WorldWideScience

Sample records for sciences education teacher

  1. Initial teacher education and continuing professional development for science teachers

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry

    2011-01-01

    Research into ways of improving the initial education and continuing professional development of science teachers is closely related to both common and unique strands. The field is complex since science teachers teach at different educational levels, are often educated in different science subjects......, and belong to various cultures, both educationally and socially. Section 1 presents a review of the research literature across these dimensions and looks at the knowledge, skills and competences needed for teaching science, specific issues within science teacher education, and strategies for educating...... and developing science teachers....

  2. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  3. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  4. Teacher Efficacy of Secondary Special Education Science Teachers

    Science.gov (United States)

    Bonton, Celeste

    Students with disabilities are a specific group of the student population that are guaranteed rights that allow them to receive a free and unbiased education in an environment with their non-disabled peers. The importance of this study relates to providing students with disabilities with the opportunity to receive instruction from the most efficient and prepared educators. The purpose of this study is to determine how specific factors influence special education belief systems. In particular, educators who provide science instruction in whole group or small group classrooms in a large metropolitan area in Georgia possess specific beliefs about their ability to provide meaningful instruction. Data was collected through a correlational study completed by educators through an online survey website. The SEBEST quantitative survey instrument was used on a medium sample size (approximately 120 teachers) in a large metropolitan school district. The selected statistical analysis was the Shapiro-Wilk and Mann-Whitney in order to determine if any correlation exists among preservice training and perceived self-efficacy of secondary special education teachers in the content area of science. The results of this study showed that special education teachers in the content area of science have a higher perceived self-efficacy if they have completed an alternative certification program. Other variables tested did not show any statistical significance. Further research can be centered on the analysis of actual teacher efficacy, year end teacher efficacy measurements, teacher stipends, increased recruitment, and special education teachers of multiple content areas.

  5. Special Education Teachers' Nature of Science Instructional Experiences

    Science.gov (United States)

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  6. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    Science.gov (United States)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  7. Teacher Leaders in Research Based Science Education

    Science.gov (United States)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-12-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  8. The feasibility of educating trainee science teachers in issues of science and religion

    Science.gov (United States)

    Poole, Michael

    2016-06-01

    This article reflects on Roussel De Carvalho's paper `Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom'. It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher education project more manageable.

  9. Supporting new science teachers in pursuing socially just science education

    Science.gov (United States)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  10. When Nature of Science Meets Marxism: Aspects of Nature of Science Taught by Chinese Science Teacher Educators to Prospective Science Teachers

    Science.gov (United States)

    Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying

    2013-01-01

    Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators' conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content…

  11. Integration of Geospatial Science in Teacher Education

    Science.gov (United States)

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  12. Understanding the Educational Experiences of Science Teachers in a Five-Year Teacher Education Program: A Phenomenological Study

    Science.gov (United States)

    Srivastava, Nitin

    This qualitative study provides an overview of educational experiences of six in-service and three pre-service secondary science teachers in the Benedum Collaborative Five-Year Teacher Education Program at a land-grant university. The researcher interviewed secondary science teachers on the experiences they found meaningful in various program components that influenced their teacher identity, beliefs about science pedagogy, and their sense of preparedness for teaching. Document analysis of teachers' journals and lesson plans supplemented the qualitative data in addition to the researcher's role and knowledge as an outsider (non-Benedum graduate) and insider (facilitator and instructor in the technology integration based classes for one year) of the Benedum Collaborative Five-Year Teacher Education Program. Findings also supported the Holmes (1986) and Goodlad (1990) views for extended field experiences and "collaborative culture" in teacher education for well-prepared teachers.

  13. Towards Science Education for all: Teacher Support for Female ...

    African Journals Online (AJOL)

    Towards Science Education for all: Teacher Support for Female Pupils in the Zimbabwean Science Class. ... Annals of Modern Education ... One hundred female pupils studying sciences at either Ordinary or Advanced level, and 10 science teachers from 10 selected secondary schools in one province in Zimbabwe, ...

  14. Building Future Directions for Teacher Learning in Science Education

    Science.gov (United States)

    Smith, Kathy; Lindsay, Simon

    2016-04-01

    In 2013, as part of a process to renew an overall sector vision for science education, Catholic Education Melbourne (CEM) undertook a review of its existing teacher in-service professional development programs in science. This review led to some data analysis being conducted in relation to two of these programs where participant teachers were positioned as active learners undertaking critical reflection in relation to their science teaching practice. The conditions in these programs encouraged teachers to notice critical aspects of their teaching practice. The analysis illustrates that as teachers worked in this way, their understandings about effective science pedagogy began to shift, in particular, teachers recognised how their thinking not only influenced their professional practice but also ultimately shaped the quality of their students' learning. The data from these programs delivers compelling evidence of the learning experience from a teacher perspective. This article explores the impact of this experience on teacher thinking about the relationship between pedagogical choices and quality learning in science. The findings highlight that purposeful, teacher-centred in-service professional learning can significantly contribute to enabling teachers to think differently about science teaching and learning and ultimately become confident pedagogical leaders in science. The future of quality school-based science education therefore relies on a new vision for teacher professional learning, where practice explicitly recognises, values and attends to teachers as professionals and supports them to articulate and share the professional knowledge they have about effective science teaching practice.

  15. The wow-effect in science teacher education

    Science.gov (United States)

    Kamstrupp, Anne Katrine

    2016-12-01

    This article explores the wow- effect as a phenomenon in science teacher education. Through ethnographic fieldwork at a teachers' college in Denmark, the author encounters a phenomenon enacted in a particular way of teaching that wows the students. The students are in the process of becoming natural science/technology and biology teachers. This article explores and theorizes the wow-effect by examining tension fields within the phenomenon between boredom and engagement, new and old technologies, and being active and sedentary. By situating this phenomenon in a discussion of theory and practice in teacher education, the author discusses how teaching according to the wow-effect is both engaging for the students as well as problematic in relation to learning certain theoretical aspects of natural science/technology and biology.

  16. The pedagogy of argumentation in science education: science teachers' instructional practices

    Science.gov (United States)

    Özdem Yilmaz, Yasemin; Cakiroglu, Jale; Ertepinar, Hamide; Erduran, Sibel

    2017-07-01

    Argumentation has been a prominent concern in science education research and a common goal in science curriculum in many countries over the past decade. With reference to this goal, policy documents burden responsibilities on science teachers, such as involving students in dialogues and being guides in students' spoken or written argumentation. Consequently, teachers' pedagogical practices regarding argumentation gain importance due to their impact on how they incorporate this practice into their classrooms. In this study, therefore, we investigated the instructional strategies adopted by science teachers for their argumentation-based science teaching. Participants were one elementary science teacher, two chemistry teachers, and four graduate students, who have a background in science education. The study took place during a graduate course, which was aimed at developing science teachers' theory and pedagogy of argumentation. Data sources included the participants' video-recorded classroom practices, audio-recorded reflections, post-interviews, and participants' written materials. The findings revealed three typologies of instructional strategies towards argumentation. They are named as Basic Instructional Strategies for Argumentation, Meta-level Instructional ‌St‌‌rategies for ‌Argumentation, and Meta-strategic Instructional ‌St‌‌rategies for ‌Argumentation. In conclusion, the study provided a detailed coding framework for the exploration of science teachers' instructional practices while they are implementing argumentation-based lessons.

  17. The Feasibility of Educating Trainee Science Teachers in Issues of Science and Religion

    Science.gov (United States)

    Poole, Michael

    2016-01-01

    This article reflects on Roussel De Carvalho's paper "Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom" (EJ1102211). It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher…

  18. An Examination of Black Science Teacher Educators' Experiences with Multicultural Education, Equity, and Social Justice

    Science.gov (United States)

    Atwater, Mary M.; Butler, Malcolm B.; Freeman, Tonjua B.; Carlton Parsons, Eileen R.

    2013-12-01

    Diversity, multicultural education, equity, and social justice are dominant themes in cultural studies (Hall in Cultural dialogues in cultural studies. Routledge, New York, pp 261-274, 1996; Wallace 1994). Zeichner (Studying teacher education: The report of the AERA panel on research and teacher education. Lawrence Erlbaum Associates, Mahwah, pp 737-759, 2005) called for research studies of teacher educators because little research exists on teacher educators since the late 1980s. Thomson et al. (2001) identified essential elements needed in order for critical multiculturalism to be infused in teacher education programs. However, little is known about the commitment and experiences of science teacher educators infusing multicultural education, equity, and social justice into science teacher education programs. This paper examines twenty (20) Black science teacher educators' teaching experiences as a result of their Blackness and the inclusion of multicultural education, equity, and social justice in their teaching. This qualitative case study of 20 Black science teacher educators found that some of them have attempted and stopped due to student evaluations and the need to gain promotion and tenure. Other participants were able to integrate diversity, multicultural education, equity and social justice in their courses because their colleagues were supportive. Still others continue to struggle with this infusion without the support of their colleagues, and others have stopped The investigators suggest that if science teacher educators are going to prepare science teachers for the twenty first century, then teacher candidates must be challenged to grapple with racial, ethnic, cultural, instructional, and curricular issues and what that must mean to teach science to US students in rural, urban, and suburban school contexts.

  19. Qualifying in-service education of Science Teachers (QUEST)

    DEFF Research Database (Denmark)

    Nielsen, Keld; Nielsen, Birgitte Lund; Pontoppidan, Birgitte

    The Danish QUEST-project is a large-scale (450 teachers), long-term (4 years) professional development project for science teachers. The project aims at closing the gap between the present inconsequential practice in in-service education and recent research results documenting conditions for effe......The Danish QUEST-project is a large-scale (450 teachers), long-term (4 years) professional development project for science teachers. The project aims at closing the gap between the present inconsequential practice in in-service education and recent research results documenting conditions...... and peer involvement in collaborative practices in the school science teacher group is specifically addressed and targeted throughout the project. A special way of working (the QUEST-Rhythm) has been developed to increase the degree of teacher collaboration and networking over the 4 years. The accompanying...

  20. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  1. The wow-effect in science teacher education

    DEFF Research Database (Denmark)

    Kamstrup, Anne Katrine

    2016-01-01

    This article explores the wow-effect as a phenomenon in science teacher education. Through ethnographic fieldwork at a teachers’ college in Denmark, the author encounters a phenomenon enacted in a particular way of teaching that wows the students. The students are in the process of becoming natural...... in teacher education, the author discusses how teaching according to the wow-effect is both engaging for the students as well as problematic in relation to learning certain theoretical aspects of natural science/technology and biology....... science/technology and biology teachers. This article explores and theorizes the wow-effect by examining tension fields within the phenomenon between boredom and engagement, new and old technologies, and being active and sedentary. By situating this phenomenon in a discussion of theory and practice...

  2. The Wow-Effect in Science Teacher Education

    Science.gov (United States)

    Kamstrupp, Anne Katrine

    2016-01-01

    This article explores the "wow-effect" as a phenomenon in science teacher education. Through ethnographic fieldwork at a teachers' college in Denmark, the author encounters a phenomenon enacted in a particular way of teaching that "wows" the students. The students are in the process of becoming natural science/technology and…

  3. Turkish Primary Science Teachers' Perceptions of an Ideal Teacher Education System

    Science.gov (United States)

    Korkmaz, Hunkar; Altindag, Ahmet

    2017-01-01

    The goals of this descriptive study were to determine Turkish pre-service science teachers' perceptions of an ideal teacher education system. The sample consisted of 137 pre-service teachers, including 74 females and 63 males. The questionnaire was based on open-ended questions and was developed to investigate ideal teacher education system…

  4. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Fančovičová, Jana; Erdoğan, Mehmet; Prokop, Pavol

    2010-12-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of science with 15 of the 28 survey items. Descriptive statistics through SPSS further showed that a teacher's enthusiastic nature (87%) and positive attitude towards science (87%) were regarded as highly memorable. In addition, explaining abstract concepts well (79%), and guiding the students' conceptual development with practical science activities (73%) may be considered as memorable secondary science teaching strategies. Implementing science lessons with one or more of these memorable science teaching practices may "make a difference" towards influencing high school students' positive long-term memories about science and their science education. Further research in other key learning areas may provide a clearer picture of high-impact teaching and a way to enhance pedagogical practices.

  5. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-05-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants' perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers' perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.

