WorldWideScience

Sample records for scientific drilling main

  1. Drilling for scientific purpose

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi

    1987-09-01

    Drilling for scientific purpose is a process of conducting geophysical exploration at deep underground and drilling for collecting crust samples directly. This is because earth science has advanced to get a good understanding about the top of the crust and has shifted its main interest to the lower layer of the crust in land regions. The on-land drilling plan in Japan has just started, and the planned drilling spots are areas around the Minami River, Hidaka Mts., kinds of the Mesozoic and Cenozoic granite in outside zone, the extension of Japan Sea, Ogasawara Is., Minami-Tori Is., and active volcanos. The paper also outlines the present situation of on-land drilling in the world, focusing on the SG-3rd super-deep well SG-3 on the Kola Peninsula, USSR, Satori SG-1st well SG-1 in Azerbaidzhan S.S.R, V.S.S.R, Sweden's wells, Cyprus' wells, Bayearn well Plan in West Germany, and Salton Sea Scientific Drilling Program in the U.S. At its end, the paper explains the present situation and the future theme of the Japanese drilling technique and points out the necessity of developing equipment, and techniques. (14 figs, 5 tabs, 26 refs)

  2. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    Science.gov (United States)

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  3. Avoiding pollution in scientific ocean drilling

    International Nuclear Information System (INIS)

    Francis, T.J.G.

    1999-01-01

    Scientific ocean drilling has been carried out in the world's oceans since the nineteen sixties. From 1968-83 the Deep Sea Drilling Project (DSDP), managed by the Scripps Institution of Oceanography in California under a contract with the US National Science Foundation, employed the drilling vessel Glomar Challenger for this purpose. In January 1985 the Ocean Drilling Program (GDP), operated by Texas A and M University, began operations with the drillship JOIDES Resolution which continue to this day. The principal funding agency remains the US National Science Foundation, but since its inception GDP has been an international program and currently receives financial support from 21 countries. The ODP operates globally and, as with DSDP before it, drills without a riser or blowout preventer in a wide range of geological environments. Water depths at GDP drill sites have ranged from 38 m to 5969 m, but are typically within the range 1000-5000 m. Depths of penetration at GDP drill sites, while generally less than 1000 m, have ranged up to 2111 m below the sea floor. The drilling fluid is seawater, although occasional slugs of mud are circulated to clean or condition the hole. Thus drilling is carried out without well control, i.e. without the ability to control pressures within the well. Because of the absence of well control, it is vital to ensure that the drillship does not drill into an accumulation of oil or gas. Drilling into a charged reservoir and causing oil or gas to escape into the marine environment is recognised as the main pollution hazard in scientific ocean drilling

  4. The Swedish Deep Drilling Program - an emerging scientific drilling program and new infrastructure.

    Science.gov (United States)

    Lorenz, Henning; Juhlin, Christopher

    2010-05-01

    Scientific drilling projects imply numerous aspects that are difficult to handle for individual research groups. Therefore, about three years ago a joint effort was launched in the Swedish geoscientific community to establish a national program for scientific drilling, the Swedish Deep Drilling Program (SDDP). Soon afterwards, several working groups established drilling proposals with Nordic and, also, international participation. With this serious interest in scientific drilling SDDP was able to successfully promote the Swedish membership in ICDP which commenced in 2008. Two SDDP projects achieved workshop grants from the International Continental Scientific Drilling Program (ICDP) in 2009. In the same year the Swedish Research Council decided to support an application for a truck-mounted drill rig - a big success for the SDDP working group. Scientific Drilling infrastructure: SDDP envisages a mobile platform that is capable of core drilling to at least 2500 m depth. The procurement will be made during 2010 and first operations are planned for 2011. This drill rig is primarily intended for use in the SDDP drilling projects, but will be rented out to other scientific drilling projects or even commercial enterprises in the remaining time to cover maintenance and future upgrade costs. SDDP's drill rig will be unique in Europe and complementary to the deep drilling InnovaRig of the GFZ German Research Centre for Geosciences. Until now, drilling to 2000 - 3000 m implied the use of a full-sized drill rig like the InnovaRig or the mobilization of a core drill rig from another continent. This gap will now be filled by Sweden's upcoming scientific drilling infrastructure. Drilling projects and proposals: Presently, SDDP serves six projects: "Collisional Orogeny in the Scandinavian Caledonides" (COSC; ICDP workshop spring 2010), the "Postglacial Fault Drilling Project" (PFDP; ICDP workshop autumn 2010), a "Deep Rock Laboratory" (DRL), "Palaeoproterozoic Mineralized Volcanic

  5. Scientific Drilling in the Arctic Ocean: A challenge for the next decades

    Science.gov (United States)

    Stein, R.; Coakley, B.

    2009-04-01

    Although major progress in Arctic Ocean research has been made during the last decades, the knowledge of its short- and long-term paleoceanographic and paleoclimatic history as well as its plate-tectonic evolution is much behind that from the other world's oceans. That means - despite the importance of the Arctic in the climate system - the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. This lack of knowledge is mainly caused by the major technological/ logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the successful completion of IODP Expedition 302 ("Arctic Coring Expedition" - ACEX), the first Mission Specific Platform (MSP) expedition within the Integrated Ocean Drilling Program - IODP, a new era in Arctic research has begun. For the first time, a scientific drilling in the permanently ice-covered Arctic Ocean was carried out, penetrating about 430 meters of Quaternary, Neogene, Paleogene and Campanian sediment on the crest of Lomonosov Ridge close to the North Pole. The success of ACEX has certainly opened the door for further scientific drilling in the Arctic Ocean, and will frame the next round of questions to be answered from new drill holes to be taken during the next decades. In order to discuss and plan the future of scientific drilling in the Arctic Ocean, an international workshop was held at the Alfred Wegener Institute (AWI) in Bremerhaven/Germany, (Nov 03-05, 2008; convenors: Bernard Coakley/University of Alaska Fairbanks and Ruediger Stein/AWI Bremerhaven). About 95 scientists from Europe, US, Canada, Russia, Japan, and Korea, and observers from oil companies participated in the workshop. Funding of the workshop was provided by the Consortium for Ocean Leadership (US), the European Science Foundation, the Arctic Ocean Sciences Board, and the

  6. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    Energy Technology Data Exchange (ETDEWEB)

    Ross, H.P.; Forsgren, C.K. (eds.)

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  7. Addressing submarine geohazards through scientific drilling

    Science.gov (United States)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  8. Scientific Drilling with the Sea Floor Drill Rig MeBo

    Directory of Open Access Journals (Sweden)

    Gerold Wefer

    2007-09-01

    Full Text Available In March 2007 the sea floor drill rig MeBo (short for “Meeresboden-Bohrgerät”, ‘sea floor drill rig’ in German returned from a 17-day scientific cruise with the new German research vessel Maria S. Merian. Four sites between 350 m and 1700 m water depth were sampled at the continental slope off Morocco by push coring and rotary drilling. Up to 41.5-m-long sediment cores were recovered from Miocene, Pliocene, and Pleistocene marls. MeBo bridges the gapbetween conventional sampling methods from standard multipurpose research vessels (gravity corer, piston corer, dredges and drill ships. Most bigger research vessels will be able to support deployment of the MeBo. Since the drill system can be easily transported within 20-ft containers, worldwide operation from vessels of opportunity is possible. With the MeBo a new system is available for marine geosciences that allows the recovery of high quality samples from soft sediments and hard rock from the deep sea withoutrelying on the services of expensive drilling vessels.

  9. Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies

    Science.gov (United States)

    Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.

    2012-04-01

    In spite of the critical role of the Arctic Ocean in climate evolution, our understanding of the short- and long-term paleoceanographic and paleoclimatic history through late Mesozoic-Cenozoic times, as well as its plate-tectonic evolution, remains behind that from the other world's oceans. This lack of knowledge is mainly caused by the major technological/logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the Arctic Coring Expedition - ACEX (or IODP Expedition 302), the first Mission Specific Platform (MSP) expedition within IODP, a new era in Arctic research began (Backman, Moran, Mayer, McInroy et al., 2006). ACEX proved that, with an intensive ice-management strategy, successful scientific drilling in the permanently ice-covered central Arctic Ocean is possible. ACEX is certainly a milestone in Arctic Ocean research, but - of course - further drilling activities are needed in this poorly studied ocean. Furthermore, despite the success of ACEX fundamental questions related to the long- and short-term climate history of the Arctic Ocean during Mesozoic-Cenozoic times remain unanswered. This is partly due to poor core recovery during ACEX and, especially, because of a major mid-Cenozoic hiatus in this single record. Since ACEX, a series of workshops were held to develop a scientific drilling strategy for investigating the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system: - "Arctic Ocean History: From Speculation to Reality" (Bremerhaven/Germany, November 2008); - "Overcoming barriers to Arctic Ocean scientific drilling: the site survey challenge" (Copenhagen/Denmark, November 2011); - Circum-Arctic shelf/upper continental slope scientific drilling workshop on "Catching Climate Change in Progress" (San Francisco/USA, December 2011); - "Coordinated Scientific Drilling in the Beaufort Sea: Addressing

  10. Scientific Ocean Drilling Behind the Assessment of Geo-Hazards from Submarine Slides

    Directory of Open Access Journals (Sweden)

    Gemma Ercilla

    2007-03-01

    Full Text Available The workshop ‘Scientific Ocean Drilling Behind the Assessment of Geo-hazards from Submarine Slides’ was held on 25–27 October 2006 in Barcelona (Spain. Fifty mainly European scientists and industry representatives attended from a wide spectrum of disciplines such as geophysics, stratigraphy, sedimentology, paleoceanography, marinegeotechnology, geotechnical engineering, and tsunami modeling.

  11. Semantic Approaches Applied to Scientific Ocean Drilling Data

    Science.gov (United States)

    Fils, D.; Jenkins, C. J.; Arko, R. A.

    2012-12-01

    The application of Linked Open Data methods to 40 years of data from scientific ocean drilling is providing users with several new methods for rich-content data search and discovery. Data from the Deep Sea Drilling Project (DSDP), Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) have been translated and placed in RDF triple stores to provide access via SPARQL, linked open data patterns, and by embedded structured data through schema.org / RDFa. Existing search services have been re-encoded in this environment which allows the new and established architectures to be contrasted. Vocabularies including computed semantic relations between concepts, allow separate but related data sets to be connected on their concepts and resources even when they are expressed somewhat differently. Scientific ocean drilling produces a wide range of data types and data sets: borehole logging file-based data, images, measurements, visual observations and the physical sample data. The steps involved in connecting these data to concepts using vocabularies will be presented, including the connection of data sets through Vocabulary of Interlinked Datasets (VoID) and open entity collections such as Freebase and dbPedia. Demonstrated examples will include: (i) using RDF Schema for inferencing and in federated searches across NGDC and IODP data, (ii) using structured data in the data.oceandrilling.org web site, (iii) association through semantic methods of age models and depth recorded data to facilitate age based searches for data recorded by depth only.

  12. Beyond 2013 - The Future of European Scientific Drilling Research - An introduction.

    Science.gov (United States)

    Camoin, G.; Stein, R.

    2009-04-01

    The Integrated Ocean Drilling Program (IODP) is funded for the period 2003-2013, and is now starting to plan the future of ocean drilling beyond 2013, including the development of new technologies, new emerging research fields as and the societal relevance of this programme. In this context an interdisciplinary and multinational (USA, Europe, Japan, Asian and Oceanian countries), key conference - INVEST IODP New Ventures in Exploring Scientific Targets - addressing all international IODP partners is therefore planned for September 23rd-25th 2009 in Bremen, Germany (more information at http://www.iodp.org and http://marum.de/iodp-invest.html) to discuss future directions of ocean drilling research and related aspects such as ventures with related programmes or with industry. The first critical step of INVEST is to define the scientific research goals of the second phase of the Integrated Ocean Drilling Program (IODP), which is expected to begin in late 2013. INVEST will be open to all interested scientists and students and will be the principal opportunity for the international science community to help shape the future of scientific ocean drilling. The outcome of the conference will be the base to draft a science plan in 2010 and to define new goals and strategies to effectively meet the challenges of society and future ocean drilling. The current EGU Session and the related two days workshop which will be held at the University of Vienna will specifically address the future of European scientific drilling research. The major objectives of those two events are to sharpen the European interests in the future IODP and to prepare the INVEST Conference and are therefore of prime importance to give weight to the European propositions in the program renewal processes, both on science, technology and management, and to provide the participants with information about the status/process of ongoing discussions and negotiations regarding program structure, and provide them

  13. Scientific Ocean Drilling to Assess Submarine Geohazards along European Margins

    Science.gov (United States)

    Ask, M. V.; Camerlenghi, A.; Kopf, A.; Morgan, J. K.; Ocean DrillingSeismic Hazard, P. E.

    2008-12-01

    Submarine geohazards are some of the most devastating natural events in terms of lives lost and economic impact. Earthquakes pose a big threat to society and infrastructure, but the understanding of their episodic generation is incomplete. Tsunamis are known for their potential of striking coastlines world-wide. Other geohazards originating below the sea surface are equally dangerous for undersea structures and the coastal population: submarine landslides and volcanic islands collapse with little warning and devastating consequences. The European scientific community has a strong focus on geohazards along European and nearby continental margins, especially given their high population densities, and long historic and prehistoric record of hazardous events. For example, the Mediterranean is surrounded by very densely-populated coastline and is the World's leading holiday destination, receiving up 30% of global tourism. In addition, its seafloor is criss-crossed by hydrocarbon pipelines and telecommunication cables. However, the governing processes and recurrence intervals of geohazards are still poorly understood. Examples include, but are not limited to, earthquakes and volcanic eruptions along the active tectonic margins of the Mediterranean and Sea of Marmara, landslides on both active and passive margins, and tsunamites and seismites in the sedimentary record that suggest a long history of similar events. The development of geophysical networks, drilling, sampling and long-term monitoring are crucial to the understanding of earthquake, landslide, and tsunami processes, and to mitigate the associated risks in densely populated and industrialized regions such as Europe. Scientific drilling, particularly in the submarine setting, offers a unique tool to obtain drill core samples, borehole measurements and long-term observations. Hence, it is a critical technology to investigate past, present, and possible future influences of hazardous processes in this area. The

  14. Using Deep-Sea Scientific Drilling to Enhance Ocean Science Literacy

    Science.gov (United States)

    Passow, Michael; Cooper, Sharon; Kurtz, Nicole; Burgio, Marion; Cicconi, Alessia

    2017-04-01

    Beginning with confirmation of sea floor spreading in Leg 3 of the Deep Sea Drilling Project in 1968, scientific ocean drilling has provided much of the evidence supporting modern understanding of the Earth System, global climate changes, and many other important concepts. But for more than three decades, results of discoveries were published primarily in scientific journals and cruise volumes. On occasion, science journalists would write articles for the general public, but organized educational outreach efforts were rare. Starting about a decade ago, educators were included in the scientific party aboard the JOIDES Resolution. These "teachers-at-sea" developed formats to translate the technical and scientific activities into language understandable to students, teachers, and the public. Several "Schools of Rock" have enabled groups of teachers and informal science educators to experience what happens aboard the JOIDES Resolution. Over the past few years, educational outreach efforts based on scientific drilling expanded to create a large body of resources that promote Ocean Science Literacy. Partnerships between scientists and educators have produced a searchable database of inquiry-centered classroom and informal science activities. These are available for free through the JOIDES Resolution website, joidesresolution.org. Activities are aligned with the Ocean Literacy Principles (http://oceanliteracy.wp2.coexploration.org/) and Science Education Standards. In addition to a suite of lessons based on the science behind scientific drilling, participants have developed a range of educational resources that include graphic novels ("Tales of the Resolution" (http://joidesresolution.org/node/263) ; children's books ("Uncovering Earth's Secrets" and "Where the Wild Microbes Grow" http://joidesresolution.org/node/2998); posters, videos, and other materials. Cooper and Kurtz are currently overseeing improvements and revisions to the JR education website pages. The

  15. Quo Vadis ICDP? The Science Plan of the International Continental Scientific Drilling Program.

    Science.gov (United States)

    Horsfield, Brian

    2014-05-01

    The rocks and fluids of our ever-changing planet contain heat, energy, and life as well as archived records of what has gone before. These precious relicts and living systems need to be probed, collected, monitored and analyzed. The science results obtained cover the spectrum of the earth sciences from climate change, natural hazards and earth resources to the origins of life on Earth. The need to drill has never been greater, and this requires improved coordination between the marine, terrestrial and ice-coring communities and the research and private sector communities, effectively addressing the needs of our growing population for energy, sustenance, and quality of life. The ICDP is an infrastructure for scientific drilling that facilitates outstanding science. It is the only international platform for scientific research drilling in terrestrial environments. ICDP brings together scientists and stakeholders from 24 nations to work together at the highest scientific and technical niveaux. More than 30 drilling projects and 55 planning workshops have been supported to date. It is an efficient organisation, run according to the philosophy "lean and mean", with an average annual budget of about 5 million, and further third-party drilling expenditures that more than doubles this yearly investment. Here we report on ICDP's 2013 Science Conference "Imaging the Past to Imagine our Future", held November 11-14, 2013 in Potsdam whose goal was to set the new ICDP Science Plan in motion. New insights into geoprocesses and the identification of hot topics were high on the agenda, and debated in closed sessions, via posters and through oral presentations, and where appropriate dovetailed with socio-economic challenges. The conference was used to strengthen and expand our ties with member countries, and to debate incorporating industry into selected ICDP strategic activities where it makes sense to do so (ICDP remains science-driven). In addition, the conference paved the way

  16. Log response of ultrasonic imaging and its significance for deep mineral prospecting of scientific drilling borehole-2 in Nanling district, China

    International Nuclear Information System (INIS)

    Xiao, Kun; Zou, Changchun; Xiang, Biao; Yue, Xuyuan; Zhou, Xinpeng; Li, Jianguo; Zhao, Bin

    2014-01-01

    The hole NLSD-2, one of the deepest scientific drilling projects in the metallic ore districts of China, is the second scientific drilling deep hole in the Nanling district. Its ultimate depth is 2012.12 m. This hole was created through the implementation of continuous coring, and the measuring of a variety of geophysical well logging methods was performed over the course of the drilling process. This paper analyzes the characteristic responses of the fracture and fractured zone by ultrasonic imaging log data, and characterizes various rules of fracture parameters which change according to drilling depth. It then discusses the denotative meaning of the log results of polymetallic mineralization layers. The formation fractures develop most readily in a depth of 100∼200 m, 600∼850 m and 1450∼1550 m of the hole NLSD-2, and high angle fractures develop most prominently. The strike direction of the fractures is mainly NW-SE, reflecting the orientation of maximum horizontal principal stress. For the polymetallic mineralization layer that occurred in the fractured zone, the characteristic response of ultrasonic imaging log is a wide dark zone, and the characteristic responses of conventional logs displayed high polarizability, high density, high acoustic velocity and low resistivity. All the main polymetallic mineralization layers are developed in fractures or fractured zones, and the fractures and fractured zones can be identified by an ultrasonic imaging log, thus the log results indirectly indicate the occurrence of polymetallic mineralization layers. Additionally, the relationship between the dip direction of fractures and the well deviation provides guidance for straightening of the drilling hole. (paper)

  17. New roles of LWD and wireline logging in scientific ocean drilling

    Science.gov (United States)

    Sanada, Y.; Kido, Y. N.; Moe, K.; Aoike, K.

    2014-12-01

    D/V Chikyu implemented by CDEX/JAMSTEC joined IODP from 2007. Various LWD (Logging While Drilling) and wireline logging have been carried out in many expeditions and for various purposes. Significant features of logging in Chikyu expeditions are many use of LWD than wireline logging, and riser dirlling. riser selected specific tools for each scientific target, and 3) carried out various borehole experiments. LWD has been more popular than wireline logging in Chikyu expeditions, because its advantages match theirs science targets. The advantages are followings. 1) LWD has more opportunities for measurement in unstable borehole, such as in the series of Nankai trough drilling expeditions. 2) LWD realtime data allows us to make realtime interpretation and operational decision. Realtime interpretation was required to set obsevartory at the properposition. 3) LWD before coring allows us to make a strategy of spot coring.We can design coring intervals for our interest and core length to improve core recovery.Riser drilling brings us merits for logging. One is hole stability (good hole condition) and the other is the use of large diameter tools. Controled drilling mud in riser drilling system prevent mud invasion to formation and mitigates collapse of borehole wall. They reduce the risk of tool stack and improve data quality. Large diameter of riser pipe enhances variation of tool seizes. A couple of new tools were used for new measurement and improvement of the data quality. For example, SonicScanner (trademark of Schulumberger) successfully measured compressional and share velocity in very low velocities at the soft sediment, where it has been difficult to measure them with conventional DSI tool (Exp319). The stress and pore pressure in the borehole were measured with the wireline logging tool, (Schlumberger MDT). The single probe tool enable to measure temporal formation fluid pressure. The double packer tool enable to fracture test by sealing and pumping in the

  18. Operational Review of the First Wireline In Situ Stress Test in Scientific Ocean Drilling

    Directory of Open Access Journals (Sweden)

    Casey Moore

    2012-04-01

    Full Text Available Scientific ocean drilling’s first in situ stress measurement was made at Site C0009A during Integrated Ocean Drilling Program (IODP Expedition 319 as part of Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE Stage 2. The Modular Formation Dynamics Tester (MDT, Schlumbergerwireline logging tool was deployed in riser Hole C0009A to measure in situ formation pore pressure, formation permeability (often reported as mobility=permeability/viscosity, and the least principal stress (S3 at several isolated depths (Saffer et al., 2009; Expedition 319 Scientists, 2010. The importance of in situ stress measurements is not only for scientific interests in active tectonic drilling, but also for geomechanical and well bore stability analyses. Certain in situ tools were not previously available for scientific ocean drilling due to the borehole diameter and open hole limits of riserless drilling. The riser-capable drillship, D/V Chikyu,now in service for IODP expeditions, allows all of the techniques available to estimate the magnitudes and orientations of 3-D stresses to be used. These techniques include downhole density logging for vertical stress, breakout and caliper log analyses for maximum horizontal stress, core-based anelastic strain recovery (ASR, used in the NanTroSEIZE expeditions in 2007–2008, and leak-off test (Lin et al., 2008 and minifrac/hydraulic fracturing (NanTroSEIZE Expedition319 in 2009. In this report, the whole operational planning process related to in situ measurements is reviewed, and lessons learned from Expedition 319 are summarized for efficient planning and testing in the future.

  19. Drilling reorganizes

    Science.gov (United States)

    Richman, Barbara T.

    As the first in a proposed series of steps that would move scientific ocean drilling from its own niche within the National Science Foundation's (NSF) Directorate for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO) into the agency's Division of Ocean Sciences, Grant Gross, division director, has been appointed acting director of the Office of Scientific Ocean Drilling (OSOD). Gross will retain the directorship of the division, which also is part of AAEO. Allen M. Shinn, Jr., OSOD director for nearly 2 years, has been reassigned effective July 10 to a position in NSF's Office of Planning and Resource Management.The move aims to tie drilling operations more closely to the science with which it is associated, Gross said. This first step is an organizational response to the current leaning toward using a commercial drilling vessel as the drilling platform, he said. Before the market for such commercial drill ships opened (Eos, February 22, 1983, p . 73), other ship options for scientific ocean drilling included refurbishing the aging Glomar Challenger or renovating, at great expense, the Glomar Explorer. A possible next step in the reorganization is to make OSOD the third section within the Ocean Sciences Division. Currently, the division is divided into the Oceanographic Facilities and Support Section and the Ocean Sciences Research Section.

  20. Drilling Information System (DIS and Core Scanner

    Directory of Open Access Journals (Sweden)

    Ronald Conze

    2016-04-01

    Full Text Available The Drilling Information System is a modular structure of databases, tailored user applications as well as web services and instruments including appropriate interfaces to DIS. This tool set has been developed for geoscientific drilling projects but is applicable to other distributed scientific operations. The main focuses are the data acquisition on drill sites (ExpeditionDIS, and the curation of sample material e.g., in core repositories (CurationDIS. Due to the heterogeneity of scientific drilling projects, a project-specific DIS is arranged and adjusted from a collection of existing templates and modules according to the user requirements during a one week training course. The collected data are provided to the Science Team of the drilling project by secured Web services, and stored in long-term archives hosted at GFZ. At the end the data sets and sample material are documented in an Operational Report (e.g., Lorenz et al., 2015 and published with assigned DOI (Digital Object Identifier and IGSN (International Geo Sample Number; for physical samples by GFZ Data Services.

  1. Corganiser: a web-based software tool for planning time-sensitive sampling of whole rounds during scientific drilling

    DEFF Research Database (Denmark)

    Marshall, Ian

    2014-01-01

    with a wide range of core and section configurations and can thus be used in future drilling projects. Corganiser is written in the Python programming language and is implemented both as a graphical web interface and command-line interface. It can be accessed online at http://130.226.247.137/.......Corganiser is a software tool developed to simplify the process of preparing whole-round sampling plans for time-sensitive microbiology and geochemistry sampling during scientific drilling. It was developed during the Integrated Ocean Drilling Program (IODP) Expedition 347, but is designed to work...

  2. Exploring frontiers of the deep biosphere through scientific ocean drilling

    Science.gov (United States)

    Inagaki, F.; D'Hondt, S.; Hinrichs, K. U.

    2015-12-01

    Since the first deep biosphere-dedicated Ocean Drilling Program (ODP) Leg 201 using the US drill ship JOIDES Resolution in 2002, scientific ocean drilling has offered unique opportunities to expand our knowledge of the nature and extent of the deep biosphere. The latest estimate of the global subseafloor microbial biomass is ~1029cells, accounting for 4 Gt of carbon and ~1% of the Earth's total living biomass. The subseafloor microbial communities are evolutionarily diverse and their metabolic rates are extraordinarily slow. Nevertheless, accumulating activity most likely plays a significant role in elemental cycles over geological time. In 2010, during Integrated Ocean Drilling Program (IODP) Expedition 329, the JOIDES Resolutionexplored the deep biosphere in the open-ocean South Pacific Gyre—the largest oligotrophic province on our planet. During Expedition 329, relatively high concentrations of dissolved oxygen and significantly low biomass of microbial populations were observed in the entire sediment column, indicating that (i) there is no limit to life in open-ocean sediment and (ii) a significant amount of oxygen reaches through the sediment to the upper oceanic crust. This "deep aerobic biosphere" inhabits the sediment throughout up to ~37 percent of the world's oceans. The remaining ~63 percent of the oceans is comprised of higher productivity areas that contain the "deep anaerobic biosphere". In 2012, during IODP Expedition 337, the Japanese drill ship Chikyu explored coal-bearing sediments down to 2,466 meters below the seafloor off the Shimokita Peninsula, Japan. Geochemical and microbiological analyses consistently showed the occurrence of methane-producing communities associated with the coal beds. Cell concentrations in deep sediments were notably lower than those expected from the global regression line, implying that the bottom of the deep biosphere is approached in these beds. Taxonomic composition of the deep coal-bearing communities profoundly

  3. Scientific drilling into the San Andreas fault and site characterization research: Planning and coordination efforts. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Zoback, M.D.

    1998-08-30

    The fundamental scientific issue addressed in this proposal, obtaining an improved understanding of the physical and chemical processes responsible for earthquakes along major fault zones, is clearly of global scientific interest. By sampling the San Andreas fault zone and making direct measurements of fault zone properties to 4.0 km at Parkfield they will be studying an active plate-boundary fault at a depth where aseismic creep and small earthquakes occur and where a number of the scientific questions associated with deeper fault zone drilling can begin to be addressed. Also, the technological challenges associated with drilling, coring, downhole measurements and borehole instrumentation that may eventually have to be faced in deeper drilling can first be addressed at moderate depth and temperature in the Parkfield hole. Throughout the planning process leading to the development of this proposal they have invited participation by scientists from around the world. As a result, the workshops and meetings they have held for this project have involved about 350 scientists and engineers from about a dozen countries.

  4. Determination of three-dimensional stress orientations in the Wenchuan earthquake Fault Scientific Drilling (WFSD) hole-1: A preliminary result by anelastic strain recovery measurements of core samples

    Science.gov (United States)

    Cui, J.; Lin, W.; Wang, L.; Tang, Z.; Sun, D.; Gao, L.; Wang, W.

    2010-12-01

    A great and destructive earthquake (Ms 8.0; Mw 7.9), Wunchuan earthquake struck on the Longmen Shan foreland trust zone in Sichuan province, China on 12 May 2008 (Xu et al., 2008; Episodes, Vol.31, pp.291-301). As a rapid response scientific drilling project, Wenchuan earthquake Fault Scientific Drilling (WFSD) started on 6 November 2008 shorter than a half of year from the date of earthquake main shock. The first pilot borehole (hole-1) has been drilled to the target depth (measured depth 1201 m MD, vertical depth 1179 m) at Hongkou, Dujianyan, Sichuan and passed through the main fault of the earthquake around 589 m MD. We are trying to determine three dimensional in-situ stress states in the WFSD boreholes by a core-based method, anelastic strain recovery (ASR) method (Lin et al., 2006; Tectonophysics, Vol4.26, pp.221-238). This method has been applied in several scientific drilling projects (TCDP: Lin et al., 2007; TAO, Vol.18, pp.379-393; NanTtoSEIZE: Byrne et al., 2009; GRL, Vol.36, L23310). These applications confirm the validity of using the ASR technique in determining in situ stresses by using drilled cores. We collected total 15 core samples in a depth range from 340 m MD to 1180 m MD, approximately for ASR measurements. Anelastic normal strains, measured every ten minutes in nine directions, including six independent directions, were used to calculate the anelastic strain tensors. The data of the ASR tests conducted at hole-1 is still undergoing analysis. As a tentative perspective, more than 10 core samples showed coherent strain recovery over one - two weeks. However, 2 or 3 core samples cannot be re-orientated to the global system. It means that we cannot rink the stress orientation determined by the core samples to geological structure. Unfortunately, a few core samples showed irregular strain recovery and were not analyzed further. The preliminary results of ASR tests at hole-1 show the stress orientations and stress regime changes a lot with the

  5. Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2)

    Science.gov (United States)

    Ryu, Byong-Jae; Collett, Timothy S.; Riedel, Michael; Kim, Gil-Young; Chun, Jong-Hwa; Bahk, Jang-Jun; Lee, Joo Yong; Kim, Ji-Hoon; Yoo, Dong-Geun

    2013-01-01

    As a part of Korean National Gas Hydrate Program, the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) was conducted from 9 July to 30 September, 2010 in the Ulleung Basin, East Sea, offshore Korea using the D/V Fugro Synergy. The UBGH2 was performed to understand the distribution of gas hydrates as required for a resource assessment and to find potential candidate sites suitable for a future offshore production test, especially targeting gas hydrate-bearing sand bodies in the basin. The UBGH2 sites were distributed across most of the basin and were selected to target mainly sand-rich turbidite deposits. The 84-day long expedition consisted of two phases. The first phase included logging-while-drilling/measurements-while-drilling (LWD/MWD) operations at 13 sites. During the second phase, sediment cores were collected from 18 holes at 10 of the 13 LWD/MWD sites. Wireline logging (WL) and vertical seismic profile (VSP) data were also acquired after coring operations at two of these 10 sites. In addition, seafloor visual observation, methane sensing, as well as push-coring and sampling using a Remotely Operated Vehicle (ROV) were conducted during both phases of the expedition. Recovered gas hydrates occurred either as pore-filling medium associated with discrete turbidite sand layers, or as fracture-filling veins and nodules in muddy sediments. Gas analyses indicated that the methane within the sampled gas hydrates is primarily of biogenic origin. This paper provides a summary of the operational and scientific results of the UBGH2 expedition as described in 24 papers that make up this special issue of the Journal of Marine and Petroleum Geology.

  6. Thermal regime of the State 2-14 well, Salton Sea Scientific Drilling Project

    Science.gov (United States)

    Sass, J.H.; Priest, S.S.; Duda, L.E.; Carson, C.C.; Hendricks, J.D.; Robison, L.C.

    1988-01-01

    Temperature logs were made repeatedly during breaks in drilling and both during and after flow tests in the Salton Sea Scientific Drilling Project well (State 2-14). The purpose of these logs was to assist in identifying zones of fluid loss or gain and to characterize reservoir temperatures. At the conclusion of the active phase of the project, a series of logs was begun in an attempt to establish the equilibrium temperature profile. Thermal gradients decrease from about 250 mK m-1 in the upper few hundred meters to just below 200 mK m-1 near the base of the conductive cap. Using one interpretation, thermal conductivities increase with depth (mainly because of decreasing porosity), resulting in component heat flows that agree reasonably well with the mean of about 450 mW m-2. This value agrees well with heat flow data from the shallow wells within the Salton Sea geothermal field. A second interpretation, in which measured temperature coefficients of quartz- and carbonate-rich rocks are used to correct thermal conductivity, results in lower mean conductivities that are roughly constant with depth and, consequently, systematically decreasing heat flux averaging about 350 mW m-2 below 300 m. This interpretation is consistent with the inference (from fluid inclusion studies) that the rocks in this part of the field were once several tens of degrees Celsius hotter than they are now. The age of this possible disturbance is estimated at a few thousand years. -from Authors

  7. Magnetic insights on seismogenic processes from scientific drilling of fault

    Science.gov (United States)

    Ferre, E. C.; Chou, Y. M.; Aubourg, C. T.; Li, H.; Doan, M. L.; Townend, J.; Sutherland, R.; Toy, V.

    2017-12-01

    Modern investigations through scientific drilling of recently seismogenic faults have provided remarkable insights on the physics of rupture processes. Following devastating earthquakes, several drilling programs focused since 1995 on the Nojima, Chelungpu, San Andreas, Wenchuan, Nankai Trough, Japan Trench and New Zealand Alpine faults. While these efforts were all crowned with success largely due to the multidisciplinarity of investigations, valuable insights were gained from rock magnetism and paleomagnetism and deserve to be highlighted. Continuous logging of magnetic properties allows detection of mineralogical and chemical changes in the host rock and fault zone particularly in slip zones, whether these are caused by frictional melting, elevation of temperature, ultracataclasis, or post-seismic fluid rock interaction. Further magnetic experiments on discrete samples including magnetic susceptibility, natural remanent magnetization, hysteresis properties, isothermal remanent magnetization acquisition and first order reversal curves, provide additional constrains on the nature, concentration and grain size of magnetic carriers. These experiments typically also inform on magnetization processes by thermal, chemical, or electrical mechanisms. Magnetic fabrics are generally not investigated on fault rocks from drill cores primarily in an effort to conserve the recovered core. However, recent methodological developments now would allow chemically non-destructive anisotropy of magnetic susceptibility (AMS) measurements to be performed on small 3.5 mm cubes. The mini-AMS method could provide crucial information on the kinematics of frictional melts produced during recent or ancient earthquakes and therefore would constrain the corresponding focal mechanisms. Finally, demagnetization experiments of the natural remanent magnetization (NRM) are one of the most powerful items in the magnetic toolkit because they provide chronological constrains on magnetization processes

  8. Rapid Response Fault Drilling Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Demian M. Saffer

    2009-09-01

    Full Text Available New information about large earthquakes can be acquired by drilling into the fault zone quickly following a large seismic event. Specifically, we can learn about the levels of friction and strength of the fault which determine the dynamic rupture, monitor the healing process of the fault, record the stress changes that trigger aftershocks and capture important physical and chemical properties of the fault that control the rupture process. These scientific and associated technical issues were the focus of a three-day workshop on Rapid Response Fault Drilling: Past, Present, and Future, sponsored by the International Continental Scientific Drilling Program (ICDP and the Southern California Earthquake Center (SCEC. The meeting drewtogether forty-four scientists representing ten countries in Tokyo, Japan during November 2008. The group discussed the scientific problems and how they could be addressed through rapid response drilling. Focused talks presented previous work on drilling after large earthquakes and in fault zones in general, as well as the state of the art of experimental techniques and measurement strategies. Detailed discussion weighed the tradeoffs between rapid drilling andthe ability to satisfy a diverse range of scientific objectives. Plausible drilling sites and scenarios were evaluated. This is a shortened summary of the workshop report that discusses key scientific questions, measurement strategies, and recommendations. This report can provide a starting point for quickly mobilizing a drilling program following future large earthquakes. The full report can be seen at http://www.pmc.ucsc.edu/~rapid/.

  9. Modeling pellet impact drilling process

    Science.gov (United States)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  10. Integrated core-log interpretation of Wenchuan earthquake Fault Scientific Drilling project borehole 4 (WFSD-4)

    Science.gov (United States)

    Konaté, Ahmed Amara; Pan, Heping; Ma, Huolin; Qin, Zhen; Traoré, Alhouseiny

    2017-08-01

    Understanding slip behavior of active fault is a fundamental problem in earthquake investigations. Well logs and cores data provide direct information of physical properties of the fault zones at depth. The geological exploration of the Wenchuan earthquake Scientific Fault drilling project (WFSD) targeted the Yingxiu-Beichuan fault and the Guanxian Anxian fault, respectively. Five boreholes (WFSD-1, WFSD-2, WFSD-3P WFSD-3 and WFSD-4) were drilled and logged with geophysical tools developed for the use in petroleum industry. WFSD-1, WFSD-2 and WFSD-3 in situ logging data have been reported and investigated by geoscientists. Here we present for the first time, the integrated core-log studies in the Northern segment of Yingxiu-Beichuan fault (WFSD-4) thereby characterizing the physical properties of the lithologies(original rocks), fault rocks and the presumed slip zone associated with the Wenchuan earthquake. We also present results from the comparison of WFSD-4 to those obtained from WFSD-1, WFSD-3 and other drilling hole in active faults. This study show that integrated core-log study would help in understanding the slip behavior of active fault.

  11. Determination of In-situ Rock Thermal Properties from Geophysical Log Data of SK-2 East Borehole, Continental Scientific Drilling Project of Songliao Basin, NE China

    Science.gov (United States)

    Zou, C.; Zhao, J.; Zhang, X.; Peng, C.; Zhang, S.

    2017-12-01

    Continental Scientific Drilling Project of Songliao Basin is a drilling project under the framework of ICDP. It aims at detecting Cretaceous environmental/climate changes and exploring potential resources near or beneath the base of the basin. The main hole, SK-2 East Borehole, has been drilled to penetrate through the Cretaceous formation. A variety of geophysical log data were collected from the borehole, which provide a great opportunity to analyze thermal properties of in-situ rock surrounding the borehole.The geothermal gradients were derived directly from temperature logs recorded 41 days after shut-in. The matrix and bulk thermal conductivity of rock were calculated with the geometric-mean model, in which mineral/rock contents and porosity were required as inputs (Fuchs et. al., 2014). Accurate mineral contents were available from the elemental capture spectroscopy logs and porosity data were derived from conventional logs (density, neutron and sonic). The heat production data were calculated by means of the concentrations of uranium, thorium and potassium determined from natural gamma-ray spectroscopy logs. Then, the heat flow was determined by using the values of geothermal gradients and thermal conductivity.The thermal parameters of in-situ rock over the depth interval of 0 4500m in the borehole were derived from geophysical logs. Statistically, the numerical ranges of thermal parameters are in good agreement with the measured values from both laboratory and field in this area. The results show that high geothermal gradient and heat flow exist over the whole Cretaceous formation, with anomalously high values in the Qingshankou formation (1372.0 1671.7m) and the Quantou formation (1671.7 2533.5m). It is meaningful for characterization of geothermal regime and exploration of geothermal resources in the basin. Acknowledgment: This work was supported by the "China Continental Scientific Drilling Program of Cretaceous Songliao Basin (CCSD-SK)" of China

  12. Scientific Results of Conduit Drilling in the Unzen Scientific Drilling Project (USDP

    Directory of Open Access Journals (Sweden)

    Kozo Uto

    2005-09-01

    Full Text Available Abstract Directional drilling at Unzen Volcano in Japan duringmid of 2004 penetrated the magma conduit and successfullyrecovered samples of the lava dike that is believed to havefed the 1991–1995 eruption. The dike was sampled about1.3 km below the volcano’s summit vent and is intrudedinto a broader conduit zone that is 0.5 km wide. This zoneconsists of multiple older lava dikes and pyroclastic veinsand has cooled to less than 200˚C. The lava dike sample wasunexpectedly altered, suggesting that circulation of hydrothermalfluids rapidly cools the conduit region of even veryactive volcanoes. It is likely that seismic signals monitoredprior to emergence of the lava dome reflected fracturing ofthe country rocks, caused by veining as volatiles escapedpredominantly upward, not outward, from the rising magma.Geophysical and geological investigation of cuttings andcore samples from the conduit and of bore-hole logging datacontinues.

  13. Advanced Drilling through Diagnostics-White-Drilling

    International Nuclear Information System (INIS)

    FINGER, JOHN T.; GLOWKA, DAVID ANTHONY; LIVESAY, BILLY JOE; MANSURE, ARTHUR J.; PRAIRIE, MICHAEL R.

    1999-01-01

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  14. The Newberry Deep Drilling Project (NDDP)

    Science.gov (United States)

    Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.

    2017-12-01

    We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.

  15. Drilling to investigate processes in active tectonics and magmatism

    Science.gov (United States)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  16. IODP New Ventures in Exploring Scientific Targets (INVEST: Defining the New Goals of an International Drilling Program

    Directory of Open Access Journals (Sweden)

    Fumio Inagaki

    2010-04-01

    Full Text Available The INVEST conference, an international meeting to define the scientific goals and required technology for a new ocean drilling program, was held at the University of Bremen on 22–25 September 2009. Based on the large attendance and vigorous engagement of scientists in the discussion of new science/technology ideas, INVEST was extremely successful. Initially 400 participants were expected, but the INVEST steering and organization committees were thrilled to see a much larger number of scientists flock to Bremen to demonstrate their support and enthusiasm for the continuation of an international scientific ocean drilling program. In all, 584 participants, including sixty-four students, from twenty-one nations and >200 institutions and agencies attended the INVEST conference. Contributions to INVEST included 103 submitted white papers that were posted on the INVEST webpage (http://www.marum.de/iodp-invest. html, and breakout discussions in fifty working groups that focused on a range of topics during the course of the conference. In addition, students and early career scientists, as well as national funding agency managers and platform providers, presented a total of eighty-six posters. Interspersed with the working group and plenary sessions were twelve keynote lectures, chosen to highlight overarching themes and new directions in research and technology.

  17. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  18. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E. (Chevron); Latham, T. (Chevron); McConnell, D. (AOA Geophysics); Frye, M. (Minerals Management Service); Hunt, J. (Minerals Management Service); Shedd, W. (Minerals Management Service); Shelander, D. (Schlumberger); Boswell, R.M. (NETL); Rose, K.K. (NETL); Ruppel, C. (USGS); Hutchinson, D. (USGS); Collett, T. (USGS); Dugan, B. (Rice University); Wood, W. (Naval Research Laboratory)

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand

  19. VINKA, ten years on. Main scientific results

    International Nuclear Information System (INIS)

    1979-01-01

    The VINKA facility in the TRITON swimming-pool reactor at Fontenay-aux-Roses allows the irradiation of solids at low temperatures in order to study crystalline defects. After ten years of operation the main scientific results obtained in the fields of creep and growth (chapter I), point defects (chapter II), amorphisation (chapter III) and dechanneling of particles (chapter IV) are summarised [fr

  20. Drilling Automation Tests At A Lunar/Mars Analog Site

    Science.gov (United States)

    Glass, B.; Cannon, H.; Hanagud, S.; Lee, P.; Paulsen, G.

    2006-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. The limited mass, energy and manpower in planetary drilling situations makes application of terrestrial drilling techniques problematic. The Drilling Automation for Mars Exploration (DAME) project is developing drilling automation and robotics for projected use in missions to the Moon and Mars in the 2011-15 period. This has been tested recently, drilling in permafrost at a lunar/martian analog site (Haughton Crater, Devon Island, Canada).

  1. The Marskhod Egyptian Drill Project

    Science.gov (United States)

    Shaltout, M. A. M.

    We describe a possible participation of Egypt in a future Mars rover Mission. It was suggested that Egypt participate through involvement in the design, building and testing of a drill to obtain sub-surface samples. The Space Research Institute of the Russian Academy of Sciences (IKI), formally invited the Egyptian Ministry of Scientific Research to study the concept for potential use on the Russian Mars 2001 Mission. As one of the objectives of the Marskhod mission was the analysis of sub-surface samples, a drilling mechanism in the payload would be essential. The Egyptian expertise in drill development is associated with the archaeological exploration of the Pyramids. A sophisticated drilling system perforated limestone to a depth of 2 m without the use of lubricants or cooling fluids that might have contaminated the Pit's environment. This experience could have been applied to a drill development Mars 2001 mission, which was unfortunately canceled due to economic problems.

  2. Ocean Drilling: Forty Years of International Collaboration

    Science.gov (United States)

    Smith, Deborah K.; Exon, Neville; Barriga, Fernando J. A. S.; Tatsumi, Yoshiyuki

    2010-10-01

    International cooperation is an essential component of modern scientific research and societal advancement [see Ismail-Zadeh and Beer, 2009], and scientific ocean drilling represents one of Earth science's longest-running and most successful international collaborations. The strength of this collaboration and its continued success result from the realization that scientific ocean drilling provides a unique and powerful tool to study the critical processes of both short-term change and the long-term evolution of Earth systems. A record of Earth's changing tectonics, climate, ocean circulation, and biota is preserved in marine sedimentary deposits and the underlying basement rocks. And because the ocean floor is the natural site for accumulation and preservation of geological materials, it may preserve a continuous record of these processes.

  3. Use of spectral gamma ray as a lithology guide for fault rocks: A case study from the Wenchuan Earthquake Fault Scientific Drilling project Borehole 4 (WFSD-4).

    Science.gov (United States)

    Amara Konaté, Ahmed; Pan, Heping; Ma, Huolin; Qin, Zhen; Guo, Bo; Yevenyo Ziggah, Yao; Kounga, Claude Ernest Moussounda; Khan, Nasir; Tounkara, Fodé

    2017-10-01

    The main purpose of the Wenchuan Earthquake Fault Scientific drilling project (WFSD) was to produce an in-depth borehole into the Yingxiu-Beichuan (YBF) and Anxian-Guanxian faults in order to gain a much better understanding of the physical and chemical properties as well as the mechanical faulting involved. Five boreholes, namely WFSD-1, WFSD-2, WFSD-3P, WFSD-3 and WFSD-4, were drilled during the project entirety. This study, therefore, presents first-hand WFSD-4 data on the lithology (original rocks) and fault rocks that have been obtained from the WFSD project. In an attempt to determine the physical properties and the clay minerals of the lithology and fault rocks, this study analyzed the spectral gamma ray logs (Total gamma ray, Potassium, Thorium and Uranium) recorded in WFSD-4 borehole on the Northern segment of the YBF. The obtained results are presented as cross-plots and statistical multi log analysis. Both lithology and fault rocks show a variability of spectral gamma ray (SGR) logs responses and clay minerals. This study has shown the capabilities of the SGR logs for well-logging of earthquake faults and proves that SGR logs together with others logs in combination with drill hole core description is a useful method of lithology and fault rocks characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The environmental and evolutionary history of Lake Ohrid (FYROM/Albania) : Interim results from the SCOPSCO deep drilling project

    NARCIS (Netherlands)

    Wagner, Bernd; Wilke, Thomas; Francke, Alexander; Albrecht, Christian; Baumgarten, Henrike; Bertini, Adele; Combourieu-Nebout, Nathalie; Cvetkoska, Aleksandra|info:eu-repo/dai/nl/413534464; D'Addabbo, Michele; Donders, Timme H.|info:eu-repo/dai/nl/290469872; Föller, Kirstin; Giaccio, Biagio; Grazhdani, Andon; Hauffe, Torsten; Holtvoeth, Jens; Joannin, Sebastien; Jovanovska, Elena; Just, Janna; Kouli, Katerina; Koutsodendris, Andreas; Krastel, Sebastian; Lacey, Jack H.; Leicher, Niklas; Leng, Melanie J.; Levkov, Zlatko; Lindhorst, Katja; Masi, Alessia; Mercuri, Anna Maria; Nomade, Sebastien; Nowaczyk, Norbert; Panagiotopoulos, Konstantinos; Peyron, Odile; Reed, Jane M.; Regattieri, Eleonora; Sadori, Laura; Sagnotti, Leonardo; Stelbrink, Bjöern; Sulpizio, Roberto; Tofilovska, Slavica; Torri, Paola; Vogel, Hendrik; Wagner, Thomas; Wagner-Cremer, Friederike|info:eu-repo/dai/nl/173870783; Wolff, George A.; Wonik, Thomas; Zanchetta, Giovanni; Zhang, Xiaosen S.|info:eu-repo/dai/nl/304835773

    2017-01-01

    This study reviews and synthesises existing information generated within the SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) deep drilling project. The four main aims of the project are to infer (i) the age and origin of Lake Ohrid (Former Yugoslav Republic of

  5. Extended Reach Drilling on the example of Reelwell Drilling Method: Influence examination of different drill pipes on drilling performance on Idun field on the Norwegian Continental Shelf by PGNiG Norway AS.

    OpenAIRE

    Krol, Dariusz Pawel

    2011-01-01

    Master's thesis in Petroleum engineering Horizontal or extended reach drilling is incredibly fast growing technology. Although in some areas of the world ERD is still novelty, most of oil companies have been using the technology reliably and successfully for dozens of years. And those companies want to improve well-worn solutions to obtain better performance, thereby reducing costs. One of the main aspects that affects drilling performance and efficiency is adequate choice of drill pipe...

  6. Rock melting technology and geothermal drilling

    Science.gov (United States)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  7. Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

    2013-12-01

    Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact

  8. Heat generated by dental implant drills during osteotomy-a review: heat generated by dental implant drills.

    Science.gov (United States)

    Mishra, Sunil Kumar; Chowdhary, Ramesh

    2014-06-01

    Osseointegration is the more stable situation and results in a high success rate of dental implants. Heat generation during rotary cutting is one of the important factors influencing the development of osseointegration. To assess the various factors related to implant drills responsible for heat generation during osteotomy. To identify suitable literature, an electronic search was performed using Medline and Pubmed database. Articles published in between 1960 to February 2013 were searched. The search is focused on heat generated by dental implant drills during osteotomy. Various factors related to implant drill such effect of number of blades; drill design, drill fatigue, drill speed and force applied during osteotomies which were responsible for heat generation were reviewed. Titles and abstracts were screened, and literature that fulfilled the inclusion criteria was selected for a full-text reading. The initial literature search resulted in 299 articles out of which only 70 articles fulfils the inclusion criteria and were included in this systematic review. Many factors related to implant drill responsible for heat generation were found. Successful preparation of an implant cavity with minimal damage to the surrounding bone depends on the avoidance of excessive temperature generation during surgical drilling. The relationship between heat generated and implant drilling osteotomy is multifactorial in nature and its complexity has not been fully studied. Lack of scientific knowledge regarding this issue still exists. Further studies should be conducted to determine the various factors which generate less heat while osteotomy such as ideal ratio of force and speed in vivo, exact time to replace a drill, ideal drill design, irrigation system, drill-bone contact area.

  9. Drilling to investigate processes in active tectonics and magmatism

    OpenAIRE

    J. Shervais; J. Evans; V. Toy; J. Kirkpatrick; A. Clarke; J. Eichelberger

    2014-01-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park C...

  10. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Nielson, D.L. (eds.)

    1986-05-01

    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  11. Arctic Ocean Paleoceanography and Future IODP Drilling

    Science.gov (United States)

    Stein, Ruediger

    2015-04-01

    Although the Arctic Ocean is a major player in the global climate/earth system, this region is one of the last major physiographic provinces on Earth where the short- and long-term geological history is still poorly known. This lack in knowledge is mainly due to the major technological/logistical problems in operating within the permanently ice-covered Arctic region which makes it difficult to retrieve long and undisturbed sediment cores. Prior to 2004, in the central Arctic Ocean piston and gravity coring was mainly restricted to obtaining near-surface sediments, i.e., only the upper 15 m could be sampled. Thus, all studies were restricted to the late Pliocene/Quaternary time interval, with a few exceptions. These include the four short cores obtained by gravity coring from drifting ice floes over the Alpha Ridge, where older pre-Neogene organic-carbon-rich muds and laminated biosiliceous oozes were sampled. Continuous central Arctic Ocean sedimentary records, allowing a development of chronologic sequences of climate and environmental change through Cenozoic times and a comparison with global climate records, however, were missing prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX), the first scientific drilling in the central Arctic Ocean. By studying the unique ACEX sequence, a large number of scientific discoveries that describe previously unknown Arctic paleoenvironments, were obtained during the last decade (for most recent review and references see Stein et al., 2014). While these results from ACEX were unprecedented, key questions related to the climate history of the Arctic Ocean remain unanswered, in part because of poor core recovery, and in part because of the possible presence of a major mid-Cenozoic hiatus or interval of starved sedimentation within the ACEX record. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key

  12. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  13. Influence of Drilling Parameters on Torque during Drilling of GFRP Composites Using Response Surface Methodology

    Science.gov (United States)

    Mohan, N. S.; Kulkarni, S. M.

    2018-01-01

    Polymer based composites have marked their valuable presence in the area of aerospace, defense and automotive industry. Components made of composite, are assembled to main structure by fastener, which require accurate, precise high quality holes to be drilled. Drilling the hole in composite with accuracy require control over various processes parameters viz., speed, feed, drill bit size and thickens of specimen. TRIAC VMC machining center is used to drill the hole and to relate the cutting and machining parameters on the torque. MINITAB 14 software is used to analyze the collected data. As a function of cutting and specimen parameters this method could be useful for predicting torque parameters. The purpose of this work is to investigate the effect of drilling parameters to get low torque value. Results show that thickness of specimen and drill bit size are significant parameters influencing the torque and spindle speed and feed rate have least influence and overlaid plot indicates a feasible and low region of torque is observed for medium to large sized drill bits for the range of spindle speed selected. Response surface contour plots indicate the sensitivity of the drill size and specimen thickness to the torque.

