WorldWideScience

Sample records for sciences materials sciences

  1. Computational Materials Science | Materials Science | NREL

    Science.gov (United States)

    Computational Materials Science Computational Materials Science An image of interconnecting, sphere science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS

  2. Materials Science | NREL

    Science.gov (United States)

    microscopy and imaging science, interfacial and surface science, materials discovery, and thin-film material Science Materials Science Illustration with bottom row showing a ball-and-stick model and top row dense black band. State-of-the-art advances in materials science come from a combination of experiments

  3. Interfacial and Surface Science | Materials Science | NREL

    Science.gov (United States)

    Science group within the Material Science Center. He oversees research studies of surfaces and interfaces Interfacial and Surface Science Interfacial and Surface Science Image of irregular-outlined, light address a broad range of fundamental and applied issues in surface and interfacial science that are

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China; Department of Materials Science and Engineering, Luoyang Institute of Science and ...

  5. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 5 ... Polyester urethane; scaffold; tensile strength; swelling; degradation; cell culture. ... Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India; School of Medical Science and Technology, Indian Institute of Technology, Kharagpur ...

  7. Materials science symposium 'materials science using accelerators'

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Asai, Masato; Chimi, Yasuhiro

    2005-07-01

    The facility of the JAERI-Tokai tandem accelerator and its booster has been contributing to advancing heavy-ion sciences in the fields of nuclear physics, nuclear chemistry, atomic and solid-state physics and materials science, taking advantage of its prominent performance of heavy-ion acceleration. This facility was recently upgraded by changing the acceleration tubes and installing an ECR ion-source at the terminal. The radioactive nuclear beam facility (Tokai Radioactive Ion Accelerator Complex, TRIAC) was also installed by the JAERI-KEK joint project. On this occasion, this meeting was held in order to provide a new step for the advancement of heavy-ion science, and to exchange information on recent activities and future plans using the tandem facility as well as on promising new experimental techniques. This meeting was held at Tokai site of JAERI on January 6th and 7th in 2005, having 24 oral presentations, and was successfully carried out with as many as 90 participants and lively discussions among scientists from all the fields of heavy-ion science, including solid-sate physics, nuclear physics and chemistry, and accelerator physics. This summary is the proceedings of this meeting. We would like to thank all the staffs of the accelerators section, participants and office workers in the Department of Materials Science for their support. The 24 of the presented papers are indexed individually. (J.P.N.)

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Ming Kang1 2 Xiaoming Liao1 Guangfu Yin1 Xun Sun3 Xing Yin4 Lu Xie4 Jun Liu2. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China; College of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Department of ...

  9. Electronic Materials Science

    Science.gov (United States)

    Irene, Eugene A.

    2005-02-01

    A thorough introduction to fundamental principles and applications From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts. Electronic Materials Science also features: An orientation towards industry and academia drawn from the author's experience in both arenas Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics Problem sets and important references throughout Flexibility for various pedagogical needs Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

  10. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 5 ... The electrical performances of thin film material can be improved largely by dopants. ... Department of Materials Science and Engineering, Jinan University, Jinan 250022, PR China; The State Key Laboratory of Material Composite and Advanced ...

  12. 2002 Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SARAVANA KUMAR JAGANATHAN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 18. Advanced nanofibrous textile-based dressing material for treating chronic wounds · ISABEL HERRMANN EKO SUPRIYANTO SARAVANA KUMAR ...

  14. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. ISABEL HERRMANN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 18. Advanced nanofibrous textile-based dressing material for treating chronic wounds · ISABEL HERRMANN EKO SUPRIYANTO SARAVANA KUMAR JAGANATHAN A ...

  16. Materials science

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Materials Science Division is engaged in research on physical properties of materials and the effects of radiation upon them. This involves solid state materials undergoing phase transitions, energy storing materials, and biomaterials. The Division also offers research facilities for M.S. and Ph.D. thesis work in the fields of physics, chemistry, materials, and radiation sciences in cooperation with the various colleges and departments of the UPR Mayaguez Campus. It is anticipated that it will serve as a catalyst in starting energy-related research programs in cooperation with UPR faculty, especially programs involving solar energy. To encourage and promote cooperative efforts, contact is maintained with former graduate students and with visiting scientists from Latin American research institutions

  17. Materials Science

    Science.gov (United States)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. BALDEV RAJ. Articles written in Bulletin of Materials Science. Volume 26 Issue 4 June 2003 pp 449-460 Instrumentation. Thermogravimetry-evolved gas analysis–mass spectrometry system for materials research · M Kamruddin P K Ajikumar S Dash A K Tyagi Baldev Raj.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Screen printing; ferroelectricity; piezoelectricity; nonlinear property. .... Luoyang Institute of Science and Technology, Luoyang 471023, China; Functional Materials Research Laboratory, Tongji University, Shanghai 200092, China; Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. DANUTA OLSZEWSKA. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 16. Influence of the conditions of a solid-state synthesis anode material Li 4 Ti 5 O 12 on its electrochemical properties of lithium cells · DANUTA OLSZEWSKA ANNA ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... India; Department of Physics, Sultan Qaboos University, Muscat, P.O. Box 36, Code 123, Oman; Department of Polymer Science andRubber Technology, Cochin University of Science and Technology, Cochin 682022, India; Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Bajpai. Articles written in Bulletin of Materials Science. Volume 28 Issue 6 October 2005 pp 529-534 Review—Polymers. Morphological, thermal and annealed microhardness characterization of gelatin based interpenetrating networks of polyacrylonitrile: A hard biopolymer.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Al. Mickiewicza 30, 30-059 Krakow, Poland; The Pennsylvania State University, Department of Physics and Center for 2-Dimensional and Layered Materials, 104 Davey Laboratory, University Park, PA ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P.R. China; Anhui Provincial Laboratory of High Performance Nonferrous Metals Material, Wuhu, Anhui 241000, P.R. China; Department of Materials Science and Engineering, University of Science and Technology of ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. REGINA C SO. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1179-1187. Preparation, characterization of chitosan/bamboo charcoal/poly(methacrylate) composite beads · DOROTHY CAMINOS-PERUELO WEI-CHIEH WANG ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Prasannakumar. Articles written in Bulletin of Materials Science. Volume 24 Issue 5 October 2001 pp 535-538 Polymers. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly(2-hydroxyethylmethacrylate): Synthesis, chemical, ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Editorial Board. Bulletin of Materials Science. Editor. Giridhar U. Kulkarni, Centre for Nano and Soft Matter Science, Bengaluru. Associate Editors. Ayan Datta, Indian Association for the Cultivation of Science, Kolkata M. Eswaramoorthy, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru A.K. Ganguli ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Roy. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 513-515. Improved zinc oxide film for gas sensor applications · S Roy S Basu · More Details Abstract Fulltext PDF. Zinc oxide (ZnO) is a versatile material for different commercial ...

  9. NASA Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SURESH KUMAR. Articles written in Bulletin of Materials Science. Volume 35 Issue 5 October 2012 pp 787-794. Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in monovalent and multivalent ions doped polyaniline.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Neelotpal Sen Sarma. Articles written in Bulletin of Materials Science. Volume 37 Issue 7 December 2014 pp 1613-1624. Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process · Bhabesh Kumar Nath Aziz Khan ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Nitai Debnath. Articles written in Bulletin of Materials Science. Volume 37 Issue 2 April 2014 pp 199-206. Ciprofloxacin conjugated zinc oxide nanoparticle: A camouflage towards multidrug resistant bacteria · Prasun Patra Shouvik Mitra Nitai Debnath Panchanan Pramanik ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Arunkumar Lagashetty. Articles written in Bulletin of Materials Science. Volume 27 Issue 6 December 2004 pp 491-495 Nanomaterials. Adsorption study of Pb ions on nanosized SnO2, synthesized by self-propagating combustion reaction · Arunkumar Lagashetty A ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. MURAT UYGUN. Articles written in Bulletin of Materials Science. Volume 39 Issue 2 April 2016 pp 353-359. Hydrophobic nano-carrier for lysozyme adsorption · CANAN ALTUNBAS FULDEN ZEYNEP URAL MURAT UYGUN NESIBE AVCIBASI UGUR AVCIBASI DENIZ AKTAS ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. U S Sajeev. Articles written in Bulletin of Materials Science. Volume 27 Issue 2 April 2004 pp 155-161 Magnetic Materials. Magnetic field induced assembling of nanoparticles in ferrofluidic liquid thin films based on NiFe1-Fe2O4 · V S Abraham S Swapna Nair S Rajesh U S ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S R Dhage. Articles written in Bulletin of Materials Science. Volume 27 Issue 1 February 2004 pp 43-45 Dielectric Materials. Nonlinear – characteristics study of doped SnO2 · S R Dhage V Ravi S K Date · More Details Abstract Fulltext PDF. When tin oxide is doped with ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D S Prasad. Articles written in Bulletin of Materials Science. Volume 25 Issue 2 April 2002 pp 79-83 Materials Synthesis. Preparation of high purity tellurium by zone refining · N R Munirathnam D S Prasad Ch Sudheer A J Singh T L Prakash · More Details Abstract Fulltext PDF.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Sandeep Arya. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 535-539. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor · Sandeep Arya Saleem Khan Suresh Kumar Rajnikant ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 3. Formation of InN nanoparticle and nanorod structures by nitrogen plasma annealing method ... Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016, India; Material Science Division, Indira Gandhi Centre for Atomic Research, ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Dinesh Kumar. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 549-551. Semiconductor applications of plasma immersion ion implantation technology · Mukesh Kumar Rajkumar Dinesh Kumar P J George · More Details Abstract Fulltext ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T Mirza. Articles written in Bulletin of Materials Science. Volume 23 Issue 5 October 2000 pp 377-382 Glass Ceramics. Preparation and characterization of magnesium–aluminium–silicate glass ceramics · Madhumita Goswami T Mirza A Sarkar Shobha Manikandan Sangeeta ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 1. Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and ... Author Affiliations. A S Singha1 Anjali Shama1 Vijay Kumar Thakur1. Material Science Laboratory, National Institute of Technology, Hamirpur 177 005, India ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. AGNIESZKA SOBCZAK-KUPIEC. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 755-764. Effect of calcination conditions of pork bone sludge on behaviour of hydroxyapatite in simulated body fluid · Agnieszka Sobczak-Kupiec Zbigniew ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Thotapalli P Sastry. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 177-181. Preparation and characterization of a novel bone graft composite containing bone ash and egg shell powder · Gunasekaran Krithiga Thotapalli P Sastry.

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B V Radhakrishna Bhat. Articles written in Bulletin of Materials Science. Volume 23 Issue 2 April 2000 pp 109-117 Composites. Optimization of processing parameters for making alumina–partially stabilized zirconia laminated composites · S Deb B V Radhakrishna Bhat.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SUDHANSHU CHOUDHARY. Articles written in Bulletin of Materials Science. Volume 35 Issue 5 October 2012 pp 713-718. Theoretical study on effect of radial and axial deformation on electron transport properties in a semiconducting Si–C nanotube · Sudhanshu Choudhary ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. G P Nayaka. Articles written in Bulletin of Materials Science. Volume 37 Issue 3 May 2014 pp 705-711. Structural, electrical and electrochemical behaviours of LiNi0.4M0.1Mn1.5O4 ( = Al, Bi) as cathode material for Li-ion batteries · G P Nayaka J Manjanna K C Anjaneya P ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K C Anjaneya. Articles written in Bulletin of Materials Science. Volume 37 Issue 3 May 2014 pp 705-711. Structural, electrical and electrochemical behaviours of LiNi0.4M0.1Mn1.5O4 ( = Al, Bi) as cathode material for Li-ion batteries · G P Nayaka J Manjanna K C Anjaneya P ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Shweta Agrawal. Articles written in Bulletin of Materials Science. Volume 32 Issue 6 December 2009 pp 569-573 Thin Films and Nanomatter. Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals embedded in PMMA · Shweta Agrawal Subodh Srivastava Sumit ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Manoj Komath. Articles written in Bulletin of Materials Science. Volume 23 Issue 2 April 2000 pp 135-140 Biomaterials. On the development of an apatitic calcium phosphate bone cement · Manoj Komath H K Varma R Sivakumar · More Details Abstract Fulltext PDF.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Md HABIB. Articles written in Bulletin of Materials Science. Volume 41 Issue 2 April 2018 pp 56. Tuning the BODIPY core for its potential use in DSSC: a quantum chemical approach · NARENDRA NATH GHOSH Md HABIB ANUP PRAMANIK PRANAB SARKAR SOUGATA PAL.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. TRAN NGOC TUYEN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 6. Lead ions removal from aqueous solution using modified carbon nanotubes · NGUYEN DUC VU QUYEN TRAN NGOC TUYEN DINH QUANG KHIEU HO VAN MINH ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R Murugesan. Articles written in Bulletin of Materials Science. Volume 25 Issue 7 December 2002 pp 613-618 Polymers. Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline · R Murugesan E Subramanian · More Details ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Gopalakrishnan. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 235-241 Polymers. Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol · C V Mythili A Malar Retna S Gopalakrishnan · More Details ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. E Subramanian. Articles written in Bulletin of Materials Science. Volume 25 Issue 7 December 2002 pp 613-618 Polymers. Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline · R Murugesan E Subramanian · More Details ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. RITWIK SARKAR. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 293-298 Alloys and Steels. Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles · Ritwik Sarkar Nar Singh Swapan Kumar Das.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Chandra. Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 309-314 Biomaterials. Characteristics of porous zirconia coated with hydroxyapatite as human bones · V V Narulkar S Prakash K Chandra · More Details Abstract Fulltext PDF.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P P PRADYUMNAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 5 September 2017 pp 1007-1011. Structural and magnetic studies on copper succinate dihydrate single crystals · M P BINITHA P P PRADYUMNAN · More Details Abstract Fulltext PDF.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Zhanshuang Li. Articles written in Bulletin of Materials Science. Volume 31 Issue 2 April 2008 pp 193-195 Nanomaterials. Mesoscale organization of CuO nanoslices: Formation of sphere · Jun Wang Shunxiao Zhang Zhanshuang Li Jia You Piaoping Yang Xiaoyan Jing Milin ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Shunxiao Zhang. Articles written in Bulletin of Materials Science. Volume 31 Issue 2 April 2008 pp 193-195 Nanomaterials. Mesoscale organization of CuO nanoslices: Formation of sphere · Jun Wang Shunxiao Zhang Zhanshuang Li Jia You Piaoping Yang Xiaoyan Jing Milin ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SABRI BAYLAV. Articles written in Bulletin of Materials Science. Volume 41 Issue 2 April 2018 pp 49. Synthesis and characterization of metal ion-imprinted polymers · YASEMIN ISIKVER SABRI BAYLAV · More Details Abstract Fulltext PDF. In this study, ion-imprinted polymeric ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. XIAOWEN ZHANG. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 895-902. Structural evolution, electrical and optical properties of AZO films deposited by sputtering ultra-high density target · Jiwen Xu Zupei Yang Hua Wang Xiaowen Zhang.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LIFANG ZHANG. Articles written in Bulletin of Materials Science. Volume 38 Issue 3 June 2015 pp 811-816. Fabrication and characterization of PDLLA/pyrite composite bone scaffold for osteoblast culture · Lifang Zhang Yanyan Zheng Chengdong Xiong · More Details Abstract ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Austrian Centre of Competence for Tribology, Viktor Kaplan-Straße 2, A 2700 Wiener Neustadt, Austria; Institute of Industrial Electronics and Material Science, Vienna University of Technology, A 1040 Vienna, Austria; Institute of Material Science and Testing, Vienna University of Technology, A 1040 Vienna, Austria; Institute ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Dong Zhang. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 25-28. Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication · Tian-You Zhang Dong Zhang · More Details Abstract Fulltext PDF.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Raji George. Articles written in Bulletin of Materials Science. Volume 30 Issue 2 April 2007 pp 183-185 Nanomaterials. Synthesis, characterization and gas sensitivity of MoO3 nanoparticles · Arnab Ganguly Raji George · More Details Abstract Fulltext PDF. Nanoparticles of ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Vinmathi. Articles written in Bulletin of Materials Science. Volume 38 Issue 3 June 2015 pp 625-628. A green and facile approach for the synthesis of silver nanoparticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Uma Maheswar Rao. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 587-593 Surface Studies. Investigation of surface modifications in ethylene propylene diene monomer (EPDM) rubber due to tracking under a.c. and d.c. voltages.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. MONICA KATIYAR. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 653-660. Processing and performance of organic insulators as a gate layer in organic thin film transistors fabricated on polyethylene terephthalate substrate · Saumen Mandal ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Muthulakshmi. Articles written in Bulletin of Materials Science. Volume 37 Issue 7 December 2014 pp 1575-1582. Effect of temperature on the AC impedance of protein and carbohydrate biopolymers · S Muthulakshmi S Iyyapushpam D Pathinettam Padiyan · More Details ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Wein-Duo Yang. Articles written in Bulletin of Materials Science. Volume 36 Issue 5 October 2013 pp 779-788. Study on photocatalysis of TiO2 nanotubes prepared by methanol-thermal synthesis at low temperature · Chau Thanh Nam Wein-Duo Yang Le Minh Duc.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R Bajpai. Articles written in Bulletin of Materials Science. Volume 25 Issue 1 February 2002 pp 21-23 Mechanical Properties. Surface modification on PMMA : PVDF polyblend: hardening under chemical environment · R Bajpai V Mishra Pragyesh Agrawal S C Datt · More Details ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Murali Sastry. Articles written in Bulletin of Materials Science. Volume 23 Issue 3 June 2000 pp 159-163 Nanomaterials. A note on the use of ellipsometry for studying the kinetics of formation of self-assembled monolayers · Murali Sastry · More Details Abstract Fulltext PDF.

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Ch Sudheer. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 545-547. Tellurium purification: various techniques and limitations · D S Prasad Ch Sudheer N R Munirathnam T L Prakash · More Details Abstract Fulltext PDF. Limitations and ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Anjum Qureshi. Articles written in Bulletin of Materials Science. Volume 29 Issue 6 November 2006 pp 605-609. Analysis of organometallics dispersed polymer composite irradiated with oxygen ions · N L Singh Anjum Qureshi A K Rakshit D K Avasthi · More Details Abstract ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. KADARKARAI MURUGAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1455-1462. A sensitive optical sensor based on DNA-labelled Si@SiO 2 core–shell nanoparticle for the detection of Hg 2 + ions in environmental water samples.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. YONG J IANG. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1255-1261. Molecular dynamics study on the relaxation properties of bilayered graphene with defects · WEI ZHANG JIU-REN YIN PING ZHANG YAN-HUAI DING YONG J IANG.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. KANNAIYAN DINAKARAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1455-1462. A sensitive optical sensor based on DNA-labelled Si@SiO 2 core–shell nanoparticle for the detection of Hg 2 + ions in environmental water samples.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Jadu Samuel. Articles written in Bulletin of Materials Science. Volume 36 Issue 6 November 2013 pp 981-987. Green chemical incorporation of sulphate into polyoxoanions of molybdenum to nano level · Jadu Samuel S Hari Prasad M K Sreedhar · More Details Abstract Fulltext ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Ganesan. Articles written in Bulletin of Materials Science. Volume 28 Issue 6 October 2005 pp 609-615 Thin Films. Structural morphology of amorphous conducting carbon film · P N Vishwakarma V Prasad S V Subramanyam V Ganesan · More Details Abstract Fulltext PDF.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Amarnath. Articles written in Bulletin of Materials Science. Volume 26 Issue 4 June 2003 pp 435-439 Biomaterials. Effect of heat treatments on the hydrogen embrittlement susceptibility of API X-65 grade line-pipe steel · G Ananta Nagu Amarnath T K G Namboodhiri.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Sejal Shah. Articles written in Bulletin of Materials Science. Volume 30 Issue 5 October 2007 pp 477-480 Polymers. Study of microhardness and electrical properties of proton irradiated polyethersulfone (PES) · Nilam Shah Dolly Singh Sejal Shah Anjum Qureshi N L Singh K P ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D K Kharat. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 453-455 Ceramics and Glasses. Characterization and microstructure of porous lead zirconate titanate ceramics · B Praveenkumar H H Kumar D K Kharat · More Details Abstract ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. H P Sachin. Articles written in Bulletin of Materials Science. Volume 30 Issue 1 February 2007 pp 57-63 Electrochemistry. Polynitroaniline as brightener for zinc–nickel alloy plating from non-cyanide sulphate bath · H P Sachin Ganesha Achary Y Arthoba Naik T V Venkatesha.