  6. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    Science.gov (United States)

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  7. The Views of Turkish Science Teachers about Gender Equity within Science Education

    Science.gov (United States)

    Idin, Sahin; Dönmez, Ismail

    2017-01-01

    The aim of this study was to investigate Turkish Science teachers' views about gender equity in the scope of science education. This study was conducted with the quantitative methodology. Within this scope, a 35-item 5-point Likert scale survey was developed to determine Science teachers' views concerning gender equity issues. 160 Turkish Science…

  8. Elementary science education: Dilemmas facing preservice teachers

    Science.gov (United States)

    Sullivan, Sherry Elaine

    Prospective teachers are involved in a process of induction into a culture of teaching that has rules, or codes of conduct for engaging in teaching practice. This same culture of teaching exists within a larger culture of schooling that also has values and norms for behaviors, that over time have become institutionalized. Teacher educators are faced with the challenging task of preparing preservice teachers to resolve dilemmas that arise from conflicts between the pressure to adopt traditional teaching practices of schooling, or to adopt inquiry-based teaching practices from their university methods classes. One task for researchers in teacher education is to define with greater precision what factors within the culture of schooling hinder or facilitate implementation of inquiry-based methods of science teaching in schools. That task is the focus of this study. A qualitative study was undertaken using a naturalistic research paradigm introduced by Lincoln and Guba in 1985. Participant observation, interviews, discourse analysis of videotapes of lessons from the methods classroom and written artifacts produced by prospective teachers during the semester formed the basis of a grounded theory based on inductive analysis and emergent design. Unstructured interviews were used to negotiate outcomes with participants. Brief case reports of key participants were also written. This study identified three factors that facilitated or hindered the prospective teachers in this research success in implementing inquiry-based science teaching in their field placement classrooms: (a) the culture of teaching/teacher role-socialization, (b) the culture of schooling and its resistance to change, and (c) the culture of teacher education, especially in regards to grades and academic standing. Some recommendations for overcoming these persistent obstacles to best practice in elementary science teaching include: (a) preparing prospective teachers to understand and cope with change

  9. Science teachers in deaf education: A national survey of K-8 teachers

    Science.gov (United States)

    Shaw, Cynthia

    A survey was conducted with 67 science teachers who taught deaf children at the elementary school level. Teacher background variables, information about teacher preparation and certification, preferred teaching methods, communication methodologies, curriculum, and the use of technology were gathered. A purposeful, convenience sampling technique was employed. Utilizing a non-experimental, basic research design and survey methodology, the researcher reviewed both quantitative and qualitative data. The majority of science teachers in this survey at the elementary school level are female and hearing. More than half have deaf education masters degrees. Few have science degrees. The majority of teachers had less than 10 years teaching experience with deaf students. Sixty percent were highly qualified in science; only forty percent were certified in science. They were equally employed at either a state residential school or a public day school. Two-way chi-square analyses were carried out. Hearing teachers preferred to observe other teachers teaching science compared to deaf teachers chi2 (1, N = 67) = 5.39, p translanguaging than hearing teachers (chi2 (1, N = 67) = 4.54, p < .05). Hearing teachers used the computer more often in the classroom than deaf teachers (chi 2 (1, N = 67) = 4.65, p < .01). Hearing teachers had their students use the computer more regularly than deaf teachers (chi2 (1, N = 67) = 11.49, p < .01). Teachers who worked in residential schools compared to working in public schools attended more state department of education science workshops chi2 (1, N = 67) = 6.83, p < .01, attended national or state science meetings chi2 (1, N = 67) = 7.96, p < .01, were familiar with the Star Schools program chi2 (1, N=67) = 13.23, p < .01, and participated more in Star Schools programs chi 2 (1, N = 67) = 15.96, p < .01. Compared to hearing teachers, the deaf teachers used web-based science materials (chi2 (1, N = 67) = 4.65, p < .01), used codeswitching chi2 (1, N

  10. Pre-Service Science Teacher Education System in South Korea: Prospects and Challenges

    Science.gov (United States)

    Im, Sungmin; Yoon, Hye-Gyoung; Cha, Jeongho

    2016-01-01

    While much is known about the high academic but low affective achievement of Korean students on international comparative studies, little is known about science teacher education in Korea. As the quality of science teachers is an important factor determining the quality of science education, gaining an understanding of science education in Korea…

  11. Science Teacher Education in Australia: Initiatives and Challenges to Improve the Quality of Teaching

    Science.gov (United States)

    Treagust, David F.; Won, Mihye; Petersen, Jacinta; Wynne, Georgie

    2015-02-01

    In this article, we describe how teachers in the Australian school system are educated to teach science and the different qualifications that teachers need to enter the profession. The latest comparisons of Australian students in international science assessments have brought about various accountability measures to improve the quality of science teachers at all levels. We discuss the issues and implications of government initiatives in preservice and early career teacher education programs, such as the implementation of national science curriculum, the stricter entry requirements to teacher education programs, an alternative pathway to teaching and the measure of effectiveness of teacher education programs. The politicized discussion and initiatives to improve the quality of science teacher education in Australia are still unfolding as we write in 2014.

  12. The compatibility of reform initiatives in inclusion and science education: Perceptions of science teachers

    Science.gov (United States)

    Chung, Su-Hsiang

    The purposes of this investigation were to examine science teachers' instructional adaptations, testing and grading policies, as well as their perceptions toward inclusion. In addition, whether the perceptions and adaptations differ among three disability areas (learning disabilities, emotional handicaps, and mental handicaps), school level (elementary, middle, and high school), course content (life and physical science), instructional approach (textbook-oriented or activity-oriented), and other related variables was examined. Especially, the intention was to determine whether the two educational reform efforts (inclusion and excellence in science education) are compatible. In this study, 900 questionnaires were mailed to teachers in Indiana and 424 (47%) were returned. Due to incomplete or blank data, 38 (4%) responses were excluded. The final results were derived from a total of 386 respondents contributing to this investigation. The descriptive data indicated that teachers adapted their instruction moderately to accommodate students' special needs. In particular, these adaptations were made more frequently for students with mental handicaps (MH) or learning disabilities (LD), but less for students with emotional handicaps (EH). With respect to testing policies, less than half of the teachers (44.5%) used "same testing standards as regular students" for integrated LD students, while a majority of the teachers (57%) used such a policy for EH students. Unfortunately, considerably fewer teachers modified their grading policies for these two groups of students. In contrast, approximately two thirds of the teachers indicated that they used different testing or grading policies for MH students who were in the regular settings. Moreover, the results also showed that changes in classroom procedure did not occur much in the science teachers' classrooms. Perceptions of science teachers toward inclusion practices were somewhat mixed. Overall, teachers had neutral attitudes

  13. Science Teacher Identity and Eco-Transformation of Science Education: Comparing Western Modernism with Confucianism and Reflexive "Bildung"

    Science.gov (United States)

    Sjöström, Jesper

    2018-01-01

    This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on "reform-minded" science teachers. The starting point is the paper "Science education reform in…

  14. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  15. Women and girls in science education: Female teachers' and students' perspectives on gender and science

    Science.gov (United States)

    Crotty, Ann

    Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and

  16. Praxeologies and Institutional Interactions in the Advanced Science Teacher Education

    DEFF Research Database (Denmark)

    Rasmussen, Klaus

    disciplines in conjunction. In particular the inquiry process of Study and Research Paths (SRP) is experimented as a promising design to bring about disciplinary interaction. SRP is internationally a very recent design, entirely new to Danish teacher education, and the thesis add to the knowledge of its......The present thesis consists of six papers that address three important aspects in mathematics and science teacher education: ‘Integrating two or more teaching disciplines’, ‘learning from practice’ and ‘interaction between institutions’. These aspects are studied in combination as they have...... unfolded in the context of developing and implementing a Danish education programme called the Advanced Science Teacher Education (ASTE), that aim to educate lower secondary school teachers, who among other things are to excel at interdisciplinarity. The essence of integrated teaching is elusive...

  17. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Fancovicova, Jana; Erdogan, Mehmet; Prokop, Pavol

    2010-01-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of…

  18. Becoming a science teacher: The competing pedagogies of schools and teacher education

    Science.gov (United States)

    Rozelle, Jeffrey J.

    A culminating student teaching or internship experience is a central component of nearly every teacher education program and has been for most of teacher education's history. New teachers cite field experience and student teaching as the most beneficial, authentic, or practical aspect of teacher education. Teacher educators, however, have cause to view student teaching skeptically; student teachers often move away from the reform-minded practices espoused in teacher education. This multi-site ethnographic study investigated a full-year internship experience for six science interns at three diverse high schools as part of a teacher preparation program at a large state university. In taking an ecological perspective, this study documented the dynamic and evolving relationships between interns, cooperating teachers, teacher educators, and the school and classroom contexts. The goals of the study were to describe the changes in interns throughout the course of a year-long internship as a science teacher and to determine the relative influences of the various aspects of the ecology on interns. Data include fieldnotes from 311 hours of participant observation, 38 interviews with interns, cooperating teachers, and teacher educators, and 190 documents including course assignments, evaluations, and reflective journals. Interns' teaching practices were strongly influenced by their cooperating teachers. During the first two months, all six interns "used their mentor's script." When teaching, they attempted to re-enact lessons they witnessed their cooperating teachers enact earlier in the day. This included following the lesson structure, but also borrowing physical mannerisms, representations, anecdotes, and jokes. When interns could no longer follow their cooperating teacher due to an increased teaching load, they "followed their mentors' patterns"---implementing instruction that emphasized similar strategies---regardless of whether they were experiencing success in the

  19. Creating Science Education Specialists and Scientific Literacy in Students through a Successful Partnership among Scientists, Science Teachers, and Education Researchers

    Science.gov (United States)

    Metoyer, S.; Prouhet, T.; Radencic, S.

    2007-12-01

    The nature of science and the nature of learning are often assumed to have little practical relationship to each other. Scientists conduct research and science teachers teach. Rarely do the scientist and the science teacher have an opportunity to learn from each other. Here we describe results from a program funded by NSF, the Information Technology in Science (ITS) Center for Teaching and Learning. The ITS Center provided the support and structure necessary for successful long-term collaboration among scientists, science teachers, and education researchers that has resulted in the creation of new science education specialists. These specialists are not only among the science teachers, but also include avid recruits to science education from the scientists themselves. Science teachers returned to their classrooms armed with new knowledge of content, inquiry, and ideas for technology tools that could support and enhance students' scientific literacy. Teachers developed and implemented action research plans as a means of exploring educational outcomes of their use and understanding of new technologies and inquiry applied to the classroom. In other words, they tried something different in the class related to authentic inquiry and technology. They then assessed the students' to determine if there was an impact to the students in some way. Many of the scientists, on the other hand, report that they have modified their instructional practices for undergraduate courses based on their experiences with the teachers and the ITS Center. Some joined other collaborative projects pairing scientists and educators. And, many of the scientists continue on-going communication with the science teachers serving as mentors, collaborators, and as an "expert" source for the students to ask questions to. In order to convey the success of this partnership, we illustrate and discuss four interdependent components. First, costs and benefits to the science teacher are discussed through case

  20. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  1. Accomplishing the Visions for Teacher Education Programs Advocated in the National Science Education Standards

    Science.gov (United States)

    Akcay, Hakan; Yager, Robert

    2010-10-01

    The purpose of this study was to investigate the advantages of an approach to instruction using current problems and issues as curriculum organizers and illustrating how teaching must change to accomplish real learning. The study sample consisted of 41 preservice science teachers (13 males and 28 females) in a model science teacher education program. Both qualitative and quantitative research methods were used to determine success with science discipline-specific “Societal and Educational Applications” courses as one part of a total science teacher education program at a large Midwestern university. Students were involved with idea generation, consideration of multiple points of views, collaborative inquiries, and problem solving. All of these factors promoted grounded instruction using constructivist perspectives that situated science with actual experiences in the lives of students.

  2. The effects of two secondary science teacher education program structures on teachers' habits of mind and action

    Science.gov (United States)

    Bergman, Daniel Jay

    2007-12-01

    This study investigated the effects of the Iowa State University Secondary Science Teacher Education Program (ISU SSTEP) on the educational goals and habits of mind exhibited by its graduates. Ten teachers from ISU SSTEP participated in the study---five from the former program featuring one semester of science teaching methods, five from the current program featuring three semesters of science teaching methods (four for the graduate certification consortium). A naturalistic inquiry research approach included the following methods used with each teacher: three classroom observations, classroom artifact analysis, teacher questionnaires and semi-structured interviews, and questionnaires for students about perceived emphasis of educational goals. Evidence exists that graduates from the current ISU SSTEP format exhibited a closer match to the educational goals promoted, modeled, and advocated by the science teaching methods faculty. Graduates from the current ISU SSTEP also exhibited a closer match to the habits of mind---understanding, action, reflection, action plan for improvement---promoted and modeled by the program. This study has implications for other secondary science teacher education programs, particularly increasing the number of science teaching methods courses; teaching meaningful content of both concepts and skills through a research-based framework; modeling the appropriate teacher behaviors, strategies, habits, and goal promotion by methods instructors; and addressing issues of institutional constraints experienced by future teachers.

  3. Applying a Goal-Driven Model of Science Teacher Cognition to the Resolution of Two Anomalies in Research on the Relationship between Science Teacher Education and Classroom Practice

    Science.gov (United States)

    Hutner, Todd L.; Markman, Arthur B.

    2017-01-01

    Two anomalies continue to confound researchers and science teacher educators. First, new science teachers are quick to discard the pedagogy and practices that they learn in their teacher education programs in favor of a traditional, didactic approach to teaching science. Second, a discrepancy exists at all stages of science teachers' careers…

  4. Principles of Professionalism for Science Educators. National Science Teachers Association Position Statement

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Science educators play a central role in educating, inspiring, and guiding students to become responsible, scientifically literate citizens. Therefore, teachers of science must uphold the highest ethical standards of the profession to earn and maintain the respect, trust, and confidence of students, parents, school leaders, colleagues, and other…

  5. A Research-Based Science Teacher Education Program for a Competitive Tomorrow

    Science.gov (United States)

    Clary, R. M.; Hamil, B.; Beard, D. J.; Chevalier, D.; Dunne, J.; Saebo, S.

    2009-12-01

    A united commitment between the College of Education and the College of Arts and Sciences at Mississippi State University, in partnership with local high-need school districts, has the goal of increasing the number of highly qualified science teachers through authentic science research experiences. The departments of Geosciences, Biological Sciences, Chemistry, and Physics offer undergraduate pre-service teachers laboratory experiences in science research laboratories, including 1) paleontological investigations of Cretaceous environments, 2) NMR studies of the conformation of tachykinin peptides, 3) FHA domains as regulators of cell signaling in plants, 4) intermediate energy nuclear physics studies, and 5) computational studies of cyclic ketene acetals. Coordinated by the Department of Curriculum and Instruction, these research experiences involve extensive laboratory training in which the pre-teacher participants matriculate through a superior education curriculum prior to administrating their individual classrooms. Participants gain valuable experience in 1) performing literature searches and reviews; 2) planning research projects; 3) recording data; 4) presenting laboratory results effectively; and 5) writing professional scientific manuscripts. The research experience is available to pre-service teachers who are science education majors with a declared second major in a science (i.e., geology, biology, physics, or chemistry). Students are employed part-time in various science university laboratories, with work schedules arranged around their individual course loads. While the focus of this endeavor is upon undergraduate pre-service teachers, the researchers also target practicing science teachers from the local high-need school districts. A summer workshop provides practicing science teachers with a summative laboratory experience in several scientific disciplines. Practicing teachers also are provided lesson plans and ideas to transform their classrooms into

  6. Model program for the recruitment and preparation of high ability elementary mathematics/science teachers: A collaborative project among scientists, teacher educators and classroom teachers

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This teacher education program will provide a model for recruiting, educating and retaining high ability students to become mathematics and science lead teachers in elementary schools. The quality experiences and support provided these students will help them develop the knowledge and attitudes necessary to provide leadership for elementary mathematics and science programs. Students will have research experiences at the Ames Laboratory, high quality field experiences with nationally recognized mathematics and science teachers in local schools and opportunities to meaningfully connect these two experiences. This program, collaboratively designed and implemented by scientists, teacher educators and classroom teachers, should provide a replicatable model for other teacher education institutions. In addition, materials developed for the project should help other laboratories interface more effectively with K-8 schools and help other teacher education programs incorporate real science and mathematics experience into their curriculum.