  14. 'Ukrytie' entombment is 10 years old. Main results of scientific investigations

    International Nuclear Information System (INIS)

    1996-01-01

    The Collection is dedicated to 10-yaer anniversary of the ''Ukrytie''. It comprises articles written by specialists of the National Academy of Sciences of Ukraine, the Interdisciplinary Scientific and Technical Centre ''Shelter'', the ''Ukrytie'', Russian Scientific Centre ''Kurchatov Institute'' (Moscow), Khlopin Radium Institute (Saint-Petersburg), Radioecological Problems Institute (Minsk), who took part in study of this unique object for many years. The articles are written in review form and include all main scientific results obtained owing to common efforts during last 10 years. Of course, these years were not equal as to the research results. There were years of great breaks-through towards new knowledge about the ''Ukrytie'', as well as years of preparation for these breaks-through. Nevertheless, scientific research of the ''Ukrytie'' never stopped and every year of work brought grains of objective truth on base of which our present knowledge about the ''Ukrytie'' was put together. This knowledge, set out in easily understood form, delivers materials of the Collection to the reader concerned

  15. Preliminary results of the first scientific Drilling on Lake Baikal, Buguldeika site, southeastern Siberia

    Science.gov (United States)

    Williams, Douglas F.; Colman, S.; Grachev, M.; Hearn, P.; Horie, Shoji; Kawai, T.; Kuzmin, Mikhail I.; Logachov, N.; Antipin, V.; Bardardinov, A.; Bucharov, A.; Fialkov, V.; Gorigljad, A.; Tomilov, B.; Khakhaev, B.N.; Kochikov, S.; Logachev, N.; Pevzner, L.A.; Karabanov, E.B.; Mats, V.; Baranova, E.; Khlystov, O.; Khrachenko, E.; Shimaraeva, M.; Stolbova, E.; Efremova, S.; Gvozdkov, A.; Kravchinski, A.; Peck, J.; Fileva, T.; Kashik, S.; Khramtsova, T.; Kalashnikova, I.; Rasskazova, T.; Tatarnikova, V.; Yuretich, Richard; Mazilov, V.; Takemura, K.; Bobrov, V.; Gunicheva, T.; Haraguchi, H.; Ito, S.; Kocho, T.; Markova, M.; Pampura, V.; Proidakova, O.; Ishiwatari, R.; Sawatari, H.; Takeuchi, A.; Toyoda, K.; Vorobieva, S.; Ikeda, A.; Marui, A.; Nakamura, T.; Ogura, K.; Ohta, Takeshi; King, J.; Sakai, H.; Yokoyama, T.; Hayashida, A.; Bezrukova, E.; Fowell, S.; Fujii, N.; Letunova, P.; Misharina, V.; Miyoshi, N.; Chernyaeva, G.; Ignatova, I.; Likhoshvai, E.; Granina, L.; Levina, O.; Dolgikh, P.; Lazo, F.; Lutskaia, N.; Orem, W.; Wada, E.; Yamada, K.; Yamada, S.; Callander, E.; Golobokoval, L.; Shanks, W. C. Pat; Dorofeeva, R.; Duchkov, A.

    1997-01-01

    The Baikal Drilling Project (BDP) is a multinational effort to investigate the paleoclimatic history and tectonic evolution of the Baikal sedimentary basin during the Late Neogene. In March 1993 the Baikal drilling system was successfuly deployed from a barge frozen into position over a topographic high, termed the Buguldeika saddle, in the southern basin of Lake Baikal. The BDP-93 scientific team, made up of Russian, American and Japanese scientists, successfully recovered the first long (>100 m) hydraulic piston cores from two holes in 354 m of water. High quality cores of 98 m (Hole 1) and 102 m (Hole 2), representing sedimentation over the last 500,000 years, were collected in 78 mm diameter plastic liners with an average recovery of 72% and 90%, respectively. Magnetic susceptibility logging reveals an excellent hole-to-hole correlation. In this report the scientific team describes the preliminary analytical results from BDP-93 hole 1 cores. Radiocarbon dating by accelerator mass spectrometry provides an accurate chronology for the upper portion of Hole 1. Detailed lithologic characteristics, rock magnetic properties and inorganic element distributions show a significant change to the depositional environment occuring at 50 m subbottom depth, approximately 250,000 BP. This change may be due to uplift and rotation of the horst block in the Buguldeika saddle. The sedimentary section above 50 m is pelitic with varve-like laminae, whereas the section below 50 m contains a high proportion of sand and gravel horizons often organized into turbidite sequences. Accordingly, high resolution seismic records reveal a change in sonic velocity at this depth. It is inferred that sedimentation prior to 250 ka BP was from the west via the Buguldeika river system. After 250 ka BP the Buguldeika saddle reflects an increase in hemipelagic sediments admixed with fine-grained material from the Selenga River drainage basin, east of Lake Baikal. Variations in the spore

  16. Advancing Understanding of Earthquakes by Drilling an Eroding Convergent Margin

    Science.gov (United States)

    von Huene, R.; Vannucchi, P.; Ranero, C. R.

    2010-12-01

    A program of IODP with great societal relevance is sampling and instrumenting the seismogenic zone. The zone generates great earthquakes that trigger tsunamis, and submarine slides thereby endangering coastal communities containing over sixty percent of the earth’s population. To asses and mitigate this endangerment it is urgent to advance understanding of fault dynamics that allows more timely anticipation of hazardous seismicity. Seismogenesis on accreting and eroding convergent plate boundaries apparently differ because of dissimilar materials along the interplate fault. As the history of instrumentally recorded earthquakes expands the difference becomes clearer. The more homogeneous clay, silt and sand subducted at accreting margins is associated with great earthquakes (M 9) whereas the fragmented upper plate rock that can dominate subducted material along an eroding margin plate interface is associated with many tsunamigenic earthquakes (Bilek, 2010). Few areas have been identified where the seismogenic zone can be reached with scientific drilling. In IODP accreting margins are studied on the NanTroSeize drill transect off Japan where the ultimate drilling of the seismogenic interface may occur by the end of IODP. The eroding Costa Rica margin will be studied in CRISP where a drill program will begin in 2011. The Costa Rican geophysical site survey will be complete with acquisition and processing of 3D seismic data in 2011 but the entire drilling will not be accomplished in IODP. It is appropriate that the accreting margin study be accomplished soon considering the indications of a pending great earthquake that will affect a country that has devoted enormous resources to IODP. However, understanding the erosional end-member is scientifically as important to an understanding of fault mechanics. Transoceanic tsunamis affect the entire Pacific rim where most subduction zones are eroding margins. The Costa Rican subduction zone is less complex operationally and

  17. Scientific investigation in deep wells for nuclear waste disposal studies at the Meuse/Haute Marne underground research laboratory, Northeastern France

    Science.gov (United States)

    Delay, Jacques; Rebours, Hervé; Vinsot, Agnès; Robin, Pierre

    Andra, the French National Radioactive Waste Management Agency, is constructing an underground test facility to study the feasibility of a radioactive waste disposal in the Jurassic-age Callovo-Oxfordian argillites. This paper describes the processes, the methods and results of a scientific characterization program carried out from the surface via deep boreholes with the aim to build a research facility for radioactive waste disposal. In particular this paper shows the evolution of the drilling programs and the borehole set up due to the refinement of the scientific objectives from 1994 to 2004. The pre-investigation phase on the Meuse/Haute-Marne site started in 1994. It consisted in drilling seven scientific boreholes. This phase, completed in 1996, led to the first regional geological cross-section showing the main geometrical characteristics of the host rock. Investigations on the laboratory site prior to the sinking of two shafts started in November 1999. The sinking of the shafts started in September 2000 with the auxiliary shaft completed in October 2004. The experimental gallery, at a depth of 445 m in the main shaft, was in operation by end 2004. During the construction of the laboratory, two major scientific programs were initiated to improve the existing knowledge of the regional hydrogeological characteristics and to accelerate the process of data acquisition on the shales. The aim of the 2003 hydrogeological drilling program was to determine, at regional scale, the properties of groundwater transport and to sample the water in the Oxfordian and Dogger limestones. The 2003-2004 programs consisted in drilling nine deep boreholes, four of which were slanted, to achieve an accurate definition of the structural features.

  18. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

    Science.gov (United States)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.

    2017-06-01

    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  19. Optimizing drilling performance using a selected drilling fluid

    Science.gov (United States)

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  20. Chemistry and geothermometry of brine produced from the Salton Sea Scientific drill hole, Imperial Valley, California

    Science.gov (United States)

    Thompson, J.M.; Fournier, R.O.

    1988-01-01

    The December 29-30, 1985, flow test of the State 2-14 well, also known as the Salton Sea Scientific drill hole, produced fluid from a depth of 1865-1877 m at a reservoir temperature of 305????5??C. Samples were collected at five different flashing pressures. The brines are Na-Ca-K-Cl-type waters with very high metal and low SO4 and HCO3 contents. Compositions of the flashed brines were normalized relative to the 25??C densities of the solutions, and an ionic charge balance was achieved by adjusting the Na concentration. Calculated Na/K geothermometer temperatures, using equations suggested by different investigators, range from 326?? to 364??C. The Mg/K2 method gives a temperature of about 350??C, Mg/Li2 about 282??, and Na/Li 395??-418??C. -from Authors

  1. Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars

    Science.gov (United States)

    Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.

    2018-01-01

    Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.

  2. Lower crustal section of the Oman Ophiolite drilled in Hole GT1A, ICDP Oman Drilling Project

    Science.gov (United States)

    Umino, S.; Kelemen, P. B.; Matter, J. M.; Coggon, J. A.; Takazawa, E.; Michibayashi, K.; Teagle, D. A. H.

    2017-12-01

    Hole GT1A (22° 53.535'N, 58° 30.904'E) was drilled by the Oman Drilling Project (OmDP) into GT1A of the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT1A was diamond cored in 22 Jan to 08 Feb 2017 to a total depth of 403.05 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. Hole GT1A drilled the lower crustal section in the southern Oman Ophiolite and recovered 401.52 m of total cores (99.6% recovery). The main lithology is dominated by olivine gabbro (65.9%), followed in abundance by olivine-bearing gabbro (21.5%) and olivine melagabbro (3.9%). Minor rock types are orthopyroxene-bearing olivine gabbro (2.4%), oxide-bearing olivine gabbro (1.5%), gabbro (1.1%), anorthositic gabbro (1%), troctolitic gabbro (0.8%); orthopyroxene-bearing gabbro (0.5%), gabbronorite (0.3%); and dunite (0.3%). These rocks are divided into Lithologic Unit I to VII at 26.62 m, 88.16 m, 104.72 m, 154.04 m, 215.22 m, 306.94 m in Chikyu Curated Depth in descending order; Unit I and II consist of medium-grained olivine gabbro with lower olivine abundance in Unit II. Unit III is medium-grained olivine melagabbros, marked by an increase in olivine. Unit IV is relatively homogenous medium-grained olivine gabbros with granular textures. Unit V is identified by the appearance of fine-grained gabbros, but the major rocktypes are medium grained olivine gabbros. Unit VI is medium-grained olivine gabbro, marked by appearance of orthopyroxene. Unit VII

  3. Main building fire drill safely concluded

    CERN Document Server

    CERN Bulletin

    2015-01-01

    Last week, a simulated fire in the stairwell of the Main Building put CERN’s emergency response procedures to the test.   Firefighters descend the stairwell in the Main Building as the simulated fire rises.   At 2 p.m. on 22 September, alarms sounded around CERN’s Main Building as an evacuation exercise got underway. A simulated fire in the  stairwell, complete with very realistic smoke, led to the evacuation of one of the busiest places at CERN. The Main Building complex includes the Carlson Wagonlit travel agency, the post office, UBS, Uniqa, the Users Office, the Staff Association and the Novae restaurant as well as the Main Auditorium, the Council Chamber and the Charpak meeting room. It was impressive to see how quickly the smoke propagated in the staircase as well as into the corridors, and equally impressive to see how smoothly, quickly and efficiently the evacuation proceeded. The...

  4. Well drilling by rotary percussive drill above ground

    International Nuclear Information System (INIS)

    Sabatier, G.

    1987-01-01

    Originally, the Well Drilling Section of Cogema used only the diamond core drilling technique. The appearance of independent rotation for compressed air rock drills has led to the use and to the development of this drilling system, as a drill core is not indispensable, when the material of the search is radioactive. During the last few years, hydraulic drills have replaced the compressed air drills and have resulted in a very marked improvement: - of the penetration rates; - of the depth achieved. The Well Drilling Section of Cogema has to drill about 400 km per year with rock drills above ground and holds also the record for depth achieved with this technique, i.e. 400 m in granite. In France, the costs of these types of drilling are for the same depth of the order of one-quarter of the core drilling and half of the drilling with a down-the-hole drill. Cogema has greatly developed the types of well logging which now permits the extension of this type of drilling to the search for other materials than uranium [fr

  5. Cortical bone drilling: An experimental and numerical study.

    Science.gov (United States)

    Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer

    2014-12-16

    Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.

  6. InnovaRig, a new drilling concept for research drilling projects of GeoForschungsZentrum (GFZ) Potsdam; InnovaRig - ein neues Bohranlagenkonzept fuer Forschungsbohrungen des GeoForschungsZentrum (GFZ) Potsdam

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, L.; Prevedel, B. [GFZ Potsdam (Germany); Binder, J. [Herrenknecht Vertical GmbH, Schwanau (Germany); Mueller Ruhe, W. [H. Anger' s Soehne mbH, Hessisch Lichtenau (Germany); Wundes, B. [World Wide Drilling Consultants, Gladbeck (Germany)

    2007-09-13

    The world-wide experience in scientific drilling projects gained by GFZ has shown that there is no commercial drilling system that meets all technical requirements of either geoscientific or geotechnical projects. Research must therefore be done on a flexible and economical drilling system for special applications. GFZ Potsdam is therefore developing an optimized drilling system for a depth of up to 5000 m, in a joint R + D project with the industrial partners Herrenknecht-Vertical GmbH, a subsidiary of Herrenknecht AG (Schwanau), and H. Anger's Soehne Bohr- und Brunnenbaugesellschaft mbH (Hessisch-Lichtenau). (orig.)

  7. Study for increasing micro-drill reliability by vibrating drilling

    International Nuclear Information System (INIS)

    Yang Zhaojun; Li Wei; Chen Yanhong; Wang Lijiang

    1998-01-01

    A study for increasing micro-drill reliability by vibrating drilling is described. Under the experimental conditions of this study it is observed, from reliability testing and the fitting of a life-distribution function, that the lives of micro-drills under ordinary drilling follow the log-normal distribution and the lives of micro-drills under vibrating drilling follow the Weibull distribution. Calculations for reliability analysis show that vibrating drilling can increase the lives of micro-drills and correspondingly reduce the scatter of drill lives. Therefore, vibrating drilling increases the reliability of micro-drills

  8. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    Directory of Open Access Journals (Sweden)

    Yudan Wang

    2017-04-01

    Full Text Available The drilling length is an important parameter in the process of horizontal directional drilling (HDD exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  9. The Hominin Sites and Paleolakes Drilling Project (HSPDP): Understanding the paleoenvironmental and paleoclimatic context of human origins through continental drilling

    Science.gov (United States)

    Cohen, Andrew S.; Campisano, Christopher; Asrat, Asfawossen; Arrowsmith, Ramon; Deino, Alan; Feibel, Craig; Hill, Andrew; Kingston, John; Lamb, Henry; Lowenstein, Tim; Olago, Daniel; Bernhart Owen, R.; Renaut, Robin; Schabitz, Frank; Trauth, Martin

    2015-04-01

    The influence of climate and environmental history on human evolution is an existential question that continues to be hotly debated, in part because of the paucity of high resolution records collected in close proximity to the key fossil and archaeological evidence. To address this issue and transform the scientific debate, the HSPDP was developed to collect lacustrine sediment drill cores from basins in Kenya and Ethiopia that collectively encompass critical time intervals and locations for Plio-Quaternary human evolution in East Africa. After a 17 month campaign, drilling was completed in November, 2014, with over 1750m of core collected from 11 boreholes from five areas (1930m total drilling length, avg. 91% recovery). The sites, from oldest to youngest, include 1) N. Awash, Ethiopia (~3.5-2.9Ma core interval); 2) Baringo-Tugen Hills, Kenya (~3.3-2.5Ma); 3) West Turkana, Kenya (~1.9-1.4Ma); L. Magadi, Kenya (0.8-0Ma) and the Chew Bahir Basin, Ethiopia (~0.5-0Ma). Initial core description (ICD) and sampling for geochronology, geochemistry and paleoecology studies had been completed by mid2014, with the two remaining sites (Magadi and Chew Bahir) scheduled for ICD work in early 2015. Whereas the primary scientific targets were the lacustrine deposits from the hominin-bearing basin depocenters, many intervals of paleosols (representative of low lake stands and probable arid periods) were also encountered in drill cores. Preliminary analyses of drill core sedimentology and geochemistry show both long-term lake level changes and cyclic variability in lake levels, both of which may be indicative of climatic forcing events of interest to paleoanthropologists. Authors of this abstract also include the entire HSPDP field team.

  10. Mallik data and information system : development of a scientific data exchange platform

    Energy Technology Data Exchange (ETDEWEB)

    Lowner, R.; Conze, R. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2005-07-01

    The Mallik Data and Information System (Mallik DIS) includes 3 main components which make it possible to acquire, integrate and disseminate interdisciplinary data from the Mallik 2002 Gas Hydrate Production Research Well Program. The system provides a secure and accessible archive of quality controlled scientific results of the project. The 3 main components are: (1) a digital scanner which produces a catalogue of digital core images, (2) the data warehouse which is a vital database and archive that provides members of the Mallik team with access to project data sets via Internet, and (3) the web portal of the International Continental Scientific Drilling Program information network which allows the separate data sets to be retrieved, viewed and integrated with other project data sets.

  11. Drilling and testing hot, high-pressure wells

    Energy Technology Data Exchange (ETDEWEB)

    MacAndrew, R. (Ranger Oil Ltd, Aberdeen (United Kingdom)); Parry, N. (Phillips Petroleum Company United Kingdom Ltd, Aberdeen (United Kingdom)); Prieur, J.M. (Conoco UK Ltd, Aberdeen (United Kingdom)); Wiggelman, J. (Shell UK Exploration and Production, Aberdeen (United Kingdom)); Diggins, E. (Brunei Shell Petroleum (Brunei Darussalam)); Guicheney, P. (Sedco Forex, Montrouge (France)); Cameron, D.; Stewart, A. (Dowell Schlumberger, Aberdeen (United Kingdom))

    Meticulous planning and careful control of operations are needed to safely drill and test high-temperature, high-pressure (HTHP) wells. Techniques, employed in the Central Graben in the UK sector of the North Sea, where about 50 HTHP wells have been drilled, are examined. Three main areas of activity are covered in this comprehensive review: drilling safety, casing and cementation, and testing. The three issues at the heart of HTHP drilling safety are kick prevention, kick detection and well control. Kicks are influxes of reservoir fluid into the well. Test equipment and operations are divided into three sections: downhole, subsea and surface. Also details are given of how this North Sea experience has been used to help plan a jackup rig modification for hot, high-pressure drilling off Brunei. 16 figs., 32 refs.

  12. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  13. Drillings at Kivetty in Konginkangas

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-05-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Kivetty, Konginkangas the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1019 m) and 4 about 500 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 65 shotholes were drilled for VSP-, tubewave and seismic measurements

  14. Drillings at Syyry in Sievi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-10-01

    According to Government's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Syyry, Sievi the investigation program was started in spring 1988. During years 1988-1989 a deep borehole (1022 m) and 4 about 500-700 m deep additional boreholes were core drilled in the area. The structure of the holes makes it possible to carry out many investigations in the holes. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisson's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. 35 vertical holes were core drilled down to the depth of 10-20 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition about 85 shotholes were drilled for VSP-, tubewave and seismic measurements

  15. Reaching 1 m deep on Mars: the Icebreaker drill.

    Science.gov (United States)

    Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J

    2013-12-01

    The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.

  16. Elastic wave velocities, chemistry and modal mineralogy of crustal rocks sampled by the Outokumpu scientific drill hole: Evidence from lab measurements and modeling

    Science.gov (United States)

    Kern, H.; Mengel, K.; Strauss, K. W.; Ivankina, T. I.; Nikitin, A. N.; Kukkonen, I. T.

    2009-07-01

    The Outokumpu scientific deep drill hole intersects a 2500 m deep Precambrian crustal section comprising a 1300 m thick biotite-gneiss series (mica schists) at top, followed by a 200 m thick meta-ophiolite sequence, underlain again by biotite gneisses (mica schists) (500 m thick) with intercalations of amphibolite and meta-pegmatoids (pegmatitic granite). From 2000 m downward the dominating rock types are meta-pegmatoids (pegmatitic granite). Average isotropic intrinsic P- and S-wave velocities and densities of rocks were calculated on the basis of the volume fraction of the constituent minerals and their single crystal properties for 29 core samples covering the depth range 198-2491 m. The modal composition of the rocks is obtained from bulk rock (XRF) and mineral chemistry (microprobe), using least squares fitting. Laboratory seismic measurements on 13 selected samples representing the main lithologies revealed strong anisotropy of P- and S-wave velocities and shear wave splitting. Seismic anisotropy is strongly related to foliation and is, in particular, an important property of the biotite gneisses, which dominate the upper and lower gneiss series. At in situ conditions, velocity anisotropy is largely caused by oriented microcracks, which are not completely closed at the pressures corresponding to the relatively shallow depth drilled by the borehole, in addition to crystallographic preferred orientation (CPO) of the phyllosilicates. The contribution of CPO to bulk anisotropy is confirmed by 3D velocity calculations based on neutron diffraction texture measurements. For vertical incidence of the wave train, the in situ velocities derived from the lab measurements are significantly lower than the measured and calculated intrinsic velocities. The experimental results give evidence that the strong reflective nature of the ophiolite-derived rock assemblages is largely affected by oriented microcracks and preferred crystallographic orientation of major minerals, in

  17. Drillings at Veitsivaara in Hyrynsalmi

    International Nuclear Information System (INIS)

    Hinkkanen, H.; Oehberg, A.

    1990-04-01

    According to Governmen's decision in principle Teollisuuden Voima Oy is obliged to make bedrock investigations for the final disposal of the spent fuel produced by its power plant in Olkiluoto. Areas in Kuhmo, Hyrynsalmi, Sievi, Konginkangas and Olkiluoto were selected for the preliminary site investigations to be carried out during years 1987-1992. In Veitsivaara, Hyrynsalmi the investigation program was started in April 1987. During years 1987-1988 a deep borehole (1002 m) and 4 and 500 m deep additional boreholes were core drilled in the area. Various parameters were measured from the flushing water during the drilling. Corelogging included collecting detailed data of fractures and determining the weathering degree and petrographical properties. Rock mechanical properties, uniaxial compressive strength, Young's modulus and Poisso's ratio were measured from core samples. The flushing water needed in the drillings was pumped from 100 m deep borehole wells drilled with down-the-hole method in the vicinity of the borehole. The water was labeled with 2 tracers before use. About 75 m deep hole was percussion drilled near the borehole KR1. The spreading of the flushing water in the upper part of bedrock and the quality off the ground of the groundwater were studied by taking watersamples from the hole. 30 vertical holes were core drilled down to the depth of 10 m in bedrock with a light drilling unit. Drilling was carried out in order to determine the thickness of the overburden, to investigate the geophysical anomaly sources and to support geological mapping in areas covered with overburden. Groundwater hydraulics is one of the main subjects during the preliminary site investigation phase. For that reason 7 multilevel piezometers were installed on the site to monitore hydraulic head in 3 levels in the uppermost part of bedrock. The work consisted of borehole drillings to the depth of 100 m, geophysical borehole loggings and installation of piezometers. In addition

  18. Automatic real time drilling support on Ekofisk utilizing eDrilling

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, Rolv; Bjorkevoll, Knut S.; Halsey, George W.; Kluge, Roald; Molde, Dag Ove; Odegard, Sven Inge [SINTEF Petroleum Research, Trondheim (Norway); Herbert, Mike [HITEC Products Drilling, Stavanger (Norway); ConocoPhillips Norge, Stavanger (Norway)

    2008-07-01

    eDrilling is a new and innovative system for real time drilling simulation, 3D visualization and control from a remote drilling expert centre. The concept uses all available real time drilling data (surface and downhole) in combination with real time modelling to monitor and optimize the drilling process. This information is used to visualize the wellbore in 3D in real time. eDrilling has been implemented in an Onshore Drilling Center in Norway. The system is composed of the following elements, some of which are unique and ground-breaking: an advanced and fast Integrated Drilling Simulator which is capable to model the different drilling sub-processes dynamically, and also the interaction between these sub-processes in real time; automatic quality check and corrections of drilling data; making them suitable for processing by computer models; real time supervision methodology for the drilling process using time based drilling data as well as drilling models / the integrated drilling simulator; methodology for diagnosis of the drilling state and conditions. This is obtained from comparing model predictions with measured data. Advisory technology for more optimal drilling. A Virtual Wellbore, with advanced visualization of the downhole process. Dat low and computer infrastructure. e-Drilling has been implemented in an Onshore Drilling Center on Ekofisk in Norway. The system is being used on drilling operations, and experiences from its use are presented. The supervision and diagnosis functionalities have been useful in particular, as the system has given early warnings on ECD and friction related problems. This paper will present the eDrilling system as well as experiences from its use. (author)

  19. New drilling optimization technologies make drilling more efficient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.C.-K. [Halliburton Energy Services, Calgary, AB (Canada). Sperry Division

    2004-07-01

    Several new technologies have been adopted by the upstream petroleum industry in the past two decades in order to optimize drilling operations and improve drilling efficiency. Since financial returns from an oil and gas investment strongly depend on drilling costs, it is important to reduce non-productive time due to stuck pipes, lost circulation, hole cleaning and well bore stability problems. The most notable new technologies are the use of computer-based instrumentation and data acquisition systems, integrated rig site systems and networks, and Measurement-While-Drilling and Logging-While-Drilling (MWD/LWD) systems. Drilling optimization should include solutions for drillstring integrity, hydraulics management and wellbore integrity. New drilling optimization methods emphasize information management and real-time decision making. A recent study for drilling in shallow water in the Gulf of Mexico demonstrates that trouble time accounts for 25 per cent of rig time. This translates to about $1.5 MM U.S. per well. A reduction in trouble time could result in significant cost savings for the industry. This paper presents a case study on vibration prevention to demonstrate how the drilling industry has benefited from new technologies. 13 refs., 10 figs.

  20. Casing drilling

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, D. [Tesco Corp., Calgary, AB (Canada)

    2003-07-01

    This paper reviewed the experience that Tesco has gained by drilling several wells using only casings as the drill stem. Tesco has manufactured a mobile and compact hydraulic drilling rig called the Casing Drilling {sup TM} system. The system could be very effective and efficient for exploration and development of coalbed methane (CBM) reserves which typically require extensive coring. Continuous coring while drilling ahead, along wire line retrieval, can offer time savings and quick core recovery of large diameter core which is typically required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or underbalanced wells with air or foam. This would reduce drilling fluid damage while simultaneously finding gas. Compared to conventional drill pipes, Casing Drilling {sup TM} could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 9 figs.

  1. The Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin, NE China: Organic-rich source rock evaluation with geophysical logs from Borehole SK-2

    Science.gov (United States)

    Zhang, X.; Zou, C.

    2017-12-01

    The Cretaceous strata have been recognized as an important target of oil or gas exploration in the Songliao Basin, northeast China. The second borehole (SK-2) of the Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin (CCSD-SK) is the first one to drill through the Cretaceous continental strata in the frame of ICDP. It was designed not only to solve multiple scientific problems (including the Cretaceous paleoenvironment and paleoclimate, as well as deep resources exploration of the Songliao Basin), but also to expect to achieve new breakthroughs in oil and gas exploration. Based on the project, various geophysical log data (including gamma, sonic, resistivity, density etc.) and core samples have been collected from Borehole SK-2. We do research on organic-rich source rocks estimation using various geophysical log data. Firstly, we comprehensively analyzed organic-rich source rocks' geophysical log response characteristics. Then, source rock's identification methods were constructed to identify organic-rich source rocks with geophysical logs. The main identification methods include cross-plot, multiple overlap and Decision Tree method. Finally, the technique and the CARBOLOG method were applied to evaluate total organic carbon (TOC) content from geophysical logs which provide continuous vertical profile estimations (Passey, 1990; Carpentier et al., 1991). The results show that source rocks are widely distributed in Borehole SK-2, over a large depth strata (985 5700m), including Nenjiang, Qingshankou, Denglouku, Yingcheng, Shahezi Formations. The organic-rich source rocks with higher TOC content occur in the Qingshankou (1647 1650m), Denglouku (2534 2887m) and Shahezi (3367 5697m) Formations. The highest TOC content in these formations can reach 10.31%, 6.58%, 12.79% respectively. The bed thickness of organic-rich source rocks in the these formations are totally up to 7.88m, 74.34m, 276.60m respectively. These organic-rich rocks in the

  2. Technology strategy for cost-effective drilling and intervention; Technology Target Areas; TTA4 - Cost effective drilling and intervention

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The main goals of the OG21 initiative are to (1) develop new technology and knowledge to increase the value creation of Norwegian oil and gas resources and (2) enhance the export of Norwegian oil and gas technology. The OG21 Cost-effective Drilling and Intervention (CEDI) Technology Target Area (TTA) has identified some key strategic drilling and well intervention needs to help meet the goals of OG21. These key strategic drilling and well intervention needs are based on a review of present and anticipated future offshore-Norway drilling and well intervention conditions and the Norwegian drilling and well intervention industry. A gap analysis has been performed to assess the extent to which current drilling and well intervention research and development and other activities will meet the key strategic needs. Based on the identified strategic drilling and well intervention needs and the current industry res each and development and other activities, the most important technology areas for meeting the OG21 goals are: environment-friendly and low-cost exploration wells; low-cost methods for well intervention/sidetracks; faster and extended-reach drilling; deep water drilling, completion and intervention; offshore automated drilling; subsea and sub-ice drilling; drilling through basalt and tight carbonates; drilling and completion in salt formation. More specific goals for each area: reduce cost of exploration wells by 50%; reduce cost for well intervention/sidetracks by 50%; increase drilling efficiency by 40%; reduce drilling cost in deep water by 40 %; enable offshore automated drilling before 2012; enable automated drilling from seabed in 2020. Particular focus should be placed on developing new technology for low-cost exploration wells to stem the downward trends in the number of exploration wells drilled and the volume of discovered resources. The CEDI TTA has the following additional recommendations: The perceived gaps in addressing the key strategic drilling and

  3. Keeping Research Data from the Continental Deep Drilling Programme (KTB) Accessible and Taking First Steps Towards Digital Preservation

    Science.gov (United States)

    Klump, J. F.; Ulbricht, D.; Conze, R.

    2014-12-01

    The Continental Deep Drilling Programme (KTB) was a scientific drilling project from 1987 to 1995 near Windischeschenbach, Bavaria. The main super-deep borehole reached a depth of 9,101 meters into the Earth's continental crust. The project used the most current equipment for data capture and processing. After the end of the project key data were disseminated through the web portal of the International Continental Scientific Drilling Program (ICDP). The scientific reports were published as printed volumes. As similar projects have also experienced, it becomes increasingly difficult to maintain a data portal over a long time. Changes in software and underlying hardware make a migration of the entire system inevitable. Around 2009 the data presented on the ICDP web portal were migrated to the Scientific Drilling Database (SDDB) and published through DataCite using Digital Object Identifiers (DOI) as persistent identifiers. The SDDB portal used a relational database with a complex data model to store data and metadata. A PHP-based Content Management System with custom modifications made it possible to navigate and browse datasets using the metadata and then download datasets. The data repository software eSciDoc allows storing self-contained packages consistent with the OAIS reference model. Each package consists of binary data files and XML-metadata. Using a REST-API the packages can be stored in the eSciDoc repository and can be searched using the XML-metadata. During the last maintenance cycle of the SDDB the data and metadata were migrated into the eSciDoc repository. Discovery metadata was generated following the GCMD-DIF, ISO19115 and DataCite schemas. The eSciDoc repository allows to store an arbitrary number of XML-metadata records with each data object. In addition to descriptive metadata each data object may contain pointers to related materials, such as IGSN-metadata to link datasets to physical specimens, or identifiers of literature interpreting the data

  4. Research on technical and technological parameters of inclined drilling

    Directory of Open Access Journals (Sweden)

    М. В. Двойников

    2017-03-01

    Analysis of investigation results showed that the main source of oscillations is linked to bending and compressing stresses, caused by well deviations as well as rigidity of the drilling tool. In effect, in the bottom-hole assembly occur auto-oscillations, making it impossible to correct azimuth and zenith angles. Alteration of rigidity in the bottom part of the tool and drilling parameters, implying reduced rotation speed of the drill string and regulation of drill bit pressure, can partially solve this problem, though increase in rotation speed is limited by technical characteristics of existing top drive systems.

  5. Preliminary Research on Possibilities of Drilling Process Robotization

    Science.gov (United States)

    Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw

    2017-12-01

    Nowadays, drilling & blasting is crucial technique for deposit excavation using in hard rock mining. Unfortunately, such approach requires qualified staff to perform, and consequently there is a serious risk related to rock mechanics when using explosives. Negative influence of explosives usage on safety issues of underground mine is a main cause of mining demands related to elimination of people from production area. Other aspects worth taking into consideration are drilling precision according to drilling pattern, blasting effectiveness, improvement of drilling tool reliability etc. In the literature different drilling support solutions are well-known in terms of positioning support systems, anti-jamming systems or cavity detection systems. For many years, teleoperation of drilling process is also developed. Unfortunately, available technologies have so far not fully met the industries expectation in hard rock. Mine of the future is expected to incorporate robotic system instead of current approaches. In this paper we present preliminary research related to robotization of drilling process and possibilities of its application in underground mine condition. A test rig has been proposed. To simulate drilling process several key assumptions have been accepted. As a result, algorithms for automation of drilling process have been proposed and tested on the test rig. Experiences gathered so far underline that there is a need for further developing robotic system for drilling process.

  6. Red Dragon drill missions to Mars

    Science.gov (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  7. Percussive drilling application of translational motion permanent magnet machine

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shujun

    2012-07-01

    It is clear that percussive drills are very promising since they can increase the rate of penetration in hard rock formations. Any small improvements on the percussive drills can make a big contribution to lowering the drilling costs since drilling a well for the oil and gas industry is very costly. This thesis presents a percussive drilling system mainly driven by a tubular reciprocating translational motion permanent magnet synchronous motor (RTPMSM), which efficiently converts electric energy to kinetic energy for crushing the hard rock since there is no mechanical media. The thesis starts from state-of-the-art of percussive drilling techniques, reciprocating translational motion motors, and self-sensing control of electric motors and its implementation issues. The following chapters present modeling the hard rock, modeling the drill, the design issues of the drill, the RTPMSM and its control. A single-phase RTPMSM prototype is tested for the hard rock drilling. The presented variable voltage variable frequency control is also validated on it. The space vector control and self-sensing control are also explored on a three-phase RTPMSM prototype. The results show that the percussive drill can be implemented to the hard rock drilling applications. A detailed summarisation of contributions and future work is presented at the end of the thesis.(Author)

  8. Importance of drill string assembly swivel in horizontal drilling

    Directory of Open Access Journals (Sweden)

    Edmund Tasak

    2006-10-01

    Full Text Available A part of the drill string – the swivel (rotational connector – accomplishes an important task in the horizontal drilling. Its malfunctioning makes it impossible to draw in ( install large diameter and length pipelines. The causes of the connector break-down during the horizontal drilling are investigated in the paper. The drilling has been made for twenty inches gas pipeline installation during reaming operations. A trouble was encountered making good work conditions of a system consisting of the drilling machine drill string reamer swivel tube shield of Cardan joint and the gas pipeline 500 m long. In this case, the swivel brokes down and the planned operation was not finished. The assessment of improper drilling conditions, selection of operation system components, and drilling parameters and the insufficient technological supervising have created an excessive risk of failure. A proper application of technical analysis would considerably decrease the hazard of failure which cause large costs, delays and decrease of confidence to the drilling contractor and pipeline installation.

  9. Drilling comparison in "warm ice" and drill design comparison

    DEFF Research Database (Denmark)

    Augustin, L.; Motoyama, H.; Wilhelms, F.

    2007-01-01

    For the deep ice-core drilling community, the 2005/06 Antarctic season was an exciting and fruitful one. In three different Antarctic locations, Dome Fuji, EPICA DML and Vostok, deep drillings approached bedrock (the ice-water interface in the case of Vostok), emulating what had previously been...... achieved at NorthGRIP, Greenland, (summer 2003 and 2004) and at EPICA Dome C2, Antarctica (season 2004/05). For the first time in ice-core drilling history, three different types of drill (KEMS, JARE and EPICA) simultaneously reached the depth of 'warm ice' under high pressure. After excellent progress...... at each site, the drilling rate dropped and the drilling teams had to deal with refrozen ice on cutters and drill heads. Drills have different limits and perform differently. In this comparative study, we examine depth, pressure, temperature, pump flow and cutting speed. Finally, we compare a few...

  10. Trace elements in a North Sea drill core

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar; Gwozdz, R.; Svendsen, N.

    1986-01-01

    , V, Sr, Dy, Mg, Ti, Ba and Eu. The major elements Ca and Al could be related to petrophysical parameters, particularly Al which shows a correlation with the silicification/argillaceous content. Na (and Cl) has a low content in the hydrocarbon-bearing section of the drill core suggesting that the pore......Chalk samples, systematically taken along a drill core from one of the hydrocarbon producing fields of the North Sea (Tyra field), were analysed by a neutron activation technique involving measurement of radioisotopes with relatively short half-lives. Elements determined include Na, Al, Cl, Ca, Mn...... space is filled mainly by hydrocarbons. A significant decrease of Mn with depth probably suggests diagenesis of chalk prior to, or with, hydrocarbon emplacement. Investigations of drilling fluids and cuttings reveal a strong contamination of the latter, mainly by Ba. Chalk data from comparable onshore...

  11. Development of vertical drilling apparatus (Terra-Drill); Entwicklung eines Vertikal-Bohrgeraets (Terra-Drill) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, D.

    2009-05-15

    This well-illustrated final report for the Swiss Federal Office of Energy (SFOE) reports on the development of a vertical drilling apparatus named Terra-Drill. The various stages of the development of the apparatus, which is based on earlier designs, is discussed. New norms issued in Germany for the size of boreholes for buried vertical heat-exchangers and the appropriate linings to be used are discussed. The new Terra Drill 4407 V drilling apparatus and its testing are discussed. The drill is quoted as being particularly suitable for cramped locations. Technical details are presented and a comprehensive collection of photographs is included. Various preliminary reports and development documentation are included.

  12. Planetary Drilling and Resources at the Moon and Mars

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    Drilling on the Moon and Mars is an important capability for both scientific and resource exploration. The unique requirements of spaceflight and planetary environments drive drills to different design approaches than established terrestrial technologies. A partnership between NASA and Baker Hughes Inc. developed a novel approach for a dry rotary coring wireline drill capable of acquiring continuous core samples at multi-meter depths for low power and mass. The 8.5 kg Bottom Hole Assembly operated at 100 We and without need for traditional drilling mud or pipe. The technology was field tested in the Canadian Arctic in sandstone, ice and frozen gumbo. Planetary resources could play an important role in future space exploration. Lunar regolith contains oxygen and metals, and water ice has recently been confirmed in a shadowed crater at the Moon.s south pole. Mars possesses a CO2 atmosphere, frozen water ice at the poles, and indications of subsurface aquifers. Such resources could provide water, oxygen and propellants that could greatly simplify the cost and complexity of exploration and survival. NASA/JSC/EP/JAG

  13. The final frontier: Tesco takes evolution of casing drilling system offshore

    Energy Technology Data Exchange (ETDEWEB)

    Polczer, S.

    2000-04-01

    Tesco Corporation is complementing its smaller 4 1/2-inch casing-while-drilling (CWD) tools by designing a series of 13 3/8-inch and a 9 5/8-inch underreamers and cutters to accommodate the larger diameter holes typical of offshore drilling. Tesco is building its own rig; it is a single rated to 3,000 metres that can be moved in seven loads with an overall 100 ton load rating. The unit features dimensional drilling capability in addition to features such as logging-while-drilling, and measurement-while-drilling. A conventional coring unit is employed via wireline. To date, Tesco has successfully overcome two of the main challenges in developing the new drilling process, i. e. to guarantee that casing can be run in high compression loads without damage to connections, and to develop an underreamer cutting structure to destroy rock at a rate comparable to conventional rotary drilling. The wireline retrieval system, which is 100 per cent reliable in running mode, but only 70 per cent successful in the retrieval mode, is the next challenge to be overcome. Tesco claims a 40 per cent reduction in overall 'spud to release' time, however, the main advantage claimed for the system is that the casing system protects the integrity of the hole as it is being drilled.

  14. Drilling bits for deep drilling and process for their manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, H.; Juergens, R.; Feenstra, R.; Busking, B.E.

    1978-11-30

    The invention concerns a drilling head or a drilling bit for use in deep drilling in underground formations and particularly concerns a drilling bit with a drilling bit body, which has a shank and a hollow space, which is connected with a duct extending through the shank. The drilling bit body has several separate cutting elements for removing material from the floor of a borehole and hydraulic devices for cooling and/or cleaning the cutting elements are provided.

  15. 500.000 years of environmental history in Eastern Anatolia: The PALEOVAN drilling project

    DEFF Research Database (Denmark)

    Litt, Thomas; Anselmetti, Flavio; Baumgarten, Henrike

    2012-01-01

    International Continental Scientific Drilling Program (ICDP) drilled a complete succession of the lacustrine sediment sequence deposited during the last ~500,000 years in Lake Van, Eastern Anatolia (Turkey). Based on a detailed seismic site survey, two sites at a water depth of up to 360 m were...... drilled in summer 2010, and cores were retrieved from sub-lake-floor depths of 140 m (Northern Basin) and 220 m (Ahlat Ridge). To obtain a complete sedimentary section, the two sites were multiple-cored in order to investigate the paleoclimate history of a sensitive semi-arid region between the Black...

  16. Investigation of PDC bit failure base on stick-slip vibration analysis of drilling string system plus drill bit

    Science.gov (United States)

    Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei

    2018-03-01

    The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.

  17. The Iceland Deep Drilling Project (IDDP): (I) Status and Future Plans.

    Science.gov (United States)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Schiffman, P.; Zierenberg, R.; Reed, M. H.

    2006-12-01

    The IDDP represents a challenging step forward in the worldwide development of geothermal energy by assessing the potential of power production from natural supercritical fluids. A feasibility study in 2003 concluded that in order to reach fluids at temperatures of >400°C drilling to depths of 4 to 5 km is necessary, but the resultant superheated steam should have a power output ten times that of conventional subcritical steam with the same volumetric flow rate. A consortium of leading Icelandic energy companies together with a government agency, the Icelandic Energy Authority, is carrying out the IDDP. In late 2003 a member of the consortium offered a planned exploratory well to the IDDP for deepening. This is in a geothermal system that produces hydrothermally modified seawater on the Reykjanes peninsula, in southern Iceland, where the Mid-Atlantic Ridge comes on land. Processes at depth at Reykjanes should be similar to those responsible for black smokers on ocean spreading centers. This well reached 3.1 km in February 2005, and research on the downhole samples began. Unfortunately the well became plugged during a flow test and was abandoned in February 2006 after attempts to recondition it failed. This led to the IDDP deciding to move the site for the first deep borehole to Krafla, near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. The Krafla geothermal system has higher temperature gradients than at Reykjanes but produces hydrothermally modified meteoric water with magmatic gases. The drill site chosen is near an existing well that encountered 340°C at only 2.5 km depth. It will be rotary drilled with spot coring to 3.5 km depth, and then deepened to ~4.5 km, using continuous wireline coring for scientific purposes. However, given the competition for drilling rigs internationally, and the year-long lead times in obtaining specialized well casings, it will be a year before IDDP begins

  18. From field to database : a user-oriented approche to promote cyber-curating of scientific drilling cores

    Science.gov (United States)

    Pignol, C.; Arnaud, F.; Godinho, E.; Galabertier, B.; Caillo, A.; Billy, I.; Augustin, L.; Calzas, M.; Rousseau, D. D.; Crosta, X.

    2016-12-01

    Managing scientific data is probably one the most challenging issues in modern science. In plaeosciences the question is made even more sensitive with the need of preserving and managing high value fragile geological samples: cores. Large international scientific programs, such as IODP or ICDP led intense effort to solve this problem and proposed detailed high standard work- and dataflows thorough core handling and curating. However many paleoscience results derived from small-scale research programs in which data and sample management is too often managed only locally - when it is… In this paper we present a national effort leads in France to develop an integrated system to curate ice and sediment cores. Under the umbrella of the national excellence equipment program CLIMCOR, we launched a reflexion about core curating and the management of associated fieldwork data. Our aim was then to conserve all data from fieldwork in an integrated cyber-environment which will evolve toward laboratory-acquired data storage in a near future. To do so, our demarche was conducted through an intimate relationship with field operators as well laboratory core curators in order to propose user-oriented solutions. The national core curating initiative proposes a single web portal in which all teams can store their fieldwork data. This portal is used as a national hub to attribute IGSNs. For legacy samples, this requires the establishment of a dedicated core list with associated metadata. However, for forthcoming core data, we developed a mobile application to capture technical and scientific data directly on the field. This application is linked with a unique coring-tools library and is adapted to most coring devices (gravity, drilling, percussion etc.) including multiple sections and holes coring operations. Those field data can be uploaded automatically to the national portal, but also referenced through international standards (IGSN and INSPIRE) and displayed in international

  19. The use of drilling by the U.S. Antarctic program

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.C.; Webb, J.W.; Hedberg, W.H.

    1994-08-01

    This report on drilling in the Antarctic has been prepared by the U.S. National Science Foundation (NSF) to assist principal investigators and others in complying with the National Environmental Policy Act (NEPA) and the Antarctic Treaty of 1961. Implementing regulations for NEPA are spelled out in 40 CFR 1500-1508. Environmental protection under the Antarctic Treaty is addressed in the Protocol on Environmental Protection to the Antarctic Treaty (hereafter referred to as the Protocol), which was adopted by 26 countries in 1991. In the United States, responsibility for compliance with these requirements rests with the NSF Office of Polar Programs (OPP), which manages the U.S. Antarctic Program (USAP). The USAP recognizes the potentially profound impacts that its presence and activities can have on the antarctic environment. In its extensive support of operations and research in Antarctica, the USAP uses all practical means to foster and maintain natural conditions while supporting scientific endeavors in a safe and healthful manner. Reducing human impacts on the antarctic environment is a major goal of the USAP. The USAP`s operating philosophy is based on broad yet reasonable and practical assumptions concerning environmental protection. The USAP maintains three year-round stations on the continent to support scientific research. Research and associated support operations at these stations and camps sometimes involve drilling into ice, soil, or ocean sediments. In order to comply with NEPA and the Protocol, it is necessary for principal investigators and others to assess the environmental effects of drilling. This report has been prepared to assist in this process by describing various drilling technologies currently available for use in Antarctica, generally characterizing the potential environmental impacts associated with these drilling techniques, and identifying possible mitigation measures to reduce impacts.

  20. Research on high speed drilling technology and economic integration evaluation in Oilfield

    Science.gov (United States)

    Wang, Kun; Ni, Hongjian; Cheng, Na; Song, Jingbo

    2018-01-01

    The carbonate reservoir in the oilfield mainly formed in Ordovician System and Carboniferous System. The geology here is very complicated, with high heterogeneity. It gets much more difficult to control the well deflection in Permian system so that high accident ratio could be expected. The buried depth of the reservoir is large, normally 4600-6600m deep. The temperature of the layer is higher than 132 and the pressure is greater than 62MPa. The reservoir is with a high fluid properties, mainly including thin oil, heavy oil, condensate oil, gas and so on; the ground is very hard to drill, so we can foresee low drilling speed, long drilling period and high drilling cost, which will surely restrict the employing progress of the reservoir.

  1. Real-time drilling mud gas monitoring for qualitative evaluation of hydrocarbon gas composition during deep sea drilling in the Nankai Trough Kumano Basin.

    Science.gov (United States)

    Hammerschmidt, Sebastian B; Wiersberg, Thomas; Heuer, Verena B; Wendt, Jenny; Erzinger, Jörg; Kopf, Achim

    2014-01-01

    Integrated Ocean Drilling Program Expedition 338 was the second scientific expedition with D/V Chikyu during which riser drilling was conducted as part of the Nankai Trough Seismogenic Zone Experiment. Riser drilling enabled sampling and real-time monitoring of drilling mud gas with an onboard scientific drilling mud gas monitoring system ("SciGas"). A second, independent system was provided by Geoservices, a commercial mud logging service. Both systems allowed the determination of (non-) hydrocarbon gas, while the SciGas system also monitored the methane carbon isotope ratio (δ(13)CCH4). The hydrocarbon gas composition was predominated by methane (> 1%), while ethane and propane were up to two orders of magnitude lower. δ(13)CCH4 values suggested an onset of thermogenic gas not earlier than 1600 meter below seafloor. This study aims on evaluating the onboard data and subsequent geological interpretations by conducting shorebased analyses of drilling mud gas samples. During shipboard monitoring of drilling mud gas the SciGas and Geoservices systems recorded up to 8.64% and 16.4% methane, respectively. Ethane and propane concentrations reached up to 0.03 and 0.013%, respectively, in the SciGas system, but 0.09% and 0.23% in the Geoservices data. Shorebased analyses of discrete samples by gas chromatography showed a gas composition with ~0.01 to 1.04% methane, 2 - 18 ppmv ethane, and 2 - 4 ppmv propane. Quadruple mass spectrometry yielded similar results for methane (0.04 to 4.98%). With δD values between -171‰ and -164‰, the stable hydrogen isotopic composition of methane showed little downhole variability. Although the two independent mud gas monitoring systems and shorebased analysis of discrete gas sample yielded different absolute concentrations they all agree well with respect to downhole variations of hydrocarbon gases. The data point to predominantly biogenic methane sources but suggest some contribution from thermogenic sources at depth, probably due

  2. Study of the possibilities of radioactive waste storage in crystalline formations. Investigation by deep drilling of the Auriat granite

    International Nuclear Information System (INIS)

    1982-01-01

    Various and complex scientific problems are raised in many areas by the disposal of radioactive waste in geological formations. Research works are therefore numerous, and are carried out in four basic areas: - improvement of the knowledge of geological media; - characterization of their behaviour vis a vis radioactive waste; - design of deep repositories; - long-term safety assessment of the selected disposal strategies. Aim of the present research is to develop a methodology for investigating granite formations at great depth, in order to characterize their internal structure, and to acquire data about the various physical properties of granite. This research therefore covers the first basic aspect. These goals were obtained by continuous core-drilling of two vertical boreholes at 10m pitch. The main borehole was drilled down to 1003.15m deep, the second one was stopped at 504.40m deep

  3. CASING DRILLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2005-12-01

    Full Text Available Casing drilling is an alternative option to conventional drilling and uses standard oilfield casing instead of drillstring. This technology is one of the greatest developments in drilling operations. Casing drilling involves drilling and casing a well simultaneously. In casing driling process, downhole tools can be retrieved, through the casing on wire-line, meaning tool recovery or replacement of tools can take minutes versus hours under conventional methods. This process employs wireline-retrievable tools and a drill-lock assembly, permitting bit and BHA changes, coring, electrical logging and even directional or horizontal drilling. Once the casing point is reached, the casing is cemented in place without tripping pipe.

  4. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  5. Drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Umanchik, N P; Demin, A V; Khrustalev, N N; Linnik, G N; Lovchev, S V; Rozin, M M; Sidorov, R V; Sokolov, S I; Tsaregradskiy, Yu P

    1981-01-01

    A drilling unit is proposed which includes a hydraulic lifter, hydraulic multiple-cylinder pump with valve distribution and sectional drilling pump with separators of the working and flushing fluid. In order to reduce metal consumption and the overall dimensions of the drilling unit, the working cavity of each cylinder of the hydraulic multiple-cylinder pump is equipped with suction and injection valves and is hydraulically connected to the working cavity by one of the sections of the drilling pump.

  6. Borehole drilling for sewage disposal at Asuka Station, East Antarctica

    OpenAIRE

    Ishizawa,Kenji; Takahashi,Akiyoshi

    1994-01-01

    A borehole for sewage disposal was drilled at Asuka Station (71°31′34″S, 24°08′17″E, 930m a. s. l.) in January 1987. The borehole, 400mm in diameter and 27.5m in depth, was drilled 50m distant from the main hut using a steam drilling system. The drilling speed was 4m/h between the snow surface and 20m depth. The total amount of kerosene used for melting snow and steam generation was 110/. Sewage stored in the tank was directed to the borehole through a heated pipe. The cumulative amount of se...

  7. Heat flow study at the Chinese Continental Scientific Drilling site: Borehole temperature, thermal conductivity, and radiogenic heat production

    Science.gov (United States)

    He, Lijuan; Hu, Shengbiao; Huang, Shaopeng; Yang, Wencai; Wang, Jiyang; Yuan, Yusong; Yang, Shuchun

    2008-02-01

    The Chinese Continental Scientific Drilling (CCSD) Project offers a unique opportunity for studying the thermal regime of the Dabie-Sulu ultrahigh-pressure metamorphic belt. In this paper, we report measurements of borehole temperature, thermal conductivity, and radiogenic heat production from the 5158 m deep main hole (CCSD MH). We have obtained six continuous temperature profiles from this borehole so far. The temperature logs show a transient mean thermal gradient that has increased from 24.38 to 25.28 K km-1 over a period of about 1.5 years. We measured thermal conductivities and radiogenic heat productions on more than 400 core samples from CCSD MH. The measured thermal conductivities range between 1.71 and 3.60 W m-1 K-1, and the radiogenic heat productions vary from 0.01 μW m-3 to over 5.0 μW m-3, with a mean value of 1.23 ± 0.82 μW m-3 for the upper 5-km layer of the crust. The heat productions in CCSD MH appear to be more rock-type than depth-dependent and, over the depth range of CCSD MH, do not fit the popular model of heat production decreasing exponentially with increasing depth. The measured heat flow decreases with depth from ˜75 mW m-2 near the surface to ˜66 mW m-2 at a depth of 4600 m. High heat flow anomalies occur at ˜1000 and ˜2300 m, and low anomalies occur at 3300-4000 m. A preliminary two-dimensional numerical model suggests that both radiogenic heat production and thermal refraction due to structural heterogeneity are at least partially responsible for the vertical variation of heat flow in CCSD MH.

  8. A Proposed Borehole Scientific Laboratory in Quay County, New Mexico, USA

    Science.gov (United States)

    Nielson, Dennis; Eckels, Marc; Mast, Peter; Zellman, Mark; Creed, Robert

    2017-04-01

    Our team has received funding from the US Department of Energy to initiate a Deep Borehole Field Test that will develop a subsurface test site to evaluate the drilling and scientific aspects of deep borehole disposal of nuclear waste in crystalline rock. Phase 1 of the project will focus on Public Outreach and land acquisition whereas Phase 2 will generate a drilling and testing plan and secure regulatory approvals. Phase 3 will complete the Drilling and Testing Plan and Phase 4 will include the drilling and testing. Phase 5 will be devoted to borehole science and experiments with emplacement technology. Although we are specifically considering issues associated with the disposal of waste, this project is a proof of concept, and no waste will be emplaced at our site. In brief, the concept envisions an 8-1/2 inch open-hole completion at a depth of 5000 m in crystalline rock. There will be an extensive program of sample collection (including core) and analysis as well as geophysical logging and borehole testing. Critical issues will be low permeability in the crystalline rock as well as the ability to manage borehole quality. Our team has proposed a site in Quay County, New Mexico that has an 850 meter thick Paleozoic section overlying homogeneous Precambrian granite. A subsequent phase of the project may drill a second hole with a 17-1/2 inch completion located about 200 m from the first. Our long-term plan is that this site will be managed as a deep scientific observatory that also provides a facility for scientific experiments and testing of borehole infrastructure and drilling equipment.