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Rajeev Gupta. Articles written in Bulletin of Materials Science. Volume 34 Issue 3 June 2011 pp 447-454. An investigation in InGaO3(ZnO)m pellets as cause of variability in thin film transistor characteristics · Sonachand Adhikari Rajeev Gupta Ashish Garg Deepak.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N J KARALE. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1335-1345. Chemical synthesis and characterization of nano-sized rare-earth ruthenium pyrochlore compounds Ln 2 Ru 2 O 7 (Ln = rare earth) · R A PAWAR A K NIKUMBH ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Mondal. Articles written in Bulletin of Materials Science. Volume 36 Issue 1 February 2013 pp 51-58. Electrochemical passivation behaviour of nanocrystalline Fe80Si20 coating in borate buffer solution · G Gupta A P Moon K Mondal · More Details Abstract Fulltext PDF.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Jiuxing Zhang. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 825-828. Magnetocaloric effect of Gd5Si2Ge2 alloys in low magnetic field · Hong Zeng Chunjiang Kuang Jiuxing Zhang Ming Yue · More Details Abstract Fulltext PDF.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B P Singh. Articles written in Bulletin of Materials Science. Volume 23 Issue 1 February 2000 pp 11-16 Molecular Magnets. Synthesis and magnetic properties of one-dimensional metal oxalate networks as molecular-based magnets · B P Singh B Singh · More Details Abstract ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Manoj Kumar. Articles written in Bulletin of Materials Science. Volume 26 Issue 3 April 2003 pp 335-341 Glasses. Optical absorption and fluorescent behaviour of titanium ions in silicate glasses · Manoj Kumar Aman Uniyal A P S Chauhan S P Singh · More Details Abstract ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N K PANDEY. Articles written in Bulletin of Materials Science. Volume 40 Issue 2 April 2017 pp 253-262. Electrical and optical properties of ZnO–WO 3 nanocomposite and its application as a solid-state humidity sensor · VANDNA SHAKYA N K PANDEY SUNEET KUMAR ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Y Arthoba Naik. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 495-501 Thin Films. A new condensation product for zinc plating from non-cyanide alkaline bath · Y Arthoba Naik T V Venkatesha · More Details Abstract Fulltext PDF.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Singh. Articles written in Bulletin of Materials Science. Volume 28 Issue 7 December 2005 pp .... Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals embedded in PMMA · Shweta Agrawal Subodh Srivastava Sumit Kumar S S Sharma B Tripathi M Singh Y K Vijay.

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Pal. Articles written in Bulletin of Materials Science. Volume 24 Issue 4 August 2001 pp 415-420 Biomaterials. A novel bio-inorganic bone implant containing deglued bone, chitosan and gelatin · G Saraswathy S Pal C Rose T P Sastry · More Details Abstract Fulltext PDF.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Annie John. Articles written in Bulletin of Materials Science. Volume 25 Issue 2 April 2002 pp 141-154 Biomaterials. Bone growth response with porous hydroxyapatite granules in a critical sized lapine tibial-defect model · Annie John S Abiraman H K Varma T V Kumari P R ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R AHMED. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1105-1110. Structural, elastic, optoelectronic and magnetic properties of CdHo 2 S 4 spinel: a first-principle study · I HATRAF O MERABIHA T SEDDIK H BALTACHE R KHENATA R ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Rani Joseph. Articles written in Bulletin of Materials Science. Volume 26 Issue 3 April 2003 pp 343-348 Thin Films. Optimization of pH and direct imaging conditions of complexed methylene blue sensitized poly(vinyl chloride) films · M Ushamani N G Leenadeenja K Sreekumar ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A S Singha. Articles written in Bulletin of Materials Science. Volume 31 Issue 1 February 2008 pp 7-13 Polymers. Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and evaluation of some properties of grafted fibre · A S Singha Anjali Shama ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Ganesh Sanjeev. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 191-196 Thin Films and Nanomatter. Dielectric properties of electron irradiated PbZrO3 thin films · Shetty Aparna V M Jali Ganesh Sanjeev Jayanta Parui S B Krupanidhi.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Hafez. Articles written in Bulletin of Materials Science. Volume 33 Issue 2 April 2010 pp 149-155 Polymers. Influence of granular strontium chloride as additives on some electrical and mechanical properties for pure polyvinyl alcohol · A B Elaydy M Hafez · More Details ...

  1. Materials Science and Engineering |

    Science.gov (United States)

    Engineering? What Is Materials Science and Engineering? MSE combines engineering, physics and chemistry to solve problems in nanotechnology, biotechnology, information technology, energy, manufacturing, and more ,' which could replace steel. Materials Science and Mechanical Engineering Professors work together to

  2. Materials Science Laboratory

    Science.gov (United States)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S S Samal. Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 379-386 Polymers. Carbon nanotube reinforced polymer composites—A state of the art · S Bal S S Samal · More Details Abstract Fulltext PDF. Because of their high mechanical ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Le Minh Duc. Articles written in Bulletin of Materials Science. Volume 36 Issue 5 October 2013 pp 779-788. Study on photocatalysis of TiO2 nanotubes prepared by methanol-thermal synthesis at low temperature · Chau Thanh Nam Wein-Duo Yang Le Minh Duc · More Details ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Veera Brahmam. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 411-414 Single Crystals. Crystal growth and reflectivity studies of Zn1–MnTe crystals · K Veera Brahmam D Raja Reddy B K Reddy · More Details Abstract Fulltext PDF.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Zhang Lei. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 161-167. Characterization on strength and toughness of welded joint for Q550 steel · Jiang Qinglei Li Yajiang Wang Juan Zhang Lei · More Details Abstract Fulltext PDF. Q550 high ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Amit Sinha. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 653-657 Bioceramics. Development of calcium phosphate based bioceramics · Amit Sinha A Ingle K R Munim S N Vaidya B P Sharma A N Bhisey · More Details Abstract Fulltext ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. HUA WANG. Articles written in Bulletin of Materials Science. Volume 36 Issue 3 June 2013 pp 389-393. Effects of Bi doping on dielectric and ferroelectric properties of PLBZT ferroelectric thin films synthesized by sol–gel processing · Hua Wang Li Liu Ji-Wen Xu Chang-Lai Yuan ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. H N Sheikh. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 843-851. Synthesis and characterization of composites of mixed oxides of iron and neodymium in polymer matrix of aniline–formaldehyde · Sajdha H N Sheikh B L Kalsotra N Kumar S ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Rajendra Babu. Articles written in Bulletin of Materials Science. Volume 24 Issue 2 April 2001 pp 249-252 Crystal Growth. Thermal behaviour of strontium tartrate single crystals grown in gel · M H Rahimkutty K Rajendra Babu K Sreedharan Pillai M R Sudarsana Kumar C M K ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B Swarna Latha. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 883-888. Structural, spectroscopic and electrochemical study of V substituted LiTi2(PO4)3 solid electrolyte for lithium-ion batteries · A Venkateswara Rao V Veeraiah A V Prasada ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Bhat. Articles written in Bulletin of Materials Science. Volume 23 Issue 4 August 2000 pp 295-299 Alloys. A test for diffusional coherency strain hypothesis in the discontinuous precipitation in Mg–Al alloy · K T Kashyap C Ramachandra V Bhat B Chatterji · More Details Abstract ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Mandal. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 743-752. Porous copper template from partially spark plasma-sintered Cu–Zn aggregate via dezincification · M Mandal D Singh Gouthama B S Murty S Sangal K Mondal · More Details ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B L Kalsotra. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 843-851. Synthesis and characterization of composites of mixed oxides of iron and neodymium in polymer matrix of aniline–formaldehyde · Sajdha H N Sheikh B L Kalsotra N Kumar S ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T Bhimasankaram. Articles written in Bulletin of Materials Science. Volume 23 Issue 6 December 2000 pp 483-489 Oxide Ceramics. Effect of HIPing on conductivity and impedance measurements of DyBi5Fe2Ti3O18 ceramics · N V Prasad G Prasad Mahendra Kumar S V ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S K Biswas. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 251-255 Polymers. Effect of substrate roughness on growth of diamond by hot filament CVD · Awadesh K Mallik S R Binu L N Satapathy Chandrabhas Narayana Md Motin Seikh S A ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Sahu. Articles written in Bulletin of Materials Science. Volume 32 Issue 3 June 2009 pp 285-294. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview · A K Sahu S Pitchumani P Sridhar A K Shukla · More Details Abstract Fulltext PDF.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Anhua Wu. Articles written in Bulletin of Materials Science. Volume 27 Issue 4 August 2004 pp 333-336 Crystal Growth. Bridgman growth and defects of Nd : Sr3Ga2Ge4O14 laser crystals · Jiaxuan Ding Anhua Wu Jiayue Xu · More Details Abstract Fulltext PDF.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LING YANG. Articles written in Bulletin of Materials Science. Volume 36 Issue 3 June 2013 pp 389-393. Effects of Bi doping on dielectric and ferroelectric properties of PLBZT ferroelectric thin films synthesized by sol–gel processing · Hua Wang Li Liu Ji-Wen Xu Chang-Lai Yuan ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. L C GUPTA. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1121-1125. High-pressure studies of superconductivity in BiO 0.75 F 0.25 BiS 2 · ZEBA HAQUE GOHIL S THAKUR GANESAN KALAI SELVAN SONACHALAM ARUMUGAM L C ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Petrič. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 113-119. Performance of waterborne acrylic surface coatings on wood impregnated with Cu-ethanolamine preservatives · M Humar M Pavlič D Žlindra M Tomažič M Petrič.

  2. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P K Parhi. Articles written in Bulletin of Materials Science. Volume 24 Issue 2 April 2001 pp 143-149. Failure analysis of multiple delaminated composite plates due to bending and impact · P K Parhi S K Bhattacharyya P K Sinha · More Details Abstract Fulltext PDF. The present ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A S Prakash. Articles written in Bulletin of Materials Science. Volume 29 Issue 4 August 2006 pp 339-345 Ceramics and Glasses. Solution-combustion synthesis of Bi1–LnO1.5 (Ln = Y and La–Yb) oxide ion conductors · Manjunath B Bellakki A S Prakash C Shivakumara M S ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K B R Varma. Articles written in Bulletin of Materials Science. Volume 30 Issue 6 December 2007 pp 567-570 Ceramics and Glasses. Microwave synthesis and sintering characteristics of CaCu3Ti4O12 · P Thomas L N Sathapathy K Dwarakanath K B R Varma · More Details ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Prasad. Articles written in Bulletin of Materials Science. Volume 27 Issue 6 December 2004 pp 547-553 Glasses and Ceramics. Impedance analysis of Pb2Sb3LaTi5O18 ceramic · C K Suman K Prasad R N P Choudhary · More Details Abstract Fulltext PDF. Polycrystalline ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D K Avasthi. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Shrinet. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect of ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Rakshit. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P M Raole. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 81-88. Effect of ion beam irradiation on metal particle doped polymer composites · N L Singh Sejal Shah Anjum Qureshi A Tripathi F Singh D K Avasthi P M Raole · More Details ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LI-XIA YANG. Articles written in Bulletin of Materials Science. Volume 34 Issue 2 April 2011 pp 233-237. Shape control synthesis of low-dimensional calcium sulfate · Li-Xia Yang Yan-Feng Meng Ping Yin Ying-Xia Yang Ying-Ying Tang Lai-Fen Qin · More Details Abstract ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B N Dev. Articles written in Bulletin of Materials Science. Volume 29 Issue 2 April 2006 pp 101-105 Polymers. Proton microbeam irradiation effects on PtBA polymer · J Kamila S Roy K Bhattacharjee B Rout B N Dev R Guico J Wang A W Haberl P Ayyub P V Satyam.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K R Rajesh. Articles written in Bulletin of Materials Science. Volume 37 Issue 1 February 2014 pp 95-99. High mobility polymer gated organic field effect transistor using zinc phthalocyanine · K R Rajesh V Kannan M R Kim Y S Chae J K Rhee · More Details Abstract Fulltext PDF.

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N L Singh. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Hui Shen. Articles written in Bulletin of Materials Science. Volume 30 Issue 2 April 2007 pp 101-104 Single Crystals. Piezoelectric properties of Sr3Ga2Ge4O14 single crystals · Anhua Wu Jiayue Xu Juan Zhou Hui Shen · More Details Abstract Fulltext PDF. A new piezoelectric ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K V Shah. Articles written in Bulletin of Materials Science. Volume 26 Issue 7 December 2003 pp 715-720 Glasses and Ceramics. Preparation and studies of some thermal, mechanical and optical properties of Al2O3(1 – )NaPO3 glass system · K V Shah V Sudarsan M ...

  17. Materials Sciences Division long range plan

    International Nuclear Information System (INIS)

    1984-12-01

    The intent of this document is to provide a framework for programmatic guidance into the future for Materials Sciences. The Materials Sciences program is the basic research program for materials in the Department of Energy. It includes a wide variety of activities associated with the sciences related to materials. It also includes the support for developing, constructing, and operating major facilities which are used extensively but not exclusively by the materials sciences

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. F Wang. Articles written in Bulletin of Materials Science. Volume 34 Issue 5 August 2011 pp 1033-1037. Synthesis of Mn-doped CeO2 nanorods and their application as humidity sensors · C H Hu C H Xia F Wang M Zhou P F Yin X Y Han · More Details Abstract Fulltext PDF.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S K Singh. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 561-563. Synthesis of SiC from rice husk in a plasma reactor · S K Singh B C Mohanty S Basu · More Details Abstract Fulltext PDF. A new route for production of SiC from rice husk ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T K Bhattacharya. Articles written in Bulletin of Materials Science. Volume 26 Issue 7 December 2003 pp 703-706 Cements. Solid state sintering of lime in presence of La2O3 and CeO2 · T K Bhattacharya A Ghosh H S Tripathi S K Das · More Details Abstract Fulltext PDF.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. C H Xia. Articles written in Bulletin of Materials Science. Volume 34 Issue 5 August 2011 pp 1033-1037. Synthesis of Mn-doped CeO2 nanorods and their application as humidity sensors · C H Hu C H Xia F Wang M Zhou P F Yin X Y Han · More Details Abstract Fulltext PDF.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. G Prasad. Articles written in Bulletin of Materials Science. Volume 23 Issue 5 October 2000 pp 431-437 High T c Superconductors. Studies on electrical properties of SrBi4Ti4–3Fe4O15 · N Venkat Ramulu G Prasad S V Suryanarayana T Bhima Sankaram · More Details ...

  3. Material Science

    Energy Technology Data Exchange (ETDEWEB)

    Won, Dong Yeon; Kim, Heung

    1987-08-15

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  4. Material Science

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Kim, Heung

    1987-08-01

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  5. Bayesian optimization for materials science

    CERN Document Server

    Packwood, Daniel

    2017-01-01

    This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While re...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. U D Lanke1 2. Metallurgical Engineering and Materials Science Department, Indian Institute of Technology, Mumbai 400 076, India; School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand ...

  7. Materials science

    International Nuclear Information System (INIS)

    2002-01-01

    the document is a collection of papers on different aspects of materials science. It discusses many items such as semiconductors, surface properties and interfaces, construction and civil engineering, metallic materials, polymers and composites, biology and biomaterials, metallurgy etc.. - 1 - Document1 Document1

  8. Materials sciences programs, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects

  9. Materials sciences programs: Fiscal year 1994

    Science.gov (United States)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  10. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  11. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. G KOROTCENKOV1 V BRINZARI2 B K CHO1. School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500712, Republic of Korea; Department of Theoretical Physics, State University of Moldova, Chisinau, Republic of Moldova ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    MOHAMMOD AMINUZZAMAN1 LIM POH YING1 WEE-SHENOG GOH1 AKIRA WATANABE2. Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Perak Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Malaysia; Institute of Multidisciplinary Research for Advanced Materials ...

  14. Materials Sciences Division 1990 annual report

    International Nuclear Information System (INIS)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals

  15. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  16. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  17. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  18. Nuclear science in the 20th century. Nuclear technology applications in material science

    International Nuclear Information System (INIS)

    Pei Junchen; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear technology to material science has led to a new cross subject, nuclear material science (also named nuclear solid physics) which covers material analysis, material modification and new material synthesis. This paper reviews the development of nuclear technical applications in material science and the basic physics involved

  19. Reinventing Material Science - Continuum Magazine | NREL

    Science.gov (United States)

    by Sandia National Laboratories Reinventing Material Science It's not often that scientists set out pursuing in the field of material science. The vision of the center is to revolutionize the discovery of new material science. "In the old days, if you wanted somebody to calculate the properties of a

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63, 46000 Safi, Morocco; LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco; Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 6. Resistance to freezing and thawing of mortar specimens made from sulphoaluminate–belite cement ... Author Affiliations. I Janotka1 L' Krajèi1. Institute of Construction and Architecture of the Slovak Academy of Sciences, Bratislava, Slovak Republic ...

  2. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China; Department of Physics, Shanghai University, Shanghai 200444, China; State Key Laboratory of Crystal Material, Shandong ...

  3. Physical foundations of materials science

    CERN Document Server

    Gottstein, Günter

    2004-01-01

    In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them Transmission Electron Microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.

  4. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Abstract. This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  5. Crystal growth and computational materials science

    International Nuclear Information System (INIS)

    Jayakumar, S.; Ravindran, P.; Arun Kumar, R.; Sudarshan, C.

    2012-01-01

    The proceedings of the international conference on advanced materials discusses the advances being made in the area of single crystals, their preparation and device development from these crystals and details of the progress that is taking place in the computational field relating to materials science. Computational materials science makes use of advanced simulation tools and computer interfaces to develop a virtual platform which can provide a model for real-time experiments. This book includes selected papers in topics of crystal growth and computational materials science. We are confident that the new concepts and results presented will stimulate and enhance progress of research on crystal growth and computational materials science. Papers relevant to INIS are indexed separately

  6. Qi Liu - Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. QI LIU. Articles written in Bulletin of Materials Science. Volume 34 Issue 2 April 2011 pp 183-189. Study of structural transformations and phases formation upon calcination of Zn–Ni–Al hydrotalcite nanosheets · Zhanshuang Li Yanchao Song Jun Wang Qi Liu Piaoping Yang ...

  7. Phase change materials science and applications

    CERN Document Server

    Raoux, Simone

    2009-01-01

    ""Phase Change Materials: Science and Applications"" provides a unique introduction of this rapidly developing field. This clearly written volume describes the material science of these fascinating materials from a theoretical and experimental perspective.