  7. Art and Science Education Collaboration in a Secondary Teacher Preparation Programme

    Science.gov (United States)

    Medina-Jerez, William; Dambekalns, Lydia; Middleton, Kyndra V.

    2012-01-01

    Background and purpose: The purpose of this study was to record and measure the level of involvement and appreciation that prospective teachers in art and science education programmes demonstrated during a four-session integrated activity. Art and science education prospective teachers from a Rocky Mountain region university in the US worked in…

  8. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  9. Opinions of Secondary School Science and Mathematics Teachers on STEM Education

    Science.gov (United States)

    Yildirim, Bekir; Türk, Cumhur

    2018-01-01

    In this study, the opinions of middle school science teachers and mathematics teachers towards STEM education were examined. The research was carried out for 30 hours with 28 middle school science and mathematics teachers who were working in Istanbul during the spring semester of 2016-2017 academic year. 75% of these teachers are female teachers…

  10. Science teacher identity and eco-transformation of science education: comparing Western modernism with Confucianism and reflexive Bildung

    Science.gov (United States)

    Sjöström, Jesper

    2018-03-01

    This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on `reform-minded' science teachers. The starting point is the paper Science education reform in Confucian learning cultures: teachers' perspectives on policy and practice in Taiwan by Ying-Syuan Huang and Anila Asghar. It highlights several factors that can explain the difficulties of implementing "new pedagogy" in science education. One important factor is Confucian values and traditions, which seem to both hinder and support the science teachers' implementation of inquiry-based and learner-centered approaches. In this article Confucianism is compared with other learning cultures and also discussed in relation to different worldviews and educational philosophies in science education. Just like for the central/north European educational tradition called Bildung, there are various interpretations of Confucianism. However, both have subcultures (e.g. reflexive Bildung and Neo-Confucianism) with similarities that are highlighted in this article. If an "old pedagogy" in science education is related to essentialism, rationalist-objectivist focus, and a hierarchical configuration, the so called "new pedagogy" is often related to progressivism, modernism, utilitarianism, and a professional configuration. Reflexive Bildung problematizes the values associated with such a "new pedagogy" and can be described with labels such as post-positivism, reconstructionism and problematizing/critical configurations. Different educational approaches in science education, and corresponding eco-identities, are commented on in relation to transformation of educational practice.

  11. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    Science.gov (United States)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  12. Collaboration between science teacher educators and science faculty from arts and sciences for the purpose of developing a middle childhood science teacher education program: A case study

    Science.gov (United States)

    Buck, Gayle A.

    1998-12-01

    The science teacher educators at a midwestern university set a goal to establish a collaborative relationship between themselves and representatives from the College of Arts & Sciences for the purpose of developing a middle childhood science education program. The coming together of these two faculties provided a unique opportunity to explore the issues and experiences that emerge as such a collaborative relationship is formed. In order to gain a holistic perspective of the collaboration, a phenomenological case study design and methods were utilized. The study took a qualitative approach to allow the experiences and issues to emerge in a naturalistic manner. The question, 'What are the issues and experiences that emerge as science teacher educators and science faculty attempt to form a collaborative relationship for the purpose of developing a middle childhood science teacher program?' was answered by gathering a wealth of data. These data were collected by means of semi-structured interviews, observations and written document reviews. An overall picture was painted of the case by means of heuristic, phenomenological, and issues analyses. The researcher followed Moustakas' Phases of Heuristic Research to answer the questions 'What does science mean to me?' and 'What are my beliefs about the issues guiding this case?' prior to completing the phenomenological analysis. The phenomenological analysis followed Moustakas' 'Modification of the Van Kaam Methods of Analysis of Phenomenological Data'. This inquiry showed that the participants in this study came to the collaboration for many different reasons and ideas about the purpose for such a relationship. The participants also had very different ideas about how such a relationship should be conducted. These differences combined to create some issues that affected the development of curriculum and instruction. The issues involved the lack of (a) mutual respect for the work of the partners, (b) understanding about the

  13. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  14. Working Alongside Scientists. Impacts on Primary Teacher Beliefs and Knowledge About Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-05-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.

  15. Coteaching as a Model for Preservice Secondary Science Teacher Education

    Science.gov (United States)

    Scantlebury, Kathryn; Gallo-Fox, Jennifer; Wassell, Beth

    2008-01-01

    This paper focuses on a 3-year, longitudinal study of the implementation of coteaching, as an innovative approach for preparing high school science teachers enrolled in an undergraduate science teacher education programme located in the United States. The coteaching/co-generative dialogue/co-respect/co-responsibility dialectic is introduced as a…

  16. Science education reform in Confucian learning cultures: teachers' perspectives on policy and practice in Taiwan

    Science.gov (United States)

    Huang, Ying-Syuan; Asghar, Anila

    2018-03-01

    This empirical study investigates secondary science teachers' perspectives on science education reform in Taiwan and reflects how these teachers have been negotiating constructivist and learner-centered pedagogical approaches in contemporary science education. It also explores the challenges that teachers encounter while shifting their pedagogical focus from traditional approaches to teaching science to an active engagement in students' learning. Multiple sources of qualitative data were obtained, including individual interviews with science teachers and teachers' reflective journals about Confucianism in relation to their educational philosophies. Thematic analysis and constant comparative method were used to analyze the data. The findings revealed that Confucian traditions play a significant role in shaping educational practices in Taiwan and profoundly influence teachers' epistemological beliefs and their actual classroom practice. Indeed, science teachers' perspectives on Confucian learning traditions played a key role in supporting or obstructing their pedagogical commitments to inquiry-based and learner-centered approaches. This study draws on the literature concerning teachers' professional struggles and identity construction during educational reform. Specifically, we explore the ways in which teachers respond to educational changes and negotiate their professional identities. We employed various theories of identity construction to understand teachers' struggles and challenges while wrestling with competing traditional and reform-based pedagogical approaches. Attending to these struggles and the ways in which they inform the development of a teacher's professional identity is vital for sustaining current and future educational reform in Taiwan as well as in other Eastern cultures. These findings have important implications for teachers' professional development programs in East Asian cultures.

  17. The Use of Journal Clubs in Science Teacher Education

    Science.gov (United States)

    Tallman, Karen A.; Feldman, Allan

    2016-01-01

    This qualitative study explored how in a 7-month-long journal club pre- and inservice science teachers engaged with education research literature relevant to their practice to reduce the theory-practice gap. In the journal club they had the opportunity to critique and analyze peer-reviewed science education articles in the context of their…

  18. Turkish Science Teachers' Use of Educational Research and Resources

    Science.gov (United States)

    Ilhan, Nail; Sözbilir, Mustafa; Sekerci, Ali Riza; Yildirim, Ali

    2015-01-01

    Research results demonstrate that there is a gap between educational research and practice. Turkey is not an exception in this case. This study aims to examine to what extent and how educational research and resources are being followed,understood and used in classroom practices by science teachers in Turkey. A sample of 968 science teachers…

  19. Learning design for science teacher training and educational development

    DEFF Research Database (Denmark)

    Bjælde, Ole Eggers; Caspersen, Michael E.; Godsk, Mikkel

    This paper presents the impact and perception of two initiatives at the Faculty of Science and Technology, Aarhus University: the teacher training module ‘Digital Learning Design’ (DiLD) for assistant professors and postdocs, and the STREAM learning design model and toolkit for enhancing and tran......This paper presents the impact and perception of two initiatives at the Faculty of Science and Technology, Aarhus University: the teacher training module ‘Digital Learning Design’ (DiLD) for assistant professors and postdocs, and the STREAM learning design model and toolkit for enhancing...... and transforming modules. Both DiLD and the STREAM model have proven to be effective and scalable approaches to encourage educators across all career steps to embrace the potentials of educational technology in science higher education. Moreover, the transformed modules have resulted in higher student satisfaction...

  20. Exploring Secondary Science Teachers' Perceptions on the Goals of Earth Science Education in Taiwan

    Science.gov (United States)

    Chang, Chun-Yen; Chang, Yueh-Hsia; Yang, Fang-Ying

    2009-01-01

    The educational reform movement since the 1990s has led the secondary earth science curriculum in Taiwan into a stage of reshaping. The present study investigated secondary earth science teachers' perceptions on the Goals of Earth Science Education (GESE). The GESE should express the statements of philosophy and purpose toward which educators…

  1. Investigation of Pre-Service Science Teachers' Attitudes towards Sustainable Environmental Education

    Science.gov (United States)

    Keles, Özgül

    2017-01-01

    The purpose of the current study is to investigate pre-service science teachers' sustainable environmental education attitudes and the factors affecting them in terms of some variables (gender and grade level). The study group of the current research is comprised of 154 pre-service teachers attending the Department of Science Education in the…

  2. Practice on the line - science teacher education in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    Pedagogical Content Knowledge (PCK) has been used when describing teacher knowledge for 20 years. Recently the terms CoRe (Content representation) and PaP-eR (Professional and Pedagogical experince Repertoire) have been employed to articulate and document PCK. This extended framework has been used...... with student science teachers from the teacher education programme in Aarhus, Denmark....

  3. Innovating Science Teacher Education: A History and Philosophy of Science Perspective

    Science.gov (United States)

    Niaz, Mansoor

    2010-01-01

    How teachers view the nature of scientific knowledge is crucial to their understanding of science content and how it can be taught. This book presents an overview of the dynamics of scientific progress and its relationship to the history and philosophy of science, and then explores their methodological and educational implications and develops…

  4. Scientists are from Mars, educators are from Venus: Relationships in the ecosystem of science teacher preparation

    Science.gov (United States)

    Duggan-Haas, Don Andrew

    2000-10-01

    Great problems exist in science teaching from kindergarten through the college level (NRC, 1996; NSF, 1996). The problem may be attributed to the failure of teachers to integrate their own understanding of science content with appropriate pedagogy (Shulman, 1986, 1987). All teachers were trained by college faculty and therefore some of the blame for these problems rests on those faculty. This dissertation presents three models for describing secondary science teacher preparation. Two Programs, Two Cultures adapts C. P. Snow's classic work (1959) to describe the work of a science teacher candidate as that of an individual who navigates between two discrete programs: one in college science and the second in teacher education. The second model, Scientists Are from Mars, Educators Are from Venus adapts the popular work of John Gray to describe the system of science teacher education as hobbled by the dysfunctional relationships among the major players and describes the teacher as progeny from this relationship. The third model, The Ecosystem of Science Teacher Preparation reveals some of the deeper complexities of science teacher education and posits that the traditional college science approach treats students as a monoculture when great diversity in fact exists. The three models are described in the context of a large Midwestern university's teacher education program as that program is construed for future biology teachers. Four undergraduate courses typically taken by future biology teachers were observed and described: an introductory biology course; an introductory teacher education course; an upper division course in biochemistry and a senior level science teaching methods course. Seven second semester seniors who were biological Science majors were interviewed. All seven students had taken all of the courses observed. An organization of scientists and educators working together to improve science teaching from kindergarten through graduate school is also

  5. Developing a Material-Dialogic Approach to Pedagogy to Guide Science Teacher Education

    Science.gov (United States)

    Hetherington, Lindsay; Wegerif, Rupert

    2018-01-01

    Dialogic pedagogy is being promoted in science teacher education but the literature on dialogic pedagogy tends to focus on explicit voices, and so runs the risk of overlooking the important role that material objects often play in science education. In this paper we use the findings of a teacher survey and classroom case study to argue that there…

  6. Promoting Issues-based STSE Perspectives in Science Teacher Education: Problems of Identity and Ideology

    Science.gov (United States)

    Pedretti, Erminia G.; Bencze, Larry; Hewitt, Jim; Romkey, Lisa; Jivraj, Ashifa

    2008-09-01

    Although science, technology, society and environment (STSE) education has gained considerable force in the past few years, it has made fewer strides in practice. We suggest that science teacher identity plays a role in the adoption of STSE perspectives. Simply put, issues-based STSE education challenges traditional images of a science teacher and science instructional ideologies. In this paper, we briefly describe the development of a multimedia documentary depicting issues-based STSE education in a teacher’s class and its subsequent implementation with 64 secondary student-teachers at a large Canadian university. Specifically, we set out to explore: (1) science teacher candidates’ responses to a case of issues-based STSE teaching, and (2) how science teacher identity intersects with the adoption of STSE perspectives. Findings reveal that although teacher candidates expressed confidence and motivation regarding teaching STSE, they also indicated decreased likelihood to teach these perspectives in their early years of teaching. Particular tensions or problems of practice consistently emerged that helped explain this paradox including issues related to: control and autonomy; support and belonging; expertise and negotiating curriculum; politicization and action; and biases and ideological bents. We conclude our paper with a discussion regarding the lessons learned about STSE education, teacher identity and the role of multimedia case methods.