  9. A new drilling method-Earthworm-like vibration drilling.

    Science.gov (United States)

    Wang, Peng; Ni, Hongjian; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed "earthworm-like drilling" is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a "soft-string" model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling.

  10. Drill-string design for directional wells

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, R; Corbett, K T [Exxon Production Research Co., Houston, TX (USA)

    1983-01-01

    This paper is concerned with predicting the tension and torsion loads on drill strings in directional wells and with adjusting the string design or well plan to provide adequate strength. Drill-string drag is the incremental force that is required to move the pipe up or down in the hole; torque is the moment required to rotate the pipe. Drag forces are usually given relative to the string weight measured with the string roating but not reciprocating. Measured from the roating string weight, the pick-up drag is usually slightly greater than the slack-off drag. The magnitudes of torque and drag are related in any particular well; high drag forced and exessive torque loads normally occur together. There are a number of phenomena wich contribute to torque and drag. Included are tight hole conditions, sloughing hole, keyseats, differential sticking, cuttings build up due to poor hole cleaning and sliding wellbore friction. With the exception of sliding friction, these causes are associated with problem conditions in the wellbore. Conversely, in wells with good hole conditions, the primary source of torque and drag is sliding friction. This paper is only concerned with the torque and drag caused by sliding friction. The cabability to predict frictional loads on drill pipe has two main benefits. First, more complete knowledge of drill-string loading allows use of improved drill-string design techniques. Drill-string components can be chosen using a systematic approach considering the force involved. Second, deep, highly-deviated wells can be planned to minimize torque and drag. Use of torque and drag as a criteria to select the most appropriate well path will help ensure successful drilling operations to total depth. 1 fig., 2 tabs. (Author).

  11. Esmeralda Energy Company, Final Scientific Technical Report, January 2008. Emigrant Slimhole Drilling Project, DOE GRED III

    Energy Technology Data Exchange (ETDEWEB)

    Deymonaz, John [Fish Lake Green Power Co. (United States); Hulen, Jeffrey B. [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geosciences Inst.; Nash, Gregory D. [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geosciences Inst.; Schriener, Alex [Earth Systems Southwest (United States)

    2008-01-22

    The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive, temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.

  12. Effects of a Short Drilling Implant Protocol on Osteotomy Site Temperature and Drill Torque.

    Science.gov (United States)

    Mihali, Sorin G; Canjau, Silvana; Cernescu, Anghel; Bortun, Cristina M; Wang, Hom-Lay; Bratu, Emanuel

    2018-02-01

    To establish a protocol for reducing the drilling sequence during implant site preparation based on temperature and insertion torque. The traditional conventional drilling sequence (used several drills with 0.6-mm increment each time) was compared with the proposed short drilling protocol (only used 2 drills: initial and final drill). One hundred drilling osteotomies were performed in bovine and porcine bones. Sets of 2 osteotomy sites were created in 5 bone densities using 2 types of drilling protocols. Thermographic pictures were captured throughout all drilling procedures and analyzed using ThermaCAM Researcher Professional 2.10. Torque values were determined during drilling by measuring electrical input and drill speed. There were statistically significant differences in bone temperature between the conventional and short drilling protocols during implant site preparation (analysis of variance P = 0.0008). However, there were no significant differences between the 2 types of drilling protocols for both implant diameters. Implant site preparation time was significantly reduced when using the short drilling protocol compared with the conventional drilling protocol (P drilling protocol proposed herein may represent a safe approach for implant site preparation.

  13. Surgical drill system and surgical drill bit to be used therein

    NARCIS (Netherlands)

    Margallo Balbas, E.; Wieringa, P.A.; French, P.J.; Lee, R.A.; Breedveld, P.

    2007-01-01

    Surgical drill system comprising a mechanical drill bit and means for imaging the vicinity of the drill bit tip, said means comprising: at least one optical fiber having a distal end and a proximal end, said distal end being located adjacent said drill bit tip, an optical processing unit, said

  14. Phase III Drilling Operations at the Long Valley Exploratory Well (LVF 51-20)

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.

    1999-06-01

    During July-September, 1998, a jointly funded drilling operation deepened the Long Valley Exploratory Well from 7178 feet to 9832 feet. This was the third major drilling phase of a project that began in 1989, but had sporadic progress because of discontinuities in tiding. Support for Phase III came from the California Energy Commission (CEC), the International Continental Drilling Program (ICDP), the US Geological Survey (USGS), and DOE. Each of these agencies had a somewhat different agenda: the CEC wants to evaluate the energy potential (specifically energy extraction from magma) of Long Valley Caldera; the ICDP is studying the evolution and other characteristics of young, silicic calderas; the USGS will use this hole as an observatory in their Volcano Hazards program; and the DOE, through Sandia, has an opportunity to test new geothermal tools and techniques in a realistic field environment. This report gives a description of the equipment used in drilling and testing; a narrative of the drilling operations; compiled daily drilling reports; cost information on the project; and a brief summary of engineering results related to equipment performance and energy potential. Detailed description of the scientific results will appear in publications by the USGS and other researchers.

  15. Oman Drilling Project Phase I Borehole Geophysical Survey

    Science.gov (United States)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for

  16. Real Time Seismic Prediction while Drilling

    Science.gov (United States)

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  17. Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study.

    Science.gov (United States)

    Delgado-Ruiz, R A; Velasco Ortega, E; Romanos, G E; Gerhke, S; Newen, I; Calvo-Guirado, J L

    2018-01-01

    To evaluate the real-time bone temperature changes during the preparation of the implant bed with a single-drill protocol with different drill designs and different slow drilling speeds in artificial type IV bone. For this experimental in vitro study, 600 implant bed preparations were performed in 10 bovine bone disks using three test slow drilling speeds (50/150/300 rpm) and a control drilling speed (1200 rpm). The temperature at crestal and apical areas and time variations produced during drilling with three different drill designs with similar diameter and length but different geometry were recorded with real-life thermographic analysis. Statistical analysis was performed by two-way analysis of variance. Multiple comparisons of temperatures and time with the different drill designs and speeds were performed with the Tukey's test. T Max values for the control drilling speed with all the drill designs (D1 + 1200; D2 + 1200; D3 + 1200) were higher compared to those for the controls for 11 ± 1.32 °C (p drilling at 50 rpm resulted in the lowest temperature increment (22.11 ± 0.8 °C) compared to the other slow drilling speeds of 150 (24.752 ± 1.1 °C) and 300 rpm (25.977 ± 1.2 °C) (p drilling speeds compared to that for the control drilling speed. Slow drilling speeds required significantly more time to finish the preparation of the implant bed shown as follows: 50 rpm > 150 rpm > 300 rpm > control (p drill protocol with slow drilling speeds (50, 150, and 300 rpm) without irrigation in type IV bone increases the temperature at the coronal and apical levels but is below the critical threshold of 47 °C. The drill design in single-drill protocols using slow speeds (50, 150, and 300 rpm) does not have an influence on the thermal variations. The time to accomplish the implant bed preparation with a single-drill protocol in type IV bone is influenced by the drilling speed and not by the drill design. As the speed decreases, then

  18. An experimental system for coiled tubing partial underbalanced drilling (CT-PUBD) technique

    Science.gov (United States)

    Shi, H. Z.; Ji, Z. S.; Zhao, H. Q.; Chen, Z. L.; Zhang, H. Z.

    2018-05-01

    To improve the rate of penetration (ROP) in hard formations, a new high-speed drilling technique called Coiled Tubing Partial Underbalanced Drilling (CT-PUBD) is proposed. This method uses a rotary packer to realize an underbalanced condition near the bit by creating a micro-annulus and an overbalanced condition at the main part of the annulus. A new full-scale laboratory experimental system is designed and set up to study the hydraulic characteristics and drilling performance of this method. The system is composed of a drilling system, circulation system, and monitor system, including three key devices, namely, cuttings discharge device, rotary packer, and backflow device. The experimental results showed that the pressure loss increased linearly with the flow rate of the drilling fluid. The high drilling speed of CT-PUBD proved it a better drilling method than the conventional drilling. The experimental system may provide a fundamental basis for the research of CT-PUBD, and the results proved that this new method is feasible in enhancing ROP and guaranteeing the drilling safety.

  19. Theoretical Estimation of Thermal Effects in Drilling of Woven Carbon Fiber Composite

    Directory of Open Access Journals (Sweden)

    José Díaz-Álvarez

    2014-06-01

    Full Text Available Carbon Fiber Reinforced Polymer (CFRPs composites are extensively used in structural applications due to their attractive properties. Although the components are usually made near net shape, machining processes are needed to achieve dimensional tolerance and assembly requirements. Drilling is a common operation required for further mechanical joining of the components. CFRPs are vulnerable to processing induced damage; mainly delamination, fiber pull-out, and thermal degradation, drilling induced defects being one of the main causes of component rejection during manufacturing processes. Despite the importance of analyzing thermal phenomena involved in the machining of composites, only few authors have focused their attention on this problem, most of them using an experimental approach. The temperature at the workpiece could affect surface quality of the component and its measurement during processing is difficult. The estimation of the amount of heat generated during drilling is important; however, numerical modeling of drilling processes involves a high computational cost. This paper presents a combined approach to thermal analysis of composite drilling, using both an analytical estimation of heat generated during drilling and numerical modeling for heat propagation. Promising results for indirect detection of risk of thermal damage, through the measurement of thrust force and cutting torque, are obtained.

  20. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  1. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  2. An evaluation of calculation procedures affecting the constituent factors of equivalent circulating density for drilling hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, William J.

    1996-12-31

    This Dr. ing. thesis covers a study of drilling hydraulics offshore. The purpose of drilling hydraulics is to provide information about downhole pressure, suitable surface pump rates, the quality of hole cleaning and optimum tripping speeds during drilling operations. Main fields covered are drilling hydraulics, fluid characterisation, pressure losses, and equivalent circulating density. 197 refs., 23 figs., 22 tabs.

  3. An evaluation of calculation procedures affecting the constituent factors of equivalent circulating density for drilling hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, William J

    1997-12-31

    This Dr. ing. thesis covers a study of drilling hydraulics offshore. The purpose of drilling hydraulics is to provide information about downhole pressure, suitable surface pump rates, the quality of hole cleaning and optimum tripping speeds during drilling operations. Main fields covered are drilling hydraulics, fluid characterisation, pressure losses, and equivalent circulating density. 197 refs., 23 figs., 22 tabs.

  4. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    Science.gov (United States)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important

  5. Effects of drilling parameters in numerical simulation to the bone temperature elevation

    Science.gov (United States)

    Akhbar, Mohd Faizal Ali; Malik, Mukhtar; Yusoff, Ahmad Razlan

    2018-04-01

    Drilling into the bone can produce significant amount of heat which can cause bone necrosis. Understanding the drilling parameters influence to the heat generation is necessary to prevent thermal necrosis to the bone. The aim of this study is to investigate the influence of drilling parameters on bone temperature elevation. Drilling simulations of various combinations of drill bit diameter, rotational speed and feed rate were performed using finite element software DEFORM-3D. Full-factorial design of experiments (DOE) and two way analysis of variance (ANOVA) were utilised to examine the effect of drilling parameters and their interaction influence on the bone temperature. The maximum bone temperature elevation of 58% was demonstrated within the range in this study. Feed rate was found to be the main parameter to influence the bone temperature elevation during the drilling process followed by drill diameter and rotational speed. The interaction between drill bit diameter and feed rate was found to be significantly influence the bone temperature. It is discovered that the use of low rotational speed, small drill bit diameter and high feed rate are able to minimize the elevation of bone temperature for safer surgical operations.

  6. Anti-collapse mechanism of CBM fuzzy-ball drilling fluid

    Directory of Open Access Journals (Sweden)

    Lihui Zheng

    2016-03-01

    Full Text Available Although fuzzy-ball drilling fluid has been successfully applied in CBM well drilling, it is necessary to study its anti-collapse mechanism so that adjustable coalbed sealing effects, controllable sealing strength, rational sealing cost and controllable reservoir damage degree can be realized. In this paper, laboratory measurement was performed on the uniaxial compressive strength of the plungers of No. 3 coalbed in the Qinshui Basin and the inlet pressure of Ø38 mm coal plunger displacement. The strengths of coal plungers were tested and compared after 2% potassium chloride solution, low-solids polymer drilling fluid and fuzzy-ball drilling fluid were injected into the coal plungers respectively. It is shown that coal strength rises by 38.46% after the fuzzy-ball drilling fluid is injected (in three groups; and that no fuzzy-ball drilling fluid is lost at the displacement pressures of 20.73 and 21.46 MPa, nor 2% potassium chloride solution is leaked at such pressures of 24.79 and 25.64 MPa after the plunger was sealed by the fuzzy-ball drilling fluid. This indicates that the fuzzy-ball drilling fluid can increase the formation resistance to fluid. Indoor microscopic observation was conducted on the sealing process of the fuzzy-ball drilling fluid in sand packs with coal cuttings of three grain sizes (60–80, 80–100 and 100–120 mesh. It is shown that the leakage pathways of different sizes are sealed by the vesicles in the form of accumulation, stretch and blockage. And there are vesicles at the inlet ends of the flowing pathways in the shape of beaded blanket. The impact force of drilling tools on the sidewalls is absorbed by the vesicles due to their elasticity and tenacity, so the sidewall instability caused by drilling tools is relieved. It is concluded that the main anti-collapse mechanisms of the CBM fuzzy-ball drilling fluid are to raise the coal strength, increase the formation resistance to fluid, and buffer the impact of

  7. 46 CFR 108.419 - Fire main capacity.

    Science.gov (United States)

    2010-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fire Main System § 108.419 Fire main capacity. The diameter of the fire... pumps operating simultaneously. ...

  8. Drilling the Bushveld Complex- the world's largest layered mafic intrusion

    Science.gov (United States)

    Ashwal, L. D.; Webb, S. J.; Trumbull, R. B.

    2013-12-01

    The fact that surprising new discoveries can be made in layered mafic intrusions (e.g., subtle 100-150 m cyclicity in apparently homogeneous cumulates over 1000s of m) means that we are still in the first-order characterization phase of understanding these objects. Accordingly, we have secured funding from ICDP for a planning workshop to be held in Johannesburg in early 2014, aimed at scientific drilling of the Bushveld Complex, the world's largest layered mafic intrusion. Science objectives include, but are not limited to: 1. Magma chamber processes & melt evolution. How many melts/magmas/mushes were involved, what were their compositions and how did they interact? What, if anything, is missing from the Complex, and where did it go? Did Bushveld magmatism have an effect upon Earth's atmosphere at 2 Ga? 2. Crust-mantle interactions & origin of Bushveld granitoids. Are Bushveld granites & rhyolites crustal melts, differentiates from the mafic magmas or products of immiscibility? How can the evolved isotopic signatures in the mafic rocks (e.g., epsilon Nd to -8) be understood? 3. Origin of ore deposits. What were the relative roles of gravity settling, magma mixing, immiscibility and hydrothermal fluid transport in producing the PGE, Cr and V deposits? We have identified 3 potential drilling targets representing a total of ~12 km of drill core. Exact locations of drill sites are to be discussed at the workshop. Target A- East-Central Bushveld Complex. We propose 3 overlapping 3 km boreholes that will provide the first roof-to-floor continuous coverage of the Rustenburg Layered Suite. These boreholes will represent a curated, internationally available reference collection of Bushveld material for present and future research. Target B- Southeastern Bushveld Complex. We propose a single borehole of ~2 km depth, collared in Rooiberg felsite, and positioned to intersect the Roof Zone, Upper Zone, Main Zone and floor of the Complex. Amongst other things, this site will

  9. Geological mappability of bored versus drill and blast excavations for radioactive waste repositories

    International Nuclear Information System (INIS)

    Nilsen, B.; Ozdemir, L.

    1992-01-01

    The issue of accurate geological mappability has been subject of intense debate in the selection of bored versus drill and blast excavation for radioactive waste repositories. This paper is intended to provide an assessment of the problems usually encountered in mappability on the basis of field experience from a large number of completed tunnels, mainly as part of the Norwegian hydropower projects. The main conclusion is that mapping in a mechanically excavated underground opening, with very few exceptions, reflects the in-situ conditions more accurately than mapping in a drill and blast tunnel. This is due to the overbreak effects of drill and blast excavation, primarily

  10. Activity plan: Directional drilling and environmental measurements while drilling

    International Nuclear Information System (INIS)

    Myers, D.A.

    1998-01-01

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested

  11. Case drilling - an innovative approach to reducing drilling costs

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Tessari, R. M. [Tesco Corp., Calgary, AB (Canada); Warren, T. [Tesco Drilling Technology, Calgary, AB (Canada)

    1999-11-01

    Casing drilling is introduced as a new drilling technique that uses standard oil field casing to simultaneously drill and case the well. The technology includes both rig and downhole equipment, customized to function effectively as an integrated drilling system. This paper describes the testing program designed to identify and overcome technical challenges. Although not fully optimized, it appears that the system is functional. Test results indicate the need for improvements in the pump down cement float equipment and the tools and procedures for drilling up the cement plugs. The pump down latch and retrieval system also needs to be further developed and tested for high angle directional applications. Cost savings in the range of 10 to 15 per cent are expected for trouble-free wells. By eliminating the cost of unscheduled events encountered in troublesome wells, cost savings may reach as high as 30 per cent. 3 refs., 7 figs.

  12. Activity plan: Directional drilling and environmental measurements while drilling

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.A.

    1998-07-16

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested.

  13. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-01-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of approximately minus8 m (minus27 ft.), following a predetermined drill path, tracking the drill path to within a radius of approximately1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of ∼ -21 m (-70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned

  14. Simulation of friction stir drilling process

    Science.gov (United States)

    Vijayabaskar, P.; Hynes, N. Rajesh Jesudoss

    2018-05-01

    The project is the study of the thermal drilling process. The process is a hole forming process in the sheet metals using the heat generated by means of friction. The main advantage of the process over the conventional drilling process is that the holes formed using this process does not need any backing arrangements such as weld nuts, rivet nuts etc. Because the extruded bush itself acts as a supporting structure for the fasteners. This eliminates the need for the access to the backside of the work material for fastening operations. The major factors contributing the thermal drilling operation are the spindle speed and the thrust force required for forming a hole. The process of finding out the suitable thrust force and the speed for drilling a particular material with particular thickness is a tedious process. The process can be simplified by forming a mathematical model by combining the empirical formulae from the literature. These formulae were derived in the literature from the experimental trials by following certain assumptions. In this paper a suitable mathematical model is formed by replicating the experiments and tried to be validated by the results from numerical analysis. The numerical analysis of the model is done using the ANSYS software.

  15. Preliminary analysis of downhole logging data from ICDP Lake Junin drilling Project, Peru

    Science.gov (United States)

    Pierdominici, Simona; Kück, Jochem; Rodbell, Donald T.; Abbott, Mark B.

    2016-04-01

    The International Continental Drilling Programm (ICDP) has supported a scientific drilling campaign in Peru during the summer season 2015. The Lake Junin Drilling Project mainly aims at obtaining high-resolution paleoclimate records from lacustrine sediments to reconstruct the history of the continental records covering the glacial-interglacial cycles. Lake Junín is located at 4000 m a.s.l. in the tropical Andes of Peru, and is characterized by a thick (> 125 m) sediment package deposited at a high rate (0.2 to 1.0 mm yr-1). Lake Junín is one of the few lakes in the tropical Andes that predates the maximum extent of glaciation and is in a geomorphic position to record the waxing and waning of glaciers in nearby cordillera, hence making the lake a key site for the investigation of the Quaternary climate evolution in the inner-tropics of the Southern Hemisphere. Continous coring was performed at three sites in overall 11 boreholes on the lake with at least two overlapping boreholes per site to avoid core gaps. The depth of the boreholes varied between approx. 30 m and 110 m depending on the drill site. The core bit had a bit size of 122.6 mm and yielded a core diameter of 85 mm. Upon completion of coring operations downhole geophysical logging was performed in five of the 11 boreholes (1A, 1C, 1D, 2A and 3B) by the Operational Support Group of ICDP. The main objective was to record in-situ the physical properties of the lacustrine sediments of Lake Junin. Downhole logs provide a powerful tool to fill in information at intervals with core gaps and as depth reference for depth matching of the discontinous cores. Furthermore it will be used for the lithological reconstruction and interpretation. The OSG downhole logging comprised total and spectrum gamma ray, magnetic susceptibility, borehole geometry, temperature, and sonic P-wave velocity. Unstable and collapsing borehole walls made it neccessary to carry out logging in several sections instead of in one run. The

  16. Drilling cost analysis

    International Nuclear Information System (INIS)

    Anand, A.B.

    1992-01-01

    Drilling assumes greater importance in present day uranium exploration which emphasizes to explore more areas on the basis of conceptual model than merely on surface anomalies. But drilling is as costly as it is important and consumes a major share (50% to 60%) of the exploration budget. As such the cost of drilling has great bearing on the exploration strategy as well as on the overall cost of the project. Therefore, understanding the cost analysis is very much important when planning or intensifying an exploration programme. This not only helps in controlling the current operations but also in planning the budgetary provisions for future operations. Also, if the work is entrusted to a private party, knowledge of in-house cost analysis helps in fixing the rates of drilling in different formations and areas to be drilled. Under this topic, various factors that contribute to the cost of drilling per meter as well as ways to minimize the drilling cost for better economic evaluation of mineral deposits are discussed. (author)

  17. Superhot Drilling in Iceland, the Experience of the Iceland Deep Drilling Project.

    Science.gov (United States)

    Elders, W. A.; Friðleifsson, G. Ó.; Zierenberg, R. A.; Fowler, A. P.

    2017-12-01

    The Iceland Deep Drilling Project aims to improve geothermal economics by producing supercritical fluids (www.iddp.is). Supercritical wells could yield an order of magnitude more usable energy than that from conventional geothermal wells because of higher enthalpy and enhanced flow properties. In 2009, the IDDP-1 well failed to reach supercritical conditions in the Krafla caldera in NE Iceland, after encountering rhyolite magma at only 2.1 km depth. The completed geothermal well became the world's hottest and produced superheated steam with a wellhead temperature of 452°C and flow sufficient to generate 35 MWe. The IDDP next moved SW to the Reykjanes Peninsula, the landward extension of the Mid-Atlantic Ridge, where it is possible to study an analog of the roots of a black smoker. Reykjanes is unique among Icelandic geothermal systems in being recharged by seawater, which has a critical point of 406°C at 298 bars. Drilling began by deepening an existing 2.5 km deep production well to 3 km depth, and then angling it towards the main upflow zone of the system, for a total slant depth of 4,659 m. Total circulation losses were encountered below 3 km that could not be cured by lost circulation materials or by multiple cement jobs. Accordingly, drilling continued to total depth without return of drill cuttings. We attempted 13 core runs below 3 km depth, only half of which recovered core. The cores are basalts and dolerites with alteration ranging from lower greenschist facies to lower amphibolite facies, suggesting formation temperatures >450°C. After the end of drilling in January 2017, following only six days of heating, supercritical conditions (426°C at 340 bars) were measured in the well at a depth of 4.5 km. The well has not yet been allowed to equilibrate to full in situ temperature. A perforated liner was inserted to 4,570 m, depth to facilitate temperature cycling to enhance permeability at depth through thermal cracking. In 2018 this will be followed by a

  18. Core drilling of drillhole ONK-PVA8 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-12-01

    Suomen Malmi Oy (Smoy) core drilled a drillhole for groundwater monitoring station in ONKALO at Eurajoki, Olkiluoto in July 2010. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The identification number of the hole is ONK-PVA8, and the length of the drillhole is 17.74 m. The drillhole is 75.7 mm by diameter. The drillhole was drilled in a niche of the access tunnel at chainage 2935. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are diatexitic gneiss and pegmatitic granite. The average fracture frequency in drill core ONK-PVA8 is 1.7 pcs / m and the average RQD value 96.0 %. (orig.)

  19. New Proposed Drilling at Surtsey Volcano, Iceland

    Science.gov (United States)

    Jackson, Marie D.

    2014-12-01

    Surtsey, an isolated oceanic island and a World Heritage Site of the United Nations Educational, Scientific and Cultural Organization, is a uniquely well-documented natural laboratory for investigating processes of rift zone volcanism, hydrothermal alteration of basaltic tephra, and biological colonization and succession in surface and subsurface pyroclastic deposits. Deposits from Surtsey's eruptions from 1963 to 1967 were first explored via a 181-meter hole drilled in 1979 by the U.S. Geological Survey and Icelandic Museum of Natural History.

  20. Hydraulics calculation in drilling simulator

    Science.gov (United States)

    Malyugin, Aleksey A.; Kazunin, Dmitry V.

    2018-05-01

    The modeling of drilling hydraulics in the simulator system is discussed. This model is based on the previously developed quasi-steady model of an incompressible fluid flow. The model simulates the operation of all parts of the hydraulic drilling system. Based on the principles of creating a common hydraulic model, a set of new elements for well hydraulics was developed. It includes elements that correspond to the in-drillstring and annular space. There are elements controlling the inflow from the reservoir into the well and simulating the lift of gas along the annulus. New elements of the hydrosystem take into account the changing geometry of the well, loss in the bit, characteristics of the fluids including viscoplasticity. There is an opportunity specify the complications, the main one of which is gas, oil and water inflow. Correct work of models in cases of complications makes it possible to work out various methods for their elimination. The coefficients of the model are adjusted on the basis of incomplete experimental data provided by operators of drilling platforms. At the end of the article the results of modeling the elimination of gas inflow by a continuous method are presented. The values displayed in the simulator (drill pipe pressure, annulus pressure, input and output flow rates) are in good agreement with the experimental data. This exercise took one hour, which is less than the time on a real rig with the same configuration of equipment and well.

  1. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  2. Core drilling of drillhole ONK-PVA11 in ONKALO at Olkiluoto 2014

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Drillcon SMOY, Espoo (Finland)

    2014-12-15

    Suomen Malmi Oy (Smoy) core drilled a drillhole for groundwater monitoring station in ONKALO at Eurajoki, Olkiluoto in 2014. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The drillhole ONK-PVA11 was drilled in February 2014. The length of the drillhole is 30.05 metres. The drillhole is 75.7 mm by diameter. The drillhole ONK-PVA11 was drilled in the left wall of the ONK-TT-4399 (tunnel chainage 50) between the demonstration tunnel ONK-TDT-4399-44 and 56 openings. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillhole was measured with EMS deviation survey tool. In addition to drilling the drillcore was logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcore are veined gneiss, diatexitic gneiss and pegmatitic granite. The average fracture frequency in drill core is 2.3 pcs/m and the average RQD value 95.2 %. (orig.)

  3. Core drilling of drillhole ONK-PVA11 in ONKALO at Olkiluoto 2014

    International Nuclear Information System (INIS)

    Toropainen, V.

    2014-12-01

    Suomen Malmi Oy (Smoy) core drilled a drillhole for groundwater monitoring station in ONKALO at Eurajoki, Olkiluoto in 2014. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The drillhole ONK-PVA11 was drilled in February 2014. The length of the drillhole is 30.05 metres. The drillhole is 75.7 mm by diameter. The drillhole ONK-PVA11 was drilled in the left wall of the ONK-TT-4399 (tunnel chainage 50) between the demonstration tunnel ONK-TDT-4399-44 and 56 openings. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillhole was measured with EMS deviation survey tool. In addition to drilling the drillcore was logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcore are veined gneiss, diatexitic gneiss and pegmatitic granite. The average fracture frequency in drill core is 2.3 pcs/m and the average RQD value 95.2 %. (orig.)

  4. Slight rise possible in U.S. drilling; Canadian action sags

    International Nuclear Information System (INIS)

    Petzet, G.A.; Beck, R.J.

    1996-01-01

    The low level of US drilling evident in 1995 is likely to continue into 1996. Anticipated increases in the average prices of crude oil and natural gas will sustain only about a 2% increase in the number of wells drilled year to year in the US. A second year of decline can be expected in Canada from 1993's historic high, but total drilling will remain above the average of well counts for the past 10 years. Here are the main points of OGJ's early year drilling forecast for 1996: (1) Operators will drill 21,800 wells, compared with the 21,300 OGJ estimates they drilled in 1995. (2) The active rotary rig count will average 750, up 14% from 1995. (3) Operators will drill 3,300 exploratory wells of all types, up from 3,119 last year. (4) A surveyed group of major operators will drill 2,551 wells during the year, down from the 2,920 wells the same group operated in 1995. The 1996 figures includes 245 exploratory wells of all types, up from 219 last year. Meanwhile, drilling in western Canada will total 9,375 wells, down 12% from 1995 but still a healthy number historically. This paper provides exploration statistics for both the US and Canada and is broken down by state and province. It gives data on both exploratory and development wells. Data is also broken down by specific field

  5. A comparison of petrophysical data inputs for establishing time-depth relationships: a guide for future drilling expeditions

    Science.gov (United States)

    Boaga, J.; Sauermilch, I.; Mateo, Z. R. P.

    2017-12-01

    Time-depth relationships (TDR) are crucial in correlating drillhole and core information to seismic reflection profiles, for accurate resource estimation, scientific interpretation and to guide drilling operations. Conventional seismic time-depth domain conversion utilizes downhole sonic logs (DSI), calibrated using available checkshot data, which are local travel times from the surface to a particular depth. Scientific drilling programs (ODP and IODP) also measure P-wave velocity (PWL or C) on recovered core samples. Only three percent of all ODP and IODP sites record all three velocity measurements, however this information can be instructive as sometimes these data input show dissimilar TDR. These representative sites provide us with an opportunity to perform a comparative analysis highlighting the differences and similarities of TDRs derived from checkshot, downhole, and laboratory measurements. We then discuss the impact of lithology, stratigraphy, water column and other petrophysical properties in the predictive accuracy of TDR calculations, in an effort to provide guidance for future drilling and coring expeditions.

  6. Deep drilling in the Chesapeake Bay impact structure - An overview

    Science.gov (United States)

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  7. Drilling trends in the nineties

    International Nuclear Information System (INIS)

    1993-01-01

    At a conference on various aspects of well drilling in the 1990s, papers were presented on drilling waste management, well completion and workovers, drilling fluids, drilling rig equipment and design, drilling mechanics, drill stem testing and materials, cementing, business management, health and safety, environmental issues, and directional drilling technology. Separate abstracts have been prepared for 46 papers from this conference

  8. Technologie pour le forage scientifique en eau très profonde au XXIe siècle Deepwater Technology for Scientific Drilling in the 21st Century

    Directory of Open Access Journals (Sweden)

    Sparks C.

    2006-11-01

    Full Text Available Le présent article aborde les slimline risers et les systèmes de forage minier qui sont deux domaines technologiques dont le potentiel doit permettre d'améliorer le forage et le carottage scientifiques en eau très profonde au cours du XXIe siècle. Cet article présente les avantages et les inconvénients des slimline risers, par rapport aux risers de forage utilisés par l'industrie pétrolière. Le potentiel de matériaux nouveaux est évoqué. Des analyses préliminaires de slimline risers fabriqués de différents matériaux (acier, titane, aluminium et composite pour forage scientifique par 4 000 m de profondeur d'eau sont présentées. La seconde partie de l'article aborde les moyens d'adapter les systèmes de forage minier aux grands fonds. This paper addresses slimline riser systems and mining drilling systems which are two items of technology that have the potential to improve scientific drilling and coring in deep water in the 21st century. The paper presents the advantages and disadvantages of drilling with a slimline riser, compared to an oil industry riser. The potential of new materials are discussed. Preliminary analyses of slimline risers made from different materials (steel, titanium, aluminium and composite for 4000 m of water are presented. In the second part of the paper, ways of adapting mining systems to deepwater are discussed.

  9. Seed drill depth control system for precision seeding

    DEFF Research Database (Denmark)

    Kirkegaard Nielsen, Søren; Munkholm, Lars Juhl; Lamandé, Mathieu

    2018-01-01

    acting on the drill coulters, which generates unwanted vibrations and, consequently, a non-uniform seed placement. Therefore, a proof-of-concept dynamic coulter depth control system for a low-cost seed drill was developed and studied in a field experiment. The performance of the active control system...... depth control system this variability was reduced to±2 mm. The system with the active control system operated more accurately at an operational speed of 12 km h−1 than at 4 km h−1 without the activated control system.......An adequate and uniform seeding depth is crucial for the homogeneous development of a crop, as it affects time of emergence and germination rate. The considerable depth variations observed during seeding operations - even for modern seed drills - are mainly caused by variability in soil resistance...

  10. Drilling contract issues

    International Nuclear Information System (INIS)

    Davison, G.B.; Worden, D.R.; Borbridge, G.K.D.

    1997-01-01

    Some selected issues which are facing both operators and contractors in drilling for oil and gas, such as the allocation of risk by contract and by statute and the implementation of new technologies, were discussed. There are three varieties of written drilling contracts used in Canada: (1) day work and meterage contracts, (2) master drilling agreements, and (3) contracts that are used in construction projects that do not specifically relate to drilling. Issues relevant to the contractual allocation of risk, to implementing new drilling technologies, to reconciling contract and statute liability, and the formation of strategic alliances for mutual benefit, and the factors contributing to the success of such alliances were explored. 12 refs

  11. South African drilling

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    According to the president of the South African Drilling Association, the drilling industry is meeting head-on the challenges created by the worldwide recession. The paper is a synopsis of several of the papers presented at the SADA symposium and a look at several mining-related drilling projects in South Africa. These papers include grouting techniques, the use of impregnated bits in hard rock drilling, tunnel boring for mines, surveying improvement methods and the use of explosives to increase groundwater yield

  12. A new drilling method—Earthworm-like vibration drilling

    Science.gov (United States)

    Wang, Peng; Wang, Ruihe

    2018-01-01

    The load transfer difficulty caused by borehole wall friction severely limits the penetration rate and extended-reach limit of complex structural wells. A new friction reduction technology termed “earthworm-like drilling” is proposed in this paper to improve the load transfer of complex structural wells. A mathematical model based on a “soft-string” model is developed and solved. The results show that earthworm-like drilling is more effective than single-point vibration drilling. The amplitude and frequency of the pulse pressure and the installation position of the shakers have a substantial impact on friction reduction and load transfer. An optimization model based on the projection gradient method is developed and used to optimize the position of three shakers in a horizontal well. The results verify the feasibility and advantages of earthworm-like drilling, and establish a solid theoretical foundation for its application in oil field drilling. PMID:29641615

  13. New optimized drill pipe size for deep-water, extended reach and ultra-deep drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, Michael J.; Delgado, Ivanni [Grant Prideco, Inc., Hoston, TX (United States); Falcao, Jose Luiz; Sato, Ademar Takashi [PETROBRAS, Rio de Janeiro, RJ (Brazil); Moura, Carlos Amsler [Comercial Perfuradora Delba Baiana Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new drill pipe size, 5-7/8 in. OD, represents enabling technology for Extended Reach Drilling (ERD), deep water and other deep well applications. Most world-class ERD and deep water wells have traditionally been drilled with 5-1/2 in. drill pipe or a combination of 6-5/8 in. and 5-1/2 in. drill pipe. The hydraulic performance of 5-1/2 in. drill pipe can be a major limitation in substantial ERD and deep water wells resulting in poor cuttings removal, slower penetration rates, diminished control over well trajectory and more tendency for drill pipe sticking. The 5-7/8 in. drill pipe provides a significant improvement in hydraulic efficiency compared to 5-1/2 in. drill pipe and does not suffer from the disadvantages associated with use of 6-5/8 in. drill pipe. It represents a drill pipe assembly that is optimized dimensionally and on a performance basis for casing and bit programs that are commonly used for ERD, deep water and ultra-deep wells. The paper discusses the engineering philosophy behind 5-7/8 in. drill pipe, the design challenges associated with development of the product and reviews the features and capabilities of the second-generation double-shoulder connection. The paper provides drilling case history information on significant projects where the pipe has been used and details results achieved with the pipe. (author)

  14. The Hans Tausen drill

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder

    2007-01-01

    In the mid-1990s, excellent results from the GRIP and GISP2 deep drilling projects in Greenland opened up funding for continued ice-coring efforts in Antarctica (EPICA) and Greenland (NorthGRIP). The Glaciology Group of the Niels Bohr Institute, University of Copenhagen, was assigned the task...... of providing drilling capability for these projects, as it had done for the GRIP project. The group decided to further simplify existing deep drill designs for better reliability and ease of handling. The drill design decided upon was successfully tested on Hans Tausen Ice Cap, Peary Land, Greenland, in 1995....... The 5.0 m long Hans Tausen (HT) drill was a prototype for the ~11 m long EPICA and NorthGRIP versions of the drill which were mechanically identical to the HT drill except for a much longer core barrel and chips chamber. These drills could deliver up to 4 m long ice cores after some design improvements...

  15. Chemical monitoring of mud products on drilled cuttings

    International Nuclear Information System (INIS)

    Hughes, T.L.; Jones, T.G.J.; Tomkins, P.G.; Gilmour, A.; Houwen, O.H.; Sanders, M.

    1991-01-01

    An increasing area of concern for offshore drilling practices in the environmental impact of discharged drilled cuttings contaminated with drilling fluids. The standard retort analysis is of limited accuracy and chemical specificity. Anticipating future requirements for a more complete accounting of mud chemicals discharged to the environment, we present here results for chemical monitoring using a modern comprehensive chemical analysis technique. Fourier transform infrared (FT-IR) spectrometry. In this paper description is given of sampling methods found to be practical and the main calibration requirements are discussed. The techniques developed in the course of this work give a good mineralogical breakdown of mud solids (commercial and drilled solids) in addition to the environmentally relevant measurements relating to mud on cuttings. The possibility of using the new technique for the rigsite monitoring of drilling cuttings is demonstrated. Cuttings samples simultaneously from the flow line, shaker screen, desilter and mud cleaner were analyzed. It is found that mud polymers and other organic additives can be measured with sufficient accuracy to measure the removal of mud products by discharged cuttings. The technique is also applicable to quantify the losses of oil-based mud on cuttings. Field testing has shown that the instrumentation used in sufficiently robust and simple to use for rig-site application

  16. Drilling contracts and incentives

    International Nuclear Information System (INIS)

    Osmundsen, Petter; Sorenes, Terje; Toft, Anders

    2008-01-01

    Shortages of rigs and personnel have encouraged discussion of designing incentive contracts in the drilling sector. However, for the drilling contracts, there are not a large variety of contract types in use. This article describes and analyses incentives for drilling contractors. These are directly represented by the compensation formats utilised in the present and in the consecutive drilling contracts. Indirectly, incentives are also provided by the evaluation criteria that oil companies use for awarding drilling assignments. Changes in contract format pose a number of relevant questions relating to resource management, and the article takes an in-depth look at some of these. Do evaluation criteria for awarding drilling assignments encourage the development of new technology and solutions? How will a stronger focus on drilling efficiency influence reservoir utilisation?

  17. Chemical stratigraphy of the Apollo 17 deep drill cores 70009-70007

    Science.gov (United States)

    Ehmann, W. D.; Ali, M. Z.

    1977-01-01

    A description is presented of an analysis of a total of 26 samples from three core segments (70009, 70008, 70007) of the Apollo 17 deep drill string. The deep drill string was taken about 700 m east of the Camelot Crater in the Taurus-Littrow region of the moon. Three core segments have been chemically characterized from the mainly coarse-grained upper portion of the deep drill string. The chemical data suggest that the entire 70007-70009 portion of the deep drill string examined was not deposited as a single unit, but was formed by several events sampling slightly different source materials which may have occurred over a relatively short period of time. According to the data from drill stem 70007, there were at least two phases of deposition. Core segment 70009 is probably derived from somewhat different source material than 70008. It seems to be a very well mixed material.

  18. Core drilling of drillholes OL-PP66-69 at Olkiluoto 2008

    International Nuclear Information System (INIS)

    Kuusirati, J.; Tarvainen, A.-M.

    2009-04-01

    Suomen Malmi Oy (Smoy) core drilled four 24.88 - 25.39 m long investigation drillholes at Olkiluoto in June 2008. The identification numbers of the holes are OL-PP66, OL-PP67, OL-PP68 and OL-PP69. The drillholes are 75.7 mm by diameter. Drillholes were core drilled with the diamond drill rig Diamec 1000. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The labelled drilling water was driven to the drilling places in a tank. In addition to drilling the drill cores were logged and reported by geologist. During geological investigation the following parameters were logged: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are diatexitic and veined gneisses and pegmatitic granite. The average fracture frequency in holes varied from 3.9 pcs/m to 5.8 pcs/m. The average RQD values varied from 84 % to 93 %. In the drillhole OL-PP66 two fractured zones were penetrated and in OL-PP69 one fractured zone. The drill cores OL-PP67 and OL-PP68 showed no fractured zones. Smoy also carried out optical imaging of the drillholes. The assignment included the field work and the data processing. This report describes the field operation, the equipment as well as the processing procedures and shows the obtained results and their quality. The raw and processed data are delivered digitally in WellCAD and PDF format. (orig.)

  19. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    Science.gov (United States)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  20. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  1. Report of the 8th International Symposium on the Observation of the Continental Crust Through Drilling; Dai 8 kai tairiku kagaku kussaku kokusai symposium ni sankashite

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K. [Super Deep Core Drilling Study Group, Japan, Tokyo (Japan)

    1996-11-29

    This report relates to the 8th International Symposium on the Observation of the Continental Crust Through Drilling, convened at Agency of Industrial Science and Technology, Tsukuba City, on February 26, 1996. The symposium was represented by approximately 200 people from the U.S., Canada, Britain, Germany, France, Russia, China, and some others, who discussed active faults, drilling and logging, transfer of fluids and heat in the crust, history of the earth and climate, ICDP (International Continental Scientific Drilling Program) and international cooperation under this program in the future, etc. In reference to ultradeep drilling in the world, drillings by Germany`s KTB (Kontinentales Tiefbohrprogramm)(9,101m deep) and Russia at Kola Peninsula (l2,261m) were reviewed. Concerning the efforts of U.S. Continental Scientific Drilling Program during the previous 11-year period, it was reported that it had cost a total of $84,000,000; that investigations had been made into volcanos and geotherm, fault tectonics, sedimentary basins, holes due to meteorites, and metal ore deposits; and that 61 holes (total length: 31,310m and maximum depth: 3,510m) had been drilled and investigated. 6 figs., 3 tabs.

  2. Making Safe Surgery Affordable: Design of a Surgical Drill Cover System for Scale.

    Science.gov (United States)

    Buchan, Lawrence L; Black, Marianne S; Cancilla, Michael A; Huisman, Elise S; Kooyman, Jeremy J R; Nelson, Scott C; OʼHara, Nathan N; OʼBrien, Peter J; Blachut, Piotr A

    2015-10-01

    Many surgeons in low-resource settings do not have access to safe, affordable, or reliable surgical drilling tools. Surgeons often resort to nonsterile hardware drills because they are affordable, robust, and efficient, but they are impossible to sterilize using steam. A promising alternative is to use a Drill Cover system (a sterilizable fabric bag plus surgical chuck adapter) so that a nonsterile hardware drill can be used safely for surgical bone drilling. Our objective was to design a safe, effective, affordable Drill Cover system for scale in low-resource settings. We designed our device based on feedback from users at Mulago Hospital (Kampala, Uganda) and focused on 3 main aspects. First, the design included a sealed barrier between the surgical field and hardware drill that withstands pressurized fluid. Second, the selected hardware drill had a maximum speed of 1050 rpm to match common surgical drills and reduce risk of necrosis. Third, the fabric cover was optimized for ease of assembly while maintaining a sterile technique. Furthermore, with the Drill Cover approach, multiple Drill Covers can be provided with a single battery-powered drill in a "kit," so that the drill can be used in back-to-back surgeries without requiring immediate sterilization. The Drill Cover design presented here provides a proof-of-concept for a product that can be commercialized, produced at scale, and used in low-resource settings globally to improve access to safe surgery.

  3. Design and Exploitation Problems of Drill String in Directional Drilling

    Directory of Open Access Journals (Sweden)

    Bednarz Stanislaw

    2004-09-01

    Full Text Available Drill string design for directional drilling requires accounting for a number of factors. First, types and expected values of loads should be determined. Then, elements of the drill string should be so selected as to enable realization of the plan at specified loads. Some of additional factors, e. g. purchase, exploitation cost, geological conditions in the bore-hole, washing of the bore-hole, stability, trajectory, rig parameters, accuracy of gauges, pumps parameters remain in conflict. Drill pipes are made of rolled pipes, upset and welded with tool joints to 9,5 m long; the shorter ones can be made of hot forged rods. Exploitation requirements, being a result of practical experience supported by theoretical and laboratory analyses should be a part of syllabuses of technical staff educational programs. Apart from designing the string, it is also vital to lower the risk of a drilling failure. The significance of these aspects seems to be unquestionable.

  4. Diagnostic System of Drill Condition in Laminated Chipboard Drilling Process

    Directory of Open Access Journals (Sweden)

    Swiderski Bartosz

    2017-01-01

    Full Text Available The paper presents an on-line automatic system for recognition of the drill condition in a laminated chipboard drilling process. Two states of the drill are considered: the sharp enough (still able to drill holes acceptable for processing quality and worn out (excessive drill wear, not satisfactory from the quality point of view of the process. The automatic system requires defining the diagnostic features, which are used as the input attributes to the classifier. The features have been generated from 5 registered signals: feed force, cutting torque, noise, vibration and acoustic emission. The statistical parameters defined on the basis of the auto regression model of these signals have been used as the diagnostic features. The sequential step-wise feature selection is applied for choosing the most discriminative set of features. The final step of recognition is done by support vector machine classifier working in leave one out mode. The results of numerical experiments have confirmed good quality of the proposed diagnostic system.

  5. Horizontal drilling under Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Meller, R.

    2001-07-01

    Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.

  6. Mission Specific Platforms: Past achievements and future developments in European led ocean research drilling.

    Science.gov (United States)

    Cotterill, Carol; McInroy, David; Stevenson, Alan

    2013-04-01

    Mission Specific Platform (MSP) expeditions are operated by the European Consortium for Ocean Research Drilling (ECORD). Each MSP expedition is unique within the Integrated Ocean Drilling Program (IODP). In order to complement the abilities of the JOIDES Resolution and the Chikyu, the ECORD Science Operator (ESO) must source vessels and technology suitable for each MSP proposal on a case-by-case basis. The result is that ESO can meet scientific requirements in a flexible manner, whilst maintaining the measurements required for the IODP legacy programme. The process of tendering within EU journals for vessels and technology means that the planning process for each MSP Expedition starts many years in advance of the operational phase. Involvement of proposal proponents from this early stage often leads to the recognition for technological research and development to best meet the scientific aims and objectives. One example of this is the planning for the Atlantis Massif proposal, with collaborative development between the British Geological Survey (BGS) and MARUM, University of Bremen, on suitable instruments for seabed drills, with the European Petrophysics Consortium (EPC) driving the development of suitable wireline logging tools that can be used in association with such seabed systems. Other technological developments being undertaken within the European IODP community include in-situ pressure sampling for gas hydrate expeditions, deep biosphere and fluid sampling equipment and CORK technology. This multi-national collaborative approach is also employed by ESO in the operational phase. IODP Expedition 302 ACEX saw vessel and ice management support from Russia and Sweden to facilitate the first drilling undertaken in Arctic sea ice. A review of MSP expeditions past, present and future reveal the significant impact of European led operations and scientific research within the current IODP programme, and also looking forward to the start of the new International

  7. Origin and in situ concentrations of hydrocarbons in the Kumano forearc basin from drilling mud gas monitoring during IODP NanTroSEIZE Exp. 319

    International Nuclear Information System (INIS)

    Wiersberg, Thomas; Schleicher, Anja M.; Horiguchi, Keika; Doan, Mai-Linh; Eguchi, Nobuhisa; Erzinger, Jörg

    2015-01-01

    Highlights: • Exp. 319 of IODP was the first cruise in the history of scientific ocean drilling with drilling mud gas monitoring. • Hydrocarbons were the only formation-derived gases identified in drilling mud. • Chemical and isotopic compositions of hydrocarbons exhibit a microbial origin. • Absolute CH 4 concentrations in the formation reaching up to 24 L gas /L sediment . - Abstract: NanTroSEIZE Exp. 319 of the Integrated Ocean Drilling Program (IODP) was the first cruise in the history of scientific ocean drilling with drilling mud circulation through a riser. Drilling mud was pumped through the drill string and returned to the drill ship through the riser pipe during drilling of hole C0009A from 703 to 1604 mbsf (meter below sea floor) and hole enlargement from 703 to 1569 mbsf. During riser drilling, gas from returning drilling mud was continuously extracted, sampled and analyzed in real time to reveal information on the gas composition and gas concentrations at depth. Hydrocarbons were the only formation-derived gases identified in drilling mud and reached up to 14 vol.% of methane and 48 ppmv of ethane. The chemical and isotopic compositions of hydrocarbons exhibit a microbial origin. Hydrocarbons released from drilling mud and cuttings correlate with visible allochthonous material (wood, lignite) in drilling cuttings. At greater depth, addition of small but increasing amounts of hydrocarbons probably from low-temperature thermal degradation of organic matter is indicated. The methane content is also tightly correlated with several intervals of low Poisson’s ratio from Vp/Vs observed in sonic velocity logs, suggesting that the gas is situated in the pore space of the rock as free gas. The gas concentrations in the formation, determined from drilling mud gas monitoring, reaching up to 24 L gas /L sediment for methane in hole C0009A, in line with gas concentrations from interpreted downhole sonic logs

  8. Alteration in the IRDP drill hole compared with other drill holes in Iceland

    Science.gov (United States)

    Kristmannsdóttir, Hrefna

    1982-08-01

    The overall alteration pattern in the drill hole at Reydarfjördur is very similar to alteration patterns observed in Icelandic geothermal areas and in low-grade metamorphosed basalts in deep crustal sections elsewhere in Iceland. However more detail is obtained by the study of the IRDP drill core than by study of drill cuttings sampled in previous drill holes in Iceland. A comparatively high fossil thermal gradient is obtained at Reydarfjördur by a combination of mineral stability data and the observed occurence of secondary minerals. This high gradient is consistent with the measured dike dilation at the drill site and the location of the drill site adjacent to a central volcano.

  9. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    Energy Technology Data Exchange (ETDEWEB)

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  10. Mission Moho: Rationale for drilling deep through the ocean crust into the upper mantle

    Science.gov (United States)

    Ildefonse, B.; Abe, N.; Kelemen, P. B.; Kumagai, H.; Teagle, D. A. H.; Wilson, D. S.; Moho Proponents, Mission

    2009-04-01

    Sampling a complete section of the ocean crust to the Moho was the original inspiration for scientific ocean drilling, and remains the main goal of the 21st Century Mohole Initiative in the IODP Science Plan. Fundamental questions about the composition, structure, and geophysical characteristics of the ocean lithosphere, and about the magnitude of chemical exchanges between the mantle, crust and oceans remain unresolved due to the absence of in-situ samples and measurements. The geological nature of the Mohorovičić discontinuity itself remains poorly constrained. "Mission Moho" is a proposal that was submitted to IODP in April 2007, with the ambition to drill completely through intact oceanic crust formed at a fast spreading rate, across the Moho and into the uppermost mantle. Although, eventually, no long-term mission was approved by IODP, the scientific objectives related to deep drilling in the ocean crust remain essential to our understanding of the Earth. These objectives are to : - Determine the geological meaning of the Moho in different oceanic settings, determine the in situ composition, structure and physical properties of the uppermost mantle, and understand mantle melt migration, - Determine the bulk composition of the oceanic crust to establish the chemical links between erupted lavas and primary mantle melts, understand the extent and intensity of seawater hydrothermal exchange with the lithosphere, and estimate the chemical fluxes returned to the mantle by subduction, - Test competing hypotheses of the ocean crust accretion at fast spreading mid-ocean ridges, and quantify the linkages and feedbacks between magma intrusion, hydrothermal circulation and tectonic activity, - Calibrate regional seismic measurements against recovered cores and borehole measurements, and understand the origin of marine magnetic anomalies, - Establish the limits of life in the ocean lithosphere. The "MoHole" was planned as the final stage of Mission Moho, which requires

  11. Optimization of bridging agents size distribution for drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, Alex; Andrade, Alex Rodrigues de; Pires Junior, Idvard Jose; Martins, Andre Leibsohn [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)]. E-mails: awaldmann@petrobras.com.br; andradear.gorceix@petrobras.com.br; idvard.gorceix@petrobras.com.br; aleibsohn@petrobras.com.br

    2008-07-01

    The conventional drilling technique is based on positive hydrostatic pressure against well walls to prevent inflows of native fluids into the well. Such inflows can cause security problems for the team well and to probe. As the differential pressure of the well to reservoir is always positive, the filtrate of the fluid tends to invade the reservoir rock. Minimize the invasion of drilling fluid is a relevant theme in the oil wells drilling operations. In the design of drilling fluid, a common practice in the industry is the addition of bridging agents in the composition of the fluid to form a cake of low permeability at well walls and hence restrict the invasive process. The choice of drilling fluid requires the optimization of the concentration, shape and size distribution of particles. The ability of the fluid to prevent the invasion is usually evaluated in laboratory tests through filtration in porous media consolidated. This paper presents a description of the methods available in the literature for optimization of the formulation of bridging agents to drill-in fluids, predicting the pore throat from data psychotherapy, and a sensitivity analysis of the main operational parameters. The analysis is based on experimental results of the impact of the size distribution and concentration of bridging agents in the filtration process of drill-in fluids through porous media submitted to various different differential of pressure. The final objective is to develop a software for use of PETROBRAS, which may relate different types and concentrations of bridging agents with the properties of the reservoir to minimize the invasion. (author)

  12. A database of archived drilling records of the drill cuttings piles at the North West Hutton oil platform

    International Nuclear Information System (INIS)

    Marsh, Roy

    2003-01-01

    Drill cuttings piles are found underneath several hundred oil platforms in the North Sea, and are contaminated with hydrocarbons and chemical products. This study characterised the environmental risk posed by the cuttings pile at the North West Hutton (NWH) oil platform. Data on the drilling fluids and chemical products used over the platform's drilling history were transferred from archived well reports into a custom database, to which were added toxicological and safety data. Although the database contained many gaps, it established that only seven chemical products used at NWH were not in the lowest category of the Offshore Chemicals Notification Scheme, and were used in only small quantities. The study therefore supports the view that the main environmental risk posed by cuttings piles comes from hydrocarbon contamination. The (dated) well records could help future core sampling to be targeted at specific locations in the cuttings piles. Data from many platforms could also be pooled to determine generic 'discharge profiles.' Future study would benefit from the existence, in the public domain, of a standardised, 'legacy' database of chemical products

  13. Drilling a better pair : new technologies in SAGD directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, C.; Richter, D. [Statoil Canada Ltd., Calgary, AB (Canada); Person, J.; Tilley, J.; Bittar, M. [Halliburton Energy Services, Calgary, AB (Canada)

    2010-07-01

    The Leismer Demonstration Project (LDP) is the first of 8 proposed major steam assisted gravity drainage (SAGD) projects for Statoil's Kai Kos Dehseh (KKD) asset in the Athabasca oil sands deposit. The bitumen resources are expected to produce approximately 2.2 billion barrels of oil over approximately 35 years with a peak production of 220,000 bbl/day. To date, 23 well pairs have been drilled on 4 drilling pads. The precise placement of well pairs is among the most important factors in a successful SAGD drilling program. The producer well must be placed in relation to the reservoir boundaries. It must also be accurately twinned with the injector well. A strong focus on technological innovation is needed in order to deliver on these high expectations in unconsolidated formations, such as the McMurray oil sands. Lateral SAGD pairs are often drilled with conventional steerable mud motors and logging-while-drilling (LWD) resistivity measurements, but this combination imposes certain limitations in terms of wellbore quality and placement. Several industry firsts were successfully implemented at the Statoil LDP, including a combination of the newest and most cutting-edge directional, measurement, and LWD technology. The keystone of these industry firsts was the use of a soft formation modified, point-the-bit rotary steerable system (RSS), used on 20 horizontal wells. The RRS was combined with an ultra deep azimuthal resistivity sensor to provide precise geosteering along the bottom bed boundary in the producer wells, resulting in improved reservoir capture and reservoir characterization. This paper described the new drilling system and its impact on the progressive future of directional drilling in SAGD. 8 refs., 1 tab., 22 figs.