  8. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M K Rabinal. Articles written in Bulletin of Materials Science. Volume 35 Issue 4 August 2012 pp 529-532. An optical tweezer-based study of antimicrobial activity of silver nanoparticles · Yogesha Sarbari Bhattacharya M K Rabinal Sharath Ananthamurthy · More Details Abstract ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This generated great interest in the development of these heteroatom structured materials through different processing routes. ... of Materials Science, Sardar Patel University, Vallabh Vidyanagar 388 120, India; Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Yokohama 226, Japan ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 4 ... Microwave materials; ceramic dielectric resonators; polytitanates; co-precipitation. ... hypotheses viz. diffusion, high surface and nucleation energy, potential barrier, non-stoichiometry etc as critical factors limiting formation of 2 : 9 as single-phase material.

  11. MSRR Rack Materials Science Research Rack

    Science.gov (United States)

    Reagan, Shawn

    2017-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials

  12. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  13. Microgravity Materials Science Conference 2000. Volume 1

    Science.gov (United States)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 1 of 3 of the 2000 Microgravity Material Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference. In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in materials science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was

  14. Microgravity Materials Science Conference 2000. Volume 3

    Science.gov (United States)

    Ramachandran, Narayanan; Bennett, Nancy; McCauley, Dannah; Murphy, Karen; Poindexter, Samantha

    2001-01-01

    This is Volume 3 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close

  15. Microgravity Materials Science Conference 2000. Volume 2

    Science.gov (United States)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 2 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference %%,its to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance

  16. The structural science of functional materials.

    Science.gov (United States)

    Catlow, C Richard A

    2018-01-01

    The growing complexity of functional materials and the major challenges this poses to structural science are discussed. The diversity of structural materials science and the contributions that computation is making to the field are highlighted.

  17. Developments in reactor materials science methodology

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Ivanov, V.B.

    1987-01-01

    Problems related to organization of investigations into reactor materials science are considered. Currently the efficiency and reliability of nuclear power units are largely determined by the fact, how correctly and quickly conclusions concerning the parameters of designs and materials worked out for a long time in reactor cores, are made. To increase information value of materials science investigations it is necessary to create a uniform system, providing for solving methodical, technical and organizational problems. Peculiarities of the current state of reactor material science are analysed and recommendations on constructing an optimal scheme of investigations and data flow interconnection are given

  18. A new direction in mathematics for materials science

    CERN Document Server

    Ikeda, Susumu

    2015-01-01

    This book is the first volume of the SpringerBriefs in the Mathematics of Materials and provides a comprehensive guide to the interaction of mathematics with materials science. The anterior part of the book describes a selected history of materials science as well as the interaction between mathematics and materials in history. The emergence of materials science was itself a result of an interdisciplinary movement in the 1950s and 1960s. Materials science was formed by the integration of metallurgy, polymer science, ceramics, solid state physics, and related disciplines. We believe that such historical background helps readers to understand the importance of interdisciplinary interaction such as mathematics–materials science collaboration. The middle part of the book describes mathematical ideas and methods that can be applied to materials problems and introduces some examples of specific studies—for example, computational homology applied to structural analysis of glassy materials, stochastic models for ...

  19. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Wang Juan1 Li Yajiang1 Wu Huiqiang1 Ren Jiangwei1. Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P.R. China ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    School of Chemical and Materials Engineering, National University of Science and Technology, H/12 Islamabad, Pakistan; Austrian Institute of Technology GmbH, Advanced Materials & Aerospace Technologies, A-2444 Seibersdorf, Austria; Centre of Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Xiuqiang Li1 Dong Zhang1 Peiying Zhu1 Chao Yang1. Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, College of Materials Science and Engineering, Tongji University, 4800 CaoAn Road, Shanghai 200092, China ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Materials Chemistry Laboratory, Department of Materials Science, Gulbarga University, Gulbarga 585 106, India; Veeco-India Nanotechnology Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India; R&D Centre Premier Explosives Pvt. Ltd., Hyderabad 500 015, India ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 1. Dispersion and reinforcing mechanism of carbon nanotubes in epoxy nanocomposites. Smrutisikha Bal ... Author Affiliations. Smrutisikha Bal1. Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela 769 008, India ...

  5. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1 ... I D S – V b g branches in accordance with the SERS results and humidity responses. ... Ni˘gde University, Graduate School Natural and Applied Sciences, Ni˘gde 51240, ...

  6. Introduction Of Computational Materials Science

    International Nuclear Information System (INIS)

    Lee, Jun Geun

    2006-08-01

    This book gives, descriptions of computer simulation, computational materials science, typical three ways of computational materials science, empirical methods ; molecular dynamics such as potential energy, Newton's equation of motion, data production and analysis of results, quantum mechanical methods like wave equation, approximation, Hartree method, and density functional theory, dealing of solid such as pseudopotential method, tight-binding methods embedded atom method, Car-Parrinello method and combination simulation.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher ... National Metallurgical Laboratory, Jamshedpur 831 007, India; Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Sanjay Panwar1 D B Goel2 O P Pandey1. School of Physics and Materials Science, Thapar Institute of Engineering & Technology, Patiala 147 004, India; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 4 ... Permittivity; polarization effects; strontium tartrate; thermal properties; dielectric properties. ... It is explained that crystallographic change due to polymorphic phase transition may be occurring in the material, besides the change due to loss of water ...

  10. Materials Sciences Programs

    International Nuclear Information System (INIS)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs

  11. Advances in the material science of concrete

    National Research Council Canada - National Science Library

    Ideker, Jason H; Radlinska, Aleksandra

    2010-01-01

    ... Committee 236, Material Science of Concrete. The session focused on material science aspects of concrete with an emphasis placed on advances in understanding the fundamental scientific topics of cement-based materials, as well as the crucial...

  12. [Applications of synthetic biology in materials science].

    Science.gov (United States)

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  13. Materials science and architecture

    Science.gov (United States)

    Bechthold, Martin; Weaver, James C.

    2017-12-01

    Materiality — the use of various materials in architecture — has been fundamental to the design and construction of buildings, and materials science has traditionally responded to needs formulated by design, engineering and construction professionals. Material properties and processes are shaping buildings and influencing how they perform. The advent of technologies such as digital fabrication, robotics and 3D printing have not only accelerated the development of new construction solutions, but have also led to a renewed interest in materials as a catalyst for novel architectural design. In parallel, materials science has transformed from a field that explains materials to one that designs materials from the bottom up. The conflation of these two trends is giving rise to materials-based design research in which architects, engineers and materials scientists work as partners in the conception of new materials systems and their applications. This Review surveys this development for different material classes (wood, ceramics, metals, concrete, glass, synthetic composites and polymers), with an emphasis on recent trends and innovations.

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Key Lab for Green Processing and Functionalization of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, P.R. China; State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China; Zhuxi ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 6 .... modified with 4–12% 3,3′-bis(maleimidophenyl) phenylphosphine oxide and cured ... Study of effect of composition, irradiation and quenching on ionic ... Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials.

  16. Perceptions of Crop Science Instructional Materials.

    Science.gov (United States)

    Elkins, D. M.

    1994-01-01

    A number of crop science instructors have indicated that there is a shortage of quality, current crop/plant science teaching materials, particularly textbooks. A survey instrument was developed to solicit information from teachers about the use and adequacy of textbooks, laboratory manuals, and videotapes in crop/plant science instruction. (LZ)

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Electro-optical properties, decomposition pathways and the hydrostatic pressure-dependent behaviours of a double-cation hydrogen storage material of Al 3 Li 4 (BH 4 ) 13. MEHMET SIMSEK. Volume 40 Issue 5 September 2017 pp 907-915 ...

  18. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  19. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Romania; 'Alexandru Ioan Cuza' University, Research Center on Advanced Materials and Technologies, Sciences Department, 11 Carol I Blvd., 700506 Iasi, Romania; Photonics Laboratory, Angers University, 2, Bd. Lavoisier, 49045 Angers, ...

  1. Perspectives on Materials Science in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte

    2012-01-01

    Materials characterization in 3D has opened a new era in materials science, which is discussed in this paper. The original motivations and visions behind the development of one of the new 3D techniques, namely the three dimensional x-ray diffraction (3DXRD) method, are presented and the route...... to its implementation is described. The present status of materials science in 3D is illustrated by examples related to recrystallization. Finally, challenges and suggestions for the future success for 3D Materials Science relating to hardware evolution, data analysis, data exchange and modeling...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 5 ... of CdTe nanoparticles before and after transfer from liquid phase to polystyrene ... Catalytic synthesis of ZnO nanorods on patterned silicon wafer—An optimum material for gas .... Hot-rolled, warm-rolled and heat treated alloys were examined using optical ...

  3. Density functional theory in materials science.

    Science.gov (United States)

    Neugebauer, Jörg; Hickel, Tilmann

    2013-09-01

    Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.

  4. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    Science.gov (United States)

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 27 Issue 5 October 2004 pp 417-420 Nuclear Related Materials. Irradiation of large area Mylar membrane and characterization of ... Effect of ion beam irradiation on metal particle doped polymer composites · N L Singh Sejal Shah Anjum Qureshi A Tripathi F Singh D K ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 4. CuO/TiO2 nanocrystals grown on graphene as visible-light responsive photocatalytic hybrid materials. Yuan Fang Rijing Wang Guohua Jiang He Jin Yin Wang Xinke Sun Sheng Wang Tao Wang. Volume 35 Issue 4 August 2012 pp 495-499 ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 6. Tailoring magnetic and dielectric properties of rubber ferrite composites containing mixed ferrites. M R Anantharaman K A Malini S Sindhu E M Mohammed S K Date S D Kulkarni P A Joy Philip Kurian. Magnetic Materials Volume 24 Issue 6 December 2001 ...

  8. Materials and Chemical Sciences Division annual report, 1987

    International Nuclear Information System (INIS)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 7 ... pulse electrodeposition with ultrasound agitation from nickelWatts-type bath. ... The results showed that wear resistance increased with increase in duty cycle and frequency.

  10. Materials and Chemical Sciences Division annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Xiaoming Liao1 Hongyang Zhu1 Guangfu Yin1 Zhongbing Huang1 Yadong Yao1 Xianchun Chen1. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, P.R. of China ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1. Preparation of new thermoluminescent material ( 100 − x )B 2 O 3 –xLi 2 O: Cu 2 + for sensing and detection of radiation. Zeid A Alothman Tansir Ahamad Mu Naushad Saad M Alshehri. Volume 39 Issue 1 February 2016 pp 331-336 ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 3. Optimization of growth of InGaAs/InP quantum wells using photoluminescence and secondary ion mass spectrometry. S Bhunia P Banerji T K Chaudhuri A R Haldar D N Bose Y Aparna M B Chettri B R Chakraborty. Semiconducting Materials Volume 23 ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Ankur Jain1 R K Jain1 Shivani Agarwal1 I P Jain1. Material Science Laboratory, Centre for Non-Conventional Energy Resources, 14, Vigyan Bhawan, University of Rajasthan, Jaipur 302 004, India ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 4 ... has a dielectric anomaly of ferroelectric to paraelectric type at 198°C, and exhibits ... that the compound has negative temperature coefficient of resistance (NTCR) behaviour.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 6 ... by microwave route and nature of anatase–rutile phase transition in nano TiO2 .... properties of AgPb10SbTe12 prepared by high pressure method .... the crystal field strength around Mn(V) such that a blue colour results for materials with small values of .

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 4. Phase analysis and dielectric properties of ceramics in PbO–MgO–ZnO–Nb2O5 system: A comparative study of materials obtained by ceramic and molten salt synthesis routes. M Thirumal A K Ganguli. Ceramics Volume 23 Issue 4 August 2000 pp 255-261 ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Bulletin of Materials Science began in the year 1979. ... one of the world's leading interactive databases of high quality STM journals, book series, books, reference works and online archives collection. ... Sadashivanagar, P.B. No. 8005 ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 1. Structure, optical and thermal decomposition characters of LDPE graft copolymers synthesized by gamma irradiation ... Keywords. Gamma irradiation; graft copolymerization; spectroscopic analysis; XRD; kinetics of thermal decomposition; activation energy.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 4 ... Nacional de Investigaciones Científicas y Técnicas), A4408FVY Salta, Argentina; Fac. Ingeniería, Universidad Nacional de Salta, A4408FVY Salta, Argentina; Fac.

  1. Materials Data Science: Current Status and Future Outlook

    Science.gov (United States)

    Kalidindi, Surya R.; De Graef, Marc

    2015-07-01

    The field of materials science and engineering is on the cusp of a digital data revolution. After reviewing the nature of data science and Big Data, we discuss the features of materials data that distinguish them from data in other fields. We introduce the concept of process-structure-property (PSP) linkages and illustrate how the determination of PSPs is one of the main objectives of materials data science. Then we review a selection of materials databases, as well as important aspects of materials data management, such as storage hardware, archiving strategies, and data access strategies. We introduce the emerging field of materials data analytics, which focuses on data-driven approaches to extract and curate materials knowledge from available data sets. The critical need for materials e-collaboration platforms is highlighted, and we conclude the article with a number of suggestions regarding the near-term future of the materials data science field.

  2. Materials Sciences programs, Fiscal Year 1983

    International Nuclear Information System (INIS)

    1983-09-01

    The Materials Sciences Division constitutes one portion of a wide range of research supported by the DOE Office of Basic Energy Sciences. This report contains a listing of research underway in FY 1983 together with a convenient index to the program

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 4 ... The energy diagram shows the feasibility of La2CuO4 for the H2 evolution under visible light. ... Laboratory of Storage and Valorization of Renewable Energies, Faculty of ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Optical spectroscopy of rare earth-doped oxyfluoro-tellurite glasses to probe local environment. GAJANAN V HONNAVAR K P RAMESH ... Keywords. Tellurite glasses; Raman spectroscopy; photoluminscence; Stark level splitting; UV visible spectroscopy.

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    College of Medicine and Dentistry, James Cook University, Cairns 4878, Australia; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China; Institute of Dental Materials, Wenzhou Medical University, Wenzhou ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Bulletin of Materials Science; Volume 29; Issue 2. Mechanism of cube grain nucleation during recrystallization of deformed commercial purity aluminium. K T Kashyap R George. Nucleation Studies Volume 29 Issue ... Keywords. Recrystallization; cube texture; commercial purity aluminium; differential stored energy model.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Harnessing renewable solar energy through different technologies is greatly dependent on the advancement of solar grade materials' science and engineering. In this article, the prominent solar energy technologies, namely solarphotovoltaic and concentrated solar power and other relevant technologies, and aspects ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume ... Preparation and characterization of magnesium–aluminium–silicate glass ceramics ... Preparation and studies of some thermal, mechanical and optical properties of .... Surface degradation behaviour of sodium borophosphate glass in aqueous media: Some studies.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. K L Sahoo1 Rina Sahu1 M Ghosh1 S Chatterjee2. Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831 007, India; Department of Metallurgical and Materials Engineering, Bengal Engineering and Science University, Howrah 711 103, India ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 2. Efficiency of surface modified Ti coated with copper nanoparticles to control marine bacterial adhesion under laboratory simulated conditions. CHOKKALINGAM PRIYA GANESSIN ARAVIND WILSON RICHARD THILAGARAJ. Volume 39 Issue 2 April 2016 ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 2. Studies on in vitro release of CPM from semi-interpenetrating polymer network (IPN) composed of chitosan and glutamic acid. K Kumari P P Kundu. Polymers Volume 31 Issue 2 April 2008 pp 159-167 ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 4 .... Synthesis and structural studies of Na2O–ZnO–ZnF2–B2O3 oxyfluoride glasses ... processing: A potential technique for preparing NiO–YSZ composite and Ni–YSZ cermet.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 4. Preparation of titanium diboride powders from titanium alkoxide ... The influence of TTIP concentration, reaction temperature and molar ratio of precursors on the synthesis of titanium diboride was investigated. Three different concentrations of TTIP solution, ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 2 ... TSDC; PS; naphthalene; thermo-electrets; glass transition temperature (g). Abstract. The electrical conductivity of naphthalene doped polystyrene (PS) films (≈ 61.58 m thick) was studied as a function of dopant concentration and temperature.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 7. Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid. Fereshteh Chekin Samira Bagheri Sharifah Bee Abd Hamid. Volume 38 Issue 7 December 2015 pp 1711-1716 ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 4. Evaluation of solid–liquid interface profile during continuous casting by a spline based formalism. S K Das. Metals and Alloys Volume ... Keywords. Continuous casting; solidification; solid–liquid interface; front tracking algorithm; phase change; heat transfer.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3 ... The morphology and the nature of the protective layer grown under the paint film were also ... en Tecnología de Pinturas, Calle 52e/121 y 122, (B1900AYB), La Plata 1900, ...

  18. Proceedings of computational methods in materials science

    International Nuclear Information System (INIS)

    Mark, J.E. Glicksman, M.E.; Marsh, S.P.

    1992-01-01

    The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Nanotechnology is an emerging field in science and technology, which can be applied to synthesize new materials at the nanoscale level. The present investigation aimed at comparing the synthesis, characterization andin vitro anticancer efficacy of synthesized silver and gold nanoparticles using leaves extract of Bauhinia ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 2. Evaluation of borax solid wastes in production of frits suitable for fast single-fired wall tile opaque glass–ceramic glazes. K Pekkan B Karasu. Ceramics and Glasses Volume 33 Issue 2 April 2010 pp 135-144 ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 3. Property change during nanosecond pulse laser annealing of amorphous NiTi thin film ... amorphous thin films of near equiatomic Ni/Ti composition to produce partially crystallized highly sensitive -phase spots surrounded by amorphous regions. Scanning ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 27; Issue 6. Temperature dependence of pulse-induced mechanoluminescence excitation in coloured alkali halide crystals. Namita Rajput S Tiwari B P Chandra. Optical Properties Volume 27 Issue 6 December 2004 pp 505-509 ...

  3. Materials Informatics: Statistical Modeling in Material Science.

    Science.gov (United States)

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Materials Science and the Problem of Garbage

    Science.gov (United States)

    McPherson, Heather

    2016-01-01

    Materials science--the science of stuff--has made our lives better by making it possible for manufacturers to supply us with products. Students have misconceptions about materials use. Many may think using bottled water, for example, is harmless because they recycle the plastic empties, but they fail to consider the resources and energy used to…

  5. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 5. Effect of nitrogen flow ratio on structure and properties of zirconium nitride films on Si(100) prepared by ion beam sputtering. Shahab Norouzian Majid Mojtahedzadeh Larijani Reza Afzalzadeh. Volume 35 Issue 5 October 2012 pp 885-887 ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 3. Effect of composition on the polarization and ohmic resistances of LSM/YSZ composite cathodes in solid oxide fuel cell. B SHRI PRAKASH S SENTHIL KUMAR S T ARUNA. Volume 40 Issue 3 June 2017 pp 441-452 ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 1. Characterization and in vitro and in vivo evaluation of cross-linked chitosan films as implant for controlled release of citalopram. Patit P Kundu Santosh Kumar Jindal Manish Goswami. Volume 36 Issue 1 February 2013 pp 175-182 ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 29 Issue 2 April 2006 pp 101-105 Polymers. Proton microbeam irradiation effects on PtBA polymer ... optical and secondary electron microscopic experimental methods. Volume 34 Issue 4 July 2011 pp 595-599. Thermal stability of gold-PS nanocomposites thin films.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 2. Effect of annealing temperature on the structural–microstructural and electrical characteristics of thallium bearing HTSC films prepared by chemical spray pyrolysis technique. K K Verma R S Tiwari O N Srivastava. Superconductors Volume 28 Issue 2 April ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Special Issues. Bulletin of Materials Science. pp 199-584 Volume 31 Issue 3 June 2008. Proceedings of the 'National Review and Coordination Meeting on Nanoscience and Nanotechnology', Hyderabad, 2007. Editor: S. B. Krupanidhi Guest Editors: G. Sundararajan and Tata Narasinga Rao. pp 547-651 Volume 29 Issue ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 26 Issue 2 February 2003 pp 247-253 Electrical Properties. Impedance spectroscopy ... the a.c. conductivity data. Volume 26 Issue 7 December 2003 pp 745-747 Electrical Properties. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite/barium titanate.