  7. Education for sustainable development - Resources for physics and sciences teachers

    Science.gov (United States)

    Miličić, Dragana; Jokić, Ljiljana; Blagdanić, Sanja; Jokić, Stevan

    2016-03-01

    With this article we would like to stress science teachers must doing practical work and communicate on the basis of scientific knowledge and developments, but also allow their students opportunity to discover knowledge through inquiry. During the last five years Serbian project Ruka u testu (semi-mirror of the French project La main á la pâte), as well as European FIBONACCI and SUSTAIN projects have offered to our teachers the wide-scale learning opportunities based on Inquiry Based Science Education (IBSE) and Education for Sustainable Development (ESD). Our current efforts are based on pedagogical guidance, several modules and experimental kits, the website, exhibitions, and trainings and workshops for students and teachers.

  8. Educating Tomorrow's Science Teachers: STEM ACT Conference Report

    Science.gov (United States)

    Sternheim, Morton M.; Feldman, Allan; Berger, Joseph B.; Zhao, Yijie

    2008-01-01

    This document reports on the findings of an NSF-funded conference (STEM ACT) on the alternative certification of science teachers. The conference explored the issues that have arisen in science education as a result of the proliferation of alternative certification programs in the United States, and to identify the research that needs to be done…

  9. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  10. Turkish Preservice Primary School Teachers' Science Teaching Efficacy Beliefs and Attitudes toward Science: The Effect of a Primary Teacher Education Program

    Science.gov (United States)

    Bayraktar, Sule

    2011-01-01

    The main purpose of this study was to investigate the effectiveness of a primary teacher education program in improving science teaching efficacy beliefs (personal science teaching efficacy beliefs and outcome expectancy beliefs) of preservice primary school teachers. The study also investigated whether the program has an effect on student…

  11. Determination of Science Teachers' Opinions about Outdoor Education

    Science.gov (United States)

    Kubat, Ulas

    2017-01-01

    The aim of this research is to discover what science teachers' opinions about outdoor education learning environments are. Outdoor education learning environments contribute to problem-solving, critical and creative thinking skills of students. For this reason, outdoor education learning environments are very important for students to learn by…

  12. Beyond Evolution: Addressing Broad Interactions between Science and Religion in Science Teacher Education

    Science.gov (United States)

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-01-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion…

  13. Science Education Reform in Confucian Learning Cultures: Teachers' Perspectives on Policy and Practice in Taiwan

    Science.gov (United States)

    Huang, Ying-Syuan; Asghar, Anila

    2018-01-01

    This empirical study investigates secondary science teachers' perspectives on science education reform in Taiwan and reflects how these teachers have been negotiating constructivist and learner-centered pedagogical approaches in contemporary science education. It also explores the challenges that teachers encounter while shifting their pedagogical…

  14. Educating science teachers for sustainability: questions, contradictions and possibilities for rethinking learning and pedagogy

    Science.gov (United States)

    Rahm, Jrène; Gorges, Anna

    2017-09-01

    In this review, we explore what educating science teachers for sustainability implies according to the 23 book chapters and many sampled teacher education and science methods courses in the edited book by Susan Stratton, Rita Hagevick, Allan Feldman and Mark Bloom, entitled Educating Science Teachers for Sustainability, published in 2015 by Springer as part of the ASTE Series in Science Education. We situate the review in the current complex landscape of discourses around sustainability education, exploring its grounding in an anthropocentric ideology next to emancipatory practices and a holistic vision of the world. We offer a quick overview of the chapters and themes addressed. We then take up some ideas to think with. We are particularly invested in thinking about the implications of sustainability education as going beyond science teachers and science education, and as implying a serious engagement with and critique of current unsustainable ways of living. We play with the idea of taking sustainability education beyond neoliberal ideals of education and offer some suggestions by bringing in voices of students, youth, land-based learning and the idea of living sustainability. We also explore what indigenous scholars and epistemologies could have contributed to an exploration of sustainability education, a voice that was absent in the book, yet helps desettle the conversation and actions taken, moving the discourse beyond an Eurocentric grounding.

  15. Pedagogical perspectives and implicit theories of teaching: First year science teachers emerging from a constructivist science education program

    Science.gov (United States)

    Dias, Michael James

    Traditional, teacher-centered pedagogies dominate current teaching practice in science education despite numerous research-based assertions that promote more progressive, student-centered teaching methods. Best-practice research emerging from science education reform efforts promotes experiential, collaborative learning environments in line with the constructivist referent. Thus there is a need to identify specific teacher education program designs that will promote the utilization of constructivist theory among new teachers. This study explored the learning-to-teach process of four first-year high school teachers, all graduates of a constructivist-based science education program known as Teacher Education Environments in Mathematics and Science (TEEMS). Pedagogical perspectives and implicit theories were explored to identify common themes and their relation to the pre-service program and the teaching context. Qualitative methods were employed to gather and analyze the data. In depth, semi-structured interviews (Seidman, 1998) formed the primary data for probing the context and details of the teachers' experience as well as the personal meaning derived from first year practice. Teacher journals and teaching artifacts were utilized to validate and challenge the primary data. Through an open-coding technique (Strauss & Corbin, 1990) codes, and themes were generated from which assertions were made. The pedagogical perspectives apparent among the participants in this study emerged as six patterns in teaching method: (1) utilization of grouping strategies, (2) utilization of techniques that allow the students to help teach, (3) similar format of daily instructional strategy, (4) utilization of techniques intended to promote engagement, (5) utilization of review strategies, (6) assessment by daily monitoring and traditional tests, (7) restructuring content knowledge. Assertions from implicit theory data include: (1) Time constraints and lack of teaching experience made

  16. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; McGinnis, J. Randy; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-01-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews,…

  17. Early Childhood Pre-Service Teachers' Self-Images of Science Teaching in Constructivism Science Education Courses

    Science.gov (United States)

    Go, Youngmi; Kang, Jinju

    2015-01-01

    The purpose of this study is two-fold. First, it investigates the self-images of science teaching held by early childhood pre-service teachers who took constructivism early childhood science education courses. Second, it analyzes what aspects of those courses influenced these images. The participants were eight pre-service teachers who took these…

  18. Specifying a curriculum for biopolitical critical literacy in science teacher education: exploring roles for science fiction

    Science.gov (United States)

    Gough, Noel

    2017-12-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of biopolitics. I consider how such a biopolitically inflected critical literacy might find expression in a science teacher education curriculum and suggest a number of ways of materializing such a curriculum in specific literatures, media, procedures, and assessment tasks, with particular reference to the contributions of science fiction in popular media.

  19. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    Science.gov (United States)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition

  20. Reformed Teaching and Learning in Science Education: A Comparative Study of Turkish and US Teachers

    Science.gov (United States)

    Ozfidan, Burhan; Cavlazoglu, Baki; Burlbaw, Lynn; Aydin, Hasan

    2017-01-01

    Achievements of educational reform advantage constructivist understandings of teaching and learning, and therefore highlight a shift in beliefs of teachers and apply these perceptions to the real world. Science teachers' beliefs have been crucial in understanding and reforming science education as beliefs of teachers regarding learning and…

  1. Beyond Evolution: Addressing Broad Interactions Between Science and Religion in Science Teacher Education

    Science.gov (United States)

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-03-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion interactions so that they may better assist pre- and in-service science teachers with addressing topics such as the age and origins of the universe and biological evolution in an appropriate manner. We first introduce some foundational scholarship into the historical interactions between science and religion as well as current efforts to maintain healthy dialogue between perspectives that are frequently characterized as innately in conflict with or mutually exclusive of one another. Given that biological evolution is the dominant science-religion issue of our day, in particular in the USA, we next summarize the origins and strategies of anti-evolution movements via the rise and persistence of Christian Fundamentalism. We then summarize survey and qualitative sociological research indicating disparities between academic scientists and the general public with regard to religious beliefs to help us further understand our students' worldviews and the challenges they often face in campus-to-classroom transitions. We conclude the essay by providing resources and practical suggestions, including legal considerations, to assist science teacher educators with their curriculum and outreach.

  2. Professional Development in Climate Science Education as a Model for Navigating the Next Generations Science Standards - A High School Science Teacher's Perspective

    Science.gov (United States)

    Manning, C.; Buhr, S. M.

    2012-12-01

    The Next Generation Science Standards attempt to move the American K12 education system into the 21st century by focusing on science and engineering practice, crosscutting concepts, and the core ideas of the different disciplines. Putting these standards into practice will challenge a deeply entrenched system and science educators will need significant financial support from state and local governments, professional development from colleges and universities, and the creation of collegial academic networks that will help solve the many problems that will arise. While all of this sounds overwhelming, there are proven strategies and mechanisms already in place. Educators who tackle challenging topics like global climate change are turning to scientists and other like-minded teachers. Many of these teachers have never taken a class in atmospheric science but are expected to know the basics of climate and understand the emerging science as well. Teachers need scientists to continue to reach out and provide rigorous and in-depth professional development opportunities that enable them to answer difficult student questions and deal with community misconceptions about climate science. Examples of such programs include Earthworks, ICEE (Inspiring Climate Education Excellence) and ESSEA (Earth System Science Education Alliance). Projects like CLEAN (Climate Literacy and Energy Awareness Network) provide excellent resources that teachers can integrate into their lessons. All of these benefit from the umbrella of documents like Climate Literacy: The Essential Principles of Climate Science. Support from the aforementioned networks has encouraged the development of effective approaches for teaching climate science. From the perspective of a Geoscience master teacher and instructional coach, this presentation will demonstrate how scientists, researchers, and science education professionals have created models for professional development that create long-term networks supporting

  3. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-01-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized…

  4. A confluence of traditions: Examining teacher practice in the merging of secondary science and environmental education

    Science.gov (United States)

    Astrid, Steele

    Embedding environmental education within secondary science curriculum presents both philosophical and practical difficulties for teachers. This ethnographic/narrative study, with its methodology grounded in eco-feminism and realism/constructivism, examines the work of six secondary science teachers as they engage in an action research project focused on merging environmental education in their science lessons. Over the course of several months the teachers examine and discuss their views and their professional development related to the project. In the place of definitive conclusions, eight propositions relating the work of secondary science teachers to environmental education, form the basis for a discussion of the implications of the study. The implications are particularly relevant to secondary schools in Ontario, Canada, where the embedding of environmental education in science studies has been mandated.

  5. Cultural Memory Banking in Preservice Science Teacher Education

    Science.gov (United States)

    Handa, Vicente C.; Tippins, Deborah J.

    2012-12-01

    This study focused on the exemplification of cultural memory banking as an ethnographic tool to understand cultural practices relevant to science teaching and learning in a rural coastal village in a central island of the Philippine archipelago. Using the collaborative action ethnography as a research methodology, 10 prospective science teachers and a science teacher educator/doctoral candidate formed a research team and documented community funds of knowledge relevant to science teaching and learning through their participation in a Community Immersion course. The study employed the use of the cultural memory banking as a meditational tool to analyze, make sense of, and represent interview, focus-group discussion, and observation data, among others, for the development of culturally relevant science lessons. Originally used as an anthropological tool to preserve cultural knowledge associated with the cultivation of indigenous plant varieties, the cultural memory banking, as adapted in science education, was used, both as a data collection and analytic tool, to locate relevant science at the intersection of community life. The research team developed a cultural memory bank exemplar, "Ginamos: The Stinky Smell that Sells," to highlight the learning experiences and meaning-making process of those involved in its development. Dilemmas and insights on the development and use of cultural memory banking were discussed with respect to issues of knowledge mining and mainstreaming of indigenous/local funds of knowledge, troubling the privileged position of Western-inspired nature of science.

  6. Emotional Climate and High Quality Learning Experiences in Science Teacher Education

    Science.gov (United States)

    Bellocchi, Alberto; Ritchie, Stephen M.; Tobin, Kenneth; King, Donna; Sandhu, Maryam; Henderson, Senka

    2014-01-01

    The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study, we explore the emotional climates (ECs), that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality…

  7. Analysing the problems of science teachers that they encounter while teaching physics education

    Directory of Open Access Journals (Sweden)

    Cihat Demir

    2015-12-01

    Full Text Available Even though physical science is very important in our daily lives, it is insufficiently understood by students. In order for students to get a better physical education, the teachers who have given physics lesson should first eliminated the problems that they face during the teaching process. The aim of this survey is to specify the matters encountered by science teachers during the teaching of physics and to provide them with solutions. The study group consisted of 50 science teachers who worked in Diyarbakır and Batman over the period of 2014 - 2015. This research is a descriptive study carried out by content analysis. In this study, semi-structured interview have been used along with qualitative research methods. According to the research findings, the top problems that the physics teachers encountered in physics lesson while processing the topics were laboratory problems. Some solutions have been introduced for science teachers in order to help them provide a better physics education.

