WorldWideScience

Sample records for sciences engineering materials

  1. Materials Science and Engineering |

    Science.gov (United States)

    Engineering? What Is Materials Science and Engineering? MSE combines engineering, physics and chemistry to solve problems in nanotechnology, biotechnology, information technology, energy, manufacturing, and more ,' which could replace steel. Materials Science and Mechanical Engineering Professors work together to

  2. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.

    1997-02-01

    During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

  3. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Abstract. This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  4. Materials Science & Engineering | Classification | College of Engineering &

    Science.gov (United States)

    Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  5. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  6. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    It makes good sense to conclude that the goal of academic teaching should not be seen in ... the wonderful feeling of the young adult to be free not only for professional training, but also for ... competence which a young engineer would like to offer to society. .... methods, to improve lifetime under rough service conditions;.

  7. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel

    2003-01-01

    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  8. Gender Equity in Materials Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Angus Rockett

    2008-12-01

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases

  9. Classroom Demonstrations in Materials Science/Engineering.

    Science.gov (United States)

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  10. General and special engineering materials science. Vol. 1

    International Nuclear Information System (INIS)

    Ondracek, G.; Voehringer, O.

    1983-04-01

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes: Volume I treats general engineering materials science in 4 capital chapters on the structure of materials, the properties of materials, materials technology and materials testing and investigation supplemented by a selected detailed chapter about elasticity plasticity and rupture mechanics. Volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including reactor clad and structural materials, nuclear fuels and fuel elements and nuclear waste as a materials viewpoint. Volume III - also concerning special engineering materials science - considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accidents and nuclear materials in core melt accidents. (orig.) [de

  11. Expanding UCR’s Interdisciplinary Materials Science and Engineering Faculty

    Science.gov (United States)

    2018-02-27

    and Engineering Faculty 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-16-1-2298 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Cindy Larive, Provost Shane...Cybart, Assistant Professor Mitch Boretz, Office of the Dean, Bourns College of Engineering 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...the Materials Science and Engineering program. Dr. Cybart’s expertise is in superconducting materials, specifically complex oxide devices. His work has

  12. General and special engineering materials science. Vol. 3

    International Nuclear Information System (INIS)

    Ondracek, G.; Hofmann, P.

    1983-04-01

    The report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume III concerns special engineering materials science and considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accident and nuclear materials in core melt accidents. (orig./IHOE) [de

  13. General and special engineering materials science. Vol. 2

    International Nuclear Information System (INIS)

    Anderko, K.; Kummerer, K.R.; Ondracek, G.

    1983-04-01

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including 1. reactor clad and structural materials, 2. nuclear fuels and fuel elements, 3. nuclear waste as a materials viewpoint. (orig./IHOE) [de

  14. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  15. Materials for construction and civil engineering science, processing, and design

    CERN Document Server

    Margarido, Fernanda

    2015-01-01

    This expansive volume presents the essential topics related to construction materials composition and their practical application in structures and civil installations. The book's diverse slate of expert authors assemble invaluable case examples and performance data on the most important groups of materials used in construction, highlighting aspects such as nomenclature, the properties, the manufacturing processes, the selection criteria, the products/applications, the life cycle and recyclability, and the normalization. Civil Engineering Materials: Science, Processing, and Design is ideal for practicing architects; civil, construction, and structural engineers, and serves as a comprehensive reference for students of these disciplines. This book also: ·       Provides a substantial and detailed overview of traditional materials used in structures and civil infrastructure ·       Discusses properties of natural and synthetic materials in construction and materials' manufacturing processes ·  �...

  16. Machine learning and data science in soft materials engineering.

    Science.gov (United States)

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  17. Machine learning and data science in soft materials engineering

    Science.gov (United States)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  18. Material Science

    Energy Technology Data Exchange (ETDEWEB)

    Won, Dong Yeon; Kim, Heung

    1987-08-15

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  19. Material Science

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Kim, Heung

    1987-08-01

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  20. SemMat: Federated Semantic Services Platform for Open materials Science and Engineering

    Science.gov (United States)

    2017-01-01

    SEMMAT: FEDERATED SEMANTIC SERVICES PLATFORM FOR OPEN MATERIALS SCIENCE AND ENGINEERING WRIGHT STATE UNIVERSITY JANUARY 2017 FINAL TECHNICAL...COVERED (From - To) JUL 2013 – JUN 2016 4. TITLE AND SUBTITLE SemMat: FEDERATED SEMANTIC SERVICES PLATFORM FOR OPEN MATERIALS SCIENCE AND ENGINEERING...models to represent materials data. This provides a data exchange scheme for materials science , which also includes provenance information to promote

  1. Development of engineering and materials science in Pronuclear: retrospective and perspectives for the 80's

    International Nuclear Information System (INIS)

    Haydt, H.M.

    1982-01-01

    The evolution of a great number of persons that completed engineering and materials science course, up to 1981, is showed. The Pronuclear, an organ that finances the personel education with emphasis in nuclear engineering, is described. (E.G.) [pt

  2. Freedom and fashion in materials science and engineering

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Department of Materials Science and Metallurgy, Cambridge University,. Pembroke ... ready and able to pounce on new fashions in research. .... but it is always a good idea to apply the brakes of moderate scepticism when a fashion diverges.

  3. Multiscale paradigms in integrated computational materials science and engineering materials theory, modeling, and simulation for predictive design

    CERN Document Server

    Runge, Keith; Muralidharan, Krishna

    2016-01-01

    This book presents cutting-edge concepts, paradigms, and research highlights in the field of computational materials science and engineering, and provides a fresh, up-to-date perspective on solving present and future materials challenges. The chapters are written by not only pioneers in the fields of computational materials chemistry and materials science, but also experts in multi-scale modeling and simulation as applied to materials engineering. Pedagogical introductions to the different topics and continuity between the chapters are provided to ensure the appeal to a broad audience and to address the applicability of integrated computational materials science and engineering for solving real-world problems.

  4. Proceedings of the international symposium for research scholars on metallurgy, materials science and engineering

    International Nuclear Information System (INIS)

    2010-01-01

    Topics covered in this symposium are: steels, functional materials posters, computational materials science, casting and solidification, polymer matrix composites, posters electronic materials, environmental degradation processing of non-metallic materials posters, energy materials, materials forming technology, biomaterials, magnetic materials, mechanical behaviour of materials posters, phase transformations and physical metallurgy, surface engineering, nanostructured materials, ceramics, processing of metals, materials joining technology and optical materials. Papers relevant to INIS are indexed separately

  5. Materials science

    International Nuclear Information System (INIS)

    2002-01-01

    the document is a collection of papers on different aspects of materials science. It discusses many items such as semiconductors, surface properties and interfaces, construction and civil engineering, metallic materials, polymers and composites, biology and biomaterials, metallurgy etc.. - 1 - Document1 Document1

  6. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); Glotzer, Sharon [University of Michigan; McCurdy, Bill [University of California Davis; Roberto, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2010-07-26

    abating, has enabled the development of computer simulations and models of unprecedented fidelity. We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials and chemical processes will transform our ability to understand and design new materials and chemistries with predictive power. In turn, this predictive capability will transform technological innovation by accelerating the development and deployment of new materials and processes in products and manufacturing. Harnessing the potential of computational science and engineering for the discovery and development of materials and chemical processes is essential to maintaining leadership in these foundational fields that underpin energy technologies and industrial competitiveness. Capitalizing on the opportunities presented by simulation-based engineering and science in materials and chemistry will require an integration of experimental capabilities with theoretical and computational modeling; the development of a robust and sustainable infrastructure to support the development and deployment of advanced computational models; and the assembly of a community of scientists and engineers to implement this integration and infrastructure. This community must extend to industry, where incorporating predictive materials science and chemistry into design tools can accelerate the product development cycle and drive economic competitiveness. The confluence of new theories, new materials synthesis capabilities, and new computer platforms has created an unprecedented opportunity to implement a "materials-by-design" paradigm with wide-ranging benefits in technological innovation and scientific discovery. The Workshop on Computational Materials Science and Chemistry for Innovation was convened in Bethesda, Maryland, on July 26-27, 2010. Sponsored by the Department of Energy (DOE) Offices of Advanced Scientific Computing Research and Basic Energy Sciences, the workshop

  7. Elementary Students' Learning of Materials Science Practices through Instruction Based on Engineering Design Tasks

    Science.gov (United States)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-01-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine…

  8. Knowledge and Technology Transfer in Materials Science and Engineering in Europe

    OpenAIRE

    Bressler, Patrick; Dürig, Urs; González-Elipe, Agustin; Quandt, Eckhard; Ritschkoff, Anne-Christine; Vahlas, Constantin

    2015-01-01

    Advanced Materials is one of the Key Enabling 3 Technologies identified by the European Commission1. Together with Advanced Manufacturing it underpins almost all other Key Enabling and Industrial Technologies. The basic science and engineering research that results in the development of Advanced Materials lies within the field of Materials Science and Engineering (MSE). The transfer of knowledge from basic research into final products and applications in the field of MSE involves certain MSE-...

  9. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    Energy Technology Data Exchange (ETDEWEB)

    Anne Seifert; Louis Nadelson

    2011-06-01

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a

  10. Gender and engineering aptitude: Is the color of science, technology, engineering, and math materials related to children's performance?

    Science.gov (United States)

    Mulvey, Kelly Lynn; Miller, Bridget; Rizzardi, Victoria

    2017-08-01

    To investigate gender stereotypes, demonstrated engineering aptitude, and attitudes, children (N=105) solved an engineering problem using either pastel-colored or primary-colored materials. Participants also evaluated the acceptability of denial of access to engineering materials based on gender and counter-stereotypic preferences (i.e., a boy who prefers pastel-colored materials). Whereas material color was not related to differences in female participants' performance, younger boys assigned to pastel materials demonstrated lower engineering aptitude than did other participants. In addition, results documented age- and gender-related differences; younger participants, and sometimes boys, exhibited less flexibility regarding gender stereotypes than did older and female participants. The findings suggest that attempts to enhance STEM (science, technology, engineering, and math) engagement or performance through the color of STEM materials may have unintended consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    Science.gov (United States)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  12. Inelastic neutron scattering for materials science and engineering

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1995-01-01

    The neutron is the ideal probe for studying the positions and motions of atoms in condensed matter. The main advantage of the neutron in inelastic scattering results from its heavy mass when compared to other particles which are used to probe materials such as the photon (light, x-rays, or γ-rays) or the electron. The author discusses the application of neutron scattering to study a number of different materials related problems, including, hard magnets, shape memory effects, and hydrogen distribution in metals

  13. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    NARCIS (Netherlands)

    Chen, Wei

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane

  14. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    Science.gov (United States)

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  15. Explore the Human-Based Teaching for the Professional Course of Materials Science and Engineering

    Science.gov (United States)

    Zhao, Yiping; Chen, Li; Zhang, Yufeng

    2008-01-01

    As viewed from two sides such as teacher and student, in this article, we explore the human-based teaching reform for the college professional course of materials Science and Engineering, point out the qualities and conditions that professional teacher should possess in the process of human-based teaching reform of professional course and the…

  16. Materials Science and Engineering-1989 Publications (Naval Research Laboratory)

    Science.gov (United States)

    1991-03-29

    Antamanide J.H. Konnert, P. D’Antonio, J.M. Cowley, and Analog. Crystal Structure of A. Higgs , H-J. Ou Perhydrosymmetric antamanide, Ultramicroscopy, 30, 371...Paired Boson Superconductor" Molecular Beam Epitaxy" W. Jin, S.D. Mahanti, A.K. Rajagopal A. Christou, N. Flevaris, A. Georgakilas, Solid State...33(3), 347-358 Si(100)" "Neutron Scattering from Fermion and S.M. Prokes, W.F. Tseng, A- Christou Boson Superconductors" Materials Research Society

  17. Ethnic Diversity in Materials Science and Engineering. A report on the workshop on ethnic diversity in materials science and engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Justin

    2014-06-30

    The immediate goal of the workshop was to elevate and identify issues and challenges that have impeded participation of diverse individuals in MSE. The longerterm goals are to continue forward by gathering and disseminating data, launching and tracking initiatives to mitigate the impediments, and increase the number of diverse individuals pursuing degrees and careers in MSE. The larger goal, however, is to create over time an ever-increasing number of role models in science fields who will, in turn, draw others in to contribute to the workforce of the future.

  18. Material science. For electricians, information experts and electrical engineers; Werkstoffkunde. Fuer Elektrotechniker, Informationstechniker und Elektromaschinenbauer

    Energy Technology Data Exchange (ETDEWEB)

    Siegismund, H.

    1999-10-01

    This book of the series ``Die Meisterpruefung in der Elektrotechnik`` provides information on material science and components. Low redundancy in the subject matter enables efficient learning for examinations as well as fast access for the practician. Each chapter contains questions and answers for checking up on the knowledge gained. Subjects: Fundamentals; Materials and components in electrical engineering; Joints and contacts; Ferrous materials; Lubricants and roller bearings; Materials in electromechanical engineering; Gypsum and cement; Corrosion and corrosion protection. [Deutsch] Dieser vorliegende Band aus der Fachbuchreihe `Die Meisterpruefung in der Elektrotechnik` vermittelt die bei der Anwendung von Werkstoffen und Baulementen noetige Sachkenntnis. Die redundanzarme Stoffvermittlung ermoeglicht eine effiziente Pruefungsvorbereitung, aber auch dem Praktiker den schnellen Zugriff. Mit Fragen und Antworten zu jedem Kapitel kann eine Eigenkontrolle des erworbenen Wissens erfolgen. 1. Grundlagen, 2. Werkstoffe und Bauelemente der Elektrotechnik, 3. Verbindungen und Kontakte, 4. Eisenwerkstoffe, 5. Schmierstoffe und Waelzlager, 6. Werkstoffe im Elektromaschinenbau, 7. Gips und Zement und 8. Korrosion und Korrosionsschutz. (orig.)

  19. Materials science and engineering. An introduction; Materialwissenschaften und Werkstofftechnik. Eine Einfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Callister, William D. Jr. [Utah Univ., Salt Lake City, UT (United States). Dept. of Metallurgical Engineering; Rethwisch, David G. [Utah Univ., UT (United States). Dept. of Chemical and Biochemical Engineering

    2013-02-01

    William Callister's bestseller ''Materials Science and Engineering'' is THE textbook of materials science. This is the new German language edition, whose contents have been adapted optimally to the requirements of German students. The ''Callister'' covers all aspects of materials science and engineering for studies and preparation of exams. It follows a well-tried didactic concept, favouring understanding over formalism, and supports the students' learning process: 1. Clearly defined learning goals; 2. At regular intervals, questions to check the understanding of the subject matter just learned; 3. Summaries at the end of each chapter comprising subject matter, equations, key words and cross-references to other chapters; 4. Exemplary calculations, questions and answers, problems and solutions; 5. Digressions to industrial applications; 6. Units and materials names adapted to the German language area. [German] William Callisters englischsprachiger Bestseller ''Materials Science and Engineering'' ist das klassische Lehrbuch der Materialwissenschaften. Nun erscheint die deutsche Ausgabe, deren Inhalte optimal auf die Beduerfnisse der hiesigen Studenten angepasst wurden. Der ''Callister'' bietet den gesamten Stoff der Materialwissenschaften und Werkstofftechnik fuer Studium und Pruefungsvorbereitung. Das erprobte didaktische Konzept zielt ab auf ''Verstaendnis vor Formalismus'' und unterstuetzt den Lernprozess der Studierenden: 1. ausformulierte Lernziele; 2. regelmaessig eingestreute Verstaendnisfragen zum gerade vermittelten Stoff; 3. Kapitelzusammenfassungen mit Lernstoff, Gleichungen, Schluesselwoertern und Querverweisen auf andere Kapitel; 4. durchgerechnete Beispiele, Fragen und Antworten sowie Aufgaben und Loesungen; 5. Exkurse in die industrielle Anwendung; und 6. an den deutschen Sprachraum angepasste Einheiten und Werkstoffbezeichnungen.

  20. Neutrons and synchrotron radiation in engineering materials science. From fundamentals to applications. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Staron, Peter [Helmholtz-Zentrum Geesthacht, Zentrum fuer Material- und Kuestenforschung GmbH, Geesthacht (Germany). Inst. of Materials Research; Schreyer, Andreas [European Spallation Source ERIC, Lund (Sweden); Clemens, Helmut; Mayer, Svea (eds.) [Montanuniv. Leoben (Austria). Dept. of Physical Metallurgy and Materials Testing

    2017-07-01

    This book provides a systematic overview of the increasingly important field of characterization of engineering materials with the help of neutrons and synchrotron radiation. The first part introduces readers to the fundamentals of structure-property relationships in materials and the radiation sources suitable for materials characterization. The second part then focuses on such characterization techniques as diffraction and scattering methods, as well as direct imaging and tomography. The third part presents new and emerging methods of materials characterization in the field of 3D characterization techniques like three-dimensional X-ray diffraction microscopy. The fourth and final part is a collection of examples that demonstrate the application of the methods introduced in the first parts to problems in materials science.

  1. Lab Manual & Resources for Materials Science, Engineering and Technology on CD-Rom

    Science.gov (United States)

    Jacobs, James A.; McKenney, Alfred E.

    2001-01-01

    The National Educators' Workshop (NEW:Update) series of workshops has been in existence since 1986. These annual workshops focus on technical updates and laboratory experiments for materials science, engineering and technology, involving new and traditional content in the field. Scores of educators and industrial and national laboratory personnel have contributed many useful experiments and demonstrations which were then published as NASA Conference Proceedings. This "out poring of riches" creates an ever-expanding shelf of valuable teaching tools for college, university, community college and advanced high school instruction. Now, more than 400 experiments and demonstrations, representing the first thirteen years of NEW:Updates have been selected and published on a CD-ROM, through the collaboration of this national network of materials educators, engineers, and scientists. The CD-ROM examined in this document utilizes the popular Adobe Acrobat Reader format and operates on most popular computer platforms. This presentation provides an overview of the second edition of Experiments in Materials Science, Engineering and Technology (EMSET2) CD-ROM, ISBN 0-13-030534-0.

  2. PREFACE: 4th Global Conference on Materials Science and Engineering (CMSE 2015)

    Science.gov (United States)

    Ruda, H. E.; Khotsianovsky, A.

    2015-12-01

    IOP Conference Series: Materials Science and Engineering is publishing a volume of conference proceedings that contains a selection of papers presented at the 4th Global Conference on Materials Science and Engineering (CMSE 2015), which is an annual event that started in 2012. CMSE 2015, technically supported by the Institute of Applied Physics and Materials Engineering of University of Macau, organized by Wuhan Advance Materials Society, was successfully held at the University of Macau-new campus located on Hengqin Island from August 3rd-6th, 2015. It aims to bring together leading academic scientists, researchers and scholars to exchange and share their experience and research results on all aspects of Materials Science and Engineering, and to discuss the practical challenges encountered and the solutions adopted. Macau, one of the two special administrative regions of the People's Republic of China, where East meets West, turned out to be an ideal meeting place for domestic and overseas participants of this annual international conference. The conference program included keynote presentations, special sessions, oral and poster contributions. From several hundred submissions, 52 of the most promising and mainstream, IOP-relevant, contributions were included in this volume. The submissions present original ideas or results of general significance, supported by clear reasoning, compelling evidence and methods, theories and practices relevant to the research. The authors state clearly the problems and the significance of their research to theory and practice. Being a successful conference, this event gathered more than 200 qualified and high-level researchers and experts from over 40 countries, including 10 keynote speakers from 6 countries, which created a good platform for worldwide researchers and engineers to enjoy the academic communication. Taking advantage of this opportunity, we would like to thank all participants of this conference, and particularly the

  3. Development of an Openmath Content Dictionary for Mathematical Knowledge of Materials Science and Engineering

    Directory of Open Access Journals (Sweden)

    Toshihiro Ashino

    2012-12-01

    Full Text Available Many relationships between parameters and physical properties in materials science and engineering are represented as mathematical expressions, such as empirical equations and regression expressions. Some materials databases handle such information with indirect methods: as a table of sets of parameters, as a list of statements of programming languages, and other ways. There is no standardized way to represent mathematical relationships, and that makes it difficult to exchange, process, and display such information. The AIST (National Institute of Advanced Industrial Science and Technology in Japan thermophysical property database manages sets of parameter values for expressions and Fortran statements that represent relationships between physical parameters, e.g., temperature, pressure, etc. and thermophysical properties. However, in this method, it is not easy to add new parameters, to process expressions, and exchange information with other software tools. In this paper, we describe the current implementation of representing mathematical knowledge in the AIST thermophysical property database, and we also discuss its problems, sample implementations, and definitions of the OpenMath content dictionary for materials science and engineering.