  14. Environmental effects of exploratory drilling offshore Canada : environmental effects monitoring data and literature review : final report

    International Nuclear Information System (INIS)

    Hurley, G.; Ellis, J.

    2004-10-01

    This study examined pertinent environmental effects monitoring (EEM) information and data associated with offshore exploratory and development drilling in Canada. Two approaches were used: (1) a review of scientific literature was conducted to provide a synthesis of knowledge concerning interactions between exploratory drilling and the environment; and (2) a review of pertinent Canadian EEM data was conducted to evaluate interactions between exploratory drilling and the environment. Virtually all the east coast Canadian data reviewed in the study related to the effects of multiple wells. Although the effects of drilling waste were a primary focus, the effects of accidental discharges, lights and flaring, atmospheric emissions and noise emissions were also considered. Changes in the diversity and abundance of benthic organisms were detected within 1000 metres of many drill sites. The fine particles in drilling wastes contributed to the environmental effects observed around drilling platforms, and elevated body burden concentrations of drill waste indicators were detected over larger scales in a wide range of taxonomic groups. The results of laboratory and field studies suggested a lower potential for toxicity on commercial finfish and shellfish species. However, it was observed that measuring the effects of elevated concentrations of contaminants remained a challenge due to high levels variability in literature studies. A precautionary approach to the management of seismic surveys was recommended. It was concluded that the potential cumulative impacts of exploration drilling should be considered in the context of other anthropogenic activities. 138 refs., 6 tabs.

  15. Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling

    Science.gov (United States)

    Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.

    2016-09-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.

  16. Main Coast Winds - Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Jason Huckaby; Harley Lee

    2006-03-15

    The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

  17. Shipboard Analytical Capabilities on the Renovated JOIDES Resolution, IODP Riserless Drilling Vessel

    Science.gov (United States)

    Blum, P.; Foster, P.; Houpt, D.; Bennight, C.; Brandt, L.; Cobine, T.; Crawford, W.; Fackler, D.; Fujine, K.; Hastedt, M.; Hornbacher, D.; Mateo, Z.; Moortgat, E.; Vasilyev, M.; Vasilyeva, Y.; Zeliadt, S.; Zhao, J.

    2008-12-01

    The JOIDES Resolution (JR) has conducted 121 scientific drilling expeditions during the Ocean Drilling Program (ODP) and the first phase of the Integrated Ocean Drilling Program (IODP) (1983-2006). The vessel and scientific systems have just completed an NSF-sponsored renovation (2005-2008). Shipboard analytical systems have been upgraded, within funding constraints imposed by market driven vessel conversion cost increases, to include: (1) enhanced shipboard analytical services including instruments and software for sampling and the capture of chemistry, physical properties, and geological data; (2) new data management capabilities built around a laboratory information management system (LIMS), digital asset management system, and web services; (3) operations data services with enhanced access to navigation and rig instrumentation data; and (4) a combination of commercial and home-made user applications for workflow- specific data extractions, generic and customized data reporting, and data visualization within a shipboard production environment. The instrumented data capture systems include a new set of core loggers for rapid and non-destructive acquisition of images and other physical properties data from drill cores. Line-scan imaging and natural gamma ray loggers capture data at unprecedented quality due to new and innovative designs. Many instruments used to characterize chemical compounds of rocks, sediments, and interstitial fluids were upgraded with the latest technology. The shipboard analytical environment features a new and innovative framework (DESCinfo) and application (DESClogik) for capturing descriptive and interpretive data from geological sub-domains such as sedimentology, petrology, paleontology, structural geology, stratigraphy, etc. This system fills a long-standing gap by providing a global database, controlled vocabularies and taxa name lists with version control, a highly configurable spreadsheet environment for data capture, and

  18. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  19. El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project

    Science.gov (United States)

    Koeberl, Christian; Pittarello, Lidia; Reimold, Wolf Uwe; Raschke, Ulli; Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel; Spray, John

    2013-01-01

    The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two main reasons, because of the importance for impact and paleoclimate research, El'gygytgyn was the subject of an International Continental Scientific Drilling Program (ICDP) drilling project in 2009. During this project, which, due to its logistical and financial challenges, took almost a decade to come to fruition, a total of 642.3 m of drill core was recovered at two sites, from four holes. The obtained material included sedimentary and impactite rocks. In terms of impactites, which were recovered from 316.08 to 517.30 m depth below lake bottom (mblb), three main parts of that core segment were identified: from 316 to 390 mblb polymict lithic impact breccia, mostly suevite, with volcanic and impact melt clasts that locally contain shocked minerals, in a fine-grained clastic matrix; from 385 to 423 mblb, a brecciated sequence of volcanic rocks including both felsic and mafic (basalt) members; and from 423 to 517 mblb, a greenish rhyodacitic ignimbrite (mostly monomict breccia). The uppermost impactite (316–328 mblb) contains lacustrine sediment mixed with impact-affected components. Over the whole length of the impactite core, the abundance of shock features decreases rapidly from the top to the bottom of the studied core section. The distinction between original volcanic melt fragments and those that formed later as the result of the impact event posed major problems in the study of these rocks. The sequence that contains fairly unambiguous evidence of impact melt (which is not very abundant anyway, usually less than a few volume%) is only about 75 m thick. The reason for

  20. Hydrodynamics of material removal by melt expulsion: Perspectives of laser cutting and drilling

    Science.gov (United States)

    Poprawe, Reinhart; Schulz, Wolfgang; Schmitt, Robert

    With the introduction of fiber-guided radiation at 1 μ wavelength emitting in the milti-kW range at better beam quality than CO2-lasers the most established application in laser processing, namely laser fusion cutting, came back into the industrial and scientific focus. Laser sources with extraordinary optical and economical properties - disk and fiber lasers - in a stormy way enter the market of cutting machines so far reserved for the 10 μ radiation source and led to a volatile situation. The new laser sources can already address a market-relevant class of applications, namely, fusion cutting of steel up to a sheet thickness of 2 mm with pronounced advantages in productivity. However, there is a significant lack of cut quality for larger sheet thickness. The main reason for the drawback and its physical background are given. With the availability of cutting machines with 1 μ fiber-guided radiation the race for the worldwide market regarding the larger sheet thickness is opened and the priority issues to improve the cut quality are related to the three levels: wavelength, beam delivery and the application stage of the machine. The stability model called QuCut is presented which for the first time allows to analyze stability of cutting with fiber-guided radiation. Experimental ripple patterns and ripple spectra resolved with respect to the cutting depth are well reproduced by the new stability model. A number of different experimental methods towards an improved understanding of the dynamics in laser drilling are developed, however, there are gaps related to in-situ observation which is obscured by the hole walls. There are four novel experimental methods resolving the dynamics from a μms-down to a ns-time scale having a spatial resolution with respect to transient drilling depth on the μm scale. As result, the different mechanisms contributing to recast formation and dynamical features of drilling are revealed in more detail. In particular, the action of

  1. Deep observation and sampling of the earth's continental crust (DOSECC): Continental scientific drilling workshop

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Research summaries are presented of ongoing or proposed deep drilling programs to explore hydrothermal systems, buried astroblemes, continental crust, magma systems, mountain belt tectonics, subduction zones, and volcanoes. Separate abstracts have been prepared for individual papers. (ACR)

  2. The experimental research on electrodischarge drilling of high aspect ratio holes in Inconel 718

    Science.gov (United States)

    Lipiec, Piotr; Machno, Magdalena; Skoczypiec, Sebastian

    2018-05-01

    In recent years the drilling operations become important area of electrodischarge machining (EDM) application. This especially concerns drilling of, small (D 10) holes in difficult-to-cut materials (i.e. nickel or titanium alloys). Drilling of such a holes is significantly beyond mechanical drilling capabilities. Therefore electrodischarge machining is good and cost efficient alternative for such application. EDM gives possibility to drill accurate, burr free and high aspect ratio holes and is applicable to machine wide range of conductive materials, irrespective of their hardness and toughness. However it is worth to underline its main disadvantages such as: significant tool wear, low material removal rate and poor surface integrity. The last one is especially important in reliable applications in aircraft or medical industry.

  3. Core drilling of REPRO drillholes in ONKALO at Olkiluoto 2010-2011

    International Nuclear Information System (INIS)

    Toropainen, V.

    2012-05-01

    Suomen Malmi Oy (Smoy) core drilled ten drillholes for the Posiva's Experiments to investigate Rock Matrix Retention Properties (REPRO) in ONKALO at Eurajoki, 2010 - 2011. The drillholes are used for geological characterization, hydrological and geophysical studies and instrumenting in research for retention of radionuclides to rock matrix. The drillhole ONK-PP240 was drilled in March 2010 and the drillholes ONKPP318... 324 and ONK-PP326...327 in October - December 2011. The lengths of the drillholes range from 4.90 to 21.65 metres. The drillholes are 56.5 mm by diameter. The drillhole ONK-PP240 was drilled for pretesting in the investigation niche 4 at access tunnel chainage 3747 and the rest of the drillholes in the investigation niche 5 at access tunnel chainage 4219. The hydraulic DE 130 drilling rig was used. The starting directions of the close spaced drillholes were controlled with an aligner assembly to be as parallel as possible. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss, pegmatitic granite and quartz gneiss (skarn rock). The average fracture frequency in drill cores is 1.2 pcs/m and the average RQD value 98.6 %. (orig.)

  4. Core drilling of REPRO drillholes in ONKALO at Olkiluoto 2010-2011

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-05-15

    Suomen Malmi Oy (Smoy) core drilled ten drillholes for the Posiva's Experiments to investigate Rock Matrix Retention Properties (REPRO) in ONKALO at Eurajoki, 2010 - 2011. The drillholes are used for geological characterization, hydrological and geophysical studies and instrumenting in research for retention of radionuclides to rock matrix. The drillhole ONK-PP240 was drilled in March 2010 and the drillholes ONKPP318... 324 and ONK-PP326...327 in October - December 2011. The lengths of the drillholes range from 4.90 to 21.65 metres. The drillholes are 56.5 mm by diameter. The drillhole ONK-PP240 was drilled for pretesting in the investigation niche 4 at access tunnel chainage 3747 and the rest of the drillholes in the investigation niche 5 at access tunnel chainage 4219. The hydraulic DE 130 drilling rig was used. The starting directions of the close spaced drillholes were controlled with an aligner assembly to be as parallel as possible. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss, pegmatitic granite and quartz gneiss (skarn rock). The average fracture frequency in drill cores is 1.2 pcs/m and the average RQD value 98.6 %. (orig.)

  5. Magnetic properties of cores from the Wenchuan Earthquake Fault Scientific Drilling Hole-2 (WFSD-2), China

    Science.gov (United States)

    Zhang, L., Jr.; Sun, Z.; Li, H.; Cao, Y.; Ye, X.; Wang, L.; Zhao, Y.; Han, S.

    2015-12-01

    During an earthquake, seismic slip and frictional heating may cause the physical and chemical alterations of magnetic minerals within the fault zone. Rock magnetism provides a method for understanding earthquake dynamics. The Wenchuan earthquake Fault Scientific Drilling Project (WFSD) started right after 2008 Mw7.9 Wenchuan earthquake, to investigate the earthquake faulting mechanism. Hole 2 (WFSD-2) is located in the Pengguan Complex in the Bajiaomiao village (Dujiangyan, Sichuan), and reached the Yingxiu-Beichuan fault (YBF). We measured the surface magnetic susceptibility of the cores in WFSD-2 from 500 m to 1530 m with an interval of 1 cm. Rocks at 500-599.31 m-depth and 1211.49-1530 m-depth are from the Neoproterozoic Pengguang Complex while the section from 599.31 m to 1211.49 m is composed of Late Triassic sediments. The magnetic susceptibility values of the first part of the Pengguan Complex range from 1 to 25 × 10-6 SI, while the second part ranges from 10 to 200 × 10-6 SI, which indicate that the two parts are not from the same rock units. The Late Triassic sedimentary rocks have a low magnetic susceptibility values, ranging from -5 to 20 × 10-6 SI. Most fault zones coincide with the high value of magnetic susceptibility in the WFSD-2 cores. Fault rocks, mainly fault breccia, cataclasite, gouge and pseudotachylite within the WFSD-2 cores, and mostly display a significantly higher magnetic susceptibility than host rocks (5:1 to 20:1). In particular, in the YBF zone of the WFSD-2 cores (from 600 to 960 m), dozens of stages with high values of magnetic susceptibility have been observed. The multi-layered fault rocks with high magnetic susceptibility values might indicate that the YBF is a long-term active fault. The magnetic susceptibility values change with different types of fault rocks. The gouge and pseudotachylite have higher values of magnetic susceptibility than other fault rocks. Other primary rock magnetism analyses were then performed to

  6. Review of casing while drilling technology

    Directory of Open Access Journals (Sweden)

    Pavković Bojan

    2016-01-01

    Full Text Available Conventional drilling methods have been plagued with huge operational and financial challenges, such as cost of purchasing, inspecting, handling, transporting the drill equipment and most importantly, tripping in-and-out of the drill string whenever the Bottom Hole Assembly (BHA needs a replacement, needs of wiper trip or when total depth is reached. The tripping in-and-out of the drill string not only contributes to Non Productive Time (NPT but also leads to well control difficulties including wellbore instability and lost circulation. All this has led Oil and Gas industry, as well as any other engineering industry, to seek for new ways and methods in order to reduce these problems. Thanks to the advances in technical solutions and constant improvements of conventional drilling methods, a new drilling method - casing while drilling has been developed. Casing Drilling encompasses the process of simultaneously drilling and casing a well, using the active casing and thus optimizes the production. This paper presents a review of casing while drilling method (CwD and its practical usage in drilling wells. The comparison of conventional drilling method and casing while drilling is also presented. The CwD method achieves significantly better results than conventional drilling method.

  7. Automated pipe handling systems for new and retrofit applications in shallow drilling markets

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, P.; Fikowski, L.M. [Blackbird Well Servicing Inc., Calgary, AB (Canada)

    2003-07-01

    This presentation discussed the importance of the human interface as the main element in the development of automated mechanical systems on drilling rigs. Improvements in drilling rig designs are meant to improve manpower efficiencies and performance. The goal for Blackbird Well Servicing is to design automated and integrated processes that can be controlled manually at any point during an operation. Although some drilling operations can be fully automated and fully integrated, certain steps in the process are intentionally left open ended for human intervention. It was concluded that the consistency of performance is the most significant feature of integrated systems and that all drilling contractors should strive for smooth, steady performance rather than brute labour. Speed and efficiency increases with consistent performance. Reliability results in better performance, thereby lowering operating costs and more work for drilling contractors.

  8. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, O [VBB VIAK AB, Malmoe (Sweden)

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs.

  9. Deep drilling KLX 02. Drilling and documentation of a 1700 m deep borehole at Laxemar, Sweden

    International Nuclear Information System (INIS)

    Andersson, O.

    1994-08-01

    In this report the preparation and execution of the deep core drilling KLX 02 is described. The hole was drilled with the wireline methods, NQ dimension (diameter 76 mm), to a final depth of 1700.5 m. Prior to core drilling a diameter 215 mm pilot hole was pre drilled to 200 m with controlled hammer drilling (DTH). In this hole casing and air-lift equipment was installed with the aim to support the circulation of drilling fluid. During core drilling there was a measurement of major drilling parameters and drilling fluid in and out of hole. As a fluid tracer uranine was used. Each 300 m of core drilling air-lift pump tests were performed. After completion a flow-meter log was run to finalize the project phase. It can be concluded that both the pre drilling and core drilling methods used proved to be successful. No severe technical problem occurred. However, potential risks have been pointed at in the report. The air-lift system functioned only partly and has to be modified for further use. Also the technique for monitoring of drilling parameters needs improvement as does the method for air-lift pump tests with packer. The organisation model for planning and realization functioned satisfactory and can be recommended for similar future projects. 9 refs, numerous tabs and figs

  10. Wellsite computers--their increasing role in drilling operations

    International Nuclear Information System (INIS)

    Keenan, P.G.; Dyson, P.M.

    1981-01-01

    The increasing expense and complexity of exploration drilling, coupled with rapid advances in computer and microprocessor technology, have led to the development of computer-assisted wellsite logging units from their humble beginnings as simple hot wire gas detectors. The main applications of this technology can be recognized in the following areas: (a) Safety of wellsite personnel, rig and downhole equipment. (b) Increased drilling efficiency with the resultant time and cost savings. (c) Simulation of possible events allowing comparisons between actual and expected data to assist decision making at the wellsite. (d) Storage of data on tape/disk to allow rapid retrieval of data for postwell analysis and report production. 6 refs

  11. Effective Geothermal Utilisation close to the surface by the TT-Geothermal Radial Drilling (GRD-Method

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Bayer

    2007-01-01

    Full Text Available In the late 1970-Years, Tracto-Technik developped a very effective radial-shaped percussion system for a geothermal heating, the ECOtherm-System, which was very well accepted by customers. Nowadays, a radial-shaped drilling system, operating some decameters below the surface, was developped by Tracto-Technik, which offers the chance of a very effective drilling for the use of geothermal energy. The main advantage of this development is the reduction of drilling costs by new constructions and new handling possibilities. Drilling processes like the rod connecting or the drill-hole enlargement were solved in other ways as usual, by very time-shortening and effective ways, which are presented in the paper. The new TT-Geothermal radial drilling methods need only a very small but highly effective drilling unit, which reduces the operational drilling cost in a enormous way. All operational drilling steps are reduced to less than a half time as usual. By these GRD-methods, the use of surface-close geothermal energy is simplified and less expansive.

  12. Environmental control technology in petroleum drilling and production

    International Nuclear Information System (INIS)

    Wojtanowicz, A.K.

    1997-01-01

    Environmental control technology (ECT) is process integrated and relates mainly to pollution prevention and risk assessment. Mechanisms of environmental impact in petroleum drilling, well completion and production, include the generation of waste, induction of toxicity or the creation of pathways for pollutant migration. The identification and evaluation of these mechanisms constitute two parts of the scope of ECT. A third part is the development of new techniques to comply with environmental requirements without prejudicing productivity. The basic concepts of the ECT approach are presented in this chapter. The approach is then used to analyse oilfield drilling and production processes. Environmental control components developed in these technologies are described. These include: the control of the volume and toxicity of drilling fluids; source separation technology in produced water cleaning; subsurface injection of oilfield waste slurries; containment technology in the integrity of petroleum wells; subsurface reduction of produced water; oilfield pit closure technology. (37 figures; 26 tables; 227 references) (UK)

  13. Drilling subsurface wellbores with cutting structures

    Science.gov (United States)

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  14. To drill or not to drill? An econometric analysis of US public opinion

    International Nuclear Information System (INIS)

    Mukherjee, Deep; Rahman, Mohammad Arshad

    2016-01-01

    Offshore drilling in the United States (US) has been the subject of public and political discourse due to multiple reasons which include economic impact, energy security, and environmental hazard. Consequently, several polls have been conducted over time to gauge public attitude towards offshore drilling. Nevertheless, the economic literature on this issue is sparse. This paper contributes to the literature and analyzes support for offshore drilling based on demographic, economic, social, belief, and shock (e.g. spill) factors. The data is taken from ten nationwide surveys conducted before, during and after the British Petroleum (BP) oil spill and analyzed within the framework of discrete choice model. The results from an ordinal probit model demonstrate that age, annual household income, affiliation to Republican Party, and residence in oil-rich states positively affect the probability of strong support and reduce the probability of strong opposition for offshore drilling. In contrast, the female gender, higher education, association to Democratic Party, and environmental concern affect opinion in opposite direction. Marginal effects show that belief about environmental consequences of drilling has the highest impact on opinion. Binary probit model also yields a similar result and suggests that BP oil disaster resulted in a transient decrease in support for offshore drilling. - Highlights: •US public opinion on offshore drilling is analyzed based on ten national polls. •Ordinal and binary probit models are utilized to identify the underlying factors that shape public opinion. •Belief about environmental cost of drilling and educational attainment have the highest negative impact on opinion. •Age, income, affiliation to Republican party and oil-rich states positively affect support for drilling. •BP oil spill resulted in a transient decrease in support for offshore drilling.

  15. Percussive Augmenter of Rotary Drills for Operating as a Rotary-Hammer Drill

    Science.gov (United States)

    Aldrich, Jack Barron (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Scott, James Samson (Inventor)

    2014-01-01

    A percussive augmenter bit includes a connection shaft for mounting the bit onto a rotary drill. In a first modality, an actuator percussively drives the bit, and an electric slip-ring provides power to the actuator while being rotated by the drill. Hammering action from the actuator and rotation from the drill are applied directly to material being drilled. In a second modality, a percussive augmenter includes an actuator that operates as a hammering mechanism that drives a free mass into the bit creating stress pulses that fracture material that is in contact with the bit.

  16. UNAM Scientific Drilling Program of Chicxulub Impact Structure-Evidence for a 300 kilometer crater diameter

    Science.gov (United States)

    Urrutia-Fucugauchi, J.; Marin, L.; Trejo-Garcia, A.

    As part of the UNAM drilling program at the Chicxulub structure, two 700 m deep continuously cored boreholes were completed between April and July, 1995. The Peto UNAM-6 and Tekax UNAM-7 drilling sites are ˜150 km and 125 km, respectively, SSE of Chicxulub Puerto, near the crater's center. Core samples from both sites show a sequence of post-crater carbonates on top of a thick impact breccia pile covering the disturbed Mesozoic platform rocks. At UNAM-7, two impact breccia units were encountered: (1) an upper breccia, mean magnetic susceptibility is high (˜55 × 10-6 SI units), indicating a large component of silicate basement has been incorporated into this breccia, and (2) an evaporite-rich, low susceptibility impact breccia similar in character to the evaporite-rich breccias observed at the PEMEX drill sites further out. The upper breccia was encountered at ˜226 m below the surface and is ˜125 m thick; the lower breccia is immediately subjacent and is >240 m thick. This two-breccia sequence is typical of the suevite-Bunte breccia sequence found within other well preserved impact craters. The suevitic upper unit is not present at UNAM-6. Instead, a >240 m thick evaporite-rich breccia unit, similar to the lower breccia at UNAM-7, was encountered at a depth of ˜280 m. The absence of an upper breccia equivalent at UNAM-6 suggests some portion of the breccia sequence has been removed by erosion. This is consistent with interpretations that place the high-standing crater rim at 130-150 km from the center. Consequently, the stratigraphic observations and magnetic susceptibiity records on the upper and lower breccias (depth and thickness) support a ˜300 km diameter crater model.

  17. In-process and post-process measurements of drill wear for control of the drilling process

    Science.gov (United States)

    Liu, Tien-I.; Liu, George; Gao, Zhiyu

    2011-12-01

    Optical inspection was used in this research for the post-process measurements of drill wear. A precision toolmakers" microscope was used. Indirect index, cutting force, is used for in-process drill wear measurements. Using in-process measurements to estimate the drill wear for control purpose can decrease the operation cost and enhance the product quality and safety. The challenge is to correlate the in-process cutting force measurements with the post-process optical inspection of drill wear. To find the most important feature, the energy principle was used in this research. It is necessary to select only the cutting force feature which shows the highest sensitivity to drill wear. The best feature selected is the peak of torque in the drilling process. Neuro-fuzzy systems were used for correlation purposes. The Adaptive-Network-Based Fuzzy Inference System (ANFIS) can construct fuzzy rules with membership functions to generate an input-output pair. A 1x6 ANFIS architecture with product of sigmoid membership functions can in-process measure the drill wear with an error as low as 0.15%. This is extremely important for control of the drilling process. Furthermore, the measurement of drill wear was performed under different drilling conditions. This shows that ANFIS has the capability of generalization.

  18. The oil and gas industry in Alberta: drilling and production

    International Nuclear Information System (INIS)

    Anon

    2001-11-01

    This document outlined the impacts of drilling and production on the forest structure and integrity. The cumulative impact of all 11,898 wells drilled in 2000 in Alberta, coupled with previously drilled wells that is of primary concern. It is estimated that an 886 square kilometres area of the boreal forest has been cleared as a result of well drilling, based on an assumption of 1 hectare cleared per well site. No regulations govern the reforestation of the areas once the activities have been terminated, and nothing to regulate the cumulative road densities or pipeline densities. A progressive loss and fragmentation of habitat, increased access, and damage to aquatic systems are all consequences of the drilling and production activities. These activities also lead to the contamination of soil and water. Reductions in air quality are associated with drilling and production activities, mainly through the release of various gases in the atmosphere, such as sulphur dioxide and nitrogen dioxide, both responsible for acid rain deposition. Explicit limits on cumulative densities of well sites, pipelines and access roads are part of best practices that can result in a minimization of the negative environmental impacts. Integrated planning with the forest industry, the development and implementation of new operating practices, and a reduction in the pace of development would also go a long way toward the reduction of the ecological footprint

  19. Statistical Analysis of Deep Drilling Process Conditions Using Vibrations and Force Signals

    Directory of Open Access Journals (Sweden)

    Syafiq Hazwan

    2016-01-01

    Full Text Available Cooling systems is a key point for hot forming process of Ultra High Strength Steels (UHSS. Normally, cooling systems is made using deep drilling technique. Although deep twist drill is better than other drilling techniques in term of higher productivity however its main problem is premature tool breakage, which affects the production quality. In this paper, analysis of deep twist drill process parameters such as cutting speed, feed rate and depth of cut by using statistical analysis to identify the tool condition is presented. The comparisons between different two tool geometries are also studied. Measured data from vibrations and force sensors are being analyzed through several statistical parameters such as root mean square (RMS, mean, kurtosis, standard deviation and skewness. Result found that kurtosis and skewness value are the most appropriate parameters to represent the deep twist drill tool conditions behaviors from vibrations and forces data. The condition of the deep twist drill process been classified according to good, blunt and fracture. It also found that the different tool geometry parameters affect the performance of the tool drill. It believe the results of this study are useful in determining the suitable analysis method to be used for developing online tool condition monitoring system to identify the tertiary tool life stage and helps to avoid mature of tool fracture during drilling process.

  20. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  1. Nondestructive web thickness measurement of micro-drills with an integrated laser inspection system

    Science.gov (United States)

    Chuang, Shui-Fa; Chen, Yen-Chung; Chang, Wen-Tung; Lin, Ching-Chih; Tarng, Yeong-Shin

    2010-09-01

    Nowadays, the electric and semiconductor industries use numerous micro-drills to machine micro-holes in printed circuit boards. The measurement of web thickness of micro-drills, a key parameter of micro-drill geometry influencing drill rigidity and chip-removal ability, is quite important to ensure quality control. Traditionally, inefficiently destructive measuring method is adopted by inspectors. To improve quality and efficiency of the web thickness measuring tasks, a nondestructive measuring method is required. In this paper, based on the laser micro-gauge (LMG) and laser confocal displacement meter (LCDM) techniques, a nondestructive measuring principle of web thickness of micro-drills is introduced. An integrated laser inspection system, mainly consisting of a LMG, a LCDM and a two-axis-driven micro-drill fixture device, was developed. Experiments meant to inspect web thickness of micro-drill samples with a nominal diameter of 0.25 mm were conducted to test the feasibility of the developed laser inspection system. The experimental results showed that the web thickness measurement could achieve an estimated repeatability of ± 1.6 μm and a worst repeatability of ± 7.5 μm. The developed laser inspection system, combined with the nondestructive measuring principle, was able to undertake the web thickness measuring tasks for certain micro-drills.

  2. Graphene nanoplatelets as high-performance filtration control material in water-based drilling fluids

    Science.gov (United States)

    Ridha, Syahrir; Ibrahim, Arif; Shahari, Radzi; Fonna, Syarizal

    2018-05-01

    The main objective of this work is to evaluate the effectiveness of graphene nanoplatelets (GNP) as filtration control materials in water based drilling fluids. Three (3) general samples of water based drilling fluids were prepared including basic potassium chloride (KCl) drilling fluids, nanosilica (NS) drilling fluids and GNP drilling fluids. Several concentrations of NS and GNP were dispersed in controlled formulations of water based drilling fluids. Standard API filtration tests were carried out for comparison purposes as well as High Temperature High Pressure (HTHP) filtration tests at 150 °F (∼66 °C), 250 °F (∼121 °C) and 350 °F (∼177 °C) at a fixed 500 (∼3.45MPa) psi to study the filtration trend as a function of temperature. Mud cake samples from several tests were selectively chosen and analyzed under Field Emission Scanning Electron Microscope (FESEM) for its morphology. Results from this work show that nanoparticle concentrations play a factor in filtration ability of colloid materials in water based drilling fluids when studied at elevated temperature. Low temperature filtration, however, shows only small differences in volume in all the drilling fluid samples. 0.1 ppb concentrations of GNP reduced the fluid loss of 350 °F by 4.6 mL as compared to the similar concentration of NS drilling fluids.

  3. Evaluation of aluminum drill-pipe material and design

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Joao C. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Lourenco, Marcelo I.; Netto, Theodoro Antoun [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)

    2008-07-01

    Experimental program and numerical analyses were carried out to investigate the fatigue mechanisms of aluminum drill pipes designed and manufactured in compliance with ISO 15546. The main objective is to improve the fatigue performance of these components by selecting the appropriate aluminum alloy and by enhancing the mechanical design of the threaded steel connector. This paper presents the experimental test program and numerical analyses conducted on a drill-pipe of different materials (Al-Cu-Mg and Al-Zn-Mg system aluminum alloys) and geometry. Material mechanical properties, including S-N curve, were determined through small-scale tests on specimens cut from actual drill pipes. Full-scale experiments were also performed in laboratory. A finite element model of the drill pipe, including the tool-joint region, was developed. The model simulates, through different load steps, the tool-joint hot assembly, and then reproduces the physical experiments numerically in order to obtain the actual stress distribution. Good correlation between full-scale and small-scale fatigue tests was obtained by adjusting the strain/stress levels monitored in the full-scale tests in light of the numerical simulations and performing fatigue life calculations via multiaxial fatigue models. The weak points of the current practice design are highlighted for further development. (author)

  4. Application of the Drilling Impact Study (DIS) to Forsmark groundwaters

    International Nuclear Information System (INIS)

    Gascoyne, Mel; Gurban, Ioana

    2008-01-01

    Characterisation of a geological formation as a repository for nuclear fuel waste requires deep drilling into the bedrock to gain an understanding of the geological structure, rock types, groundwater flow and the chemical composition of groundwater and the adjacent rock. The methods of characterisation from a hydrogeochemical point of view, might be affected by the various drilling activities and techniques for determining groundwater composition have been employed so that the composition can be corrected for these activities. SKB has developed and supported the Drilling Impact Study (DIS) project in which a tracer is used as an indicator of contamination to attempt to correct the groundwater composition for dilution or contamination by surface waters. The project began about five years ago with the intention of developing a routine method for determining the extent of contamination of borehole groundwater by drilling water. The main objectives of this work were: 1. Determine the extent of drilling water contamination in permeable zones in a test borehole on the Forsmark site. 2. Correct measured chemical compositions of the groundwaters based on contamination results. 3. Provide a workable methodology for routine correction of groundwater composition. 4. Apply the modified DIS model to suitable borehole zones at the Forsmark site in a systematic fashion 5. Determine uncertainties in DIS modelling. A memorandum was prepared by describing the characteristics of borehole KFM06 and its drilling history. Estimates were made of the amount of drilling water in permeable zones in the borehole and the various approaches to applying results of DIS were described and recommendations made, with an example calculation

  5. Putting a damper on drilling's bad vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, S [Sedco forex, Montrouge (France); Malone, D [Anadrill, Sugar Land, TX (United States); Sheppard, M [Schlumberger Cambridge Research, Cambridge (United Kingdom)

    1994-01-01

    Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.

  6. Analyses of the deep borehole drilling status for a deep borehole disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Youl; Choi, Heui Joo; Lee, Min Soo; Kim, Geon Young; Kim, Kyung Su [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of disposal for radioactive wastes is not only to isolate them from humans, but also to inhibit leakage of any radioactive materials into the accessible environment. Because of the extremely high level and long-time scale radioactivity of HLW(High-level radioactive waste), a mined deep geological disposal concept, the disposal depth is about 500 m below ground, is considered as the safest method to isolate the spent fuels or high-level radioactive waste from the human environment with the best available technology at present time. Therefore, as an alternative disposal concept, i.e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general status of deep drilling technologies was reviewed for deep borehole disposal of high level radioactive wastes. Based on the results of these review, very preliminary applicability of deep drilling technology for deep borehole disposal analyzed. In this paper, as one of key technologies of deep borehole disposal system, the general status of deep drilling technologies in oil industry, geothermal industry and geo scientific field was reviewed for deep borehole disposal of high level radioactive wastes. Based on the results of these review, the very preliminary applicability of deep drilling technology for deep borehole disposal such as relation between depth and diameter, drilling time and feasibility classification was analyzed.

  7. Ultrasonic rotary-hammer drill

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  8. 30 CFR 57.7052 - Drilling positions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 57.7052 Section 57.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7052 Drilling positions. Persons shall not drill...

  9. Study of the Academic Members Attitude about Main Factors of Not Approaching to Scientific Writing in Hamadan University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    M. Koorki

    2008-01-01

    Full Text Available Introduction & Objective: one of the important indicators of scientific study and science production in the universities is original research and its scientific article. The aim of this study was to determine the academic members’ attitude about main factors of not approaching to scientific writing in Hamadan Uni. Med. Sci.Material & Methods: The current survey was a descriptive cross-sectional study. Statistical population was all of the academic members of this university in 2006 (N=260. The data collected through a questionnaire consists of 2 parts: I. the demographic characteristics, II. the questions related to their attitude. After distribution of the questionnaires we received 228 completed ones. The data was statistically analyzed by SPSS software.Results: Outcomes showed that the main factors of not approaching to write the scientific articles were: education, teaching and treatment engagement mean with 3.891.16 of 5, the barriers of doing original research and writing the articles (3.880.93, long duration of sending and acceptation of articles in Persian scientific journals (3.841.07 and weakness of English language skill (3.831.05.Conclusion: The barriers of scientific writing were in 3 parts: organizational, personal and personal-organizational problems. The academic members’ activities and university managers’ supports are needed to remove these barriers.

  10. Investigation on Releasing of a Stuck Drill String by Means of a Mechanical Jar

    Directory of Open Access Journals (Sweden)

    Moisyshyn V.

    2017-09-01

    Full Text Available Purpose. In this article the most important part is dedicated to the research of elimination of accident that is caused by drill string sticking during the process. That is why it is necessary to develop a mathematical model of the mechanic system: travelling system + drill string + mechanical jar + rock, to develop a computer model for numerical calculation of dynamic characteristics of firing gear. The aim is to use the results of the research and to work out recommendations for expediency of jar application. Methods. For description of the drill string we are using synthesis of the wave theory and theory of the local distortions. For mathematical modeling of firing device we are offering the use of the combined method that combines static solutions of the theory of elasticity for contact zone of drill string and method of a plain wave of Saint-Venant. We solved systems of differential equations using the methods of mathematical physics. An algorithm of the numerical decision which mounted in the computing environment were used at simulation of the longitudinal impact to the stuck drill pipe. In this article we designed a wave chart of the equation system of the drill pipe and conducted step-by-step calculation of a collision momentum. We also designed a computer program for numerical modeling of the drill pipe mechanism with firing gear. We also designed a method of calculation of main dynamic characteristics of firing device that will help analyze and prove the performance of the mechanical jar. A wave diagram was built that shows the impact forces and speeds on the boundary surfaces of the sections of the drill string. There were calculated main dynamic characteristic of mechanical the jar. Originality. Authors also developed a dynamic mathematical model that combined elastic vibrations of continual system of loose part drill pipe, impact mechanisms and discrete movements of a given drill pipe. The process of a mechanical jar

  11. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  12. 30 CFR 56.7052 - Drilling positions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling positions. 56.7052 Section 56.7052... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7052 Drilling positions. Persons shall not drill from— (a) Positions which hinder...

  13. Sandia's Geothermal Advanced Drill Rig Instrumentation Assists Critical Oil and Gas Drilling Operation

    International Nuclear Information System (INIS)

    Staller, George E.; Whitlow, Gary

    1999-01-01

    On November 23, 1998, an 18,000-foot-deep wild-cat natural gas well being drilled near Bakersfield, CA blew out and caught fire. All attempts to kill this well failed, and the well continues to flow under limited control, producing large volumes of natural gas, salt water, and some oil. The oil and some of the water is being separated and trucked off site, and the remaining gas and water is being burned at the well head. A relief well is being drilled approximately one-quarter mile away in an attempt to intercept the first well. If the relief well is successful, it will be used to cement in and kill the first well. Epoch Wellsite Services, Inc., the mud-logging company for the initial well and the relief well, requested Sandia's rolling float meter (RFM) for these critical drilling operations. The RFM is being used to measure the mud outflow rate and detect kicks while drilling the relief well, which will undoubtedly encounter reservoir conditions similar to those responsible for the blow out. Based on its prior experience with the RFM, Epoch believes that it is the only instrument capable of providing the level of accuracy and response to mudflow needed to quickly detect kicks and minimize the risk of a blowout on this second critical well. In response to the urgent request from industry, Sandia and Epoch technicians installed the RFM on the relief well return line, and completed its initial calibration. The data from the RFM is displayed in real-time for the driller, the companyman, and the toolpusher via Epochs RIGWATCH Drilling Instmmentation System. The RFM has already detected several small kicks while drilling toward the annulus of the blown out well. A conventional paddle meter is located downstream of the RFM to provide redundancy and the opportunity to compare the two meters in an actual drilling operation, The relief well is nearing 14,000 feet deep, targeting an intercept of the first well near 17,600 feet. The relief well is expected to be completed in

  14. 30 CFR 33.34 - Drilling test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  15. A field application of nanoparticle-based invert emulsion drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Alexey S.; Husein, Maen, E-mail: mhusein@ucalgary.ca [University of Calgary, Department of Chemical & Petroleum Engineering (Canada); Hareland, Geir [Oklahoma State University, Department of Chemical Engineering (United States)

    2015-08-15

    Application of nanotechnology in drilling fluids for the oil and gas industry has been a focus of several recent studies. A process for the in situ synthesis of nanoparticles (NPs) into drilling fluids has been developed previously in our group and showed that calcium-based NPs (CNPs) and iron-based NPs (INPs), respectively, with concentrations of 0.5–2.0 wt% can dramatically improve filtration properties of commercial drilling fluids in a laboratory environment. In this work, a modified process for the emulsion-based synthesis of NPs on a 20 m{sup 3} volume and its subsequent full-scale field testing are presented. Comparison between NP carrier fluids prepared under controlled environment in the laboratory and those prepared on a large scale in a mixing facility revealed very little variation in the main characteristics of the drilling fluid; including the size of the solid constituents. Transmission electron microscopy photographs suggest an average CNP particle size in the carrier fluid of 51 ± 11 nm. Results from the full-scale field test showed that total mud losses while drilling with CNP-based invert emulsion were on average 27 % lower than in the case of conventional fluids. This loss prevention falls within the range observed in the laboratory.

  16. The SCOPSCO drilling project recovers more than 1.2 million years of history from Lake Ohrid

    NARCIS (Netherlands)

    Wagner, B.; Wilke, T.; Krastel, S.; Zanchetta, G.; Sulpizio, R.; Reicherter, K.; Leng, M. J.; Grazhdani, A.; Trajanovski, S.; Francke, A.; Lindhorst, K.; Levkov, Z.; Cvetkoska, Aleksandra; Reed, J. M.; Zhang, X.; Lacey, J. H.; Wonik, T.; Baumgarten, H.; Vogel, H.

    2014-01-01

    The Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project is an international research initiative to study the influence of major geological and environmental events on the biological evolution of lake taxa. SCOPSCO drilling campaigns were carried out in 2011 and

  17. Performance of Partially-Hydrolyzed Polyacrylamide in Water Based Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Ali Reza Nasiri*

    2013-05-01

    Full Text Available Fluid properties with constant improvement in efficiency have been noticeable as important criteria in drilling operation. The main drilling fluid properties highly depend on utilization of new polymers with high efficiency in drilling fluid composition. In this paper, the performance of a new polymer, called partially hydrolyzed polyacrylamide polymer (PHPA, is studied which has recently entered the drilling fluids industry in Iran. Hence viscosity property, fluid loss control and shale inhibition of this polymer have been evaluated based on an international standard method of API-13-I by considering the drilling and operational priorities of thecountry. Then the thermal effect, salt contaminants such as sodium chloride, calcium chloride, magnesium chloride and pH tolerance effect as major pollution indicators are also investigated in relation to polymeric fluid properties. The results obtained by the tests show that furthermore polymer PHPA increases rheological properties (apparent viscosity, plastic fluidity and yield point and it plays important role in increases in fluid loss. This polymer has also demonstrated acceptable resistance toward sodium chloride contaminants, but its efficiency decreases toward calcium and magnesium ion contaminants. The thermal tests show that polymer PHPA has high thermal stability up to 150°C. This polymer improves shale inhibition property and by encapsulation mechanism prevents dispersion of shale cuttings into the drilling fluid system as it stops any changes in fluid properties which will finally results inwellbore stability.

  18. Economic environmental management of drilling operations

    International Nuclear Information System (INIS)

    Longwell, H.J.; Akers, T.J.

    1992-01-01

    This paper presents significant environmental and regulatory initiatives developed by Exxon's New Orleans Drilling Organization. Specifically, the paper will cover drilling waste minimization techniques and disposal options, recycling of drilling waste streams, and environmentally managed drilling location design considerations. The implementation of some of these initiatives at Exxon's Chalkley field land locations have resulted in a fifty percent reduction in drilling location waste management costs. Some of these same initiatives have been successfully applied to Exxon's barge drilling locations. For operations at the environmentally sensitive Mobile Bay, Exxon contracted with a local company and assisted in the development of an economically and environmentally superior drilling waste disposal and treatment system. In summary, it is possible for drilling operators to pro-actively manage escalating environmental and regulatory challenges through the implementation of economic and practical initiatives

  19. Newberry exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  20. Microgravity Drill and Anchor System

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  1. Initial report on drilling into seismogenic zones of M2.0 - M5.5 earthquakes from deep South African gold mines (DSeis)

    Science.gov (United States)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Grobbelaar, Michelle; Funato, Akio; Ishida, Akimasa; Ogasawara, Hiroyuki; Mngadi, Siyanda; Manzi, Musa; Ziegler, Martin; Ward, Tony; Moyer, Pamela; Boettcher, Margaret; Ellsworth, Bill; Liebenberg, Bennie; Wechsler, Neta; Onstott, Tullis; Berset, Nicolas

    2017-04-01

    The International Continental Scientific Drilling Program (ICDP) approved our proposal (Ogasawara et al., EGU 2016) to drill into and around seismogenic zones where critically stressed faults initiated ruptures at depth. The drilling targets include four ruptures equivalent to M2.0, 2.8, 3.5, and 5.5 that dynamically and quasi-statically evolved in 2.9 Ga hard rock in the Witwatersrand basin, South Africa. Major advantages of our drilling locations are the large quantity and high-quality of existing data from dense seismic arrays both on surface and near-field underground in three deep South African gold mines. Additionally, the great depths (1.0 to 3.3 km from surface) to collar holes reduce drilling costs significantly and enable a larger number of holes to be drilled. Flexibility in drilling direction will also allow us to minimize damage in borehole or drilled cores. With the ICDP funds, we will conduct full-core drilling of 16 holes with drilling ranges from 50 to 750 m to recover both materials and fractures in and around the seismogenic zones, followed by core and borehole logging. Additional in-hole monitoring at close proximity will be supported by co-mingled funds and will follow the ICDP drilling. Expected magnitudes of maximum shear stress are several tens of MPa. We have established an overcoring procedure to measure 3D-stress state for adverse underground working conditions so as not to interfere with mining operations. This procedure was optimized based on the Compact Conic-ended Borehole Overcoring (CCBO) technique (ISRM suggested; Sugawara and Obara, 1999). Funato and Ito (2016 IJRMMS) developed a diametrical core deformation analysis (DCDA) method to measure differential stress using only drilled core by assuming diametrical change with roll angles caused by elastic in-axisymmetrical expansion during drilling. A gold mine has already drilled a hole to intersect the hypocenter of a 2016 M3.5 earthquake and carried out the CCBO stress measurement in

  2. Control procedure for well drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, J C

    1988-09-09

    A control procedure of rotary drilling operations is proposed. It uses the Drill off test. The drill-off test permits to determine the rock drill speed variation as a function of the wright applied on the top of the pipe. We can deduce from that a rock drill wear parameter. The method permits to prevent a rupture and its grave economic consequences.

  3. Multi-state autonomous drilling for lunar exploration

    Directory of Open Access Journals (Sweden)

    Chen Chongbin

    2016-10-01

    Full Text Available Due to the lack of information of subsurface lunar regolith stratification which varies along depth, the drilling device may encounter lunar soil and lunar rock randomly in the drilling process. To meet the load safety requirements of unmanned sampling mission under limited orbital resources, the control strategy of autonomous drilling should adapt to the indeterminable lunar environments. Based on the analysis of two types of typical drilling media (i.e., lunar soil and lunar rock, this paper proposes a multi-state control strategy for autonomous lunar drilling. To represent the working circumstances in the lunar subsurface and reduce the complexity of the control algorithm, lunar drilling process was categorized into three drilling states: the interface detection, initiation of drilling parameters for recognition and drilling medium recognition. Support vector machine (SVM and continuous wavelet transform were employed for the online recognition of drilling media and interface, respectively. Finite state machine was utilized to control the transition among different drilling states. To verify the effectiveness of the multi-state control strategy, drilling experiments were implemented with multi-layered drilling media constructed by lunar soil simulant and lunar rock simulant. The results reveal that the multi-state control method is capable of detecting drilling state variation and adjusting drilling parameters timely under vibration interferences. The multi-state control method provides a feasible reference for the control of extraterrestrial autonomous drilling.

  4. Optimum fluid design for drilling and cementing a well drilled with coil tubing technology

    Energy Technology Data Exchange (ETDEWEB)

    Swendsen, O.; Saasen, A.; Vassoy, B. [Statoil (Norway); Skogen, E.; Mackin, F.; Normann, S. H.

    1998-12-31

    The strategy, design and drilling fluid and cementing operations in the first two wells drilled with coil tubing technology in the Gullfaks field in the Tampen Spur Area of the Norwegian sector of the North Sea are discussed. The drilling fluid use was a solids-free potassium formate/polymer brine-based fluid with a density of 1,50-1.56 g/cc, with flow properties characterized by very low fluid loss due to high extensional viscosity, a low viscosity at all shear rates, and a low degree of shear-thinning. The low viscous drilling fluid is considered to have been the major contributing factor in achieving excellent hole cleaning, no differential sticking, successful setting of cement kick-off plugs, problem-free running of the liner, and excellent zonal isolation when cementing the liner. These experiences led the authors to conclude that it is possible to formulate a brine-based solids-free drilling fluid with low viscosity and fluid loss properties for most formation pressure regimes, and that such a drilling fluid is well suited to drilling highly deviated slim hole wells where hole cleaning and differential sticking present special challenges. 12 refs., 2 tabs., 3 figs.

  5. Core drilling of deep drillhole OL-KR54 at Olkiluoto in Eurajoki 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-11-01

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled a 500.18 m deep drillhole with a diameter of 75.7 mm at Olkiluoto in July - August 2010. The identification number of the drillhole is OL-KR54. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volume of the used drilling, washing and flushing water was 382 m 3 . The measured volume of the returning water in the drillhole was 334 m 3 . The deviation of the drillhole was measured with the deviation measuring instruments EMS and Gyro. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 111.5 MPa, the average Young's Modulus was 43.7 GPa and the average Poisson's ratio was 0.17. The main rock types are diatexitic and veined gneisses, pegmatitic granite and mafic gneiss. The average fracture frequency is 1.6 pcs/m and the average RQD value is 97.6 %. Nine fractured zones were penetrated by the drillhole. (orig.)

  6. The Auto-Gopher Deep Drill

    Science.gov (United States)

    Badescu, Mircea

    2014-01-01

    Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.

  7. Design of a water-powered DTH hammer for deep drilling application

    Science.gov (United States)

    Cho, Min Jae; Kim, Donguk; Oh, Joo Young; Yook, Se-Jin; Kim, Young Won

    2017-11-01

    A DTH (Down-the-hole) hammer powered by highly pressurized fluid is a drilling tool using the motion of percussion of a drill bit. In retrospect, a DTH by using compressed air as a power source has been widely used in drilling industries such as applications of mining, geothermal etc. On the other hand, another type of a DTH that uses pressurized water, called a water hammer, has recently seen deep drilling applications, while it has been rarely investigated. In this study, we designed a water-powered DTH hammer which mainly consists of several components such as a piston, a poppet valve, a cap and a bit for deep drilling applications. We optimized the components of the hammer on the basis of the results of 1D analysis using commercial software of AMESIM. An experimental study has been also conducted to investigate a performance of the designed water hammer. We measured a pressure distribution inside the hammer system as a function of time, and it thus estimates a frequency of impaction of the bit, which has been also analyzed in frequency domain. In addition, some important parameters have been discussed in conjunction with a limitation of impaction frequency as input pressure. We believe that this study provides design rules of a water-based DTH for deep drilling applications. This work is supported by KITECH of Korean government.

  8. Scientific Exploration of Induced SeisMicity and Stress (SEISMS

    Directory of Open Access Journals (Sweden)

    H. M. Savage

    2017-11-01

    Full Text Available Several major fault-drilling projects have captured the interseismic and postseismic periods of earthquakes. However, near-field observations of faults immediately before and during an earthquake remain elusive due to the unpredictable nature of seismicity. The Scientific Exploration of Induced SeisMicity and Stress (SEISMS workshop met in March 2017 to discuss the value of a drilling experiment where a fault is instrumented in advance of an earthquake induced through controlled fluid injection. The workshop participants articulated three key issues that could most effectively be addressed by such an experiment: (1 predictive understanding of the propensity for seismicity in reaction to human forcing, (2 identification of earthquake nucleation processes, and (3 constraints on the factors controlling earthquake size. A systematic review of previous injection experiments exposed important observational gaps in all of these areas. The participants discussed the instrumentation and technological needs as well as faults and tectonic areas that are feasible from both a societal and scientific standpoint.

  9. Bentonite buffer pre-test. Core drilling of drillholes ONK-PP264...267 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2010-12-01

    Suomen Malmi Oy (Smoy) core drilled four drillholes for bentonite buffer pre-test in ONKALO at Eurajoki, Olkiluoto in July 2010. The identification numbers of the holes are ONK-PP264..267, and the lengths of the drillholes are approximately 4.30 metres each. The drillholes are 75.7 mm by diameter. The drillholes were drilled in a niche at access tunnel chainage 1475. The hydraulic DE 130 drilling rig was used for the work. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. In addition to drilling, the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock type in the drillholes is pegmatitic granite. The average fracture frequency in the drill cores is 4.0 pcs / m and the average RQD value 94.2 %. (orig.)

  10. Evacuation drill at CMS

    CERN Multimedia

    Niels Dupont-Sagorin and Christoph Schaefer

    2012-01-01

    Training personnel, including evacuation guides and shifters, checking procedures, improving collaboration with the CERN Fire Brigade: the first real-life evacuation drill at CMS took place on Friday 3 February from 12p.m. to 3p.m. in the two caverns located at Point 5 of the LHC.   CERN personnel during the evacuation drill at CMS. Evacuation drills are required by law and have to be organized periodically in all areas of CERN, both above and below ground. The last drill at CMS, which took place in June 2007, revealed some desiderata, most notably the need for a public address system. With this equipment in place, it is now possible to broadcast audio messages from the CMS control room to the underground areas.   The CMS Technical Coordination Team and the GLIMOS have focused particularly on preparing collaborators for emergency situations by providing training and organizing regular safety drills with the HSE Unit and the CERN Fire Brigade. This Friday, the practical traini...

  11. Stakeholder acceptance analysis ResonantSonic drilling

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning ResonantSonic Drilling (Sonic Drilling), derived from a three-year program of stakeholder involvement. Sonic Drilling is an innovative method to reach contamination in soil and groundwater. The resonant sonic drill rig uses counter-rotating weights to generate energy, which causes the drill pipe to vibrate elastically along its entire length. In the resonant condition, forces of up to 200,000 pounds are transmitted to the drill bit face to create a cutting action. The resonant energy causes subsurface materials to move back into the adjacent formation, permitting the drill pipe to advance. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of sonic drilling to the remediation problems they face

  12. Drilling of bone: A comprehensive review

    Science.gov (United States)

    Pandey, Rupesh Kumar; Panda, S.S.