  8. Strengthening Mathematics And Science Education (SMASE) For Improving The Quality Of Teachers in Nigeria

    Science.gov (United States)

    Shuaibu, Zainab Muhammad

    2016-04-01

    The education system in Nigeria, especially at the basic education level, teachers who teach mathematics and science need to be confident with what they are teaching, they need to have appropriate techniques and strategies of motivating the pupils. If these subjects are not taught well at the basic education level its extraordinarily hard to get them (pupils/students) back to track, no matter what will be done in the secondary and tertiary level. Teachers as the driving force behind improvements in the education system are in the best position to understand and propose solutions to problems faced by students. Teachers must have access to sustainable, high quality professional development in order to improve teaching and student learning. Teachers' professional development in Nigeria, however, has long been criticized for its lack of sustainability and ability to produce effective change in teaching and students achievement. Education theorists today believe that a critical component of educational reform lies in providing teachers with various opportunities and supports structures that encourage ongoing improvement in teachers' pedagogy and discipline-specific content knowledge. However, the ongoing reforms in education sector and the need to refocus the Nigeria education system towards the goal of the National Economical Empowerment and Development Strategies (NEEDS) demand that the existing In-service and Education Training (INSET) in Nigeria be refocused. It is against this premise that an INSET programme aimed at Strengthening Mathematics And Science Education (SMASE) for primary and secondary school teachers was conceived. The relevance of the SMASE INSET according to the Project Design Matrix (PDM) was derived from an In-service aimed at enhancing the quality of teachers in terms of positive attitude, teaching methodology, mastery of content, resource mobilization and utilization of locally available teaching and learning materials. The intervention of

  9. Teachers' voices: A comparison of two secondary science teacher preparation programs

    Science.gov (United States)

    Kohlhaas Labuda, Kathryn

    This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M-teachers

  10. Counter-storying the grand narrative of science (teacher) education: towards culturally responsive teaching

    Science.gov (United States)

    Taylor, Peter Charles

    2011-12-01

    John Settlage's article— Counterstories from White Mainstream Preservice Teachers: Resisting the Master Narrative of Deficit by Default—outlines his endeavour to enable pre-service teachers to develop culturally responsive science teaching identities for resisting the master narrative of deficit thinking when confronted by the culturally different `other.' Case study results are presented of the role of counterstories in enabling five pre-service teachers to overcome deficit thinking. In this forum, Philip Moore, a cultural anthropologist and university professor, deepens our understanding of the power and significance of counterstories as an educational tool for enabling students to deconstruct oppressive master narratives. Jill Slay, dean of a science faculty, examines her own master narrative about the compatibility of culturally similar academics and graduate students, and finds it lacking. But first, I introduce this scholarship with background notes on the critical paradigm and its adversary, the grand narrative of science education, following which I give an appreciative understanding of John's pedagogical use of counterstories as a transformative strategy for multi-worldview science teacher education.

  11. Science teacher learning for MBL-supported student-centered science education in the context of secondary education in Tanzania

    NARCIS (Netherlands)

    Voogt, Joke; Tilya, F.; van den Akker, Jan

    2009-01-01

    Science teachers from secondary schools in Tanzania were offered an in-service arrangement to prepare them for the integration of technology in a student-centered approach to science teaching. The in-service arrangement consisted of workshops in which educative curriculum materials were used to

  12. The (non)making/becoming of inquiry practicing science teachers

    Science.gov (United States)

    Sharma, Ajay; Muzaffar, Irfan

    2012-03-01

    Teacher education programs have adopted preparing science teachers that teach science through inquiry as an important pedagogic agenda. However, their efforts have not met with much success. While traditional explanations for this failure focus largely on preservice science teachers' knowledge, beliefs and conceptions regarding science and science teaching, this conceptual paper seeks to direct attention toward discursive practices surrounding inquiry science teaching in teacher education programs for understanding why most science teachers do not teach science through inquiry. The paper offers a theoretical framework centered on critical notions of subjection and performativity as a much needed perspective on making/becoming of science teachers through participation in discursive practices of science teacher education programs. It argues that research based on such perspectives have much potential to offer a deeper understanding of the difficult challenges teacher education programs face in preparing inquiry practicing science teachers.

  13. Educating elementary-aged English learners in science: Scientists and teachers working together

    Science.gov (United States)

    Banuelos, Gloria Rodriguez

    California's K-12 schools contain 40% of the nation's English learners, the majority of them enrolled at the elementary level. Traditionally, English learners in California have difficulty performing at the same level as their native English speaking counterparts on national achievement tests, such as the National Assessment of Educational Progress. In 1998, California voters passed Proposition 227 mandating that English learners be taught "overwhelmingly" in English, thus making teachers, many without expertise, responsible for teaching multilevel English proficient students subject matter. I studied the use of scientist-teacher partnerships as a resource for teachers of English learners. University scientists (graduate students) partnered with local elementary school teachers designed and implemented integrated science and English lessons for classrooms with at least 30% English learners. The study explored two major foci. First, integrated science and language lessons implemented by six scientist-teacher partnerships were investigated. Second, the responsibilities taken on by the team members during the implementation of integrated science and language lessons were examined. Three data sources were analyzed: (1) six lesson sequences comprised of 28 lessons; (2) 18 lesson worksheet; and (3) 24 participant Retrospective interview transcripts (12 scientists and 12 teachers). Lessons across were examined according to four analytical categories which included the following: (1) nature of the science activities (e.g. hands-on); nature of language activities (e.g. speaking); (2) nature of instructional practices (e.g. student grouping); and (3) responsibilities of teachers and scientists (e.g. classroom). A micro level analysis illustrates how one scientist-teacher team innovatively used a children's story, Goldilocks and the Three Bears, to teach the measurement of length and temperature. A macro level analysis identified three characteristics of science activities

  14. New Technologies and Science Teachers Education within the Context of Distance Learning: A Case Study for the University of Lagos

    Science.gov (United States)

    Adewara, Ademola Johnson; Lawal, Olufunke

    2015-01-01

    The Open and Distance Learning (ODL) education for science teachers is seen as a solution to the problems of equity and access to teacher education in Nigeria. It is used to provide cost-effective Science Teacher Education, and to train large numbers of teachers within a short period of time. The need for training science teachers through ODL…

  15. Nihithewak Ithiniwak, Nihithewatisiwin and science education: An exploratory narrative study examining Indigenous-based science education in K--12 classrooms from the perspectives of teachers in Woodlands Cree community contexts

    Science.gov (United States)

    Michell, Herman Jeremiah

    This study was guided by the following research questions: What do the stories of teachers in Nihithewak (Woodlands Cree) school contexts reveal about their experiences and tendencies towards cultural and linguistic-based pedagogical practices and actions in K-12 classrooms? How did these teachers come to teach this way? How do their beliefs and values from their experiences in science education and cultural heritage influence their teaching? Why do these teachers do what they do in their science classroom and instructional practices? The research explores Indigenous-based science education from the perspectives and experiences of science teachers in Nihithewak school contexts. Narrative methodology (Clandinin & Connelly, 2000) was used as a basis for collecting and analyzing data emerging from the research process. The results included thematic portraits and stories of science teaching that is connected to Nihithewak and Nihithewatisiwin (Woodlands Cree Way of Life). Major data sources included conversational interviews, out-of-class observations and occasional in-class observations, field notes, and a research journal. An interview guide with a set of open-ended and semi-structured questions was used to direct the interviews. My role as researcher included participation in storied conversations with ten selected volunteer teachers to document the underlying meanings behind the ways they teach science in Nihithewak contexts. This research is grounded in socio-cultural theory commonly used to support the examination and development of school science in Indigenous cultural contexts (Lemke, 2001; O'Loughlin, 1992). Socio-cultural theory is a framework that links education, language, literacy, and culture (Nieto, 2002). The research encapsulates a literature review that includes the history of Aboriginal education in Canada (Battiste & Barman, 1995; Kirkness, 1992; Perley, 1993), Indigenous-based science education (Cajete, 2000; Aikenhead, 2006a), multi

  16. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    Science.gov (United States)

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  17. Using a Multicultural Social Justice Framework to Analyze Elementary Teachers' Meanings of Multicultural Science Education

    Science.gov (United States)

    Kye, Hannah Anne

    In response to the persistent gaps in science opportunities and outcomes across lines of race, class, gender, and disability, decades of science reforms have called for "science for all." For elementary teachers, science for all demands that they not only learn to teach science but learn to teach it in ways that promote more equitable science learning opportunities and outcomes. In this qualitative case study, I use a framework of multicultural social justice education to examine three teachers' beliefs and practices of multicultural science education. The teachers, one preservice and two in-service, taught elementary science in a month-long summer program and met weekly with this researcher to discuss connections between their expressed commitments about teaching toward social justice and their work as science teachers. The data sources for this study included audio recordings of weekly meetings, science lessons, and semi-structured individual interviews. These data were transcribed, coded, and analyzed to define the most salient themes and categories among the individual teachers and across cases. I found that the teachers' beliefs and practices aligned with traditional approaches to school and science wherein science was a set of scripted right answers, diversity was only superficially acknowledged, and multiculturalizing the curriculum meant situating science in unfamiliar real world contexts. These meanings of science positioned the teacher as authority and operated outside of a structural analysis of the salience of race, culture, gender, and disability in students' science learning experiences. As they taught and reflected on their teaching in light of their social justice commitments, I found that the teachers negotiated more constructivist and student-centered approaches to science education. These meanings of science required teachers to learn about students and make their experiences more central to their learning. Yet they continued to only acknowledge

  18. Inquiry-Based Science Education Competencies of Primary School Teachers: A literature study and critical review of the American National Science Education Standards

    Science.gov (United States)

    Alake-Tuenter, Ester; Biemans, Harm J. A.; Tobi, Hilde; Wals, Arjen E. J.; Oosterheert, Ida; Mulder, Martin

    2012-11-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils' application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach inquiry-based science. Our purpose is to develop a profile of professional competence, required for effective inquiry-based science teaching in primary schools in the Netherlands. This article reviews literature and compares the outcomes to the American National Science Education Standards (NSES). In so doing, it seeks to answer the following research questions: What elements of competencies required by primary school teachers who teach inquiry-based science are mentioned, discussed and researched in recent literature? To what extent are the American NSES (introduced 15 years ago) consistent with elements of competencies found in recent literature? A comprehensive literature review was conducted using Educational Resources Information Centre and Google Scholar databases. Fifty-seven peer-reviewed scientific journal articles from 2004 to 2011 were found using keyword combinations. Analysis of these articles resulted in the identification and classification of 22 elements of competencies. This outcome was compared to the American NSES, revealing gaps in the standards with respect to a lack of focus on how teachers view science teaching and themselves as teachers. We also found that elements of competencies are connected and poor mastery of one may affect a teacher's mastery of another. Therefore, we propose that standards for the Netherlands should be presented in a non-linear, holistic, competence-based model.

  19. Science teachers' knowledge development in the context of educational innovation

    NARCIS (Netherlands)

    Henze-Rietveld, Francina Adriana

    2006-01-01

    The research reported in this thesis is concerned with the knowledge development of a small sample of experienced science teachers in the context of a broad innovation in Dutch secondary education, including the introduction of a new syllabus on Public Understanding of Science. The aim of the study

  20. Pedagogical practices in Youth and Adult Education: concepts and practices of Sciences teachers

    OpenAIRE

    Karen Martins Limberger; Valderez Marina do Rosário Lima; Renata Medina Silva

    2014-01-01

    The present work aimed to analyze how the pedagogical practices of Sciences teachers in Youth and Adults Education (YAE) are developed. The study had a qualitative approach and employed semi-structured recorded interviews for data survey, which was later evaluated through the Discursive Textual Analysis. It was verified that YAE Sciences teachers’ planning is based on regular education textbooks and focuses on conceptual contents. Teachers use different teaching strategies, such as movies pic...

  1. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  2. Challenges of Virtual and Open Distance Science Teacher Education in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Vongai Mpofu

    2012-01-01

    Full Text Available This paper reports on a study of the implementation of science teacher education through virtual and open distance learning in the Mashonaland Central Province, Zimbabwe. The study provides insight into challenges faced by students and lecturers on inception of the program at four centres. Data was collected from completed evaluation survey forms of forty-two lecturers who were directly involved at the launch of the program and in-depth interviews. Qualitative data analysis revealed that the programme faces potential threat from centre-, institution-, lecturer-, and student-related factors. These include limited resources, large classes, inadequate expertise in open and distance education, inappropriate science teacher education qualifications, implementer conflict of interest in program participation, students’ low self-esteem, lack of awareness of quality parameters of delivery systems among staff, and lack of standard criteria to measure the quality of services. The paper recommends that issues raised be addressed in order to produce quality teachers.

  3. Model of training of computer science teachers by means of distant education technologies

    Directory of Open Access Journals (Sweden)

    Т А Соловьева

    2009-03-01

    Full Text Available Training of future computer science teachers in conditions of informatization of education is analyzed. Distant educational technologies (DET and traditional process of training, their advantages and disadvantages are considered, active functions of DET as the basis of the model of training by means of DET is stressed. It is shown that mixed education combining both distant ant traditional technologies takes place on the basis of the created model. Practical use of the model is shown on the example of the course «Recursion» for future computer science teachers.

  4. Implementation of National Science Education Standards in suburban elementary schools: Teachers' perceptions and classroom practices

    Science.gov (United States)

    Khan, Rubina Samer

    2005-07-01

    This was an interpretive qualitative study that focused on how three elementary school science teachers from three different public schools perceived and implemented the National Science Education Standards based on the Reformed Teaching Observation Protocol and individual interviews with the teachers. This study provided an understanding of the standards movement and teacher change in the process. Science teachers who were experienced with the National Science Education Standards were selected as the subjects of the study. Grounded in the theory of teacher change, this study's phenomenological premise was that the extent to which a new reform has an effect on students' learning and achievement on standardized tests depends on the content a teacher teaches as well as the style of teaching. It was therefore necessary to explore how teachers understand and implement the standards in the classrooms. The surveys, interviews and observations provided rich data from teachers' intentions, reflections and actions on the lessons that were observed while also providing the broader contextual framework for the understanding of the teachers' perspectives.

  5. Challenges and Changes: Developing Teachers' and Initial Teacher Education Students' Understandings of the Nature of Science

    Science.gov (United States)

    Ward, Gillian; Haigh, Mavis

    2017-12-01

    Teachers need an understanding of the nature of science (NOS) to enable them to incorporate NOS into their teaching of science. The current study examines the usefulness of a strategy for challenging or changing teachers' understandings of NOS. The teachers who participated in this study were 10 initial teacher education chemistry students and six experienced teachers from secondary and primary schools who were introduced to an explicit and reflective activity, a dramatic reading about a historical scientific development. Concept maps were used before and after the activity to assess teachers' knowledge of NOS. The participants also took part in a focus group interview to establish whether they perceived the activity as useful in developing their own understanding of NOS. Initial analysis led us to ask another group, comprising seven initial teacher education chemistry students, to take part in a modified study. These participants not only completed the same tasks as the previous participants but also completed a written reflection commenting on whether the activity and focus group discussion enhanced their understanding of NOS. Both Lederman et al.'s (Journal of Research in Science Teaching, 39(6), 497-521, 2002) concepts of NOS and notions of "naive" and "informed" understandings of NOS and Hay's (Studies in Higher Education, 32(1), 39-57, 2007) notions of "surface" and "deep" learning were used as frameworks to examine the participants' specific understandings of NOS and the depth of their learning. The ways in which participants' understandings of NOS were broadened or changed by taking part in the dramatic reading are presented. The impact of the data-gathering tools on the participants' professional learning is also discussed.