  4. Development and validation of science, technology, engineering and mathematics (STEM) based instructional material

    Science.gov (United States)

    Gustiani, Ineu; Widodo, Ari; Suwarma, Irma Rahma

    2017-05-01

    This study is intended to examine the development and validation of simple machines instructional material that developed based on Science, Technology, Engineering and Mathematics (STEM) framework that provides guidance to help students learn and practice for real life and enable individuals to use knowledge and skills they need to be an informed citizen. Sample of this study consist of one class of 8th grader at a junior secondary school in Bandung, Indonesia. To measure student learning, a pre-test and post-test were given before and after implementation of the STEM based instructional material. In addition, a questionnaire of readability was given to examine the clarity and difficulty level of each page of instructional material. A questionnaire of students' response towards instructional material given to students and teachers at the end of instructional material reading session to measure layout aspects, content aspects and utility aspects of instructional material for being used in the junior secondary school classroom setting. The results show that readability aspect and students' response towards STEM based instructional material of STEM based instructional material is categorized as very high. Pretest and posttest responses revealed that students retained significant amounts information upon completion of the STEM instructional material. Student overall learning gain is 0.67 which is categorized as moderate. In summary, STEM based instructional material that was developed is valid enough to be used as educational materials necessary for conducting effective STEM education.

  5. Structural integrity for DEMO: An opportunity to close the gap from materials science to engineering needs

    Energy Technology Data Exchange (ETDEWEB)

    Porton, M., E-mail: michael.porton@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Wynne, B.P. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); University of Sheffield, Sheffield, South Yorkshire S10 2TN (United Kingdom); Bamber, R.; Hardie, C.D.; Kalsey, M. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2016-11-01

    Highlights: • Key shortfalls in the current approaches to verification of structural integrity are outlined. • Case studies for high integrity applications in other demanding environments are examined. • Relevant lessons are drawn from fission and space for the design stage and through service life. • Future efforts are suggested to align materials and engineering for DEMO structural integrity. - Abstract: It is clear that fusion demonstration devices offer unique challenges due to the myriad, interacting material degradation effects and the numerous, conflicting requirements that must be addressed in order for in-vessel components to deliver satisfactory performance over the required lifetime. The link between mechanical engineering and materials science is pivotal to assure the timely realisation and exploitation of successful fusion power. A key aspect of this link is the verification of structural integrity, achieved at the design stage via structural design criteria against which designs are judged to be sufficiently resilient (or not) to failure, for a given set of loading conditions and desired lifetime. As various demonstration power plant designs progress through their current conceptual design phases, this paper seeks to highlight key shortfalls in this vital link between engineering needs and materials science, offering a perspective on where future attention can be prioritised to maximise impact. Firstly, issues in applying existing structural design criteria to demonstration power plant designs are identified. Whilst fusion offers particular challenges, there are significant insights to be gained from attempts to address such issues for high performance, high integrity applications in other demanding environments. Therefore case studies from beyond fusion are discussed. These offer examples where similar shortfalls have been successfully addressed, via approaches at the design stage and through service lifetime in order to deliver significant

  6. Contributions from research on irradiated ferritic/martensitic steels to materials science and engineering

    Science.gov (United States)

    Gelles, D. S.

    1990-05-01

    Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.

  7. Materials science

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Materials Science Division is engaged in research on physical properties of materials and the effects of radiation upon them. This involves solid state materials undergoing phase transitions, energy storing materials, and biomaterials. The Division also offers research facilities for M.S. and Ph.D. thesis work in the fields of physics, chemistry, materials, and radiation sciences in cooperation with the various colleges and departments of the UPR Mayaguez Campus. It is anticipated that it will serve as a catalyst in starting energy-related research programs in cooperation with UPR faculty, especially programs involving solar energy. To encourage and promote cooperative efforts, contact is maintained with former graduate students and with visiting scientists from Latin American research institutions

  8. Materials Science Laboratory

    Science.gov (United States)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  9. National Educators' Workshop. Update 92: Standard Experiments in Engineering Materials Science and Technology

    Science.gov (United States)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Craig, Douglas F. (Compiler)

    1993-01-01

    This document contains a collection of experiments presented and demonstrated at the workshop. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  10. Neutrons and synchrotron radiation in engineering materials science from fundamentals to material and component characterization

    CERN Document Server

    Reimers, W; Schreyer, A; Clemens, H; Kaysser-Pyzalla, Anke Rita

    2008-01-01

    Besides its coverage of the four important aspects of synchrotron sources, materials and material processes, measuring techniques, and applications, this ready reference presents both important method types: diffraction and tomography. Following an introduction, a general section leads on to methods, while further sections are devoted to emerging methods and industrial applications. In this way, the text provides new users of large-scale facilities with easy access to an understanding of both the methods and opportunities offered by different sources and instruments.

  11. Materials Science

    Science.gov (United States)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  12. NATO Advanced Research Workshop on Chemical Instabilities : Applications in Chemistry, Engineering, Geology, and Materials Science

    CERN Document Server

    Baras, F

    1984-01-01

    On March 14-18, 1983 a workshop on "Chemical Instabilities: Applications in Chemistry, Engineering, Geology, and Materials Science" was held in Austin, Texas, U.S.A. It was organized jointly by the University of Texas at Austin and the Universite Libre de Bruxelles and sponsored qy NATO, NSF, the University of Texas at Austin, the International Solvay Institutes and the Ex­ xon Corporation. The present Volume includes most of the material of the in­ vited lectures delivered in the workshop as well as material from some posters, whose content was directly related to the themes of the invited lectures. In ,recent years, problems related to the stability and the nonlinear dynamics of nonequilibrium systems invaded a great num­ ber of fields ranging from abstract mathematics to biology. One of the most striking aspects of this development is that subjects reputed to be "classical" and "well-established" like chemistry, turned out to give rise to a rich variety of phenomena leading to multiple steady states and...

  13. Dictionary materials engineering, materials testing

    International Nuclear Information System (INIS)

    1994-01-01

    This dictionary contains about 9,500 entries in each part of the following fields: 1) Materials using and selection; 2) Mechanical engineering materials -Metallic materials - Non-metallic inorganic materials - Plastics - Composites -Materials damage and protection; 3) Electrical and electronics materials -Conductor materials - Semiconductors - magnetic materials - Dielectric materials - non-conducting materials; 4) Materials testing - Mechanical methods - Analytical methods - Structure investigation - Complex methods - Measurement of physical properties - Non-destructive testing. (orig.) [de

  14. National Educators' Workshop: Update 1991. Standard Experiments in Engineering Materials Science and Technology

    International Nuclear Information System (INIS)

    Gardner, J.E.; Jacobs, J.A.; Stiegler, J.O.

    1992-06-01

    Given here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 91, held at the Oak Ridge National Laboratory on November 12-14, 1991. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community

  15. National Educators' Workshop: Update 1988. Standard Experiments in Engineering Materials Science and Technology

    Science.gov (United States)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 88, held May 10 to 12, 1988 at the National Institute of Standards and Technology (NIST), Gaithersberg, Maryland. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  16. National Educators' Workshop: Update 1989 Standard Experiments in Engineering Materials Science and Technology

    Science.gov (United States)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 89, held October 17 to 19, 1989 at the National Aeronautics and Space Administration, Hampton, Virginia. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  17. National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology

    Science.gov (United States)

    Gardner, James E. (Compiler); Jacobs, James A.; Karnitz, Michael A.

    1996-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 95. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  18. National Educators' Workshop: Update 1993. Standard Experiments in Engineering Materials Science and Technology

    Science.gov (United States)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1994-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 93 held at the NASA Langley Research Center in Hampton, Virginia, on November 3-5, 1993. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  19. National Educators' Workshop: Update 1991. Standard Experiments in Engineering Materials Science and Technology

    Science.gov (United States)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Stiegler, James O. (Compiler)

    1992-01-01

    Given here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 91, held at the Oak Ridge National Laboratory on November 12-14, 1991. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  20. Neutrons and synchrotron radiation in engineering materials science from fundamentals to applications

    CERN Document Server

    Schreyer, Andreas; Clemens, Helmut; Mayer, Svea

    2017-01-01

    Retaining its proven concept, the second edition of this ready reference specifically addresses the need of materials engineers for reliable, detailed information on modern material characterization methods. As such, it provides a systematic overview of the increasingly important field of characterization of engineering materials with the help of neutrons and synchrotron radiation. The first part introduces readers to the fundamentals of structure-property relationships in materials and the radiation sources suitable for materials characterization. The second part then focuses on such characterization techniques as diffraction and scattering methods, as well as direct imaging and tomography. The third part presents new and emerging methods of materials characterization in the field of 3D characterization techniques like three-dimensional X-ray diffraction microscopy. The fourth and final part is a collection of examples that demonstrate the application of the methods introduced in the first parts to probl...

  1. Materials science and architecture

    Science.gov (United States)

    Bechthold, Martin; Weaver, James C.

    2017-12-01

    Materiality — the use of various materials in architecture — has been fundamental to the design and construction of buildings, and materials science has traditionally responded to needs formulated by design, engineering and construction professionals. Material properties and processes are shaping buildings and influencing how they perform. The advent of technologies such as digital fabrication, robotics and 3D printing have not only accelerated the development of new construction solutions, but have also led to a renewed interest in materials as a catalyst for novel architectural design. In parallel, materials science has transformed from a field that explains materials to one that designs materials from the bottom up. The conflation of these two trends is giving rise to materials-based design research in which architects, engineers and materials scientists work as partners in the conception of new materials systems and their applications. This Review surveys this development for different material classes (wood, ceramics, metals, concrete, glass, synthetic composites and polymers), with an emphasis on recent trends and innovations.

  2. PREFACE: Third Congress on Materials Science and Engineering (CNCIM-Mexico 2012)

    Science.gov (United States)

    de Coss, Romeo; Murrieta-Hernández, Gabriel; Aguayo-González, Aarón; Rubio-Rosas, Efraín; Chigo-Anota, Ernesto; Vigueras-Santiago, Enrique

    2013-06-01

    The Third Congress on Material Science and Engineering (CNCIM-México 2012), which took place in Mérida, México, from 27 February to 2 March 2012 was organized by three research groups (cuerpos académicos) from the Universidad Autónoma de Yucatán: Ingeniería Física (UADY-CA-27), Modelado y Simulación Computacional de Sistemas Físicos (UADY-CA-101) and Química Fundamental y Aplicada (UADY-CA-32), in collaboration with the Centro de Investigación y de Estudios Avanzados (Cinvestav-Mérida). The First Congress in Material Science and Engineering (CNCIM-2010), was organized in Puebla, México in February 2010. This was followed by CNCIM-2011 held in Toluca, México in February 2011. The CNCIM-México 2012 Conference consisted of plenary talks (8), invited talks (10), oral contributions (54) and poster presentations (70). The topics of the Conference were: Synthesis and Preparation of Materials: Organic and Inorganic Characterization of Materials: Novel Methods and Techniques Applications of Materials: Environment, Medicine, Pharmacy, Technology, Food and Renewable Energy New Materials: Composites, Nanostructures, and from Natural Sources Theory: New Methods and Computer Simulations We want to thank the Organizing Committee, the Institutions and Sponsors supporting the Conference, and everyone who contributed to the organization of this meeting, for their invaluable efforts in order to guarantee the complete success of this conference. Editors Romeo de Coss Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav-Mérida) A.P. 73 Cordemex 97310, Mérida, Yucatán, México decoss@mda.cinvestav.mx Gabriel Murrieta-Hernández Universidad Autónoma de Yucatán Calle 60 No. 491-A, Centro Histórico, C.P. 97000, Mérida, Yucatán, México murrieta@uady.mx Aarón Aguayo-González Universidad Autónoma de Yucatán Calle 60 No. 491-A, Centro Histórico, C.P. 97000, Mérida, Yucatán, México aguayo@uady.mx Efraín Rubio-Rosas Benemérita Universidad Aut

  3. National Educators' Workshop: Update 2002 - Standard Experiments in Engineering, Materials Science, and Technology

    Science.gov (United States)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Chung, W. Richard (Compiler)

    2003-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 2002 held in San Jose, California, October 13-16,2002. This publication provides experiments and demonstrations that can serve as a valuable guide to faculty who are interested in useful activities for their students. The material was the result of years of research aimed at better methods of teaching technical subjects. The experiments developed by faculty, scientists, and engineers throughout the United States and abroad add to the collection from past workshops. They include a blend of experiments on new materials and traditional materials.

  4. Identifying and Addressing Student Difficulties and Misconceptions: Examples from Physics and from Materials Science and Engineering

    Science.gov (United States)

    Rosenblatt, Rebecca

    2012-01-01

    Here I present my work identifying and addressing student difficulties with several materials science and physics topics. In the first part of this thesis, I present my work identifying student difficulties and misconceptions about the directional relationships between net force, velocity, and acceleration in one dimension. This is accomplished…

  5. The Influence of Materials Science and Engineering Undergraduate Research Experiences on Public Communication Skills

    Science.gov (United States)

    Ing, Marsha; Fung, Wenson W.; Kisailus, David

    2013-01-01

    Communicating research findings with others is a skill essential to the success of future STEM professionals. However, little is known about how this skill can be nurtured through participating in undergraduate research. The purpose of this study is to quantify undergraduate participation in research in a materials science and engineering…

  6. Computational Materials Science | Materials Science | NREL

    Science.gov (United States)

    Computational Materials Science Computational Materials Science An image of interconnecting, sphere science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS

  7. Informatics for materials science and engineering data-driven discovery for accelerated experimentation and application

    CERN Document Server

    Rajan, Krishna

    2014-01-01

    Materials informatics: a 'hot topic' area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this ""quantitative avalanche""-and the resulting complex, multi-factor analyses required to understand it-means that interest, investment, and research are revisiting in

  8. Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond—microwave engineering, materials science, and magnetometry

    Science.gov (United States)

    Abe, Eisuke; Sasaki, Kento

    2018-04-01

    This tutorial article provides a concise and pedagogical overview on negatively charged nitrogen-vacancy (NV) centers in diamond. The research on the NV centers has attracted enormous attention for its application to quantum sensing, encompassing the areas of not only physics and applied physics but also chemistry, biology, and life sciences. Nonetheless, its key technical aspects can be understood from the viewpoint of magnetic resonance. We focus on three facets of this ever-expanding research field, to which our viewpoint is especially relevant: microwave engineering, materials science, and magnetometry. In explaining these aspects, we provide a technical basis and up-to-date technologies for research on the NV centers.

  9. Materials science and engineering for electric power generation - success by cooperation

    International Nuclear Information System (INIS)

    Schmatjko, K.J.; Tenckhoff, E.

    1994-01-01

    Successful R and D cooperation relies on the coincidence of a general priority for the respective field of research and a strategic relevance of the results for the industrial partner. These two aspects are compared by a portfolio technique for R and D on advanced materials in electric power engineering. The approach is exemplified by tasks in research, development and processing of materials with improved high-temperature performance. Higher operation temperatures result in more efficient steam and gas turbines and fuel cells, and by this they are an essential contribution to environmental integrity. Also, this point of view makes clear that the driving force of materials development is the application, integrating future requirements and the visions from research. (orig.) [de

  10. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  11. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  12. Materials Science | NREL

    Science.gov (United States)

    microscopy and imaging science, interfacial and surface science, materials discovery, and thin-film material Science Materials Science Illustration with bottom row showing a ball-and-stick model and top row dense black band. State-of-the-art advances in materials science come from a combination of experiments

  13. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China; Department of Physics, Shanghai University, Shanghai 200444, China; State Key Laboratory of Crystal Material, Shandong ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China; Department of Materials Science and Engineering, Luoyang Institute of Science and ...

  15. Green Materials Science and Engineering Reduces Biofouling: Approaches for Medical and Membrane-based Technologies

    Directory of Open Access Journals (Sweden)

    Kerianne M Dobosz

    2015-03-01

    Full Text Available Numerous engineered and natural environments suffer deleterious effects from biofouling and/or biofilm formation. For instance, bacterial contamination on biomedical devices pose serious health concerns. In membrane-based technologies, such as desalination and wastewater reuse, biofouling decreases membrane lifetime and increases the energy required to produce clean water. Traditionally, approaches have combatted bacteria using bactericidal agents. However, due to globalization, a decline in antibiotic discovery, and the widespread resistance of microbes to many commercial antibiotics and metallic nanoparticles, new materials and approaches to reduce biofilm formation are needed. In this mini-review, we cover the recent strategies that have been explored to combat microbial contamination without exerting evolutionary pressure on microorganisms. Renewable feedstocks, relying on structure-property relationships, bioinspired/nature-derived compounds, and green processing methods are discussed. Greener strategies that mitigate biofouling hold great potential to positively impact human health and safety.

  16. College of Engineering & Applied Science

    Science.gov (United States)

    Computational Mechanics Laboratory Environmental Engineering Laboratory Geotechnical Engineering Laboratory Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  17. Data Driven Professional Development Design for Out-of-School Time Educators Using Planetary Science and Engineering Educational Materials

    Science.gov (United States)

    Clark, J.; Bloom, N.

    2017-12-01

    Data driven design practices should be the basis for any effective educational product, particularly those used to support STEM learning and literacy. Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center, and the Museum of Science Boston are partners in developing, piloting, and researching the impact of three out of school time units. Two units are for middle grades youth and one is for upper elementary aged youth. The presentation will highlight the data driven development process of the educational products used to provide support for educators teaching these curriculum units. This includes how data from the project needs assessment, curriculum pilot testing, and professional support product field tests are used in the design of products for out of school time educators. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings. Examples of the tiers of support will be provided.

  18. Physical foundations of materials science

    CERN Document Server

    Gottstein, Günter

    2004-01-01

    In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them Transmission Electron Microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.

  19. Women in science and engineering

    International Nuclear Information System (INIS)

    Gauker, Lynn.

    1991-01-01

    Women constitute nearly half of Canada's graduates in law, medicine and commerce, but only 28% in mathematics and physical sciences, and only 13% in engineering and applied sciences. Reasons may include: a lack of role models, a lack of encouragement and financial assistance, and the prevalence of sexist attitudes. Remedies may include: promotional material, banning of sexual harassment, and the inclusion in coursed of social and ethical issues and of information about women scientists

  20. Fuel cells science and engineering. Materials, processes, systems and technology. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Stolten, Detlef; Emonts, Bernd (eds.) [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF), Brennstoffzellen (IEF-3)

    2012-07-01

    The first volume is divided in four parts and 22 chapters. It is structured as follows: PART I: Technology. Chapter 1: Technical Advancement of Fuel-Cell Research and Development (Dr. Bernd Emonts, Ludger Blum, Thomas Grube, Werner Lehnert, Juergen Mergel, Martin Mueller and Ralf Peters); 2: Single-Chamber Fuel Cells (Teko W. Napporn and Melanie Kuhn); 3: Technology and Applications of Molten Carbonate Fuel Cells (Barbara Bosio, Elisabetta Arato and Paolo Greppi); 4: Alkaline Fuel Cells (Erich Guelzow); 5: Micro Fuel Cells (Ulf Groos and Dietmar Gerteisen); 6: Principles and Technology of Microbial Fuel Cells (Jan B. A. Arends, Joachim Desloover, Sebastia Puig and Willy Verstraete); 7: Micro-Reactors for Fuel Processing (Gunther Kolb); 8: Regenerative Fuel Cells (Martin Mueller). PART II: Materials and Production Processes. Chapter 9: Advances in Solid Oxide Fuel Cell Development between 1995 and 2010 at Forschungszentrum Juelich GmbH, Germany (Vincent Haanappel); 10: Solid Oxide Fuel Cell Electrode Fabrication by Infiltration (Evren Gunen); 11: Sealing Technology for Solid Oxide Fuel Cells (K. Scott Weil); 12: Phosphoric Acid, an Electrolyte for Fuel Cells - Temperature and Composition Dependence of Vapor Pressure and Proton Conductivity (Carsten Korte); 13: Materials and Coatings for Metallic Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells (Heli Wang and John A. Turner); 14: Nanostructured Materials for Fuel Cells (John F. Elter); 15: Catalysis in Low-Temperature Fuel Cells - An Overview (Sabine Schimpf and Michael Bron). PART III: Analytics and Diagnostics. Chapter 16: Impedance Spectroscopy for High-Temperature Fuel Cells (Ellen Ivers-Tiffee, Andre Leonide, Helge Schichlein, Volker Sonn and Andre Weber); 17: Post-Test Characterization of Solid Oxide Fuel-Cell Stacks (Norbert H. Menzler and Peter Batfalsky); 18: In Situ Imaging at Large-Scale Facilities (Christian Toetzke, Ingo Manke and Werner Lehnert); 19: Analytics of Physical Properties of Low

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Ming Kang1 2 Xiaoming Liao1 Guangfu Yin1 Xun Sun3 Xing Yin4 Lu Xie4 Jun Liu2. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China; College of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Department of ...

