growth can be increased by increasing the firing temperature which is responsible for decreasing the RMSmicrostrain and dislocation density in ZrO2 thick films. The stacking fault probability remains constant for all firing temperatures. The crystallite size changes from 25.71 nm to 30.80 nm with respect to the increase in the firing temperature.

  7. Label-Free Detection of Salivary Pepsin Using Gold Nanoparticle/Polypyrrole Nanocoral Modified Screen-Printed Electrode

    Directory of Open Access Journals (Sweden)

    Doyeon Lee

    2018-05-01

    Full Text Available Detection of salivary pepsin has been given attention as a new diagnostic tool for laryngopharyngeal reflux (LPR disease, because saliva collection is non-invasive and relatively comfortable. In this study, we prepared polypyrrole nanocorals (PPNCs on a screen-printed carbon electrode (SPCE by a soft template synthesis method, using β-naphthalenesulfonic acid (NSA (for short, PPNCs/SPCE. Gold nanoparticles (GNPs were then decorated on PPNCs/SPCE by electrodeposition (for short, GNP/PPNCs/SPCE. To construct the immunosensor, pepsin antibody was immobilized on GNP/PPNCs/SPCE. Next, citric acid was applied to prevent non-specific binding and change the electrode surface charge before pepsin incubation. Electrochemical stepwise characterization was performed using cyclic voltammetry, and immunosensor response toward different pepsin concentrations was measured by differential pulsed voltammetry. As a result, our electrochemical immunosensor showed a sensitive detection performance toward pepsin with a linear range from 6.25 to 100 ng/mL and high specificity toward pepsin, as well as a low limit of detection of 2.2 ng/mL. Finally, we quantified the pepsin levels in saliva samples of LPR patients (n = 2, showing that the results were concordant with those of a conventional ELISA method. Therefore, we expect that this electrochemical immunosensor could be helpful for preliminarily diagnosing LPR through the detection of pepsin in saliva.

  8. Kinerja Biosensor Konduktometri Berbasis (Screen Printed Carbon Electrode SPCE––Kitosan untuk Deteksi Diazinon, Malation, Klorpirifos dan Profenofos

    Directory of Open Access Journals (Sweden)

    Nuzulul Kurniawan Isvani

    2016-08-01

    Full Text Available The performance of biosensor is based on the hydrolysis reaction of organophosphorus compounds catalyzed by organophosphate hydrolase (OPH, produce H+ and the other ionic species that increase conductance on the surface of electrode. In this research, OPH was immobilized by crosslinking on chitosan–glutaraldehyde membrane on the (Screen Printed Carbon Electrode SPCE surface. Measurements were carried out at the range concentration 0 to 3.0 ppm of organophosphate, the range of pH 7.0 to 9.0 and 5–25 mL of enzyme. The result showed that optimum performances were obtained at 25 mL of OPH, pH 8.5, with the sensitivity for dizinon, malathion, chlorpirifos and profenofos is 1.353 mS/ppm, 1.270 mS/ppm, 1.230 mS/ppm dan 1.77 mS/ppm respectively and 0.97; 1.03; 0.98; 0.97 of LOD. DOI :http://dx.doi.org/10.15408/jkv.v0i0.3156.

  9. A carbon nanotube screen-printed electrode for label-free detection of the human cardiac troponin T.

    Science.gov (United States)

    Silva, Bárbara V M; Cavalcanti, Igor T; Silva, Mízia M S; Dutra, Rosa F

    2013-12-15

    Label-free immunosensor based on amine-functionalized carbon nanotubes screen-printed electrode is described for detection of the cardiac troponin T, an important marker of acute myocardial infarction. The disposable sensor was fabricated by tightly squeezing an adhesive carbon ink containing carbon nanotubes onto a polyethylene terephthalate substrate forming a thin film. The use of carbon nanotubes increased the reproducibility and stability of the sensor, and the amine groups permitted nonrandom immobilization of antibodies against cardiac troponin T. Amperometric responses were obtained by differential pulse voltammetry in presence of a ferrocyanide/ferricyanide redox probe after troponin T incubation. The calibration curve indicated a linear response of troponin T between 0.0025 ng mL(-1) and 0.5 ng mL(-1), with a good correlation coefficient (r=0.995; p<0.0001, n=7). The limit of detection (0.0035 ng mL(-1) cardiac troponin T) was lower than any previously described by immunosensors and was comparable with conventional analytical methods. The high reproducibility and clinical range obtained using this immunosensor support its utility as a potential tool for point-of-care acute myocardial infarction diagnostic testing. © 2013 Elsevier B.V. All rights reserved.