    2013-01-01

    Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771

  13. Heat accumulation during sequential cortical bone drilling.

    Science.gov (United States)

    Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R

    2016-03-01

    Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Study on the ocean drilling program

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Ho; Han, Hyun Chul; Chin, Jae Wha; Lee, Sung Rok; Park, Kwan Soon; Lee, Young Joo; Park, Young Soo [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Geoscience research trend of the world nations is focusing on the study of climate changes and preventing people from the natural hazards such as earthquakes and volcanic activities. For this study, it is necessary for scientists to interpret ancient climate changes preserved in ocean sediments, and to observe plate motions. Thus, geological and geophysical studies should be proceeded for the core samples recovered from the deep sea sediments and basement. It is essential to join the ODP(Ocean Drilling Program) that drills ocean basins and crusts using the drilling vessel with the ability of deploying almost 9 km of drilling string. The first year (1995) was focused on the analyzing the appropriateness Korea to join the ODP. The second year (1996) has been stressed on being an ODP member country based on results of the first year study, and planning the future activities as a member. The scope of study is joining the ODP as a Canada-Australia Consortium member and to set up the Korean ODP organization and future activities. The results and suggestions are as follows. 1) Necessities of Korea joining the ODP: If Korea becomes a member of the ODP, the benefits could be obtained based on the activities of other ODP members through academic, social and economic sectors. 2) Korean membership of ODP: Korea becomes a member of the Australia-Canada Consortium for ODP. AGSO (Austrian Geological Survey Organization), GSC (Geological Survey of Canada), and KIGAM (Korea Institute of Geology, Mining and Materials) on behalf of their own countries will each pay a share of the full member financial contribution to the ODP. AGSO and GSC will pay one third of the full member financial contribution, and KIGAM will pay one twelfth. 3) Korean ODP structure and future activities: To enhance the efficiency of initial activities after joining the ODP, it has been decided to have a relatively simple organization. The primary governing arm of the Korean ODP organizations is the Korean ODP

  15. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E; Gervais, I [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y; Pangarkar, S; Stibbs, B [Sedco Forex, Montrouge (France); McMorran, P [Sedco Forex, Pau (France); Nordquist, E [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T [Sedco Forex, Perth (Australia); Schindler, H [Sedco Forex, Dubai (United Arab Emirates); Scott, P [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)

    1997-12-31

    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  16. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E.; Gervais, I. [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y.; Pangarkar, S.; Stibbs, B. [Sedco Forex, Montrouge (France); McMorran, P. [Sedco Forex, Pau (France); Nordquist, E. [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T. [Sedco Forex, Perth (Australia); Schindler, H. [Sedco Forex, Dubai (United Arab Emirates); Scott, P. [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)

    1996-12-31

    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  17. Drilling history of core hole DB-15

    International Nuclear Information System (INIS)

    Diediker, L.D.; Ledgerwood, R.K.

    1980-09-01

    This core hole was drilled to obtain hydrologic and chemical data on the permeable zones of the Saddle Mountains and Wanapum Formations. These data were obtained by testing the zones that were penetrated during drilling. This testing-as-drilled method reduced the potential problems of interflow and water contamination. This report summarizes the drilling and coring operations; geologic logging, hydrologic testing, and geophysical logging activities; and cementing operations of DB-15 during drilling. The successful completion of DB-15 demonstrated that hydrologic testing can be conducted during core drilling operations. More reliable head measurements and uncontaminated representative water samples from isolated permeable zones, which have not been exposed to potential open borehole cross-flow and head equilibration problems, were benefits derived from the testing-as-drilled method. Disadvantages of the technique were a longer time to complete the borehole caused by time required for testing and increased drilling costs due to rig standby time during testing. Extension of the testing-as-drilled method to the drilling of future core holes is recommended. An evaluation should be made of the required hydrologic data and expected borehole stratigraphy before and during drilling to allow uninterrupted drilling in zones of low permeability that can be tested after drilling is complete

  18. A vision for drilling

    Energy Technology Data Exchange (ETDEWEB)

    Millheim, K. [Montanuniversitaet Leoben (Austria)

    1995-12-31

    The future of drilling lies in its relationship with the oil and gas industry. This paper examines how the future of drilling is seen from the view point of the exploration manager, the drilling contractor, the drilling engineer and the company president or managing director. The various pressures on the oil and gas industry are examined, such as environmental issues, alternative energy sources, and the price of oil which determines how companies are run. Exploration activity is driven by the price of oil and gas. The development of wells with multiple horizontal wells or multiple horizontal wells with tributaries will reduce the cost of exploration. Companies will rely less and less on reservoir simulation and more on cheap well-bores, multi-lateral well-bores and will exploit oil that could not be exploited before. The cost of exploratory drilling will need to be kept down so that in the future the industry will get better at economically finding fields at the 10 million to 20 million barrel range that would not have been possible before. The future is expected to see drilling contractors tunnelling, making sewerage lines and drilling 10,000 foot wells with purpose built rigs. Franchising will become a feature of the industry as will the use of databases to answer key technical questions. Offshore platforms will be built to be moveable and disposable. The industry is capable of solving problems, meeting challenges and making ideas work, providing much hope for the future. 10 figs., 1 photo.

  19. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    Science.gov (United States)

    Buick, R.

    2010-12-01

    The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale

  20. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  1. Fault Zone Resistivity Structure and Monitoring at the Taiwan Chelungpu Drilling Project (TCDP

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chiang

    2008-01-01

    Full Text Available The Taiwan Chelungpu-fault drilling project (TCDP has undertaken scientific drilling and directly sampled the sub-surface rupture of the 1999 Chi-Chi earthquake. Audio-magnetotelluric (AMT measurements were used to investigate electrical resistivity structure at the TCDP site from 2004 - 2006. These data show a geoelectric strike direction of N15°E to N30°E. Inversion and forward modeling of the AMT data were used to generate a 1-D resistivity model that has a prominent low resistivity zone (< 10 ohm-m between depths of 1100 and 1500 m. When combined with porosity measurements, theAMT measurements imply that the ground water has a resistivity of 0.55 ohm-m at the depth of the fault zone.

  2. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    Science.gov (United States)

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Process based analysis of manually controlled drilling processes for bone

    Science.gov (United States)

    Teicher, Uwe; Achour, Anas Ben; Nestler, Andreas; Brosius, Alexander; Lauer, Günter

    2018-05-01

    The machining operation drilling is part of the standard repertoire for medical applications. This machining cycle, which is usually a multi-stage process, generates the geometric element for the subsequent integration of implants, which are screwed into the bone in subsequent processes. In addition to the form, shape and position of the generated drill hole, it is also necessary to use a technology that ensures an operation with minimal damage. A surface damaged by excessive mechanical and thermal energy input shows a deterioration in the healing capacity of implants and represents a structure with complications for inflammatory reactions. The resulting loads are influenced by the material properties of the bone, the used technology and the tool properties. An important aspect of the process analysis is the fact that machining of bone is in most of the cases a manual process that depends mainly on the skills of the operator. This includes, among other things, the machining time for the production of a drill hole, since manual drilling is a force-controlled process. Experimental work was carried out on the bone of a porcine mandible in order to investigate the interrelation of the applied load during drilling. It can be shown that the load application can be subdivided according to the working feed direction. The entire drilling process thus consists of several time domains, which can be divided into the geometry-generating feed motion and a retraction movement of the tool. It has been shown that the removal of the tool from the drill hole has a significant influence on the mechanical load input. This fact is proven in detail by a new evaluation methodology. The causes of this characteristic can also be identified, as well as possible ways of reducing the load input.

  4. Drilling a crater at the Equator-insides from ICDP DeepCHALLA

    Science.gov (United States)

    Meyer, Inka; Van Daele, Maarten; Tanghe, Niels; Eloy, Jonas; Verschuren, Dirk; De Batist, Marc

    2017-04-01

    Long and continuous sediment records from equatorial Africa are rare, resulting in a so far fragmentary understanding of the effects of a warming atmosphere on the tropical hydrological cycle at the regional scale. Serve and recurrent droughts is the principle weather-related hazard throughout sub-Saharan Africa, and the quality of long-term weather prediction a principle bottleneck hampering drought mitigation and adaptation. The impact of 21st-century anthropogenic climate change on the African rainfall is highly uncertain, implying unforeseeable effects on freshwater resources. During the "CHALLACEA" project (2005-2008) detailed investigations of Lake Challa, a relatively small and deep crater lake on the border between Kenya and Tanzania, revealed the lake is a key site for reconstructing the climate and environmental history of equatorial East Africa. Various biological, bio-geochemical and sedimentological investigations of the 22 long CHALLACEA-core helped to understand the systematics of Lake Challa under present-day conditions as well as to reconstruct environmental changes over the past 25,000 years. Due to the good quality of the Lake Challa sediment and the high scientific outcome of the record, a new International Continental Scientific Drilling Programme (ICDP) project "DeepCHALLA" was established to drill a longer sediment record, going further back in time. During the drilling campaign in November 2016 a 215 m long sediment sequence was obtained which will provide unique information about environmental changes in low-latitudes over a complete glacial - interglacial cycle. Therefore, the record opens new opportunities to study East African environmental changes and paleo-hydrological conditions much further back in time, encompassing the entire known existence of modern humans (Homo sapiens) in East Africa. Here we present a compilation of the environmental reconstructions based on the CHALLACEA sediment sequence and will give an outline of future

  5. The effect of drilling parameters for surface roughness in drilling of AA7075 alloy

    Directory of Open Access Journals (Sweden)

    Yaşar Nafiz

    2017-01-01

    Full Text Available AA7075 aluminum alloy has been very popular significantly interest in the production of structural components in automotive and aviation applications due to its high strength, low density, good plasticity and better machinability comparable to many metals. Particularly, final products must have uniformly high quality to ensure essential safety standards in the aircraft industry. The optimization of hole quality which can variable according to tool geometry and drilling parameters is important in spite of high machinability rate of AA7075 alloy. In this study, the effects of drilling parameters on average surface roughness (Ra has been investigated in drilling of AA7075 with tungsten carbide drills. Machining experiments were performed with three different drill point angles and three different levels of cutting parameters (feed rate, cutting speed. The effects of drilling parameters on thrust force has been determined with ANOVA in %95 confidence level. Feed rate was determined as the most important factor on Ra according to ANOVA results. Moreover, it was shown that increasing feed rate leads to increase of Ra while increasing drill point angle leads to decrease of Ra. The optimum surface roughness was obtained with point angle of 130°, cutting speed of 40 m/min and feed rate of 0.1 mm/rev, thereby the validity of optimization was confirmed with Taguchi method.

  6. Environmental implications of offshore oil and gas development in Australia. The finding of an independent scientific review

    International Nuclear Information System (INIS)

    Swan, J.M.; Neff, J.M.; Young, P.C.

    1994-01-01

    It is widely recognised that uncontrolled discharge of petroleum products or other materials from offshore oil and gas exploration and production wells, and from associated industrial operations including treatment and service facilities that are required to be on or near the coast, can have direct and sometimes deleterious impacts on the marine environment. In mid-1992, the Australian Petroleum Exploration Association (APEA) commissioned five scientific reviews to examine the environmental implications of offshore petroleum developments in Australia. The reviews, carried out by an Independent Scientific Review Committee on behalf of the Australian Petroleum Exploration Association (APEA) and the Energy Research and Development Corporation (ERDC) deal with: (1) the preliminary geophysical exploration of the sea bed and underlying strata using seismic surveys, and especially the effects of bursts of underwater sound energy on biological communities; (2) the drilling of offshore wells, especially the disposal of drilling fluids and drill cuttings; (3) the production of oil and gas from proven wells, especially the disposal of large quantities of produced formation water (fossil water); (4) the construction and operation of coastal support facilities and associated activities which might have consequences for marine habitats; (5) oil spills associated with any of the above operations and especially the likely short- and long-term effects of an accidental oil spill on marine biota and on the aesthetic and commercial values of an impacted coastline. Comments on the findings are preceded by a brief summary of background information, relevant technologies and the main implications for the marine environment. Some suggestions are provided for possible future research, monitoring and environmental management. refs., figs., tabs

  7. On history of medical radiology in Ukraine: main directions of scientific development (1920-1941)

    International Nuclear Information System (INIS)

    Pilipenko, M.Yi.; Artamonova, N.O.; Busigyina, N.O.

    1994-01-01

    The work is devoted to the history of medical radiology in Ukraine. It deals with principal problems of scientific research development during 1920-1941. The authors describe both known and little known facts of the history of foundation and development of the first Ukrainian radiological, roentgenological and oncological institutes. Main achievements in radiology development i.e. foundation of large specialized research centres in Kharkov, kiev, Odessa, independent departments of roentgenology both at the majority of medical institutes and three advanced training institutes for doctors, organization of ALL-Union and Republican Congresses and Conferences of Radiologists, publication of a special journal > (Problems of Oncology) are described

  8. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation

    Directory of Open Access Journals (Sweden)

    Buranský Ivan

    2016-09-01

    Full Text Available The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  9. Drilling technology advances on four fronts

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-01-01

    Trends and advances in drilling technology are discussed. Four different major trends have been identified. One of these is proprietary case drilling which is said to allow operators to simultaneously drill, case, and evaluate oil and gas wells. In proprietary case drilling, the well is drilled with standard oil field casing which remains in the hole all the time, eliminating the need for tripping. Drill bits and other downhole tools are lowered via wireline inside the casing and latched to the last joint of casing. Wells are drilled either by rotating the casing or by using a downhole mud motor for steering, using conventional directional tools. This technology was introduced by Tesco and is marketed in 25 countries along with a full range of drilling products and services. Super single rigs are an other trend which, owing to their versatility, combined with relatively small environmental footprint have become the rig of choice in a growing number of drilling programs. Super single rigs use 45-ft. joints of drill pipe, more versatile top drives and they have an automated pipe handling system. Super singles can be used on both vertical and slant wells and offer advantages of lower costs, higher efficiencies and greater drilling depths. Given their low environmental impact hydraulic capability, super singles also find application where zero disturbance rules are in effect, as for example, in some parts of southern Alberta. Directional drilling and MWD are most associated with SAGD projects but they also have been used and made significant difference in other spheres of oil recovery as well. The fact is that about 35 percent of wells drilled today are drilled with some form of directional drilling; this will stimulate the growth of ever more advanced MWD technology. Northern rigs are in a class of their own in that here the emphasis is on keeping the crew warm, as opposed to lots of gadgets. The most immediately-visible heat-conserving modification is the 60-ft wind

  10. Casing drilling - first experience in Brazil; Casing drilling - primeira experiencia no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Joao Carlos Ribeiro; Medeiros, Fernando; Lucena, Humberto; Medeiros, Joao Carlos Martins de; Costa, Vicente Abel Soares Rosa da; Silva, Paulo Roberto Correa da [PETROBRAS, Rio de Janeiro, RJ (Brazil); Alves, Renato J.M. [Tesco, London (United Kingdom)

    2004-07-01

    This paper describes the 'Casing Drilling' technology and its first experience in Brazil. This new process of casing while drilling was first developed to reduce costs. This system integrates the drilling process and casing running in one operation, promoting a more efficient well construction system, reducing trip time and costs of drill pipes and their transportation. Besides, this methodology intends to eliminate hole problems related to trouble zones with abnormal pressure with loss circulation, to overcome zones with wellbore instabilities, and to facilitate well control. Two companies have been identified using this technology: Tesco and Weatherford. However, there are differences between the techniques used by these companies, which are described in this paper. In the first experience in Brazil, it was decided to field test the technology developed by Tesco. This paper describes the preparation, the operation and the results of this first test. (author)

  11. Slant rigs offer big payoffs in shallow drilling

    International Nuclear Information System (INIS)

    Smith, J.; Edwards, B.

    1992-01-01

    Slant hole drilling technology can result in considerable savings over conventionally drilled deviated holes because mud motors and deviation control with measurement while drilling tools are usually unnecessary. The benefits of using slant hole rigs for development drilling improve after the bit walk tendencies and the correct bottom hole assemblies have been determined for a particular area. This article discusses three recent drilling operations that successfully used slant drilling technology on land-based projects: drilling for heavy oil in Alberta, drilling for gas in Alberta, and drilling a river crossing for a gas pipeline in British Columbia. These examples demonstrate the flexibility of slant drilling technology

  12. Drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    Galiopa, A A; Yegorov, E K

    1981-01-04

    A drilling rig is proposed which contains a tower, lifter in the form of n infinite chain, and mobile rotator with holding device connected to the chain, and pipe holder. In order to accelerate the auxiliary operations to move the drilling string and unloaded rotator, the rotator is equipped with a clamp with means for transverse connection of it to both branches of the chain, while the pipe holders equipped with a clamp with means of connecting it to one of the branches of the chain.

  13. MAIN STAGES SCIENTIFIC AND PRODUCTION MASTERING THE TERRITORY AVERAGE URAL

    Directory of Open Access Journals (Sweden)

    V.S. Bochko

    2006-09-01

    Full Text Available Questions of the shaping Average Ural, as industrial territory, on base her scientific study and production mastering are considered in the article. It is shown that studies of Ural resources and particularities of the vital activity of its population were concerned by Russian and foreign scientist in XVIII-XIX centuries. It is noted that in XX century there was a transition to systematic organizing-economic study of production power, society and natures of Average Ural. More attention addressed on new problems of region and on needs of their scientific solving.

  14. Core drilling of hydco drillholes ONK-PP262 and ONK-PP274 in ONKALO at Olkiluoto 2010

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2011-10-15

    Suomen Malmi Oy (Smoy) core drilled two drillholes for HYDCO-program in ONKALO at Eurajoki, Olkiluoto in 2010. The drillhole ONK-PP262 was drilled in May 2010 and the drillhole ONK-PP274 in December 2010. The lengths of the drillholes are 25.02 and 23.88 m respectively. The drillholes are 75.7 mm by diameter. The drillholes were drilled in the investigation niche 4 at the access tunnel chainage 3747. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss and pegmatitic granite. The average fracture frequencies in both drill cores are 1.4 pcs/m. The average RQD values in the drillcores are 97.2 % (ONK-PP262) and 98.6 % (ONK-PP274). (orig.)

  15. Core drilling of hydco drillholes ONK-PP262 and ONK-PP274 in ONKALO at Olkiluoto 2010

    International Nuclear Information System (INIS)

    Toropainen, V.

    2011-10-01

    Suomen Malmi Oy (Smoy) core drilled two drillholes for HYDCO-program in ONKALO at Eurajoki, Olkiluoto in 2010. The drillhole ONK-PP262 was drilled in May 2010 and the drillhole ONK-PP274 in December 2010. The lengths of the drillholes are 25.02 and 23.88 m respectively. The drillholes are 75.7 mm by diameter. The drillholes were drilled in the investigation niche 4 at the access tunnel chainage 3747. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss and pegmatitic granite. The average fracture frequencies in both drill cores are 1.4 pcs/m. The average RQD values in the drillcores are 97.2 % (ONK-PP262) and 98.6 % (ONK-PP274). (orig.)

  16. Pressured drilling riser design for drilling in ultra deep water with surface bop

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Morrison, D.; Efthymiou, M.; Lo, K.H. [Shell Global Solutions, 78 - Velizy Villacoublay (France); Magne, E.; Leach, C. [Shell Internationale Exploration and Production (Netherlands)

    2002-12-01

    In conventional drilling with a semi-submersible rig valuable rig time is used to run and retrieve the BOP and its accessories on the seabed, and this time increases with water depth. Furthermore, use of the conventional sub-sea BOP requires a large-diameter riser, which requires substantial rig storage and deck load capacity prior to installation. It also requires high riser-tensioning capacity or additional buoyancy. Thus as the water depth increases, it leads to a need for heavy duty 4. and 5. generation rigs with escalation in costs. The high cost of deep-water drill rigs is leading to the development of Surface BOP technology. In this development, the BOP is placed above sea level and the riser is simply a continuation of the casing (typical diameter 13-3/8''). This eliminates the need for a heavy 21'' riser and for running the BOP to the sea bed and retrieving it. Moreover, the reduced tension requirement for the smaller riser extends the water depth capability of 3. generation drilling semi-submersibles, enabling them to drill in deeper waters. A critical success factor for this development is the ability to design the riser/casing to withstand high internal pressures due to well kicks, in addition to environmental loads, and to restrict vessel offsets within certain limits so as not to overload the riser under the prevailing weather conditions. This paper addresses the design considerations of a pressured drilling riser that can be used with a surface BOP in deep-water. Key design issues that are sensitive to ultra-deep-water applications are discussed. The technical aspects of using (disposable) standard casing with threaded connector for the drilling riser are discussed, with a particular emphasis on the connector fatigue-testing program to quantify the stress concentration factor for fatigue design. Emerging composite material offers some alternatives to the steel riser when drilling in ultra-deep water Design issues related to the

  17. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  18. ATUCHA I NPP - Emergency drill practice

    International Nuclear Information System (INIS)

    Sanda, Alejandro; Rosales, Gabriel

    2008-01-01

    Full text: Atucha I NPP performs an Emergency Drill Practice once a year. Its main goals are: -) Fulfill the requirements of the Argentine Nuclear Regulatory Authority (ARN) regarding Atucha I NPP's Operating License; -) Fulfill the commitment with the community regarding the safe and reliable operation Atucha I NPP; -) Verify the response of the Civil Organizations, Security Forces, and Armed Forces, as well as the correct application of the Emergency Plan; -) Perform the 'General Alarm Drill' periodic control; -) Perform a re-training of the members of the Security Advisor Internal Committee (CIAS) on the Internal and External Aspects of the Emergency Plan and on the related procedures; -) Test the Emergency Communications System. New goals are added every year, considering the Drill's scope. This drill comprises two different kinds of practices: Internal practices (practices in the station, with our personnel) and external practices (practices outside the station with governmental organizations). Internal practices comprise: -) Internal and external communications practices; -) Acoustic alarms; -) Personnel gathering in the Meeting Points; -) Safety of selected Meeting Points; -) Personnel count, selective evacuation; -) Iodide Potassium pills distribution; -) CICE (Internal Group for Emergency Control) Coordination. External practices comprise: -) Nuclear Regulatory Authority; -) Argentine Navy, Comando Area Naval Fluvial, Base Naval Zarate; -) Lima firemen; -) Zarate firemen; -) Municipal Civil Defense (Zarate and Lima); -) National Guard, Escuadron Atucha; -) Zarate Regional Hospital; -) Lima Police Department; -) Zarate Police Department; -) Argentine Coast Guard, Zarate; -) Local radios: Radio FM Libre, FM El Sitio; -) First Aid clinic. The following activities are performed together with the aforementioned organizations: -) Formation of an 'Operative committee'; -) Evacuation of citizens in a 3 km radio; -) Control of every access to Lima; -) Control of

  19. Trends in the Drilling Waste Management

    Directory of Open Access Journals (Sweden)

    Lucyna Czekaj

    2006-10-01

    Full Text Available Petroleum Industry is trying to achieve sustainable development goals. Each year new solutions are implemented to minimize the environmental impact of drilling operations. The paper presents trends in the drilling waste management caused by introducing the sustainable development into the petroleum industry. Old solutions such as the drilling waste disposal at the waste dump or dumping ground are not acceptable from the environmental point of view. The paper presents an analysis of new solutions as the sustainable solutions. The most important problem is the chemical pollution in cuttings and the waste drilling mud. The industrial solutions as well as the laboratory research on the pollution removing from drilling wastes are analysed. The most promising method seems to be the recycling and design for the environment of drilling mud.

  20. Drilling for the Archean Roots of Life and Tectonic Earth in the Barberton Mountains

    Directory of Open Access Journals (Sweden)

    Nicola McLoughlin

    2009-09-01

    Full Text Available In the Barberton Scientific Drilling Program (BSDP we successfully completed three drill holes in 2008 across strategically selected rock formations in the early Archean Barberton Greenstone Belt, South Africa. This collaborative project’s goal is to advance understanding of geodynamic and biogeochemical processes of the young Earth. The program aims to better define and characterize Earth’s earliest preserved ocean crust shear zones and microbial borings in Archean basaltic glass, and to identify biogeochemical fingerprints of ancient ecological niches recorded in rocks. The state-of-the-art analytical and imaging work will address the question of earliest plate tectonics in the Archean, the δ18O composition, the redox state and temperature of Archean seawater, and the origin of life question.

  1. CFPL installs products pipeline with directional drilling

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Central Florida Pipeline Company (CFPL), a subsidiary of GATX Terminals Corp., Tampa, FL, has used directional drilling under seven water bodies in Hillsborough, Polk and Osceola Counties in constructing its new pipeline from Tampa to Orlando. Primary reason for using directional drilling is to protect the environment by minimizing water turbidity while the 16-inch diameter, 109-mile refined petroleum products pipeline is being installed. Total cost of the project is pegged at $68.5 million. Directional drilling enabled the pipe to be placed about 20 feet below the bottom of: The Alafia River in Riverview with 999 feet drilled; Port Sutton Channel near the Port of Tampa with 2,756 feet drilled; Reedy Creek Swamp at the intersection of Interstate 4 and Highway 192 which had 1,111 feet drilled; Wetland number-sign 70 southwest of Lake Wales with 1,575 feet drilled; Peace River south of Bartow had 2,470 feet drilled; Bonnet Creek west of Kissimmee had 693 feet drilled. Shingle Creek near the borders of Osceola and Orange Counties with 1,700 feet drilled. This paper reviews the design plans for construction and the emergency response plans should a rupture occur in the line

  2. Core drilling of deep drillhole OL-KR56 at Olkiluoto in Eurajoki 2011 - 2012

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-07-15

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled a 1201.65 m deep drillhole with a diameter of 75.7 mm at Olkiluoto in October 2011 - January 2012. The identification number of the drillhole is OL-KR56. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volume of the used drilling, washing and flushing water was 1628 m{sup 3}. The measured volume of the returning water in the drillhole was 1142 m{sup 3}. The deviation of the drillhole was measured with the deviation measuring instruments Reflex EMS and Reflex Gyro. The main rock types are veined and diatexitic gneisses, pegmatitic granite and mica gneiss. The average fracture frequency is 2.4 pcs/m and the average RQD value is 96.2 %. Fifty fractured zones were penetrated by the drillhole. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 120.0 MPa, the average Young's Modulus was 38.3 GPa and the average Poisson's ratio was 0.22. (orig.)

  3. Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

    OpenAIRE

    Li, Hongtao; Meng, Yingfeng; Li, Gao; Wei, Na; Liu, Jiajie; Ma, Xiao; Duan, Mubai; Gu, Siman; Zhu, Kuanliang; Xu, Xiaofeng

    2013-01-01

    Signal attenuates while Measurement-While-Drilling (MWD) mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental dat...

  4. Numerical Modeling of Foam Drilling Hydraulics

    Directory of Open Access Journals (Sweden)

    Ozcan Baris

    2007-12-01

    Full Text Available The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow.

  5. Usage of Vermiculite as Additive Material in Water-Based Drilling Muds

    Directory of Open Access Journals (Sweden)

    Onur Eser Kök

    2018-05-01

    Full Text Available Drilling mud is used in drilling operations to ensure well stability and to transport the cut-offs to the surface and is generally classified as; Spud, Lignosulfonate and Polymer types. Spud Mud is the simple mud and mostly used at the beginning of drilling operations. It is mainly composed of bentonite and water. With increasing depth, It is hard to keep well stability and to carry cuttings from the bottom of hole to the surface with the basic drilling fluid. Thus, some materials are used to maintain the rheological and filtration properties of the mud. One of them is vermiculite that is a general name of the hydrated ferromagnesian aluminium silicate group. It has expanded properties when heated. Like all clay minerals, the cation exchange capacity is very high and very similar to the montmorillonites in terms of high cation exchange capacity. In this study, the usage of vermiculite as an additive material in drilling muds was investigated. Spud muds containing vermiculite in different amounts were prepared. Then rheological and filtration analysis of the muds were done according to American Petroleum Institute (API RP-13B-1 Standard. When evaluated the results, AV reached 41cP, PV 27cP, YP 28lb/100ft2 , 10 sec. gel strength 17lb/100ft2 , 10 min. gel strength 26 lb/100ft2 and filtration 9cc. The results showed that the vermiculite can might be used as a viscosifier and fluid loss reducing additive material in the drilling mud.

  6. Chemical Speciation of Chromium in Drilling Muds

    International Nuclear Information System (INIS)

    Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo

    2007-01-01

    Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility

  7. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation.

    Science.gov (United States)

    Dillon, Neal P; Balachandran, Ramya; Labadie, Robert F

    2016-03-01

    A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of [Formula: see text] and higher as well as longer cantilevered drill lengths. The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure.

  8. Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M; Berthe, L; Fabbro, R; Muller, M [Laboratoire pour l' Application des Lasers de Puissance, UPR CNRS no1578, 16 Bis, Avenue Prieur de la Cote D' Or, 94114 Arcueil Cedex (France)], E-mail: matthieu.schneider@gmail.com

    2008-08-07

    Laser drilling in the percussion regime is commonly used in the aircraft industry to drill sub-millimetre holes in metallic targets. Characteristic laser intensities in the range of 10 MW cm{sup -2} are typically employed for drilling metallic targets. With these intensities the temperature of the irradiated matter is above the vaporization temperature and the drilling process is led by hydrodynamic effects. Although the main physical processes involved are identified, this process is not correctly understood or completely controlled. A major characteristic coefficient of laser-matter interaction for this regime, which is the absorptivity of the laser on the irradiated surface, is still unknown, because of the perturbing effects due to laser beam geometrical trapping inside the drilled hole. So, by using time resolved experiments, this study deals with the direct measurement of the variation of the intrinsic absorption of aluminium, nickel and steel materials, as a function of the incident laser intensity up to 20 MW cm{sup -2}. We observe that for this incident intensity, the absorptivity can reach up to 80%. This very high and unexpected value is discussed by considering the microscopic behaviour of the heated matter near the vapour-liquid interface that undergoes possible Rayleigh-Taylor instability or volume absorption.

  9. Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime

    Science.gov (United States)

    Schneider, M.; Berthe, L.; Fabbro, R.; Muller, M.

    2008-08-01

    Laser drilling in the percussion regime is commonly used in the aircraft industry to drill sub-millimetre holes in metallic targets. Characteristic laser intensities in the range of 10 MW cm-2 are typically employed for drilling metallic targets. With these intensities the temperature of the irradiated matter is above the vaporization temperature and the drilling process is led by hydrodynamic effects. Although the main physical processes involved are identified, this process is not correctly understood or completely controlled. A major characteristic coefficient of laser-matter interaction for this regime, which is the absorptivity of the laser on the irradiated surface, is still unknown, because of the perturbing effects due to laser beam geometrical trapping inside the drilled hole. So, by using time resolved experiments, this study deals with the direct measurement of the variation of the intrinsic absorption of aluminium, nickel and steel materials, as a function of the incident laser intensity up to 20 MW cm-2. We observe that for this incident intensity, the absorptivity can reach up to 80%. This very high and unexpected value is discussed by considering the microscopic behaviour of the heated matter near the vapour-liquid interface that undergoes possible Rayleigh-Taylor instability or volume absorption.

  10. Seismic Prediction While Drilling (SPWD: Looking Ahead of the Drill Bit by Application of Phased Array Technology

    Directory of Open Access Journals (Sweden)

    Marco Groh

    2010-04-01

    Full Text Available Geophysical exploration is indispensable for planning deep drilling. Usually 2D- or 3D-seismics investigations are applied and, depending on the resulting geologic model for the underground, the drill site and drilling path are determined. In recent years the focus of exploration has shifted towards small-scale geological structures such as local layers and faults. Depending on the source frequencies and the target depth, 2D- or 3D-seismics from surface cannot always resolve such structures in particular at larger depths. In general, signal frequencies of about 30–70 Hz are typical for surface seismic methods. The deeper and smaller the sought-after structures are, the worse will be the resolution. Therefore, borehole seismic measurements like Vertical Seismic Profile (VSP or Seismic While Drilling (SWD have been developed (Fig. 1. For the VSP method geophones are normally integrated in the borehole, while the seismicsource generates seismic waves at the surface. The SWD method uses the drill bit as the seismic source. Hence, the quality of the seismic signals is highly dependent on the drilled rock and the type of drill bit, but even well-suited rock conditions and adequate drilling may not provide sufficient data quality.

  11. Differing opinions about natural gas drilling in two adjacent counties with different levels of drilling activity

    International Nuclear Information System (INIS)

    Kriesky, J.; Goldstein, B.D.; Zell, K.; Beach, S.

    2013-01-01

    The pace of development of shale gas plays varies greatly among US states and globally. Through analysis of telephone survey responses, we explore support for natural gas drilling in residents of Washington County (WC), PA (n=502) vs. residents of Allegheny County (AC), PA (n=799). WC has had intense Marcellus Shale (MS) drilling activity, in comparison to adjacent AC, which has had little drilling activity. WC residents are marginally more supportive of MS drilling than are AC residents (p=0.0768). Residents of WC are more likely to perceive MS as an economic opportunity than are AC residents (p=0.0015); to be in a family that has signed a MS lease (p<0.0001); to follow the MS issue closely (p=0.0003); to get MS information from neighbors, friends, and relatives (p<0.0001); and are marginally less likely to perceive MS as an environmental threat (p=0.1090). WC leaseholders are significantly more supportive of MS drilling than WC non-leaseholders and AC non-leaseholders (p=0.0024). Mediation analyses show that county-based differences in support of MS drilling are due to WC residents seeing more of an economic opportunity in the MS and their greater likelihood of having a family-held lease. - Highlights: • Telephone survey analysis of sources of support for Marcellus Shale drilling. • Perceived positive economic impact of drilling drives support among respondents. • Mineral rights leaseholders are significantly more supportive than non-leaseholders

  12. Experimental Analysis of Temperature Differences During Implant Site Preparation: Continuous Drilling Technique Versus Intermittent Drilling Technique.

    Science.gov (United States)

    Di Fiore, Adolfo; Sivolella, Stefano; Stocco, Elena; Favero, Vittorio; Stellini, Edoardo

    2018-02-01

    Implant site preparation through drilling procedures may cause bone thermonecrosis. The aim of this in vitro study was to evaluate, using a thermal probe, overheating at implant sites during osteotomies through 2 different drilling methods (continuous drilling technique versus intermittent drilling technique) using irrigation at different temperatures. Five implant sites 13 mm in length were performed on 16 blocks (fresh bovine ribs), for a total of 80 implant sites. The PT-100 thermal probe was positioned 5 mm from each site. Two physiological refrigerant solutions were used: one at 23.7°C and one at 6.0°C. Four experimental groups were considered: group A (continuous drilling with physiological solution at 23.7°C), group B (intermittent drilling with physiological solution at 23.7°C), group C (continuous drilling with physiological solution at 6.0°C), and group D (intermittent drilling with physiological solution at 6.0°C). The Wilcoxon rank-sum test (2-tailed) was used to compare groups. While there was no difference between group A and group B (W = 86; P = .45), statistically significant differences were observed between experimental groups A and C (W = 0; P =.0001), B and D (W = 45; P =.0005), and C and D (W = 41; P = .003). Implant site preparation did not affect the overheating of the bone. Statistically significant differences were found with the refrigerant solutions. Using both irrigating solutions, bone temperature did not exceed 47°C.

  13. Posiva microseismic network. Core drilling of drillholes ONK-PP348...351 in ONKALO at Olkiluoto 2012

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2014-04-15

    Suomen Malmi Oy (Smoy) core drilled four drillholes for the Posiva's ONKALO microseismic network in ONKALO at Eurajoki, 2012. The drillholes are used for geophone instrumentation and geological characterization. The drillholes ONKPP348... 351 were core drilled in February 2012. All the drillholes are ∼ 9.40 m by length. The drillholes are 56.5 mm by diameter. The drillholes were drilled in deep angles to the floors of the access tunnel and three niches near each other at access tunnel chainages 3019 - 3080. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcores are diatexitic gneiss and pegmatitic granite. The average fracture frequency of the drillcores range from 1.2 to 2.4 pc/m and the average RQD value from 96.6 % to 98.6 %. Two fractured zones were intersected. (orig.)

  14. Posiva microseismic network. Core drilling of drillholes ONK-PP348...351 in ONKALO at Olkiluoto 2012

    International Nuclear Information System (INIS)

    Toropainen, V.

    2014-04-01

    Suomen Malmi Oy (Smoy) core drilled four drillholes for the Posiva's ONKALO microseismic network in ONKALO at Eurajoki, 2012. The drillholes are used for geophone instrumentation and geological characterization. The drillholes ONKPP348... 351 were core drilled in February 2012. All the drillholes are ∼ 9.40 m by length. The drillholes are 56.5 mm by diameter. The drillholes were drilled in deep angles to the floors of the access tunnel and three niches near each other at access tunnel chainages 3019 - 3080. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillcores are diatexitic gneiss and pegmatitic granite. The average fracture frequency of the drillcores range from 1.2 to 2.4 pc/m and the average RQD value from 96.6 % to 98.6 %. Two fractured zones were intersected. (orig.)

  15. Core drilling of drillholes ONK-PVA9 and ONK-PVA10 in ONKALO at Olkiluoto 2011

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2011-10-15

    Suomen Malmi Oy (Smoy) core drilled two drillholes for groundwater monitoring stations in ONKALO at Eurajoki, Olkiluoto in 2011. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The drillhole ONK-PVA9 was drilled in March 2011 and the drillhole ONK-PVA10 in June 2011. The lengths of the drillholes are 15.95 and 20.10 m respectively. The drillholes are 75.7 mm by diameter. The drillhole ONK-PVA9 was drilled in a niche of the access tunnel at chainage 4366 and the ONK-PVA10 in the access tunnel wall at chainage 3851. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss and pegmatitic granite. The average fracture frequencies in drill cores are 2.9 pcs/m (ONK-PVA9) and 2.3 pcs/m (ONK-PVA10) and the average RQD values 81.6 % and 96.2 % respectively. (orig.)

  16. Core drilling of deep drillhole OL-KR50 at Olkiluoto in Eurajoki 2008

    International Nuclear Information System (INIS)

    Toropainen, V.

    2009-02-01

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled 939.33 m and 45.44 m deep drillholes with a diameter of 75.7 mm at Olkiluoto in September - November 2008. The identification numbers of the drillholes are OL-KR50 and OL-KR50B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and washing water were 1135 m 3 and 20 m 3 in the drillholes OL-KR50 and OL-KR50B, respectively. The measured volume of the returning water in the drillhole OL-KR50 was 954 m 3 . The deviation of the drillholes was measured with the deviation measuring instruments EMS and Maxibor II. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 129.7 MPa, the average Young's Modulus was 45.8 GPa and the average Poisson's ratio was 0.15. The main rock types were veined and diatexitic gneisses, pegmatitic granite and tonaliticgranodioritic-granitic gneiss. The average fracture frequency is 2.0 pcs/m in drillhole OL KR50 and 3.6 pcs/m in the drillhole OL-KR50B. The average RQD values are 96.1 % and 94.3 %, respectively. 39 fractured zones were penetrated by drillhole OL-KR50 and four by drillhole OL-KR50B. (orig.)

  17. Drilling rig mast

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, E.S.; Barashkov, V.A.; Lebedev, A.I.; Panin, N.M.; Sirotkin, N.V.

    1981-01-07

    A drilling rig mast is proposed that contains a portal with a carrier shaft hinged to it and struts with stays. In order to decrease the time expended in the assembly and dessembly of the drilling rig, the portal is constructed from mobile and immobile parts that are connected together by a ball pivot; the immobile section of the portal has a T-shaped recess for directing the mobile section.

  18. Putting a damper on drilling's bad vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, S. (Sedco forex, Montrouge (France)); Malone, D. (Anadrill, Sugar Land, TX (United States)); Sheppard, M. (Schlumberger Cambridge Research, Cambridge (United Kingdom))

    1994-01-01

    Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.

  19. Drilling mud

    Energy Technology Data Exchange (ETDEWEB)

    Rusayev, A A; Bibikov, K V; Simonenkov, I D; Surkova, K I

    1982-01-01

    Drilling mud is proposed which contains clay, water, water output reducer, pH regulator, viscosity reducer and hydrogen sulfide absorber. In order to improve the absorbing capacity of the drilling mud with pH 8-11 and simultaneously preservation of the technological properties of the mud, it contains as the absorber of hydrogen sulfide pyrite cinders with the following ratio of components, % by mass: clay 5.0-35.0; water output reducer 0.2-2.0; pH regulator 0.05-0.25; viscosity reducer 0.1-1.0; pyrite cinders 0.5-4.0; water--the rest.

  20. High Temperature 300°C Directional Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kamalesh [Baker Hughes Oilfield Operations, Houston, TX (United States); Aaron, Dick [Baker Hughes Oilfield Operations, Houston, TX (United States); Macpherson, John [Baker Hughes Oilfield Operations, Houston, TX (United States)

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  1. Space weather effects on drilling accuracy in the North Sea

    Directory of Open Access Journals (Sweden)

    S. J. Reay

    2005-11-01

    Full Text Available The oil industry uses geomagnetic field information to aid directional drilling operations when drilling for oil and gas offshore. These operations involve continuous monitoring of the azimuth and inclination of the well path to ensure the target is reached and, for safety reasons, to avoid collisions with existing wells. Although the most accurate method of achieving this is through a gyroscopic survey, this can be time consuming and expensive. An alternative method is a magnetic survey, where measurements while drilling (MWD are made along the well by magnetometers housed in a tool within the drill string. These MWD magnetic surveys require estimates of the Earth's magnetic field at the drilling location to correct the downhole magnetometer readings. The most accurate corrections are obtained if all sources of the Earth's magnetic field are considered. Estimates of the main field generated in the core and the local crustal field can be obtained using mathematical models derived from suitable data sets. In order to quantify the external field, an analysis of UK observatory data from 1983 to 2004 has been carried out. By accounting for the external field, the directional error associated with estimated field values at a mid-latitude oil well (55° N in the North Sea is shown to be reduced by the order of 20%. This improvement varies with latitude, local time, season and phase of the geomagnetic activity cycle. By accounting for all sources of the field, using a technique called Interpolation In-Field Referencing (IIFR, directional drillers have access to data from a "virtual" magnetic observatory at the drill site. This leads to an error reduction in positional accuracy that is close to matching that of the gyroscopic survey method and provides a valuable independent technique for quality control purposes.

  2. 30 CFR 250.1605 - Drilling requirements.

    Science.gov (United States)

    2010-07-01

    ... deposit. (2) Inclinational surveys shall be obtained on all vertical wells at intervals not exceeding 1... to that leaseholder. (f) Fixed drilling platforms. Applications for installation of fixed drilling... removed or have been otherwise immobilized are classified as fixed bottom founded drilling platforms. (g...

  3. Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years

    Science.gov (United States)

    Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,

    2011-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  4. List of the main scientific laboratories in the world

    International Nuclear Information System (INIS)

    Iung, J.; Bourrely, H.; Bettembourg, O.; Roule, L.; Leroy, A.

    1956-01-01

    The Documentation Service of the French atomic energy commission (CEA) started in December 1955 a compilation list of the different public and private scientific institutes and laboratories over the world. This list aimed at facilitating the future exchanges between the CEA and other potential research organisations. Labs are sorted by country

  5. Device for storing drilling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kolasinski, A; Wedrychowicz, J

    1981-02-16

    The patented device contains a profiled arch 14 (see figure) installed in the upper part of the drilling rig 15. On base 16 of the drilling unit, there is bin 1 which is installed on frame 2 to which it is hinge connected with the help of pin 3. On the other side, the bin rests on rollers 4 which are attached to lever 5 of lifting mechanism 6. Bin 1 is a series of parallel-arranged guides rigidly connected by transverse beams. Frame 2 contains the collapsible support 10. During operation of the device, the hydraulic lifter 6 with the help of frame 5 and rollers 4 lifts bin 1 with drilling pipes installed on it, giving it an angle of 4/sup 0/ in relation to the plane of frame 2. The collapsible support 10 is installed in a vertical position and holds bin 1. This position of bin 1 is the most suitable for movement of the vertically installed drilling pipes on the guides. The distinguishing feature of the patented device is the possibility of convenient arrangement of the drilling pipes on the guides of bin 1. Because of this, the time spent on lifting and lowering the drill apparatus is considerably reduced.

  6. Rotary steerable motor system for underground drilling

    Science.gov (United States)

    Turner, William E [Durham, CT; Perry, Carl A [Middletown, CT; Wassell, Mark E [Kingwood, TX; Barbely, Jason R [Middletown, CT; Burgess, Daniel E [Middletown, CT; Cobern, Martin E [Cheshire, CT

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  7. Innovative techniques cut costs in wetlands drilling

    International Nuclear Information System (INIS)

    Navarro, A.R.

    1991-01-01

    This paper reports on an approach to drilling oil and gas wells in sensitive wetlands areas contributed to a savings of over $1.2 million on a three-well, $3 million drilling project in south Louisiana. ARCO Oil and Gas Co. drilled a three-well project in the Bayou Sale field with a truck-mounted workover rig and a modified solids-control system. This smaller equipment eliminated the need to build a large location in the marsh. Traditional drilling techniques require a large drillsite to accommodate all the equipment of a modern drilling complex. However, recently imposed environmental regulations substantially limit, and in some cases prohibit, the use of these conventional techniques for drilling wells in wetlands areas. Based on the potentially huge economic and operational impact on the drilling industry because of these stricter regulations, alternatives to these traditional practices are essential

  8. Coiled tubing drilling with supercritical carbon dioxide

    Science.gov (United States)

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  9. Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough.

    Science.gov (United States)

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, 'artificially' creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has

  10. 21 CFR 872.4130 - Intraoral dental drill.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral dental drill. 872.4130 Section 872.4130...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4130 Intraoral dental drill. (a) Identification. An intraoral dental drill is a rotary device intended to be attached to a dental handpiece to drill holes in...

  11. Trans-Amazon Drilling Project (TADP) : Origins and evolution of the forests, climate, and hydrology of the South American tropics

    NARCIS (Netherlands)

    Baker, P.A.; Fritz, S.C.; Silva, C.G.; Rigsby, C.A.; Absy, M.L.; Almeida, R.P.; Caputo, M.; Chiessi, C.M.; Cruz, F.W.; Dick, C. W.; Feakins, S.J.; Figueiredo, J.; Freeman, K.H.; Hoorn, C.; Jaramillo, C.; Kern, A.K.; Latrubesse, E.M.; Ledru, M.P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W.E.; Ramos, M.I.F.; Ribas, C.C.; Trnadade, R.; West, A.J.; Wahnfried, I.; Willard, D.A.

    2015-01-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this

  12. Drilling mortar

    Energy Technology Data Exchange (ETDEWEB)

    Theodorescu, V; Ditulescu, E

    1979-01-30

    A method is proposed for producing stable drilling mortar from drilled rock which makes it possible to stabilize the walls of the borehole and to maintain producing horizons of oil and gas wells in an undisturbed state. The proposed drilling mortar includes 5-12 wt.-% dry modified calcium lignosulfonate in the form of a solution containing about 30% dry matter with the addition of 0.1 wt.-% anti-foaming agent consisting of C/sub 19/-C/sub 20/ alcohol dissolved in a light petroleum product; cream of milk with about 10 wt.-% Ca(OH)/sub 2/ in a quantity sufficient for reducing the pH value of the ions down to 10.5; sodium chloride in amounts from 5 mg to 100 ml (aqueous phase); ordinarily used agents for ensuring the necessary density, viscosity, and filterability. For example, the preparation of the drilling fluid begins with the processing under laboratory conditions of lignosulfonic pulp obtained in the production of yeast fodder with the following characteristics: specific density, 1.15 kgf/dm/sup 3/; water content, 67% (according to the Dean and Stark method); pH 4.0. In the vessel is placed 1000 cm/sup 3/ lignosulfonic pulp containing 33% dry matter, and the pulp is heated to 90-95/sup 0/C by means of a water bath. To the heated pulp 33 cm/sup 3/ formic acid at a 40-% concentration is added by mixing. The specific temperature of the pulp is maintained in the constant mixing process for two hours. Then the cream of milk containing 10 wt.-% Ca(OH)/sub 2/ is added to raise the pH to 10.5. The cooled product is calcium lignosulfonate. To produce a stable form of the drilling mortar, 750 g clay and 10 g trass gel are added to a vessel containing 1500 cm/sup 3/ fresh water by means of mixing. The resulting dispersed mass remains at rest for 12 hours for purposes of hydration. Then 2 g of an anti-foaming agent dissolved in 6 cm/sup 3/ benzene is introduced to 1000 cm/sup 3/ modified calcium lignosulfonate produced by the above method.

  13. Semisubmersible rigs attractive for tender-assisted drilling

    Energy Technology Data Exchange (ETDEWEB)

    Tranter, P. (Sedco Forex, Aberdeen (United Kingdom))

    1994-09-19

    Tender-assisted drilling (TAD) involves the use of tender support vessel (TSV) during the drilling phase of platform development to provide drilling utilities to the platform-mounted drilling package. The TSV provides facilities such as mud mixing, storage, pumping, bulk storage, hotel accommodations, and power. Thus, the platform topsides and jacket weight and size can be smaller and less expensive. The paper discusses the advantages and disadvantages of TAD, then describes the TAD vessel, semisubmersible, platform cost savings, accommodations, drilling and workovers, and field experience.

  14. Histological evaluation of drill fragments obtained during osteoid osteoma radiofrequency ablation

    International Nuclear Information System (INIS)

    Akhlaghpoor, Shahram; Aziz Ahari, Alireza; Ahmadi, Seyed Ali; Gohari Moghaddam, Katayoun; Arjmand Shabestari, Abbas; Alinaghizadeh, Mohammad Reza

    2010-01-01

    Osteoid osteoma (OO) is a benign bone tumor diagnosed mainly on the basis of the patient's history and radiological data. Histological evaluation may not be available before treatment. The aim of this study was to assess the diagnostic value of a histological evaluation of the bone fragments obtained during radiofrequency ablation (RFA). During a 2-year period, 39 patients diagnosed clinically with OO were entered into this study. The procedure was performed under computed tomography (CT) guidance. An 11-gauge needle was initially placed as a coaxial guide. After drill removal, RFA was performed. Bone fragments collected from the drill were examined by two experienced pathologists, independently. There was strong association between pathologists' reports (P <0.001). In 27 cases (69.2%) this diagnosis was confirmed pathologically. No significant relationship was found between nidus diameter and positive histological findings (P = 0.35). Histological confirmation of OO based on drill fragments is similarly frequent as previously reported for standard bone biopsy. (orig.)

  15. Synthesis of engineering designs of drilling facilities

    Science.gov (United States)

    Porozhsky, K.

    2018-03-01

    The article sets forth key principles of engineering of drilling equipment based on successive analysis of the goals of the production method, technologies of its implementation and conditions of mineral mining using a new approach to systematization of drilling methods. Potential advancement in the technologies and equipment of drilling is illustrated in terms of oil-well drilling.

  16. 30 CFR 256.71 - Directional drilling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Directional drilling. 256.71 Section 256.71... drilling. In accordance with an approved exploration plan or development and production plan, a lease may be maintained in force by directional wells drilled under the leased area from surface locations on...

  17. Reverse engineering of wörner type drilling machine structure.

    Science.gov (United States)

    Wibowo, A.; Belly, I.; llhamsyah, R.; Indrawanto; Yuwana, Y.

    2018-03-01

    A product design needs to be modified based on the conditions of production facilities and existing resource capabilities without reducing the functional aspects of the product itself. This paper describes the reverse engineering process of the main structure of the wörner type drilling machine to obtain a machine structure design that can be made by resources with limited ability by using simple processes. Some structural, functional and the work mechanism analyzes have been performed to understand the function and role of each basic components. The process of dismantling of the drilling machine and measuring each of the basic components was performed to obtain sets of the geometry and size data of each component. The geometric model of each structure components and the machine assembly were built to facilitate the simulation process and machine performance analysis that refers to ISO standard of drilling machine. The tolerance stackup analysis also performed to determine the type and value of geometrical and dimensional tolerances, which could affect the ease of the components to be manufactured and assembled

  18. Advanced control strategies for a drill rig

    International Nuclear Information System (INIS)

    Banerjee, A.; Hiller, M.; Fink, B.

    1996-01-01

    The construction of tunnels is usually undertaken using a combination of blasting and drilling to achieve rock excavation. Easy handling and high accuracy, and thus greater efficiency, in drilling rigs is an essential ingredient of successful competition in the market place. This article describes a cartesian control concept used for a twin boom drill rig. This simplifies the handling of a drilling boom, reduces the duration of a working cycle and increases security. A remote control system has been added to the drill rig to support the operator working in complicated environments. (UK)

  19. Fracture Modes and Identification of Fault Zones in Wenchuan Earthquake Fault Scientific Drilling Boreholes

    Science.gov (United States)

    Deng, C.; Pan, H.; Zhao, P.; Qin, R.; Peng, L.

    2017-12-01

    After suffering from the disaster of Wenchuan earthquake on May 12th, 2008, scientists are eager to figure out the structure of formation, the geodynamic processes of faults and the mechanism of earthquake in Wenchuan by drilling five holes into the Yingxiu-Beichuan fault zone and Anxian-Guanxian fault zone. Fractures identification and in-situ stress determination can provide abundant information for formation evaluation and earthquake study. This study describe all the fracture modes in the five boreholes on the basis of cores and image logs, and summarize the response characteristics of fractures in conventional logs. The results indicate that the WFSD boreholes encounter enormous fractures, including natural fractures and induced fractures, and high dip-angle conductive fractures are the most common fractures. The maximum horizontal stress trends along the borehole are deduced as NWW-SEE according to orientations of borehole breakouts and drilling-induced fractures, which is nearly parallel to the strikes of the younger natural fracture sets. Minor positive deviations of AC (acoustic log) and negative deviation of DEN (density log) demonstrate their responses to fracture, followed by CNL (neutron log), resistivity logs and GR (gamma ray log) at different extent of intensity. Besides, considering the fact that the reliable methods for identifying fracture zone, like seismic, core recovery and image logs, can often be hampered by their high cost and limited application, this study propose a method by using conventional logs, which are low-cost and available in even old wells. We employ wavelet decomposition to extract the high frequency information of conventional logs and reconstruction a new log in special format of enhance fracture responses and eliminate nonfracture influence. Results reveal that the new log shows obvious deviations in fault zones, which confirm the potential of conventional logs in fracture zone identification.