  2. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  3. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    Science.gov (United States)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  4. Bourdieu and Academic Capitalism: Faculty "Habitus" in Materials Science and Engineering

    Science.gov (United States)

    Mendoza, Pilar; Kuntz, Aaron M.; Berger, Joseph B.

    2012-01-01

    We present Bourdieu's notions of field, capital, "habitus," and strategy and how these concepts apply today in light of academic capitalism using an empirical study of faculty work in one specific field in engineering that exemplifies current tendencies brought by academic capitalism. We conclude with a discussion of practical implications.…

  5. Engineering Science, Skills, and Bildung

    DEFF Research Database (Denmark)

    Christensen, Jens

    The background for the book is a quest for a thorough analysis of engineering, engineering science, and engineering education. Focusing on the concepts of engineering science, skills, and Bildung, the book investigates the real challenges that are confronting engineering today, and discusses how...

  6. Supercritical fluid technology in materials science and engineering: syntheses, properties, and applications

    National Research Council Canada - National Science Library

    Sun, Ya-Ping

    2002-01-01

    ... and polymer preparations and as alternative solvent systems for materials processing. In fact, materials-related applications have emerged as a new frontier in the development of supercritical fluid technology. I hope that this book will be a timely contribution to this emerging research field by serving at least two purposes. One is to provide intere...

  7. Making Materials Science and Engineering Data More Valuable Research Products (Postprint)

    Science.gov (United States)

    2014-09-12

    uncertainties in the publishing market - place.b Also, there is a possibility that some for-profit publishers could try to restrict access to digital...Kaufman JG, Glatzman JS (eds) Computerization and networking of materials databases: Second Volume, ASTM STP 1106. American Society for Testing and

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P.R. China; Anhui Provincial Laboratory of High Performance Nonferrous Metals Material, Wuhu, Anhui 241000, P.R. China; Department of Materials Science and Engineering, University of Science and Technology of ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 5 ... The electrical performances of thin film material can be improved largely by dopants. ... Department of Materials Science and Engineering, Jinan University, Jinan 250022, PR China; The State Key Laboratory of Material Composite and Advanced ...

  10. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Author Affiliations. V V Deshpande1 M M Patil1 S C Navale2 V Ravi1. Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, India; Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411 008, India ...

  11. Fuel cells science and engineering. Materials, processes, systems and technology. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Stolten, Detlef; Emonts, Bernd (eds.) [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF), Brennstoffzellen (IEF-3)

    2012-07-01

    The second volume is divided in four parts and 19 chapters. It is structured as follows: PART V: Modeling and Simulation. Chapter 23: Messages from Analytical Modeling of Fuel Cells (Andrei Kulikovsky); 24: Stochastic Modeling of Fuel-Cell Components (Ralf Thiedmann, Gerd Gaiselmann, Werner Lehnert and Volker Schmidt); 25: Computational Fluid Dynamic Simulation Using Supercomputer Calculation Capacity (Ralf Peters and Florian Scharf); 26 Modeling Solid Oxide Fuel Cells from the Macroscale to the Nanoscale (Emily M. Ryan and Mohammad A. Khaleel); 27: Numerical Modeling of the Thermomechanically Induced Stress in Solid Oxide Fuel Cells (Murat Peksen); 28: Modeling of Molten Carbonate Fuel Cells (Peter Heidebrecht, Silvia Piewek and Kai Sundmacher); Chapter 29: High-Temperature Polymer Electrolyte Fuel-Cell Modeling (Uwe Reimer); Chapter 30: Modeling of Polymer Electrolyte Membrane Fuel-Cell Components (Yun Wang and Ken S. Chen); 31: Modeling of Polymer Electrolyte Membrane Fuel Cells and Stacks (Yun Wang and Ken S. Chen). PART VI: Balance of Plant Design and Components. Chapter 32: Principles of Systems Engineering (Ludger Blum, Ralf Peters and Remzi Can Samsun); 33: System Technology for Solid Oxide Fuel Cells (Nguyen Q. Minh); 34: Desulfurization for Fuel-Cell Systems (Joachim Pasel and Ralf Peters); 35: Design Criteria and Components for Fuel Cell Powertrains (Lutz Eckstein and Bruno Gnoerich); 36: Hybridization for Fuel Cells (Joerg Wilhelm). PART VII: Systems Verification and Market Introduction. Chapter 37: Off-Grid Power Supply and Premium Power Generation (Kerry-Ann Adamson); 38: Demonstration Projects and Market Introduction (Kristin Deason). PART VIII: Knowledge Distribution and Public Awareness. Chapter 39: A Sustainable Framework for International Collaboration: the IEA HIA and Its Strategic Plan for 2009-2015 (Mary-Rose de Valladares); 40: Overview of Fuel Cell and Hydrogen Organizations and Initiatives Worldwide (Bernd Emonts) 41: Contributions for

  12. National Educators' Workshop: Update 2003. Standard Experiments in Engineering, Materials Science, and Technology. Part 2

    Science.gov (United States)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Edmonson, William (Compiler); Wilkerson, Amy (Compiler)

    2004-01-01

    The 18th Annual National Educators Workshop [NEW:Update 2003] was a part of NASA Langley s celebration of the Centennial of Controlled, Powered Flight by Orville and Wilbur Wright on December 17, 1903. The conference proceedings from NEW:Update 2003 reflect the Flight 100 theme by first providing a historic perspective on the remarkable accomplishments of the Wright Brothers. The historical perspective set the stag for insights into aeronautics and aerospace structures and materials now and into the future. The NEW:Update 2003 proceedings provide valuable resources to educators and students in the form of visuals, experiments and demonstrations for classes/labs at levels ranging from precollege through college education.

  13. National Educators' Workshop: Update 2003. Standard Experiments in Engineering, Materials Science, and Technology. Part 1

    Science.gov (United States)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Edmonson, William (Compiler); Wilkerson, Amy (Compiler)

    2004-01-01

    The 18th Annual National Educators Workshop [NEW:Update 2003] was a part of NASA Langley s celebration of the Centennial of Controlled, Powered Flight by Orville and Wilbur Wright on December 17, 1903. The conference proceedings from NEW:Update 2003 reflect the Flight 100 theme by first providing a historic perspective on the remarkable accomplishments of the Wright Brothers. The historical perspective set the stag for insights into aeronautics and aerospace structures and materials now and into the future. The NEW:Update 2003 proceedings provide valuable resources to educators and students in the form of visuals, experiments and demonstrations for classes/labs at levels ranging from precollege through college education.

  14. Developing Statistical Physics Course Handout on Distribution Function Materials Based on Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Riandry, M. A.; Ismet, I.; Akhsan, H.

    2017-09-01

    This study aims to produce a valid and practical statistical physics course handout on distribution function materials based on STEM. Rowntree development model is used to produce this handout. The model consists of three stages: planning, development and evaluation stages. In this study, the evaluation stage used Tessmer formative evaluation. It consists of 5 stages: self-evaluation, expert review, one-to-one evaluation, small group evaluation and field test stages. However, the handout is limited to be tested on validity and practicality aspects, so the field test stage is not implemented. The data collection technique used walkthroughs and questionnaires. Subjects of this study are students of 6th and 8th semester of academic year 2016/2017 Physics Education Study Program of Sriwijaya University. The average result of expert review is 87.31% (very valid category). One-to-one evaluation obtained the average result is 89.42%. The result of small group evaluation is 85.92%. From one-to-one and small group evaluation stages, averagestudent response to this handout is 87,67% (very practical category). Based on the results of the study, it can be concluded that the handout is valid and practical.

  15. Materials science symposium 'materials science using accelerators'

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Asai, Masato; Chimi, Yasuhiro

    2005-07-01

    The facility of the JAERI-Tokai tandem accelerator and its booster has been contributing to advancing heavy-ion sciences in the fields of nuclear physics, nuclear chemistry, atomic and solid-state physics and materials science, taking advantage of its prominent performance of heavy-ion acceleration. This facility was recently upgraded by changing the acceleration tubes and installing an ECR ion-source at the terminal. The radioactive nuclear beam facility (Tokai Radioactive Ion Accelerator Complex, TRIAC) was also installed by the JAERI-KEK joint project. On this occasion, this meeting was held in order to provide a new step for the advancement of heavy-ion science, and to exchange information on recent activities and future plans using the tandem facility as well as on promising new experimental techniques. This meeting was held at Tokai site of JAERI on January 6th and 7th in 2005, having 24 oral presentations, and was successfully carried out with as many as 90 participants and lively discussions among scientists from all the fields of heavy-ion science, including solid-sate physics, nuclear physics and chemistry, and accelerator physics. This summary is the proceedings of this meeting. We would like to thank all the staffs of the accelerators section, participants and office workers in the Department of Materials Science for their support. The 24 of the presented papers are indexed individually. (J.P.N.)

  16. Business | College of Engineering & Applied Science

    Science.gov (United States)

    & Environmental Engineering TA Online Application Civil & Environmental Engineering Research in Computer Science - FAQ's Computer Science TA Online Application Ph.D. Program in Computer Science Electrical Engineering Electrical Engineering TA Online Application Electrical Engineering Research

  17. [Applications of synthetic biology in materials science].

    Science.gov (United States)

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  18. DOE Final Report -NON-LINEAR WAVES IN CONTINUOUS MEDIA- BES- Division of Engineering and Materials Science

    International Nuclear Information System (INIS)

    Seth J. Putterman

    2006-01-01

    FINAL REPORT ON : NON-LINEAR WAVES IN CONTINUOUS MEDIA Doe DE FG03-87ER13686 (001312-001) Submitted January 10, 2006 by Seth J. Putterman 310-8252269 Physics Department University of California Los Angeles, CA 90095 puherman at ritva.physics.ucla.edu NON-LINEAR WAVES IN CONTINUOUS MEDIA I am happy to report that this project has been a big success. For over 10 years the DOE [Division of Materials Sciences and Engineering] has funded our research program on the overarching theme of spontaneous energy focusing phenomena. These effects occur when a nonlinear macroscopic system is excited so as to drive it far from equilibrium. The subsequent relaxation to equilibrium does not occur smoothly but instead is accompanied by the formation of structured domains where the energy density is highly concentrated. A signature example is picosecond sonoluminescence [1] wherein a smooth sound wave has its energy density focused by 12 orders of magnitude to generate a clock-like string of picosecond flashes of ultraviolet light. Our earlier work on solitons [2] demonstrated how uniform surface waves break up into stable localized structures. Our experimental work on turbulence produced photos of localized structures lying many standard deviations outside the range of gaussian statistics[3]. This effect is referred to as intermittency. Our recent work on friction finds its motivation in those theories of sonoluminescence which invoke frictional electricity. In its most common form this is the generation of a spark when we touch a doorknob after walking over a carpet. Our reading of the literature on this subject indicated that frictional electricity like sonoluminescence is not understood. So to probe triboelectrification we set up a modern version of an experiment performed by Bernoulli in 1700. Here sparking is caused by the rubbing of glass against mercury. We indeed observed flashes of light which were accompanied by events of stick-slip friction at the interface between the

  19. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Science & Engineering Indicators 2016. National Science Board

    Science.gov (United States)

    National Science Foundation, 2016

    2016-01-01

    "Science and Engineering Indicators" (SEI) is first and foremost a volume of record comprising high-quality quantitative data on the U.S. and international science and engineering enterprise. SEI includes an overview and seven chapters that follow a generally consistent pattern. The chapter titles are as follows: (1) Elementary and…

  1. Computer Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  2. Computer Resources | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  3. Computer Science | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  4. Materials Sciences Programs

    International Nuclear Information System (INIS)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs

  5. Electronic Materials Science

    Science.gov (United States)

    Irene, Eugene A.

    2005-02-01

    A thorough introduction to fundamental principles and applications From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts. Electronic Materials Science also features: An orientation towards industry and academia drawn from the author's experience in both arenas Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics Problem sets and important references throughout Flexibility for various pedagogical needs Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

  6. Basic transport phenomena in materials engineering

    CERN Document Server

    Iguchi, Manabu

    2014-01-01

    This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material.  The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material use...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Sanjay Panwar1 D B Goel2 O P Pandey1. School of Physics and Materials Science, Thapar Institute of Engineering & Technology, Patiala 147 004, India; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Xiuqiang Li1 Dong Zhang1 Peiying Zhu1 Chao Yang1. Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, College of Materials Science and Engineering, Tongji University, 4800 CaoAn Road, Shanghai 200092, China ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Xiaoming Liao1 Hongyang Zhu1 Guangfu Yin1 Zhongbing Huang1 Yadong Yao1 Xianchun Chen1. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, P.R. of China ...

  10. Conference Modern Engineering : Science and Education

    CERN Document Server

    2017-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2016 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  11. Mechanical Material Engineering

    International Nuclear Information System (INIS)

    Kim, Mun Il

    1993-01-01

    This book introduced mechanical material with introduction, basic problems about metal ingredient of machine of metal and alloy, property of metal material mechanical metal material such as categorization of metal material and high tensile structure steel, mechanic design and steel material with three important points on using of steel materials, selection and directions machine structural steel, selection and directions of steel for tool, selection and instruction of special steel like stainless steel and spring steel, nonferrous metal materials and plastic.

  12. Research | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering & Applied Science. Please explore this webpage to learn about research activities and Associate Dean for Research College of Engineering and Applied Sciences Director, Center for Sustainable magazine. College ofEngineering & Applied Science Academics About People Students Research Business

  13. Research Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Multimedia Software Laboratory Computer Science Nanotechnology for Sustainable Energy and Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  14. Interfacial and Surface Science | Materials Science | NREL

    Science.gov (United States)

    Science group within the Material Science Center. He oversees research studies of surfaces and interfaces Interfacial and Surface Science Interfacial and Surface Science Image of irregular-outlined, light address a broad range of fundamental and applied issues in surface and interfacial science that are

  15. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. K L Sahoo1 Rina Sahu1 M Ghosh1 S Chatterjee2. Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831 007, India; Department of Metallurgical and Materials Engineering, Bengal Engineering and Science University, Howrah 711 103, India ...

  17. Proceedings of computational methods in materials science

    International Nuclear Information System (INIS)

    Mark, J.E. Glicksman, M.E.; Marsh, S.P.

    1992-01-01

    The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. U D Lanke1 2. Metallurgical Engineering and Materials Science Department, Indian Institute of Technology, Mumbai 400 076, India; School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. G KOROTCENKOV1 V BRINZARI2 B K CHO1. School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500712, Republic of Korea; Department of Theoretical Physics, State University of Moldova, Chisinau, Republic of Moldova ...

  20. Career Fairs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  1. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  2. Materials Discovery | Materials Science | NREL

    Science.gov (United States)

    Discovery Materials Discovery Images of red and yellow particles NREL's research in materials characterization of sample by incoming beam and measuring outgoing particles, with data being stored and analyzed Staff Scientist Dr. Zakutayev specializes in design of novel semiconductor materials for energy

  3. Journal of Applied Science, Engineering and Technology

    African Journals Online (AJOL)

    The Journal of Applied Science, Engineering and Technology covers research activities and development in the field of Applied Sciences and Technology as it relates to Agricultural Engineering, Biotechnology, Computer Science and Engineering Computations, Civil Engineering, Food Science and Technology, Electrical ...

  4. Materials engineering data base

    Science.gov (United States)

    1995-01-01

    The various types of materials related data that exist at the NASA Marshall Space Flight Center and compiled into databases which could be accessed by all the NASA centers and by other contractors, are presented.

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Wang Juan1 Li Yajiang1 Wu Huiqiang1 Ren Jiangwei1. Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P.R. China ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 1. Dispersion and reinforcing mechanism of carbon nanotubes in epoxy nanocomposites. Smrutisikha Bal ... Author Affiliations. Smrutisikha Bal1. Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela 769 008, India ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    School of Chemical and Materials Engineering, National University of Science and Technology, H/12 Islamabad, Pakistan; Austrian Institute of Technology GmbH, Advanced Materials & Aerospace Technologies, A-2444 Seibersdorf, Austria; Centre of Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria ...

  8. Molecular Engineering of dosimetric materials

    International Nuclear Information System (INIS)

    Salas, P.; Castano, V.M.; Mendoza, D.; Gonzalez, P.

    1999-01-01

    It was studied the thermoluminescent response to the gamma radiation of a new family of solid materials of zircon-silica. In this study some materials have been prepared by the sol-gel method with different stoichiometric relations, finding that it is possible to control, at least, partially, the thermoluminescent behavior starting from the Molecular Engineering of those materials, since the mixture of both ceramics allows to produce materials with different spatial structures. (Author)

  9. Preparing technicians for engineering materials technology

    Science.gov (United States)

    Jacobs, James A.; Metzloff, Carlton H.

    1990-01-01

    A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.

  10. Proceedings of the 3rd Symposium on Engineering Sciences

    International Nuclear Information System (INIS)

    Ahmed, J.; Rizvi, S.Z.H.; Ahmad, R.; Saleem, M.

    2010-01-01

    The 3rd symposium on engineering sciences was held from March 10-12, 2010 in Lahore, Pakistan. More than twenty academic institutions and six industries participated in this conference. The foreign and Pakistani experts delivered their keynotes talk, contributor lectures and poster presentation on the conference topics. In three days of the symposium, Fifty four papers presented on different topics of Engineering Sciences including chemical engineering, energy engineering, metallurgy engineering, material engineering and electrical engineering. This symposium provided an ideal opportunity for exchange of information amongst scientists, engineers and researchers from all over Pakistan and other countries of the world. (A.B)

  11. Argonne Chemical Sciences & Engineering - Awards Home

    Science.gov (United States)

    Argonne National Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Computational Postdoctoral Fellowships Contact Us CSE Intranet Awards Argonne's Chemical Sciences and

  12. Mechanical engineers' handbook, materials and engineering mechanics

    CERN Document Server

    Kutz, Myer

    2015-01-01

    Full coverage of materials and mechanical design inengineering Mechanical Engineers' Handbook, Fourth Edition provides aquick guide to specialized areas you may encounter in your work,giving you access to the basics of each and pointing you towardtrusted resources for further reading, if needed. The accessibleinformation inside offers discussions, examples, and analyses ofthe topics covered. This first volume covers materials and mechanical design, givingyou accessible and in-depth access to the most common topics you'llencounter in the discipline: carbon and alloy steels, stainlesssteels, a

  13. 2002 Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  14. The science of structural engineering

    CERN Document Server

    Heyman, Jacques

    1999-01-01

    Structures cannot be created without engineering theory, and design rules have existed from the earliest times for building Greek temples, Roman aqueducts and Gothic cathedrals - and later, for steel skyscrapers and the frames for aircraft. This book is, however, not concerned with the description of historical feats, but with the way the structural engineer sets about his business. Galileo, in the seventeenth century, was the first to introduce recognizably modern science into the calculation of structures; he determined the breaking strength of beams. In the eighteenth century engineers move

  15. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    Science.gov (United States)

    Kelly, Jacquelyn

    2012-01-01

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to…

  16. Decision Analysis: Engineering Science or Clinical Art

    Science.gov (United States)

    1979-11-01

    TECHNICAL REPORT TR 79-2-97 DECISION ANALYSIS: ENGINEERING SCIENCE OR CLINICAL ART ? by Dennis M. Buede Prepared for Defense Advanced Research...APPLICATIONS OF THE ENGINEER- ING SCIENCE AND CLINICAL ART EXTREMES 9 3.1 Applications of the Engineering Science Approach 9 3.1.1 Mexican electrical...DISCUSSION 29 4.1 Engineering Science versus Clinical Art : A Characterization of When Each is Most Attractive 30 4.2 The Implications of the Engineering

  17. Women in science & engineering and minority engineering scholarships : year 5.

    Science.gov (United States)

    2011-06-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  18. Women in science & engineering and minority engineering scholarships : year 4.