  13. Editorial: Defining materials science: A vision from APL Materials

    Directory of Open Access Journals (Sweden)

    Judith MacManus-Driscoll

    2014-07-01

    Full Text Available These are exciting times for materials science—a field which is growing more rapidly than any other physical science discipline. More than ever, the field is providing the vital link between science and engineering, between pure and applied. But what is the subject's definition and why is the field ballooning? I address these questions in the context of how APL Materials intends to play a role in advancing this important field. My introspective focus arises as we approach the first year anniversary of APL Materials.

  14. Materials science challenges in paintings

    Science.gov (United States)

    Walter, Philippe; de Viguerie, Laurence

    2018-02-01

    Through the paintings of the old masters, we showcase how materials science today provides us with a vision of the processes involved in the creation of a work of art: the choice of materials, the painter's skill in handling these materials, and the perception of the finished work.

  15. Materials science challenges in paintings.

    Science.gov (United States)

    Walter, Philippe; de Viguerie, Laurence

    2018-01-23

    Through the paintings of the old masters, we showcase how materials science today provides us with a vision of the processes involved in the creation of a work of art: the choice of materials, the painter's skill in handling these materials, and the perception of the finished work.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 3. Microstructural and optical properties of transparent conductive ZnO : Al : Mo films deposited by template-assisted sol–gel method. H-Y He J-F Huang Z He J Lu Q Shen. Volume 37 Issue 3 May 2014 pp 519-525 ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Effect of height to diameter ( h / d ) ratio on the deformation behaviour of Fe–Al 2 O 3 metal matrix nanocomposites. PALLAV GUPTA DEVENDRA KUMAR A K JHA OM PARKASH. Volume 39 Issue 5 September 2016 pp 1245-1258 ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    University of Mohammed V, Faculty of Sciences, Department of Chemistry, Laboratory of Composite Materials, Polymers and Environment, Avenue Ibn Batouta, P.O. Box 1014, Rabat–Agdal 10106, Morocco; Departamento de Ingeniería Química Industrial y del Medio Ambiente, E.T.S.I. Industriales, Universidad Politécnica ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 5. Effect of rolling deformation and solution treatment on ... By the solution treatment, the elongated and broken crystalline grains recrystallize which leads to the formation of finer grains (<10 m) of austenite. X-ray diffraction analysis has corroborated well with ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Magnetic resonance in superparamagnetic zinc ferrite. Jitendra Pal Singh Gagan Dixit R C Srivastava Hemant Kumar H M Agrawal Prem Chand. Volume 36 Issue 4 August 2013 pp 751-754 ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 5. Thickness effect on properties of titanium film deposited by d.c. magnetron sputtering and electron beam evaporation techniques. Nishat Arshi Junqing Lu Chan Gyu Lee Jae Hong Yoon Bon Heun Koo Faheem Ahmed. Volume 36 Issue 5 October 2013 pp ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 5. Influence of additives on electrodeposition of bright Zn–Ni alloy on mild steel from acid sulphate bath. S Shivakumara U Manohar Y Arthoba Naik T V Venkatesha. Alloys and Steels Volume 30 Issue 5 October 2007 pp 455-462 ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 5 .... Influence of different heat treatment programs on properties of sol–gel ... The strong preferred c-axis orientation is lost due to cadmium doping and degree ... Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 7. Theoretical study of built-in-polarization effect on relaxation time and mean free path of phonons in Al x Ga 1 − x N alloy. B K SAHOO A PANSARI. Volume 39 Issue 7 December 2016 pp 1835-1841 ...

  5. General and special engineering materials science. Vol. 1

    International Nuclear Information System (INIS)

    Ondracek, G.; Voehringer, O.

    1983-04-01

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes: Volume I treats general engineering materials science in 4 capital chapters on the structure of materials, the properties of materials, materials technology and materials testing and investigation supplemented by a selected detailed chapter about elasticity plasticity and rupture mechanics. Volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including reactor clad and structural materials, nuclear fuels and fuel elements and nuclear waste as a materials viewpoint. Volume III - also concerning special engineering materials science - considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accidents and nuclear materials in core melt accidents. (orig.) [de

  6. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Ikezoe, Hiroshi; Yoshida, Tadashi; Takeuchi, Suehiro

    2003-10-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to advancing heavy ion science researches in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking advantage of its prominent performances in providing various heavy ions. This meeting, as well as the previous ones held twice, offered scientists from the fields of heavy ion science, including nuclear physics, solid-state physics and cross-field physics, an opportunity to have active discussions among them, as well as to review their research accomplishments in the last two years. Oral presentations were selected from a wider scope of prospective fields, expecting a new step of advancing in heavy ion science. Main topics of the meeting were the status of the JAERI-KEK joint project of developing a radioactive nuclear beam (RNB) facility and research programs related to the RNB. This meeting was held at Advanced Science Research Center in JAERI-Tokai on January 8th and 9th in 2003, and successfully carried out with as many as 190 participants and a lot of sincere discussions. The proceedings are presented in this report. The 51 of the presented papers are indexed individually. (J.P.N.)

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Structure and magnetic properties of Zr–Mn substituted strontium hexaferrite Sr(Zr,Mn) x Fe 12 − 2 x O 19 nanoparticles synthesized by sol–gel auto-combustion method. S ALAMOLHODA S M MIRKAZEMI Z GHIAMI M NIYAIFAR. Volume 39 Issue 5 ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    K Ramachandran. Articles written in Bulletin of Materials Science. Volume 25 Issue 4 August 2002 pp ... Volume 27 Issue 5 October 2004 pp 403-407 Phase Transitions. Phase transition in L-alaninium oxalate by ... Thermal and structural properties of spray pyrolysed CdS thin film · P Raji C Sanjeeviraja K Ramachandran.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Synthesis of swift heavy ion induced metal silicide is a new advancement in materials science research. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the electronic stopping power regime. Irradiations were undertaken at room temperature using 120 MeV Au ions at the ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 2. Thermoluminescence dosimetry of rare earth doped calcium aluminate phosphors. K Madhukumar K Rajendra Babu K C Ajith Prasad J James T S Elias V Padmanabhan C M K Nair. Ceramics and Glasses Volume 29 Issue 2 April 2006 pp 119-122 ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 4 ... of the nanoporous titania films attached with and without photosensitizer TCPP .... The positive values of free energy indicate the non-spontaneity of the sorption of HNTs ..... Effect of RF power and gas flow ratio on the growth and morphology of the PECVD ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Enhanced high temperature performance of LiMn2O4 coated with Li3BO3 solid electrolyte. Liu Jinlian Wu Xianming Chen Shang Liu Jianben He Zeqiang. Volume 36 Issue 4 August 2013 pp 687-691 ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Structural investigation of V 2 O 5 –P 2 O 5 –K 2 O glass system with antibacterial potential. N S VEDEANU I B COZAR R STANESCU R STEFAN D VODNAR O COZAR. Volume 39 Issue 3 June 2016 pp 697-702 ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 41; Issue 2. Effect of oxygen vacancies on Li-storage of anatase TiO 2 (001) facets: a first principles study. H CHEN Y H DING X Q TANG W ZHANG J R YIN P ZHANG Y JIANG. Volume 41 Issue 2 April 2018 Article ID 51 ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 29; Issue 4. Acoustic study of nano-crystal embedded PbO–P2O5 glass. Sudip K Batabyal A Paul P Roychoudhury C Basu. Ceramics and Glasses Volume 29 Issue 4 August 2006 pp 357-363 ...

  16. Proceedings of the international conference on material science: abstract volume

    International Nuclear Information System (INIS)

    2013-01-01

    Materials Science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. In the recent years, materials science has been propelled to the forefront at many universities and research institutions due to the significant advancement on nanoscience and nanotechnology. ICMS-2013 will cover a wide range of interdisciplinary and current research topics related to material science. Research on advanced materials includes nanomaterials, bio-nanomaterials, zero bandgap materials, composites, surface engineering, tissue engineering and biomaterials etc. These materials have numerous applications in electronics, biotechnology, medicine and energy harvesting. The importance of nano-science and nanotechnology has been well documented by both industrial and academic communities worldwide. It is believed that breakthroughs in nano-science and technology will change all aspects of human life in such diverse areas as, electronic devices, energy, biomedicine, sensing, environment, and security etc. Papers relevant to INIS are indexed separately

  17. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 2 ... films deposited by rf magnetron sputtering using a high quality ceramic target ... Critical shear stress produced by interaction of edge dislocation with nanoscale inhomogeneity ... production cost limiting zircon usage as a raw material at an industrial scale.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 3. Comparative investigation on the effect of alkaline earth oxides on the intensity of absorption bands due to Cu2+, Mn3+ and Cr3+ ions in ternary silicate glasses. S P Singh Aman Anal Tarafder. Glasses Volume 27 Issue 3 June 2004 pp 281-287 ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    V Renteria. Articles written in Bulletin of Materials Science. Volume 38 Issue 1 February 2015 pp 29-40. Yttrium deposition on mesoporous TiO2: textural design and UV decolourization of organic dyes · M L Ojeda C Velasquez V Renteria A Campero M A García-Sánchez F Rojas · More Details Abstract Fulltext PDF.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 4. Structural, spectroscopic and electrochemical study of V5+ substituted LiTi2(PO4)3 solid electrolyte for lithium-ion batteries. A Venkateswara Rao V Veeraiah A V Prasada Rao B Kishore Babu B Swarna Latha K Rama Rao. Volume 37 Issue 4 June 2014 pp ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 2 ... Surface texture modification of spin-coated SiO2 xerogel thin films by TMCS silylation .... Influence of pH and bath composition on properties of Ni–Fe alloy films ... Diffuse phase transition, piezoelectric and optical study of Bi0.5Na0.5TiO3 ceramic.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 301-308 Biomaterials. Adhesive B-doped DLC films on ... Volume 30 Issue 4 August 2007 pp 407-413 Alloys and Steels. Structural phase transitions and piezoelectric anomalies in ordered Sc0.5Ga0.5N alloys · A M Alsaad A A Ahmad.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 4. Impedance and a.c. conductivity studies on Ba(Nd0.2Ti0.6Nb0.2)O3 ceramic prepared through conventional and microwave sintering route. Syed Mahboob G Prasad G S Kumar. Ceramics and Glasses Volume 29 Issue 4 August 2006 pp 347-355 ...

  4. The Usage of Recycle Materials for Science Practicum: Is There Any Effect on Science Process Skills?

    Science.gov (United States)

    Prajoko, Setiyo; Amin, Mohamad; Rohman, Fatchur; Gipayana, Muhana

    2017-01-01

    This study aimed at determining the effect of recycle materials usage for science practicum on students' basic science process skills of the Open University, Surakarta. Recycle materials are the term used for the obtained materials and equipment from the students' environment by taking back the garbage or secondhand objects into goods or new…

  5. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 5. Issue front cover thumbnail. Volume 26, Issue 5. August 2003, pages 461-568. pp 461-464 Sensor Materials. Preparation, characterization and dielectric behaviour of some yttrium doped strontium stannates · P K Bajpai Kuldeep Ratre Mukul Pastor T P ...

  6. Materials science experiments in space

    Science.gov (United States)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Synthesis and luminescence properties of Tb 3 + − d o p e d L i M g P O _4$ phosphor. C B PALAN N S BAJAJ A SONI S K OMANWAR. Volume 39 Issue 5 September ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Investigation of localization effect in GaN-rich InGaN alloys and modified band-tail model. Chuan-Zhen Zhao Bin Liu De-Yi Fu Hui Chen Ming Li Xiang-Qian Xiu Zi-Li Xie Shu-Lin Gu You-Dou Zheng. Volume 36 Issue 4 August 2013 pp 619-622 ...

  9. Moessbauer Spectroscopy in Materials Science

    International Nuclear Information System (INIS)

    2006-01-01

    The publication in electronic form has been set up as proceedings of the conference dealing with applications of the Moessbauer spectroscopy in material science. Twenty-three abstracts and twenty-two presentations are included.

  10. Materials and Chemical Sciences Division annual report 1989

    International Nuclear Information System (INIS)

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program

  11. Materials and Chemical Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  12. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  13. Recycled material-based science instruments to support science education in rural area at Central Sulawesi District of Indonesia

    Science.gov (United States)

    Ali, M.; Supriyatman; Saehana, S.

    2018-03-01

    It has been successfully designing low cost of science experiment from recycled materials. The science instruments were produced to explain expansion concept and hydrostatic pressure inside the liquid. Science instruments were calibrated and then validated. It was also implemented in science learning.

  14. The materiality of materials and artefacts used in science classrooms

    DEFF Research Database (Denmark)

    Cowie, Bronwen; Otrel-Cass, Kathrin; Moreland, Judy

    Material objects and artefacts receive limited attention in science education (Roehl, 2012) though they shape emerging interactions. This is surprising given science has material and a social dimensions (Pickering, 1995) whereby new knowledge develops as a consensus explanation of natural phenomena...... that is mediated significantly through materials and instruments used. Here we outline the ways teachers deployed material objects and artefacts by identifying their materiality to provide scenarios and resources (Roth, 2005) for interactions. Theoretical framework We use Ingold's (2011) distinction between...... materials as natural objects in this world and artefacts as manmade objects. We are aware that in a classroom material objects and artefacts shape, and are shaped by classroom practice through the way they selectively present scientific explanations. However, materials and artefacts have no intrinsic...

  15. Nature of science in instruction materials of science through the model of educational reconstruction

    Science.gov (United States)

    Azizah, Nur; Mudzakir, Ahmad

    2016-02-01

    The study was carried out to reconstruct the science teaching materials charged view of the nature of science (VNOS). This reconstruction process using the Model of Educational Reconstruction (MER), which is the framework for research and development of science education as well as a guide for planning the teaching of science in the schools is limited in two stages, namely: content structure analysis, and empirical studies of learners. The purpose of this study is to obtain a pre-conception of learners and prospective scientists to the topic of the nature of the material and utilization. The method used to descriptive with the instruments is guidelines for interviews for 15 students of class VIII, text analysis sheet, sheet analysis of the concept, and the validation sheet indicators and learning objectives NOS charged on cognitive and affective aspects. The results obtained in the form of pre-conceptions of learners who demonstrate almost 100% of students know the types of materials and some of its nature, the results of the scientist's perspective on the topic of the nature of the material and its use, as well as the results of the validation indicators and learning objectives charged NOS and competencies PISA 2015 cognitive and affective aspects with CVI value of 0.99 and 1.0 after being validated by five experts. This suggests that the indicators and the resulting learning objectives feasible and can proceed to the reconstruction of teaching materials on the topic of material properties and utilization.

  16. Materials science with SR using x-ray imaging

    International Nuclear Information System (INIS)

    Kuriyama, Masao

    1990-01-01

    Some examples of applications of synchrotron radiation to materials science demonstrate the importance of microstructure information within structural as well as functional materials in order to control their properties and quality as designed for industrial purposes. To collect such information, x-ray imaging in quasi real time is required in either the microradiographic mode or the diffraction (in transmission) mode. New measurement technologies based on imaging are applied to polycrystalline materials, single crystal materials and multilayered device materials to illustrate what kind of synchrotron radiation facility is most desirable for materials science and engineering. (author)

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3. Impedance spectroscopy studies on (Na0.5Bi0.5)0.94Ba0.06TiO3 + 0.3 wt% Sm2O3 + 0.25 wt% LiF lead-free piezoelectric ceramics. N Zidi A Chaouchi S D'Astorg M Rguiti C Courtois. Volume 38 Issue 3 June 2015 pp 731-737 ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In addition, 0.25Ca0.8Sr0.2 TiO3–0.75Li0.5Nd0.5TiO3 + 4.0 wt% LiF ceramics sintered at 1350°C for 4 h exhibited good microwave dielectric properties of r ... College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, PR China; Department of Information Engineering, Guilin ...

  19. Models and Materials: Bridging Art and Science in the Secondary Curriculum

    Science.gov (United States)

    Pak, D.; Cavazos, L.

    2006-12-01

    Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials

  20. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1 .... Na + /B 3 + phosphor has a potential application in white light-emitting diodes based ... College of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China ...

  1. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3 ... In this study, a modified model for the application of the thermionic and hopping current ... Departments of Mathematics and Physics, Arab American University, Jenin 240, ...

  2. Content analysis of science material in junior school-based inquiry and science process skills

    Science.gov (United States)

    Patonah, S.; Nuvitalia, D.; Saptaningrum, E.

    2018-03-01

    The purpose of this research is to obtain the characteristic map of science material content in Junior School which can be optimized using inquiry learning model to tone the science process skill. The research method used in the form of qualitative research on SMP science curriculum document in Indonesia. Documents are reviewed on the basis of the basic competencies of each level as well as their potential to trace the skills of the science process using inquiry learning models. The review was conducted by the research team. The results obtained, science process skills in grade 7 have the potential to be trained using the model of inquiry learning by 74%, 8th grade by 83%, and grade 9 by 75%. For the dominant process skills in each chapter and each level is the observing skill. Follow-up research is used to develop instructional inquiry tools to trace the skills of the science process.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Institute for Nanomaterials and Nanotechnology, MAScIR (Moroccan Foundation for Advanced Science, Innovation and Research), Rabat, Morocco; LMPHE (URAC 12), Departement of Physique, BP 1014, Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco; National Centre for Energy, Sciences and ...

  4. Living in a material world: Development and evaluation of a new materials science course for non-science majors

    Science.gov (United States)

    Brust, Gregory John

    This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science

  5. The material co-construction of hard science fiction and physics

    Science.gov (United States)

    Hasse, Cathrine

    2015-12-01

    This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of doing science. There are many kinds of fiction within the science fiction genre. In the presented empirical exploration physics students seem particularly fond of what is called `hard science fiction': a particular type of science fiction dealing with technological developments (Hartwell and Cramer in The hard SF renaissance, Orb/TOR, New York, 2002). Especially hard science fiction as a motivating fantasy may, however, also come with a gender bias. The locally materialized techno-fantasies spurring dreams of the terraforming of planets like Mars and travels in time and space may not be shared by all physics students. Especially female students express a need for other concerns in science. The entanglement of physics with hard science fiction may thus help develop some students' interest in learning school physics and help create an interest for studying physics at university level. But research indicates that especially female students are not captured by the hard techno-fantasies to the same extent as some of their male colleagues. Other visions (e.g. inspired by soft science fiction) are not materialized as a resource in the local educational culture. It calls for an argument of how teaching science is also teaching cultural values, ethics and concerns, which may be gendered. Teaching materials, like the use of hard science fiction in education, may not just be (yet another) gender bias in science education but also carrier of particular visions for scientific endeavours.