  6. Action research in gender issues in science education: Towards an understanding of group work with science teachers

    Science.gov (United States)

    Nyhof-Young, Joyce Marion

    Action research is emerging as a promising means of promoting individual and societal change in the context of university programmes in teacher education. However, significant gaps exist in the literature regarding the use of action research groups for the education of science teachers. Therefore, an action research group, dealing with gender issues in science education, was established within the context of a graduate course in action research at OISE. For reasons outlined in the thesis, action research was deemed an especially appropriate means for addressing issues of gender. The group met 14 times from September 1992 until May 1993 and consisted of myself and five other science teachers from the Toronto area. Two of us were in the primary panel, two in the intermediate panel, and two in the tertiary panel. Five teachers were female. One was male. The experiences of the group form the basis of this study. A methodology of participant observation supported by interviews, classroom visits, journals, group feedback and participant portfolios provides a means of examining experiences from the perspective of the participants in the group. The case study investigates the nature of the support and learning opportunities that the action research group provided for science teachers engaged in curiculum and professional development in the realm of gender issues in science education, and details the development of individuals, the whole group and myself (as group worker, researcher and participant) over the life of the project. The action research group became a resource for science teachers by providing most participants with: A place to personalize learning and research; a place for systematic reflection and research; a forum for discussion; a source of personal/professional support; a source of friendship; and a place to break down isolation and build self-confidence. This study clarifies important relational and political issues that impinge on action research in

  7. Teachers' perceptions on primary science teaching

    Science.gov (United States)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  8. Filling the Educator Pipeline: Recruiting Male Family and Consumer Sciences Teachers

    Science.gov (United States)

    Godfrey, Roxie V.; Manis, Kerry T.

    2017-01-01

    To encourage males to enter the teaching field, specifically in family and consumer sciences (FCS), FCS professionals should participate in recruitment initiatives aimed at males. Administrators, teacher educators, career counselors, and FCS teachers can play a significant role in this comprehensive and systematic effort. This paper adopts the…

  9. Turkish Pre-Service Science Teachers' Views on Science-Technology-Society Issues

    Science.gov (United States)

    Yalvac, Bugrahan; Tekkaya, Ceren; Cakiroglu, Jale; Kahyaoglu, Elvan

    2007-01-01

    The international science education community recognises the role of pre-service science teachers' views about the interdependence of Science, Technology, and Society (STS) in achieving scientific literacy for all. To this end, pre-service science teachers' STS views signal the strengths and the weaknesses of science education reform movements.…

  10. Extended education and the re-definition of the role of educational psychology for science and mathematics teachers

    OpenAIRE

    Maria Marques Zanforlin Pires de Almeida, Inês; Francesca Conte de Almeida, Sandra

    2012-01-01

    This article aims to address the topic of continued teacher education, one of the main themes of the PhD thesis in psychology Re-definition of the Role cif Educational Psychology in Continued Education of Science and Mathetnatics Teachers. By tracing the historical path of the different trends, concepts and movements regarding continued education and the relationship between psychology and education, it has been possible to develop severa! guidelines and reflections related to pedagogical...

  11. Preparing "Professional" Science Teachers: Critical Goals.

    Science.gov (United States)

    Dass, Pradeep Maxwell

    This paper focuses on pre-service teacher education and elaborates on the critical importance of three attributes to the development of professional science teachers: (1) science teachers must be reflective practitioners of their profession; (2) all instructional practice and decisions of science teachers must be backed by a research-based…

  12. Do Inquiring Minds Have Positive Attitudes? The Science Education of Preservice Elementary Teachers

    Science.gov (United States)

    Riegle-Crumb, Catherine; Morton, Karisma; Moore, Chelsea; Chimonidou, Antonia; Labrake, Cynthia; Kopp, Sacha

    2016-01-01

    Due to their potential impact on students' cognitive and non-cognitive outcomes, the negative attitudes towards science held by many elementary teachers are a critical issue that needs to be addressed. This study focuses on the science education of pre-service elementary teachers with the goal of improving their attitudes before they begin their professional lives as classroom teachers. Specifically, this study builds on a small body of research to examine whether exposure to inquiry-based science content courses that actively involve students in the collaborative process of learning and discovery can promote a positive change in attitudes towards science across several different dimensions. To examine this issue, surveys and administrative data were collected from over 200 students enrolled in the Hands on Science (HoS) program for pre-service teachers at the University of Texas at Austin, as well as more than 200 students in a comparison group enrolled in traditional lecture-style classes. Quantitative analyses reveal that after participating in HoS courses, pre-service teachers significantly increased their scores on scales measuring confidence, enjoyment, anxiety, and perceptions of relevance, while those in the comparison group experienced a decline in favorable attitudes to science. These patterns offer empirical support for the attitudinal benefits of inquiry-based instruction and have implications for the future learning opportunities available to students at all education levels. PMID:27667862

  13. Science education for empowerment and social change: a case study of a teacher educator in urban Pakistan

    Science.gov (United States)

    Zahur, Rubina; Calabrese Barton, Angela; Upadhyay, Bhaskar Raj

    2002-09-01

    In this manuscript we focus on the question, 'What should be the purpose of science education for children of the very poor class in caste-oriented developing countries such as Pakistan?' In other words, in a country where the literacy rate hovers around 10 per cent for the poorest segment of society and where there is no expectation that children will complete primary school, of what importance is primary science education and to what end should it be offered in schools? We begin a conversation around this question by presenting, in this manuscript, a case study of one teacher educator whose beliefs and practices sharply deviate from the norm - she believes science education ought to be about empowering students to make physical and political changes in their community. In particular, using the rich, contextual interview and observational data generated through case study, we show how Haleema's (pseudonym) orientation to science teacher education are buttressed by three fundamental beliefs: that low levels of literacy and school achievement among poor children have as much to do with poor families' lack of power/influence on the purposes and processes of schooling as it has to do with opportunities and resources; that school science can begin to address inequalities in power by fostering a kind of scientific literacy among children that leads to individual and community empowerment around health and environmental issues, the very science-related issues that divide quality of life and opportunity for poor families; and that teacher education programmes can play a role in transforming a society's views about how science and scientific practices might play a role in bringing communities together to effect change for the better.

  14. Science Education for Empowerment and Social Change: A Case Study of a Teacher Educator in Urban Pakistan.

    Science.gov (United States)

    Zahur, Rubina; Barton, Angela Calabrese; Upadhyay, Bhaskar Raj

    2002-01-01

    Discusses the purpose of science education for children of the very poor classes in caste-oriented developing countries such as Pakistan. Presents a case study of one teacher educator whose beliefs and practices sharply deviated from the norm--she believes that science education ought to be about empowering students to make physical and political…

  15. How to Motivate Science Teachers to Use Science Experiments

    Directory of Open Access Journals (Sweden)

    Josef Trna

    2012-10-01

    Full Text Available A science experiment is the core tool in science education. This study describes the science teachers' professional competence to implement science experiments in teaching/learning science. The main objective is the motivation of science teachers to use science experiments. The presented research tries to answer questions aimed at the science teachers' skills to use science experiments in teaching/learning science. The research discovered the following facts: science teachers do not include science experiments in teaching/learning in a suitable way; are not able to choose science experiments corresponding to the teaching phase; prefer teachers' demonstration of science experiments; are not able to improvise with the aids; use only a few experiments. The important research result is that an important motivational tool for science teachers is the creation of simple experiments. Examples of motivational simple experiments used into teachers' training for increasing their own creativity and motivation are presented.

  16. THE OBSERVATION OF TEACHER CANDIDATE RELATED SCIENCE AND TECHNOLOGY TEACHER'S PROFICIENCY

    OpenAIRE

    BAHŞİ, Muammer; TURAN, Mehmet; YILAYAZ, Ömer

    2009-01-01

    In this study it is evaluated science and tecnology teacher's proficiency based on students insights of science and tecnology education students in education faculty. It was used Standarts for Teacher Proficiency which is prepared from Ministry of National Education. The research was conducted on 85 Science and Tecnology students (4th classes) studying at the education faculty of Firat University. Data from results of study was analysed by using SPSS.

  17. Precipitation Education: Connecting Students and Teachers with the Science of NASA's GPM Mission

    Science.gov (United States)

    Weaver, K. L. K.

    2015-12-01

    The Global Precipitation Measurement (GPM) Mission education and communication team is involved in variety of efforts to share the science of GPM via hands-on activities for formal and informal audiences and engaging students in authentic citizen science data collection, as well as connecting students and teachers with scientists and other subject matter experts. This presentation will discuss the various forms of those efforts in relation to best practices as well as lessons learned and evaluation data. Examples include: GPM partnered with the Global Observations to Benefit the Environment (GLOBE) Program to conduct a student precipitation field campaign in early 2015. Students from around the world collected precipitation data and entered it into the GLOBE database, then were invited to develop scientific questions to be answered using ground observations and satellite data available from NASA. Webinars and blogs by scientists and educators throughout the campaign extended students' and teachers' knowledge of ground validation, data analysis, and applications of precipitation data. To prepare teachers to implement the new Next Generation Science Standards, the NASA Goddard Earth science education and outreach group, led by GPM Education Specialists, held the inaugural Summer Watershed Institute in July 2015 for 30 Maryland teachers of 3rd-5th grades. Participants in the week-long in-person workshop met with scientists and engineers at Goddard, learned about NASA Earth science missions, and were trained in seven protocols of the GLOBE program. Teachers worked collaboratively to make connections to their own curricula and plan for how to implement GLOBE with their students. Adding the arts to STEM, GPM is producing a comic book story featuring the winners of an anime character contest held by the mission during 2013. Readers learn content related to the science and technology of the mission as well as applications of the data. The choice of anime/manga as the style

  18. Developing Practical Knowledge of the Next Generation Science Standards in Elementary Science Teacher Education

    Science.gov (United States)

    Hanuscin, Deborah L.; Zangori, Laura

    2016-12-01

    Just as the Next Generation Science Standards (NGSSs) call for change in what students learn and how they are taught, teacher education programs must reconsider courses and curriculum in order to prepare teacher candidates to understand and implement new standards. In this study, we examine the development of prospective elementary teachers' practical knowledge of the NGSS in the context of a science methods course and innovative field experience. We present three themes related to how prospective teachers viewed and utilized the standards: (a) as a useful guide for planning and designing instruction, (b) as a benchmark for student and self-evaluation, and (c) as an achievable vision for teaching and learning. Our findings emphasize the importance of collaborative opportunities for repeated teaching of the same lessons, but question what is achievable in the context of a semester-long experience.

  19. Exploring reforms while learning to teach science: Facilitating exploration of theory-practice relationships in a teacher education study group

    Science.gov (United States)

    Foster, Jacob G.

    This dissertation inserts a new view into an old problem in teacher education. The study explores the theory-practice gap, the large distance between what preservice science teachers experience in schools, are able to enact, and are told they should hold themselves to in their practice. It does so by narrowing the focus of analysis to a secondary science study group and examining how the facilitator uses sociocultural constructivism to promote discussion. The analysis surfaces key communicative moves made by the facilitator and preservice teachers that yield fruitful discussion of theory-practice relationships. Additionally, the study's use of discourse analysis as a methodology and intertextuality as a conceptual framework opens new directions for applied sociolinguistic research and scholarship in science teacher education. Findings from the study focus on what was discussed and how explorations of theory-practice relationships were facilitated. Preservice teachers in the study group engaged in meaningful conversations about constructivist theory and its application to their students and teaching of science. They discussed many science education topics such as planning science lessons that actively engage students, assessment of content understanding, and management of content-based activities. Discussions of broader science education goals, including implementation of inquiry or development of collaborative communities, were not promoted. Examination of the facilitation illuminates a number of strategies found to be helpful in supporting these explorations. This study shows that facilitation can successfully support preservice teachers to construct understanding of social constructivist assumptions underlying the National Science Education Standards (NSES), as well as a few components of the Standards themselves. The focus on the underlying assumptions suggests that science teacher education should focus on these so that preservice teachers can build a strong

  20. The Use of Journal Clubs in Science Teacher Education

    Science.gov (United States)

    Tallman, Karen A.; Feldman, Allan

    2016-04-01

    This qualitative study explored how in a 7-month-long journal club pre- and inservice science teachers engaged with education research literature relevant to their practice to reduce the theory-practice gap. In the journal club they had the opportunity to critique and analyze peer-reviewed science education articles in the context of their classroom practice. Data sources included audio recordings of the meetings; semi-structured pre- and post-interviews of the teachers; focus groups; and artifacts (e.g., journal articles, reflective paper, email exchanges, and researcher's field notes). Data were analyzed using the techniques of grounded theory (Corbin & Strauss in Basics of qualitative research, 3rd ed. Sage, Thousand Oaks, 2008). In addition we used some preconceived categories that we created from existing literature on journal clubs and communities of practice (Newswander & Borrego in European Journal of Engineering Education 34(6): 561-571, 2009; Wenger in Communities of practice: learning, meaning, and identity. Cambridge University Press, Cambridge, 1998) and from our previous research (Tallman & Feldman, 2012). We found that the journal club incorporated the three characteristics of a community of practice (Wenger in Communities of practice: learning, meaning, and identity. Cambridge University Press, Cambridge, 1998) into its functioning (mutual engagement, joint enterprise, and shared repertoire). The teachers mutually engaged around the joint enterprise of reading, critiquing, and understanding the research studies with the goal of improving practice. The teachers also asked each other analytical questions, which became a shared repertoire of the journal club. They reflected on their practice by presenting, reading, and discussing the articles, which helped them to determine whether and how the findings from the articles could be incorporated into their teaching practice. In doing so, they learned the skills needed to critique the research literature in

  1. Exploring the role of curriculum materials to support teachers in science education reform

    Science.gov (United States)

    Schneider, Rebecca M.