    Science.gov (United States)

    2010-04-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  19. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In addition, 0.25Ca0.8Sr0.2 TiO3–0.75Li0.5Nd0.5TiO3 + 4.0 wt% LiF ceramics sintered at 1350°C for 4 h exhibited good microwave dielectric properties of r ... College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, PR China; Department of Information Engineering, Guilin ...

  1. Editorial: Defining materials science: A vision from APL Materials

    Directory of Open Access Journals (Sweden)

    Judith MacManus-Driscoll

    2014-07-01

    Full Text Available These are exciting times for materials science—a field which is growing more rapidly than any other physical science discipline. More than ever, the field is providing the vital link between science and engineering, between pure and applied. But what is the subject's definition and why is the field ballooning? I address these questions in the context of how APL Materials intends to play a role in advancing this important field. My introspective focus arises as we approach the first year anniversary of APL Materials.

  2. Weerts to lead Physical Sciences and Engineering directorate | Argonne

    Science.gov (United States)

    Physical Sciences and Engineering directorate By Lynn Tefft Hoff * August 10, 2015 Tweet EmailPrint Hendrik Engineering (PSE) directorate at the U.S. Department of Energy's Argonne National Laboratory. Weerts has , chemistry, materials science and nanotechnology. Weerts joined Argonne in 2005 as director of Argonne's High

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Harnessing renewable solar energy through different technologies is greatly dependent on the advancement of solar grade materials' science and engineering. In this article, the prominent solar energy technologies, namely solarphotovoltaic and concentrated solar power and other relevant technologies, and aspects ...

  4. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Journal Sponsorship. Journal Home > About the Journal > International Journal of Engineering, Science and Technology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  5. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: About this journal. Journal Home > International Journal of Engineering, Science and Technology: About this journal. Log in or Register to get access to full text downloads.

  6. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Author Affiliations. Yasser B Saddeek1 Moenis A Azooz2 Amr Bakr Saddek3. Faculty of Science, Physics Department, Al-Azhar University, Assiut, Egypt; Glass Research Department, National Research Center, Dokki, Cairo, Egypt; Faculty of Engineering, Civil Engineering Department, Beni-Suef University, Beni-Suef, Egypt ...

  7. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  8. Sixth Israel materials engineering conference IMEC VI

    International Nuclear Information System (INIS)

    Anon.

    1993-02-01

    Works on material engineering are presented. The main material types are: metals, alloys, superalloys, coatings, ceramics, composites, electronic materials,organic polymers and thin films. The following engineering aspects are presented: metallurgy, mechanical and physical properties, crystal structure and corrosion

  9. Engineering science and mechanics department head named

    OpenAIRE

    Nystrom, Lynn A.

    2004-01-01

    Ishwar K. Puri, professor of mechanical engineering and executive associate dean of engineering at the University of Illinois at Chicago, will become the head of Virginia Tech•À_ó»s Department of Engineering Science and Mechanics Aug. 1.

  10. The Fu Foundation School of Engineering & Applied Science - Columbia

    Science.gov (United States)

    Engineering Mechanics Computer Science Earth and Environmental Engineering Electrical Engineering Industrial Engineering & Applied Science - Columbia University Admissions Undergraduates Graduates Distance Learning Physics and Applied Mathematics Biomedical Engineering Chemical Engineering Civil Engineering and

  11. Bayesian optimization for materials science

    CERN Document Server

    Packwood, Daniel

    2017-01-01

    This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While re...

  12. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M K Rabinal. Articles written in Bulletin of Materials Science. Volume 35 Issue 4 August 2012 pp 529-532. An optical tweezer-based study of antimicrobial activity of silver nanoparticles · Yogesha Sarbari Bhattacharya M K Rabinal Sharath Ananthamurthy · More Details Abstract ...

  13. Design of Molecular Materials: Supramolecular Engineering

    Science.gov (United States)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  14. Materials Informatics: Statistical Modeling in Material Science.

    Science.gov (United States)

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bulletin of Materials Science

    Indian Academy of Sciences (India)

    Low temperature preparation of some perovskites La2MM'O6 (M,M'=Cr,Mn,Fe ... Inorganic materials for optical data storage -- S K Date ... Dielectric and polarization studies on some organic materials -- B jagannadh and Lalitha Sirdeshmukh.

  16. International Conference on Emerging Trends in Science, Engineering and Technology

    CERN Document Server

    Caroline, B; Jayanthi, J

    2012-01-01

    The present book is based on the research papers presented in the International Conference on Emerging Trends in Science, Engineering and Technology 2012, held at Tiruchirapalli, India. The papers presented bridges the gap between science, engineering and technology. This book covers a variety of topics, including mechanical, production, aeronautical, material science, energy, civil and environmental energy, scientific management, etc. The prime objective of the book is to fully integrate the scientific contributions from academicians, industrialists and research scholars.

  17. Thermochemical Surface Engineering: A Playground for Science and Innovation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Jellesen, Morten Stendahl

    2017-01-01

    Surface engineering by thermochemical processing is the intentional change of the composition of a material at elevated temperature with the purpose to improve materials performance. In thermochemical processing components from the starting material are essential in the development of the phases...... at the surface. Current research and innovation activities are used to exemplify thermochemical surface engineering and the interplay of science and innovation. The examples given encompass aspects of the synthesis of extremely porous materials, low temperature surface hardening of stainless steel, surface...

  18. Contributions to materials science

    International Nuclear Information System (INIS)

    Asbeck, O.W.; Matucha, K.H.

    1989-01-01

    The ten papers presented at a festive colloquium held on November 14, 1988 in Frankfurt to honour Prof. Peter Wincierz deal with the texture and mechanical anisotropy of zirconium alloys (by E. Tenckhoff), materials for cladding tubes (H. Boehm), aluminium materials achieved by near technology (W. Bunk), dispersion-strengthened materials (H. Fischmeister), materials for plain bearings (K.H. Matucha), and the archeometallurgy of copper (H.-G. Bachmann). (MM) [de

  19. Cathodoluminescence | Materials Science | NREL

    Science.gov (United States)

    shown on a computer screen; the image of a sample semiconductor material appears as a striated oval material sample shown above; the image is a high-contrast light and dark oval on a dark background and was top left of copper indium gallium selenide semiconductor material sample; the image is shown on a

  20. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  1. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Department of Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210 702, Korea; Graduate School of Green Energy Technology, Chungnam National University, Daejeon 305 764, Korea; Department of Civil Engineering, Gangneung-Wonju National University, Gangneung 210 702, ...

  2. Food Engineering within Sciences of Food

    Directory of Open Access Journals (Sweden)

    Athanasios Kostaropoulos

    2012-10-01

    Full Text Available The aim of this paper is to clarify the identity of food engineering in sciences of food. A short historical description of the evolution of the branch in the Anglo Saxon and the Continental educational systems is given. Furthermore, the distinction of basic definitions such as food science, food science and technology, food technology, and food engineering is made. Finally, the objectives of food engineering within the branch of sciences of food are described.

  3. Materials science challenges in paintings.

    Science.gov (United States)

    Walter, Philippe; de Viguerie, Laurence

    2018-01-23

    Through the paintings of the old masters, we showcase how materials science today provides us with a vision of the processes involved in the creation of a work of art: the choice of materials, the painter's skill in handling these materials, and the perception of the finished work.

  4. Materials science challenges in paintings

    Science.gov (United States)

    Walter, Philippe; de Viguerie, Laurence

    2018-02-01

    Through the paintings of the old masters, we showcase how materials science today provides us with a vision of the processes involved in the creation of a work of art: the choice of materials, the painter's skill in handling these materials, and the perception of the finished work.

  5. The metallurgy, science and engineering

    International Nuclear Information System (INIS)

    Pineau, A.; Quere, Y.

    2011-01-01

    Metallurgy, the science of metals and the technical discipline concerned with the production, shaping and assembling of metals, is one of the major assets of European economy. The French metallurgy industry - from producers (steel, light alloys, ...) to users (car, aviation, nuclear industries, ...) -- has achieved in many of its sectors a world-class level of excellence, based on high-quality research centres that are recognized both for their theoretical and experimental academic work. By contrast, public research is insufficiently concerned with engineering. In 2004, this industry employed 1 800 000 persons, 220 000 of which worked as engineers and managers in 45 000 companies, with a turnover of 420 billion euros. This state of grace is starting to decline. We are undergoing, in this sector as in others, a de-industrialization that affects upstream activities: courses in these disciplines, which have been previously outstanding, have partially disappeared; laboratories have shrunk; expertise has been dispersed; students are staying away from a discipline they consider 'unfruitful', like many other engineering sciences. Simultaneously, further up in this sector, decision centres have moved away from production centres and away from our country. France still maintains a few important R and D centres within international groups in spite of France's decreasing weight in world production. However, these groups see the future of R and D as being centred in the emerging countries (China, India...). The main users (transport, energy, ...) are losing their experts as are the technical centres on which rely a large network of small and medium businesses. The consequences are alarming in view of the already noticeable loss of technical control. This trend can and must be reversed. Because of its presence in many industrial sectors and its excellence, metallurgy - including both research and industry - is an essential activity in which France should remain a major player

  6. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    International Nuclear Information System (INIS)

    Sanders, Y.D.; Freeman, Y.B.; George, M.C.

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements)

  7. NASA Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  8. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1 .... Na + /B 3 + phosphor has a potential application in white light-emitting diodes based ... College of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China ...

  9. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3 ... In this study, a modified model for the application of the thermionic and hopping current ... Departments of Mathematics and Physics, Arab American University, Jenin 240, ...

  10. Moessbauer Spectroscopy in Materials Science

    International Nuclear Information System (INIS)

    2006-01-01

    The publication in electronic form has been set up as proceedings of the conference dealing with applications of the Moessbauer spectroscopy in material science. Twenty-three abstracts and twenty-two presentations are included.

  11. Plasma science and engineering at NSF

    International Nuclear Information System (INIS)

    Goldberg, L.S.

    1996-01-01

    The author gives a perspective of the breadth of fundamental plasma science and engineering that the National Science Foundation supports through its Directorates for Engineering, Mathematical and Physical Sciences, Geosciences, and the Office of Polar Programs. He plans also to discuss the diverse interests and commitment within the Foundation to maintaining the vitality of research and education activities in this field

  12. MSRR Rack Materials Science Research Rack

    Science.gov (United States)

    Reagan, Shawn

    2017-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials

  13. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1 ... I D S – V b g branches in accordance with the SERS results and humidity responses. ... Ni˘gde University, Graduate School Natural and Applied Sciences, Ni˘gde 51240, ...

  14. Introduction Of Computational Materials Science

    International Nuclear Information System (INIS)

    Lee, Jun Geun

    2006-08-01

    This book gives, descriptions of computer simulation, computational materials science, typical three ways of computational materials science, empirical methods ; molecular dynamics such as potential energy, Newton's equation of motion, data production and analysis of results, quantum mechanical methods like wave equation, approximation, Hartree method, and density functional theory, dealing of solid such as pseudopotential method, tight-binding methods embedded atom method, Car-Parrinello method and combination simulation.

  15. Models, Databases, and Simulation Tools Needed for the Realization of Integrated Computational Materials Engineering. Proceedings of the Symposium Held at Materials Science and Technology 2010

    Science.gov (United States)

    Arnold, Steven M. (Editor); Wong, Terry T. (Editor)

    2011-01-01

    Topics covered include: An Annotative Review of Multiscale Modeling and its Application to Scales Inherent in the Field of ICME; and A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures.

  16. Career Services | College of Engineering & Applied Science

    Science.gov (United States)

    @ 10:00 am - 2:00 pm Wisconsin Room, UWM Student Union Register today! Engineering Careers Careers in Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, Thailand; Centre of Excellence for Innovation and Technology for Water Treatment, Naresuan University, Phitsanulok, Thailand; Department of Environmental Technology, Faculty of Environmental Science, University of Science, Viet ...

  18. Bulletin of Materials Science

    Indian Academy of Sciences (India)

    Influence of the presence of Fe2+ ion in nickel-zinc ferrite -- C M Srivastava, ... Investigation of hydrogenous materials using neutrons -- B A Dasannacharya and P S Goyal ... of potassium gold-cyanide -- Indira Rajagopal and S R Rajagopalan .... A novel method of RF powder sputtering -- K Solomon Harshavardhanan and ...

  19. Bulletin of Materials Science

    Indian Academy of Sciences (India)

    -organic chemical vapour deposited (MOCVD) gamma iron oxide thin film for ... V2)5-Te)2 glasses using heterogeneous conductor model -- M Pal, S K Saha and ... The hardness-flow stress correlation in metallic materials -- G Soundararajan ...

  20. Chemistry and Materials Science

    International Nuclear Information System (INIS)

    1993-07-01

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director's initiatives and individual projects, and transactinium institute studies

  1. Weightless Materials Science

    Science.gov (United States)

    Curtis, Jeremy

    2012-01-01

    Gravity affects everything we do. Only in very recent years have we been able to carry out experiments in orbit around the Earth and see for the first time how things behave in its absence. This has allowed us to understand fundamental processes better and to design new materials using this knowledge. (Contains 6 figures.)

  2. Future Students | College of Engineering & Applied Science

    Science.gov (United States)

    race car with the Society of Automotive Engineers. Members of the American Society of Mechanical . icons_100x100_Engage Over 20 engineering and computer science organizations await! Race a Baja car or concrete canoe

  3. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak, Malaysia; Chemical Engineering Department, Durgapur Institute of Advanced Technology and Management, Durgapur 713 212, India; Mechanical and Materials Engineering Department, College of Engineering and Computing, ...

  5. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 5. Issue front cover thumbnail. Volume 26, Issue 5. August 2003, pages 461-568. pp 461-464 Sensor Materials. Preparation, characterization and dielectric behaviour of some yttrium doped strontium stannates · P K Bajpai Kuldeep Ratre Mukul Pastor T P ...

  6. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 2 ... films deposited by rf magnetron sputtering using a high quality ceramic target ... Critical shear stress produced by interaction of edge dislocation with nanoscale inhomogeneity ... production cost limiting zircon usage as a raw material at an industrial scale.

  7. Simulation and material testing of jet engines

    International Nuclear Information System (INIS)

    Tariq, M.M.

    2006-01-01

    The NASA software engine simulator version U 1.7a beta has been used for simulation and material testing of jet engines. Specifications of Modem Jet Engines are stated, and then engine simulator is applied on these specifications. This simulator can simulate turbojet, afterburner, turbofan and ram jet. The material of many components of engine may be varied. Conventional and advanced materials for jet engines can be simulated and tested. These materials can be actively cooled to increase the operating temperature limit. As soon as temperature of any engine component exceeds the temperature limit of material, a warning message flashes across screen. Temperature Limits Exceeded. This flashing message remainst here until necessaryc hangesa re carried out in engine operationp rocedure. Selection Criteria of Engines is stated for piston prop, turboprop, turbofan, turbojet, and turbojet with afterburner and Ramjet. Several standard engines are modeled in Engine Simulator. These engines can. be compared by several engineering specifications. The design, modeling, simulation and testing of engines helps to better understand different types of materials used in jet engines. (author)

  8. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    Science.gov (United States)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Environmental Engineering/Electrochemistry Research Group, Institute of Fundamental Studies, Kandy 20000, Sri Lanka; Post Graduate Institute of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka; Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, ...

  10. Density functional theory in materials science.

    Science.gov (United States)

    Neugebauer, Jörg; Hickel, Tilmann

    2013-09-01

    Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.

  11. Design and computation of modern engineering materials

    CERN Document Server

    Altenbach, Holm

    2014-01-01

     The idea of this monograph is to present the latest results related to design and computation of engineering materials and structures. The contributions cover the classical fields of mechanical, civil and materials engineering up to biomechanics and advanced materials processing and optimization. The materials and structures covered can be categorized into modern steels and titanium alloys, composite materials, biological and natural materials, material hybrids and modern joining technologies. Analytical modelling, numerical simulation, the application of state-of-the-art design tools and sophisticated experimental techniques are applied to characterize the performance of materials and to design and optimize structures in different fields of engineering applications.

  12. Neutrons for materials science

    International Nuclear Information System (INIS)

    Windsor, C.G.; Allen, A.J.; Hutchings, M.T.; Sayers, C.M.; Sinclair, R.N.; Schofield, P.; Wright, C.J.

    1984-12-01

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particularly electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Examples are given. Small angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of 'in situ' time dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. High resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasing complex phases. The structure and volume fraction of minority phases can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. (author)

  13. Material Science Smart Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, A. I. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Sabirianov, R. F. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Namavar, Fereydoon [Univ. of Nebraska Medical Center, Omaha, NE (United States)

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materialsC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  14. Phase transformations in engineering materials

    International Nuclear Information System (INIS)

    Bourke, M.A.M.; Lawson, A.C.; Dunand, D.C.

    1996-01-01

    Phase transformations in engineering materials are inevitably related to mechanical behavior and are often precursors to residual stress and distortion. Neutron scattering in general is a valuable tool for studying their effects, and pulsed neutrons are of special value, because of the inherently comprehensive crystallographic coverage they provide in each measurement. At the Manuel Lujan neutron scattering center several different research programs have addressed the relationships between phase transformation/mechanical behavior and residual strains. Three disparate examples are presented; (1) stress induced transformation in a NiTi shape memory alloy, (2) cryogenically induced transformation in a quenched 5180 steel, and (3) time resolved evolution of strain induced martensite in 304 stainless steel. In each case a brief description of the principle result will be discussed in the context of using neutrons for the measurement

  15. Neutrons for materials science

    International Nuclear Information System (INIS)

    Windsor, C.G.; Allen, A.J.; Hutchings, M.T.; Sayers, C.M.; Sinclair, R.N.; Schofield, P.; Wright, C.J.

    1985-01-01

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particular electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Small-angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of in situ time-dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. Examples will be given of small-angle scattering projects from the nuclear metallurgy, coal, oil, cement, detergent and plastics industries. High-resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasingly complex phases. The structure and volume fraction of minority phase can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Neutron diffraction is unique in being able to measure the full strain tensor from a specified volume within a bulk specimen. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. Examples will be chosen from the field of catalysis where inelastic spectroscopy has revealed the nature of the bonding of hydrocarbon molecules. (author)

  16. SIAM Conference on Computational Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-08-29

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third mode of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS

  17. Conference “Modern Engineering : Science and Education”

    CERN Document Server

    2015-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2013 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines, and engineering graduates.

  18. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  19. Why Do Women Leave Science and Engineering?

    OpenAIRE

    Hunt, Jennifer

    2012-01-01

    I use the 1993 and 2003 National Surveys of College Graduates to examine the higher exit rate of women compared to men from science and engineering relative to other fields. I find that the higher relative exit rate is driven by engineering rather than science, and show that 60\\% of the gap can be explained by the relatively greater exit rate from engineering of women dissatisfied with pay and promotion opportunities. Contrary to the existing literature, I find that family--related constraint...

  20. Advances in Computer Science and Engineering

    CERN Document Server

    Second International Conference on Advances in Computer Science and Engineering (CES 2012)

    2012-01-01

    This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.

  1. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  2. Deformation and fracture mechanics of engineering materials

    National Research Council Canada - National Science Library

    Hertzberg, Richard W; Vinci, Richard Paul; Hertzberg, Jason L

    2012-01-01

    "Hertzberg's 5th edition of Deformation & Fracture Mechanics of Engineering Materials offers several new features including a greater number and variety of homework problems using more computational software...

  3. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 5. Issue front cover thumbnail. Volume 23, Issue 5. October 2000, pages 341-452. pp 341-344 Synthesis. Preparation of Pt–Ru bimetallic catalyst supported on carbon nanotubes · B Rajesh K Ravindranathan Thampi J -M Bonard B Viswanathan · More Details ...

  4. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Effects of size on mass density and its influence on mechanical and thermal properties of ZrO 2 nanoparticles in different structures. BOTAN JAWDAT ABDULLAH QING JIANG MUSTAFA SAEED OMAR. Volume 39 Issue 5 September 2016 pp 1295-1302 ...

  5. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 4. Issue front cover thumbnail. Volume 32, Issue 4. August 2009, pages 369-463. pp 369-373 Thin Films. Mobility activation in thermally deposited CdSe thin films · Kangkan Sarmah Ranjan Sarma · More Details Abstract Fulltext PDF. Effect of illumination on ...