  20. A Fast Inspection of Tool Electrode and Drilling Depth in EDM Drilling by Detection Line Algorithm.

    Science.gov (United States)

    Huang, Kuo-Yi

    2008-08-21

    The purpose of this study was to develop a novel measurement method using a machine vision system. Besides using image processing techniques, the proposed system employs a detection line algorithm that detects the tool electrode length and drilling depth of a workpiece accurately and effectively. Different boundaries of areas on the tool electrode are defined: a baseline between base and normal areas, a ND-line between normal and drilling areas (accumulating carbon area), and a DD-line between drilling area and dielectric fluid droplet on the electrode tip. Accordingly, image processing techniques are employed to extract a tool electrode image, and the centroid, eigenvector, and principle axis of the tool electrode are determined. The developed detection line algorithm (DLA) is then used to detect the baseline, ND-line, and DD-line along the direction of the principle axis. Finally, the tool electrode length and drilling depth of the workpiece are estimated via detected baseline, ND-line, and DD-line. Experimental results show good accuracy and efficiency in estimation of the tool electrode length and drilling depth under different conditions. Hence, this research may provide a reference for industrial application in EDM drilling measurement.

  1. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, Brian D. [Nevada Geothermal Power Company, Vancouver (Canada); Smith, Nicole [Nevada Geothermal Power Company, Vancouver (Canada)

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag

  2. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  3. 25 CFR 226.33 - Line drilling.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Line drilling. 226.33 Section 226.33 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Requirements of Lessees § 226.33 Line drilling. Lessee shall not drill within 300 feet...

  4. IODP Expedition 319, NanTroSEIZE Stage 2: First IODP Riser Drilling Operations and Observatory Installation Towards Understanding Subduction Zone Seismogenesis

    Directory of Open Access Journals (Sweden)

    Sean Toczko

    2010-09-01

    Full Text Available The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE is a major drilling project designed to investigate fault mechanics and the seismogenic behavior of subduction zone plate boundaries. Expedition 319 is the first riser drilling operation within scientific ocean drilling. Operations included riser drilling at Site C0009 in the forearc basin above the plate boundary fault, non-riser drilling at Site C0010 across the shallow part of the megasplay faultsystem—which may slip during plate boundary earthquakes—and initial drilling at Site C0011 (incoming oceanic plate for Expedition 322. At Site C0009, new methods were tested, including analysis of drill mud cuttings and gas, and in situ measurements of stress, pore pressure, and permeability. These results, in conjunction with earlier drilling, will provide a the history of forearc basin development (including links to growth of the megasplay fault system and modern prism, b the first in situ hydrological measurements of the plate boundary hanging wall, and c integration of in situ stress measurements (orientation and magnitude across the forearc and with depth. A vertical seismic profile (VSP experiment provides improved constraints on the deeper structure of the subduction zone. At Site C0010, logging-while-drilling measurements indicate significantchanges in fault zone and hanging wall properties over short (<5 km along-strike distances, suggesting different burial and/or uplift history. The first borehole observatory instruments were installed at Site C0010 to monitor pressure and temperature within the megasplay fault zone, and methods of deployment of more complex observatoryinstruments were tested for future operations.

  5. Stinger Enhanced Drill Bits For EGS

    Energy Technology Data Exchange (ETDEWEB)

    Durrand, Christopher J. [Novatek International, Inc., Provo, UT (United States); Skeem, Marcus R. [Novatek International, Inc., Provo, UT (United States); Crockett, Ron B. [Novatek International, Inc., Provo, UT (United States); Hall, David R. [Novatek International, Inc., Provo, UT (United States)

    2013-04-29

    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  6. Polyethylene glycol drilling fluid for drilling in marine gas hydrates-bearing sediments: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, G.; Liu, T.; Ning, F.; Tu, Y.; Zhang, L.; Yu, Y.; Kuang, L. [China University of Geosciences, Faculty of Engineering, Wuhan (China)

    2011-07-01

    Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na{sub 2}CO{sub 3}, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from -8 {sup o}C to 15 {sup o}C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments. (authors)

  7. Polyethylene Glycol Drilling Fluid for Drilling in Marine Gas Hydrates-Bearing Sediments: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Lixin Kuang

    2011-01-01

    Full Text Available Shale inhibition, low-temperature performance, the ability to prevent calcium and magnesium-ion pollution, and hydrate inhibition of polyethylene glycol drilling fluid were each tested with conventional drilling-fluid test equipment and an experimental gas-hydrate integrated simulation system developed by our laboratory. The results of these tests show that drilling fluid with a formulation of artificial seawater, 3% bentonite, 0.3% Na2CO3, 10% polyethylene glycol, 20% NaCl, 4% SMP-2, 1% LV-PAC, 0.5% NaOH and 1% PVP K-90 performs well in shale swelling and gas hydrate inhibition. It also shows satisfactory rheological properties and lubrication at temperature ranges from −8 °C to 15 °C. The PVP K-90, a kinetic hydrate inhibitor, can effectively inhibit gas hydrate aggregations at a dose of 1 wt%. This finding demonstrates that a drilling fluid with a high addition of NaCl and a low addition of PVP K-90 is suitable for drilling in natural marine gas-hydrate-bearing sediments.

  8. Fiscal 1997 survey report. Survey on the innovative well drilling technology; 1997 nendo chosa hokokusho. Kakushinteki kosei kussaku gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In the geothermal drilling, reduction of the cost of well drilling is an important subject for technical development. The geothermal resource development tends to be made at higher temperatures and at deeper wells. In the present drilling technology, the cost is rising with the exponentially increasing depth and temperature, and there is also occurring the technical limit. Accordingly, the survey clarified the limit of the present drilling technology/cost to point out the research trend of the drilling technology as substitute for the present one, possibilities of the introduction, and the R and D target and subjects. As to latest drilling systems abroad and in Japan, the following were surveyed to study and extract promising technologies and systems: improvement/application of drilling equipment/materials (enhancement of heat resistance of the main drilling equipment, etc., cooling effects of top drive, heat resistance verification of MWD tools, PDM, tricone bits, multi-stage cementing tools, etc.), heightening of drilling rates, trend surveys of slim hole drilling, control drilling, well maintenance/workover, and well design technology. 68 refs., 73 figs., 40 tabs.

  9. Effects of drilling fluids on marine organisms

    International Nuclear Information System (INIS)

    Parrish, P.R.; Duke, T.W.

    1990-01-01

    This paper reports on drilling fluids, also called drilling muds, which are essential to drilling processes in the exploration and production of oil and gas from the U.S. Outer Continental Shelf (OCS). These fluids are usually discharged from drilling platforms into surrounding waters of the OCS and are regulated by the U.S. Environmental Protection Agency (EPA). In a program carried out by the EPA Environmental research Laboratory at Gulf Breeze, Florida, diverse marine species as well as microbiotic and macrobiotic communities were studied. Drilling fluids were toxic to marine organisms in certain concentrations and exposure regimes. Furthermore, the fluids adversely affected the benthos physically by burying them or by altering the substrates. Toxicity of the drilling-fluid components, used drilling fluids from active Gulf of Mexico sites, and laboratory-prepared drilling fluids varied considerably. for example 96-h LC 50 s were from 25 μ liter -1 to > 1500 μl liter -1 for clams, larval lobsters, mysids, and grass shrimp. In most instances, mortality was significantly (α = 0.05) correlated with the diesel-oil content of the fluids collected from the Gulf of Mexico. Data and model simulations suggest a rapid dilution of drilling fluids released into OCS waters, resulting in concentrations below the acute-effect concentration for the water column organisms tested

  10. Drilling and well technology

    Energy Technology Data Exchange (ETDEWEB)

    Milheim, K. [Mining University Leoben Institute for Drilling Technology, (Austria)

    1996-12-31

    Over a billion dollars a year is lost by exploration and production companies drilling wells because of the lack of learn curve management (LMC) practices. This paper presents the importance of the LMC concept, what it is, why LMC has not yet been recognized as a major initiative for improving drilling cost performance. The paper discusses the different types of planning, problems with implementation of plans, the use and misuse of drilling results and data bases, and the lack of post analysis practices. The major point of the paper is to show the massive savings that can be achieved by valuing LMC, learning LMC and successfully implementing LMC. . 2 refs., 5 figs.

  11. Thermal numerical assessment of jawbone drilling factor during implantology

    Directory of Open Access Journals (Sweden)

    Adel Pirjamali Neisiani

    2016-03-01

    Full Text Available Background and Aims: Optimization drilling parameters in order to temperature decrease during creation of hole in the bone is an interested issue. The aim of this study was to achieve optimum values of drilling parameters based on the creation of minimum temperature during jawbone drilling. Materials and Methods: In this study two models of mandible and maxilla was created and teeth 2, 5 and 8 from maxilla and teeth 25, 28 and 31 from mandible were removed. The drilling operation was performed under different conditions on jawbone models using finite element analysis and the maximum temperatures were measured in adjacent of holes. Results: Drill bit head angle of 70 degrees was created the lowest maximum temperature during drilling operation. The lowest maximum temperatures were observed in the drill bit rotational speed, drill bit feed rate and the force exerted on the drill bit equal to 200 rpm, 120 mm/min and 60 N, respectively. The use of irrigation can decrease the maximum bone temperature about 7ºC. The maximum temperature differences in various regions of mandible and maxilla were approximately about 1ºC. Conclusion: Sharpness of drill bit head angle, reduction of drill bit rotational speed, increasing drill bit feed rate and exerted force on drill bit and also the use of irrigation played effective roles in temperature decrease during jawbone drilling. Drilling site did not have important effect on the temperature changes during jawbone drilling.

  12. New generation of membrane efficient water-based drilling fluids: pragmatic and cost-effective solutions to borehole stability problems

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U.A. [Haliburton, Calgary, AB (Canada); Mody, F.K. [Shell International E and P Inc., Calgary, AB (Canada); Tan, C.P. [CSIRO Petroleum, Kensington, WA (Australia)

    2002-06-01

    Drilling and completion operations in shales often suffer as a result of wellbore instability. Mechanical failure of the rock around a wellbore is the primary cause of shale instability. This process can be exacerbated by physico-chemical interactions between drilling fluids and shales. Water-based drilling fluids are used more and more due to environmental awareness that becomes more prevalent. Wellbore instability problems can however result from an improper application of water-based drilling fluids in those cases where drilling occurs in sensitive clay-rich formations. To meet the requirements of the petroleum industry, considerable collaborative efforts were expanded in the development of innovative environmentally acceptable water-based drilling fluids. In this paper, the authors describe the process that leads to the development of these drilling fluids. It is possible to achieve shale stability through an osmotic outflow of pore fluid and prevention/minimization of mud pressure penetration, as laboratory experiments on shale samples under realistic downhole conditions exposed to these drilling fluids prove. High membrane efficiencies, in excess of 80 per cent, were generated by this new generation of membrane efficient water-based drilling fluids. Drilling objectives resulting from an improved application of water-based drilling fluids are made possible by a fundamental understanding of the main drilling fluid-shale interaction mechanisms for shale stability and the application of experimental data to field conditions. The authors indicate that the achievement of trouble-free drilling of shales and notable reductions in non-productive time is accomplished by following the practical guidelines included in this paper for maintaining shale stability with the new generation of water-based drilling fluids. 8 refs., 2 tabs., 4 figs.

  13. Core drilling of deep drillhole OL-KR57 at Olkiluoto in Eurajoki 2011-2012

    International Nuclear Information System (INIS)

    Toropainen, V.

    2012-07-01

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled 401.71 m and 45.01 m deep drillholes, OL-KR57 and OL-KR57B, at Olkiluoto in September 2011 - January 2012. The diameter of the drillholes is 75.7 mm. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling, flushing and washing water were 350 m3 and 30 m3 in the drillholes OL-KR57 and OL-KR57B, respectively. The measured volumes of the returning water in the drillholes were 328 m 3 and 16.8 m 3 , respectively. The deviations of the drillholes were measured with the deviation measuring instruments EMS and Gyro. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 123.9 MPa, the average Young's Modulus was 42.6 GPa and the average Poisson's ratio was 0.23. The main rock types are veined and diatexitic gneisses, mica gneiss and tonaliticgranodioritic- granitic gneiss. The average fracture frequency is 2.5 pcs/m in drillhole OL-KR57 and 3.3 pcs/m in the drillhole OL-KR57B. The average RQD values are 95.0 % and 93.0 %. Seven separate fractured zones were interpreted from OL-KR57 and three fractured zones from OL-KR57B. (orig.)

  14. Core drilling of deep drillhole OL-KR57 at Olkiluoto in Eurajoki 2011-2012

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-07-15

    As a part of the confirming site investigations at Olkiluoto, Suomen Malmi Oy (Smoy) core drilled 401.71 m and 45.01 m deep drillholes, OL-KR57 and OL-KR57B, at Olkiluoto in September 2011 - January 2012. The diameter of the drillholes is 75.7 mm. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling water were recorded. The drill rig was computer controlled and the computer recorded drilling parameters during drilling. The objective of the measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling, flushing and washing water were 350 m3 and 30 m3 in the drillholes OL-KR57 and OL-KR57B, respectively. The measured volumes of the returning water in the drillholes were 328 m{sup 3} and 16.8 m{sup 3}, respectively. The deviations of the drillholes were measured with the deviation measuring instruments EMS and Gyro. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength was 123.9 MPa, the average Young's Modulus was 42.6 GPa and the average Poisson's ratio was 0.23. The main rock types are veined and diatexitic gneisses, mica gneiss and tonaliticgranodioritic- granitic gneiss. The average fracture frequency is 2.5 pcs/m in drillhole OL-KR57 and 3.3 pcs/m in the drillhole OL-KR57B. The average RQD values are 95.0 % and 93.0 %. Seven separate fractured zones were interpreted from OL-KR57 and three fractured zones from OL-KR57B. (orig.)

  15. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    Science.gov (United States)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  16. From frugivore to folivore: Altitudinal variations in the diet and feeding ecology of the Bioko Island drill (Mandrillus leucophaeus poensis).

    Science.gov (United States)

    Owens, Jacob R; Honarvar, Shaya; Nessel, Mark; Hearn, Gail W

    2015-12-01

    Variation in the quality and availability of food resources can greatly influence the ecology, behavior, and conservation of wild primates. We studied the influence of altitudinal differences in resource availability on diet in wild drill monkeys (Mandrillus leucophaeus poensis) on Bioko Island, Equatorial Guinea. We compared fecal samples (n = 234) collected across three consecutive dry seasons for drills living in lowland (0-300 m asl) forest with nearby (18 km distance) drills living in montane forest (500-1000 m asl) in the Gran Caldera Southern Highlands Scientific Reserve. Lowland forest drills had a frugivorous diet very similar to that reported from studies on nearby mainland drills (M. l. leucophaeus) and mandrills (M. sphinx), with fruits comprising 90% of their dried fecal samples. However drills living in montane forest had a more folivorous diet, with herbaceous pith, leaves and fungi comprising 74% of their dried fecal samples and fruit becoming a minor component (24%). Furthermore, a dietary preference index indicated that the differences in the proportion of fruit and fibrous vegetation in the diets of lowland compared to montane drills was not simply a result of relative availability. Montane drills were actively consuming a higher mass of the available fruits and fibrous vegetation, a condition reflected in the greater mass of their fresh feces. Our results demonstrate the unexpected flexibility and complexity of dietary choices of this endangered species in two adjacent habitat types, a comparison of considerable importance for many other limited-range species faced with habitat loss and climate change. © 2015 Wiley Periodicals, Inc.

  17. Effect of cutting parameters on workpiece and tool properties during drilling of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Celik, Yahya Hisman; Yildiz, Hakan

    2016-01-01

    The main aim of machining is to provide the dimensional preciseness together with surface and geometric quality of the workpiece to be manufactured within the desired limits. Today, it is quite hard to drill widely utilized Ti-6Al-4 V alloys owing to their superior features. Therefore, in this study, the effects of temperature, chip formation, thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears on the drilling of Ti-6Al-4 V were investigated under dry cutting conditions with different cutting speeds and feed rates by using tungsten carbide (WC) and high speed steel (HSS) drills. Moreover, the mathematical modeling of thrust force, surface roughness, burr height and tool wear were formed using Matlab. It was found that the feed rate, cutting speed and type of drill have a major effect on the thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears. Optimum results in the Ti-6Al-4 V alloy drilling process were obtained using the WC drill.

  18. Effect of cutting parameters on workpiece and tool properties during drilling of Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Yahya Hisman; Yildiz, Hakan [Batman Univ. (Turkey). Dept. of Mechanical Engineering; Oezek, Cebeli [Firat Univ., Elazig (Turkey)

    2016-08-01

    The main aim of machining is to provide the dimensional preciseness together with surface and geometric quality of the workpiece to be manufactured within the desired limits. Today, it is quite hard to drill widely utilized Ti-6Al-4 V alloys owing to their superior features. Therefore, in this study, the effects of temperature, chip formation, thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears on the drilling of Ti-6Al-4 V were investigated under dry cutting conditions with different cutting speeds and feed rates by using tungsten carbide (WC) and high speed steel (HSS) drills. Moreover, the mathematical modeling of thrust force, surface roughness, burr height and tool wear were formed using Matlab. It was found that the feed rate, cutting speed and type of drill have a major effect on the thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears. Optimum results in the Ti-6Al-4 V alloy drilling process were obtained using the WC drill.

  19. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  20. Taking aim : particle impact drilling targets ROP gains

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2005-11-01

    Details of a new drilling technique developed by Particle Drilling Technologies Inc. were presented. Particle impact drilling uses buckshot-like steel particles entrained with ordinary drilling mud that are accelerated through a specially-designed drill bit to bombard hard-rock formations at rapid-fire velocities of up to 4 million times a minute. Conventional drill bits rely on mechanical energy from some 50,000 pounds of weight on bit and torque to break or fracture the formation, whereas particle impact drilling relies on hydraulic energy to blast the steel particles from the bit's jetting nozzles in order to repeatedly fracture the formation. It was suggested that the new technology will accelerate the drilling process. Tests have shown that the new device out-performs conventional bits in hard formations by utilizing the hydraulics of the rig to drill with particles. In field tests, drilling was 4 times faster than conventional methods. It was anticipated that the bit will be up to 150 per cent faster in softer rock formations. In order to avoid clogging, the system uses a shot trap to remove the steel balls, which are roughly one-tenth of an inch in diameter, from the drilling fluid before it enters the shale shaker. The shot is recycled after each well. During drilling, mud circulation must be continuous for the system to work. If the system can't circulate cleanly out of a hole, there is a disruption in the process and drilling fluid may move up the annulus at 350 feet per minute when it leaves bottomhole. It was suggested that circulation issues can be resolved by increasing mud viscosity. A less than optimal performance during a recent test at Catoosa was attributed to a lack of control over drilling fluid parameters and to the use of an overly-large well casing. It was concluded that the new system will likely greatly reduce the number of days it takes to drill a well. 2 figs.

  1. Results from Testing of Two Rotary Percussive Drilling Systems

    Science.gov (United States)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  2. Mars Drilling Status

    Science.gov (United States)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  3. Advantages and limitations of remotely operated sea floor drill rigs

    Science.gov (United States)

    Freudenthal, T.; Smith, D. J.; Wefer, G.

    2009-04-01

    A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional

  4. Emergency planning and emergency drill for a 5 MW district heating reactor

    International Nuclear Information System (INIS)

    Shi Zhongqi; Wu Zhongwang; Hu Jingzhong; Feng Yuying; Li Zhongsan; Dong Shiyuan

    1991-01-01

    The authors describes the main contents of the emergency planning for a 5 MW nuclear district heating reactor and some considerations for the planning's making, and presents the situation on implementing emergency preparedness and an emergency drill that has been carried out

  5. Changing the fundamentals[Drill technology

    Energy Technology Data Exchange (ETDEWEB)

    Flatern, R. von

    2003-02-01

    Evolution of the science of drilling oil and gas wells has evolved in fits and starts. From drilling with cables to rotary tables to top drives, from straight holes to horizontal, it has been a process interrupted occasionally by flashes of revolutionary brilliance. In this article the author looks at the state of just a few of the technologies that define or threaten to change how drillers go about their business. In the early days of deepwater exploration drillers responded more to technical challenges than financial ones, primarily with immense semisubmersibles and drillships, together with all he necessary ancillary items. The goal of getting deeper faster is not a new one, better performance bits, muds, LWD and MWD, together with numerous other developments all emerged as a result of the desire to shorten the time between spud and TD. But whereas saving a day or two drilling onshore or nearshore is desirable, it has never before been possible to realize the kind of substantial financial benefits from relatively small time savings. Research and development into these type of savings with the design and improvement of different types drill bits and casing drilling is described.

  6. Drilling Fluids Using Multiwall Carbon Nanotube (MWCNT

    Directory of Open Access Journals (Sweden)

    Mostafa Sedaghatzadeh

    2012-11-01

    Full Text Available Designing drilling fluids for drilling in deep gas reservoirs and geothermal wells is a major challenge. Cooling drilling fluids and preparing stable mud with high thermal conductivity are of great concern. Drilling nanofluids, i.e. a low fraction of carbon nanotube (CNT well dispersed in mud, may enhance the mixture thermal conductivity compared to the base fluids. Thus, they are potentially useful for advanced designing high temperature and high pressure (HTHP drilling fluids. In the present study, the impacts of CNT volume fraction, ball milling time, functionalization, temperature, and dispersion quality (by means of scanning electron microscopy, SEM on the thermal and rheological properties of water-based mud are experimentally investigated. The thermal conductivities of the nano-based drilling fluid are measured with a transient hot wire method. The experimental results show that the thermal conductivity of the water-based drilling fluid is enhanced by 23.2% in the presence of 1 vol% functionalized CNT at room temperature; it increases by 31.8% by raising the mud temperature to 50 °C. Furthermore, significant improvements are seen in the rheological properties—such as yield point, filtration properties, and annular viscosity—of the CNTmodified drilling fluid compared to the base mud, which pushes forward their future development.

  7. Bucket drill

    Energy Technology Data Exchange (ETDEWEB)

    Bezverkhiy, V.M.; Nabokov, I.M.; Podoksik, D.Z.; Sadovskiy, S.S.; Shanyukevich, V.A.

    1983-01-01

    The bucket drill including a cylindrical housing with bottom, ground intake windows and cutting knives is hinged to the housing, the mechanism of rotation of the cutting knives including rods connected by the cutter knives, and drive shaft is distinguished by the fact that in order to improve the effectiveness of drilling by automatic change in the angle of cutting depending on the strength of the drillable rock, the drill is equipped with elastic elements and cap with annular slits in which there are elastic elements. The mechanism of rotation of the cutting knives is equipped with levers hinged to the housing, pins with shaft and rocker arm. The rods are made with a slit and from one end are rigidly connected to the cutting knives, and from the other end to the levers by means of pins which are arranged in slits of the rod with the possibility of movement. The upper ends of the levers are installed with the possibility of movement in the pins whose shafts are arranged with the possibility of rotation in the rocker arm rigidly connected to the drive shaft. The drive shaft is equipped with cantilevers installed in the cap with the possibility of rotation and interaction with the elastic elements.

  8. Roundness and taper of holes during drilling composites of various thickness by HSS drill bit under dry condition

    Science.gov (United States)

    Sakib, M. S.; Rahman, Motiur; Ferdous, M.; Dhar, N. R.

    2017-12-01

    Polymer Matrix Composites are extending a wide range of applications in aviation in recent eras because of their better economics, well established processing, high temperature properties, high resistance to corrosion and fatigue. Directional properties of composites are dependent on the fibre orientation. Composites being anisotropic in nature are difficult to drill and machining and tooling of the composites remained a great challenge over time. This paper addresses the issues of various machining problems such as delamination, fibre pull-out, cracks on varying drilling parameters like feed rate and drilling speed. Experimental drilling was carried out on Fibre Reinforced Plastic composites with HSS drill bit. Results reveal that as the number of holes increases the entry and exit diameter and tapper of holes vary and also varying composite thickness results in a difference in hole roundness and tapper. This experiment summarizes that for achieving acceptable tool life and hole quality demands a drill designed with composites.

  9. Rotary Percussive Auto-Gopher for Deep Drilling and Sampling

    Science.gov (United States)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart

    2009-01-01

    The term "rotary percussive auto-gopher" denotes a proposed addition to a family of apparatuses, based on ultrasonic/ sonic drill corers (USDCs), that have been described in numerous previous NASA Tech Briefs articles. These apparatuses have been designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. In the case of the rotary percussive autogopher, the emphasis would be on developing an apparatus capable of penetrating to, and acquiring samples at, depths that could otherwise be reached only by use of much longer, heavier, conventional drilling-and-sampling apparatuses. To recapitulate from the prior articles about USDCs: A USDC can be characterized as a lightweight, low-power jackhammer in which a piezoelectrically driven actuator generates ultrasonic vibrations and is coupled to a tool bit through a free mass. The bouncing of the free mass between the actuator horn and the drill bit converts the actuator ultrasonic vibrations into sonic hammering of the drill bit. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that the size of the axial force needed to make the tool bit advance into soil, rock, or another material of interest is much smaller than in ordinary rotary drilling, ordinary hammering, or ordinary steady pushing. The predecessor of the rotary percussive auto-gopher is an apparatus, now denoted an ultrasonic/sonic gopher and previously denoted an ultrasonic gopher, described in "Ultrasonic/ Sonic Mechanism for Drilling and Coring" (NPO-30291), NASA Tech Briefs Vol. 27, No. 9 (September 2003), page 65. The ultrasonic/sonic gopher is intended for use mainly in acquiring cores. The name of the apparatus reflects the fact that, like a

  10. Biological Evaluation of Implant Drill Made from Zirconium Dioxide.

    Science.gov (United States)

    Akiba, Yosuke; Eguchi, Kaori; Akiba, Nami; Uoshima, Katsumi

    2017-04-01

    Zirconia is a good candidate material in the dental field. In this study, we evaluated biological responses against a zirconia drill using a bone cavity healing model. Zirconia drills, stainless steel drills, and the drilled bone surface were observed by scanning electron microscopy (SEM), before and after cavity preparation. For the bone cavity healing model, the upper first and second molars of Wistar rats were extracted. After 4 weeks, cavities were prepared with zirconia drills on the left side. As a control, a stainless steel drill was used on the right side. At 3, 7, and 14 days after surgery, micro-CT images were taken. Samples were prepared for histological staining. SEM images revealed that zirconia drills maintained sharpness even after 30 drilling procedures. The bone surface was smoother with the zirconia drill. Micro-CT images showed faster and earlier bone healing in the zirconia drill cavity. On H-E staining, at 7 days, the zirconia drill defect had a smaller blank lacunae area. At 14 days, the zirconia drill defect was filled with newly formed bone. The zirconia drill induces less damage during cavity preparation and is advantageous for bone healing. (197 words). © 2016 The Authors Clinical Implant Dentistry and Related Research Published by Wiley Periodicals, Inc.

  11. Core drilling of deep drillhole OL-KR47 at Olkiluoto in Eurajoki 2007-2008

    International Nuclear Information System (INIS)

    Toropainen, V.

    2008-02-01

    As a part of the confirming site investigations for ONKALO rock characterisation facility, Suomen Malmi Oy (Smoy) core drilled 1008.76 m and 44.31 m deep drillholes with a diameter of 75.7 mm at Olkiluoto in October 2007 - January 2008. The identification numbers of the drillholes are OL-KR47 and OL-KR47B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling waters were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 1229 m 3 and 13.6 m 3 in drillholes OL-KR47 and OL-KR47B, respectively. Measured volume of the returning water in drillhole OL-KR47 was 1125 m 3 , water did not return in drillhole OL-KR47B. The deviation of the drillholes was measured with the deviation measuring instruments EMS and Maxibor II. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is 92.1 MPa, the average Young's Modulus is 32.5 GPa and the average Poisson's ratio is 0.33. The main rock types are diatexitic and veined gneisses, pegmatitic granite and tonaliticgranodioritic- granitic gneiss. The average fracture frequency is 2.2 pcs / m in drillhole OL-KR47 and 3.4 pcs / m in drillhole OL-KR47B. The average RQD values were 95.3 % and 94.1 %. In drillhole OL-KR47 46 fractured zones and in drillhole OL-KR47B two fractured zones were penetrated during drilling work. (orig.)

  12. Westinghouse GOCO conduct of casualty drills

    International Nuclear Information System (INIS)

    Ames, C.P.

    1996-02-01

    Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility

  13. Big-hole drilling - the state of the art

    International Nuclear Information System (INIS)

    Lackey, M.D.

    1983-01-01

    The art of big-hole drilling has been in a continual state of evolution at the Nevada Test Site since the start of underground testing in 1961. Emplacement holes for nuclear devices are still being drilled by the rotary-drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. The current design of bits, cutters, and other big-hole-drilling hardware results from contributions of manufacturers and Test Site personnel. The dual-string, air-lift, reverse-circulation system was developed at the Test Site. Necessity was really the Mother of this invention, but this circulation system is worthy of consideration under almost any condition. Drill rigs for big-hole drilling are usually adaptations of large oil-well drill rigs with minor modifications required to handle the big bits and drilling assemblies. Steel remains the favorite shaft lining material, but a lot of thought is being given to concrete linings, especially precast concrete

  14. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  15. Study on Monitoring Rock Burst through Drill Pipe Torque

    Directory of Open Access Journals (Sweden)

    Zhonghua Li

    2015-01-01

    Full Text Available This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the analysis, a new device for testing drill pipe torque is developed and a series of experiments is performed under different conditions; the results show that drill pipe torque linearly increases with the increase of coal stress and coal strength; the faster the drilling speed, the larger the drill pipe torque, and vice versa. When monitoring rock burst by drill pipe torque method, the index of rock burst is regarded as a function in which coal stress index and coal strength index are principal variables. The results are important for the forecast of rock burst in coal mine.

  16. Drilling Experiments of Dummy Fuel Rods Using a Mock-up Drilling Device and Detail Design of Device for Drilling of Irradiated Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Yong; Lee, H. K.; Chun, Y. B.; Park, S. J.; Kim, B. G

    2007-07-15

    KAERI are developing the safety evaluation method and the analysis technology for high burn-up nuclear fuel rod that is the project, re-irradiation for re-instrumented fuel rod. That project includes insertion of a thermocouple in the center hole of PWR nuclear fuel rod with standard burn-up, 3,500{approx}4,000MWD/tU and then inspection of the nuclear fuel rod's heat performance during re-irradiation. To re-fabricate fuel rod, two devices are needed such as a drilling machine and a welding machine. The drilling machine performs grinding a center hole, 2.5 mm in diameter and 50 mm in depth, for inserting a thermocouple. And the welding machine is used to fasten a end plug on a fuel rod. Because these two equipment handle irradiated fuel rods, they are operated in hot cell blocked radioactive rays. Before inserting any device into hot cell, many tests with that machine have to be conducted. This report shows preliminary experiments for drilling a center hole on dummy of fuel rods and optimized drilling parameters to lessen operation time and damage of diamond dills. And the design method of a drilling machine for irradiated nuclear fuel rods and detail design drawings are attached.

  17. DOE HIGH-POWER SLIM-HOLE DRILLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. William C. Maurer; John H. Cohen; J. Chris Hetmaniak; Curtis Leitko

    1999-09-01

    This project used a systems approach to improve slim-hole drilling performance. A high power mud motor, having a double-length power section, and hybrid PDC/TSP drill bit were developed to deliver maximum horsepower to the rock while providing a long life down hole. This high-power slim-hole drilling system drills much faster than conventional slim-hole motor and bit combinations and holds significant potential to reduce slim-hole drilling costs. The oil and gas industries have been faced with downward price pressures since the 1980s. These pressures are not expected to be relieved in the near future. To maintain profitability, companies have had to find ways to reduce the costs of producing oil and gas. Drilling is one of the more costly operations in the production process. One method to reduce costs of drilling is to use smaller more mobile equipment. Slim holes have been drilled in the past using this principle. These wells can save money not only from the use of smaller drilling equipment, but also from reduced tubular costs. Stepping down even one casing size results in significant savings. However, slim holes have not found wide spread use for three reasons. First, until recently, the price of oil has been high so there were no forces to move the industry in this direction. Second, small roller bits and motors were not very reliable and they drilled slowly, removing much of the economic benefit. The third and final reason was the misconception that large holes were needed everywhere to deliver the desired production. Several factors have changed that will encourage the use of slim holes. The industry now favors any method of reducing the costs of producing oil and gas. In addition, the industry now understands that large holes are not always needed. Gas, in particular, can have high production rates in smaller holes. New materials now make it possible to manufacture improved bits and motors that drill for long periods at high rates. All that remains is to

  18. 500,000 Years of Environmental History in Eastern Anatolia: The PALEOVAN Drilling Project

    Directory of Open Access Journals (Sweden)

    Clemens Glombitza, and Jens Kallmeyer

    2012-09-01

    Full Text Available International Continental Scientific Drilling Program (ICDP drilled a complete succession of the lacustrine sediment sequence deposited during the last ~500,000 years in Lake Van, Eastern Anatolia (Turkey. Based on a detailed seismic site survey, two sites at a water depth of up to 360 m were drilled in summer 2010, and cores were retrieved from sub-lake-floor depths of 140 m (Northern Basin and 220 m (Ahlat Ridge. To obtain a complete sedimentary section, the two sites were multiple-cored in order to investigate the paleoclimate history of a sensitive semi-arid region between theBlack, Caspian, and Mediterranean seas. Further scientific goals of the PALEOVAN project are the reconstruction of earthquake activity, as well as the temporal, spatial, and compositional evolution of volcanism as reflected in the deposition of tephra layers. The sediments host organic matter from different sources and hence composition, which will be unravelled using biomarkers. Pathways for migration of continental and mantle-derived noble gases will be analyzed in pore waters. Preliminary 40Ar/39Ar single crystal dating of tephra layers and pollen analyses suggest that the AhlatRidge record encompasses more than half a million years of paleoclimate and volcanic/geodynamic history, providing the longest continental record in the entire Near East to date.

  19. Reinforcement and Drill by Microcomputer.

    Science.gov (United States)

    Balajthy, Ernest

    1984-01-01

    Points out why drill work has a role in the language arts classroom, explores the possibilities of using a microcomputer to give children drill work, and discusses the characteristics of a good software program, along with faults found in many software programs. (FL)

  20. PDVSA INTEVEP Technologies in oil well drilling

    International Nuclear Information System (INIS)

    Bolivar, C.; Rafael, A.; Davila, Manuel A.

    1998-01-01

    The orimulsion, the generation of catalytic technologies and the development of HDH (process which transform heavy crudes in light crudes), are examples of some of the well known technologies developed by PDVSA INTEVEP. But the drilling oil wells technologies developed by the same entreprise, even though are very important, are less known all around the world. This document describes some products developed through those technologies: THIXOGAS T M which is an antimigratory aditive; INTEFLOW T M which is a fluid for drilling, complementation and rehabilitation of oil drills; INTERCAB T M which is an aditive for fluids in drilling; orimatita which is a denser for drilling fluids; CARBOLIG T M which is an aditive for drilling fluids; and many other products and technologies in development, impacted considerably the venezuelan economy by preserving the environment and saving quite an important amount of money in 1997 (Bs. 3.000 M M)

  1. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    Energy Technology Data Exchange (ETDEWEB)

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  2. Experimental evaluation of training accelerators for surgical drilling

    Directory of Open Access Journals (Sweden)

    Gosselin Florian

    2011-12-01

    Full Text Available In some specific maxillo-facial surgeries, like the Epker, the cortical part of the lower maxilla must be drilled with minimum penetration into the spongy bone to avoid the trigeminal nerve. The result of the surgery is highly dependent on the quality of the drill. Drilling must therefore be mastered by students before acting as surgeon. The study compares the efficiency of two punctual drilling training programs developed on a virtual reality platform with non medical participants. The results show better benefit of training on relevant haptic aspects of the task before introducing multimodal drilling over repeated multimodal simulated drilling exercises.

  3. Environment-friendly drilling operation technology

    Science.gov (United States)

    Luo, Huaidong; Jing, Ning; Zhang, Yanna; Huang, Hongjun; Wei, Jun

    2017-01-01

    Under the circumstance that international safety and environmental standards being more and more stringent, drilling engineering is facing unprecedented challenges, the extensive traditional process flow is no longer accepted, the new safe and environment-friendly process is more suitable to the healthy development of the industry. In 2015, CNPCIC adopted environment-friendly drilling technology for the first time in the Chad region, ensured the safety of well control, at the same time increased the environmental protection measure, reduced the risk of environmental pollution what obtain the ratification from local government. This technology carries out recovery and disposal of crude oil, cuttings and mud without falling on the ground. The final products are used in road and well site construction, which realizes the reutilization of drilling waste, reduces the operating cost, and provides a strong technical support for cost-cutting and performance-increase of drilling engineering under low oil price.

  4. Geothermal drilling in Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  5. Drilling series. 4. ; Planning geothermal drilling (rotary type). Kussaku series. 4. ; Chinetsusei no kussaku keikaku (shutoshite rotary gata)

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T. (S.K. Engineering Co. Ltd., Tokyo (Japan))

    1994-01-31

    The present report explained how to plan the drilling of geothermal well, and select the easing, drilling mud water and drilling rig in order to obtain the steam and hot water. The geothermal wells can be generally classified into exploration wells, production wells and reduction wells. The exploration well is a well to survey the underground strata, geological structure, and existence of steam and hot water, while the production well is a well to produce the steam and hot water. The reduction well is a well to condense the hot water produced by the production well and steam having passed through the power-generating turbine, and return them as condensate underground. The geothermal well is characterized by its high temperature, mud leakage, corrosive matter and scale, all of which make its drilling difficult and its management troublesome for the production and reduction. To plan the drilling, the order of processing are distinct conditioning of drilling differently by type of well, collection of geological survey data, programing for the casing and selection of drilling rig. The present report also gave the stress to affect the casing and standard of steel pipes to be used for the casing. 3 figs., 4 tabs.

  6. Development of computational tool to interpret real time Pd (Pressure While Drilling) data; Desenvolvimento de ferramenta computacional interpretadora de dados de PWD (Pressure While Drilling) em tempo real

    Energy Technology Data Exchange (ETDEWEB)

    Gandelman, Roni Abensur; Waldmann, Alex Tadeu de Almeida; Martins, Andre Leibsohn [Centro de Pesquisas da Petrobras (CENPES). Gerencia de Tecnologia de Engenharia de Poco (Brazil)], e-mails: roniag@petrobras.com.br, awaldmann@petrobras.com.br, aleibsohn@petrobras.com.br; Teixeira, Gleber Tacio; Aragao, Atila Fernando Lima [E and P Servicos. Gerencia de Servicos de Poco (Brazil)], e-mail: gleber@petrobras.com.br, atila_aragao@petrobras.com.br; Rezende, Mauricio Seiji; Kern, Eduardo; Maliska Junior, Clovis [Engineering Simulation and Scientific Software (ESSS), (Brazil)], e-mails: mauricio@esss.com.br, kern@esss.com.br, coi@esss.com.br

    2008-12-15

    Drilling offshore oil wells is a very expensive and complex process, in which all the efforts must be taken to keep the annular pressure between a minimum pressure (pore pressure) and a maximum pressure (fracture pressure) which define the operational window limits. Several phenomena impact the bottom hole annular pressures, such as: ineffective hole cleaning, gel breaking when circulation is resumed, drill string movement (surge and swab), trips, pills displacement, kicks, etc. The correct interpretation of pressure while drilling (PWD) data is a very powerful toll to identify and prevent these phenomena. Nowadays, an expert monitors bottom hole pressures data and identifies undesirable events. The main goal of this project is the development of a computational tool to monitor pressure (and mud logging) data in real time to identify the causes of abnormal pressure variations, helping the operators to take decisions rapidly. Besides that, the tool allows the user to handle PWD data in a flexible architecture. This flexibility allows the incorporation of new methods of events identification as they are developed. The ultimate goals is to obtain a tool which serves both for the key study of the problems and physical, specific phenomena found during drilling, both for real-time monitoring to assist professionals involved in the process. (author)

  7. CONTRIBUTIONS TO THE STUDY OF THE VIBRATIONS FREQUENCY OF THE DRILL TOOL IN THE PROCESS OF MANUFACTURING THE BRONZE MATERIALS

    Directory of Open Access Journals (Sweden)

    Cosmin-Mihai MIRIŢOIU

    2013-05-01

    Full Text Available In this paper we present the experimental testings used to study the vibration of the drill tool, during the drilling of the bronze products. We have used the experimental setup presented in Miriţoiu (2013[1]. In this paper the vibrations are analyzed during the drilling on the universal lathe machines. The main purpose of to find a correlation between the cutting speed and the frequency of the vibration by using the experimental results and the regression analysis

  8. Ultrasonic/Sonic Rotary-Hammer Drills

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  9. 30 CFR 57.7050 - Tool and drill steel racks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  10. High cost for drilling ships

    International Nuclear Information System (INIS)

    Hooghiemstra, J.

    2007-01-01

    Prices for the rent of a drilling ship are very high. Per day the rent is 1% of the price for building such a ship, and those prices have risen as well. Still, it is attractive for oil companies to rent a drilling ship [nl

  11. Two-riser system improves drilling at Auger prospect

    International Nuclear Information System (INIS)

    Gonzalez, R.; Marsh, G.L.; Ritter, P.B.; Mendel, P.E.

    1992-01-01

    This paper reports on a two-rise system (TRS) for drilling deepwater development wells which eliminates some of the limitations of conventional subsea technology and allows flexibility in well programs. Shell Offshore Inc.'s deep exploratory wells in Garden Banks 426 and 471 have encountered drilling problems that were attributed to limitations in casing sizes imposed by conventional subsea drilling systems. These problems are not uncommon in exploratory deepwater, deep well drilling in the Gulf of Mexico. Reservoir depths of up to 19,500 ft true vertical depth (TVD) and 7-in. production casing requirements led to potentially troublesome and expensive well plans. Because of the constraints placed on the development drilling program by completion requirements and directional drilling, a two-riser system was designed and fabricated. Solving such significant drilling problems has reduced overall development costs

  12. A novel drill design for photoacoustic guided surgeries

    Science.gov (United States)

    Shubert, Joshua; Lediju Bell, Muyinatu A.

    2018-02-01

    Fluoroscopy is currently the standard approach for image guidance of surgical drilling procedures. In addition to the harmful radiation dose to the patient and surgeon, fluoroscopy fails to visualize critical structures such as blood vessels and nerves within the drill path. Photoacoustic imaging is a well-suited imaging method to visualize these structures and it does not require harmful ionizing radiation. However, there is currently no clinical system available to deliver light to occluded drill bit tips. To address this challenge, a prototype drill was designed, built, and tested using an internal light delivery system that allows laser energy to be transferred from a stationary laser source to the tip of a spinning drill bit. Photoacoustic images were successfully obtained with the drill bit submerged in water and with the drill tip inserted into a thoracic vertebra from a human cadaver.

  13. Dewatering cuts drilling mud and disposal costs

    International Nuclear Information System (INIS)

    West, G.; Pharis, B.

    1991-01-01

    This paper reports on rig site dewatering of drilling fluids with recycling of processed water that can help an operator to comply with environmental rules by reducing volumes of waste and reducing long term liabilities. It can also reduce disposal costs and provide a cleaner drill site overall. Rig site dewatering is the process of injecting coagulants or flocculating chemicals into the mud entering a large clarifying centrifuge. This coagulates the fine, drilled particles allowing them to be separated from the fluid which can then be handled separately. Most of the environmental concerns during the 1980s involved hazardous materials and toxic wastes. Drilling fluids, many of which are chemically benign, have escaped many of the difficult-to-comply-with rules and regulations. During the 1990s, however, operators may be required to submit a written plan for liquid waste reduction for even nonhazardous materials. Many states and local agencies may institute total bans on oil field wastes. Drilling rigs typically produce about 1 bbl of liquid waste for every 1 ft of hole drilled. Thus, a typical drilling operation can produce a large quantity of waste

  14. Western Canada drilling cycle optimization

    International Nuclear Information System (INIS)

    2003-06-01

    The oil and gas industry in western Canada operates in annual and seasonal cycles with peak activity periods that require a large skilled labour force for short periods of time. This study examines why seismic and drilling activity is greatest during the first quarter of the year instead of being distributed evenly over the year. The objective of the study was to provide recommendations that would help optimize the industry cycle. The study includes an analysis of historical trends that validate the industry first quarter peaking activity. It also includes interviews with 36 industry representatives and provides insight and validation of trends. The final phase of the report includes recommendations that both industry and governments may wish to implement. The study includes financial, operational and environmental considerations. It was shown that natural gas directed drilling activity is strongly correlated with changes in natural gas prices. In the case of oil drilling activity, peak activity responds to oil prices from the prior quarter. In general, drilling and seismic costs are higher in the winter months because of increased demand for equipment and services. In addition winter drilling operations require a diesel fired boiler to generate steam. 36 refs., 2 tabs., 52 figs

  15. An elevator for locked drilling pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gurbanov, R.S.; Abbasov, E.M.; Ismailov, A.A.; Mamedov, Yu.S.; Safarov, A.A.

    1983-01-01

    An elevator is proposed, which includes a body with a door. To reduce the probability of gas shows in a well with high speed lowering and lifting of the column of locked drilling pipes through providing the possibility of feeding a drilling mud in this case into the mine, the elevator is equipped with a pneumatic cylinder with a two way hollow rod, on one face of which a sealing element is mounted for sealing the drilling pipe and on the other, an adapter for feeding the drilling mud. The rod is linked with the sleeve of the pneumatic cylinder, which is rigidly linked with the body with the capability of axial movement without rotation.

  16. Development and Manufacture of Cost-Effective Composite Drill Pipe

    Energy Technology Data Exchange (ETDEWEB)

    James C. Leslie

    2008-12-31

    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force

  17. The Experiences and Challenges in Drilling into Semi molten or Molten Intrusive in Menengai Geothermal Field

    Science.gov (United States)

    Mortensen, A. K.; Mibei, G. K.

    2017-12-01

    Drilling in Menengai has experienced various challenges related to drilling operations and the resource itself i.e. quality discharge fluids vis a vis gas content. The main reason for these challenges is related to the nature of rocks encountered at depths. Intrusives encountered within Menengai geothermal field have been group into three based on their geological characteristics i.e. S1, S2 and S3.Detailed geology and mineralogical characterization have not been done on these intrusive types. However, based on physical appearances, S1 is considered as a diorite dike, S2 is syenite while S3 is molten rock material. This paper summarizes the experiences in drilling into semi molten or molten intrusive (S3).

  18. Development of a Mine Rescue Drilling System (MRDS)

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaither, Katherine N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Polsky, Yarom [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knudsen, Steven D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broome, Scott Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Costin, Laurence S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site; (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.

  19. Theoretical analysis of multiphase flow during oil-well drilling by a conservative model

    Science.gov (United States)

    Nicolas-Lopez, Ruben

    2005-11-01

    In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.

  20. Evaluation of an air drilling cuttings containment system

    Energy Technology Data Exchange (ETDEWEB)

    Westmoreland, J.

    1994-04-01

    Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

  1. Drilling azimuth gamma embedded design

    Directory of Open Access Journals (Sweden)

    Zhou Yi Ren

    2016-01-01

    Full Text Available Embedded drilling azimuth gamma design, the use of radioactive measuring principle embedded gamma measurement while drilling a short section analysis. Monte Carlo method, in response to the density of horizontal well logging numerical simulation of 16 orientation, the orientation of horizontal well analysed, calliper, bed boundary location, space, different formation density, formation thickness, and other factors inclined strata dip the impact by simulating 137Cs sources under different formation conditions of the gamma distribution, to determine the orientation of drilling density tool can detect window size and space, draw depth of the logging methods. The data 360° azimuth imaging, image processing method to obtain graph, display density of the formation, dip and strata thickness and other parameters, the logging methods obtain real-time geo-steering. To establish a theoretical basis for the orientation density logging while drilling method implementation and application of numerical simulation in-depth study of the MWD azimuth and density log response factors of horizontal wells.

  2. Controlled drilling technology for HLW management. Directional drilling and mechanics/stress measurements in the borehole

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Okada, Tetsuji; Obuchi, Yasuyoshi; Sunaga, Takayuki; Hase, Kazunori

    2013-01-01

    Since 2000, Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Especially borehole pressure meter and bore hole stress measurement apparatus which can apply to the controlled drilling system was developed. The bore hole was drilled to the 1000 m long in order to intersect the Omagari fault located at Horonobe town in Hokkaido and its core recovery was 99.8% as of FY. 2011. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  3. Effect of surgical drill guide and irrigans temperature on thermal bone changes during drilling implant sites - thermographic analysis on bovine ribs.

    Science.gov (United States)

    Marković, Aleksa; Lazić, Zoran; Mišić, Tijana; Šćepanović, Miodrag; Todorović, Aleksandar; Thakare, Kaustubh; Janjić, Bojan; Vlahović, Zoran; Glišić, Mirko

    2016-08-01

    During drilling implant sites, mechanical energy is converted into thermal one resulting in transient rise in temperature of surrounding bone. The temperature of 47°C exeeding one minute impairs osseointegration, compromises mechanical properties of the local bone and could cause early implant failure. This in vitro study aimed to assess the effect of surgical drill guide and temperature of irrigans on thermal changes of the local bone during drilling implant sites, and to test the influence of irrigans temperature on the temperature of surgical drill guide. A total of 48 specimens obtained from bovine ribs were randomly allocated to four experimental conditions according to the 2 x 2 factorial design: drill guide (with or without) and saline (at 25°C or 5°C). Real-time infrared thermography was used as a method for temperature measurement. The primary outcome was bone temperature change during drilling implant sites measured at 3 osteotomy depths, whereas the second one was change in the temperature of the drill guide. Data were analyzed by Brunner and Langer nonparametric analysis and Wilcoxon test. The effect of drill guide on the changes of bone temperature was significant at the entrance of osteotomy, whereas the effect of saline temperature was significant at all osteotomy levels (p 0.05). Guided surgery and irrigation with saline at 25°C were associated with the highest bone temperature increase. Increase in drill guide temperature was significantly higher when saline at 25°C was used (p < 0.001). Guided implant site preparation generates higher temperature of the local bone than conventional drilling, not exceeding the threshold for thermal bone necrosis. Although saline at room temperature provides sufficient heat control during drilling, cooled saline is more effective regardless the use of surgical drill guide.

  4. Effect of surgical drill guide and irrigans temperature on thermal bone changes during drilling implant sites - thermographic analysis on bovine ribs

    Directory of Open Access Journals (Sweden)

    Marković Aleksa

    2016-01-01

    Full Text Available Background/Aim. During drilling implant sites, mechanical energy is converted into thermal one resulting in transient rise in temperature of surrounding bone. The temperature of 47°C exeeding one minute impairs osseointegration, compromises mechanical properties of the local bone and could cause early implant failure. This in vitro study aimed to assess the effect of surgical drill guide and temperature of irrigans on thermal changes of the local bone during drilling implant sites, and to test the influence of irrigans temperature on the temperature of surgical drill guide. Methods. A total of 48 specimens obtained from bovine ribs were randomly allocated to four experimental conditions according to the 2 x 2 factorial design: drill guide (with or without and saline (at 25°C or 5°C. Real-time infrared thermography was used as a method for temperature measurement. The primary outcome was bone temperature change during drilling implant sites measured at 3 osteotomy depths, whereas the second one was change in the temperature of the drill guide. Data were analyzed by Brunner and Langer nonparametric analysis and Wilcoxon test. Results. The effect of drill guide on the changes of bone temperature was significant at the entrance of osteotomy, whereas the effect of saline temperature was significant at all osteotomy levels (p 0.05. Guided surgery and irrigation with saline at 25°C were associated with the highest bone temperature increase. Increase in drill guide temperature was significantly higher when saline at 25°C was used (p < 0.001. Conclusion. Guided implant site preparation generates higher temperature of the local bone than conventional drilling, not exceeding the threshold for thermal bone necrosis. Although saline at room temperature provides sufficient heat control during drilling, cooled saline is more effective regardless the use of surgical drill guide.

  5. Drilling of deep boreholes and associated geological investigations. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Anttila, P.

    1983-12-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for the final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 metres in the winter of 1984. The choice of drilling method and equipment depends on the geological circumstances and the target of the investigation. The most common drilling methods used with the investigations of nuclear waste disposal are diamond core drilling and percussion drilling. The Precambrian bedrock outcropping in Finland exists also in Sweden and Canada, where deep boreholes have been done down to more than 1000 metres using diamond core drilling. This method can be also used in Finland and equipment for the drilling are available. One of the main targets of the investigation is to clarify the true strike and dip of fractures and other discontinuities. The methods used abroad are taking of oriented cores, borehole television survey and geophysical measurements. TV-survey and geophysical methods seem to be most favourable in deep boreholes. Also the accurate position (inclination, bearing) of the borehole is essential to know and many techniques are used for measuring of it. Investigations performed on the core samples include core logging and laboratory tests. For the core logging there is no uniform practice concerning the nuclear waste investigations. Different counries use their own classifications. All of these, however, are based on the petrography and fracture properties of the rock samples. Laboratory tests (petrographical and rock mechanical tests) are generally performed according to the recommendations of international standards. The large volumes of data obtained during investigations require computer techniques which allow more comprehensive collection, storage and processing of data. This kind of systems are already used in Sweden and Canada, for instance, and they could be utilize in Finland

  6. Study on Monitoring Rock Burst through Drill Pipe Torque

    OpenAIRE

    Zhonghua Li; Liyuan Zhu; Wanlei Yin; Yanfang Song

    2015-01-01

    This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the a...

  7. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20

    Science.gov (United States)

    Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.

    2016-02-01

    This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent

  8. Preliminary petrographic and geophysical interpretations of the exploratory geothermal drill hole and core, Redstone, New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Hoag, R.B. Jr.; Stewart, G.W.

    1977-06-30

    A 3000 foot diamond drill hole was drilled in the Conway Granite in Redstone, New Hampshire. A comprehensive detailed petrographic and physical study of this core was made. The purpose of this study is to supply a sound data base for future geothermal and uranium-thorium studies of the drill core. An estimate of the heat flow potential of the Redstone drill hole gives a heat flow of 1.9 HFU. If only the red phase of the Conway Granite had been intersected the heat flow may have been as much as 2.7 HFU, reaching a temperature of 260/sup 0/C at 6 km. The drill hole intersected four lithologies; the green and red phase of the Conway Granite, the Albany quartz syenite and a medium-grained, hastingsite-biotite granite. The red phase has the highest and most irregular radioactivity. The irregularity is mainly due to minor variations in lithology. The drill core intersected several alteration zones up to a thickness of 150 feet. These alteration zones represent passage of low to medium temperature fluids which might have been mineralized. The Conway Granite has the physical and chemical characteristics necessary for the formation of vein type uranium deposits. The presence of unexplained radiometric anomalies lends support to the existence of such deposits.

  9. Integrated test plan ResonantSonic drilling system technology demonstration-1995, at the Hanford Site: Revision 1

    International Nuclear Information System (INIS)

    McLellan, G.W.