  10. Detection of Total Phenol in Green and Black Teas by Flow Injection System and Unmodified Screen Printed Electrode

    Directory of Open Access Journals (Sweden)

    Ivanildo Luiz de Mattos

    2010-01-01

    Full Text Available A flow injection system using an unmodified gold screen-printed electrode was employed for total phenol determination in black and green teas. In order to avoid passivation of the electrode surface due to the redox reaction, preoxidation of the sample was realized by hexacyanoferrate(III followed by addition of an EDTA solution. The complex formed in the presence of EDTA minimizes or avoids polymerization of the oxidized phenols. The previously filtered tea sample and hexacyanoferrate(III reagent were introduced simultaneously into two-carrier streams producing two reproducible zones. At confluence point, the pre-oxidation of the phenolic compounds occurs while this zone flows through the coiled reactor and receives the EDTA solution before phenol detection. The consumption of ferricyanide was monitorized at 360 mV versus Ag/AgCl and reflected the total amount of phenolic compounds present in the sample. Results were reported as gallic acid equivalents (GAEs. The proposed system is robust, versatile, environmentally-friendly (since the reactive is used only in the presence of the sample, and allows the analysis of about 35–40 samples per hour with detection limit = 1 mg/L without the necessity for surface cleaning after each measurement. Precise results are in agreement with those obtained by the Folin-Ciocalteu method.

  11. Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor

    International Nuclear Information System (INIS)

    Alarcon, G; Guix, M; Ambrosi, A; Merkoci, A; Ramirez Silva, M T; Palomar Pardave, M E

    2010-01-01

    A stable and sensitive biosensor for phenol detection based on a screen printed electrode modified with tyrosinase, multiwall carbon nanotubes and glutaraldehyde is designed and applied in a flow injection analytical system. The proposed carbon nanotube matrix is easy to prepare and ensures a very good entrapment environment for the enzyme, being simpler and cheaper than other reported strategies. In addition, the proposed matrix allows for a very fast operation of the enzyme, that leads to a response time of 15 s. Several parameters such as the working potential, pH of the measuring solution, biosensor response time, detection limit, linear range of response and sensitivity are studied. The obtained detection limit for phenol was 0.14 x 10 -6 M. The biosensor keeps its activity during continuous FIA measurements at room temperature, showing a stable response (RSD 5%) within a two week working period at room temperature. The developed biosensor is being applied for phenol detection in seawater samples and seems to be a promising alternative for automatic control of seawater contamination. The developed detection system can be extended to other enzyme biosensors with interest for several other applications.

  12. Electrical and Gas Sensing Properties of SnO2 Thick Film Resistors Prepared by Screen-printing Method

    Directory of Open Access Journals (Sweden)

    R. Y. BORSE

    2008-10-01

    Full Text Available Thick films of tin-oxide (SnO2 were deposited on alumina substrates employing screen-printing technique. The films were dried and fired at 680 0C for 30 minutes. The variation of D.C. resistance of thick films was measured in air as well as in H2S gas atmosphere as a function of temperature. The SnO2 films exhibit semiconducting behaviour. The SnO2 thick films studied were also showing decrease in resistance with increase of concentration of H2S gas. The film resistors showed the highest sensitivity to H2S gas at 350 0C. The XRD studies of the thick film indicate the presence of different phases of SnO2. The elemental analysis was confirmed by EDX spectra. The surface morphological study of the films was analyzed by SEM. The microstructure of the films was porous resulting from loosely interconnected small crystallites. The parameters such as grain size, activation energy, sensitivity and response time were described.

  13. Palladium nanoparticles decorated on activated fullerene modified screen printed carbon electrode for enhanced electrochemical sensing of dopamine.

    Science.gov (United States)

    Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Ali, M Ajmal; Al-Hemaid, Fahad M A

    2015-06-15

    In the present work, an enhanced electrochemical sensor for dopamine (DA) was developed based on palladium nanoparticles decorated activated fullerene-C60 (AC60/PdNPs) composite modified screen printed carbon electrode (SPCE). The scanning electron microscopy and elemental analysis confirmed the formation of PdNPs on AC60. The fabricated AC60/PdNPs composite modified electrode exhibited an enhanced electrochemical response to DA with a lower oxidation potential than that of SPCE modified with PdNPs and C60, indicating the excellent electrooxidation behavior of the AC60/PdNPs composite modified electrode. The electrochemical studies confirmed that the electrooxidation of DA at the composite electrode is a diffusion controlled electrochemical process. The differential pulse voltammetry was employed for the determination of DA; under optimum conditions, the electrochemical oxidation signal of DA increased linearly at the AC60/PdNPs composite from 0.35 to 133.35 μM. The limit of detection was found as 0.056 μM with a sensitivity of 4.23 μA μM(-1) cm(-2). The good recovery of DA in the DA injection samples further revealed the good practicality of AC60/PdNPs modified electrode. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Peroxynitrite Sensor Based on a Screen Printed Carbon Electrode Modified with a Poly(2,6-dihydroxynaphthalene Film