  6. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 5. Structural, microstructural and optical properties of Cu 2 ZnSnS 4 thin films prepared by thermal evaporation: effect of substrate temperature and annealing. U CHALAPATHI S UTHANNA V SUNDARA RAJA. Volume 40 Issue 5 September 2017 pp 887-895 ...

  7. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 1. Issue front cover thumbnail. Volume 24, Issue 1. February 2001, pages 1-94. pp 1-21 Review---Phase Transitions. Kinetics of pressure induced structural phase transitions—A review · N V Chandra Shekar K Govinda Rajan · More Details Abstract Fulltext ...

  8. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 6. Issue front cover thumbnail. Volume 25, Issue 6. November 2002, pages 449-582. pp 449- .... Bi-layer functionally gradient thick film semiconducting methane sensors .... Thermal sensor properties of PANI(EB)–CSA ( = 0.4 ± 0.1 mol) polymer thin films.

  9. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 1. Issue front cover thumbnail. Volume 30, Issue 1. February 2007, pages 1-71. pp 1-3 Single Crystals. Thermoluminescence characteristics of Sm doped NaYF4 crystals · M V Ramana Reddy Ch Gopal Reddy K Narasimha Reddy · More Details Abstract ...

  10. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    The studies clearly indicate that the synthesized Y2O3 nanoparticle is a crystalline material with a particle size from 23 to 66 nm. Further analysis ... M Sundrarajan1. Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India ...

  11. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 6. Self-assembling behaviour of Pt nanoparticles onto surface of TiO2 and their resulting photocatalytic activity. M Qamar Ashok K Ganguli. Volume 36 Issue 6 November 2013 pp 945-951 ...

  12. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 3. Issue front cover thumbnail. Volume 32, Issue 3. June 2009, pages 215-367. pp 215-215. Foreword · S B Krupanidhi H L Bhat · More Details Fulltext PDF. pp 217-225. Molecule-based magnets · J V Yakhmi · More Details Abstract Fulltext PDF.

  13. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Layered LiNi1/3Co1/3Mn1/3O2 was synthesized by a citric acid assisted ... was investigated by the galvanostatic intermittent titration technique (GITT) ... The State Key Laboratory Base of Novel Functional Materials and Preparation Science; ...

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 3. Issue front cover thumbnail. Volume 23, Issue 3. June 2000, pages 159-238. pp 159-163 Nanomaterials. A note on the use of ellipsometry for studying the kinetics of formation of self-assembled monolayers · Murali Sastry · More Details Abstract Fulltext PDF.

  15. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 2. Issue front cover thumbnail. Volume 32, Issue 2. April 2009, pages 117-214. pp 117-123 Thin Films and Nanomatter. Microstructural characteristics and mechanical properties of magnetron sputtered nanocrystalline TiN films on glass substrate.

  16. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 4 ... were synthesized by self-propagating high temperature synthesis (SHS) method. ... Structure determination at room temperature and phase transition studies above T c in .... Hyperfine field distributions in disordered Mn2CoSn and Mn2NiSn Heusler alloys.

  17. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 3 ... Sintering of nano crystalline silicon carbide by doping with boron carbide ... of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. ... pp 213-217 Alloys and Steels.

  18. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3 .... (EDX) and UV–vis spectroscopy were used to study the chemical composition and optical .... Enhanced microactuation with magnetic field curing of magnetorheological ... Structure, morphology and corrosion resistance of Ni–Mo+PTh composite coatings.

  19. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    conjugation using genetically encoded aldehyde tags. Nature Protocols 7, 1052 (2012). abstract » J. Y. Shu, R . Onoe, R. A. Mathies and M. B. Francis. Direct Attachment of Microbial Organisms to Material Surfaces -modified proteins to their binding partners. Proceedings of the National Academy of Sciences 109, 4834

  20. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 4. Issue front cover thumbnail. Volume 27, Issue 4. August 2004, pages 323-394. pp 323-325 Crystal Growth. Growth features of ammonium hydrogen -tartrate single crystals · G Sajeevkumar R Raveendran B S Remadevi Alexander Varghese Vaidyan.

  1. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 1. Issue front cover thumbnail. Volume 29, Issue 1. February 2006, pages 1-99. pp 1-5 Nanomaterials. A simple synthesis and characterization of CuS nanocrystals · Ujjal K Gautam Bratindranath Mukherjee · More Details Abstract Fulltext PDF. Water-soluble ...

  2. Setting science free from materialism.

    Science.gov (United States)

    Sheldrake, Rupert

    2013-01-01

    Contemporary science is based on the claim that all reality is material or physical. There is no reality but material reality. Consciousness is a by-product of the physical activity of the brain. Matter is unconscious. Evolution is purposeless. This view is now undergoing a credibility crunch. The biggest problem of all for materialism is the existence of consciousness. Panpsychism provides a way forward. So does the recognition that minds are not confined to brains. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. About | College of Engineering & Applied Science

    Science.gov (United States)

    ; Applied Science Powerful Ideas. Proven Results. Search for: Go This site All UWM Search Site Menu Skip to Degree Completion Program Graduate Programs Master of Science Programs Concentration in Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on

  4. Understanding structural conservation through materials science:

    DEFF Research Database (Denmark)

    Fuster-López, Laura; Krarup Andersen, Cecil

    2014-01-01

    with tools to avoid future problems, it should be present in all conservation-restoration training programs to help promote students’ understanding of the degradation mechanisms in cultural materials (and their correlation with chemical and biological degradation) as well as the implications behind......Mechanical properties and the structure of materials are key elements in understanding how structural interventions in conservation treatments affect cultural heritage objects. In this context, engineering mechanics can help determine the strength and stability found in art objects as it can...... provide both explanation and prediction of failure in materials. It has therefore shown to be an effective method for developing useful solutions to conservation problems. Since materials science and mechanics can help conservators predict the long term consequences of their treatments and provide them...

  5. Phase change materials science and applications

    CERN Document Server

    Raoux, Simone

    2009-01-01

    ""Phase Change Materials: Science and Applications"" provides a unique introduction of this rapidly developing field. This clearly written volume describes the material science of these fascinating materials from a theoretical and experimental perspective.

  6. Advances in the material science of concrete

    National Research Council Canada - National Science Library

    Ideker, Jason H; Radlinska, Aleksandra

    2010-01-01

    ... Committee 236, Material Science of Concrete. The session focused on material science aspects of concrete with an emphasis placed on advances in understanding the fundamental scientific topics of cement-based materials, as well as the crucial...

  7. Graduate Enrollment Increases in Science and Engineering Fields, Especially in Engineering and Computer Sciences. InfoBrief: Science Resources Statistics.

    Science.gov (United States)

    Burrelli, Joan S.

    This brief describes graduate enrollment increases in the science and engineering fields, especially in engineering and computer sciences. Graduate student enrollment is summarized by enrollment status, citizenship, race/ethnicity, and fields. (KHR)

  8. Engineering Sciences Strategic Leadership Plan

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Heidi A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-14

    The purpose of this report is to promote the three key elements of engineering capabilities, staff and engagement in coordination with an R&D investment cycle; and establish an Engineering Steering Council to own and guide this leadership plan.

  9. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  10. MATLAB for Engineering and the Life Sciences

    CERN Document Server

    Tranquillo, Joseph

    2011-01-01

    In recent years, the life sciences have embraced simulation as an important tool in biomedical research. Engineers are also using simulation as a powerful step in the design process. In both arenas, Matlab has become the gold standard. It is easy to learn, flexible, and has a large and growing userbase. MATLAB for Engineering and the Life Sciences is a self-guided tour of the basic functionality of MATLAB along with the functions that are most commonly used in biomedical engineering and other life sciences. Although the text is written for undergraduates, graduate students and academics, those

  11. Materials Data Science: Current Status and Future Outlook

    Science.gov (United States)

    Kalidindi, Surya R.; De Graef, Marc

    2015-07-01

    The field of materials science and engineering is on the cusp of a digital data revolution. After reviewing the nature of data science and Big Data, we discuss the features of materials data that distinguish them from data in other fields. We introduce the concept of process-structure-property (PSP) linkages and illustrate how the determination of PSPs is one of the main objectives of materials data science. Then we review a selection of materials databases, as well as important aspects of materials data management, such as storage hardware, archiving strategies, and data access strategies. We introduce the emerging field of materials data analytics, which focuses on data-driven approaches to extract and curate materials knowledge from available data sets. The critical need for materials e-collaboration platforms is highlighted, and we conclude the article with a number of suggestions regarding the near-term future of the materials data science field.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Jeonbuk 561-756, Korea; Power Engineering School, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia; School of Civil and Environmental Engineering, University of Technology, Sydney, Broadway NSW 2007, ...

  13. Matcom 86: Engineering materials in South Africa

    International Nuclear Information System (INIS)

    1986-01-01

    The Symposium MATCOM '86 represents a significant departure from the usual format of scientific and engineering conferences. It provides a unique opportunity for industrialists, economists, the engineering and scientific communities, and research and development establishments to be briefed on critical issues relating to engineering materials and the effect of these materials on the manufacturing, service, health, strategic and minerals industries. Profitability and productivity in industry can often be linked to engineering materials and their in-service performance. Major surveys conducted in South Africa and developed countries have revealed the significance of losses to industry due to materials degradation problems such as fracture, wear, corrosion etc. One of the papers delivered at this symposium focus on the nuclear engineering industry, namely the application of materials in the field of uranium enrichment

  14. Engineering science as a "Discipline of the particular"? : types of generalization in engineering sciences

    NARCIS (Netherlands)

    Vries, de M.J.; Poel, van de I.; Goldberg, D.E.

    2010-01-01

    Literature suggests that in engineering sciences the possibilities to generalize knowledge are more limited than in natural sciences. This is related to the action-oriented nature of engineering sciences and to the role of values. I will discuss the contributions of abstraction and idealization to

  15. Trends in Materials Science for Ligament Reconstruction.

    Science.gov (United States)

    Sava, Oana Roxana; Sava, Daniel Florin; Radulescu, Marius; Albu, Madalina Georgiana; Ficai, Denisa; Veloz-Castillo, Maria Fernanda; Mendez-Rojas, Miguel Angel; Ficai, Anton

    2017-01-01

    The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Materials science experiments in space

    Science.gov (United States)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  17. Nanoscale Science and Engineering in Romania

    International Nuclear Information System (INIS)

    Dascalu, Dan; Topa, Vladimir; Kleps, Irina

    2001-01-01

    In spite of difficult working conditions and with very low financial support, many groups from Romania are involved in emerging fields, such as the nanoscale science and technology. Until the last years, this activity was developed without a central coordination and without many interactions between these research groups. In the year 2000, some of the institutes and universities active in the nanotechnology field in Romania founded the MICRONANOTECH network. The aim of this paper is to emphasize the main activities and results of the Romanian groups working in this novel domain. Most of the groups are deal with the nanomaterial technology and only few of them have activities in nanostructure science and engineering, in new concepts and device modeling and technology. This paper describes the nanotechnology research development in two of the most significant institutes from Romania: Centre for Nanotechnologies from National Institute for Research and Development in Microtehnologies (IMT-Bucharest) and from National Institute for Research and Development in Materials Physics (INCD-FM), Magurele. The Romanian research results in nanotechnology field were presented in numerous papers presented in international conferences or published in national and international journals. They are also presented in patents, international awards and fellowships. The research effort and financial support are outlined. Some future trends of the Romanian nanoscale science and technology research are also described

  18. Computational problems in science and engineering

    CERN Document Server

    Bulucea, Aida; Tsekouras, George

    2015-01-01

    This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.

  19. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 7, No 3 (2015) >. Log in or Register to get access to full text downloads.

  20. Retraction | Editor | International Journal of Engineering, Science ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 4 (2016) >. Log in or Register to get access to full text downloads.

  1. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 11 (2010) >. Log in or Register to get access to full text downloads.

  2. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 3 (2016) >. Log in or Register to get access to full text downloads.

  3. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 3 (2011) >. Log in or Register to get access to full text downloads.

  4. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 2 (2010) >. Log in or Register to get access to full text downloads.

  5. Supporting indigenous women in science, technology, engineering ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Supporting indigenous women in science, technology, engineering and mathematics careers in Mexico and Central ... ROSSA's latest bulletin puts a focus on women. ... IDRC invites applications for the IDRC Doctoral Research Awards.

  6. Classroom Implementation of Science, Technology, Engineering ...

    African Journals Online (AJOL)

    Zimbabwe Journal of Educational Research ... Understanding science, technology, engineering, and mathematics (STEM) education as a ... life skills in general and scientific literacy, along with a productive disposition and sense of social ...

  7. Archives: International Journal of Engineering, Science and ...

    African Journals Online (AJOL)

    Items 1 - 43 of 43 ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Archives: International Journal of Engineering, Science and Technology ... Vol 10, No 1 (2018) ... Vol 9, No 1 (2017) ... Vol 5, No 4 (2013) ... Current Issue Atom logo

  8. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  9. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  10. Materials Sciences Division 1990 annual report

    International Nuclear Information System (INIS)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals

  11. Materials Sciences Division long range plan

    International Nuclear Information System (INIS)

    1984-12-01

    The intent of this document is to provide a framework for programmatic guidance into the future for Materials Sciences. The Materials Sciences program is the basic research program for materials in the Department of Energy. It includes a wide variety of activities associated with the sciences related to materials. It also includes the support for developing, constructing, and operating major facilities which are used extensively but not exclusively by the materials sciences

  12. Hafnium - material for chemical apparatus engineering

    International Nuclear Information System (INIS)

    Jennert, D.

    1981-01-01

    This work describes - on the background of available literature - the properties of hafnium in technical quality (DIN-material No. 2.6400) as material for chemical apparatus engineering. The occurence, refining, physical and chemical properties will be described as well as the material behavior. In conclusion, it has been found that there is, at present, sufficient information for the engineering of hafnium which has to be completed by additional investigations for special applications. (orig.) [de

  13. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  14. Materials science with SR using x-ray imaging

    International Nuclear Information System (INIS)

    Kuriyama, Masao

    1990-01-01

    Some examples of applications of synchrotron radiation to materials science demonstrate the importance of microstructure information within structural as well as functional materials in order to control their properties and quality as designed for industrial purposes. To collect such information, x-ray imaging in quasi real time is required in either the microradiographic mode or the diffraction (in transmission) mode. New measurement technologies based on imaging are applied to polycrystalline materials, single crystal materials and multilayered device materials to illustrate what kind of synchrotron radiation facility is most desirable for materials science and engineering. (author)

  15. SMARTS - a spectrometer for strain measurement in engineering materials

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, M.A.M. [MS H805, Los Alamos National Laboratory, Los Alamos, NM, 87545 (United States); Dunand, D.C. [Department of Materials Science and Engineering, Northwestern University, Cook Hall, Evanston, IL, 60208 (United States); Ustundag, E. [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States)

    2002-07-01

    A new spectrometer called SMARTS (Spectrometer for Materials Research at Temperature and Stress) has been commissioned at the Los Alamos neutron science center and entered the user program in August of 2002. Its design maximizes capability and throughput for measurements of (a) residual macrostrain in engineering components and (b) in situ loading. This paper describes some aspects of the instrument. (orig.)

  16. SMARTS - a spectrometer for strain measurement in engineering materials

    CERN Document Server

    Bourke, M A M; Ustundag, E

    2002-01-01

    A new spectrometer called SMARTS (Spectrometer for Materials Research at Temperature and Stress) has been commissioned at the Los Alamos neutron science center and entered the user program in August of 2002. Its design maximizes capability and throughput for measurements of (a) residual macrostrain in engineering components and (b) in situ loading. This paper describes some aspects of the instrument. (orig.)

  17. Understanding Materials Science History · Properties · Applications

    CERN Document Server

    Hummel, Rolf E

    2005-01-01

    This introduction to materials science both for students of engineering and physics and for the interested general public examines not only the physical and engineering properties of virtually all kinds of materials, but also their history, uses, development, and some of the implications of resource depletion and recycling. It covers all topics on materials from an entirely novel perspective: the role materials have played throughout history in the development of humankind and technologies. Specifically, it shows the connection between the technical and the cultural, economic, ecological, and societal aspects of materials science. It aims to whet the appetite of its readers and inspire them to further explore the properties and applications of metals, alloys, ceramics, plastics, and electronic materials by presenting easily understandable explanations and entertaining historical facts. It is also intended to raise the reader’s awareness of their obligations to society as practicing engineers and scientists....

  18. International Conference of Applied Science and Technology for Infrastructure Engineering

    Science.gov (United States)

    Elvina Santoso, Shelvy; Hardianto, Ekky

    2017-11-01

    Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Screen printing; ferroelectricity; piezoelectricity; nonlinear property. .... Luoyang Institute of Science and Technology, Luoyang 471023, China; Functional Materials Research Laboratory, Tongji University, Shanghai 200092, China; Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, ...

  20. Engineering sciences research highlights. Fiscal year 1983

    International Nuclear Information System (INIS)

    Tucker, E.F.; Dobratz, B.

    1984-05-01

    The Laboratory's overall mission is sixfold. We are charged with developing nuclear warheads for defense, technology for arms control, and new concepts for defense against nuclear attack; with supporting programs for both nonnuclear defense and energy research and development; and with advancing our knowledge of science and technology so that we can respond to other national needs. Major programs in support of this mission involve nuclear weapons, energy, environmental science, and basic research. Specific areas of investigation include the design, development, and testing of nuclear weapons; nuclear safeguards and security; inertial and magnetic fusion and nuclear, solar, fossil, and geothermal energy; and basic research in physics, chemistry, mathematics, engineering, and the computer and life sciences. With the staff and facilities maintained for these and other programs, the Laboratory can respond to specific national needs in virtually all areas of the physical and life sciences. Within the Laboratory's organization, most technical research activities are carried out in three directorates: Engineering Sciences; Physics and Mathematics; and Chemistry, Earth and Life Sciences. The activities highlighted here are examples of unclassified work carried out in the seven divisions that made up the Engineering Sciences Directorate at the end of fiscal year 1983. Brief descriptions of these divisions' goals and capabilities and summaries of selected projects illustrate the diversity of talent, expertise, and facilities maintained within the Engineering Sciences Directorate

  1. Preface to 18. Chemnitz seminar on materials engineering

    International Nuclear Information System (INIS)

    2016-01-01

    The Institute of Materials Science and Engineering (Institut für Werkstoffwissenschaft und Werkstofftechnik, IWW) is a well-established part of the Faculty of Mechanical Engineering at Technische Universität Chemnitz, Germany. We are proud to host our traditional scientific meeting, the Chemnitz Seminar on Materials Engineering - Werkstofftechnisches Kolloquium, this year being the 18 th Seminar. The aim of our meeting is to bring together scientists and engineers both from academia and industry, and this is reflected by the different scientific sessions that cover various relevant topics, such as composite materials, microstructural analysis, and surface engineering. Special focus sessions highlight recent developments in the Federal Cluster of Excellence MERGE and in the Collaborative Research Center SFB 692, both established in Chemnitz. We, as organizers, continuously strive to improve our Seminar, and we therefore decided to provide all contributors with the opportunity to publish their papers, in addition to the printed Proceedings volume, in an international, peer-reviewed journal. Publication in IOP Conference Series: Materials Science and Engineering allows for a wide dissemination of the many interesting and relevant results presented in our Seminar. Clearly, this is understood and appreciated by many participants of our meeting: more than 65% of all authors chose to also publish their Proceedings papers in this special issue, which consequently provides an excellent overview of the main topics of our Seminar. Chemnitz, March 2016 Prof. Thomas Lampke Prof. Guntram Wagner Prof. Martin F.-X. Wagner (paper)

  2. The structural science of functional materials.

    Science.gov (United States)

    Catlow, C Richard A

    2018-01-01

    The growing complexity of functional materials and the major challenges this poses to structural science are discussed. The diversity of structural materials science and the contributions that computation is making to the field are highlighted.

  3. Biomedical composites materials, manufacturing and engineering

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials in various fields such as the biomedical industry.

  4. [Strategies to choose scaffold materials for tissue engineering].