  6. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  7. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  8. First Materials Science Research Rack Capabilities and Design Features

    Science.gov (United States)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  9. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); Glotzer, Sharon [University of Michigan; McCurdy, Bill [University of California Davis; Roberto, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2010-07-26

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. New materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of

  10. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Author Affiliations. V V Deshpande1 M M Patil1 S C Navale2 V Ravi1. Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, India; Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411 008, India ...

  11. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Layered LiNi1/3Co1/3Mn1/3O2 was synthesized by a citric acid assisted ... was investigated by the galvanostatic intermittent titration technique (GITT) ... The State Key Laboratory Base of Novel Functional Materials and Preparation Science; ...

  12. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3 .... (EDX) and UV–vis spectroscopy were used to study the chemical composition and optical .... Enhanced microactuation with magnetic field curing of magnetorheological ... Structure, morphology and corrosion resistance of Ni–Mo+PTh composite coatings.

  13. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 2. Issue front cover thumbnail. Volume 32, Issue 2. April 2009, pages 117-214. pp 117-123 Thin Films and Nanomatter. Microstructural characteristics and mechanical properties of magnetron sputtered nanocrystalline TiN films on glass substrate.

  14. Classroom Demonstrations in Materials Science/Engineering.

    Science.gov (United States)

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  15. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  16. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 4. Issue front cover thumbnail. Volume 27, Issue 4. August 2004, pages 323-394. pp 323-325 Crystal Growth. Growth features of ammonium hydrogen -tartrate single crystals · G Sajeevkumar R Raveendran B S Remadevi Alexander Varghese Vaidyan.

  17. Trends in the Use of Supplementary Materials in Environmental Science Journals

    Science.gov (United States)

    Kenyon, Jeremy; Sprague, Nancy R.

    2014-01-01

    Our research examined the use of supplementary materials in six environmental science disciplines: atmospheric sciences, biology, fisheries, forestry, geology, and plant sciences. Ten key journals were selected from each of these disciplines and the number of supplementary materials, such as data files or videos, in each issue was noted over a…

  18. Setting science free from materialism.

    Science.gov (United States)

    Sheldrake, Rupert

    2013-01-01

    Contemporary science is based on the claim that all reality is material or physical. There is no reality but material reality. Consciousness is a by-product of the physical activity of the brain. Matter is unconscious. Evolution is purposeless. This view is now undergoing a credibility crunch. The biggest problem of all for materialism is the existence of consciousness. Panpsychism provides a way forward. So does the recognition that minds are not confined to brains. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Materials science tetrahedron--a useful tool for pharmaceutical research and development.

    Science.gov (United States)

    Sun, Changquan Calvin

    2009-05-01

    The concept of materials science tetrahedron (MST) concisely depicts the inter-dependent relationship among the structure, properties, performance, and processing of a drug. Similar to its role in traditional materials science, MST encompasses the development in the emerging field of pharmaceutical materials science and forms a scientific foundation to the design and development of new drug products. Examples are given to demonstrate the applicability of MST to both pharmaceutical research and product development. It is proposed that a systematic implementation of MST can expedite the transformation of pharmaceutical product development from an art to a science. By following the principle of MST, integration of research among different laboratories can be attained. The pharmaceutical science community as a whole can conduct more efficient, collaborative, and coherent research.

  20. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 4 ... were synthesized by self-propagating high temperature synthesis (SHS) method. ... Structure determination at room temperature and phase transition studies above T c in .... Hyperfine field distributions in disordered Mn2CoSn and Mn2NiSn Heusler alloys.

  1. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    conjugation using genetically encoded aldehyde tags. Nature Protocols 7, 1052 (2012). abstract » J. Y. Shu, R . Onoe, R. A. Mathies and M. B. Francis. Direct Attachment of Microbial Organisms to Material Surfaces -modified proteins to their binding partners. Proceedings of the National Academy of Sciences 109, 4834

  2. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. SemMat: Federated Semantic Services Platform for Open materials Science and Engineering

    Science.gov (United States)

    2017-01-01

    SEMMAT: FEDERATED SEMANTIC SERVICES PLATFORM FOR OPEN MATERIALS SCIENCE AND ENGINEERING WRIGHT STATE UNIVERSITY JANUARY 2017 FINAL TECHNICAL...COVERED (From - To) JUL 2013 – JUN 2016 4. TITLE AND SUBTITLE SemMat: FEDERATED SEMANTIC SERVICES PLATFORM FOR OPEN MATERIALS SCIENCE AND ENGINEERING...models to represent materials data. This provides a data exchange scheme for materials science , which also includes provenance information to promote

  4. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Structural, microstructural and optical properties of Cu 2 ZnSnS 4 thin films prepared by thermal evaporation: effect of substrate temperature and annealing. U CHALAPATHI S UTHANNA V SUNDARA RAJA. Volume 40 Issue 5 September 2017 pp 887-895 ...

  5. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Effects of size on mass density and its influence on mechanical and thermal properties of ZrO 2 nanoparticles in different structures. BOTAN JAWDAT ABDULLAH QING JIANG MUSTAFA SAEED OMAR. Volume 39 Issue 5 September 2016 pp 1295-1302 ...

  6. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 6. Issue front cover thumbnail. Volume 25, Issue 6. November 2002, pages 449-582. pp 449- .... Bi-layer functionally gradient thick film semiconducting methane sensors .... Thermal sensor properties of PANI(EB)–CSA ( = 0.4 ± 0.1 mol) polymer thin films.

  7. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    The studies clearly indicate that the synthesized Y2O3 nanoparticle is a crystalline material with a particle size from 23 to 66 nm. Further analysis ... M Sundrarajan1. Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India ...

  8. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 1. Issue front cover thumbnail. Volume 29, Issue 1. February 2006, pages 1-99. pp 1-5 Nanomaterials. A simple synthesis and characterization of CuS nanocrystals · Ujjal K Gautam Bratindranath Mukherjee · More Details Abstract Fulltext PDF. Water-soluble ...

  9. CSIR eNews: Materials science and manufacturing

    CSIR Research Space (South Africa)

    CSIR

    2009-09-01

    Full Text Available knowledge and networks within these fields. A major competitive advantage is the wide coverage of materials (e.g. fibres, textiles, polymers, ceramics, composites, metals) and manufacturing disciplines within one unit. This enables CSIR Materials Science...

  10. CSIR eNews: Materials science and manufacturing

    CSIR Research Space (South Africa)

    CSIR

    2007-12-01

    Full Text Available knowledge and networks within these fields. A major competitive advantage is the wide coverage of materials (e.g. fibres, textiles, polymers, ceramics, composites, metals) and manufacturing disciplines within one unit. This enables CSIR Materials Science...

  11. CSIR eNews: Materials science and manufacturing

    CSIR Research Space (South Africa)

    CSIR

    2008-12-01

    Full Text Available knowledge and networks within these fields. A major competitive advantage is the wide coverage of materials (e.g. fibres, textiles, polymers, ceramics, composites, metals) and manufacturing disciplines within one unit. This enables CSIR Materials Science...

  12. CSIR eNews: Materials science and manufacturing

    CSIR Research Space (South Africa)

    CSIR

    2008-03-01

    Full Text Available knowledge and networks within these fields. A major competitive advantage is the wide coverage of materials (e.g. fibres, textiles, polymers, ceramics, composites, metals) and manufacturing disciplines within one unit. This enables CSIR Materials Science...

  13. Materials Science of High-Temperature Superconducting Coated Conductor Materials

    National Research Council Canada - National Science Library

    Beasley, M. R

    2007-01-01

    This program was broadly focused on the materials science of high temperature superconducting coated conductors, which are of potential interest for application in electric power systems of interest to the Air Force...

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 6. Self-assembling behaviour of Pt nanoparticles onto surface of TiO2 and their resulting photocatalytic activity. M Qamar Ashok K Ganguli. Volume 36 Issue 6 November 2013 pp 945-951 ...

  15. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 4. Issue front cover thumbnail. Volume 32, Issue 4. August 2009, pages 369-463. pp 369-373 Thin Films. Mobility activation in thermally deposited CdSe thin films · Kangkan Sarmah Ranjan Sarma · More Details Abstract Fulltext PDF. Effect of illumination on ...

  16. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 5. Issue front cover thumbnail. Volume 23, Issue 5. October 2000, pages 341-452. pp 341-344 Synthesis. Preparation of Pt–Ru bimetallic catalyst supported on carbon nanotubes · B Rajesh K Ravindranathan Thampi J -M Bonard B Viswanathan · More Details ...

  17. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 1. Issue front cover thumbnail. Volume 30, Issue 1. February 2007, pages 1-71. pp 1-3 Single Crystals. Thermoluminescence characteristics of Sm doped NaYF4 crystals · M V Ramana Reddy Ch Gopal Reddy K Narasimha Reddy · More Details Abstract ...

  18. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 1. Issue front cover thumbnail. Volume 24, Issue 1. February 2001, pages 1-94. pp 1-21 Review---Phase Transitions. Kinetics of pressure induced structural phase transitions—A review · N V Chandra Shekar K Govinda Rajan · More Details Abstract Fulltext ...

  19. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 3. Issue front cover thumbnail. Volume 23, Issue 3. June 2000, pages 159-238. pp 159-163 Nanomaterials. A note on the use of ellipsometry for studying the kinetics of formation of self-assembled monolayers · Murali Sastry · More Details Abstract Fulltext PDF.

  20. Special issue on "Frontiers in Materials Science: Condensed matters"

    Science.gov (United States)

    Hoang, Nam-Nhat; Yamamoto, Tomoyuki; Pham, Duc-Thang

    2018-03-01

    This special issue includes the editor-invited and selected papers from 3rd International Symposium on Frontiers in Materials Science (FMS2016), held in Hanoi, Vietnam, from the 28th to 30th of September 2016, which coincided with the 65th anniversary of the Faculty of Physics, Hanoi University of Education. The FMS2016 is a continuation of a series of meetings starting from 2010. A first event was a bilateral Vietnamese-German meeting in Hanoi, Vietnam, in 2010, and the second one was held in Frankfurt, Germany, in 2011. The idea at that time was to initiate interactions between scientists from both countries and to further develop the field of materials science in Southeast Asia. After these successful bilateral meetings, a next step was taken by advancing the format of the symposium into an international event. In 2013, the 1st International Symposium on Frontiers in Materials Science (FMS2013) was successfully organized in Hanoi, which followed 2nd symposium, FMS2015, in Tokyo, in 2015. The FMS2016 continues this idea of providing an international forum for physicists, material scientists and chemists for discussing their latest results and the recent developments in the important field of materials science.

  1. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  2. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 3. Issue front cover thumbnail. Volume 32, Issue 3. June 2009, pages 215-367. pp 215-215. Foreword · S B Krupanidhi H L Bhat · More Details Fulltext PDF. pp 217-225. Molecule-based magnets · J V Yakhmi · More Details Abstract Fulltext PDF.

  3. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, Thailand; Centre of Excellence for Innovation and Technology for Water Treatment, Naresuan University, Phitsanulok, Thailand; Department of Environmental Technology, Faculty of Environmental Science, University of Science, Viet ...

  5. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 3 ... Sintering of nano crystalline silicon carbide by doping with boron carbide ... of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. ... pp 213-217 Alloys and Steels.

  6. The future research of material science

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hironobu [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    High Energy Accelerator Research Organization (KEK), which was established on 1 April, consists of two institutes. One of these is Institute of Materials Structure Science. New research program in the new institute using synchrotron radiation, neutrons and muons are discussed. (author)

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Transparent conducting amorphous p-type CuFeO 2 (CFO) thin film was ... Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China ...

  8. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  9. General and special engineering materials science. Vol. 3

    International Nuclear Information System (INIS)

    Ondracek, G.; Hofmann, P.

    1983-04-01

    The report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume III concerns special engineering materials science and considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accident and nuclear materials in core melt accidents. (orig./IHOE) [de

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    MAHER DARWISH1 ALI MOHAMMADI1 2 NAVID ASSI1. Department of Drug and Food Control, Faculty of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran 14155-6451, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451 ...

  11. Machine learning and data science in soft materials engineering

    Science.gov (United States)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  12. Machine learning and data science in soft materials engineering.

    Science.gov (United States)

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  13. The Materials Science and its impact in the Archaeology. Volume 3

    International Nuclear Information System (INIS)

    Mendoza A, D.; Arenas A, J.A.; Ruvalcaba S, J.L.; Rodriguez L, V.

    2006-01-01

    From the half-filled nineties the 'Archaeological and Art issues in Materials Science' symposium has come carrying out inside the International Congress of Materials Science that annually organizes the Mexican Academy of Materials Science. In this symposium, investigators of different nationalities, including Mexico, they have participated exposing their results in the study, consolidation and conservation of materials of archaeological origin and of works of art. By this way, the symposium has been promoted the exchange of experiences among the scientists, fomenting the collaboration among these. Due to the quality of the presented works and as an effort of the participants of disclosing their studies, the symposium organizing committee decided to capture in this third book series, the works presented in 2005, in such a way that its can be consulted by colleagues, students and public in general and know the investigations that are carried out in the field of the materials science applied to the study of archaeological samples and of works of art. (Author)

  14. Materials Science Research Rack Onboard the International Space Station

    Science.gov (United States)

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  15. Mineral Surface Reactivity in teaching of Science Materials

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    In the last fifty years, science materials issues has required the study of air pollution, water and soil to prevent and remedy the adverse effects of waste originating from anthropogenic activity and the development of new energies and new materials. The teaching of this discipline has been marked by lectures on general lines, materials, disciplines, who explained biased objects of reality, but often forgot the task of reconstruction and integration of such visions. Moving from that model, otherwise quite static, to a dynamic relational model, would in our view, a real revolution in education. This means taking a systematic approach to complex both in interpreting reality and in favor when learning. Children relationships are as important or more than single objects, and it is to discover fundamental organizational principles of phenomena we seek to interpret or in other words, find the pattern that connects. Thus, we must work on relationships and also take into account the relation between the observer and the observed. Educate about relationships means that studies should always be considered within a framework of probabilities, not absolute certainties. This model of systemic thinking, dealing with complexity, is a possibility to bring coherence to our educational work, because the complexity is not taught, complexity is live, so that complex thinking is extended (and fed) in a form educate complex. It is the task of teaching to help people move from level to level of decision reviews. This means that systems thinking should be extended in a local action, action that engages the individual and the environment. Science Materials has emerged as a discipline of free choice for pupils attending chemical engineering which has been assigned 6.0 credits. The chemical engineer's professional profile within the current framework is defined as a professional knowledge as a specialization technical / functional, working in a learning organization and the formation of

  16. Analytical Chemistry at the Interface Between Materials Science and Biology

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Janese C. [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Laboratoire Corrosion-Electrochimie, Faculté des Sciences, BP 1014, Avenue Ibn Battouta, Rabat, Morocco; Laboratoire de Chimie Organique Hétérocyclique, Faculté des Sciences, BP 1014, Avenue Ibn Battouta, Rabat, Morocco; Laboratoire de Chimie Organique et d'Etudes Physico-chimiques, Ecole Normale Supérieure ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Kranti P Musmade1 Praful B Deshpande1 Prashant B Musmade1 M Naseer Maliyakkal1 A Ranjith Kumar2 M Sreenivasa Reddy1 N Udupa1. Manipal College of Pharmaceutical Sciences, Manipal 576 104, India; Department of Pharmaceutical Sciences, South Dakota State University, South Dakota ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Physics · Proceedings – Mathematical Sciences · Resonance – Journal of Science ... Home; Journals; Journal of Chemical Sciences; Special Issues ... 2nd International Symposium on Materials Chemistry (ISMC-2008) ... New Directions of Research in Molecules and Materials ... Theoretical Models for Molecular Structure.

  20. General and special engineering materials science. Vol. 2

    International Nuclear Information System (INIS)

    Anderko, K.; Kummerer, K.R.; Ondracek, G.

    1983-04-01

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including 1. reactor clad and structural materials, 2. nuclear fuels and fuel elements, 3. nuclear waste as a materials viewpoint. (orig./IHOE) [de

  1. Understanding Materials Science History · Properties · Applications

    CERN Document Server

    Hummel, Rolf E

    2005-01-01

    This introduction to materials science both for students of engineering and physics and for the interested general public examines not only the physical and engineering properties of virtually all kinds of materials, but also their history, uses, development, and some of the implications of resource depletion and recycling. It covers all topics on materials from an entirely novel perspective: the role materials have played throughout history in the development of humankind and technologies. Specifically, it shows the connection between the technical and the cultural, economic, ecological, and societal aspects of materials science. It aims to whet the appetite of its readers and inspire them to further explore the properties and applications of metals, alloys, ceramics, plastics, and electronic materials by presenting easily understandable explanations and entertaining historical facts. It is also intended to raise the reader’s awareness of their obligations to society as practicing engineers and scientists....

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... XIONG1 WEIHUA ZHU1 HEMING XIAO1. Institute for Computation in Molecular and Materials Science and Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; School of Materials Science and Engineering, Nanjing Institute of Technology, ...

  3. U.S. Materials Science on the International Space Station: Status and Plans

    Science.gov (United States)

    Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.

    2010-01-01

    This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Laboratoire de Physique Fondamentale et Applique (LPFA), Faculté des Sciences Ain Chock, Université Hassan II, B.P. 5366 Mâarif, Casablanca, Maroc; Laboratoire de Physique des Matériaux, Micro-électronique, Automatique et Thermique (LPMMAT), Faculté des Sciences Ain Chock, Université Hassan II, B.P. 5366 ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    D K Burghate1 V S Deogaonkar1 S B Sawarkar2 S P Yawale3 S V Pakade3. Department of Physics, Shri Shivaji Science College, Amravati 444 603, India; Department of Physics, Polytechnic Badnera, Amravati 444 701, India; Department of Physics, Government Vidarbha Institute of Science and Humanities, Amravati 444 ...

  6. The concept verification testing of materials science payloads

    Science.gov (United States)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  7. Chemistry and Materials Science Directorate 2005 Annual Report

    International Nuclear Information System (INIS)

    Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

    2006-01-01

    In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent

  8. Chemistry and Materials Science Directorate 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

    2006-08-08

    In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent

  9. Application of nuclear-physics methods in space materials science

    Science.gov (United States)

    Novikov, L. S.; Voronina, E. N.; Galanina, L. I.; Chirskaya, N. P.

    2017-07-01

    The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

  10. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    International Nuclear Information System (INIS)

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index

  11. Nanofluidics: A New Arena for Materials Science.

    Science.gov (United States)

    Xu, Yan

    2018-01-01

    A significant growth of research in nanofluidics is achieved over the past decade, but the field is still facing considerable challenges toward the transition from the current physics-centered stage to the next application-oriented stage. Many of these challenges are associated with materials science, so the field of nanofluidics offers great opportunities for materials scientists to exploit. In addition, the use of unusual effects and ultrasmall confined spaces of well-defined nanofluidic environments would offer new mechanisms and technologies to manipulate nanoscale objects as well as to synthesize novel nanomaterials in the liquid phase. Therefore, nanofluidics will be a new arena for materials science. In the past few years, burgeoning progress has been made toward this trend, as overviewed in this article, including materials and methods for fabricating nanofluidic devices, nanofluidics with functionalized surfaces and functional material components, as well as nanofluidics for manipulating nanoscale materials and fabricating new nanomaterials. Many critical challenges as well as fantastic opportunities in this arena lie ahead. Some of those, which are of particular interest, are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Molecular forensic science of nuclear materials

    International Nuclear Information System (INIS)

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO 2 (An: U, Pu) to form non-stoichiometric species described as AnO 2+x . Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  13. r ben hassine - Bulletin of Materials Science | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R BEN HASSINE. Articles written in Bulletin of Materials Science. Volume 40 Issue 1 February 2017 pp 79-85. Effect of Co substitution on the physicochemical properties of La 0.67 Sr 0.22 Ba 0.11 Mn 1 − x Co x O 3 compounds ( 0 ≤ x ≤ 0.3 ) · W CHERIF R BEN HASSINE J A ...