    1994-01-01

    This integrated test plan describes the demonstration test of the ResonantSonic drilling system. This demonstration is part of the Office of Technology Development's Volatile Organic Compound Arid Integrated Demonstration (VOC-Arid ID). Two main purposes of this demonstration are (1) to continue testing the ResonantSonic drilling system compatibility with the Hanford Site waste characterization programs, and (2) to transfer this method for use at the Hanford Site, other government sites, and the private sector. The ResonantSonic method is a dry drilling technique. Field testing of this method began in July 1993. During the next four months, nine holes were drilled, and continuous core samples were retrieved. Penetration rates were 2 to 3 times the baseline, and the operational downtime rate was less than 10%. Successfully demonstrated equipment refinements included a prototype 300 series ResonantSonic head, a new drill rod design for 18-centimeter diameter pipe, and an automated pipe handling system. Various configurations of sampling equipment and drill bits were tested, depending on geologic conditions. The principal objective of the VOC-Arid ID is to determine the viability of emerging technologies that can be used to characterize, remediate, and/or monitor arid or semiarid sites containing VOCs (e.g., carbon tetrachloride) with or without associated metal and radionuclide contamination

  10. Rotary core drills

    Energy Technology Data Exchange (ETDEWEB)

    1967-11-30

    The design of a rotary core drill is described. Primary consideration is given to the following component parts of the drill: the inner and outer tube, the core bit, an adapter, and the core lifter. The adapter has the form of a downward-converging sleeve and is mounted to the lower end of the inner tube. The lifter, extending from the adapter, is split along each side so that it can be held open to permit movement of a core. It is possible to grip a core by allowing the lifter to assume a closed position.

  11. Key technologies for well drilling and completion in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jiaxiang Xia

    2016-12-01

    Full Text Available The Yuanba Gasfield is a large gas field discovered by Sinopec in the Sichuan Basin in recent years, and another main exploration area for natural gas reserves and production increase after the Puguang Gasfield. The ultra-deep sour gas reservoir in the Yuanba Gasfield is characterized by complicated geologic structure, deep reservoirs and complex drilled formation, especially in the continental deep strata which are highly abrasive with low ROP (rate of penetration and long drilling period. After many years of drilling practice and technical research, the following six key drilling and completion technologies for this type reservoir are established by introducing new tools and technologies, developing specialized drill bits and optimizing drilling design. They are: casing program optimization technology for ROP increasing and safe well completion; gas drilling technology for shallow continental strata and high-efficiency drilling technology for deep high-abrasion continental strata; drilling fluid support technologies of gas–liquid conversion, ultra-deep highly-deviated wells and horizontal-well lubrication and drag reduction, hole stability control and sour gas contamination prevention; well cementing technologies for gas medium, deep-well long cementing intervals and ultra-high pressure small space; horizontal-well trajectory control technologies for measuring instrument, downhole motor optimization and bottom hole assembly design; and liner completion modes and completion string optimization technologies suitable for this gas reservoir. Field application shows that these key technologies are contributive to ROP increase and efficiency improvement of 7000 m deep horizontal wells and to significant operational cycle shortening.

  12. 30 CFR 77.1011 - Drill holes; guarding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill holes; guarding. 77.1011 Section 77.1011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1011 Drill holes; guarding. Drill holes large enough to constitute a hazard shall be covered...

  13. U.S. drilling contractors could face stiff challenges

    International Nuclear Information System (INIS)

    Simmons, M.R.

    1993-01-01

    Although the outlook for most segments of the contract drilling business is now more optimistic than in the past decade, the increased activity has brought several problems: the availability of fully trained crews, the need for new capital, and the limited number of quality drillstrings. These problems will grow in importance if natural gas deliverability begins to decline visibly and once the scramble to correct this decline begins. As the drilling recovery unfolds, the most important lesson to remember, based on worldwide activity in the past year, is how rapidly conditions can change and how quickly excess capacity can turn into chronic shortages. The various segments of the world wide contract drilling industry's prospects have changed dramatically during the past 12 months, and oddly, some market sectors have improved while others have become worse. These quick changes highlight the unpredictable and volatile nature of the markets for contract drilling and other services needed to drill and complete oil and gas wells. The paper describes the business of well drilling onshore and offshore in the US, drilling activities in Canada, international markets, capacity, the supplies of natural gas, Gulf of Mexico activities, drill pipe shortages, manpower shortages, and challenges offshore

  14. Rapid Development of Drilling Technology and Market of China

    Institute of Scientific and Technical Information of China (English)

    Wang Guanqing; Ni Rongfu

    1994-01-01

    @@ China's developing drilling market Now, CNPC is the owner of more than 1 000 rigs of large and medium size, including imported electric-drive rigs with 6 000 to 9 000 m drilling capacity, imported mechanical drive rigs with 5 000 to 6 000 m drilling capacity, imported mobile rigs with 1 500 to 3 000 m drilling capacity and a lot of home-made mechanical rigs with 2 000,3 200, 4 500 and 6 000m drilling capacity, which can meet the requirement of the domestic and foreign drilling market.

  15. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    Science.gov (United States)

    Baker, P. A.; Fritz, S. C.; Silva, C. G.; Rigsby, C. A.; Absy, M. L.; Almeida, R. P.; Caputo, M.; Chiessi, C. M.; Cruz, F. W.; Dick, C. W.; Feakins, S. J.; Figueiredo, J.; Freeman, K. H.; Hoorn, C.; Jaramillo, C.; Kern, A. K.; Latrubesse, E. M.; Ledru, M. P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W. E.; Ramos, M. I. F.; Ribas, C. C.; Trnadade, R.; West, A. J.; Wahnfried, I.; Willard, D. A.

    2015-12-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  16. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    Science.gov (United States)

    Baker, P.A.; Fritz, S.C.; Silva, C.G.; Rigsby, C.A.; Absy, M.L.; Almeida, R.P.; Caputo, Maria C.; Chiessi, C.M.; Cruz, F.W.; Dick, C.W.; Feakins, S.J.; Figueiredo, J.; Freeman, K.H.; Hoorn, C.; Jaramillo, C.A.; Kern, A.; Latrubesse, E.M.; Ledru, M.P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W.E.; Ramos, M.I.F.; Ribas, C.C.; Trinadade, R.; West, A.J.; Wahnfried, I.; Willard, Debra A.

    2015-01-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  17. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    Science.gov (United States)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  18. Helicopter-supported drilling operation in Papua New Guinea

    International Nuclear Information System (INIS)

    Wagner, E.R.; Juneau, M.S.

    1991-01-01

    This paper reports on drilling cost per foot of Chevron's helilift drilling operation in the remote Southern Highlands of Papua New Guinea, reduced from 1360 to 267 S/ft (4462 to 876$/m) during the period from 1985 to 1989. The operation provides many challenges, as it is thousands of miles from major oil-field supply centers. This requires advanced will-planning and logistical management of drilling materials so that they arrive at the drilling rig in a timely manner. The wells are also drilled into structurally complex geology without the aid of seismic data which can lead to unexpected results

  19. Replacement team of mining drilling rigs

    OpenAIRE

    Hamodi, Hussan; Lundberg, Jan

    2014-01-01

    This paper presents a practical model to calculate the optimal replacement time (ORT) of drilling rigs used in underground mining. As a case study, cost data for drilling rig were collected over four years from a Swedish mine. The cost data include acquisition, operating, maintenance and downtime costs when using a redundant rig. A discount rate is used to determine the value of these costs over time. The study develops an optimisation model to identify the ORT of a mining drilling rig which ...

  20. ResonantSonic drilling. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    The technology of ResonantSonic drilling is described. This technique has been demonstrated and deployed as an innovative tool to access the subsurface for installation of monitoring and/or remediation wells and for collection of subsurface materials for environmental restoration applications. The technology uses no drilling fluids, is safe and can be used to drill slant holes

  1. Logging-while-drilling (LWD) pressure test

    Energy Technology Data Exchange (ETDEWEB)

    Thirud, Aase P.

    2003-07-01

    Statoil and Halliburton have completed a successful test of a new ground-breaking formation evaluation technology on the Norwegian shelf. An LWD formation tester, the GeoTapTM sensor, was used to quantify formation pressure during drilling operations. The inaugural job was completed by Halliburton's Sperry-Sun product service line onboard the Bideford Dolphin at the Borg Field while drilling a horizontal production well in the Vigdis Extension development. The GeoTap tool, part of Sperry-Sun's StellarTM MWD/LWT suite, was run in combination with a complete logging-while-drilling sensor package and the Geo-Pilot rotary steerable drilling system. Repeat formation pressures were taken and successfully transmitted to surface. This is the first time this type of technology has been successfully applied on the Norwegian shelf.

  2. Core drilling of deep borehole OL-KR39 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2005-11-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 502.97 m and 45.11 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in August- October 2005. The identification numbers of the boreholes are OL-KR39 and OL-KR39B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 415m{sup 3} and 25 m{sup 3} and the measured volumes of the returning water were 175 m{sup 3} and 7 m{sup 3} in boreholes OLKR39 and OL-KR39B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 110 MPa, the average Young's Modulus is 49 GP a and the average Poisson' s ratio is 0.25. The main rock types are migmatitic mica gneiss and granite. Filled fracture is the most common

  3. Core drilling of deep borehole OL-KR37 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2005-11-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 350.00 m and 45.10 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in June- August 2005. The identification numbers of the boreholes are OL-KR37 and OL-KR37B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 273 m{sup 3} and 21m{sup 3} and the measured volumes of the returning water were 221m{sup 3} and 16m{sup 3} in boreholes OL-KR37 and OL-KR37B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 106 MPa, the average Young's modulus is 40 GPa and the average Poisson's ratio is 0.20. The main rock types are migmatitic mica gneiss, granite and tonalite. Filled

  4. Core drilling of deep borehole OL-KR39 at Olkiluoto in Eurajoki 2005

    International Nuclear Information System (INIS)

    Niinimaeki, R.

    2005-11-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 502.97 m and 45.11 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in August- October 2005. The identification numbers of the boreholes are OL-KR39 and OL-KR39B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 415m 3 and 25 m 3 and the measured volumes of the returning water were 175 m 3 and 7 m 3 in boreholes OLKR39 and OL-KR39B, respectively. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 110 MPa, the average Young's Modulus is 49 GP a and the average Poisson' s ratio is 0.25. The main rock types are migmatitic mica gneiss and granite. Filled fracture is the most common fracture type. The average fracture

  5. Core drilling of deep borehole OL-KR46 at Olkiluoto in Eurajoki 2007

    International Nuclear Information System (INIS)

    Toropainen, V.

    2007-09-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 600.10 m and 45.16 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in May - June 2007. The identification numbers of the boreholes are OL-KR46 and OL-KR46B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning water, and the volume of drilling water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 466 m 3 and 20 m 3 in boreholes OL-KR46 and OL-KR46B, respectively. Measured volumes of the returning water were 407 m 3 in borehole OL-KR46 and 12 m 3 in borehole OL-KR46B. The deviation of the boreholes was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is 116.5 MPa, the average Young's Modulus is 31.5 GPa and the average Poisson's ratio is 0.20. The main rock types are veined gneiss, tonalitic-granodioritic-granitic gneiss and pegmatite

  6. Core drilling of deep drillhole OL-KR45 at Olkiluoto in Eurajoki 2007

    International Nuclear Information System (INIS)

    Toropainen, V.

    2007-11-01

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 1023.30 m and 44.75 m deep drillholes with a diameter of 75.7 mm at Olkiluoto in June - September 2007. The identification numbers of the drillholes are OL-KR45 and OL-KR45B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the returning and drilling waters were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and washing water were 1186 m 3 and 19 m 3 in drillholes OL-KR45 and OL-KR45B, respectively. Measured volumes of the returning water were 962 m 3 in drillhole OL-KR45 and 15 m 3 in drillhole OL-KR45B. The deviation of the drillholes was measured with the deviation measuring instruments EMS and Maxibor II. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is 126.2 MPa, the average Young's Modulus is 42.5 GPa and the average Poisson's ratio is 0.21. The main rock types are veined and diatexitic gneisses, pegmatitic granite and tonalitic

  7. Drilling fluid technologies : what goes in must come out

    International Nuclear Information System (INIS)

    Polczer, S.

    1998-01-01

    The treatment of drilling wastes contaminated with invert drilling muds was discussed. The tight emulsion properties which make invert drilling muds useful are the same properties that make their disposal so difficult. Potential long-term liability associated with inverts is another reason for reluctance to use these products. Inverts are toxic and highly mobile in the environment, and must therefore be handled with care. Often the costs associated with their disposal are greater than their potential benefits. Petro-Canada Lubricants has formulated a new, non-diesel based product called Drill Mud Oil HT40N which completely eliminates toxic aromatic molecules. It is composed of 98 per cent plus of cyclic and branched isoparaffins with an average carbon number of C16. The level of polynuclear aromatics is reduced to parts per billion levels. Drill Mud Oil HT40N was being used at Hibernia until an even newer product, IPAR3 synthetic drill mud oil, was developed exclusively for offshore use. Drill Mud Oil HT40N is less prone to flash fires, is odourless and is more likely to be used in places such as the Western Canada Sedimentary Basin. Drill Mud Oil HT40N works almost exactly the same as a diesel-based drill mud oil but has many advantages in terms of safety and ease of disposal, particularly in landfarming operations. Drill Mud Oil HT40N does not irritate the skin or release toxic fumes. The cost of Drill Mud Oil HT40N is higher than conventional diesel-based drilling muds. 2 figs

  8. Scientific progress at Yucca Mountain

    International Nuclear Information System (INIS)

    Gertz, C.P.

    1990-01-01

    The US Department of Energy (DOE) is moving forward with studies to determine whether Yucca Mountain, Nevada, would be a suitable site for the nation's first high-level radioactive waste repository; however, the DOE's Congressionally mandated task of characterizing the site has been severely delayed by a lack of cooperation from the state of Nevada. The state has refused to issue the appropriate permits that must be obtained before surface disturbing studies can proceed; therefore, an extensive surface-based drilling and trenching program and construction of underground exploration facilities are on hold until pending litigation between the DOE and Nevada has been resolved. Despite this major impasse, significant scientific progress has been made, and the DOE is aggressively pursuing investigations that can be conducted without the state-issued permits. Additionally, the DOE is developing a high-quality technical and management structure as well as equipment, plans, and quality assurance procedures, so that the scientific investigation program can proceed without delay once the appropriate permits are obtained

  9. STATE OF THE ART OF DRILLING LARGE DIAMETER BOREHOLES FOR DEPOSITION OF HIGH LEVEL WASTE AND SPENT NUCLEAR FUEL

    Directory of Open Access Journals (Sweden)

    Trpimir Kujundžić

    2012-07-01

    Full Text Available Deep geological disposal is internationally recognized as the safest and most sustainable option for the long-term management of high-level radioactive waste. Mainly, clay rock, salt rock and crystalline rock are being considered as possible host rocks. Different geological environment in different countries led to the various repository concepts. Main feature of the most matured repository concept is that canisters with spent nuclear fuel are emplaced in vertical or horizontal large diameter deposition holes. Drilling technology of the deposition holes depends on repository concept and geological and geomechanical characteristics of the rock. The deposition holes are mechanically excavated since drill & blast is not a possible method due to requirements on final geometry like surface roughness etc. Different methods of drilling large diameter boreholes for deposition of high-level waste and spent nuclear fuel are described. Comparison of methods is made considering performance and particularities in technology.

  10. Propagation of Measurement-While-Drilling Mud Pulse during High Temperature Deep Well Drilling Operations

    Directory of Open Access Journals (Sweden)

    Hongtao Li

    2013-01-01

    Full Text Available Signal attenuates while Measurement-While-Drilling (MWD mud pulse is transmited in drill string during high temperature deep well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity, momentum, and state equations with analytical solutions based on the linear perturbation analysis. The model can predict the wave speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental data showing a good agreement. Effects of the angular frequency, static velocity, mud viscosity, and mud density behavior on speed and attenuation coefficients were included in this paper. Simulated results indicate that the effects of angular frequency, static velocity, and mud viscosity are important, and lower frequency, viscosity, and static velocity benefit the transmission of mud pulse. Influenced by density behavior, the speed and attenuation coefficients in drill string are seen to have different values with respect to well depth. For different circulation times, the profiles of speed and attenuation coefficients behave distinctly different especially in lower section. In general, the effects of variables above on speed are seen to be small in comparison.

  11. Characterization of Under-Building Contamination at Rocky Flats Implementing Environmental-Measurement While Drilling Process with Horizontal Directional Drilling

    International Nuclear Information System (INIS)

    WILLIAMS, CECELIA V.; LOCKWOOD, GRANT J.; NORMANN, RANDY A.; LINDSAY, THOMAS

    2001-01-01

    Characterization is required on thirty-one buildings at Rocky Flats Environmental Technology Site (RFETS or the Site) with known or suspected under building contamination. The Site has teamed with Sandia National Laboratory (SNL) to deploy Environmental Measure-While-Drilling (EMWD) in conjunction with horizontal directional drilling (HDD) to characterize under building contamination and to evaluate the performance and applicability for future characterization efforts. The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental drill bit data during drilling operations. The project investigated two locations, Building 886 and Building 123. Building 886 is currently undergoing D and D activities. Building 123 was demolished in 1998; however, the slab is present with under building process waste lines and utilities. This report presents the results of the EMWD Gamma Ray Spectrometer logging of boreholes at these two sites. No gamma emitting contamination was detected at either location.(author)

  12. Drilling, Coring and Sampling Using Piezoelectric Actuated Mechanisms: From the USDC to a Piezo-Rotary-Hammer Drill

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi

    2012-01-01

    NASA exploration missions are increasingly including sampling tasks but with the growth in engineering experience (particularly, Phoenix Scout and MSL) it is now very much recognized that planetary drilling poses many challenges. The difficulties grow significantly with the hardness of sampled material, the depth of drilling and the harshness of the environmental conditions. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a number of piezoelectric actuated drills and corers were developed by the Advanced Technologies Group of JPL. The basic configuration that was conceived in 1998 is known as the Ultrasonic/Sonic Driller/Corer (USDC), and it operates as a percussive mechanism. This drill requires as low preload as 10N (important for operation at low gravity) allowing to operate with as low-mass device as 400g, use an average power as low as 2- 3W and drill rocks as hard as basalt. A key feature of this drilling mechanism is the use of a free-mass to convert the ultrasonic vibrations generated by piezoelectric stack to sonic impacts on the bit. Using the versatile capabilities f the USDC led to the development of many configurations and device sizes. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to remove cuttings. To reach meters deep in ice a wireline drill was developed called the Ultrasonic/Sonic Gopher and it was demonstrated in 2005 to penetrate about 2-m deep at Antarctica. Jointly with Honeybee Robotics, this mechanism is currently being modified to incorporate rotation and inchworm operation forming Auto-Gopher to reach meters deep in rocks. To take advantage of the ability of piezoelectric actuators to operate over a wide temperatures range, piezoelectric actuated drills were developed and demonstrated to operate at as cold as -200oC and as hot as 500oC. In this paper, the developed mechanisms

  13. Investigation of a North Sea oil platform drill cuttings pile

    International Nuclear Information System (INIS)

    Hartley, J.P.; Watson, T.N.

    1993-01-01

    A comprehensive study of the drill cuttings pile at North West Hutton was undertaken in August, 1992. Fifty one wells have been drilled in the field, mainly using mineral oil based drill fluids, with the cuttings discharged to sea. The cuttings pile was mapped using a 3D side scan sonar system and the periphery was defined by towed side scan sonar and gamma ray spectrometer surveys. The pile was cored by vibrocorer to a maximum depth of 2.35m. The cores were assessed geotechnically and subsampled for physical and chemical analyses. Environmental impact was investigated by grab sampling at 12 stations out to 7,500m, selected on the basis of cuttings distribution. The results are relevant to the corrosion and long-term environmental effects of oily cuttings piles, the remove/leave alone debate, and abandonment planning. The cores were subsampled for hydrocarbon, trace metals and sulphide content and grain size analysis. Metals analyses included identification of metal species to estimate bioavailability and implications of pile disturbance. Estimates of oil migration within the pile are made from correlation of the chemical analyses results with the drilling history, in particular the change from diesel to low toxicity base oil in 1984. Strong gradients were found in the faunal data which correlate well with the physical and chemical results. Dense populations of opportunists species were present adjacent to the platform, including a novel molluscan opportunist. This is the first comprehensive study of an oily cuttings pile and is a contribution to the debate on their long term impact and fate on abandonment

  14. Hydraulic lifter of a drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Velikovskiy, L S; Demin, A V; Shadchinov, L M

    1979-01-08

    The invention refers to drilling equipment, in particular, devices for lowering and lifting operations during drilling. A hydraulic lifter of the drilling unit is suggested which contains a hydraulic cylinder, pressure line and hollow plunger whose cavities are hydraulically connected. In order to improve the reliability of the hydraulic lifter by balancing the forces of compression in the plunger of the hydraulic cylinder, a closed vessel is installed inside the plunger and rigidly connected to its ends. Its cavity is hydraulically connected to the pressure line.

  15. Integral analysis of the drill string dynamic behaviour to optimize drilling operation; Analise integrada do comportamento dinamico da coluna para otimizacao de perfuracao

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Araken [Smith International do Brasil, Macae, RJ (Brazil); Placido, Joao C.R.; Percy, Joseir G.; Falcao, Jose; Freire, Helena; Ono, Eduardo H.; Masculo, Miguel S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Azuaga, Denise; Frenzel, Mark [Smith International Inc., Houston, TX (United States)

    2008-07-01

    For a performance preview of a drilling system is necessary a dynamic and integrated modeling for understanding all system forces resulting from the combination of the rock strength, cut structure action, drilling parameters, BHA and all others drilling components. This study must predict, for the drill string, vibrations and torsions, from bit to surface, its origins and its effects, and provides the best way to reduce these vibrations, determining the best bit, BHA and drilling parameters. Thereby, this study eliminates the trial and error approach and the operation risks. This paper aims to present studies of optimization for two drilling wells conducted in Brazil, one in Santos Basin and other in Campos Basin, and compares the numerical simulations results with the data from drilling operations. (author)

  16. Diamond-set drill bits: savings achieved at Cominak

    International Nuclear Information System (INIS)

    Artru, P.; Bibert, F.X.; Croisat, G.

    1988-01-01

    Rotary instead of percussion adoption of drilling in the underground Akouta mine (Niger) has been the cause of important savings in blasting and bolting operations. Other savings affect capital expenditures and indirect savings are coming from better working conditions. For blast holes drilling and bolting, spare parts expenditures are 2.4 times lower with rotary drilling. Drilling rods are cheaper and last longer with rotary drilling. A rotary equipped Jumbos fleet is cheaper to maintain and is 18% more available, due to less mechanical and other breakdowns. Total savings for the mine owner and operator Cominak reach more than a billion of CFA francs [fr

  17. Environmental effects monitoring for exploration drilling

    International Nuclear Information System (INIS)

    Buchanan, R.A.; Cook, J.A.; Mathieu, A.

    2003-01-01

    Strategies for monitoring the environmental effects of single exploratory offshore wells on the east coast of Canada were evaluated. The report was compiled from consultations with scientists, regulators and stakeholders as well as a review of regulatory regimes and toxicity results. The aim of the report was to develop a decision tree for determining when to conduct environmental effects monitoring (EEM). Respondents evinced lower levels of concern for single exploratory wells than for production developments. A number of scientists argued for full statistical treatment of all data, and many people argued that more assurance was needed that the marine environment was not being unduly harmed. Respondents also considered that biological effects should be a primary focus, rather than the occurrence of trace chemical signals, and that seabirds and mammals should be monitored. Concern was expressed over the value of data collected from monitoring the effects of exploratory drilling activities. It was suggested that local and site-specific issues should be considered in the design of EEM programs. Respondents expressed strong concern about potential cumulative effects with other industrial activities, and suggested that test cases should be established and monitored to develop a scientific rationale for the inclusion or exclusion of specific variables in future EEM programs. A decision tree was developed based on 3 scenarios: (1) compliance monitoring only in well known areas with no sensitive issues; opportunistic EEM surveys of sediments, benthos, seabirds and marine mammals in shallow or deep areas with no known sensitive issues; and (3) custom EEM surveys for sensitive areas. Currently, there are EEM requirements for drilling exploratory wells offshore Canada's east coast. 58 refs., 2 tabs., 7 figs

  18. Restored drill cuttings for wetlands creation: Results of a two year mesocosm approach to emulate field conditions under varying hydrologic regimes

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, G.P.; Hester, M.W.; Miller, S.; DesRoches, D.J.; Souther, R.F.; Childers, G.W.; Campo, F.M.

    1998-11-01

    It is well documented that Louisiana has the highest rate of wetland loss in the United States. Deep-water channel dredging and leveeing of the Mississippi River since the 1930s have interrupted the natural delta cycle that builds new marshes through sediment deposition. Many of the areas that are subsiding and deteriorating are isolated from riverine sediment sources; therefore alternative methods to deposit sediment and build marshes must be implemented. This project demonstrates that the earthen materials produced when drilling oil and gas wells can be used as a suitable substrate for growing wetland plants. Drilling fluids (muds) are used to lubricate drill bits and stabilize the earth around drill holes and become commingled with the earthen cuttings. Two processes have been reported to restore drill cuttings to acceptable levels by removal of any toxic components found in drilling muds. The main objective of this project was to assess the potential of drill cuttings processed by these two methods in terms of their ability to support wetland vegetation and potential toxicity.

  19. A new approach to development drilling in Trinidad-Tesoro

    Energy Technology Data Exchange (ETDEWEB)

    Persad, K.M.

    1972-01-01

    A detailed correlation of the Upper Cruse by means of electric logs from wells in Central Palo Seco field in S. Trinidad was done in an attempt to trace sands which have yielded very high oil productions, but which shaled out completely, very rapidly, in seemingly random directions. A new approach was attempted, namely, using the S.P. shapes from the logs to identify depositional environments of the sands, with a view to determining the paleogeography of the area. This study has revealed a meander belt channel running from west to east and ending in a delta, with several distributary chanels. It has also been possible to distinguish areas of lagoonal or pro-deltaic deposition. On the basis of this study, one well P.S. 816, was drilled but found only part of the channel. Another location has been recommended, but has not yet been drilled. If this well finds the main channel, a dipmeter will be run to help in the siting of new locations.

  20. 30 CFR 250.463 - Who establishes field drilling rules?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Who establishes field drilling rules? 250.463... GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.463 Who establishes field drilling rules? (a) The District Manager may...

  1. Supervisory control of drilling of composite materials

    Science.gov (United States)

    Ozaki, Motoyoshi

    Composite materials have attractive features, such as high ratios of strength-to-weight and stiffness-to-weight. However, they are easily damaged when they are machined. A typical damage is delamination, which can occur when fiber reinforced composite laminates are drilled. The objective of this research is to study the drilling processes of carbon fiber reinforced laminates, and to develop and test a supervisory control strategy for their delamination-free drilling. Characterization of thrust force and torque is achieved through constant feedrate drilling experiments. The average values of thrust force and torque during the full engagement of the drill are utilized to obtain the Shaw's equations' parameters. The thrust force profile just before exit is given special attention. The Hocheng-Dharan equations, which give conservative values of delamination at the entrance and at the exit, are modified to express the influence of one lamina thickness explicitly. They are utilized not only for the characterization of thrust force but also for the determination of the thrust force reference for force control. In the design of the controllers of thrust force and torque, both thrust force and torque are assumed to be proportional to FPHR (Feed Per Half Revolution). A discrete-time dynamic model is established for the case when the time interval for a half revolution of the drill is divided by the sampling time, and the model is extended to the case of general spindle speeds. PI controllers are designed for the dynamic models of thrust force and torque. Root-locus techniques are used in the analysis. The phases of the drilling process are introduced and the control strategy at each phase is explained. The supervisory controller chooses not only the best control strategy for each phase, but also the reference value and the controller gain that are suitable at each drill position. Drilling experiments are conducted to show the usefulness of the concepts introduced in this

  2. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    Science.gov (United States)

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  3. Comparative study of conventional and ultrasonically-assisted bone drilling.

    Science.gov (United States)

    Alam, K; Ahmed, Naseer; Silberschmidt, V V

    2014-01-01

    Bone drilling is a well-known surgical procedure in orthopaedics and dentistry for fracture treatment and reconstruction. Advanced understanding of the mechanics of the drill-bone interaction is necessary to overcome challenges associated with the process and related postoperative complications. The aim of this study was to explore the benefits of a novel drilling technique, ultrasonically-assisted drilling (UAD), and its possible utilization in orthopaedic surgeries. The study was performed by conducting experiments to understand the basic mechanics of the drilling process using high speed filming of the drilling zone followed by measurements to quantify thrust force, surface roughness and cracking of the bone near the immediate vicinity of the hole with and without ultrasonic assistance. Compared to the spiral chips produced during conventional drilling (CD), UAD was found to break the chips in small pieces which facilitated their fast evacuation from the cutting region. In UAD, lower drilling force and better surface roughness was measured in drilling in the radial and longitudinal axis of the bone. UAD produced crack-free holes which will enhance postoperative performance of fixative devices anchoring the bone. UAD may be used as a possible substitute for CD in orthopaedic clinics.

  4. 30 CFR 56.7013 - Covering or guarding drill holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Covering or guarding drill holes. 56.7013 Section 56.7013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Rotary Jet Piercing Drilling § 56.7013 Covering or guarding drill holes. Drill holes large enough to...

  5. 30 CFR 57.7013 - Covering or guarding drill holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Covering or guarding drill holes. 57.7013 Section 57.7013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Rotary Jet Piercing Drilling-Surface Only § 57.7013 Covering or guarding drill holes. Drill holes...

  6. Drilled shaft resistance based on diameter, torque and crowd (drilling resistance vs. rock strength) phase II [summary].

    Science.gov (United States)

    2016-05-01

    Over the past 20 years, drilled shafts have demonstrated increasing popularity over driven : precast piles. Drilled shafts can accommodate a wider range of sizes, and noise and vibration : during construction are significantly reduced. On the other h...

  7. Oil drilling gets more dangerous; Oljeboring blir farligere

    Energy Technology Data Exchange (ETDEWEB)

    Helgesen, Ole K.

    2010-07-01

    The government calls for accelerating the development of new drilling technologies. Incredible value may be lost if drilling is not made safer. But when public funding will be awarded, one of the world's major drilling facilities is far behind in the queue. Statoil has placed a big part of their research to the drilling rig Ullrig and the results from this has resulted in significant value creation for Norway and the oil and gas industry. (AG)

  8. Reducing forces during drilling brittle hard materials by using ultrasonic and variation of coolant

    Science.gov (United States)

    Schopf, C.; Rascher, R.

    2016-11-01

    The process of ultrasonic machining is especially used for brittle hard materials as the additional ultrasonic vibration of the tool at high frequencies and low amplitudes acts like a hammer on the surface. With this technology it is possible to drill holes with lower forces, therefor the machining can be done faster and the worktime is much less than conventionally. A three-axis dynamometer was used to measure the forces, which act between the tool and the sample part. A focus is set on the sharpness of the tool. The results of a test series are based on the Sauer Ultrasonic Grinding Centre. On the same machine it is possible to drill holes in the conventional way. Additional to the ultasonic Input the type an concentration of coolant is important for the Drilling-force. In the test there were three different coolant and three different concentrations tested. The combination of ultrasonic vibration and the right coolant and concentration is the best way to reduce the Forces. Another positive effect is, that lower drilling-forces produce smaller chipping on the edge of the hole. The way to reduce the forces and chipping is the main issue of this paper.

  9. Test plan for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    The objective of this testing is to determine if ignition occurs while core drilling in a flammable gas environment. Drilling parameters are chosen so as to provide bounding conditions for the core sampling environment. If ignition does not occur under the conditions set forth in this test, then a satisfactory level of confidence will be obtained which would allow field operations under the normal drilling conditions

  10. Tesco's Bob Tessari: launching a drilling revolution

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-07-01

    The 'Casing Drilling' technology, patented by Tesco, which allows operators to simultaneously drill, case and evaluate oil and gas wells, is described. The system is claimed to substantially reduce the amount of lost circulation, loss of well control and bore hole instability problems that have been documented to account for about 25 per cent of total rig time on a well, and at least $4 billion (or 10 per cent of the $40 billion annual global drilling tab) spent on 'unscheduled events' associated with tripping drill pipe. With the Casing Drilling process, wells are drilled using standard oilfield casing instead of drill pipe. The host of downhole problems associated with tripping in and out of the hole are avoided, as the casing pipe is never removed. Instead, drill bits and other downhole tools are tripped through the casing with wireline at a rate of about 500 ft per minute, drastically reducing tripping time. Tesco also developed the portable top drive, the manufacture and rental of which constitutes a large part of the company's business, besides helping technologically to make Casing Drilling possible. Much of the company's success is attributed to the tenacity and zest for innovative approaches of the company's CEO, Bob Tessari, who is largely responsible for the company finding itself at the centre of a drilling technology revolution.

  11. Drilling rate for the Cerro Prieto stratigraphic sequence

    Energy Technology Data Exchange (ETDEWEB)

    Prian C, R.

    1981-01-01

    Drilling practice at the field has been modified in several ways as better information is being obtained. The stratigraphic sequence of the area is made up of three sedimentary rock units of deltaic origin having different densities. These units have been named non-consolidated, semi-consolidated, and consolidated rocks; the thermal reservoirs are located in the latter. To investigate how the drilling rates are affected by the three rock units, plots of drilling advance versus time were made for a large number of wells. A typical plot is shown and drilling rates are practically constant in three different zones; that is, the drilling rate has only two breaks or changes in slope.

  12. Automatic identification of otologic drilling faults: a preliminary report.

    Science.gov (United States)

    Shen, Peng; Feng, Guodong; Cao, Tianyang; Gao, Zhiqiang; Li, Xisheng

    2009-09-01

    A preliminary study was carried out to identify parameters to characterize drilling faults when using an otologic drill under various operating conditions. An otologic drill was modified by the addition of four sensors. Under consistent conditions, the drill was used to simulate three important types of drilling faults and the captured data were analysed to extract characteristic signals. A multisensor information fusion system was designed to fuse the signals and automatically identify the faults. When identifying drilling faults, there was a high degree of repeatability and regularity, with an average recognition rate of >70%. This study shows that the variables measured change in a fashion that allows the identification of particular drilling faults, and that it is feasible to use these data to provide rapid feedback for a control system. Further experiments are being undertaken to implement such a system.

  13. Emplacement hole drill evaluation and specification study. Volume I

    International Nuclear Information System (INIS)

    1977-01-01

    Results of a conceptual design program are presented for mine floor drilling in preparation for radioactive waste disposal. Two classes of drills can be used to drill emplacement holes in salt. Both are sufficiently rugged and reliable. Raise borers have a higher capital cost and require more modifications, but are more flexible in other applications and require less labor. The life cycle cost for the raise borers and for the auger rigs are about the same, while the life cycle costs of bucket drills are much higher. As long as the hole is 36 inches in diameter or less and 40 feet deep or less in salt, then the auger rig is recommended because of the lower capital cost and lower operating cost. This recommended system represents what is thought to be the best combination of available drill components assembled into a drill rig which will provide at least adequate performance. Furthermore, this drill system can be procured from at least three manufacturers. If the facility criteria change significantly, however, then the drill rig recommendations will have to be reassessed on the merits of the changes. The drill rig manufacturers can be quite flexible in combining components provided the buyer is willing to accept components with which the manufacturer has had experience. If this condition can be met, then most drill rig manufacturers will include the associated design cost as part of the drill cost. If special components are required, however, then the number of manufacturers willing to participate in a procurement may be severely reduced

  14. Accuracy improvements of gyro-based measurement-while-drilling surveying instruments by a laser testing method

    Science.gov (United States)

    Li, Rong; Zhao, Jianhui; Li, Fan

    2009-07-01

    Gyroscope used as surveying sensor in the oil industry has been proposed as a good technique for measurement-whiledrilling (MWD) to provide real-time monitoring of the position and the orientation of the bottom hole assembly (BHA).However, drifts in the measurements provided by gyroscope might be prohibitive for the long-term utilization of the sensor. Some usual methods such as zero velocity update procedure (ZUPT) introduced to limit these drifts seem to be time-consuming and with limited effect. This study explored an in-drilling dynamic -alignment (IDA) method for MWD which utilizes gyroscope. During a directional drilling process, there are some minutes in the rotary drilling mode when the drill bit combined with drill pipe are rotated about the spin axis in a certain speed. This speed can be measured and used to determine and limit some drifts of the gyroscope which pay great effort to the deterioration in the long-term performance. A novel laser assembly is designed on the wellhead to count the rotating cycles of the drill pipe. With this provided angular velocity of the drill pipe, drifts of gyroscope measurements are translated into another form that can be easy tested and compensated. That allows better and faster alignment and limited drifts during the navigation process both of which can reduce long-term navigation errors, thus improving the overall accuracy in INS-based MWD system. This article concretely explores the novel device on the wellhead designed to test the rotation of the drill pipe. It is based on laser testing which is simple and not expensive by adding a laser emitter to the existing drilling equipment. Theoretical simulations and analytical approximations exploring the IDA idea have shown improvement in the accuracy of overall navigation and reduction in the time required to achieve convergence. Gyroscope accuracy along the axis is mainly improved. It is suggested to use the IDA idea in the rotary mode for alignment. Several other

  15. Investigating Created Properties of Nanoparticles Based Drilling Mud

    Science.gov (United States)

    Ghasemi, Nahid; Mirzaee, Mojtaba; Aghayari, Reza; Maddah, Heydar

    2018-05-01

    The success of drilling operations is heavily dependent on the drilling fluid. Drilling fluids cool down and lubricate the drill bit, remove cuttings, prevent formation damage, suspend cuttings and also cake off the permeable formation, thus retarding the passage of fluid into the formation. Typical micro or macro sized loss circulation materials (LCM) show limited success, especially in formations dominated by micropores, due to their relatively large sizes. Due to unique characteristics of nanoparticles such as their size and high surface area to volume ratio, they play an effective role in solving problems associated with the drilling fluid. In this study, we investigate the effect of adding Al2O3 and TiO2 nanoparticles into the drilling mud. Al2O3 and TiO2 nanoparticles were used in 20 and 60 nm of size and 0.05 wt% in concentration. Investigating the effects of temperature and pressure has shown that an increase in temperature can reduce the drilling mud rheological properties such as plastic viscosity, while an increase in pressure can enhance these properties. Also, the effects of pressure in high temperatures were less than those in low temperatures. Studying the effects of adding nanoparticles has shown that they can reduce the drilling mud rheological properties. Moreover, they can increase gel strength, reduce capillary suction time and decrease formation damage.

  16. Scientific Drilling Into the San Andreas Fault Zone —An Overview of SAFOD’s First Five Years

    Directory of Open Access Journals (Sweden)

    Stephen Hickman

    2011-03-01

    Full Text Available The San Andreas Fault Observatory at Depth (SAFODwas drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the SanAndreas Fault Zone to be relatively broad (~200 m, containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensivelytested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  17. Stabilization/solidification of synthetic Nigerian drill cuttings | Opete ...

    African Journals Online (AJOL)

    Stabilization/solidification of synthetic Nigerian drill cuttings. SEO Opete, IA Mangibo, ET Iyagba. Abstract. In the Nigerian oil and gas industry, large quantities of oily and synthetic drill cuttings are produced annually. These drill cuttings are heterogeneous wastes which comprises of hydrocarbons, heavy metals and ...

  18. Development of controlled drilling system

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Miyakawa, Kimio; Suzuki, Koichi; Sunaga, Takayuki

    2008-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for the High Level Radioactive Waste (HLW) disposal. Especially, the soft sedimentary rock at the offshore, region is thought to be one of the best candidates, since there is no driving force of the underground water. The measurement and logging in the bore hole in order to check the hydro-geological and geomechanical conditions of the host rock is a very important way to examine the potentially of the disposal candidates. The CRIEPI (Central Research Institute of Electric Power Industry) has been conducting the project about the controlled drilling technology and the measurement and logging technologies in its borehole. In 2000, as the beginning year of the project, we made the conceptual design of the drilling and measuring systems, and made key tools concerning each technology on an experimental basis. We have been developing sub tools constructing drilling and measuring systems since 2000, and applying these systems to the Horonobe site recent 5 years. We will briefly report the outline of the system and the results of drilling and measurement that were carried out at the Horonobe site. (author)

  19. Test report for core drilling ignitability testing

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1996-01-01

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing

  20. Microstructural characterization of cermet-steel interface in rock drilling tool

    International Nuclear Information System (INIS)

    Ybarra, L.A.C.; Molisani, A.L.; Yoshimura, H.N.

    2010-01-01

    Rock drilling tools basically present a WC cermet bonded to a steel shank. The interface cermet-steel plays fundamental role during drilling operation, since the fracture of this interface is the main failure mode of the tools. In this work, the microstructure of this interface in crown samples (type A), prepared in an industrial like process, was evaluated. In this process, a WC-containing powder was infiltrated with a copper alloy at 1100 deg C in a graphite mold previously mounted with a 1020 steel tube. The powder was characterized by XRD analysis and the cross-section microstructure of cermet-steel was analyzed using SEM-EDS. It was observed that Ni and small amount of Cu from cermet matrix diffused into the superficial region of the steel, and the Cu alloy dissolved and penetrated along the steel grain boundaries, resulting in good metallurgical bonding of the interface.(author)

  1. Real-time depth measurement for micro-holes drilled by lasers

    Science.gov (United States)

    Lin, Cheng-Hsiang; Powell, Rock A.; Jiang, Lan; Xiao, Hai; Chen, Shean-Jen; Tsai, Hai-Lung

    2010-02-01

    An optical system based on the confocal principle has been developed for real-time precision measurements of the depth of micro-holes during the laser drilling process. The capability of the measuring system is theoretically predicted by the Gaussian lens formula and experimentally validated to achieve a sensitivity of 0.5 µm. A nanosecond laser system was used to drill holes, and the hole depths were measured by the proposed measuring system and by the cut-and-polish method. The differences between these two measurements are found to be 5.0% for hole depths on the order of tens of microns and 11.2% for hundreds of microns. The discrepancies are caused mainly by the roughness of the bottom surface of the hole and by the existence of debris in the hole. This system can be easily implemented in a laser workstation for the fabrication of 3D microstructures.

  2. Progress in reducing the environmental impacts of offshore drilling wastes

    International Nuclear Information System (INIS)

    Flemming, D; Candler, J.E.

    2002-01-01

    Full text:Over the past several years, great progress has been made in understanding and reducing the environmental impacts of offshore drilling wastes. Our understanding of sea floor impacts has been helped along by new environmental assessment tools such us computer modeling of sea floor deposition of drilling discharges, sediment profile imaging, and in situ sediment toxicity bioassays. To further reduce environmental impacts, new pollution prevention technologies have been developed that can shrink the environmental footprint of offshore drilling. These technologies reduce the total amount of drilling wastes discharged and include cuttings dryers and centrifuges that can reduce the drilling fluid content of drill cuttings to below 10 percent. In conclusion, the oil and gas industry is adopting more environmentally compatible drilling fluids, new environmental assessment tools and pollution prevention technologies that dramatically reduce the amount of drilling wastes discharged. Together, all of these elements have the potential to reduce environmental impacts of offshore drilling

  3. 46 CFR 15.520 - Mobile offshore drilling units.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Mobile offshore drilling units. 15.520 Section 15.520... REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units. (a) The requirements in this section for mobile offshore drilling units (MODUs) supplement other requirements in this...

  4. 21 CFR 882.4370 - Pneumatic cranial drill motor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pneumatic cranial drill motor. 882.4370 Section 882.4370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... drill motor. (a) Identification. A pneumatic cranial drill motor is a pneumatically operated power...

  5. 21 CFR 882.4360 - Electric cranial drill motor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electric cranial drill motor. 882.4360 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4360 Electric cranial drill motor. (a) Identification. An electric cranial drill motor is an electrically operated power source used...

  6. In the zone - first rotary steerable liner-while-drilling system; Drilling technology

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Statoil recently successfully tested the world's first rotary steerable liner-while-drilling system from its Brage platform in the Norwegian sector of the North Sea. This innovative technology - with applications in new and mature fields - was jointly developed by Statoil and Baker Hughes Incorporated. The concept of a rotary steerable system that gives operators the ability to accurately drill and log three-dimensional well profiles with a liner attached directly to the drillstring is entirely new. The system is designed to withstand high circulation rates and high torque loads while providing liner connect and disconnect capabilities. (Author)

  7. Analysis and 3D inspection system of drill holes in aeronautical surfaces

    Science.gov (United States)

    Rubio, R.; Granero, L.; Sanz, M.; García, J.; Micó, V.

    2017-06-01

    In aerospace industry, the structure of the aircraft is assembled using small parts or a combination of them that are made with different materials, such as for instance aluminium, titanium, composites or even 3D printed parts. The union between these small parts is a critical point for the integrity of the aircraft. The quality of this union will decide the fatigue of adjacent components and therefore the useful life of them. For the union process the most extended method is the rivets, mainly because their low cost and easy manufacturing. For this purpose it is necessary to made drill holes in the aeronautical surface to insert the rivets. In this contribution, we present the preliminary results of a 3D inspection system [1] for drill holes analysis in aeronautical surfaces. The system, based in optical triangulation, was developed by the Group of Optoelectronic Image Processing from the University of Valencia in the framework of the Airbus Defence and Space (AD&S), MINERVA project (Manufacturing industrial - means emerging from validated automation). The capabilities of the system permits to generate a point cloud with 3D information and GD&T (geometrical dimensions and tolerances) characteristics of the drill hole. For the inner surface defects detection, the system can generate an inner image of the drill hole with a scaled axis to obtain the defect position. In addition, we present the analysis performed for the drills in the wing station of the A-400 M. In this analysis the system was tested for diameters in the range of [10 - 15.96] mm, and for Carbon Fibre.

  8. The ANDRILL programme: a new multinational initiative to investigate Antarctica's climatic and tectonic history from stratigraphic drilling

    Science.gov (United States)

    Naish, T.; Andrill Steering Committee

    2003-04-01

    ANDRILL is a multinational initiative to investigate Antarctica’s role in Cenozoic-Recent (65 million years ago to the present) climatic, glacial and tectonic change through the recovery of stratigraphic records from and around the Antarctic margin. The ANDRILL programme was initially conceived and promoted by scientists who led the successful Cape Roberts Project (CRP) and other interested parties. A key motivation of ANDRILL is that the role of the Antarctic cryosphere (ice sheets, ice shelves and sea ice) in the climate system is complex and very poorly understood. While, high-quality sedimentary archives of past ice sheet behaviour have recently be-come available from projects such as the Cape Roberts Project and the Ocean Drilling Program (Leg 188, Prydz Bay), unfortunately they are too few in number to allow a comprehensive understanding of the continents influence on global climate. ANDRILL will address this issue through drilling a targeted portfolio of sites initially in the McMurdo Sound region. Here the dynamic behaviour of the East and West Antarctic ice sheets, and the Ross Ice Shelf have left their signature in the thick Cenozoic sedimentary fills of the West Antarctic Rift system and flexural moat basins. The ANDRILL McMurdo Sound Portfolio, is an 8 to 9 year programme spanning from 2001 to 2010 of which geophysical and site survey scientific investigations are nearing completion and the drilling phase will soon begin. An ANDRILL consortium has been established comprising five countries : USA, Italy, Germany, UK and NZ. This paper will present the scientific objectives of the programme, discuss the current status and future plans.

  9. Core drilling of deep borehole OL-KR34 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-07-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 100.07 m deep borehole with a diameter of 75.7 mm at Olkiluoto in April 2005. This borehole was aimed to get additional information of the quality of bedrock and the anomalous part of the bedrock and quality and the location of the fractured zones R19A and R19B. The identification number of the borehole is OL-KR34. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of all measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 37m{sup 3} and the measured volume of the returning water was about 18m{sup 3} in borehole OL-KR34. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OLKR34 deviates 0.84 m right and 0.15 m up at the borehole depth of 99 m. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 142 MPa, the

  10. Core drilling of deep borehole OL-KR36 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R.; Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-07-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 205.17 m deep borehole with a diameter of 75.7 mm at Olkiluoto in May 2005. This borehole was aimed to get additional information of the quality of bedrock and the anomalous part of the bedrock and quality and the location of the fractured zones R19A and R19B. The identification number of the borehole is OL-KR36. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling measurements. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 117 m{sup 3} and the measured volume of the returning water was about 51m{sup 3} in borehole OL-KR36. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OL-KR36 deviates 10.34 m left and 7.11 m up at the borehole depth of 204 m. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 126

  11. Core drilling of deep borehole OL-KR35 at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-07-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 100.87 m deep borehole with a diameter of 75.7 mm at Olkiluoto in May 2005. This borehole was aimed to get additional information of the quality of bedrock and the anomalous part of the bedrock and quality and the location of the fractured zones R19A and R19B. The identification number of the borehole is OL-KR35. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of all measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 53 m{sup 3} and the measured volume of the returning water was about 25 m{sup 3} in borehole OL-KR35. The deviation of the borehole was measured with the deviation measuring instruments EMS and Maxibor. The results of the Maxibor measurements indicate that borehole OL-KR35 deviates 0.49 m right and 0.30 m up at the borehole depth of 99 m. Uniaxial compressive strength, Young's Modulus and Poisson' s ratio were measured from the core samples. The average uniaxial compressive strength is about 90 MPa, the

  12. Core drilling of deep drillhole OL-KR48 at Olkiluoto in Eurajoki 2007

    International Nuclear Information System (INIS)

    Toropainen, V.

    2008-01-01

    Poisson's ratio (0.36) were measured from the core samples. The main rock types are veined and diatexitic gneisses, pegmatitic granite and tonalitic-granodioritic-granitic gneiss. Average fracture frequency is 1.1 pcs/m. and average RQD value is 98.0 %. In drillhole OL-KR48 seven fractured zones were penetrated during drilling work. (orig.)

  13. The main activities and scientific collaboration possibilities at Ankara Nuclear research and training center

    International Nuclear Information System (INIS)

    Yucel, H.; Turhan, S.; Zararsiz, A.; Oksuz, B.S.

    2004-01-01

    Full text: Founded in 1964, Ankara Nuclear Research and Training Center (ANRTC) conducts and facilitates the scientific activities including training (summer practice, MSc and Ph D studies in physics and chemistry, IAEA fellowship programs etc.), research and other studies in nuclear and related fields. As it's a part of main duties, ANRTC has analysis on the variety of samples, and radiation protection services commercially, for radiation workers in state, public and private sectors. Research, development and application projects implemented in this Center have mostly been supported by State Planning Organization (SPO) and Turkish Atomic Energy Authority (TAEA). In addition to the projects there are on going collaborative studies with some national Universities and International Atomic Energy Agency. The main activities carried out in ANRTC can be summarized as: studies on experimental nuclear physics, application of nuclear techniques such as XRF, XRD, Gamma, Alpha, etc. for environmental pollutants, archaeological and geological dating, elemental and crystal structural analyses, studies on the detection of irradiated foodstuff by ESR, development of accident dosimeters to be used in the case of a nuclear or radiological accident, and radiation matter interaction studies. In near future, for young scientists, there will be new collaboration possibilities related to accelerator-based applications, especially the new production methods of radioisotopes and their radiopharmaceuticals by using a cyclotron when our 30 MeV p / 15MeV d cyclotron facility project is underway

  14. Increased traffic accident rates associated with shale gas drilling in Pennsylvania.

    Science.gov (United States)

    Graham, Jove; Irving, Jennifer; Tang, Xiaoqin; Sellers, Stephen; Crisp, Joshua; Horwitz, Daniel; Muehlenbachs, Lucija; Krupnick, Alan; Carey, David

    2015-01-01

    We examined the association between shale gas drilling and motor vehicle accident rates in Pennsylvania. Using publicly available data on all reported vehicle crashes in Pennsylvania, we compared accident rates in counties with and without shale gas drilling, in periods with and without intermittent drilling (using data from 2005 to 2012). Counties with drilling were matched to non-drilling counties with similar population and traffic in the pre-drilling period. Heavily drilled counties in the north experienced 15-23% higher vehicle crash rates in 2010-2012 and 61-65% higher heavy truck crash rates in 2011-2012 than control counties. We estimated 5-23% increases in crash rates when comparing months with drilling and months without, but did not find significant effects on fatalities and major injury crashes. Heavily drilled counties in the southwest showed 45-47% higher rates of fatal and major injury crashes in 2012 than control counties, but monthly comparisons of drilling activity showed no significant differences associated with drilling. Vehicle accidents have measurably increased in conjunction with shale gas drilling. Copyright © 2014. Published by Elsevier Ltd.

  15. 30 CFR 77.1902 - Drilling and mucking operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling and mucking operations. 77.1902... COAL MINES Slope and Shaft Sinking § 77.1902 Drilling and mucking operations. Diesel-powered equipment used in the drilling, mucking, or other excavation of any slope or shaft shall be permissible, and such...

  16. Drilling the leading edge of the mantle wedge and the underlying metamorphic sole of the Samail Ophiolite: Hole BT1B, Oman Drilling Project

    Science.gov (United States)

    Morishita, T.; Kelemen, P. B.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.; Takazawa, E.; Teagle, D. A. H.