    Science.gov (United States)

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  5. Proceedings of the international conference on material science: abstract volume

    International Nuclear Information System (INIS)

    2013-01-01

    Materials Science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. In the recent years, materials science has been propelled to the forefront at many universities and research institutions due to the significant advancement on nanoscience and nanotechnology. ICMS-2013 will cover a wide range of interdisciplinary and current research topics related to material science. Research on advanced materials includes nanomaterials, bio-nanomaterials, zero bandgap materials, composites, surface engineering, tissue engineering and biomaterials etc. These materials have numerous applications in electronics, biotechnology, medicine and energy harvesting. The importance of nano-science and nanotechnology has been well documented by both industrial and academic communities worldwide. It is believed that breakthroughs in nano-science and technology will change all aspects of human life in such diverse areas as, electronic devices, energy, biomedicine, sensing, environment, and security etc. Papers relevant to INIS are indexed separately

  6. Connecting NASA science and engineering with earth science applications

    Science.gov (United States)

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. I Gunes1 K Keddam2 R Chegroune2 M Ozcatal1. Department of Metallurgical and Materials Engineering, Faculty of Technology, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey; Laboratory of Materials Technology, Faculty of Mechanical Engineering and Process Engineering, USTHB, B.P. No.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University, 664-14 Deokjin-Dong 1Ga Deokjin-Gu Jeonju Jeonbuk, 561-756, South Korea; Department of Materials Engineering, Graduate School, Chonbuk National University, 664-14 ...

  9. Reinventing Material Science - Continuum Magazine | NREL

    Science.gov (United States)

    by Sandia National Laboratories Reinventing Material Science It's not often that scientists set out pursuing in the field of material science. The vision of the center is to revolutionize the discovery of new material science. "In the old days, if you wanted somebody to calculate the properties of a

  10. 16 CFR 1000.29 - Directorate for Engineering Sciences.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Directorate for Engineering Sciences. 1000... ORGANIZATION AND FUNCTIONS § 1000.29 Directorate for Engineering Sciences. The Directorate for Engineering Sciences, which is managed by the Associate Executive Director for Engineering Sciences, is responsible for...

  11. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  12. Wood handbook : wood as an engineering material

    Science.gov (United States)

    Robert J. Ross; Forest Products Laboratory. USDA Forest Service.

    2010-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  13. Engineering Tough Materials: Biomimetic Eggshell

    Science.gov (United States)

    2016-08-29

    Fellow Dr. David Labonte Cambridge University Engineering Dept., Trumpington Street, Cambridge CB2 1PZ, UK ~ Approved for public release; distribution...with a brief outlook, including next steps to pursue in the new cooperative research arrangement between ERDC and the University of Cambridge . Summary...HCl in 2 h at room temperature. Shell & Membrane Shell Outer membrane Inner membrane Figure 1: Cross section of an eggshell illustrating the direct

  14. Rail Engineering and Education Symposium Materials.

    Science.gov (United States)

    2016-05-26

    The objective of this project is to develop curricular materials for the Rail Engineering and Education : Symposia held in the summers of 2012 and 2014. : Description of Activities : The main approach to accomplish the activity is to develop and deli...

  15. Phospholipid Vesicles in Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Granick, Steve [Univ. of Illinois, Champaign, IL (United States)

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  16. Dielectric materials for electrical engineering

    CERN Document Server

    Martinez-Vega, Juan

    2013-01-01

    Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric poly

  17. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    ... India; Department of Mechanical Engineering, Anna University, Chennai 600025, India; PG and Research Department of Physics, Thiru Kolanjiappar Governement Arts College, Vridhachalam 606001, India; Department of Civil Engineering, Thiruvalluvar College of Engineering and Technology, Vandavasi 604505, India ...

  18. A comprehensive program of nuclear engineering and science education

    International Nuclear Information System (INIS)

    Bereznai, G.; Lewis, B.

    2014-01-01

    The University of Ontario Institute of Technology offers undergraduate degrees in nuclear engineering, nuclear power, health physics and radiation science, graduate degrees (masters as well as doctorate) in nuclear engineering, and graduate diplomas that encompass a wide range of nuclear engineering and technology topics. Professional development programs tailored to specific utility needs are also offered, and the sharing of course material between the professional development and university education courses has strengthened both approaches to ensuring the high qualification levels required of professionals in the nuclear industry. (author)

  19. Nuclear corrosion science and engineering

    CERN Document Server

    2012-01-01

    Understanding corrosion mechanisms, the systems and materials they affect, and the methods necessary for accurately measuring their incidence is of critical importance to the nuclear industry for the safe, economic and competitive running of its plants. This book reviews the fundamentals of nuclear corrosion. Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation. This book critically reviews the fundamental corrosion mechani...

  20. World Congress on Engineering and Computer Science 2014

    CERN Document Server

    Amouzegar, Mahyar; Ao, Sio-long

    2015-01-01

    This volume contains thirty-nine revised and extended research articles, written by prominent researchers participating in the World Congress on Engineering and Computer Science 2014, held in San Francisco, October 22-24 2014. Topics covered include engineering mathematics, electrical engineering, circuit design, communications systems, computer science, chemical engineering, systems engineering, and applications of engineering science in industry. This book describes some significant advances in engineering technologies, and also serves as an excellent source of reference for researchers and graduate students.

  1. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd [eds.

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  2. Materials for advanced power engineering 2010. Proceedings

    International Nuclear Information System (INIS)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd

    2010-01-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  3. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  4. Fuzzy logic applications in engineering science

    CERN Document Server

    Harris, J

    2006-01-01

    Fuzzy logic is a relatively new concept in science applications. Hitherto, fuzzy logic has been a conceptual process applied in the field of risk management. Its potential applicability is much wider than that, however, and its particular suitability for expanding our understanding of processes and information in science and engineering in our post-modern world is only just beginning to be appreciated. Written as a companion text to the author's earlier volume "An Introduction to Fuzzy Logic Applications", the book is aimed at professional engineers and students and those with an interest in exploring the potential of fuzzy logic as an information processing kit with a wide variety of practical applications in the field of engineering science and develops themes and topics introduced in the author's earlier text.

  5. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 5 ... Polyester urethane; scaffold; tensile strength; swelling; degradation; cell culture. ... Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India; School of Medical Science and Technology, Indian Institute of Technology, Kharagpur ...

  7. Proceedings of the national conference on recent trends in materials chemistry and engineering

    International Nuclear Information System (INIS)

    2011-01-01

    This national conference focuses on the latest trends in materials chemistry and engineering. Materials chemistry unites the diverse disciplines of science seamlessly and underlines the need for a collaborative research. In today's technologically advanced society, the need to extend the wealth of basic knowledge on materials to the solutions of engineering problems is great. Papers relevant to INIS are indexed separately

  8. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  9. Mathematics for engineering, technology and computing science

    CERN Document Server

    Martin, Hedley G

    1970-01-01

    Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

  10. Quantum engineering of transistors based on 2D materials heterostructures

    Science.gov (United States)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  11. Quantum engineering of transistors based on 2D materials heterostructures.

    Science.gov (United States)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  12. Styles of science and engineering

    DEFF Research Database (Denmark)

    Kragh, Helge

    2009-01-01

    In the historiography of the relationship between technology and theoretical science, electrical communication plays an important role. It was by means of mathematical reasoning based on the new theory of electromagnetism that it was first understood how to extend the range of telephony by insert......In the historiography of the relationship between technology and theoretical science, electrical communication plays an important role. It was by means of mathematical reasoning based on the new theory of electromagnetism that it was first understood how to extend the range of telephony...... by inserting self-inductance in the line. This paper surveys developments from around 1880 to 1910, at a time when 'pupinization' had become a reality and mathematical physics an accepted part of the research strategy of a few advanced companies in the electrical industry. It presents the confrontation of two...

  13. Hire a Milwaukee Engineer | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  14. Learning about materials science and technology by deconstructing modern products

    DEFF Research Database (Denmark)

    Horsewell, Andy

    Get the attention of young engineering students, interest and inspire them. Encourage them to think about materials science and technology by looking at the consumer products and gadgets that interest them. Analyse what modern products are constructed of, and how and why the materials...... teaching encourages and demands constant modernisation of the course and the materials being presented. A consideration of material and process selection for components in a modern product can be a dynamic starting point for a course on materials science and engineering; providing inspiration and showing...... and the processes have been chosen in their manufacture i.e. deconstruct modern products. Suitable items can easily be found in personal communication and entertainment, including all manner of sports goods. Further, the current pace of materials product development ensures that using these objects to focus...

  15. Mechanical engineering science in SI units

    CERN Document Server

    Gwyther, J L; Williams, G

    1970-01-01

    0.1 Mechanical Engineering Science covers various fundamental concepts that are essential in the practice of mechanical engineering. The title is comprised of 19 chapters that detail various topics, including chemical and physical laws. The coverage of the book includes Newtonian laws, mechanical energy, friction, stress, and gravity. The text also discusses the chemical aspects of mechanical engineering, which include gas laws, states of matter, and fuel combustion. The last chapter tackles concerns in laboratory experiments. The book will be of great use to students of mechanical eng

  16. Natural Origin Materials for Osteochondral Tissue Engineering.

    Science.gov (United States)

    Bonani, Walter; Singhatanadgige, Weerasak; Pornanong, Aramwit; Motta, Antonella

    2018-01-01

    Materials selection is a critical aspect for the production of scaffolds for osteochondral tissue engineering. Synthetic materials are the result of man-made operations and have been investigated for a variety of tissue engineering applications. Instead, the products of physiological processes and the metabolic activity of living organisms are identified as natural materials. Over the recent decades, a number of natural materials, namely, biopolymers and bioceramics, have been proposed as the main constituent of osteochondral scaffolds, but also as cell carriers and signaling molecules. Overall, natural materials have been investigated both in the bone and in the cartilage compartment, sometimes alone, but often in combination with other biopolymers or synthetic materials. Biopolymers and bioceramics possess unique advantages over their synthetic counterparts due similarity with natural extracellular matrix, the presence of cell recognition sites and tunable chemistry. However, the characteristics of natural origin materials can vary considerably depending on the specific source and extraction process. A deeper understanding of the relationship between material variability and biological activity and the definition of standardized manufacturing procedures will be crucial for the future of natural materials in tissue engineering.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. M Sen1 R Balasubramaniam1 A V Ramesh Kumar2. Department of Materials and Metallurgical Engineering, Indian Institute of Technology, Kanpur 208 016, India; Defence Materials Stores and Research Development Establishment, Kanpur 208 013, India ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. BALDEV RAJ. Articles written in Bulletin of Materials Science. Volume 26 Issue 4 June 2003 pp 449-460 Instrumentation. Thermogravimetry-evolved gas analysis–mass spectrometry system for materials research · M Kamruddin P K Ajikumar S Dash A K Tyagi Baldev Raj.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D S Prasad. Articles written in Bulletin of Materials Science. Volume 25 Issue 2 April 2002 pp 79-83 Materials Synthesis. Preparation of high purity tellurium by zone refining · N R Munirathnam D S Prasad Ch Sudheer A J Singh T L Prakash · More Details Abstract Fulltext PDF.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S R Dhage. Articles written in Bulletin of Materials Science. Volume 27 Issue 1 February 2004 pp 43-45 Dielectric Materials. Nonlinear – characteristics study of doped SnO2 · S R Dhage V Ravi S K Date · More Details Abstract Fulltext PDF. When tin oxide is doped with ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. U S Sajeev. Articles written in Bulletin of Materials Science. Volume 27 Issue 2 April 2004 pp 155-161 Magnetic Materials. Magnetic field induced assembling of nanoparticles in ferrofluidic liquid thin films based on NiFe1-Fe2O4 · V S Abraham S Swapna Nair S Rajesh U S ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SARAVANA KUMAR JAGANATHAN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 18. Advanced nanofibrous textile-based dressing material for treating chronic wounds · ISABEL HERRMANN EKO SUPRIYANTO SARAVANA KUMAR ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Roy. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 513-515. Improved zinc oxide film for gas sensor applications · S Roy S Basu · More Details Abstract Fulltext PDF. Zinc oxide (ZnO) is a versatile material for different commercial ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. DANUTA OLSZEWSKA. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 16. Influence of the conditions of a solid-state synthesis anode material Li 4 Ti 5 O 12 on its electrochemical properties of lithium cells · DANUTA OLSZEWSKA ANNA ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. ISABEL HERRMANN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 18. Advanced nanofibrous textile-based dressing material for treating chronic wounds · ISABEL HERRMANN EKO SUPRIYANTO SARAVANA KUMAR JAGANATHAN A ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. K G Basavakumar1 P G Mukunda2 M Chakraborty2. Department of Mechanical Engineering, Sri Bhagwan Mahavir Jain College of Engineering, Bangalore 562 112, India; Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721 302, India ...

  7. Committee on Women in Science, Engineering, and Medicine (CWSEM)

    Science.gov (United States)

    harassment on women and their careers in science, engineering, and medicine. In addition to evidence-based Skip to Main Content Contact Us | Search: Search The National Academies of Sciences, Engineering and Medicine Committee on Women in Science, Engineering, and Medicine Committee on Women in Science

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. MADHURI LAKHANE1 2 RAJENDRA KHAIRNAR1 MEGHA MAHABOLE1. School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded (MS) 431606, India; Faculty of Mechanical Engineering, University of Maribor, Maribor 2000, Slovenia ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ZnFe2O4 nanoparticles were prepared by a simple low-temperature ... Department of Biological Sciences, Covenant University, PMB 1023, Ota, Nigeria; Department of Petroleum Engineering, Covenant University, PMB 1023, Ota, Nigeria ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Faculty of Science, Babol University of Technology, Babol 47148-71167, Iran; Biofuel & Renewable Energy Research Center, Faculty of Chemical Engineering, Babol University of Technology, Babol 47148-71167, Iran; Faculty of Chemical ...

  11. Frontiers of advanced engineering materials (faem-06)

    International Nuclear Information System (INIS)

    Alam, S.; Mirza, J.A.

    2006-01-01

    The second international conference on Frontiers of Advanced Engineering Materials was held on 04-06 December 2006 in Lahore, Pakistan. At a time of the rapid expending enormous potential for the wide spread development and usage of Advanced Engineering Materials. About 121 papers were presented by engineers and scientists from 30 organizations, academic institutions and foreign experts from six countries. on the recommendation of a panel after review, only 72 papers were included in this conference proceedings. The main areas of interest which remained under focus during the conference were structure property relationship, surface Modifications, Nano Technology, Super and semi conductors, Magnetic Materials, Materials Proceeding, Glass and Ceramics, Composite Materials. This Conference open a way to help in strengthening the bounds between our foreign guests local and delegates. The participants showed their keen interest in the poster sessions. Fruitful conclusions of these presentations will be helpful to give rise to new topics of research in the fields of advanced engineering Materials. (A.B.)

  12. Engineering and physical sciences in oncology: challenges and opportunities.

    Science.gov (United States)

    Mitchell, Michael J; Jain, Rakesh K; Langer, Robert

    2017-11-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.

  13. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721 302, India; Research Associate at the University of Louisiana at Lafayette, Lafayette 70504, Louisiana, USA; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... SANKARASUBRAMANIAN1 BYUNGCHEOL LEE2. Center for Electrochemical Science and Engineering, Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago 60616, USA; Quantum Optics Laboratory, Korea Atomic Energy Research Institute, Yuseong-gu 305-353, South Korea ...

  16. Strategic Plan | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  17. News | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  18. Structures Laboratory | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  19. Contact | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  20. Johnson Controls | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  1. FAQ's | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  2. Current Students | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  3. Student Organizations | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  4. Community | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  5. Corporate Partners | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  6. Travel Directions | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  7. Strategic Planning | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  8. Fast Facts | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  9. Tutoring | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  10. Transfer Students | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  11. Scholarships | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  12. Donate | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  13. Corporate Services | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  14. Alumni | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  15. Advising | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  16. Research Collaborations | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  17. Study Abroad | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  18. Undergraduate Curriculum | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  19. Incoming Freshman | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  20. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    Science.gov (United States)

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  1. Women Working in Engineering and Science

    Science.gov (United States)

    Luna, Bernadette; Kliss, Mark (Technical Monitor)

    1998-01-01

    The presentation will focus on topics of interest to young women pursuing an engineering or scientific career, such as intrinsic personality traits of most engineers, average salaries for the various types of engineers, appropriate preparation classes at the high school and undergraduate levels, gaining experience through internships, summer jobs and graduate school, skills necessary but not always included in engineering curricula (i.e., multimedia, computer skills, communication skills), the work environment, balancing family and career, and sexual harassment. Specific examples from the speaker's own experience in NASA's Space Life Sciences Program will be used to illustrate the above topics. In particular, projects from Extravehicular Activity and Protective Systems research and Regenerative Life Support research will be used as examples of real world problem-solving to enable human exploration of the solar system.

  2. Proceedings of the 12. Brazilian congress on engineering and materials science; Anais do 12. Congresso brasileiro de engenharia e ciencia dos materiais. v. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Theoretical and experimental papers are presented covering the following objects: materials, sintering, production, composite materials, ceramics, powders, microstructural studies, X-ray diffraction and scanning electron microscopy

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... India; Department of Physics, Sultan Qaboos University, Muscat, P.O. Box 36, Code 123, Oman; Department of Polymer Science andRubber Technology, Cochin University of Science and Technology, Cochin 682022, India; Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Editorial Board. Bulletin of Materials Science. Editor. Giridhar U. Kulkarni, Centre for Nano and Soft Matter Science, Bengaluru. Associate Editors. Ayan Datta, Indian Association for the Cultivation of Science, Kolkata M. Eswaramoorthy, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru A.K. Ganguli ...

  5. Argonne Chemical Sciences & Engineering - Center for Electrical Energy

    Science.gov (United States)

    Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Research Facilities People Publications Awards News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical

  6. International Journal of Engineering, Science and Technology: Site ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Site Map. Journal Home > About the Journal > International Journal of Engineering, Science and Technology: Site Map. Log in or Register to get access to full text downloads.