    2001-07-01

    For curriculum materials to succeed in promoting large-scale science education reform, teacher learning must be supported. Materials were designed to reflect desired reforms and to be educative by including detailed lesson descriptions that addressed necessary content, pedagogy, and pedagogical content knowledge for teachers. The goal of this research was to describe how such materials contributed to classroom practices. As part of an urban systemic reform effort, four middle school teachers' initial enactment of an inquiry-based science unit on force and motion were videotaped. Enactments focused on five lesson sequences containing experiences with phenomena, investigation, technology use, or artifact development. Each sequence spanned three to five days across the 10-week unit. For each lesson sequence, intended and actual enactment were compared using ratings of (1) accuracy and completeness of science ideas presented, (2) amount student learning opportunities, similarity of learning opportunities with those intended, and quality of adaptations , and (3) amount of instructional supports offered, appropriateness of instructional supports and source of ideas for instructional supports. Ratings indicated two teachers' enactments were consistent with intentions and two teachers' enactments were not. The first two were in school contexts supportive of the reform. They purposefully used the materials to guide enactment, which tended to be consistent with standards-based reform. They provided students opportunities to use technology tools, design investigations, and discuss ideas. However, enactment ratings were less reflective of curriculum intent when challenges were greatest, such as when teachers attempted to present challenging science ideas, respond to students' ideas, structure investigations, guide small-group discussions, or make adaptations. Moreover, enactment ratings were less consistent in parts of lessons where materials did not include lesson specific

  2. Career education attitudes and practices of K-12 science educators

    Science.gov (United States)

    Smith, Walter S.

    A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.

  3. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    Science.gov (United States)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These

  4. Science and mathematics teachers of the future

    DEFF Research Database (Denmark)

    Michelsen, Claus; Nielsen, Jan Alexis; Petersen, Morten Rask

    2008-01-01

    This paper presents the project Science and Mathematics Teachers of the Future. The aim of the project is to develop and implement a graduate level equivalent degree program in mathematics and science instruction for in-service teachers of lower secondary education. This aim is achieved...... in the programme through involving the teachers in design, implementation and evaluation of innovative instructional sequences, which deals with a wide range of aspects of mathematics and science, e.g. modern science and the importance of science in society. In the program contemporary science and mathematics...... education research serves as a basis for the design and development of warranted practices with which the teachers may experiment in their classroom. We will focus on the outcomes of offering a program which is intimately tied to (i) contemporary science and mathematics education research, (ii) modern...

  5. Science Teacher Education in Australia: Initiatives and Challenges to Improve the Quality of Teaching

    Science.gov (United States)

    Treagust, David F.; Won, Mihye; Petersen, Jacinta; Wynne, Georgie

    2015-01-01

    In this article, we describe how teachers in the Australian school system are educated to teach science and the different qualifications that teachers need to enter the profession. The latest comparisons of Australian students in international science assessments have brought about various accountability measures to improve the quality of science…

  6. Preservice Elementary Teachers' Science Self-Efficacy Beliefs and Science Content Knowledge

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2016-10-01

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers' science self-efficacy beliefs. However, there are few studies examining the relationship between science self-efficacy beliefs and science content knowledge. The purpose of this mixed methods study is to investigate changes in preservice teachers' science self-efficacy beliefs and science content knowledge and the relationship between the two variables as they co-evolve in a specialized science content course. Results from pre- and post-course administrations of the Science Teaching Efficacy Belief Instrument-B (Bleicher, 2004) and a physical science concept test along with semi-structured interviews, classroom observations and artifacts served as data sources for the study. The 18 participants belonged to three groups representing low, medium and high initial levels of self-efficacy beliefs. A repeated measures multivariate analysis of variance design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs and science conceptual understandings. Additionally, a positive moderate relationship between gains in science conceptual understandings and gains in personal science teaching efficacy beliefs was found. Qualitative analysis of the participants' responses indicated positive shifts in their science teacher self-image and they credited their experiences in the course as sources of new levels of confidence to teach science. The study includes implications for preservice teacher education programs, science teacher education, and research.

  7. The influence of secondary science teachers' pedagogical content knowledge, educational beliefs and perceptions of the curriculum on implementation and science reform

    Science.gov (United States)

    Bonner, Portia Selene

    2001-07-01

    Science education reform is one of the focal points of restructuring the educational system in the United States. However, research indicates a slow change in progression towards science literacy among secondary students. One of the factors contributing to slow change is how teachers implement the curriculum in the classroom. Three constructs are believed to be influential in curriculum implementation: educational beliefs, pedagogical knowledge and perception of the curriculum. Earlier research suggests that there is a strong correlation between teachers' educational beliefs and instructional practices. These beliefs can be predictors of preferred strategies employed in the classroom. Secondly, teachers' pedagogical knowledge, that is the ability to apply theory and appropriate strategies associated with implementing and evaluating a curriculum, contributes to implementation. Thirdly, perception or how the curriculum itself is perceived also effects implementation. Each of these constructs has been examined independently, but never the interplay of the three. The purpose of this qualitative study was to examine the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of a science curriculum with respect to how these influence curriculum implementation. This was accomplished by investigating the emerging themes that evolved from classroom observations, transcripts from interview and supplementary data. Five high school biology teachers in an urban school system were observed for ten months for correspondence of teaching strategies to the curriculum. Teachers were interviewed formally and informally about their perceptions of science teaching, learning and the curriculum. Supplementary material such as lesson plans, course syllabus and notes from classroom observations were collected and analyzed. Data were transcribed and analyzed for recurring themes using a thematic matrix. A theoretical model was developed from the emerging

  8. Teachers as Producers of Data Analytics: A Case Study of a Teacher-Focused Educational Data Science Program

    Science.gov (United States)

    McCoy, Chase; Shih, Patrick C.

    2016-01-01

    Educational data science (EDS) is an emerging, interdisciplinary research domain that seeks to improve educational assessment, teaching, and student learning through data analytics. Teachers have been portrayed in the EDS literature as users of pre-constructed data dashboards in educational technologies, with little consideration given to them as…

  9. Supporting Beginning Teacher Planning and Enactment of Investigation-based Science Discussions: The Design and Use of Tools within Practice-based Teacher Education

    Science.gov (United States)

    Kademian, Sylvie M.

    Current reform efforts prioritize science instruction that provides opportunities for students to engage in productive talk about scientific phenomena. Given the challenges teachers face enacting instruction that integrates science practices and science content, beginning teachers need support to develop the knowledge and teaching practices required to teach reform-oriented science lessons. Practice-based teacher education shows potential for supporting beginning teachers while they are learning to teach in this way. However, little is known about how beginning elementary teachers draw upon the types of support and tools associated with practice-based teacher education to learn to successfully enact this type of instruction. This dissertation addresses this gap by investigating how a practice-based science methods course using a suite of teacher educator-provided tools can support beginning teachers' planning and enactment of investigation-based science lessons. Using qualitative case study methodologies, this study drew on video-records, lesson plans, class assignments, and surveys from one cohort of 22 pre-service teachers (called interns in this study) enrolled in a year-long elementary education master of the arts and teaching certification program. Six focal interns were also interviewed at multiple time-points during the methods course. Similarities existed across the types of tools and teaching practices interns used most frequently to plan and enact investigation-based discussions. For the focal interns, use of four synergistic teaching practices throughout the lesson enactments (including consideration of students' initial ideas; use of open-ended questions to elicit, extend, and challenge ideas; connecting across students' ideas and the disciplinary core ideas; and use of a representation to organize and highlight students' ideas) appeared to lead to increased opportunities for students to share their ideas and engage in data analysis, argumentation and

  10. A phenomenological case study concerning science teacher educators' beliefs and teaching practices about culturally relevant pedagogy and preparing K-12 science teachers to engage African American students in K-12 science

    Science.gov (United States)

    Underwood, Janice Bell

    Due to the rising diversity in today's schools, science teacher educators (STEs) suggest that K-12 teachers must be uniquely prepared to engage these students in science classrooms. Yet, in light of the increasing white-black science achievement gap, it is unclear how STEs prepare preservice teachers to engage diverse students, and African Americans in particular. Therefore, the purpose of this study was to find out how STEs prepare preservice teachers to engage African American students in K-12 science. Thus, using the culturally relevant pedagogy (CRP) framework, this phenomenological case study explored beliefs about culturally relevant science teaching and the influence of reported beliefs and experiences related to race on STEs' teaching practices. In the first phase, STE's in a mid-Atlantic state were invited to participate in an electronic survey. In the second phase, four participants, who were identified as exemplars, were selected from the survey to participate in three semi-structured interviews. The data revealed that STEs were more familiar with culturally responsive pedagogy (CResP) in the context of their post-secondary classrooms as opposed to CRP. Further, most of the participants in part one and two described modeling conventional ways they prepare their preservice teachers to engage K-12 students, who represent all types of diversity, without singling out any specific race. Lastly, many of the STEs' in this study reported formative experiences related to race and beliefs in various manifestations of racism have impacted their teaching beliefs and practices. The findings of this study suggest STEs do not have a genuine understanding of the differences between CRP and CResP and by in large embrace CResP principles. Secondly, in regards to preparing preservice teachers to engage African American students in science, the participants in this study seemed to articulate the need for ideological change, but were unable to demonstrate pedagogical changes

  11. Inspiring Climate Education Excellence(ICEE): Developing Elearning professional development modules - secondary science teachers

    Science.gov (United States)

    Kellagher, E.; Buhr, S. M.; Lynds, S. E.; McCaffrey, M. S.; Cires Education Outreach

    2011-12-01

    Inspiring Climate Education Excellence (ICEE) is a NASA-funded project to develop content knowledge and knowledge of effective teaching strategies in climate education among secondary science teachers. ICEE resources are aligned with the Essential Principles of Climate Science. Building upon a needs assessment and face to face workshop, ICEE resources include iTunesU videos, an ICEE 101 resource site with videos and peer-reviewed learning activities, and a moderated online forum. Self-directed modules and an online course are being developed around concepts and topics in which teachers express the most interest and need for instruction. ICEE resources include attention to effective teaching strategies, such as awareness of student misconceptions, strategies for forestalling controversy and advice from master teachers on implementation and curriculum development. The resources are being developed in partnership with GLOBE, and the National Science Digital Library (NSDL) and are informed by the work of the Climate Literacy and Energy Awareness Network (CLEAN) project. ICEE will help to meet the professional development needs of teachers, including those participating in the GLOBE Student Climate Research Campaign.

  12. Preschool Teachers' Attitudes and Beliefs Toward Science

    Science.gov (United States)

    Lloyd, Sharon Henry

    In the United States, a current initiative, Advancing Active STEM Education for Our Youngest Learners, aims to advance science, technology, engineering, and math (STEM) education in early childhood. The purpose of this study was to understand preschool teachers' proficiency with science and address the problem of whether or not science learning opportunities are provided to young children based on teachers' attitudes and beliefs. A theoretical framework for establishing teachers' attitudes toward science developed by van Aalderen-Smeets, van der Molen, and Asma, along with Bandura's theory of self-efficacy were the foundations for this research. Research questions explored preschool teachers' attitudes and beliefs toward science in general and how they differed based on education level and years of preschool teaching experience. Descriptive comparative data were collected from 48 preschool teacher participants using an online format with a self-reported measure and were analyzed using nonparametric tests to describe differences between groups based on identified factors of teacher comfort, child benefit, and challenges. Results indicated that the participants believed that early childhood science is developmentally appropriate and that young children benefit from science instruction through improved school-readiness skills. Preschool teachers with a state credential or an associate's degree and more teaching experience had more teacher comfort toward science based on attitudes and beliefs surveyed. The data indicated participating preschool teachers experienced few challenges in teaching science. The study may support positive social change through increased awareness of strengths and weaknesses of preschool teachers for the development of effective science professional development. Science is a crucial component of school-readiness skills, laying a foundation for success in later grades.

  13. Possibilities and Limits of Integrating Science and Diversity Education in Preservice Elementary Teacher Preparation

    Science.gov (United States)

    Bravo, Marco A.; Mosqueda, Eduardo; Solís, Jorge L.; Stoddart, Trish

    2014-08-01

    In this paper we present findings from a project that documented the development of preservice teachers' beliefs and practices in delivering science instruction that considers issues of language and culture. Teacher candidates in the intervention group ( n = 65) received a science methods course and teaching practicum experience that provided guidance in teaching science in culturally and linguistically responsive ways. Comparisons between a control group of preservice teachers ( n = 45) and those involved in the intervention yielded stronger beliefs about the efficacy in promoting collaboration in science teaching than the intervention group. Observations of these preservice teachers during their teaching practicum revealed differences in favor of the intervention group in: (a) implementing science instruction that addressed the language and literacy involved in science; (b) using questions that elicited higher order thinking and; (c) providing scaffolds (e.g., purposeful feedback, probing student background knowledge) when confronting abstract scientific concepts. Implications for preservice teacher education are addressed.

  14. Diffusing Innovations: Adoption of Serious Educational Games by K-12 Science Teachers

    Science.gov (United States)

    Vallett, David; Annetta, Leonard; Lamb, Richard; Bowling, Brandy

    2014-01-01

    Innovation is a term that has become widely used in education; especially as it pertains to technology infusion. Applying the corporate theory of diffusing innovation to educational practice is an innovation in itself. This mixed-methods study examined 38 teachers in a science educational gaming professional development program that provided…

  15. Making science accessible through collaborative science teacher action research on feminist pedagogy

    Science.gov (United States)

    Capobianco, Brenda M.