    2017-12-01

    Hole BT1B (23°21.861' N, 58°10.957' E) was drilled by the Oman Drilling Project (OmDP) on the north side of Wadi Mansah in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole BT1B was cored from 6 to 23 March 2017, to a depth of 300.05 m. The outer surfaces of the cores were imaged and described onsite before being curated, boxed and shipped to the IODP drill ship Chikyu. Hole BT1B sampled carbonated peridotite (listvenite), 2 carbonate-veined serpentinite bands at 80-100 and 180-185 m depth, a few cm of ultracataclasite and 70 cm of fault gouge at 197 m depth, followed by 103 m metamorphic sole. Onboard Chikyu, BT1B underwent X-ray computed tomography (CT) and multi-sensor logging, imaging and spectroscopy, macroscopic and thin section observations, physical properties measurements, and XRF, XRD and ICP-MS analyses. 1st authors of abstracts reporting initial results are Beinlich (matrix characteristics), de Obeso (modeling mass transfer), Godard (XRF and ICP-MS whole rock data), Greenberger (infrared spectroscopy), Johnson (XRF core scanner), Kelemen (overall petrology), Manning (veins), and Michibayashi (X-ray CT). Listvenite is composed of carbonate + quartz + Fe-oxyhydroxides, + minor relict spinel ± chromian mica (fuchsite). The mineralogy suggests formation at < 150°C. The bulk rock density is similar to that of gabbro but the P-wave velocity is generally higher. Rock textures suggest viscous deformation, while additional brittle deformation is recorded by older veins and younger breccias and faults. The metamorphic sole consists of fine-grained to microcrystalline

  17. Slimhole drilling and directional drilling for on-site inspections under a Comprehensive Test Ban - An initial assessment

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1995-07-01

    It appears that a short list of four suppliers should be further evaluated to formulate OSI-applicable packages. They are Baker-Hughes ESTTEQ, SLIMDRIL International, Halliburton Energy/ENSCO Technology, and Schlumberger-Dowell/Anadrill. It is noteworthy that all of them are headquartered in Houston, TX, making it a logical place to present the OSI requirements to a community of expert drillers. We have requested from these companies that they let us know of operations with coiled tubing to be conducted in California, so as to use such opportunities to view the systems in action. On such job was just completed by Schlumberger-Dowell near Bakersfield, and they have another one coming up in late July in Long Beach. An example of the 'footprint' of such a C-T drilling operation is shown. The Verification community also can take advantage of drilling conferences to keep up with the state-of-the-art. The next such meeting, co-sponsored by the International Association of Drilling Contractors (IADC) and the Society of Petroleum Engineers (SPE), is scheduled for March 12-15, 1996, in New Orleans. The next step in this study should be to determine an optimal combination of the new drilling methods with the health and safety procedures and the diagnostics which are required when drilling in a radioactive environment. This will involve bringing together the expertise of the NTS/National Laboratories with those of the exploration/production drillers. The final outcome will be the formulation of drilling systems which have significant cost and weight advantages over those of the equipment previously used at NTS

  18. Casing drilling TM : a viable technology for coal bed methane?

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Muqeem, M. [Tesco Corp., Calgary, AB (Canada)

    2001-07-01

    This paper highlighted the experience that Tesco has gained by drilling more than 30 wells using only casings as the drill stem, suggesting that such technology could be advantageous for Coal Bed Methane (CBM) exploration and development. Tesco has manufactured a mobile and compact hydraulic drilling rig that is ideal to meet the great demand for CBM development in Canada. The Casing Drilling TM system, when used in conjunction with the drilling rig, could be very effective and efficient for exploration and development of CBM reserves which typically require extensive coring. Continuous coring while drilling ahead and wire line retrieval can offer time savings and quick core recovery of large diameter core required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or coal beds under balanced with air or foam. This would reduce drilling fluid damage while finding gas at the same time. Compared to conventional drill pipes, Casing Drilling TM could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 8 refs., 3 tabs., 9 figs.

  19. Core drilling of deep borehole OL-KR43 at Olkiluoto in Eurajoki 2006

    Energy Technology Data Exchange (ETDEWEB)

    Niinimaeki, R. [Suomen Malmi Oy, Espoo (Finland)

    2006-12-15

    Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 1000.26 m and 45.01 m deep boreholes with a diameter of 75.7 mm at Olkiluoto in July - October 2006. The identification numbers of the boreholes are OL-KR43 and OL-KR43B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 1103 m{sup 3} and 16 m{sup 3} in boreholes OL-KR43 and OL-KR43B, respectively. Measured volumes of the returning water were 916m{sup 3} in borehole OL-KR43 and 13m{sup 3} in borehole OL-KR43B. The deviation of the boreholes was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 131 MPa, the average Young's Modulus is 37 GPa and the average Poisson's ratio is 0.19. The main rock types are veined gneiss, diatexitic gneiss

  20. Drilling supervision procedure for the Exploratory Shaft Facility: Final draft

    International Nuclear Information System (INIS)

    1986-11-01

    Drilling supervision will be undertaken in the Exploratory Shaft Facility (ESF) for boreholes drilled primarily for the purpose of hydrologic testing, downhole mechanical/thermal testing, sampling for laboratory testing, and for the placement of instrumentation. The primary purpose of this procedure is documentation of drilling activities prescribed by other procedures. Supervision of drilling includes designation of positions of authority, lines of communication, and methodology of supervising, monitoring, and documenting drilling and associated activities. The rationale for the specific applications of core drilling is provided by the test procedures for each activity. 2 figs

  1. ResonantSonic drilling: History, progress, and advances in environmental restoration programs

    International Nuclear Information System (INIS)

    Moak, D.J.

    1995-01-01

    ResonantSonic drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. The ResonantSonic drilling method requires no mud, air, or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. A specialized drill head imparts high frequency vibrations into steel drill pipe and creates a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ResonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs utilize the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites

  2. Characterization of rotary-percussion drilling as a seismic-while-drilling source

    Science.gov (United States)

    Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.

    2018-04-01

    This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.

  3. What you should know about contract core drilling

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, J.

    1985-07-01

    Most core drilling jobs are on the basis of so much per foot drilled. The driller pays for his crew's wages and overtime pay. He assumes the cost of all necessary supplies and has responsibility for unexpected problems. The customer is responsible for a water supply and must provide access roads to drill sites and prepare the sites. The following are important in selecting a driller; how long they have been in business, how many rigs they have and what condition the rigs are in and their financial condition. Detailed discussions with the driller before he starts the job and a daily drill report are important. A best possible core recovery should be expected. Communication with the driller is the most important factor when involved in a core drilling project.

  4. Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery.

    Science.gov (United States)

    Flügge, Tabea Viktoria; Nelson, Katja; Schmelzeisen, Rainer; Metzger, Marc Christian

    2013-08-01

    To present an efficient workflow for the production of implant drilling guides using virtual planning tools. For this purpose, laser surface scanning, cone beam computed tomography, computer-aided design and manufacturing, and 3-dimensional (3D) printing were combined. Intraoral optical impressions (iTero, Align Technologies, Santa Clara, CA) and digital 3D radiographs (cone beam computed tomography) were performed at the first consultation of 1 exemplary patient. With image processing techniques, the intraoral surface data, acquired using an intraoral scanner, and radiologic 3D data were fused. The virtual implant planning process (using virtual library teeth) and the in-office production of the implant drilling guide was performed after only 1 clinical consultation of the patient. Implant surgery with a computer-aided design and manufacturing produced implant drilling guide was performed during the second consultation. The production of a scan prosthesis and multiple preoperative consultations of the patient were unnecessary. The presented procedure offers another step in facilitating the production of drilling guides in dental implantology. Four main advantages are realized with this procedure. First, no additional scan prosthesis is needed. Second, data acquisition can be performed during the first consultation. Third, the virtual planning is directly transferred to the drilling guide without a loss of accuracy. Finally, the treatment cost and time required are reduced with this facilitated production process. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Tribological characterization of the drill collars and casing friction couples

    Science.gov (United States)

    Ripeanu, R. G.; Badicioiu, M.; Caltaru, M.; Dinita, A.; Laudacescu, E.

    2018-01-01

    Drill collars are special pipes used in the drilling of wells for weighting the drill bit, enabling it to drill through the rock. In the drilling process, the drill collars are exposed to an intensive wear due to friction on inner surface of casing wall. In order to evaluate the tribological behaviour of this friction couple, paper presents the drill collars parent material, reconditioned and casing pipe chemical composition, microstructures, hardness and friction tests. For friction tests were prepared samples extracted from new and reconditioned drill collars and from casing pipes and tested on a universal tribometer. Were used plane-on-disk surface friction couples and tests were conducted at two sliding speeds and three normal loads for each materials couple. Plane static partner samples were extracted from casing pipes and disks samples were extracted from new and reconditioned drill collars. Were obtained friction coefficients values and also the temperatures increasing values due to friction working tests parameters. The temperature increasing values were obtained by measuring it with an infrared thermographic camera.

  6. 25 CFR 226.9 - Rental and drilling obligations.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Rental and drilling obligations. 226.9 Section 226.9... RESERVATION LANDS FOR OIL AND GAS MINING Leasing Procedure, Rental and Royalty § 226.9 Rental and drilling... in the lease terms, or 12 months from the date the Superintendent consents to drilling on any...

  7. Tragacanth gum: an effective oil well drilling fluid additive

    Energy Technology Data Exchange (ETDEWEB)

    Mahto, V.; Sharma, V. [Indian School of Mines, Dhanbad (India). Department of Petroleum Engineering

    2005-02-15

    The low penetration rate, excessive torque and drag, poor hole cleaning and formation damage are major impediments in drilling oil and gas well. These have a major impact on drilling efficiency and well economics. Keeping these in mind, an attempt was made to design a water based drilling fluid system using Indian bentonite clays and tragacanth gum. The effect of tragacanth gum on rheological behavior of three different Indian bentonite water suspensions was studied and a drilling fluid system was developed. The filtrates of these drilling fluids were subjected to formation damage study on the field core using Ruska Liquid Permeameter. The laboratory investigation furnishes that tragacanth gum acts as a good viscosifier and fluid loss control agent. The drilling fluid filtrate also has less effect on formation damage. (author)

  8. Requirements for drilling and disposal in deep boreholes; Foerutsaettningar foer borrning av och deponering i djupa borrhaal

    Energy Technology Data Exchange (ETDEWEB)

    Oden, Anders [QTOB, Haesselby (Sweden)

    2013-09-15

    In this report experience from drilling at great depth in crystalline rock is compiled based on project descriptions, articles and personal contacts. Rock mechanical effects have been analyzed. The report also describes proposals made by SKB and other agencies regarding the disposal of and closure of deep boreholes. The combination of drilling deep with large diameter in crystalline rocks have mainly occurred in various research projects, such as in the German KTB project. Through these projects and the increased interest in recent years for geothermal energy , today's equipment is expected to be used to drill 5000 m deep holes , with a hole diameter of 445 mm , in crystalline rock. Such holes could be used for the disposal of spent nuclear fuel. With the deposition technique recently described by Sandia National Laboratories in USA, SKB estimates that it might be possible to implement the disposal to 5000 m depth. Considering the actual implementation, drilling and disposal, and the far-reaching requirements on nuclear safety and radiation protection, it is considered an important risk getting stuck with the capsule-string, or part of it, above deposition zone without being able to get it loose. In conclusion, even if the drilling and the deposit would succeed there remains to verify that the drill holes with the deposited canisters meet the initial requirements and is long-term safe.

  9. Experimental Analysis of the Influence of Drill Point Angle and Wear on the Drilling of Woven CFRPs

    Directory of Open Access Journals (Sweden)

    Norberto Feito

    2014-05-01

    Full Text Available This paper focuses on the effect of the drill geometry on the drilling of woven Carbon Fiber Reinforced Polymer composite (CFRPs. Although different geometrical effects can be considered in drilling CFRPs, the present work focuses on the influence of point angle and wear because they are the important factors influencing hole quality and machining forces. Surface quality was evaluated in terms of delamination and superficial defects. Three different point angles were tested representative of the geometries commonly used in the industry. Two wear modes were considered, being representative of the wear patterns commonly observed when drilling CFRPs: flank wear and honed cutting edge. It was found that the crossed influence of the point angle and wear were significant to the thrust force. Delamination at the hole entry and exit showed opposite trends with the change of geometry. Also, cutting parameters were checked showing the feed’s dominant influence on surface damage.

  10. Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs

    Directory of Open Access Journals (Sweden)

    Jinzhi Zhu

    2017-07-01

    Full Text Available In order to explore the damage mechanisms and improve the method to evaluate and optimize the performance of formation damage control of oil-based drill-in fluids, this paper took an ultra-deep fractured tight gas reservoir in piedmont configuration, located in the Cretaceous Bashijiqike Fm of the Tarim Basin, as an example. First, evaluation experiments were conducted on the filtrate invasion, the dynamic damage of oil-based drill-in fluids and the loading capacity of filter cakes. Meanwhile, the evaluating methods were optimized for the formation damage control effect of oil-based drill-in fluids in laboratory: pre-processing drill-in fluids before grading analysis; using the dynamic damage method to simulate the damage process for evaluating the percentage of regained permeability; and evaluating the loading capacity of filter cakes. The experimental results show that (1 oil phase trapping damage and solid phase invasion are the main formation damage types; (2 the damage degree of filtrate is the strongest on the matrix; and (3 the dynamic damage degree of oil-based drill-in fluids reaches medium strong to strong on fractures and filter cakes show a good sealing capacity for the fractures less than 100 μm. In conclusion, the filter cakes' loading capacity should be first guaranteed, and both percentage of regained permeability and liquid trapping damage degree should be both considered in the oil-based drill-in fluids prepared for those ultra-deep fractured tight sandstone gas reservoirs.

  11. Scientific meetings

    International Nuclear Information System (INIS)

    1973-01-01

    One of the main aims of the IAEA is to foster the exchange of scientific and technical information and one of the main ways of doing this is to convene international scientific meetings. They range from large international conferences bringing together several hundred scientists, smaller symposia attended by an average of 150 to 250 participants and seminars designed to instruct rather than inform, to smaller panels and study groups of 10 to 30 experts brought together to advise on a particular programme or to develop a set of regulations. The topics of these meetings cover every part of the Agency's activities and form a backbone of many of its programmes. (author)

  12. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  13. Possible use of a computer for processing technological information of daily reports on drilling in order to optimize the drilling regimes

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V B; Kovalev, A A; Rezchikov, A V; Sukhanova, L G; Vyazenkin, S N; Zakolyuzhnyy, V D

    1982-01-01

    It is suggested that a computer be used for processing technological information of data reports on drilling. This will permit solution in the future to the task of monitoring the observation of the assigned regime-technological parameters of drilling wells by compiling planning recommendations and factual information about their fulfillment. Comprehensive analysis of the factual data regarding the regimes of making wells based on the information of daily reports on drilling using a computer in the OAIS system of drilling of the Ministry of the Gas Industry at the existing stage of technical support of the associations with a computer will permit in the near future production of exhaustive regime-technological information regarding the operation of bits in each well and development of RTK for drilling future wells by intervals of the same drillability.

  14. Systems and Methods for Gravity-Independent Gripping and Drilling

    Science.gov (United States)

    Parness, Aaron (Inventor); Frost, Matthew A. (Inventor); Thatte, Nitish (Inventor); King, Jonathan P. (Inventor)

    2016-01-01

    Systems and methods for gravity independent gripping and drilling are described. The gripping device can also comprise a drill or sampling devices for drilling and/or sampling in microgravity environments, or on vertical or inverted surfaces in environments where gravity is present. A robotic system can be connected with the gripping and drilling devices via an ankle interface adapted to distribute the forces realized from the robotic system.

  15. Effects of specialized drill bits on hole defects of CFRP laminates

    Science.gov (United States)

    Li, Chao; Xu, Jinyang; Chen, Ming

    2018-05-01

    Drilling is a conventional machining process widely applied to carbon fiber reinforced plastics (CFRP) for the riveting and fastening purposes in the aerospace and automotive industries. However, the machining mechanism of CFRP composites differ significantly from that of homogeneous metal alloys owing to their prominent anisotropy and heterogeneity. Serious hole defects such as fiber pullout, matrix debonding and delamination are generally produced during the hole-making process, resulting in the poor machined surface quality, low fatigue durability or even the part rejections. In order to minimize the defects especially the delamination damage in composites drilling, specialized drill bits are often a primary choice being widely adopted in a real production. This paper aims to study the effects of two drills differing in geometrical characteristics during the drilling of CFRP laminates. A number of drilling experiments were carried out with the aim to evaluate the drilling performance of different drill bits. A scanning electron microscope (SEM) was used to observe the drilled surfaces to study the surface roughness. A high frequency scanning acoustic microscope (SAM) was applied to characterize the drilled hole morphologies with a particular focus on the delamination damage occurring in the CFRP laminates. The obtained results indicate that the fiber orientation relative to the cutting direction is a key factor affecting hole morphology and hole wall defects can be reduced by utilizing specialized drill geometries. Moreover, the dagger drill was confirmed outperforming the brad spur drill from the aspect of reducing drilling-induced delamination.

  16. Drill cuttings mount formation study

    Science.gov (United States)

    Teh, Su Yean; Koh, Hock Lye

    2014-07-01

    Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.

  17. 30 CFR 250.458 - What quantities of drilling fluids are required?

    Science.gov (United States)

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... the daily inventories of drilling fluid and drilling fluid materials, including weight materials and... drilling fluid material to maintain well control, you must suspend drilling operations. [68 FR 8423, Feb...

  18. ResonantSonic drilling: History, progress and advances in environmental restoration programs

    International Nuclear Information System (INIS)

    Volk, B.W.; McLellan, G.W.; Moak, D.J.; Lerch, R.E.; Thompson, K.M.; Barrow, J.C.

    1993-01-01

    ResonantSonic SM drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. ResonantSonic is a registered service mark of the Water Development Corporation, Woodland, California. The ResonantSonic drilling method, requires no mud, air or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. The specialized drill head imparts high frequency vibrations into a steel drill pipe creating a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ReasonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs are utilizing the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites

  19. A drilling mud for drilling wells in collapsing rocks

    Energy Technology Data Exchange (ETDEWEB)

    Bochkarev, G P; Anderson, B A; Minkhayrov, K A; Sharipov, A U

    1982-01-01

    In a known drilling mud for drilling wells in collapsing rocks, which contains clay, sodium silicate and polyacrylamide (PAA), in order to increase its specific electrical resistance and to increase the strengthening properties, a silicoorganic liquid is additionally introduced into its composition with the following component ratio (percent): clay, 5 to 7; sodium silicate, 5 to 7; polyacrylamide, 0.3 to 0.5; silicoorganic liquid, GKZh-94, 0.5 to 1.5 and water, the remainder. The GKZh-94 is a chemical compound based on alkylphenylchlorsilanes and substituted ethers of orthosilicic acid, used for waterproofing fabrics and soils. The addition of GKZh-94 provides the required values of the specific electric resistance of the mud and does not distort the gas logging indications. The proposed mud has low water production (4 to 6 cubic centimeters), optimal viscosity (25 to 31 seconds) and high structural and mechanical properties. Its strengthening properties are substantially above those of the known mud.

  20. New method speeds drilling, attracts takeover

    Energy Technology Data Exchange (ETDEWEB)

    Brimble, S.

    2000-06-12

    Plains Energy Services Ltd is currently building a prototype drilling rig known as the Cisco 2000. It is expected to extend the limit of coiled tubing applications into deeper formations and in so doing challenge conventional drilling methods to match its performance in terms of speed and pricing. An indication of the seriousness of this challenge is the uninvited takeover bid by Precision Drilling Corporation, the largest Canadian oilfield contractor. The Cisco 2000 is said to have a pulling capacity of 120,000 lbs in bench tests, twice as much as existing rigs, and is capable of drilling to 7,200 feet using a 3.5 inch coil. Plain Energy's existing units are capable of penetrating only about 4,900 feet. The new technology involves a modified injector design which will resemble a conveyor belt with the gripper blocks located on top. This allows the tubing to be gripped from all four sides which accounts for the increased pulling power. The advantage of coiled tube drilling lies in the speed with which the operation can be completed and the corresponding cost reductions which result from the reduced rental cost of support equipment. Plains Energy urged its shareholders to reject the takeover offer in its present form, but is said to be open to better offers.

  1. Multi-sensor measurement system for robotic drilling

    OpenAIRE

    Frommknecht, Andreas; Kühnle, Jens; Pidan, Sergej; Effenberger, Ira

    2015-01-01

    A multi-sensor measurement system for robotic drilling is presented. The system enables a robot to measure its 6D pose with respect to the work piece and to establish a reference coordinate system for drilling. The robot approaches the drill point and performs an orthogonal alignment with the work piece. Although the measurement systems are readily capable of achieving high position accuracy and low deviation to perpendicularity, experiments show that inaccuracies in the robot's 6D-pose and e...

  2. Stratigraphy and depositional history of the Apollo 17 drill core

    Science.gov (United States)

    Taylor, G. J.; Warner, R. D.; Keil, K.

    1979-01-01

    Lithologic abundances obtained from modal analyses of a continuous string of polished thin sections indicate that the Apollo 17 deep drill core can be divided into three main zones: An upper zone (0-19 cm depth) characterized by high abundances of agglutinates (30%) and a high ratio of mare to non-mare lithic fragments (less than 0.8); a coarse-grained layer (24-56 cm) rich in fragments of high-Ti mare basalts and mineral fragments derived from them, and poor in agglutinates (6%); and a lower zone (56-285 cm) characterized by variable but generally high agglutinate abundances (25%) and a low ratio of mare to nonmare lithic fragments (0.6). Using observations of the geology of the landing site, the principles of cratering dynamics, and the vast amount of data collected on the core, the following depositional history for the section of regolith sampled by the Apollo 17 drill core: was devised.

  3. 30 CFR 250.414 - What must my drilling prognosis include?

    Science.gov (United States)

    2010-07-01

    ...) Projected plans for logging; (c) Planned safe drilling margin between proposed drilling fluid weights and... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must my drilling prognosis include? 250... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...

  4. Pulsed Nd:YAG laser beam drilling: A review

    Science.gov (United States)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  5. 30 CFR 77.1007 - Drilling; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling; general. 77.1007 Section 77.1007 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1007 Drilling; general. (a) Equipment that is to be used during a shift shall be inspected...

  6. Novel annular flow electromagnetic measurement system for drilling engineering.

    OpenAIRE

    Ge, L.; Wei, G. H.; Wang, Q.; Hu, Z.; Li, J. L.

    2017-01-01

    Downhole micro-flux control drilling technology can effectively solve drilling accidents, such as kick and loss in narrow density window drilling scenarios. Using a downhole annular flow measurement system to obtain real-time information of downhole annular flow is the core and foundation of downhole micro-flux control drilling technology. The research work of electromagnetic flowmeters in recent years creates a challenge for downhole annular flow measurement. This paper proposes a new method...

  7. Drilling and blasting parameters in sublevel caving in Sheregesh mine

    Science.gov (United States)

    Eremenko, AA; Filippov, VN; Konurin, AI; Khmelinin, AP; Baryshnikov, DV; Khristolyubov, EA

    2018-03-01

    The factors that influence geomechanical state of rock mass in Sheregesh Mine are determined. The authors discuss a variant of geotechnology with fan drilling. The drill-hole patterns and drilling-and-blasting parameters are presented. The revealed causes of low-quality fragmentation of rocks include the presence of closed and open fractures at different distances from drill-hole mouths, both in case of rings and fans, as well as the blocking of drill-holes with rocks.

  8. Study on super-long deep-hole drilling of titanium alloy.

    Science.gov (United States)

    Liu, Zhanfeng; Liu, Yanshu; Han, Xiaolan; Zheng, Wencui

    2018-01-01

    In this study, the super-long deep-hole drilling of a titanium alloy was investigated. According to material properties of the titanium alloy, an experimental approach was designed to study three issues discovered during the drilling process: the hole-axis deflection, chip morphology, and tool wear. Based on the results of drilling experiments, crucial parameters for the super-long deep-hole drilling of titanium alloys were obtained, and the influences of these parameters on quality of the alloy's machining were also evaluated. Our results suggest that the developed drilling process is an effective method to overcome the challenge of super-long deep-hole drilling on difficult-to-cut materials.

  9. Scientific report 1998

    International Nuclear Information System (INIS)

    1998-01-01

    The aim of this report is to outline the main developments of the ''Departement des Reacteurs Nucleaires'', (DRN) during the year 1998. DRN is one of the CEA Institution. This report is divided in three main parts: the DRN scientific programs, the scientific and technical publications (with abstracts in english) and economic data on staff, budget and communication. Main results of the Department, for the year 1998, are presented giving information on the reactors technology and safety, the neutronics, the transmutation and the hybrid systems, the dismantling and the sites improvement, the nuclear accidents, the nuclear matter transport, the thermonuclear fusion safety, the fuel cladding materials and radioactive waste control. (A.L.B.)

  10. Water base drilling fluids for high-angle wells; Fluidos a base de agua para perfuracao de pocos com elevada inclinacao

    Energy Technology Data Exchange (ETDEWEB)

    Passarelli, Rui [PETROBRAS, Rio de Janeiro (Brazil). Dept. de Perfuracao. Div. de Fluidos de Perfuracao; Lomba, Rosana Fatima T [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Div. de Explotacao

    1990-12-31

    Horizontal drilling has experimented a large increase in last years. In Brazil, two horizontal wells were drilled in Fazenda Belem and Carmopolis Fields. The first one reached a final measured depth of 1128 m and the horizontal length was 533 m. The drilling fluid program was elaborated after a large number of laboratory tests, in order to get a composition that best fitted the drilling requirements, mainly the desirable lubricity. The idea of using a water-base fluid instead of an oil-based, known as more suitable in this case, arose because the Company is interested in drilling this kind of well offshore, in deep water, where the use of oil-base muds is forbidden. Different compositions of water base muds were developed and tested in laboratory and the results led to low-solids salt fluids having a lubricant in its composition. The lubricity coefficients of these fluids are similar to those obtained with oil-base muds. 9-FZB-446D-CE well was drilled with the chosen fluid and high values of torque and drag were not registered, being the operation a total success. (author) 10 tabs.

  11. Water base drilling fluids for high-angle wells; Fluidos a base de agua para perfuracao de pocos com elevada inclinacao

    Energy Technology Data Exchange (ETDEWEB)

    Passarelli, Rui [PETROBRAS, Rio de Janeiro (Brazil). Dept. de Perfuracao. Div. de Fluidos de Perfuracao; Lomba, Rosana Fatima T. [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Div. de Explotacao

    1989-12-31

    Horizontal drilling has experimented a large increase in last years. In Brazil, two horizontal wells were drilled in Fazenda Belem and Carmopolis Fields. The first one reached a final measured depth of 1128 m and the horizontal length was 533 m. The drilling fluid program was elaborated after a large number of laboratory tests, in order to get a composition that best fitted the drilling requirements, mainly the desirable lubricity. The idea of using a water-base fluid instead of an oil-based, known as more suitable in this case, arose because the Company is interested in drilling this kind of well offshore, in deep water, where the use of oil-base muds is forbidden. Different compositions of water base muds were developed and tested in laboratory and the results led to low-solids salt fluids having a lubricant in its composition. The lubricity coefficients of these fluids are similar to those obtained with oil-base muds. 9-FZB-446D-CE well was drilled with the chosen fluid and high values of torque and drag were not registered, being the operation a total success. (author) 10 tabs.

  12. Measurement of defects in carbon fiber reinforced polymer drilled

    Directory of Open Access Journals (Sweden)

    Pascual Víctor

    2017-01-01

    Full Text Available Increasingly, fiber-reinforced materials are more widely used because of their good mechanical properties. It is usual to join pieces of these materials through screws and rivets, for which it is necessary to make a hole in the piece, usually by drilling. One of the problems of use CFRP resides in the appearance of defects due to the machining. The main defect to be taken into account is the delamination. Delamination implies poor tolerance when assembling parts, reducing the structural integrity of the part, and areas with high wear, as a series of stresses arise when mounting the screws. Much has been published about delamination and the factors that influence its appearance, so we are not going to focus on it. The present study aims to quantify and measure the defects associated with the drilling of compounds reinforced with carbon fibers, in relation to the cutting parameters used in each case. For this purpose, an optical measurement system and a posterior digital image processing will be used through Deltec Vision software.

  13. Transphyseal ACL Reconstruction in Skeletally Immature Patients: Does Independent Femoral Tunnel Drilling Place the Physis at Greater Risk Compared With Transtibial Drilling?

    Science.gov (United States)

    Cruz, Aristides I; Lakomkin, Nikita; Fabricant, Peter D; Lawrence, J Todd R

    2016-06-01

    Most studies examining the safety and efficacy of transphyseal anterior cruciate ligament (ACL) reconstruction for skeletally immature patients utilize transtibial drilling. Independent femoral tunnel drilling may impart a different pattern of distal femoral physeal involvement. To radiographically assess differences in distal femoral physeal disruption between transtibial and independent femoral tunnel drilling. We hypothesized that more oblique tunnels associated with independent drilling involve a significantly larger area of physeal disruption compared with vertically oriented tunnels. Cross-sectional study; Level of evidence, 3. We analyzed skeletally immature patients aged between 10 and 15 years who underwent transphyseal ACL reconstruction utilizing an independent femoral tunnel drilling technique between January 1, 2008, and March 31, 2011. These patients were matched with a transtibial technique cohort based on age and sex. Radiographic measurements were recorded from preoperative magnetic resonance imaging and postoperative radiographs. Ten patients in each group were analyzed. There were significant differences between independent drilling and transtibial drilling cohorts in the estimated area of physeal disruption (1.64 vs 0.74 cm(2); P drilling technique disrupt a larger area of the distal femoral physis and create more eccentric tunnels compared with a transtibial technique. As most studies noting the safety of transphyseal ACL reconstruction have utilized a central, vertical femoral tunnel, surgeons should be aware that if an independent femoral tunnel technique is utilized during transphyseal ACL reconstruction, more physeal tissue is at risk and tunnels are more eccentrically placed across the physis when drilling at more horizontal angles. Prior studies have shown that greater physeal involvement and eccentric tunnels may increase the risk of growth disturbance.

  14. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  15. Drill-specific head impact exposure in youth football practice.

    Science.gov (United States)

    Campolettano, Eamon T; Rowson, Steven; Duma, Stefan M

    2016-11-01

    OBJECTIVE Although 70% of football players in the United States are youth players (6-14 years old), most research on head impacts in football has focused on high school, collegiate, or professional populations. The objective of this study was to identify the specific activities associated with high-magnitude (acceleration > 40g) head impacts in youth football practices. METHODS A total of 34 players (mean age 9.9 ± 0.6 years) on 2 youth teams were equipped with helmet-mounted accelerometer arrays that recorded head accelerations associated with impacts in practices and games. Videos of practices and games were used to verify all head impacts and identify specific drills associated with each head impact. RESULTS A total of 6813 impacts were recorded, of which 408 had accelerations exceeding 40g (6.0%). For each type of practice drill, impact rates were computed that accounted for the length of time that teams spent on each drill. The tackling drill King of the Circle had the highest impact rate (95% CI 25.6-68.3 impacts/hr). Impact rates for tackling drills (those conducted without a blocker [95% CI 14.7-21.9 impacts/hr] and those with a blocker [95% CI 10.5-23.1 impacts/hr]) did not differ from game impact rates (95% CI 14.2-21.6 impacts/hr). Tackling drills were observed to have a greater proportion (between 40% and 50%) of impacts exceeding 60g than games (25%). The teams in this study participated in tackling or blocking drills for only 22% of their overall practice times, but these drills were responsible for 86% of all practice impacts exceeding 40g. CONCLUSIONS In youth football, high-magnitude impacts occur more often in practices than games, and some practice drills are associated with higher impact rates and accelerations than others. To mitigate high-magnitude head impact exposure in youth football, practices should be modified to decrease the time spent in drills with high impact rates, potentially eliminating a drill such as King of the Circle

  16. Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds.

    Directory of Open Access Journals (Sweden)

    Tomomi Yamada

    Full Text Available The sound produced by a dental air turbine handpiece (dental drill can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: "metallic and unpleasant" and "powerful". LAeq had a strong relationship with "powerful impression", calculated sharpness was positively related to "metallic impression", and "unpleasant impression" was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating a

  17. Mud pressure simulation on large horizontal directional drilling

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Rafael R.; Avesani Neto, Jose O.; Martins, Pedro R.R.; Rocha, Ronaldo [Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo (IPT), Sao Paulo, SP (Brazil)

    2009-07-01

    Horizontal Directional Drilling (HDD) is being extensively used in Brazil for installation of oil and gas pipelines. This trenchless technology is currently used in crossings of water bodies, environmental sensitive areas, densely populated areas, areas prone to mass movement and anywhere the traditional technology is not suitable because of the risks. One of the unwanted effects of HDD is collapsing of the soil surrounding the bore-hole, leading to loss of fluid. This can result in problems such as reducing the drilling efficiency, ground heave, structures damage, fluid infiltration and other environmental problems. This paper presents four simulations of down-hole fluid pressures which represents two different geometrical characteristics of the drilling and two different soils. The results showed that greater depths are needed in longer drillings to avoid ground rupture. Thus the end section of the drilling often represents the critical stage. (author)

  18. Petrophysical characterization of the lacustrine sediment succession drilled in Lake El'gygytgyn, Far East Russian Arctic

    Directory of Open Access Journals (Sweden)

    A. C. Gebhardt

    2013-08-01

    Full Text Available Seismic profiles of Far East Russian Lake El'gygytgyn, formed by a meteorite impact some 3.6 million years ago, show a stratified sediment succession that can be separated into subunits Ia and Ib at approximately 167 m below lake floor (=~3.17 Ma. The upper (Ia is well-stratified, while the lower is acoustically more massive and discontinuous. The sediments are intercalated with frequent mass movement deposits mainly in the proximal areas, while the distal region is almost free of such deposits at least in the upper part. In spring 2009, a long core drilled in the lake center within the framework of the International Continental Scientific Drilling Program (ICDP penetrated the entire lacustrine sediment succession down to ~320 m below lake floor and about 200 m farther into the meteorite-impact-related bedrock. Downhole logging data down to 390 m below lake floor show that the bedrock and the lacustrine part differ significantly in their petrophysical characteristics. The contact between the bedrock and the lacustrine sediments is not abrupt, but rather transitional with a variable mixture of impact-altered bedrock clasts in a lacustrine matrix. Physical and chemical proxies measured on the cores can be used to divide the lacustrine part into five different statistical clusters. These can be plotted in a redox-condition vs. input-type diagram, with total organic carbon content and magnetic susceptibility values indicating anoxic or oxic conditions and with the Si / Ti ratio representing more clastic or more biogenic input. Plotting the clusters in this diagram allows identifying clusters that represent glacial phases (cluster I, super interglacials (cluster II, and interglacial phases (clusters III and IV.

  19. MDS system increases drilling safety and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, J.; Turner, L. (Sedco Forex, Paris (FR))

    1989-09-01

    There's a great deal of data recorded during drilling operations on rigs these days, but it is seldom well utilized. The operator's company person relies upon mud loggers for collecting and recording most information. The methods used to process and display this information are often inadequate for those who need it the most the driller and toolpusher. Drilling contractor personnel usually have only rudimentary displays of drilling parameters, and practically no serious method of analysis except for daily paper reports. These are cumbersome to use and provide only incomplete data, after the fact. The MDS system, presented in this article, is a new information and alarm network, which rectifies this situation by bringing to the rig, for the first time, the latest in sensor and computer technologies. This system acquires key drilling data on the rig floor, pump room, and return line, and displays it in a clear graphical format to both the driller and the toolpusher in real time. It also provides the toolpusher with a workstation for easy access to the same information for evaluation and planning of the drilling program.

  20. Core drilling of deep borehole OL-KR3B at Olkiluoto in Eurajoki 2005

    Energy Technology Data Exchange (ETDEWEB)

    Rautio, T. [Suomen Malmi Oy, Espoo (Finland)

    2005-10-15

    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled 530.60 m deep borehole with a diameter of 75.7 mm at Olkiluoto in summer 2005. This borehole was aimed to get additional information of the quality of bedrock in the area, where a new shaft with a diameter of 3 m is planned to be located. The identification number of the borehole is OL-KR38. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded information about drilling parameters. The objective of these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The volume of the used drilling water was about 473m{sup 3} and the measured volume of the returning water was about 38m{sup 3} in borehole OL-KR38. The deviation of the borehole was measured with the deviation measuring instruments EMS and Devitool Peewee. The results of the EMS measurements indicate that borehole OL-KR38 deviates 1.02 m south and 0.58 m west from the target point at the borehole depth of 525 m. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 106

  1. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Science.gov (United States)

    2010-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...

  2. Structural and physical property characterization in the Wenchuan earthquake Fault Scientific Drilling project — hole 1 (WFSD-1)

    Science.gov (United States)

    Li, Haibing; Xu, Zhiqin; Niu, Yixiong; Kong, Guangsheng; Huang, Yao; Wang, Huan; Si, Jialiang; Sun, Zhiming; Pei, Junling; Gong, Zheng; Chevalier, Marie-Luce; Liu, Dongliang

    2014-04-01

    The Wenchuan earthquake Fault Scientific Drilling project (WFSD) started right after the 2008 Mw 7.9 Wenchuan earthquake to investigate its faulting mechanism. Hole 1 (WFSD-1) reached the Yingxiu-Beichuan fault (YBF), and core samples were recovered from 32 to 1201.15 m-depth. Core investigation and a suite of geophysical downhole logs (including P-wave velocity, natural gamma ray, self-potential, resistivity, density, porosity, temperature, magnetic susceptibility and ultrasound borehole images) were acquired in WFSD-1. Integrated studies of cores and logs facilitate qualitative and quantitative comparison of the structures and physical properties of rocks. Logging data revealed that the geothermal gradient of the volcanic Pengguan complex (above 585.75 m) is 1.85 °C/100 m, while that of the sedimentary Xujiahe Formation (below 585.75 m) is 2.15 °C/100 m. In general, natural gamma ray, resistivity, density, porosity, P-wave velocity and magnetic susceptibility primarily depend on the rock lithology. All major fault zones are characterized by high magnetic susceptibility, low density and high porosity, with mostly low resistivity, high natural gamma ray and sound wave velocity. The high magnetic susceptibility values most likely result from the transformation of magnetic minerals by frictional heating due to the earthquake. The YBF exposed in WFSD-1 can be subdivided into five different parts based on different logging responses, each of them corresponding to certain fault-rocks. The high gamma radiation, porosity and P-wave velocity, as well as low resistivity and temperature anomalies indicate that the Wenchuan earthquake fault zone is located at 585.75-594.5 m-depth, with an average inclination and dip angle of N305° and 71°, respectively. The fact that the fracture directions in the hanging wall and footwall are different suggests that their stress field direction is completely different, implying that the upper Pengguan complex may not be local.

  3. Evidence-based Effective Triage Operation During Disaster: Application of Human-trajectory Data to Triage Drill Sessions.

    Science.gov (United States)

    Ohta, Shoichi; Yoda, Ikushi; Takeda, Munekazu; Kuroshima, Satomi; Uchida, Kotaro; Kawai, Kentaro; Yukioka, Tetsuo

    2015-02-01

    Though many governmental and nongovernmental efforts for disaster prevention have been sought throughout Japan since the Great East Japan Earthquake on March 11, 2011, most of the preparation efforts for disasters have been based more on structural and conventionalized regulations than on scientific and objective grounds. Problem There has been a lack of scientific knowledge for space utilization for triage posts in disaster drill sessions. This report addresses how participants occupy and make use of the space within a triage post in terms of areas of use and occupied time. The trajectories of human movement by using Ubiquitous Stereo Vision (USV) cameras during two emergency drill sessions held in 2012 in a large commercial building have been measured. The USV cameras collect each participant's travel distance and the wait time before, during, and after undergoing triage. The correlation between the wait time and the space utilization of patients at a triage post has been analyzed. In the first session, there were some spaces not entirely used. This was caused largely by a patient who arrived earlier than others and lingered in the middle area, which caused the later arrivals to crowd the entrance area. On the other hand, in the second session, the area was used in a more evenly-distributed manner. This is mainly because the earlier arrivals were guided to the back space of the triage post (ie, the opposite side of the entrance), and the late arrivals were also guided to the front half, which was not occupied by anyone. As a result, the entire space was effectively utilized without crowding the entrance. This study has shown that this system could measure people's arrival times and the speed of their movements at the triage post, as well as where they are placed until they receive triage. Space utilization can be improved by efficiently planning and controlling the positioning of arriving patients. Based on the results, it has been suggested that for triage

  4. Comparison of peri-implant bone loss between conventional drilling with irrigation versus low-speed drilling without irrigation.

    Science.gov (United States)

    Pellicer-Chover, H; Peñarrocha-Oltra, D; Aloy-Prosper, A; Sanchis-Gonzalez, J-C; Peñarrocha-Diago, M-A; Peñarrocha-Diago, M

    2017-11-01

    To compare the technique of high speed drilling with irrigation and low speed drilling without irrigation in order to evaluate the success rate and peri-implant bone loss at 12 months of follow-up. A randomized, controlled, parallel-group clinical trial was carried out in patients requiring dental implants to rehabilitate their unitary edentulism. Patients were recruited from the Oral Surgery Unit of the University of Valencia (Spain) between September 2014 and August 2015. Patients who met the inclusion criteria were randomized to two groups: group A (high-speed drilling with irrigation) and group B (low-speed drilling without irrigation). The success rate and peri-implant bone loss were recorded at 12 months of follow-up. Twenty-five patients (9 men and 16 women) with 30 implants were enrolled in the study: 15 implants in group A and 15 implants in group B. The mean bone loss of the implants in group A and group B was 0.83 ± 0.73 mm and 0.62 ± 0.70 mm, respectively (p> 0.05). In the maxilla, the bone loss was 1.04 ± 0.63 mm in group A and 0.71 ± 0.36 mm in group B (p> 0.05), while bone loss in the mandible was 0.59 ± 0.80 mm in group A and 0.69 ± 0.77 mm in group B (p> 0.05). The implant success rate at 12 months was 93.3% in group A and 100% in group B. Within the limitations of the study, the low-speed drilling technique presented peri-implant bone loss outcomes similar to those of the conventional drilling technique at 12 months of follow-up.

  5. Autonomy vs. dependency of scientific collaboration in scientific performance

    Energy Technology Data Exchange (ETDEWEB)

    Chinchilla-Rodriguez, Z.; Miguel, S.; Perianes-Rodriguez, A.; Ovalle-Perandones, M.A.; Olmeda-Gomez, C.

    2016-07-01

    This article explores the capacity of Latin America in the generation of scientific knowledge and its visibility at the global level. The novelty of the contribution lies in the decomposition of leadership, plus its combination with the results of performance indicators. We compare the normalized citation of all output against the leading output, as well as scientific excellence (Chinchilla, et al. 2016a; 2016b), technological impact and the trends in collaboration types and normalized citation. The main goal is to determine to what extent the main Latin American producers of scientific output depend on collaboration to heighten research performance in terms of citation; or to the contrary, whether there is enough autonomy and capacity to leverage its competitiveness through the design of research and development agendas. To the best of our knowledge this is the first study adopting this approach at the country level within the field of N&N. (Author)

  6. Drill machine guidance using natural occurring radiation

    International Nuclear Information System (INIS)

    Dahl, H.D.; Schroeder, R.L.; Williams, B.J.

    1980-01-01

    A drilling machine guidance system is described which uses only the naturally occuring radiation within the seam or stratum of interest. The apparatus can be used for guiding horizontal drilling machines through coal seams and the like. (U.K.)

  7. Catamaran type semisubmersible platform for offshore drilling

    Energy Technology Data Exchange (ETDEWEB)

    Pouget, G; Chevallier, J; Hampton, G

    1988-06-10

    A semi-submersible oil rig which allows the vertical storage of drilling tubes and drill pipes is presented. The structure which links the floaters to the bridge consists of hollow columns forming caissons and containing means for storing tubes.

  8. Structure in continuously cored, deep drill holes at Yucca Mountain, Nevada, with notes on calcite occurrence

    International Nuclear Information System (INIS)

    Carr, W.J.

    1992-12-01

    A study of more than 22,000 feet of core from five deep drill holes at Yucca Mountain, Nevada, provided data on the attitude and vertical distribution of faults and fractures, the sense of fault displacement, and the occurrence of calcite. The study was done mainly to look for evidence of fault flattening at depth, but no consistent downward decrease in dip of faults was found, and no increase in strata rotation was evident with increasing depth. In the two drill holes located near prominent faults that dip toward the holes (USW G-3 and G-2), an apparent increase in the frequency of faults occurs below the tuffs and lavas of Calico Hills. Some of this increase occurs in brittle lavas and flow breccias in the lower part of the volcanic section. In the two holes presumed to be relatively removed from the influence of important faults at depth, the vertical distribution of faults is relatively uniform. Calcite occurs mainly in two general zones, voids in welded portions of the Paintbrush Tuff, and in a deeper zone, mostly below 3,500 feet. Calcite is least abundant in USW G-4, which may reflect the fewer faults and fractures encountered in that drill hole

  9. Core drilling of deep borehole OL-KR32 at Olkiluoto in Eurajoki 2004

    International Nuclear Information System (INIS)

    Rautio, T.

    2005-01-01

    's ratio is 0.22. The main rock type is migmatitic mica gneiss. Filled fractures are most common type of fractures. The average fracture frequency is 3.3 pes/m. The average RQD value is 93.4% In borehole OL-KR32 nine fractured zones were penetrated. The total thickness of fractured zones is 10.70 m which is 5.6% of the drilled core. (orig.)

  10. Combined Effect of Pressure and Temperature on the Viscous Behaviour of All-Oil Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Hermoso J.

    2014-12-01

    Full Text Available The overall objective of this research was to study the combined influence of pressure and temperature on the complex viscous behaviour of two oil-based drilling fluids. The oil-based fluids were formulated by dispersing selected organobentonites in mineral oil, using a high-shear mixer, at room temperature. Drilling fluid viscous flow characterization was performed with a controlled-stress rheometer, using both conventional coaxial cylinder and non-conventional geometries for High Pressure/High Temperature (HPHT measurements. The rheological data obtained confirm that a helical ribbon geometry is a very useful tool to characterise the complex viscous flow behaviour of these fluids under extreme conditions. The different viscous flow behaviours encountered for both all-oil drilling fluids, as a function of temperature, are related to changes in polymer-oil pair solvency and oil viscosity. Hence, the resulting structures have been principally attributed to changes in the effective volume fraction of disperse phase due to thermally induced processes. Bingham’s and Herschel-Bulkley’s models describe the rheological properties of these drilling fluids, at different pressures and temperatures, fairly well. It was found that Herschel-Bulkley’s model fits much better B34-based oil drilling fluid viscous flow behaviour under HPHT conditions. Yield stress values increase linearly with pressure in the range of temperature studied. The pressure influence on yielding behaviour has been associated with the compression effect of different resulting organoclay microstructures. A factorial WLF-Barus model fitted the combined effect of temperature and pressure on the plastic viscosity of both drilling fluids fairly well, being this effect mainly influenced by the piezo-viscous properties of the continuous phase.

  11. The interpretation of geochemical logs from the oceanic basement: mineral modelling in Ocean Drilling Program (ODP) Hole 735B

    International Nuclear Information System (INIS)

    Harvey, P.K.; Lovell, M.A.; Bristow, J.F.

    1991-01-01

    Leg 118 of the Ocean Drilling Program was carried out in the vicinity of the Southwest Indian Ridge. Of the boreholes drilled, by far the most important and scientifically spectacular is Hole 735B which was located on a shallow platform adjacent to the Atlantis II Transform. This hole penetrates some 500 m of gabbroic rocks representing Layer 3 of the oceanic crust. The recovered gabbros show considerable variation both in mineralogy and in the degree of deformation. Core recovery averages 87% and there is excellent control and correlation between the core and the wide range of logs obtained. Mineralogy logs are derived and presented using both core sample data and downhole geochemical logs for Hole 735B. The problems of transforming these data for the particular mineralogy encountered are discussed. (Author)

  12. The LITA Drill and Sample Delivery System

    Science.gov (United States)

    Paulsen, G.; Yoon, S.; Zacny, K.; Wettergreeng, D.; Cabrol, N. A.

    2013-12-01

    The Life in the Atacama (LITA) project has a goal of demonstrating autonomous roving, sample acquisition, delivery and analysis operations in Atacama, Chile. To enable the sample handling requirement, Honeybee Robotics developed a rover-deployed, rotary-percussive, autonomous drill, called the LITA Drill, capable of penetrating to ~80 cm in various formations, capturing and delivering subsurface samples to a 20 cup carousel. The carousel has a built-in capability to press the samples within each cup, and position target cups underneath instruments for analysis. The drill and sample delivery system had to have mass and power requirements consistent with a flight system. The drill weighs 12 kg and uses less than 100 watt of power to penetrate ~80 cm. The LITA Drill auger has been designed with two distinct stages. The lower part has deep and gently sloping flutes for retaining powdered sample, while the upper section has shallow and steep flutes for preventing borehole collapse and for efficient movement of cuttings and fall back material out of the hole. The drill uses the so called 'bite-sampling' approach that is samples are taken in short, 5-10 cm bites. To take the first bite, the drill is lowered onto the ground and upon drilling of the first bite it is then retracted into an auger tube. The auger with the auger tube are then lifted off the ground and positioned next to the carousel. To deposit the sample, the auger is rotated and retracted above the auger tube. The cuttings retained on the flutes are either gravity fed or are brushed off by a passive side brush into the cup. After the sample from the first bite has been deposited, the drill is lowered back into the same hole to take the next bite. This process is repeated until a target depth is reached. The bite sampling is analogous to peck drilling in the machining process where a bit is periodically retracted to clear chips. If there is some fall back into the hole once the auger has cleared the hole, this

  13. The French initiative for scientific cores virtual curating : a user-oriented integrated approach

    Science.gov (United States)

    Pignol, Cécile; Godinho, Elodie; Galabertier, Bruno; Caillo, Arnaud; Bernardet, Karim; Augustin, Laurent; Crouzet, Christian; Billy, Isabelle; Teste, Gregory; Moreno, Eva; Tosello, Vanessa; Crosta, Xavier; Chappellaz, Jérome; Calzas, Michel; Rousseau, Denis-Didier; Arnaud, Fabien

    2016-04-01

    Managing scientific data is probably one the most challenging issue in modern science. The question is made even more sensitive with the need of preserving and managing high value fragile geological sam-ples: cores. Large international scientific programs, such as IODP or ICDP are leading an intense effort to solve this problem and propose detailed high standard work- and dataflows thorough core handling and curating. However most results derived from rather small-scale research programs in which data and sample management is generally managed only locally - when it is … The national excellence equipment program (Equipex) CLIMCOR aims at developing French facilities for coring and drilling investigations. It concerns indiscriminately ice, marine and continental samples. As part of this initiative, we initiated a reflexion about core curating and associated coring-data management. The aim of the project is to conserve all metadata from fieldwork in an integrated cyber-environment which will evolve toward laboratory-acquired data storage in a near future. In that aim, our demarche was conducted through an close relationship with field operators as well laboratory core curators in order to propose user-oriented solutions. The national core curating initiative currently proposes a single web portal in which all scientifics teams can store their field data. For legacy samples, this will requires the establishment of a dedicated core lists with associated metadata. For forthcoming samples, we propose a mobile application, under Android environment to capture technical and scientific metadata on the field. This application is linked with a unique coring tools library and is adapted to most coring devices (gravity, drilling, percussion, etc...) including multiple sections and holes coring operations. Those field data can be uploaded automatically to the national portal, but also referenced through international standards or persistent identifiers (IGSN, ORCID and INSPIRE

  14. DALI - drilling advisor with logic interpretations: methodological issues for designing underbalanced drilling operations. Improving efficiency using case-based reasonic

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Gustavo A.; Velazquez C, David [Mexican Oil Institute, Mexico DF (Mexico)

    2004-07-01

    A system that applies a method of knowledge-intensive case-based reasoning, for repair and prevention of unwanted events in the domain of offshore oil well drilling, has been developed in cooperation with an oil company. From several reoccurring problems during oil well drilling the problem of 'lost circulation', i.e. loss of circulating drilling fluid into the geological formation, was picked out as a pilot problem. An extensive general knowledge model was developed for the domain of oil well drilling. Different cases were created on the basis of information from one Mexican Gulf operator. When the completed CBR-system was tested against a new case, cases with descending similarity were selected by the tool. In an informal evaluation, the two best fitting cases proved to give the operator valuable advise on how to go about solving the new case (author)

  15. Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill

    Science.gov (United States)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor)

    2014-01-01

    A Single Piezo-Actuator Rotary-Hammering (SPaRH) Drill includes a horn actuator having high power piezoelectric materials and a flexure pre-stress to increase the actuators effectiveness. The drill is a low mass, low power, compact coring drill measuring 20-cm high by 7-cm diameter and having a total weight of 2 kg including drive electronics. Using an average power of 50-Watts, the drill basalt is expected to cut basalt at a rate of 0.2 cm/min down to depth of 10-cm and create cuttings and an intact core. The drill is expected to operate under different environments including Martian ambient (6 Torr and down to -50 degree C), and liquid nitrogen temperatures (77 K) and low pressure (<<1 Torr) to simulate lunar polar and Europa conditions. Materials expected to be sampled include Kaolinite, Saddleback Basalt, Limestone, Volcanic Breccia, Siltstone, ice, permafrost and layered rocks with different hardness.

  16. Advanced Mud System for Microhole Coiled Tubing Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  17. Ellog Auger Drilling -"3-in-one" method for hydrogeological data collection

    DEFF Research Database (Denmark)

    Sørensen, Kurt; Larsen, Flemming

    1999-01-01

    The Ellog auger drilling method is an integrated approach for hydrogeological data collection during auger drilling in unconsolidated sediments. The drill stem is a continuous flight, hollow-stem auger with integrated electrical and gamma logging tools. The geophysical logging is performed...... continuously while drilling. Data processing is carried out in the field, and recorded log features are displayed as drilling advances. A slotted section in the stem, above the cutting head, allows anaerobic water and soil-gas samples to be taken at depth intervals of approximately 0.2 m. The logging, water......, and gas sampling instrumentation in the drill stem is removable; therefore, when the drill stem is pulled back, piezometers can be installed through the hollow stem. Cores of sediments can subsequently be taken continuously using a technique in which the drill bit can be reinserted after each coring...

  18. Enhancing down-the-hole air hammer capacity in directional drilling

    Science.gov (United States)

    Klishin, V. I.; Timonin, V. V.; Kokoulin, D. I.; Alekseev, S. E.; Kubanychbek, B.

    2017-09-01

    The authors discuss the issue connected with drilling trajectory deviation and present the technique of rotary-percussion drilling with a down-the-hole air hammer. The article describes pilot testing of the air hammer drill PNB76 in Berezovskaya Mine. The ways of improving the air hammer drill are identified, and the basic diagram and R&D test data are given.

  19. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2011-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...... data, clamping conditions, and drill geometry were varied in order to optimize the process and reach the desired quality. The results revealed possible reduction of burr occurrence on both the entry and exit side of the sheet, requiring no additional deburring. The demand on the uniform appearance...... of drilled holes was fulfilled as well as high productivity achieved. Such optimized process results in a noticeable production cost reduction....

  20. Hole quality and burr reduction in drilling aluminium sheets

    DEFF Research Database (Denmark)

    Pilny, Lukas; De Chiffre, Leonardo; Piska, Miroslav

    2012-01-01

    Optimization of the metal drilling process requires creation of minimum amount of burrs and uniform appearance of the drilled holes. In this paper, an experimental investigation was performed on 2 mm sheets of wrought aluminium alloy Al99.7Mg0.5Cu-H24, using 1.6 and 2 mm diameter drills. Cutting...... data, clamping conditions, and drill geometry were varied in order to optimize the process and reach the desired quality. The results revealed possible reduction of burr occurrence on both the entry and exit side of the sheet, requiring no additional deburring. The demand on the uniform appearance...... of drilled holes was fulfilled as well as high productivity achieved. Such optimized process results in a noticeable production cost reduction....