  7. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T Mirza. Articles written in Bulletin of Materials Science. Volume 23 Issue 5 October 2000 pp 377-382 Glass Ceramics. Preparation and characterization of magnesium–aluminium–silicate glass ceramics · Madhumita Goswami T Mirza A Sarkar Shobha Manikandan Sangeeta ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Murali Sastry. Articles written in Bulletin of Materials Science. Volume 23 Issue 3 June 2000 pp 159-163 Nanomaterials. A note on the use of ellipsometry for studying the kinetics of formation of self-assembled monolayers · Murali Sastry · More Details Abstract Fulltext PDF.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Rajeev Gupta. Articles written in Bulletin of Materials Science. Volume 34 Issue 3 June 2011 pp 447-454. An investigation in InGaO3(ZnO)m pellets as cause of variability in thin film transistor characteristics · Sonachand Adhikari Rajeev Gupta Ashish Garg Deepak.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Amit Sinha. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 653-657 Bioceramics. Development of calcium phosphate based bioceramics · Amit Sinha A Ingle K R Munim S N Vaidya B P Sharma A N Bhisey · More Details Abstract Fulltext ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 3. Formation of InN nanoparticle and nanorod structures by nitrogen plasma annealing method ... Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016, India; Material Science Division, Indira Gandhi Centre for Atomic Research, ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. MURAT UYGUN. Articles written in Bulletin of Materials Science. Volume 39 Issue 2 April 2016 pp 353-359. Hydrophobic nano-carrier for lysozyme adsorption · CANAN ALTUNBAS FULDEN ZEYNEP URAL MURAT UYGUN NESIBE AVCIBASI UGUR AVCIBASI DENIZ AKTAS ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Ch Sudheer. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 545-547. Tellurium purification: various techniques and limitations · D S Prasad Ch Sudheer N R Munirathnam T L Prakash · More Details Abstract Fulltext PDF. Limitations and ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B P Singh. Articles written in Bulletin of Materials Science. Volume 23 Issue 1 February 2000 pp 11-16 Molecular Magnets. Synthesis and magnetic properties of one-dimensional metal oxalate networks as molecular-based magnets · B P Singh B Singh · More Details Abstract ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Zhanshuang Li. Articles written in Bulletin of Materials Science. Volume 31 Issue 2 April 2008 pp 193-195 Nanomaterials. Mesoscale organization of CuO nanoslices: Formation of sphere · Jun Wang Shunxiao Zhang Zhanshuang Li Jia You Piaoping Yang Xiaoyan Jing Milin ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Shunxiao Zhang. Articles written in Bulletin of Materials Science. Volume 31 Issue 2 April 2008 pp 193-195 Nanomaterials. Mesoscale organization of CuO nanoslices: Formation of sphere · Jun Wang Shunxiao Zhang Zhanshuang Li Jia You Piaoping Yang Xiaoyan Jing Milin ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Manoj Kumar. Articles written in Bulletin of Materials Science. Volume 26 Issue 3 April 2003 pp 335-341 Glasses. Optical absorption and fluorescent behaviour of titanium ions in silicate glasses · Manoj Kumar Aman Uniyal A P S Chauhan S P Singh · More Details Abstract ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Rajendra Babu. Articles written in Bulletin of Materials Science. Volume 24 Issue 2 April 2001 pp 249-252 Crystal Growth. Thermal behaviour of strontium tartrate single crystals grown in gel · M H Rahimkutty K Rajendra Babu K Sreedharan Pillai M R Sudarsana Kumar C M K ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. RITWIK SARKAR. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 293-298 Alloys and Steels. Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles · Ritwik Sarkar Nar Singh Swapan Kumar Das.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Prasad. Articles written in Bulletin of Materials Science. Volume 27 Issue 6 December 2004 pp 547-553 Glasses and Ceramics. Impedance analysis of Pb2Sb3LaTi5O18 ceramic · C K Suman K Prasad R N P Choudhary · More Details Abstract Fulltext PDF. Polycrystalline ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Mondal. Articles written in Bulletin of Materials Science. Volume 36 Issue 1 February 2013 pp 51-58. Electrochemical passivation behaviour of nanocrystalline Fe80Si20 coating in borate buffer solution · G Gupta A P Moon K Mondal · More Details Abstract Fulltext PDF.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SABRI BAYLAV. Articles written in Bulletin of Materials Science. Volume 41 Issue 2 April 2018 pp 49. Synthesis and characterization of metal ion-imprinted polymers · YASEMIN ISIKVER SABRI BAYLAV · More Details Abstract Fulltext PDF. In this study, ion-imprinted polymeric ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P M Raole. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 81-88. Effect of ion beam irradiation on metal particle doped polymer composites · N L Singh Sejal Shah Anjum Qureshi A Tripathi F Singh D K Avasthi P M Raole · More Details ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Anjum Qureshi. Articles written in Bulletin of Materials Science. Volume 29 Issue 6 November 2006 pp 605-609. Analysis of organometallics dispersed polymer composite irradiated with oxygen ions · N L Singh Anjum Qureshi A K Rakshit D K Avasthi · More Details Abstract ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Singh. Articles written in Bulletin of Materials Science. Volume 28 Issue 7 December 2005 pp .... Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals embedded in PMMA · Shweta Agrawal Subodh Srivastava Sumit Kumar S S Sharma B Tripathi M Singh Y K Vijay.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 1. Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and ... Author Affiliations. A S Singha1 Anjali Shama1 Vijay Kumar Thakur1. Material Science Laboratory, National Institute of Technology, Hamirpur 177 005, India ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Al. Mickiewicza 30, 30-059 Krakow, Poland; The Pennsylvania State University, Department of Physics and Center for 2-Dimensional and Layered Materials, 104 Davey Laboratory, University Park, PA ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Y Arthoba Naik. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 495-501 Thin Films. A new condensation product for zinc plating from non-cyanide alkaline bath · Y Arthoba Naik T V Venkatesha · More Details Abstract Fulltext PDF.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Dinesh Kumar. Articles written in Bulletin of Materials Science. Volume 25 Issue 6 November 2002 pp 549-551. Semiconductor applications of plasma immersion ion implantation technology · Mukesh Kumar Rajkumar Dinesh Kumar P J George · More Details Abstract Fulltext ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R Murugesan. Articles written in Bulletin of Materials Science. Volume 25 Issue 7 December 2002 pp 613-618 Polymers. Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline · R Murugesan E Subramanian · More Details ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Gopalakrishnan. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 235-241 Polymers. Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol · C V Mythili A Malar Retna S Gopalakrishnan · More Details ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. E Subramanian. Articles written in Bulletin of Materials Science. Volume 25 Issue 7 December 2002 pp 613-618 Polymers. Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline · R Murugesan E Subramanian · More Details ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. HUA WANG. Articles written in Bulletin of Materials Science. Volume 36 Issue 3 June 2013 pp 389-393. Effects of Bi doping on dielectric and ferroelectric properties of PLBZT ferroelectric thin films synthesized by sol–gel processing · Hua Wang Li Liu Ji-Wen Xu Chang-Lai Yuan ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Raji George. Articles written in Bulletin of Materials Science. Volume 30 Issue 2 April 2007 pp 183-185 Nanomaterials. Synthesis, characterization and gas sensitivity of MoO3 nanoparticles · Arnab Ganguly Raji George · More Details Abstract Fulltext PDF. Nanoparticles of ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Vinmathi. Articles written in Bulletin of Materials Science. Volume 38 Issue 3 June 2015 pp 625-628. A green and facile approach for the synthesis of silver nanoparticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R Bajpai. Articles written in Bulletin of Materials Science. Volume 25 Issue 1 February 2002 pp 21-23 Mechanical Properties. Surface modification on PMMA : PVDF polyblend: hardening under chemical environment · R Bajpai V Mishra Pragyesh Agrawal S C Datt · More Details ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Bajpai. Articles written in Bulletin of Materials Science. Volume 28 Issue 6 October 2005 pp 529-534 Review—Polymers. Morphological, thermal and annealed microhardness characterization of gelatin based interpenetrating networks of polyacrylonitrile: A hard biopolymer.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Nitai Debnath. Articles written in Bulletin of Materials Science. Volume 37 Issue 2 April 2014 pp 199-206. Ciprofloxacin conjugated zinc oxide nanoparticle: A camouflage towards multidrug resistant bacteria · Prasun Patra Shouvik Mitra Nitai Debnath Panchanan Pramanik ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K B R Varma. Articles written in Bulletin of Materials Science. Volume 30 Issue 6 December 2007 pp 567-570 Ceramics and Glasses. Microwave synthesis and sintering characteristics of CaCu3Ti4O12 · P Thomas L N Sathapathy K Dwarakanath K B R Varma · More Details ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Arunkumar Lagashetty. Articles written in Bulletin of Materials Science. Volume 27 Issue 6 December 2004 pp 491-495 Nanomaterials. Adsorption study of Pb ions on nanosized SnO2, synthesized by self-propagating combustion reaction · Arunkumar Lagashetty A ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. TRAN NGOC TUYEN. Articles written in Bulletin of Materials Science. Volume 41 Issue 1 February 2018 pp 6. Lead ions removal from aqueous solution using modified carbon nanotubes · NGUYEN DUC VU QUYEN TRAN NGOC TUYEN DINH QUANG KHIEU HO VAN MINH ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N J KARALE. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1335-1345. Chemical synthesis and characterization of nano-sized rare-earth ruthenium pyrochlore compounds Ln 2 Ru 2 O 7 (Ln = rare earth) · R A PAWAR A K NIKUMBH ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Manoj Komath. Articles written in Bulletin of Materials Science. Volume 23 Issue 2 April 2000 pp 135-140 Biomaterials. On the development of an apatitic calcium phosphate bone cement · Manoj Komath H K Varma R Sivakumar · More Details Abstract Fulltext PDF.

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Le Minh Duc. Articles written in Bulletin of Materials Science. Volume 36 Issue 5 October 2013 pp 779-788. Study on photocatalysis of TiO2 nanotubes prepared by methanol-thermal synthesis at low temperature · Chau Thanh Nam Wein-Duo Yang Le Minh Duc · More Details ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Veera Brahmam. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 411-414 Single Crystals. Crystal growth and reflectivity studies of Zn1–MnTe crystals · K Veera Brahmam D Raja Reddy B K Reddy · More Details Abstract Fulltext PDF.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Wein-Duo Yang. Articles written in Bulletin of Materials Science. Volume 36 Issue 5 October 2013 pp 779-788. Study on photocatalysis of TiO2 nanotubes prepared by methanol-thermal synthesis at low temperature · Chau Thanh Nam Wein-Duo Yang Le Minh Duc.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Neelotpal Sen Sarma. Articles written in Bulletin of Materials Science. Volume 37 Issue 7 December 2014 pp 1613-1624. Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process · Bhabesh Kumar Nath Aziz Khan ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Md HABIB. Articles written in Bulletin of Materials Science. Volume 41 Issue 2 April 2018 pp 56. Tuning the BODIPY core for its potential use in DSSC: a quantum chemical approach · NARENDRA NATH GHOSH Md HABIB ANUP PRAMANIK PRANAB SARKAR SOUGATA PAL.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Zhang Lei. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 161-167. Characterization on strength and toughness of welded joint for Q550 steel · Jiang Qinglei Li Yajiang Wang Juan Zhang Lei · More Details Abstract Fulltext PDF. Q550 high ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B L Kalsotra. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 843-851. Synthesis and characterization of composites of mixed oxides of iron and neodymium in polymer matrix of aniline–formaldehyde · Sajdha H N Sheikh B L Kalsotra N Kumar S ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B N Dev. Articles written in Bulletin of Materials Science. Volume 29 Issue 2 April 2006 pp 101-105 Polymers. Proton microbeam irradiation effects on PtBA polymer · J Kamila S Roy K Bhattacharjee B Rout B N Dev R Guico J Wang A W Haberl P Ayyub P V Satyam.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T Bhimasankaram. Articles written in Bulletin of Materials Science. Volume 23 Issue 6 December 2000 pp 483-489 Oxide Ceramics. Effect of HIPing on conductivity and impedance measurements of DyBi5Fe2Ti3O18 ceramics · N V Prasad G Prasad Mahendra Kumar S V ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. REGINA C SO. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1179-1187. Preparation, characterization of chitosan/bamboo charcoal/poly(methacrylate) composite beads · DOROTHY CAMINOS-PERUELO WEI-CHIEH WANG ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. F Wang. Articles written in Bulletin of Materials Science. Volume 34 Issue 5 August 2011 pp 1033-1037. Synthesis of Mn-doped CeO2 nanorods and their application as humidity sensors · C H Hu C H Xia F Wang M Zhou P F Yin X Y Han · More Details Abstract Fulltext PDF.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Pal. Articles written in Bulletin of Materials Science. Volume 24 Issue 4 August 2001 pp 415-420 Biomaterials. A novel bio-inorganic bone implant containing deglued bone, chitosan and gelatin · G Saraswathy S Pal C Rose T P Sastry · More Details Abstract Fulltext PDF.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Thotapalli P Sastry. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 177-181. Preparation and characterization of a novel bone graft composite containing bone ash and egg shell powder · Gunasekaran Krithiga Thotapalli P Sastry.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Annie John. Articles written in Bulletin of Materials Science. Volume 25 Issue 2 April 2002 pp 141-154 Biomaterials. Bone growth response with porous hydroxyapatite granules in a critical sized lapine tibial-defect model · Annie John S Abiraman H K Varma T V Kumari P R ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LIFANG ZHANG. Articles written in Bulletin of Materials Science. Volume 38 Issue 3 June 2015 pp 811-816. Fabrication and characterization of PDLLA/pyrite composite bone scaffold for osteoblast culture · Lifang Zhang Yanyan Zheng Chengdong Xiong · More Details Abstract ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S S Samal. Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 379-386 Polymers. Carbon nanotube reinforced polymer composites—A state of the art · S Bal S S Samal · More Details Abstract Fulltext PDF. Because of their high mechanical ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N K PANDEY. Articles written in Bulletin of Materials Science. Volume 40 Issue 2 April 2017 pp 253-262. Electrical and optical properties of ZnO–WO 3 nanocomposite and its application as a solid-state humidity sensor · VANDNA SHAKYA N K PANDEY SUNEET KUMAR ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P K Parhi. Articles written in Bulletin of Materials Science. Volume 24 Issue 2 April 2001 pp 143-149. Failure analysis of multiple delaminated composite plates due to bending and impact · P K Parhi S K Bhattacharyya P K Sinha · More Details Abstract Fulltext PDF. The present ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Shweta Agrawal. Articles written in Bulletin of Materials Science. Volume 32 Issue 6 December 2009 pp 569-573 Thin Films and Nanomatter. Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals embedded in PMMA · Shweta Agrawal Subodh Srivastava Sumit ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Sandeep Arya. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 535-539. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor · Sandeep Arya Saleem Khan Suresh Kumar Rajnikant ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SURESH KUMAR. Articles written in Bulletin of Materials Science. Volume 35 Issue 5 October 2012 pp 787-794. Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in monovalent and multivalent ions doped polyaniline.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A S Prakash. Articles written in Bulletin of Materials Science. Volume 29 Issue 4 August 2006 pp 339-345 Ceramics and Glasses. Solution-combustion synthesis of Bi1–LnO1.5 (Ln = Y and La–Yb) oxide ion conductors · Manjunath B Bellakki A S Prakash C Shivakumara M S ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Uma Maheswar Rao. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 587-593 Surface Studies. Investigation of surface modifications in ethylene propylene diene monomer (EPDM) rubber due to tracking under a.c. and d.c. voltages.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Jiuxing Zhang. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 825-828. Magnetocaloric effect of Gd5Si2Ge2 alloys in low magnetic field · Hong Zeng Chunjiang Kuang Jiuxing Zhang Ming Yue · More Details Abstract Fulltext PDF.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. H N Sheikh. Articles written in Bulletin of Materials Science. Volume 34 Issue 4 July 2011 pp 843-851. Synthesis and characterization of composites of mixed oxides of iron and neodymium in polymer matrix of aniline–formaldehyde · Sajdha H N Sheikh B L Kalsotra N Kumar S ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P P PRADYUMNAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 5 September 2017 pp 1007-1011. Structural and magnetic studies on copper succinate dihydrate single crystals · M P BINITHA P P PRADYUMNAN · More Details Abstract Fulltext PDF.

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Rani Joseph. Articles written in Bulletin of Materials Science. Volume 26 Issue 3 April 2003 pp 343-348 Thin Films. Optimization of pH and direct imaging conditions of complexed methylene blue sensitized poly(vinyl chloride) films · M Ushamani N G Leenadeenja K Sreekumar ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R AHMED. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1105-1110. Structural, elastic, optoelectronic and magnetic properties of CdHo 2 S 4 spinel: a first-principle study · I HATRAF O MERABIHA T SEDDIK H BALTACHE R KHENATA R ...

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. MONICA KATIYAR. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 653-660. Processing and performance of organic insulators as a gate layer in organic thin film transistors fabricated on polyethylene terephthalate substrate · Saumen Mandal ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K R Rajesh. Articles written in Bulletin of Materials Science. Volume 37 Issue 1 February 2014 pp 95-99. High mobility polymer gated organic field effect transistor using zinc phthalocyanine · K R Rajesh V Kannan M R Kim Y S Chae J K Rhee · More Details Abstract Fulltext PDF.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D K Avasthi. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Shrinet. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect of ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Rakshit. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Chandra. Articles written in Bulletin of Materials Science. Volume 30 Issue 4 August 2007 pp 309-314 Biomaterials. Characteristics of porous zirconia coated with hydroxyapatite as human bones · V V Narulkar S Prakash K Chandra · More Details Abstract Fulltext PDF.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Austrian Centre of Competence for Tribology, Viktor Kaplan-Straße 2, A 2700 Wiener Neustadt, Austria; Institute of Industrial Electronics and Material Science, Vienna University of Technology, A 1040 Vienna, Austria; Institute of Material Science and Testing, Vienna University of Technology, A 1040 Vienna, Austria; Institute ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. XIAOWEN ZHANG. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 895-902. Structural evolution, electrical and optical properties of AZO films deposited by sputtering ultra-high density target · Jiwen Xu Zupei Yang Hua Wang Xiaowen Zhang.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. KANNAIYAN DINAKARAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1455-1462. A sensitive optical sensor based on DNA-labelled Si@SiO 2 core–shell nanoparticle for the detection of Hg 2 + ions in environmental water samples.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Bhat. Articles written in Bulletin of Materials Science. Volume 23 Issue 4 August 2000 pp 295-299 Alloys. A test for diffusional coherency strain hypothesis in the discontinuous precipitation in Mg–Al alloy · K T Kashyap C Ramachandra V Bhat B Chatterji · More Details Abstract ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. AGNIESZKA SOBCZAK-KUPIEC. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 755-764. Effect of calcination conditions of pork bone sludge on behaviour of hydroxyapatite in simulated body fluid · Agnieszka Sobczak-Kupiec Zbigniew ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SUDHANSHU CHOUDHARY. Articles written in Bulletin of Materials Science. Volume 35 Issue 5 October 2012 pp 713-718. Theoretical study on effect of radial and axial deformation on electron transport properties in a semiconducting Si–C nanotube · Sudhanshu Choudhary ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Amarnath. Articles written in Bulletin of Materials Science. Volume 26 Issue 4 June 2003 pp 435-439 Biomaterials. Effect of heat treatments on the hydrogen embrittlement susceptibility of API X-65 grade line-pipe steel · G Ananta Nagu Amarnath T K G Namboodhiri.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. KADARKARAI MURUGAN. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1455-1462. A sensitive optical sensor based on DNA-labelled Si@SiO 2 core–shell nanoparticle for the detection of Hg 2 + ions in environmental water samples.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. YONG J IANG. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1255-1261. Molecular dynamics study on the relaxation properties of bilayered graphene with defects · WEI ZHANG JIU-REN YIN PING ZHANG YAN-HUAI DING YONG J IANG.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B Swarna Latha. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 883-888. Structural, spectroscopic and electrochemical study of V substituted LiTi2(PO4)3 solid electrolyte for lithium-ion batteries · A Venkateswara Rao V Veeraiah A V Prasada ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B V Radhakrishna Bhat. Articles written in Bulletin of Materials Science. Volume 23 Issue 2 April 2000 pp 109-117 Composites. Optimization of processing parameters for making alumina–partially stabilized zirconia laminated composites · S Deb B V Radhakrishna Bhat.

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S K Biswas. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 251-255 Polymers. Effect of substrate roughness on growth of diamond by hot filament CVD · Awadesh K Mallik S R Binu L N Satapathy Chandrabhas Narayana Md Motin Seikh S A ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Jadu Samuel. Articles written in Bulletin of Materials Science. Volume 36 Issue 6 November 2013 pp 981-987. Green chemical incorporation of sulphate into polyoxoanions of molybdenum to nano level · Jadu Samuel S Hari Prasad M K Sreedhar · More Details Abstract Fulltext ...

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T K Bhattacharya. Articles written in Bulletin of Materials Science. Volume 26 Issue 7 December 2003 pp 703-706 Cements. Solid state sintering of lime in presence of La2O3 and CeO2 · T K Bhattacharya A Ghosh H S Tripathi S K Das · More Details Abstract Fulltext PDF.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Dong Zhang. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 25-28. Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication · Tian-You Zhang Dong Zhang · More Details Abstract Fulltext PDF.

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Ganesan. Articles written in Bulletin of Materials Science. Volume 28 Issue 6 October 2005 pp 609-615 Thin Films. Structural morphology of amorphous conducting carbon film · P N Vishwakarma V Prasad S V Subramanyam V Ganesan · More Details Abstract Fulltext PDF.

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Mandal. Articles written in Bulletin of Materials Science. Volume 37 Issue 4 June 2014 pp 743-752. Porous copper template from partially spark plasma-sintered Cu–Zn aggregate via dezincification · M Mandal D Singh Gouthama B S Murty S Sangal K Mondal · More Details ...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D K Kharat. Articles written in Bulletin of Materials Science. Volume 28 Issue 5 August 2005 pp 453-455 Ceramics and Glasses. Characterization and microstructure of porous lead zirconate titanate ceramics · B Praveenkumar H H Kumar D K Kharat · More Details Abstract ...

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Hui Shen. Articles written in Bulletin of Materials Science. Volume 30 Issue 2 April 2007 pp 101-104 Single Crystals. Piezoelectric properties of Sr3Ga2Ge4O14 single crystals · Anhua Wu Jiayue Xu Juan Zhou Hui Shen · More Details Abstract Fulltext PDF. A new piezoelectric ...