  14. Materials science, nature and position of the subject

    Energy Technology Data Exchange (ETDEWEB)

    Jongenburger, P.

    1984-01-01

    Materials science origin, history, future developments, and its present significance in particular with regard to energy and environment are discussed. By means of the examples of cadmium and tungsten, attention is paid to exhaustion and recovery of materials.

  15. THE DEVELOPMENT OF AIR-THEME INTEGRATED SCIENCE TEACHING MATERIAL USING FOUR STEPS TEACHING MATERIAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A. Arifin

    2016-01-01

    Full Text Available The purposes of this study are to develop, to test the feasibility, to describe the characteristic, and to test the students understanding about integrated science teaching material about air using Four Steps Teaching Material Development (4S TMD. The Research and Development method was use to develop integrated science teaching materials which is involving  all science perspectives that are not presented in junior high school science book. The air theme was chosen in this study since it can be explained using biology, chemistry, physics, and earth and space science  perspectives. Development the teaching materials was consists of selection, structuring, characterization, and reduction didactic steps. Based on the of feasibility test results, the teaching material is qualified in content, presentation, language, and graphic feasibility aspects. The characteristic of this teaching material expose the closeness theme with student daily lifes and its compatibility with National Books Standard. Based on the understanding test results, the teaching material is qualified in understanding aspect with high category. It can be concluded that the teaching material qualified to be used as supplement teaching material of science learning.Penelitian ini bertujuan untuk mengembangkan, menguji kelayakan, memaparkan karakteristik, dan menguji keterpahaman bahan ajar IPA terpadu pada tema udara untuk siswa SMP kelas VII melalui Four Steps Teaching Material Development (4S TMD. Penelitian dengan metode Research and Development (R&D ini dilatar belakangi oleh tidak tersedianya bahan ajar IPA SMP yang disajikan secara terpadu melalui tema udara. Pengembangan bahan ajar IPA terpadu tema udara terdiri dari tahap seleksi, strukturisasi, karakterisasi dan reduksi didaktik. Berdasarkan uji kelayakan, bahan ajar telah memenuhi aspek kelayakan isi, kelayakan penyajian, kelayakan bahasa dan kelayakan kegrafikan. Karakteristik bahan ajar meliputi kedekatan tema bahan ajar

  16. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials.

    Science.gov (United States)

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R

    2017-03-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.

  17. Applications of pulsed energy sources and hydrodynamic response to materials science

    International Nuclear Information System (INIS)

    Perry, F.; Nelson, W.

    1993-01-01

    The dynamic response of materials to pulsed, relativistic electron beams was studied for materials science applications over two decades ago. Presently, intense light ion beams are being explored for materials science applications. These include the Ion Beam Surface Treatment (IBEST) of materials for producing stronger and more corrosion-resistant materials and the evaporative deposition of polycrystalline thin films. Laser sources are also being extensively utilized as pulsed energy sources in medical science and in clinical applications. In particular, laser-tissue interactions are being investigated for laser angioplasty and surgery as well as cancer therapy. The understanding of the energy deposition and hydrodynamic response of a wide range of materials is essential to the success of these applications. In order to address these materials science applications, the authors are utilizing and developing high quality, energy deposition-hydrodynamic code techniques which can aid in the design and interpretation of experiments. Consequently, the authors strongly encourage the development of 3-dimensional, species-selective diagnostic techniques, e.g. Resonant Holographic Interferometry Spectroscopy (RHIS), to be used in analyzing the ablation plume in the thin film deposition experiments. In this presentation they show the results and discuss the limitations of calculations for these materials applications. They also discuss the status of the RHIS diagnostic

  18. Biomimetics in materials science self-healing, self-lubricating, and self-cleaning materials

    CERN Document Server

    Nosonovsky, Michael

    2012-01-01

    Biomimetics in Materials Science provides a comprehensive theoretical and practical review of biomimetic materials with self-healing, self-lubricating and self-cleaning properties. These three topics are closely related and constitute rapidly developing areas of study. The field of self-healing materials requires a new conceptual understanding of this biomimetic technology, which is in contrast to traditional  engineering processes such as wear and fatigue.  Biomimetics in Materials Science is the first monograph to be devoted to these materials. A new theoretical framework for these processes is presented based on the concept of multi-scale structure of entropy and non-equilibrium thermodynamics, together with a detailed review of the available technology. The latter includes experimental, modeling, and simulation results obtained on self-healing/lubricating/cleaning materials since their emergence in the past decade. Describes smart, biomimetic materials in the context of nanotechnology, biotechnology, an...

  19. To Kit or Not to Kit? Evaluating and Implementing Science Materials and Resources

    Science.gov (United States)

    Schiller, Ellen; Melin, Jacque; Bair, Mary

    2016-01-01

    With the release of the "Next Generation Science Standards," many schools are reexamining the science materials they are using. Textbook companies and kit developers are eager to meet the demand for "NGSS"-aligned teaching materials. Teacher may have been asked to serve on a science curriculum committee, or to evaluate current…

  20. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    Science.gov (United States)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  1. Multiscale paradigms in integrated computational materials science and engineering materials theory, modeling, and simulation for predictive design

    CERN Document Server

    Runge, Keith; Muralidharan, Krishna

    2016-01-01

    This book presents cutting-edge concepts, paradigms, and research highlights in the field of computational materials science and engineering, and provides a fresh, up-to-date perspective on solving present and future materials challenges. The chapters are written by not only pioneers in the fields of computational materials chemistry and materials science, but also experts in multi-scale modeling and simulation as applied to materials engineering. Pedagogical introductions to the different topics and continuity between the chapters are provided to ensure the appeal to a broad audience and to address the applicability of integrated computational materials science and engineering for solving real-world problems.

  2. Science and Emerging Technology of 2D Atomic Layered Materials and Devices

    Science.gov (United States)

    2017-09-09

    AFRL-AFOSR-JP-TR-2017-0067 Science & Emerging Technology of 2D Atomic Layered Materials and Devices Angel Rubio UNIVERSIDAD DEL PAIS VASCO - EUSKAL...DD-MM-YYYY)      27-09-2017 2.  REPORT TYPE      Final 3.  DATES COVERED (From - To)      19 Feb 2015 to 18 Feb 2017 4.  TITLE AND SUBTITLE Science ...reporting documents for AOARD project 144088, “2D Materials and Devices Beyond Graphene Science & Emerging Technology of 2D Atomic Layered Materials and

  3. Materials Sciences programs, Fiscal Year 1992

    International Nuclear Information System (INIS)

    1993-02-01

    The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. This report contains a listing of research underway in FY 1992 together with an index to the Division's programs. Recent publications from Division-sponsored panel meetings and workshops are listed. The body of the report is arranged under the following section headings: laboratories, grant and contract research, small business innovation research, major user facilities, other user facilities, funding levels, and index

  4. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  5. Materials Sciences programs, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  6. PREFACE: 26th Symposium on Plasma Science for Materials (SPSM-26)

    Science.gov (United States)

    2014-06-01

    26th Symposium on Plasma Science for Materials (SPSM-26) Takayuki Watanabe The 26th Symposium on Plasma Science for Materials (SPSM-26) was held in Fukuoka, Japan on September 23-24, 2013. SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. Plasma processing have attracted extensive attention due to their unique advantages, and it is expected to be utilized for a number of innovative industrial applications such as synthesis of high-quality and high-performance nanomaterials. The advantages of plasmas including high chemical reactivity in accordance with required chemical reactions are beneficial for innovative processing. In recent years, plasma materials processing with reactive plasmas has been extensively employed in the fields of environmental issues and biotechnology. This conference seeks to bring different scientific communities together to create a forum for discussing the latest developments and issues. The conference provides a platform for the exploration of both fundamental topics and new applications of plasmas by the contacts between science, technology, and industry. The conference was organized in plenary lectures, invited, contributed oral presentations, and poster sessions. At this meeting, we had 142 participants from 10 countries and 104 presentations, including 11 invited presentations. This year, we arranged special topical sessions that cover Plasma Medicine and Biotechnologies, Business and Academia Cooperation, Plasma with Liquids, Plasma Processes for Nanomaterials, together with Basic, Electronics, and Thermal Plasma sessions. This special issue presents 28

  7. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    Science.gov (United States)

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  8. Curriculum-Dependent and Curriculum-Independent Factors in Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Science

    Science.gov (United States)

    Forbes, Cory T.

    2013-01-01

    In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…

  9. Phase change materials: science and applications

    National Research Council Canada - National Science Library

    Raoux, Simone; Wuttig, Matthias

    2009-01-01

    ... are the Ovonic threshold switch, the multi-state Ovonic Universal Memory (OUM), and the Ovonic cognitive device which emulates the biological neurons with its plasticity and synaptic activity. The field of amorphous and disordered materials created not only a basic new area of science, but also important new technologies. It should be kept in mind that...

  10. STUDENTS’ SCIENCE LITERACY ABILITY PROFILE IN ENVIRONMENTAL POLLUTION AND GLOBAL WARMING MATERIAL

    Directory of Open Access Journals (Sweden)

    Laela Ulfa

    2017-12-01

    Full Text Available This research head for measure profile of students’ science literacy ability in environmental pollution and global warming material. The study was conducted in one of SMP Negeri Semarang with samples of 70 students from grade VII D and VII E. The profile of literacy science of students from the highest percentage till the lowest was science as a body of a knowledge was 70,36%, science as a way of thinking was 61,71%, the interaction between science, technology, and society was 61,43% categorized enough level, and science as a way for investigating was 38,21 categorized too less. keywords: science literacy, scince literacy ability

  11. Knowledge and Technology Transfer in Materials Science and Engineering in Europe

    OpenAIRE

    Bressler, Patrick; Dürig, Urs; González-Elipe, Agustin; Quandt, Eckhard; Ritschkoff, Anne-Christine; Vahlas, Constantin

    2015-01-01

    Advanced Materials is one of the Key Enabling 3 Technologies identified by the European Commission1. Together with Advanced Manufacturing it underpins almost all other Key Enabling and Industrial Technologies. The basic science and engineering research that results in the development of Advanced Materials lies within the field of Materials Science and Engineering (MSE). The transfer of knowledge from basic research into final products and applications in the field of MSE involves certain MSE-...

  12. The science of superconductivity and new materials

    International Nuclear Information System (INIS)

    Nakajima, S.

    1989-01-01

    The authors have set as the objective of this symposium the full-scale evaluation of the present state of research and development in the theoretical fields of superconductivity and new materials; two fields which the entire world's attention is focused and which a great number of researchers are presently putting in their maximum efforts. Their symposium consists of two workshops respectively dealing with superconductivity and new materials. It is needless to say that physical science and material development move forward hand in hand. And they see a recent tendency worldwide that inventions and discoveries in both science and technology are touted fashionably as news topics. The search for new materials that have high critical temperature for use in the field of developing superconductivity has become the focus of social attention around the world. Yet they must not forget that the true important lies in the fundamental study of the mechanism of superconductivity and of its applications. The quantum leap of the Industrial Revolution in England brought forth increased productivity through the development of new technology and locomotive power, eventually leading to the establishment of a new production system, and subsequently, an industrial society in which we live now

  13. Development of accelerator technology for biotechnology and materials science

    International Nuclear Information System (INIS)

    Arakawa, Kazuo; Saitoh, Yuichi; Kurashima, Satoshi; Yokota, Watalu

    2008-01-01

    The TIARA (Takasaki Ion accelerators for Advanced Radiation Application) is a unique worldwide facility for advancing the frontiers of biotechnology and materials science, consisting of four accelerators: a K110 AVF cyclotron, a 3-MV tandem accelerator, a 3-MV single-ended accelerator and a 400-kV ion implanter. The accelerator complex provides a variety of ion species from proton to bismuth in a wide energy range from keV to MeV. This report outlines the facility and the major beam applications, and describes the details of development of accelerator technology for biotechnology and materials science applications at TIARA. (author)

  14. Deconstructing the Constructed Experience: Reforming Science Materials to Develop Creativity

    Science.gov (United States)

    Goodale, Timothy A.; Hughes, Claire E.

    2018-01-01

    For over 50 years, science educators have been calling for increased opportunities for students to engage with science in creative manners, but teachers are still reliant on packaged materials that promote single and 'correct' responses with cookbook approaches. This article suggests five strategies that teachers can use to enhance constructed…

  15. 1. international spring school and symposium on advances in materials science; contributed papers. Proceedings. V.2

    International Nuclear Information System (INIS)

    1994-03-01

    The first International Conference on Advances in Materials Science was held on 15-20 March, 1994 in Cairo. The specialists discussed advances in materials science formation, development and observation. The applications of materials science technique in the field of construction material, Moessbauer measurements, physico science, corrosion and mechanical alloying were discussed at the meeting. more than 700 papers were presented in the meeting

  16. 1. international spring school and symposium on advances in materials science; contributed papers. Proceedings. V.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The first International Conference on Advances in Materials Science was held on 15-20 March, 1994 in Cairo. The specialists discussed advances in materials science formation, development and observation. The applications of materials science technique in the field of construction material, Moessbauer measurements, physico science, corrosion and mechanical alloying were discussed at the meeting. more than 700 papers were presented in the meeting.

  17. Materials Science and X-ray Techniques

    International Nuclear Information System (INIS)

    Brock, J.; Sutton, M.

    2008-01-01

    Many novel synchrotron-based X-ray techniques directly address the core questions of modern materials science but are not yet at the stage of being easy to use because of the lack of dedicated beamlines optimized for specific measurements. In this article, we highlight a few of these X-ray techniques and discuss why, with ongoing upgrades of existing synchrotrons and with new linear-accelerator-based sources under development, now is the time to ensure that these techniques are readily available to the larger materials research community.

  18. International Conference on Recent Trends in Materials Science and Applications

    CERN Document Server

    2017-01-01

    This book gathers the proceedings of the plenary sessions, invited lectures, and papers presented at the International Conference on Recent Trends in Materials Science and Applications (ICRTMSA-2016). It also features revealing presentations on various aspects of Materials Science, such as nanomaterials, photonic crystal fibers, quantum dots, thin film techniques, crystal growth, spectroscopic procedures, fabrication and characterisation of new materials / compounds with enhanced features, and potential applications in nonlinear optical and electro-optic devices, solar cell device, chemical sensing, biomedical imaging, diagnosis and treatment of cancer, energy storage device etc. This book will be of great interest to beginning and seasoned researchers alike.

  19. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  20. New applications of particle accelerators in medicine, materials science, and industry

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1981-01-01

    Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future

  1. Teachers and Science Curriculum Materials: Where We Are and Where We Need to Go

    Science.gov (United States)

    Davis, Elizabeth A.; Janssen, Fred J. J. M.; Van Driel, Jan H.

    2016-01-01

    Curriculum materials serve as a key conceptual tool for science teachers, and better understanding how science teachers use these tools could help to improve both curriculum design and theory related to teacher learning and decision-making. The authors review the literature on teachers and science curriculum materials. The review is organised…

  2. Application of calorimetry and thermodynamics to critical problems in materials science

    International Nuclear Information System (INIS)

    Atake, Tooru

    2009-01-01

    Calorimetry and thermodynamic studies have long been playing a very important role in the research fields of fundamental science and technology. Some topics and examples of thermodynamics studies are given, and the details are explained on the basis of the present author's experience, focusing attention to application of adiabatic calorimetry and thermodynamics to solve critical problems in materials science: (1) condensed gas calorimetry and third law entropy, (2) phase transition and polymorphism in simple molecular crystals, (3) incommensurate phase transitions, (4) particle size effects on the phase transitions in ferroelectric/ferroelastic crystals, (5) relaxor ferroelectrics and multi-ferroics, and some other topics in materials science and technology

  3. Trends in Materials Science for Ligament Reconstruction.

    Science.gov (United States)

    Sava, Oana Roxana; Sava, Daniel Florin; Radulescu, Marius; Albu, Madalina Georgiana; Ficai, Denisa; Veloz-Castillo, Maria Fernanda; Mendez-Rojas, Miguel Angel; Ficai, Anton

    2017-01-01

    The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. [Reciprocal material agency: an ecology for studies of science].

    Science.gov (United States)

    Maia, Carlos Alvarez

    2017-01-01

    In the historiography of the sciences there are consolidated dichotomies that can hinder better research. Fissures include mental-material, subject-object and nature-society, and the bitter conflict between relativism and realism that draws on these dichotomies and can block research. The aim of this article is to tackle these disputes, to unravel them and to move on. The proposed solution is to give consideration to the agency of material things alongside the actions of human subjects. One obstacle is presented by Latour who simulates this result by means of hylozoistic rhetoric. Here, an alternative to Latour is presented, containing no elements of animism, which gives evidence of the concrete way in which the material agency of objects participates in the doing of science, alongside humans.

  5. Probe into geo-information science and information science in nuclear and geography science in China

    International Nuclear Information System (INIS)

    Tang Bin

    2001-01-01

    In the past ten years a new science-Geo-Information Science, a branch of Geoscience, developed very fast, which has been valued and paid much attention to. Based on information science, the author analyzes the flow of material, energy, people and information and their relations, presents the place of Geo-Information Science in Geo-science and its content from Geo-Informatics, Geo-Information technology and the application of itself. Finally, the author discusses the main content and problem existed in Geo-Information Science involved in Nuclear and Geography Science

  6. The Effectiveness of Guided Inquiry-based Learning Material on Students’ Science Literacy Skills

    Science.gov (United States)

    Aulia, E. V.; Poedjiastoeti, S.; Agustini, R.

    2018-01-01

    The purpose of this research is to describe the effectiveness of guided inquiry-based learning material to improve students’ science literacy skills on solubility and solubility product concepts. This study used Research and Development (R&D) design and was implemented to the 11th graders of Muhammadiyah 4 Senior High School Surabaya in 2016/2017 academic year with one group pre-test and post-test design. The data collection techniques used were validation, observation, test, and questionnaire. The results of this research showed that the students’ science literacy skills are different after implementation of guided inquiry-based learning material. The guided inquiry-based learning material is effective to improve students’ science literacy skills on solubility and solubility product concepts by getting N-gain score with medium and high category. This improvement caused by the developed learning material such as lesson plan, student worksheet, and science literacy skill tests were categorized as valid and very valid. In addition, each of the learning phases in lesson plan has been well implemented. Therefore, it can be concluded that the guided inquiry-based learning material are effective to improve students’ science literacy skills on solubility and solubility product concepts in senior high school.

  7. Phospholipid Vesicles in Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Granick, Steve [Univ. of Illinois, Champaign, IL (United States)

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  8. Learning about materials science and technology by deconstructing modern products

    DEFF Research Database (Denmark)

    Horsewell, Andy

    Get the attention of young engineering students, interest and inspire them. Encourage them to think about materials science and technology by looking at the consumer products and gadgets that interest them. Analyse what modern products are constructed of, and how and why the materials...... teaching encourages and demands constant modernisation of the course and the materials being presented. A consideration of material and process selection for components in a modern product can be a dynamic starting point for a course on materials science and engineering; providing inspiration and showing...... and the processes have been chosen in their manufacture i.e. deconstruct modern products. Suitable items can easily be found in personal communication and entertainment, including all manner of sports goods. Further, the current pace of materials product development ensures that using these objects to focus...