    Directory of Open Access Journals (Sweden)

    Ioana Silvia Hosu

    2016-11-01

    Full Text Available For the first time the electropolymerization of 2,6-dihydroxynaphthalene (2,6-DHN on a screen printed carbon electrode (SPCE was investigated and evaluated for peroxynitrite (PON detection. Cyclic voltammetry was used to electrodeposit the poly(2,6-DHN on the carbon electrode surface. The surface morphology and structure of poly(2,6-DHN film were investigated by SEM and FTIR analysis, and the electrochemical features by cyclic voltammetry. The poly(2,6-DHN/SPCE sensor showed excellent electrocatalytic activity for PON oxidation in alkaline solutions at very low potentials (0–100 mV vs. Ag/AgCl pseudoreference. An amperometric FIA (flow injection analysis system based on the developed sensor was optimized for PON measurements and a linear concentration range from 2 to 300 μM PON, with a LOD of 0.2 μM, was achieved. The optimized sensor inserted in the FIA system exhibited good sensitivity (4.12 nA·μM−1, selectivity, stability and intra-/inter-electrode reproducibility for PON determination.

  15. Adsorptive Stripping Voltammetric Determination of Amaranth and Tartrazine in Drinks and Gelatins Using a Screen-Printed Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Yeny Perdomo

    2017-11-01

    Full Text Available A fast, sensitive, and selective method for the simultaneous determination of one pair of synthetic colorants commonly found mixed in food products, Amaranth (AM and Tartrazine (TZ, based on their adsorption and oxidation on a screen-printed electrode (SPE is presented. The variation of peak current with pH, supporting electrolyte, adsorption time, and adsorption potential were optimized using square wave adsorptive voltammetry. The optimal conditions were found to be: pH 3.2 (PBS, Eads 0.00 V, and tads 30 s. Under these conditions, the AM and TZ signals were observed at 0.56 and 0.74 V, respectively. A linear response were found over the 0.15 to 1.20 µmol L−1 and 0.15 to 0.80 µmol L−1 concentrations, with detection limits (3σ/slope of 26 and 70 nmol L−1 for AM and TZ, respectively. Reproducibility for 17.7 µmol L–1 AM and TZ solutions were 2.5 and 3.0% (n = 7, respectively, using three different electrodes. The method was validated by determining AM and TZ in spiked tap water and unflavored gelatin spiked with AM and TZ. Because a beverage containing both AM and TZ was not found, the method was applied to the determination of AM in a kola soft drink and TZ in an orange jelly and a soft drink powder.

  16. Rapid determination of nitrophenol isomers in polluted water based on multi-walled carbon nanotubes modified screen-printed electrode

    Directory of Open Access Journals (Sweden)

    Essy Kouadio Fodjo

    2014-07-01

    Full Text Available A sensitive screen-printed electrode modified with multi-walled carbon nanotubes (MWCNTs/SPE was applied to determine simultaneously m-nitrophenol, o-nitrophenol and p-nitrophenol. The electrochemical response showed that o-nitrophenol, m-nitrophenol and p-nitrophenol were entirely separated at the MWCNTs/SPE interface. Under the optimized conditions, it was found that the detection limits were 8.1×10-8 , 5.5×10-7 and 2.0×10-7 M and the linear calibration ranges were 1.0×10-6 ~1.9×10-5 M, 2.5×10-6 ~2.1×10-5 M and 2.0×10-6 ~2.0×10-5 M for m-nitrophenol, o-nitrophenol and p-nitrophenol respectively, proving that the electrode presented here could be easily used to determine nitrophenol isomers simultaneously with high sensitivity within pH range from 4.8 to 8.0. The applications in water samples showed that no interferences appeared with deviations below 5% to the determination of nitrophenol isomers with 1000 fold excess, indicating a good response of this method for nitrophenol isomers detection. This disposable modified SPE combining with a portable electrochemical device were performed for wastewater samples on-field rapid determination.