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Anhua Wu. Articles written in Bulletin of Materials Science. Volume 27 Issue 4 August 2004 pp 333-336 Crystal Growth. Bridgman growth and defects of Nd : Sr3Ga2Ge4O14 laser crystals · Jiaxuan Ding Anhua Wu Jiayue Xu · More Details Abstract Fulltext PDF.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. G Prasad. Articles written in Bulletin of Materials Science. Volume 23 Issue 5 October 2000 pp 431-437 High T c Superconductors. Studies on electrical properties of SrBi4Ti4–3Fe4O15 · N Venkat Ramulu G Prasad S V Suryanarayana T Bhima Sankaram · More Details ...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Muthulakshmi. Articles written in Bulletin of Materials Science. Volume 37 Issue 7 December 2014 pp 1575-1582. Effect of temperature on the AC impedance of protein and carbohydrate biopolymers · S Muthulakshmi S Iyyapushpam D Pathinettam Padiyan · More Details ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Sahu. Articles written in Bulletin of Materials Science. Volume 32 Issue 3 June 2009 pp 285-294. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview · A K Sahu S Pitchumani P Sridhar A K Shukla · More Details Abstract Fulltext PDF.

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. N L Singh. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 263-267 Polymers. Electrical properties of ion irradiated polypropylene films · N L Singh Anita Sharma V Shrinet A K Rakshit D K Avasthi · More Details Abstract Fulltext PDF. The effect ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Sejal Shah. Articles written in Bulletin of Materials Science. Volume 30 Issue 5 October 2007 pp 477-480 Polymers. Study of microhardness and electrical properties of proton irradiated polyethersulfone (PES) · Nilam Shah Dolly Singh Sejal Shah Anjum Qureshi N L Singh K P ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Prasannakumar. Articles written in Bulletin of Materials Science. Volume 24 Issue 5 October 2001 pp 535-538 Polymers. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly(2-hydroxyethylmethacrylate): Synthesis, chemical, ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K V Shah. Articles written in Bulletin of Materials Science. Volume 26 Issue 7 December 2003 pp 715-720 Glasses and Ceramics. Preparation and studies of some thermal, mechanical and optical properties of Al2O3(1 – )NaPO3 glass system · K V Shah V Sudarsan M ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Ganesh Sanjeev. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 191-196 Thin Films and Nanomatter. Dielectric properties of electron irradiated PbZrO3 thin films · Shetty Aparna V M Jali Ganesh Sanjeev Jayanta Parui S B Krupanidhi.

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. LING YANG. Articles written in Bulletin of Materials Science. Volume 36 Issue 3 June 2013 pp 389-393. Effects of Bi doping on dielectric and ferroelectric properties of PLBZT ferroelectric thin films synthesized by sol–gel processing · Hua Wang Li Liu Ji-Wen Xu Chang-Lai Yuan ...

  8. Qi Liu - Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. QI LIU. Articles written in Bulletin of Materials Science. Volume 34 Issue 2 April 2011 pp 183-189. Study of structural transformations and phases formation upon calcination of Zn–Ni–Al hydrotalcite nanosheets · Zhanshuang Li Yanchao Song Jun Wang Qi Liu Piaoping Yang ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A S Singha. Articles written in Bulletin of Materials Science. Volume 31 Issue 1 February 2008 pp 7-13 Polymers. Pressure induced graft-co-polymerization of acrylonitrile onto Saccharum cilliare fibre and evaluation of some properties of grafted fibre · A S Singha Anjali Shama ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. L C GUPTA. Articles written in Bulletin of Materials Science. Volume 40 Issue 6 October 2017 pp 1121-1125. High-pressure studies of superconductivity in BiO 0.75 F 0.25 BiS 2 · ZEBA HAQUE GOHIL S THAKUR GANESAN KALAI SELVAN SONACHALAM ARUMUGAM L C ...

  11. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. H P Sachin. Articles written in Bulletin of Materials Science. Volume 30 Issue 1 February 2007 pp 57-63 Electrochemistry. Polynitroaniline as brightener for zinc–nickel alloy plating from non-cyanide sulphate bath · H P Sachin Ganesha Achary Y Arthoba Naik T V Venkatesha.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Petrič. Articles written in Bulletin of Materials Science. Volume 34 Issue 1 February 2011 pp 113-119. Performance of waterborne acrylic surface coatings on wood impregnated with Cu-ethanolamine preservatives · M Humar M Pavlič D Žlindra M Tomažič M Petrič.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M Hafez. Articles written in Bulletin of Materials Science. Volume 33 Issue 2 April 2010 pp 149-155 Polymers. Influence of granular strontium chloride as additives on some electrical and mechanical properties for pure polyvinyl alcohol · A B Elaydy M Hafez · More Details ...

  14. Imprinting Community College Computer Science Education with Software Engineering Principles

    Science.gov (United States)

    Hundley, Jacqueline Holliday

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and maintenance. We proposed that some software engineering principles can be incorporated into the introductory-level of the computer science curriculum. Our vision is to give community college students a broader exposure to the software development lifecycle. For those students who plan to transfer to a baccalaureate program subsequent to their community college education, our vision is to prepare them sufficiently to move seamlessly into mainstream computer science and software engineering degrees. For those students who plan to move from the community college to a programming career, our vision is to equip them with the foundational knowledge and skills required by the software industry. To accomplish our goals, we developed curriculum modules for teaching seven of the software engineering knowledge areas within current computer science introductory-level courses. Each module was designed to be self-supported with suggested learning objectives, teaching outline, software tool support, teaching activities, and other material to assist the instructor in using it.

  15. Perceptions of Crop Science Instructional Materials.

    Science.gov (United States)

    Elkins, D. M.

    1994-01-01

    A number of crop science instructors have indicated that there is a shortage of quality, current crop/plant science teaching materials, particularly textbooks. A survey instrument was developed to solicit information from teachers about the use and adequacy of textbooks, laboratory manuals, and videotapes in crop/plant science instruction. (LZ)

  16. Aircraft and ancillary materials. 2. ; Engine materials. Kokuki to sono shuhen zairyo. 2. ; Engine zairyo

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-05

    This paper summarizes materials for aircraft engines. Jet engines are the mainstream today, which are classified according to their operation process into a turbo jet engine, a turbo prop engine, a turbo shaft engine, and a turbo fan engine. Japan has produced 1543 engines in the past decade, almost all of which are supplied to the Defense Agency. Jet engines use mainly Ni-group heat-resistant alloys, titanium alloys and steels. Improvement of engine efficiency has caused turbine inlet temperatures to rise to 1400[degree]C to 1500[degree]C that give rise to grain boundary cracking. To prevent this, discussions are in progress on monocrystal blades replacing the conventional polycrystal precision casts. Intermetallic compounds including Al/Ti are expected especially of use as jet engine constructing materials from their high melting point and formability. Discussions are preceding on ceramics as to coating them intended of improving heat resistance. Composite materials have a problem of insufficient mechanical strength remaining unsolved. 8 figs., 5 tabs.

  17. Materials Science and the Problem of Garbage

    Science.gov (United States)

    McPherson, Heather

    2016-01-01

    Materials science--the science of stuff--has made our lives better by making it possible for manufacturers to supply us with products. Students have misconceptions about materials use. Many may think using bottled water, for example, is harmless because they recycle the plastic empties, but they fail to consider the resources and energy used to…

  18. Formalization of the engineering science discipline - knowledge engineering

    Science.gov (United States)

    Peng, Xiao

    Knowledge is the most precious ingredient facilitating aerospace engineering research and product development activities. Currently, the most common knowledge retention methods are paper-based documents, such as reports, books and journals. However, those media have innate weaknesses. For example, four generations of flying wing aircraft (Horten, Northrop XB-35/YB-49, Boeing BWB and many others) were mostly developed in isolation. The subsequent engineers were not aware of the previous developments, because these projects were documented such which prevented the next generation of engineers to benefit from the previous lessons learned. In this manner, inefficient knowledge retention methods have become a primary obstacle for knowledge transfer from the experienced to the next generation of engineers. In addition, the quality of knowledge itself is a vital criterion; thus, an accurate measure of the quality of 'knowledge' is required. Although qualitative knowledge evaluation criteria have been researched in other disciplines, such as the AAA criterion by Ernest Sosa stemming from the field of philosophy, a quantitative knowledge evaluation criterion needs to be developed which is capable to numerically determine the qualities of knowledge for aerospace engineering research and product development activities. To provide engineers with a high-quality knowledge management tool, the engineering science discipline Knowledge Engineering has been formalized to systematically address knowledge retention issues. This research undertaking formalizes Knowledge Engineering as follows: 1. Categorize knowledge according to its formats and representations for the first time, which serves as the foundation for the subsequent knowledge management function development. 2. Develop an efficiency evaluation criterion for knowledge management by analyzing the characteristics of both knowledge and the parties involved in the knowledge management processes. 3. Propose and develop an

  19. 2014 International Conference on Manufacturing, Optimization, Industrial and Material Engineering

    International Nuclear Information System (INIS)

    Gaol, Ford Lumban; Webb, Jeff; Ding, Jun

    2014-01-01

    The 2nd International Conference on Manufacturing, Optimization, Industrial and Material Engineering 2014 (MOIME 2014), was held at the Grand Mercure Harmoni, Opal Room 3rd Floor, Jakarta, Indonesia, during 29–30 March 2014. The MOIME 2014 conference is designed to bring together researchers, engineers and scientists in the domain of interest from around the world. MOIME 2014 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Material Engineering, Industrial Engineering and all areas that relate to Optimization. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 97 papers and after rigorous review, 24 papers were accepted. The participants come from 7 countries. There are 4 (four) parallel session and 2 Invited Speakers and one workshop. It is an honour to present this volume of IOP Conference Series: Materials Science and Engineering (MSE) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of MOIME 2014. The Editors of the MOIME 2014 Proceedings Editors Dr Ford Lumban Gaol Jeff Webb, PhD Professor Jun Ding, PhD

  20. World Congress on Engineering and Computer Science 2015

    CERN Document Server

    Kim, Haeng; Amouzegar, Mahyar

    2017-01-01

    This proceedings volume contains selected revised and extended research articles written by researchers who participated in the World Congress on Engineering and Computer Science 2015, held in San Francisco, USA, 21-23 October 2015. Topics covered include engineering mathematics, electrical engineering, circuits, communications systems, computer science, chemical engineering, systems engineering, manufacturing engineering, and industrial applications. The book offers the reader an overview of the state of the art in engineering technologies, computer science, systems engineering and applications, and will serve as an excellent reference work for researchers and graduate students working in these fields.

  1. Midwest Nuclear Science and Engineering Consortium

    International Nuclear Information System (INIS)

    Volkert, Wynn; Kumar, Arvind; Becker, Bryan; Schwinke, Victor; Gonzalez, Angel; McGregor, Douglas

    2010-01-01

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  2. Midwest Nuclear Science and Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  3. Curriculum optimization of College of Optical Science and Engineering

    Science.gov (United States)

    Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui

    2017-08-01

    The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.

  4. Materials sciences programs: Fiscal year 1994

    Science.gov (United States)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  5. Materials sciences programs, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects

  6. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  7. Contemporary issues in systems science and engineering

    CERN Document Server

    Zhou, M; Weijnen, M

    2015-01-01

    This volume provides a comprehensive overview of all important areas in systems science and engineering and poses the issues and challenges in these areas in order to deal with ever-increasingly complex systems and newly emergent applications. The topics range from discrete event systems, distributed intelligent systems, grey systems, and enterprise information systems to conflict resolution, robotics and intelligent sensing, smart grids, and system of systems approaches. Individual chapters are written by leading experts in the field.

  8. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  9. Evaluation of Research in Engineering Science in Norway

    DEFF Research Database (Denmark)

    Van Brussel, Hendrik Van Brussel; Lindberg, Bengt; Cederwall, Klas

    This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway .......This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway ....

  10. Developments in reactor materials science methodology

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Ivanov, V.B.

    1987-01-01

    Problems related to organization of investigations into reactor materials science are considered. Currently the efficiency and reliability of nuclear power units are largely determined by the fact, how correctly and quickly conclusions concerning the parameters of designs and materials worked out for a long time in reactor cores, are made. To increase information value of materials science investigations it is necessary to create a uniform system, providing for solving methodical, technical and organizational problems. Peculiarities of the current state of reactor material science are analysed and recommendations on constructing an optimal scheme of investigations and data flow interconnection are given

  11. Perspectives on Materials Science in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte

    2012-01-01

    Materials characterization in 3D has opened a new era in materials science, which is discussed in this paper. The original motivations and visions behind the development of one of the new 3D techniques, namely the three dimensional x-ray diffraction (3DXRD) method, are presented and the route...... to its implementation is described. The present status of materials science in 3D is illustrated by examples related to recrystallization. Finally, challenges and suggestions for the future success for 3D Materials Science relating to hardware evolution, data analysis, data exchange and modeling...

  12. Materials, processes, and environmental engineering network

    Science.gov (United States)

    White, Margo M.

    1993-01-01

    The Materials, Processes, and Environmental Engineering Network (MPEEN) was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. Environmental replacement materials information is a newly developed focus of MPEEN. This database is the NASA Environmental Information System, NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team, NOET, to be hazardous to the environment. An environmental replacement technology database is contained within NEIS. Environmental concerns about materials are identified by NOET, and control or replacement strategies are formed. This database also contains the usage and performance characteristics of these hazardous materials. In addition to addressing environmental concerns, MPEEN contains one of the largest materials databases in the world. Over 600 users access this network on a daily basis. There is information available on failure analysis, metals and nonmetals testing, materials properties, standard and commercial parts, foreign alloy cross-reference, Long Duration Exposure Facility (LDEF) data, and Materials and Processes Selection List data.

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. G P Nayaka. Articles written in Bulletin of Materials Science. Volume 37 Issue 3 May 2014 pp 705-711. Structural, electrical and electrochemical behaviours of LiNi0.4M0.1Mn1.5O4 ( = Al, Bi) as cathode material for Li-ion batteries · G P Nayaka J Manjanna K C Anjaneya P ...

  14. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K C Anjaneya. Articles written in Bulletin of Materials Science. Volume 37 Issue 3 May 2014 pp 705-711. Structural, electrical and electrochemical behaviours of LiNi0.4M0.1Mn1.5O4 ( = Al, Bi) as cathode material for Li-ion batteries · G P Nayaka J Manjanna K C Anjaneya P ...

  15. Tailored Materials for High Efficiency CIDI Engines

    Energy Technology Data Exchange (ETDEWEB)

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  16. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials.

    Science.gov (United States)

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R

    2017-03-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.

  17. The Physics and Materials Science of Superheroes

    Science.gov (United States)

    Kakalios, James

    While physicists, engineers and materials scientists don't typically consult comic books when selecting research topics; innovations first introduced in superhero adventures as fiction can sometimes find their way off the comic book page and into reality. As amazing as the Fantastic Four's powers is the fact that their costumes are undamaged when the Human Torch flames on or Mr. Fantastic stretches his elastic body. In shape memory materials, an external force or torque induces a structural change that is reversed upon warming, a feature appreciated by Mr. Fantastic. Spider-Man's wall crawling ability has been ascribed to the same van der Waals attractive force that gecko lizards employ through the millions of microscopic hairs on their toes. Scientists have developed ``gecko tape, consisting of arrays of fibers that provide a strong enough attraction to support a modest weight (if this product ever becomes commercially available, I for one will never wait for the elevator again!). All this, and important topics such as: was it ``the fall or the webbing that killed Gwen Stacy, Spider-Man's girlfriend in the classic Amazing Spider-Man # 121, and the chemical composition of Captain America's shield, will be discussed. Superhero comic books often get their science right more often than one would expect!

  18. Pre-Service Science Teachers Views on STEM Materials and STEM Competition in Instructional Technologies and Material Development Course

    Science.gov (United States)

    Cetin, Ali; Balta, Nuri

    2017-01-01

    This qualitative study was designed to introduce STEM (Science, Technology, Engineering, Mathematics) activities to preservice science teachers and identify their views about STEM materials. In this context, a competition was organized with 42 preservice science teachers (13 male- 29 female) who took Instructional Technologies and Material…

  19. Analytical techniques for thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1988-01-01

    Treatise on Materials Science and Technology, Volume 27: Analytical Techniques for Thin Films covers a set of analytical techniques developed for thin films and interfaces, all based on scattering and excitation phenomena and theories. The book discusses photon beam and X-ray techniques; electron beam techniques; and ion beam techniques. Materials scientists, materials engineers, chemical engineers, and physicists will find the book invaluable.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Pusan National University, Busan 609 735, Korea; School of Mechanical Engineering, Pusan National University, Busan 609 735, Korea; Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 609 735, Korea; Material Testing Centre, Korea Testing Laboratory, Seoul 152 718, Korea ...

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Dipika Barbadikar1 Rashmi Gautam2 Sanjay Sahare2 Rajendra Patrikar2 Jatin Bhatt1. Department of Metallurgical and Material Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010, India; Department of Electronics Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010, India ...

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ASIYEH HABIBI1 S MOHAMMAD MOUSAVI KHOIE1 FARZAD MAHBOUBI1 MUSTAFA URGEN2. Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran; Department of Metallurgical and Materials Engineering, Istanbul Technical University, Istanbul 34469, Turkey ...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. M R Meshram1 Nawal K Agrawal1 Bharoti Sinha1 P S Misra2. Department of Electronics and Computer Engineering, Indian Institute of Technology, Roorkee 247 667, India; Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee 247 667, India ...

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Deokjin-gu Jeonju 561-756, South Korea; Department of Materials Engineering, Graduate School, Chonbuk National University, 567 Baekje-daero Deokjin-gu Jeonju 561-756, South Korea; School of Applied Chemical Engineering, Chonnam National University, 77 Yongbong-ro Buk-gu Gwangju 500-757, South Korea ...

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Fernando Cunha1 Sohel Rana1 Raul Fangueiro1 2 Graça Vasconcelos2. Fibrous Materials Research Group (FMRG), School of Engineering, University of Minho, Guimarães 4800-058, Portugal; Department of Civil Engineering, University of Minho, Guimarães 4800-058, Portugal ...

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Divya Singh1 Pramod K Singh1 Nitin A Jadhav1 Bhaskar Bhattacharya1. Material Research Laboratory, School of Engineering and Technology, Sharda University, Greater Noida 201 306, India ...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. RAVI KANT1 UJJWAL PRAKASH1 VIJAYA AGARWALA1 V V SATYA PRASAD2. Department of Metallurgical and Materials Engineering, IIT Roorkee, Roorkee 247 667, India; Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058, India ...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. J Nayak1 K R Udupa1 K R Hebbar1 H V S Nayak1. Department of Metallurgical and Materials Engineering, National Institute of Technology, Surathkal, PO Srinivasnagar 575 025, India ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. N Chakraborti1 R Prasad2. Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721 302, India; Department of Physics, Indian Institute of Technology, Kanpur 208 016, India ...

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. M EBRAHIMIZADEH ABRISHAMI1 V ZAHABI2. Materials and Electroceramics Laboratory, Department of Physics, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Department of Civil Engineering, Islamic Azad University, Mashhad 9187147578, Iran ...

  11. The Science of Smart Materials

    Science.gov (United States)

    Boohan, Richard

    2011-01-01

    Over the last few decades, smart materials have become increasingly important in the design of products. Essentially, a smart material is one that has been designed to respond to a stimulus, such as a change in temperature or magnetic field, in a particular and useful way. This article looks at a range of smart materials that are relatively…

  12. Radiation materials science. V. 7

    International Nuclear Information System (INIS)

    Zelenskij, V.F.

    1990-01-01

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  13. Radiation materials science. V. 6

    International Nuclear Information System (INIS)

    Zelenskij, V.F.

    1990-01-01

    This volume includes the papers of the international conference on radiation materials in Alushta, Ukraine in May 1990. The main topics are: basic research in radiation damage physics, a study of the structural materials for reactor cores; irradiation effect on reactor vessel, fuel, super- and semiconductor materials; investigation damage research methods

  14. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  15. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum)

  16. The materials used in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M. [Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk (Russian Federation)

    2015-11-17

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 4 ... Microwave materials; ceramic dielectric resonators; polytitanates; co-precipitation. ... hypotheses viz. diffusion, high surface and nucleation energy, potential barrier, non-stoichiometry etc as critical factors limiting formation of 2 : 9 as single-phase material.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This generated great interest in the development of these heteroatom structured materials through different processing routes. ... of Materials Science, Sardar Patel University, Vallabh Vidyanagar 388 120, India; Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Yokohama 226, Japan ...

  19. Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA

    Science.gov (United States)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-01-01

    The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…

  20. Women in science & engineering and minority engineering scholarships : year 3, report for 2008-2009 activities.

    Science.gov (United States)

    2009-05-01

    Support made scholarships available to minority and women students interested in engineering and science and significantly increased : the number of minority and female students that Missouri S&T can recruit to its science and engineering programs. R...