  9. Materials Science Research Rack Onboard the International Space Station Hardware and Operations

    Science.gov (United States)

    Lehman, John R.; Frazier, Natalie C.; Johnson, Jimmie

    2012-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly, logging more than 620 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via

  10. Freedom and fashion in materials science and engineering

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Department of Materials Science and Metallurgy, Cambridge University,. Pembroke ... ready and able to pounce on new fashions in research. .... but it is always a good idea to apply the brakes of moderate scepticism when a fashion diverges.

  11. Democratizing data science through data science training.

    Science.gov (United States)

    Van Horn, John Darrell; Fierro, Lily; Kamdar, Jeana; Gordon, Jonathan; Stewart, Crystal; Bhattrai, Avnish; Abe, Sumiko; Lei, Xiaoxiao; O'Driscoll, Caroline; Sinha, Aakanchha; Jain, Priyambada; Burns, Gully; Lerman, Kristina; Ambite, José Luis

    2018-01-01

    The biomedical sciences have experienced an explosion of data which promises to overwhelm many current practitioners. Without easy access to data science training resources, biomedical researchers may find themselves unable to wrangle their own datasets. In 2014, to address the challenges posed such a data onslaught, the National Institutes of Health (NIH) launched the Big Data to Knowledge (BD2K) initiative. To this end, the BD2K Training Coordinating Center (TCC; bigdatau.org) was funded to facilitate both in-person and online learning, and open up the concepts of data science to the widest possible audience. Here, we describe the activities of the BD2K TCC and its focus on the construction of the Educational Resource Discovery Index (ERuDIte), which identifies, collects, describes, and organizes online data science materials from BD2K awardees, open online courses, and videos from scientific lectures and tutorials. ERuDIte now indexes over 9,500 resources. Given the richness of online training materials and the constant evolution of biomedical data science, computational methods applying information retrieval, natural language processing, and machine learning techniques are required - in effect, using data science to inform training in data science. In so doing, the TCC seeks to democratize novel insights and discoveries brought forth via large-scale data science training.

  12. 75 FR 16514 - Bayer Material Science, LLC, Formally Known as Sheffield Plastics, Including On-Site Leased...

    Science.gov (United States)

    2010-04-01

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,045] Bayer Material Science... January 8th, 2010, applicable to workers of Bayer Material Science, LLC, formally known as Sheffield... polycarbonate film products. Information shows that Bayer Material Science, LLC was formally known as Sheffield...

  13. An Interdisciplinary Program in Materials Science at James Madison University.

    Science.gov (United States)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  14. Materials Sciences programs, Fiscal Year 1984

    International Nuclear Information System (INIS)

    1984-09-01

    This report provides a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research program, Section D has information on DOE collaborative research centers, Section E gives distributions of funding, and Section F has various indexes

  15. Understanding structural conservation through materials science:

    DEFF Research Database (Denmark)

    Fuster-López, Laura; Krarup Andersen, Cecil

    2014-01-01

    with tools to avoid future problems, it should be present in all conservation-restoration training programs to help promote students’ understanding of the degradation mechanisms in cultural materials (and their correlation with chemical and biological degradation) as well as the implications behind......Mechanical properties and the structure of materials are key elements in understanding how structural interventions in conservation treatments affect cultural heritage objects. In this context, engineering mechanics can help determine the strength and stability found in art objects as it can...... provide both explanation and prediction of failure in materials. It has therefore shown to be an effective method for developing useful solutions to conservation problems. Since materials science and mechanics can help conservators predict the long term consequences of their treatments and provide them...

  16. Materials Science Division activity report 1991-1993

    International Nuclear Information System (INIS)

    Amarendra, G.; Tiwari, A.M.; Subramanian, N.; Venugopal Rao, G.

    1995-01-01

    This progress report gives an account of the various research and developmental activities carried out at the Materials Science Division of the Indira Gandhi Centre for Atomic Research, Kalpakkam during 1991-93. It also gives a summary of the results of the research activities, describes the experimental facilities and also list the publications

  17. Inventory of Innovative Learning Materials in Marine Science and Technology. UNESCO Reports in Marine Science 60.

    Science.gov (United States)

    Richards, Adrian F.; Richards, Efrosine A.

    The Inventory of Innovative Learning Materials in Marine Science and Technology includes 32 computer-, 148 video-, 16 film-, and 11 CD-ROM-based entries. They concern materials in biosciences (67), chemistry (5), geosciences (16), physics (23), technology (76) and other (20). This first, initial compilations is conceived as the basis for more…

  18. Gender Equity in Materials Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Angus Rockett

    2008-12-01

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases

  19. Annual review of materials science. Volume 7

    International Nuclear Information System (INIS)

    Huggins, R.A.; Bube, R.H.; Roberts, R.W.

    1977-01-01

    A review is presented of recent materials science research. Topics covered include: point defects and their interaction; defect chemistry in crystalline solids; deep level impurities in semiconductors; structural aspects of one-dimensional conductors; structural transformations during aging of metal alloys; high rate thick film growth; metal forming, the application of limit analysis; kinetics and mechanisms of gas-metal interactions; erosion; reversible temper embrittlement; acoustic emission in brittle materials; capacitance transient spectroscopy; hot corrosion of high-temperature alloys; fundamental optical phenomena in infrared window materials; dental amalgam; and transparent conducting coatings

  20. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    Science.gov (United States)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  1. Help | ScienceCinema

    Science.gov (United States)

    , Conversion, and Utilization Engineering Environmental Sciences Fission and Nuclear Technologies Fossil Fuels Geosciences Materials Science Mathematics Nanotechnology Nuclear Materials and Reactors Particle Accelerators

  2. Growing a Primary Science Specialism: Assembling People, Places, Materials and Ideas

    Science.gov (United States)

    Lynch, Julianne; Frankel, Nadine; McCarthy, Kerry; Sharp, Lindy

    2015-01-01

    This paper derives from the authors' experiences of the development of a successful science specialism implemented in a large primary school in regional Victoria, Australia, since 2012. We discuss how diverse resources--people, spaces, equipment, materials and ideas--were brought together to support a science specialism that focuses on positioning…

  3. Pre-Service Science Teachers Views on STEM Materials and STEM Competition in Instructional Technologies and Material Development Course

    Science.gov (United States)

    Cetin, Ali; Balta, Nuri

    2017-01-01

    This qualitative study was designed to introduce STEM (Science, Technology, Engineering, Mathematics) activities to preservice science teachers and identify their views about STEM materials. In this context, a competition was organized with 42 preservice science teachers (13 male- 29 female) who took Instructional Technologies and Material…

  4. Everyday science & science every day: Science-related talk & activities across settings

    Science.gov (United States)

    Zimmerman, Heather

    To understand the development of science-related thinking, acting, and learning in middle childhood, I studied youth in schools, homes, and other neighborhood settings over a three-year period. The research goal was to analyze how multiple everyday experiences influence children's participation in science-related practices and their thinking about science and scientists. Ethnographic and interaction analysis methodologies were to study the cognition and social interactions of the children as they participated in activities with peers, family, and teachers (n=128). Interviews and participant self-documentation protocols elucidated the participants' understandings of science. An Everyday Expertise (Bell et al., 2006) theoretical framework was employed to study the development of science understandings on three analytical planes: individual learner, social groups, and societal/community resources. Findings came from a cross-case analysis of urban science learners and from two within-case analyses of girls' science-related practices as they transitioned from elementary to middle school. Results included: (1) children participated actively in science across settings---including in their homes as well as in schools, (2) children's interests in science were not always aligned to the school science content, pedagogy, or school structures for participation, yet children found ways to engage with science despite these differences through crafting multiple pathways into science, (3) urban parents were active supporters of STEM-related learning environments through brokering access to social and material resources, (4) the youth often found science in their daily activities that formal education did not make use of, and (5) children's involvement with science-related practices can be developed into design principles to reach youth in culturally relevant ways.

  5. Materials Sciences programs, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-09-01

    Purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  6. Data Science and Optimal Learning for Material Discovery and Design

    Science.gov (United States)

    ; Optimal Learning for Material Discovery & Design Data Science and Optimal Learning for Material inference and optimization methods that can constrain predictions using insights and results from theory directions in the application of information theoretic tools to materials problems related to learning from

  7. A Career in Science | Women in Science | Initiatives | Indian ...

    Indian Academy of Sciences (India)

    Journals · Overview · Bulletin of Materials Science · DIALOGUE: Science, ... Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore ... Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram ... The Panel organized a one day Lecture on the occasion of International ...

  8. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  9. Science packages

    Science.gov (United States)

    1997-01-01

    Primary science teachers in Scotland have a new updating method at their disposal with the launch of a package of CDi (Compact Discs Interactive) materials developed by the BBC and the Scottish Office. These were a response to the claim that many primary teachers felt they had been inadequately trained in science and lacked the confidence to teach it properly. Consequently they felt the need for more in-service training to equip them with the personal understanding required. The pack contains five disks and a printed user's guide divided up as follows: disk 1 Investigations; disk 2 Developing understanding; disks 3,4,5 Primary Science staff development videos. It was produced by the Scottish Interactive Technology Centre (Moray House Institute) and is available from BBC Education at £149.99 including VAT. Free Internet distribution of science education materials has also begun as part of the Global Schoolhouse (GSH) scheme. The US National Science Teachers' Association (NSTA) and Microsoft Corporation are making available field-tested comprehensive curriculum material including 'Micro-units' on more than 80 topics in biology, chemistry, earth and space science and physics. The latter are the work of the Scope, Sequence and Coordination of High School Science project, which can be found at http://www.gsh.org/NSTA_SSandC/. More information on NSTA can be obtained from its Web site at http://www.nsta.org.

  10. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  11. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    International Nuclear Information System (INIS)

    Allen, Todd R.

    2011-01-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center's investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center's research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  12. Elementary Students' Learning of Materials Science Practices through Instruction Based on Engineering Design Tasks

    Science.gov (United States)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-01-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine…

  13. 75 FR 39664 - Grant of Authority For Subzone Status Materials Science Technology, Inc. (Specialty Elastomers...

    Science.gov (United States)

    2010-07-12

    ... Status Materials Science Technology, Inc. (Specialty Elastomers and Fire Retardant Chemicals) Conroe... specialty elastomer manufacturing and distribution facility of Materials Science Technology, Inc., located... and distribution of specialty elastomers and fire retardant chemicals at the facility of Materials...

  14. Materials sciences programs: Fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  15. Materials sciences programs fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  16. Examination of the Teaching Skills for Reading Scientific Materials Needed by Science Teachers by Comparing In-Service and Prospective Science Teachers

    OpenAIRE

    山根, 嵩史; 中條, 和光

    2016-01-01

    We examined the teaching skills for reading scientific materials needed by science teachers. We compared the views of teaching skills for reading scientific materials of science teachers both in service and in training. The result of text mining for free description of the teaching skills of both groups showed that, whereas trainee teachers emphasized language ability as a teaching skill (for example, the ability to image the contents of a text), current teachers emphasized teaching the curri...

  17. Digital Materials Related to Food Science and Cooking Methods for Preparing Eggs

    OpenAIRE

    沼田, 貴美子; 渡邉, 美奈; ヌマタ, キミコ; ワタナベ, ミナ; Numata, Kimiko; Watanabe, Mina

    2009-01-01

    We studied methods that were effective for teaching cooking to elementary school pupils using home economics materials. The subject was "Iritamago (scrambled eggs)". We researched the relationship between cookery science and experimental methods of making Iritamago. The various differences in condition and texture of Iritamago were compared among the different cooking utensils, conditions, and preparations of eggs. We created digital materials related to cookery science and the cooking method...

  18. First Materials Science Research Facility Rack Capabilities and Design Features

    Science.gov (United States)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  19. Application of cluster computing in materials science

    International Nuclear Information System (INIS)

    Kuzmin, A.

    2006-01-01

    Solution of many problems in materials science requires that high performance computing (HPC) be used. Therefore, a cluster computer, Latvian Super-cluster (LASC), was constructed at the Institute of Solid State Physics of the University of Latvia in 2002. The LASC is used for advanced research in the fields of quantum chemistry, solid state physics and nano materials. In this work we overview currently available computational technologies and exemplify their application by interpretation of x-ray absorption spectra for nano-sized ZnO. (author)

  20. Materials science and engineering. An introduction; Materialwissenschaften und Werkstofftechnik. Eine Einfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Callister, William D. Jr. [Utah Univ., Salt Lake City, UT (United States). Dept. of Metallurgical Engineering; Rethwisch, David G. [Utah Univ., UT (United States). Dept. of Chemical and Biochemical Engineering

    2013-02-01

    William Callister's bestseller ''Materials Science and Engineering'' is THE textbook of materials science. This is the new German language edition, whose contents have been adapted optimally to the requirements of German students. The ''Callister'' covers all aspects of materials science and engineering for studies and preparation of exams. It follows a well-tried didactic concept, favouring understanding over formalism, and supports the students' learning process: 1. Clearly defined learning goals; 2. At regular intervals, questions to check the understanding of the subject matter just learned; 3. Summaries at the end of each chapter comprising subject matter, equations, key words and cross-references to other chapters; 4. Exemplary calculations, questions and answers, problems and solutions; 5. Digressions to industrial applications; 6. Units and materials names adapted to the German language area. [German] William Callisters englischsprachiger Bestseller ''Materials Science and Engineering'' ist das klassische Lehrbuch der Materialwissenschaften. Nun erscheint die deutsche Ausgabe, deren Inhalte optimal auf die Beduerfnisse der hiesigen Studenten angepasst wurden. Der ''Callister'' bietet den gesamten Stoff der Materialwissenschaften und Werkstofftechnik fuer Studium und Pruefungsvorbereitung. Das erprobte didaktische Konzept zielt ab auf ''Verstaendnis vor Formalismus'' und unterstuetzt den Lernprozess der Studierenden: 1. ausformulierte Lernziele; 2. regelmaessig eingestreute Verstaendnisfragen zum gerade vermittelten Stoff; 3. Kapitelzusammenfassungen mit Lernstoff, Gleichungen, Schluesselwoertern und Querverweisen auf andere Kapitel; 4. durchgerechnete Beispiele, Fragen und Antworten sowie Aufgaben und Loesungen; 5. Exkurse in die industrielle Anwendung; und 6. an den deutschen Sprachraum angepasste Einheiten und Werkstoffbezeichnungen.

  1. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    Energy Technology Data Exchange (ETDEWEB)

    Anne Seifert; Louis Nadelson

    2011-06-01

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a

  2. 1. international spring school and symposium on advances in materials science; invited lectures. Proceedings. V.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The 1 st international conference on advances in materials science was held on 15-20 March, 1994 in cairo. The specialist discussed material science formation, development and observation. The application of advances in material science technique in the field of atomic energy, structure design, microelectronic structure were discussed at the meeting. more than 400 papers were presented in the meeting.

  3. 1. international spring school and symposium on advances in materials science; invited lectures. Proceedings. V.1

    International Nuclear Information System (INIS)

    1994-03-01

    The 1 st international conference on advances in materials science was held on 15-20 March, 1994 in cairo. The specialist discussed material science formation, development and observation. The application of advances in material science technique in the field of atomic energy, structure design, microelectronic structure were discussed at the meeting. more than 400 papers were presented in the meeting

  4. Materials science symposium 'heavy ion science in tandem energy region'

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro [eds.

    2000-01-01

    The tandem accelerator established at Japan Atomic Energy Research Institute (JAERI) in 1982 has been one of the most prominent electrostatic accelerators in the world. The accelerator has been serving for many researches planned by not only JAERI staff but also researchers of universities and national institutes. After the completion of the tandem booster in 1993, four times higher beam energy became available. These two facilities, the tandem accelerator and the booster, made great strides in heavy ion physics and a lot of achievements have been accumulated until now. The research departments of JAERI were reformed in 1998, and the accelerators section came under the Department of Materials Science. On this reform of the research system, the symposium 'Heavy Ion Science in Tandem Energy Region' was held in cooperation with nuclear and solid state physicists although there has been no such symposium for many years. The symposium was expected to stimulate novel development in both nuclear and solid state physics, and also interdisciplinary physics between nuclear and solid state physics. The 68 papers are indexed individually. (J.P.N.)

  5. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    Science.gov (United States)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Jeonbuk 561-756, Korea; Power Engineering School, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia; School of Civil and Environmental Engineering, University of Technology, Sydney, Broadway NSW 2007, ...

  7. Dispositions Supporting Elementary Interns in the Teaching of Reform-Based Science Materials

    Science.gov (United States)

    Eick, Charles J.; Stewart, Bethany

    2010-01-01

    Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs…

  8. Ultrasonic spectroscopy applications in condensed matter physics and materials science

    CERN Document Server

    Leisure, Robert G

    2017-01-01

    Ultrasonic spectroscopy is a technique widely used in solid-state physics, materials science, and geology that utilizes acoustic waves to determine fundamental physical properties of materials, such as their elasticity and mechanical energy dissipation. This book provides complete coverage of the main issues relevant to the design, analysis, and interpretation of ultrasonic experiments. Topics including elasticity, acoustic waves in solids, ultrasonic loss, and the relation of elastic constants to thermodynamic potentials are covered in depth. Modern techniques and experimental methods including resonant ultrasound spectroscopy, digital pulse-echo, and picosecond ultrasound are also introduced and reviewed. This self-contained book includes extensive background theory and is accessible to students new to the field of ultrasonic spectroscopy, as well as to graduate students and researchers in physics, engineering, materials science, and geophysics.

  9. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  10. NASA/First Materials Science Research Rack (MSRR-1) Module Inserts Development for the International Space Station

    Science.gov (United States)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    1999-01-01

    The Material Science Research Rack 1 (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit. Two of the NASA MIs being developed for specific material science investigations are described herein.

  11. Insert Concepts for the Material Science Research Rack (MSRR-1) of the Material Science Research Facility (MSRF) on the International Space Station (ISS)

    Science.gov (United States)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    2000-01-01

    The Material Science Research Rack I (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit NASA's planned inserts include the Quench Module Insert (QMI) and the Diffusion Module Insert (DMI). The QMI is a high-gradient Bridgman-type vacuum furnace with quench capabilities used for experiments on directional solidification of metal alloys. The DMI is a vacuum Bridgman-Stockbarger-type furnace for experiments on Fickian and Soret diffusion in liquids. This paper discusses specific design features and performance capabilities of each insert. The paper also presents current prototype QMI hardware analysis and testing activities and selected results.

  12. Ukrainian Program for Material Science in Microgravity

    Science.gov (United States)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  13. Examining the Types, Features, and Use of Instructional Materials in Afterschool Science

    Science.gov (United States)

    D'Angelo, Cynthia M.; Harris, Christopher J.; Lundh, Patrik; House, Ann; Leones, Tiffany; Llorente, Carlin

    2017-01-01

    Afterschool programs have garnered much attention as promising environments for learning where children can engage in rich science activities. Yet, little is known about the kinds of instructional materials used in typical, large-scale afterschool programs that implement science with diverse populations of children. In this study, we investigated…

  14. Science meeting. Abstracts

    International Nuclear Information System (INIS)

    2000-01-01

    the document is a collection of the science meeting abstracts in the fields of nuclear physics, medical sciences, chemistry, agriculture, environment, engineering, material sciences different aspects of energy and presents research done in 2000 in these fields

  15. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  16. Improvement of Students’ Environmental Literacy by Using Integrated Science Teaching Materials

    Science.gov (United States)

    Suryanti, D.; Sinaga, P.; Surakusumah, W.