  17. Electrochemical Behavior and Determination of Chlorogenic Acid Based on Multi-Walled Carbon Nanotubes Modified Screen-Printed Electrode

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ma

    2016-10-01

    Full Text Available In this paper, the multi-walled carbon nanotubes modified screen-printed electrode (MWCNTs/SPE was prepared and the MWCNTs/SPE was employed for the electrochemical determination of the antioxidant substance chlorogenic acids (CGAs. A pair of well-defined redox peaks of CGA was observed at the MWCNTs/SPE in 0.10 mol/L acetic acid-sodium acetate buffer (pH 6.2 and the electrode process was adsorption-controlled. Cyclic voltammetry (CV and differential pulse voltammetry (DPV methods for the determination of CGA were proposed based on the MWCNTs/SPE. Under the optimal conditions, the proposed method exhibited linear ranges from 0.17 to 15.8 µg/mL, and the linear regression equation was Ipa (µA = 4.1993 C (×10−5 mol/L + 1.1039 (r = 0.9976 and the detection limit for CGA could reach 0.12 µg/mL. The recovery of matrine was 94.74%–106.65% (RSD = 2.92% in coffee beans. The proposed method is quick, sensitive, reliable, and can be used for the determination of CGA.

  18. Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, G; Guix, M; Ambrosi, A; Merkoci, A [Nanobioelectronics and Biosensors Group, Catalan Institute of Nanotechnology, Campus UAB, 08193 Bellaterra, Barcelona, Catalonia (Spain); Ramirez Silva, M T [Departamento de Quimica, Universidad Autonoma Metropolitana Iztapalapa, 09340 Mexico Distrito Federal (Mexico); Palomar Pardave, M E, E-mail: arben.merkoci.icn@uab.es [Departamento de Materiales, Universidad Autonoma Metropolitana, Azcapotzalco, 02200 Mexico Distrito Federal (Mexico)

    2010-06-18

    A stable and sensitive biosensor for phenol detection based on a screen printed electrode modified with tyrosinase, multiwall carbon nanotubes and glutaraldehyde is designed and applied in a flow injection analytical system. The proposed carbon nanotube matrix is easy to prepare and ensures a very good entrapment environment for the enzyme, being simpler and cheaper than other reported strategies. In addition, the proposed matrix allows for a very fast operation of the enzyme, that leads to a response time of 15 s. Several parameters such as the working potential, pH of the measuring solution, biosensor response time, detection limit, linear range of response and sensitivity are studied. The obtained detection limit for phenol was 0.14 x 10{sup -6} M. The biosensor keeps its activity during continuous FIA measurements at room temperature, showing a stable response (RSD 5%) within a two week working period at room temperature. The developed biosensor is being applied for phenol detection in seawater samples and seems to be a promising alternative for automatic control of seawater contamination. The developed detection system can be extended to other enzyme biosensors with interest for several other applications.

  19. Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin

    International Nuclear Information System (INIS)

    Gomez, Federico José Vicente; Martín, Aída; Escarpa, Alberto; Silva, María Fernanda

    2015-01-01

    Single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT) and graphene have been tested as carbon allotropes for the modification of carbon screen-printed electrodes (CSPEs) to simultaneously determine melatonin (MT) and serotonin (5-HT). Two groups of CSPEs, both 4 mm in diameter, were explored: The first includes commercial SWCNT, MWCNT and graphene, the second includes SWCNT, MWCNT, graphene oxide nanoribbons and reduced nanoribbons that were drop casted on the electrodes. The carbon nanomaterials enhanced the electroactive area in the following order: CSPE

  20. Simultaneous DPV determination of morphine and codeine using dsDNA modified screen printed electrode strips coupled with electromembrane extraction

    Directory of Open Access Journals (Sweden)

    Rouhollah Feizbakhsh

    2016-01-01

    Full Text Available In this work a sensitive electrochemical sensor for simultaneous determination of morphine and codeine constructed by application of disposable screen printed carbon electrode strips (SPCE modified by double strand (ds calf thymus DNA. According to the results of the modified SPCE strips and experimented parameters, we observed a considerable shift between potentials of morphine and codeine current peaks. Related to these observed shifts, we studied on the effect of the concentration of modifier and pH value on the anodic oxidation pattern of morphine and codeine in the case of optimize the method to get better signals with maximum potential distance. Also to boosting the LODs of this electroanalytical method coupled with an electro-membrane preconcentration (EME step. The calibration curve which was plotted by the variation of differential pulse voltammetry (DPV currents as a function of different morphine and codeine concentration were linear within the range of 0.7– 40 µM and 2.3- 40 µM for morphine and codeine respectively. Also the limits of detection were 0.07 µM and 0.23 µM, respectively. Finally, the proposed method was able to determine morphine and codeine simultaneously and effectively in urinary real samples