    2018-02-01

    This study aims to determine the improvement of student environmental literacy through the use of integrated science teaching materials on pollution topics. The research is used weak experiment method with the one group pre-test post-test design. The sample of the study were junior high school students in Bandung amounted to 32 people of 7th grade. Data collection in the form of environmental literacy test instrument consist of four components of environmental literacy that is (1) Knowledge, (2) Competencies (Cognitive Skill), (3) Affective and (4) Environmentally Responsible Behavior. The results show that the student’s environmental literacy ability is improved after using integrated science teaching materials. An increase in the medium category is occurring in the knowledge (N-gain=46%) and cognitive skill (N-gain=31%), while the increase in the low category occurs in the affective component (N-gain=25%) and behaviour (N-gain=24%). The conclusions of this study as a whole the improvement of students’ environmental literacy by using integrated science teaching material is in the medium category (N-gain=34%).

  17. Colloid and materials science for the conservation of cultural heritage: cleaning, consolidation, and deacidification.

    Science.gov (United States)

    Baglioni, Piero; Chelazzi, David; Giorgi, Rodorico; Poggi, Giovanna

    2013-04-30

    Serendipity and experiment have been a frequent approach for the development of materials and methodologies used for a long time for either cleaning or consolidation of works of art. Recently, new perspectives have been opened by the application of materials science, colloid science, and interface science frameworks to conservation, generating a breakthrough in the development of innovative tools for the conservation and preservation of cultural heritage. This Article is an overview of the most recent contributions of colloid and materials science to the art conservation field, mainly focusing on the use of amphiphile-based fluids, gels, and alkaline earth metal hydroxide nanoparticles dispersions for the cleaning of pictorial surfaces, the consolidation of artistic substrates, and the deacidification of paper, canvas, and wood. Future possible directions for solving several conservation issues that still need to be faced are also highlighted.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Faculty of Science, Babol University of Technology, Babol 47148-71167, Iran; Biofuel & Renewable Energy Research Center, Faculty of Chemical Engineering, Babol University of Technology, Babol 47148-71167, Iran; Faculty of Chemical ...

  19. EV M-experiment in radiation material science

    International Nuclear Information System (INIS)

    Ganeev, G.Z.; Kislitsin, S.B.; Pyatiletov, Yu.S.; Turkebaev, T.Eh.; Tyupkina, O.G.

    1999-01-01

    To simulate rapid processes in materials, rearrangement at the atomic level, or processes in which the access to the materials is limited or considered to be hazardous, the EV M-experiment is going to be applied more often in the atomic material science (calculating experiment, computer-aided simulation). This paper presents the most important outcomes obtained from the calculating experiment carried out by scientists of the Institute of Nuclear Physics of NNC RK, who are considered to be followers of the scientific school named after Kirsanov V.V. The review consists of the following sections: 1. Simulation of dynamic processes of radiation damage of materials. 2. Simulation of radiation defects in materials. 3. Simulation of radiation defects migration processes in crystals. 4. Simulation of irradiated materials failure and deformation processes

  20. An international interdisciplinary graduate school in laser and material science

    Science.gov (United States)

    Fargin, Evelyne; Sarger, Laurent; Kaluza, Malte; Nolte, Stefan; Richardson, Martin; Richardson, Kathleen

    2009-06-01

    The main objective is to establish the first transatlantic Graduate School, proposing a truly international education, training and research platform in the field of Photonics and Material sciences. The wide scope of Photonics encompasses many application fields that will be mostly covered by various curricula involving Laser Optics and Material Sciences and Interactions. This cooperation will build a very efficient scientific international community able to address the 21 century challenges in Photonics and applications. Indeed, the highest level of education, namely Master and PhD , will address the so called "Skill shortage" that impact on our economy. The truly interdisciplinary theme of this graduate school is also a guarantee for the insertion of the graduate into the workforce.

  1. The Project for the High Energy Materials Science Beamline at Petra III

    International Nuclear Information System (INIS)

    Martins, R. V.; Lippmann, T.; Beckmann, F.; Schreyer, A.

    2007-01-01

    The high energy materials science beamline will be among the first fourteen beamlines planned to be operational in 2009 at the new third generation synchrotron light source Petra III at DESY, Germany. The operation and funding of this beamline is assured by GKSS. 70% of the beamline will be dedicated to materials science. The remaining 30% are reserved for physics and are covered by DESY. The materials science activities will be concentrating on three intersecting topics which are industrial, applied, and fundamental research. The beamline will combine three main features: Firstly, the high flux, fast data acquisition systems, and the beamline infrastructure will allow carrying out complex and highly dynamic in-situ experiments. Secondly, a high flexibility in beam shaping will be available, fully exploiting the high brilliance of the source. Thirdly, the beamline will provide the possibility to merge in one experiment different analytical techniques such as diffraction and tomography

  2. Nuclear science teaching

    International Nuclear Information System (INIS)

    1968-01-01

    A Panel of Experts on Nuclear Science Teaching met in Bangkok from 15 to 23 July 1968 to review the present status of an need for teaching of topics related to nuclear science at the secondary and early university level including teacher training, and to suggest appropriate ways of introducing these topics into the science curricula. This report contains the contributions of the members of the Panel, together with the general conclusions and recommendations for the development of school and early university curricula and training programs, for the improvement of teaching materials and for the safest possible handing of radioactive materials in school and university laboratories. It is hoped that the report will be of use to all nuclear scientists and science educators concerned with modernizing their science courses by introducing suitable topics and experiments in nuclear science

  3. 42. Science week: Laser Science and applications, Aleppo (SY), 2-4 Nov 2002, Book two: Laser science and medical laser applications

    International Nuclear Information System (INIS)

    2005-01-01

    This publication includes the papers presented at the 42nd science week of the Supreme Council of Sciences, held in Aleppo (Syria) from 2-4 November 2002. This proceedings is published in three books covering laser science and applications and in particular on material studies and medical uses. Part two covers medical applications, Part three on applications of laser in material sciences, while Part one is for contents and the proceedings program

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. H B Muralidhara1 Y Arthoba Naik1 T V Venkatesha1. Department of PG Studies and Research in Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta 577 451, India ...

  5. An Overview of the History of Library Science Teaching Materials.

    Science.gov (United States)

    Metzger, Philip A.

    1986-01-01

    This introduction to, and overview of, history of library science instructional materials covers the Williamson Report, teaching materials from early Columbia days onward, American Library Association book publishing activity, media in curricula and library school publication of syllabi, commercial publishing of textbooks, and periodicals in…

  6. Disciplinary Literacy in Science: Developing Science Literacy through Trade Books

    Science.gov (United States)

    Fang, Zhihui

    2014-01-01

    Developing science literacy requires not only firsthand explorations of the material world but also secondhand investigations with text. A potentially powerful kind of text in science is trade books. This column describes four classroom ploys for using science trade books to enhance students' secondhand experiences.

  7. Materials Sciences programs. Fiscal year 1982

    International Nuclear Information System (INIS)

    1982-09-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. The report is divided into five sections. Section A contains all laboratory projects, Section B has all contract research projects, Section C has information on DOE collaborative research centers, Section D shows distribution of funding, and Section E has various indices

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ZnFe2O4 nanoparticles were prepared by a simple low-temperature ... Department of Biological Sciences, Covenant University, PMB 1023, Ota, Nigeria; Department of Petroleum Engineering, Covenant University, PMB 1023, Ota, Nigeria ...

  9. Design Features and Capabilities of the First Materials Science Research Rack

    Science.gov (United States)

    Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.

    2003-01-01

    The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.

  10. The material realization of science from Habermas to experimentation and referential realism

    CERN Document Server

    Radder, Hans

    2012-01-01

    This book develops a conception of science as a multi-dimensional practice, which includes experimental action and production, conceptual-theoretical interpretation, and formal-mathematical work. On this basis, it addresses the topical issue of scientific realism and expounds a detailed, referentially realist account of the natural sciences. This account is shown to be compatible with the frequent occurrence of conceptual discontinuities in the historical development of the sciences. Referential realism exploits several fruitful ideas of Jürgen Habermas, especially his distinction between objectivity and truth; it builds on a in-depth analysis of scientific experiments, including their material realization; and it is developed through an extensive case study in the history and philosophy of quantum mechanics. The new postscript explains how the book relates to several important issues in recent philosophy of science and science studies.

  11. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel

    2003-01-01

    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. MADHURI LAKHANE1 2 RAJENDRA KHAIRNAR1 MEGHA MAHABOLE1. School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded (MS) 431606, India; Faculty of Mechanical Engineering, University of Maribor, Maribor 2000, Slovenia ...

  13. Computer information resources of inorganic chemistry and materials science

    International Nuclear Information System (INIS)

    Kiselyova, N N; Dudarev, V A; Zemskov, V S

    2010-01-01

    Information systems used in inorganic chemistry and materials science are considered. The following basic trends in the development of modern information systems in these areas are highlighted: access to information via the Internet, merging of documental and factual databases, involvement of experts in the evaluation of the data reliability, supplementing databases with information analysis tools on the properties of inorganic substances and materials.

  14. Computer information resources of inorganic chemistry and materials science

    Energy Technology Data Exchange (ETDEWEB)

    Kiselyova, N N; Dudarev, V A; Zemskov, V S [A.A.Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-02-28

    Information systems used in inorganic chemistry and materials science are considered. The following basic trends in the development of modern information systems in these areas are highlighted: access to information via the Internet, merging of documental and factual databases, involvement of experts in the evaluation of the data reliability, supplementing databases with information analysis tools on the properties of inorganic substances and materials.

  15. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    International Nuclear Information System (INIS)

    Parkin, D.M.; Boring, A.M.

    1991-01-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory's defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location

  16. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Kathmandu, Nepal; Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012, India. Dates. Manuscript received: 9 October 2014; Manuscript revised: 31 January 2015; Accepted: 3 February 2015. Supplementary Material. supp7.doc. Journal of Chemical Sciences. Current Issue : Vol.

  18. Materials Sciences Programs. Fiscal Year 1985

    International Nuclear Information System (INIS)

    1985-09-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  19. Information Science: Science or Social Science?

    OpenAIRE

    Sreeramana Aithal; Paul P.K.,; Bhuimali A.

    2017-01-01

    Collection, selection, processing, management, and dissemination of information are the main and ultimate role of Information Science and similar studies such as Information Studies, Information Management, Library Science, and Communication Science and so on. However, Information Science deals with some different characteristics than these subjects. Information Science is most interdisciplinary Science combines with so many knowledge clusters and domains. Information Science is a broad disci...

  20. Material science lesson from the biological photosystem.

    Science.gov (United States)

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-01-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Vandana Kumari1 Anusaiya Kaswan1 D Patidar1 Kananbala Sharma1 N S Saxena1. Department of Physics, Semi-conductor & Polymer Science Laboratory, Room No. 14-15, University of Rajasthan, Jaipur 302 004, India ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Environmental Engineering/Electrochemistry Research Group, Institute of Fundamental Studies, Kandy 20000, Sri Lanka; Post Graduate Institute of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, ...

  3. From Academic to Post-Academic Science

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Ghaneirad

    2014-03-01

    Full Text Available This paper studies the cultural change in science from academic science to post-academic science by the use of documentary studying and analytical reasoning. The aim of this study is determining the direction of cultural change in science and comparing it with cultural change in society.The knowledge production which surrounds academy has little relationship with the values of society and epistemological norms regulate scientists' behavior from within the scientific system. But in post-academic science the relationship between science and society operates in the same line with market and government and science produce within the social context and scientists' behavior controlled by the norms out of the scientific system. So the culture of science has changed because science applied to meet the requirements of market and industry. The result is that contrary to cultural change in society that goes from materialism to post-materialism, cultural change in science moves from post-materialism to materialism.

  4. Merton and Ziman's modes of science: the case of biological and similar material transfer agreements

    NARCIS (Netherlands)

    Rodriguez, V.F.

    2007-01-01

    This paper makes a connection between recent studies on research materials exchange and its effect on the progress of science. Academia fears that scientific development could be hampered by the privatised practices of research material exchange. Since post-academic science represents a sufficient

  5. Teleconferences and Audiovisual Materials in Earth Science Education

    Science.gov (United States)

    Cortina, L. M.

    2007-05-01

    Unidad de Educacion Continua y a Distancia, Universidad Nacional Autonoma de Mexico, Coyoaca 04510 Mexico, MEXICO As stated in the special session description, 21st century undergraduate education has access to resources/experiences that go beyond university classrooms. However in some cases, resources may go largely unused and a number of factors may be cited such as logistic problems, restricted internet and telecommunication service access, miss-information, etc. We present and comment on our efforts and experiences at the National University of Mexico in a new unit dedicated to teleconferences and audio-visual materials. The unit forms part of the geosciences institutes, located in the central UNAM campus and campuses in other States. The use of teleconference in formal graduate and undergraduate education allows teachers and lecturers to distribute course material as in classrooms. Course by teleconference requires learning and student and teacher effort without physical contact, but they have access to multimedia available to support their exhibition. Well selected multimedia material allows the students to identify and recognize digital information to aid understanding natural phenomena integral to Earth Sciences. Cooperation with international partnerships providing access to new materials and experiences and to field practices will greatly add to our efforts. We will present specific examples of the experiences that we have at the Earth Sciences Postgraduate Program of UNAM with the use of technology in the education in geosciences.

  6. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.

    2012-09-01

    Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... SANKARASUBRAMANIAN1 BYUNGCHEOL LEE2. Center for Electrochemical Science and Engineering, Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago 60616, USA; Quantum Optics Laboratory, Korea Atomic Energy Research Institute, Yuseong-gu 305-353, South Korea ...

  8. Developing a Material-Dialogic Approach to Pedagogy to Guide Science Teacher Education

    Science.gov (United States)

    Hetherington, Lindsay; Wegerif, Rupert

    2018-01-01

    Dialogic pedagogy is being promoted in science teacher education but the literature on dialogic pedagogy tends to focus on explicit voices, and so runs the risk of overlooking the important role that material objects often play in science education. In this paper we use the findings of a teacher survey and classroom case study to argue that there…

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Tanushree Choudhury1 Nirendra M Misra2. Department of Chemistry, School of Advanced Sciences, VIT University Chennai Campus, Vandalur- Kelambakkam Road, Chennai- 600048, India; Department of Applied Chemistry, Indian School of Mines University, Dhanbad 826 004, India ...

  10. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    Science.gov (United States)

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  11. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    Science.gov (United States)

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science.

  12. Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons

    Science.gov (United States)

    Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert

    2013-06-01

    Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This study examined 81 in-classroom inquiry science lessons for preservice education majors and their cooperating teachers to determine the accuracy of the science content delivered in elementary classrooms. Our results showed that 74 % of experienced teachers and 50 % of student teachers presented science lessons with greater than 90 % accuracy. Eleven of the 81 lessons (9 preservice, 2 cooperating teachers) failed to deliver accurate science content to the class. Science content accuracy was highly correlated with the use of kit-based resources supported with professional development, a preference for teaching science, and grade level. There was no correlation between the accuracy of science content and some common measures of teacher content knowledge (i.e., number of college science courses, science grades, or scores on a general science content test). Our study concluded that when provided with high quality curricular materials and targeted professional development, elementary teachers learn needed science content and present it accurately to their students.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Biogenic ZnO nanoparticles synthesized using L. aculeata leaf extract and their antifungal activity against plant fungal pathogens. S Narendhran Rajeshwari ... Rajeshwari Sivaraj1. Department of Biotechnology, School of Life Sciences, Karpagam Academy of Higher Education, Eachanari Post, Coimbatore 641 021, India ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Metal Physics, Ivan Franko National University, 8 Kyrylo and Mephodiy Str. 79005 Lviv, Ukraine; Ural State Pedagogical University, 26 Cosmonavtov Av. 620017 Ekaterinburg, Russia; Institute of Metallurgy, Ural's Division of Russian Academy of Sciences, 101 Amundsen Str. 620016 Ekaterinburg, Russia ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of ... using Scherrer's formula. Volume 27 Issue 2 April 2004 pp 213-216 High Pressure Studies. High pressure effect on MoS2 and MoSe2 single crystals grown by CVT method.

  16. The use of Banyumas traditional art as analog sources of elementary school science materials

    Science.gov (United States)

    Handayani, L.; Nugroho, S. E.; Rohidi, T. R.; Wiyanto

    2018-03-01

    All various traditional arts of Banyumas area support this area to be one famous region located in the periphery of West and Central Java with its unique cultural identity. In science learning, these traditional arts are very important aspect which can be implemented as a source of analog by students thinking a science concept analogically. This paper discusses a kind of Banyumas traditional art: the ebeg, and its cultural characteristics which can play a significant role in supporting elementary school students’ analogical thinking of a science material. The method used were literature and documentary studies. It is concluded that the ebeg provides many cultural characteristics which can be used as analog of elementary school science material, in terms of its music player’s motion, kinds of musical instruments played and its dancer motion.

  17. Science of Materials: A Case Study of Intentional Teaching in the Early Years

    Science.gov (United States)

    Hackling, Mark; Barratt-Pugh, Caroline

    2012-01-01

    Australia's Early Years Learning Framework and leading international researchers argue for more intentional and purposeful teaching of science in the early years. This case study of exemplary practice illustrates intentional teaching of science materials which opened-up learning opportunities in literacy and number. Student-led hands-on…

  18. PREFACE: 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) and 25th Symposium on Plasma Science for Materials (SPSM-25)

    Science.gov (United States)

    Watanabe, Takayuki; Kaneko, Toshio; Sekine, Makoto; Tanaka, Yasunori

    2013-06-01

    The 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) was held in Kyoto, Japan on 2-5 October 2012 with the 25th Symposium on Plasma Science for Materials (SPSM-25). SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. APCPST and SPSM are jointly held biennially to survey the current status of low temperature and thermal plasma physics and chemistry for industrial applications. The whole area of plasma processing was covered from fundamentals to applications. Previous meetings were held in China, Japan, Korea, and Australia, attended by scientists from the Asia-Pacific and other countries. The joint conference was organized in plenary lectures, invited, contributed oral presentations and poster sessions. At this meeting, we had 386 participants from 10 countries and 398 presentations, including 26 invited presentations. This year, we arranged special topical sessions that covered green innovation, life innovation, and technical reports from industry. This conference seeks to bring the plasma community together and to create a forum for discussing the latest developments and issues, the challenges ahead in the field of plasma research and applications among engineers and scientists in Asia, the Pacific Rim, as well as Europe. This volume presents 44 papers that were selected via a strict peer-review process from full papers submitted for the proceedings of the conference. The topics range from the basic physics and chemistry of plasma processing to a broad variety of materials processing and environmental applications. This volume offers an overview of recent

  19. Materials science. Materials that couple sensing, actuation, computation, and communication.

    Science.gov (United States)

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. Copyright © 2015, American Association for the Advancement of Science.

  20. Neutron scattering treatise on materials science and technology

    CERN Document Server

    Kostorz, G

    1979-01-01

    Treatise on Materials Science and Technology, Volume 15: Neutron Scattering shows how neutron scattering methods can be used to obtain important information on materials. The book discusses the general principles of neutron scattering; the techniques used in neutron crystallography; and the applications of nuclear and magnetic scattering. The text also describes the measurement of phonons, their role in phase transformations, and their behavior in the presence of crystal defects; and quasi-elastic scattering, with its special merits in the study of microscopic dynamical phenomena in solids and