    The underrepresentation of women and minorities in science is an extensively studied yet persistent concern of our society. Major reform movements in science education suggest that better teaching, higher standards, and sensitivity to student differences can overcome long-standing obstacles to participation among women and minorities. In response to these major reform movements, researchers have suggested teachers transform their goals, science content, and instructional practices to make science more attractive and inviting to all students, particularly young women and minorities (Barton, 1998; Brickhouse, 1994; Mayberry & Rees, 1999; Rodriguez, 1999; Roychoudhury, Tippins, & Nichols, 1995). One of the more dominant approaches currently heralded is the use of feminist pedagogy in science education. The purpose of this study was to examine the ways eleven middle and high school science teachers worked collaboratively to engage in systematic, self-critical inquiry of their own practice and join with other science teachers to engage in collaborative conversations in effort to transform their practice for a more equitable science education. Data were gathered via semi-structured interviews, whole group discussions, classroom observations, and review of supporting documents. Data analysis was based on grounded theory (Strauss & Corbin, 1990) and open coding (Miles and Huberman, 1994). This study described the collective processes the science teachers and university researcher employed to facilitate regular collaborative action research meetings over the course of six months. Findings indicated that engaging in collaborative action research allowed teachers to gain new knowledge about feminist science teaching, generate a cluster of pedagogical possibilities for inclusive pedagogy, and enhance their understanding for science teaching. Additional findings indicated dilemmas teachers experienced including resistance to a feminist agenda and concerns for validity in action

  16. Developing Elementary Science PCK for Teacher Education: Lessons Learned from a Second Grade Partnership

    Science.gov (United States)

    Bradbury, Leslie U.; Wilson, Rachel E.; Brookshire, Laura E.

    2017-06-01

    In this self-study, two science educators partnered with two elementary teachers to plan, implement, and reflect on a unit taught in second grade classrooms that integrated science and language arts. The researchers hoped to increase their pedagogical content knowledge (PCK) for elementary science teaching so that they might use their experiences working in an elementary context to modify their practices in their elementary science method instruction. The research question guiding the study was: What aspects of our PCK for elementary science teaching do we as science educators develop by co-planning, co-teaching, and reflecting with second grade teachers? Data include transcripts of planning meetings, oral reflections about the experience, and videos of the unit being enacted. Findings indicate that managing resources for science teaching, organizing students for science learning, and reflecting on science teaching were themes prevalent in the data. These themes were linked to the model of PCK developed by Park and Oliver (Research in Science Education, 38, 261-284, 2008) and demonstrate that we developed PCK for elementary science teaching in several areas. In our discussion, we include several proposed changes for our elementary science methods course based on the outcomes of the study.

  17. Preservice Teachers and Their Preconceptions of the NGSS Science and Engineering Practice of Developing and Using Models in Elementary Science Education

    Science.gov (United States)

    Burks, Lizette A.

    The science and engineering practice of developing and using models is a new science practice identified to achieve the vision of three-dimensional teaching and learning and as such should be an important new component of teacher preparation programs (NRC, 2012). Developing and using models is a high-leverage practice in teacher preparation because of the use of discourse in its implementation that is also used in other practices utilized within the NGSS (NGSS Lead States, 2013) science classroom. Additionally, the overlap between the other seven identified NGSS (NGSS Lead States, 2013) practices and the development and use of models along with the use of models represented in two of the overall three dimensions of the new vision for science education (NRC, 2012) contribute to its high leverage nature. The intent of this study was to examine elementary science preservice teachers' understandings and preconceptions about the practice of developing and using models. This study provides important information for teacher preparation to use this high-leverage practice. The study examined preservice teachers' preconceptions about the practice of developing and using models including discourse patterns the preservice teachers identified as being critical to the success of this practice in the classroom. Data were gathered through a written survey in which preservice teachers described their initial understanding about different components of modeling instruction. A video was used to elicit their initial understandings about certain components of modeling instruction. A sample of the preservice teachers were interviewed to elaborate on their responses to the survey. The results of the study indicated that when preservice teachers initially described how this practice might look in the classroom, only two of the six categories described in A Science Framework for K-12 Science Education (NRC, 2012) for this practice were described by most participants. Of those two

  18. Improving Early Career Science Teachers' Ability to Teach Space Science

    Science.gov (United States)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  19. If Science Teachers Are Positively Inclined Toward Inclusive Education, Why Is It So Difficult?

    Science.gov (United States)

    Spektor-Levy, Ornit; Yifrach, Merav

    2017-08-01

    This paper describes the unique challenges that students with learning disabilities (LD) experience in science studies and addresses the question of the extent to which science teachers are willing and prepared to teach in inclusive classrooms. We employed the theory of planned behavior (TPB), according to which behavioral intentions are a function of individuals' attitudes toward the behavior, their subjective norms, and their perceived control—i.e., their perception of the simplicity and benefits of performing the behavior. The study comprised 215 junior high school science teachers, who answered a TPB-based quantitative questionnaire. Semi-structured interviews were conducted to support and enrich the findings and conclusions. We found that teachers held positive attitudes and were willing to adapt their teaching methods (perceived control), which correlated and contributed to their behavioral intention. In terms of subjective norms, however, they felt a lack of support and ongoing guidance in providing the appropriate pedagogy to meet the needs of students with LD. We therefore recommend that educational policy makers and school management devote attention and resources to providing professional training and appropriate instructional materials and to establishing frameworks for meaningful cooperation between the science teachers and special education staff. This could ensure the efficient cooperation and coordination of all the involved parties and send a positive message of support to the science teachers who are the actual implementers of change.

  20. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  1. Exploring the development of science self-efficacy in preservice elementary school teachers participating in a science education methods course

    Science.gov (United States)

    Gunning, Amanda M.

    The demands of society's increasing dependence on science and technology call for our students to have a solid foundation in science education, starting in the earliest grades. However, elementary school teachers often lack the necessary experiences to deliver that education. This qualitative study seeks to explore the development of six preservice elementary teachers in a semester-long science methods course. The course consisted of many components; one in particular was a microteaching experience, which emerged as especially significant. The participants' experiences throughout the semester were studied primarily through the lens of self-efficacy, but were also examined considering learning theories and mental models. It was found that two participants in particular were self-directed learners and were able to construct for themselves a self-selected cognitive apprenticeship. Other findings include the significance of a microteaching experience on development of self-efficacy in science teaching and the role mental models may or may not play in development of self-efficacy in the science methods course. This study has implications both for preservice elementary education in science and in general.

  2. Training Teachers for the Knowledge Society: Social Media in Science Education

    Directory of Open Access Journals (Sweden)

    Dana Crăciun

    2016-01-01

    Full Text Available Internet and social media (SM have revolutionized the way scientific information is disseminated within our society. Nowadays professional and/or social networks are increasingly used for learning and informal science education successfully supplements the formal one at alleducational levels. Students become addicted to technology from an early age and consistently use SM for communication purposes and personal image. In this context, it is reasonable to assume that the use of Web 2.0 and SM can be successfully integrated in formal science education. This integration, however, depends mainly on how teachers design the learning activities using Web 2.0 and SM, on their digital skills and expertise, on their attitude towards using SM to communicate for personal and professional purposes and to obtain educational benefits. In this study we start from the premise that a positive attitude of future science teachers towards ICT integration and theirwillingness to use SM in their educational communication can be formed in the initial teacher training program, being a crucial factor for the effective use of such tools in education in the future. We detail two activities and analyze them from the SM and Web 2.0 integration perspectives. The first activity is an extracurricular one in which students had to create a digital story and present it to secondary school children in class. The second activity is a curricular one aimed to promote a project-based learning and based on making a comic about an optical phenomenon taught in secondary school. We present and discuss these activities to emphasize how the skills that targetscience teaching using ICT and SM can be developed.

  3. Globalization and Teacher Education

    Science.gov (United States)

    Flinders, David J.

    2009-01-01

    Educational researchers and teacher educators are often concerned with immediate and practical questions. How can health teachers help youth avoid substance abuse? Should a high school biology teacher show Al Gore's "An Inconvenient Truth," or is that film too political for a science classroom? What sports should be included in a physical…

  4. The effects of a professional development geoscience education institute upon secondary school science teachers in Puerto Rico

    Science.gov (United States)

    Llerandi Roman, Pablo Antonio

    The geographic and geologic settings of Puerto Rico served as the context to develop a mixed methods investigation on: (1) the effects of a five-day long constructivist and field-based earth science education professional development institute upon 26 secondary school science teachers' earth science conceptual knowledge, perceptions of fieldwork, and beliefs about teaching earth science; and (2) the implementation of participants' newly acquired knowledge and experience in their science lessons at school. Qualitative data included questionnaires, semi-structured interviews, reflective journals, pre-post concept maps, and pre-post lesson plans. The Geoscience Concept Inventory and the Science Outdoor Learning Environment Inventory were translated into Spanish and culturally validated to collect quantitative data. Data was analyzed through a constructivist grounded theory methodology, descriptive statistics, and non-parametric methods. Participants came to the institute with serious deficiencies in earth science conceptual understanding, negative earth science teaching perspectives, and inadequate earth science teaching methodologies. The institute helped participants to improve their understanding of earth science concepts, content, and processes mostly related to the study of rocks, the Earth's structure, plate tectonics, maps, and the geology of Puerto Rico. Participants also improved their earth science teaching beliefs, perceptions on field-based education, and reflected on their environmental awareness and social responsibility. Participants greatly benefited from the field-based learning environment, inquiry-based teaching approaches modeled, the attention given to their affective domain, and reflections on their teaching practice as part of the institute's activities. The constructivist learning environment and the institute's contextualized and meaningful learning conceptual model were effective in generating interest and confidence in earth science teaching

  5. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    Science.gov (United States)

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…

  6. The Pedagogy of Science Teachers from Non-Natural Science Backgrounds

    Science.gov (United States)

    Woods, Shaneka

    2017-01-01

    This is a descriptive, exploratory, qualitative, collective case study that explores the pedagogical practices of science teachers who do not hold natural science degrees. The intent of this study is to support the creation of alternative pathways for recruiting and retaining high-quality secondary science teachers in K-12 education. The…

  7. "From the Beginning, I Felt Empowered": Incorporating an Ecological Approach to Learning in Elementary Science Teacher Education

    Science.gov (United States)

    Birmingham, Daniel; Smetana, Lara; Coleman, Elizabeth

    2017-09-01

    While a renewed national dialog promotes the importance of science education for future technological and economic viability, students must find science personally relevant to themselves and their communities if the goals set forth in recent reform movements are to be achieved. In this paper, we investigate how incorporating an ecological perspective to learning in teacher education, including opportunities to participate with science in connection to their everyday lives, influenced the ways in which elementary teacher candidates (TCs) envisioned learning and doing science and its potential role in their future classroom. We draw from data collected across three sections of a field-based elementary methods course focused on learning to teach science and social studies through inquiry. We argue that participating in an authentic interdisciplinary inquiry project impacted the ways in which TCs conceived of science, their identities as science learners and teachers and their commitments to bringing inquiry-based science instruction to their future classrooms. This paper addresses issues regarding access to quality science learning experiences in elementary classrooms through empowering TCs to build identities as science learners and teachers in order to impact conditions in their future classrooms.

  8. Inquiry-Based Science Education Competencies of Primary School Teachers: A Literature Study and Critical Review of the American National Science Education Standards

    Science.gov (United States)

    Alake-Tuenter, Ester; Biemans, Harm J. A.; Tobi, Hilde; Wals, Arjen E. J.; Oosterheert, Ida; Mulder, Martin

    2012-01-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils' application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach inquiry-based science. Our purpose is to develop a…

  9. Understanding Standards and Assessment Policy in Science Education: Relating and Exploring Variations in Policy Implementation by Districts and Teachers in Wisconsin

    Science.gov (United States)

    Anderson, Kevin John Boyett

    Current literature shows that many science teachers view policies of standards-based and test-based accountability as conflicting with research-based instruction in science education. With societal goals of improving scientific literacy and using science to spur economic growth, improving science education policy becomes especially important. To understand perceived influences of science education policy, this study looked at three questions: 1) How do teachers perceive state science standards and assessment and their influence on curriculum and instruction? 2) How do these policy perspectives vary by district and teacher level demographic and contextual differences? 3) How do district leaders' interpretations of and efforts within these policy realms relate to teachers' perceptions of the policies? To answer these questions, this study used a stratified sample of 53 districts across Wisconsin, with 343 middle school science teachers responding to an online survey; science instructional leaders from each district were also interviewed. Survey results were analyzed using multiple regression modeling, with models generally predicting 8-14% of variance in teacher perceptions. Open-ended survey and interview responses were analyzed using a constant comparative approach. Results suggested that many teachers saw state testing as limiting use of hands-on pedagogy, while standards were seen more positively. Teachers generally held similar views of the degree of influence of standards and testing regardless of their experience, background in science, credentials, or grade level taught. District SES, size and past WKCE scores had some limited correlations to teachers' views of policy, but teachers' perceptions of district policies and leadership consistently had the largest correlation to their views. District leadership views of these state policies correlated with teachers' views. Implications and future research directions are provided. Keywords: science education, policy

  10. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    Science.gov (United States)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  11. Fostering solidarity and transforming identities: A collaborative approach to elementary science teacher education

    Science.gov (United States)

    Siry, Christina A.

    This study explores the use of coteaching and cogenerative dialogue in pre-service elementary teacher education, and the ways in which collaborating to share responsibility for learning and teaching can afford the development of solidarity and new teachers' identity transformations. Specifically, the research detailed in this dissertation focuses on learning to teach science in a field-based methods course taught partially on a college campus and partially in an urban elementary school. I used critical ethnography guided by the theoretical frameworks of cultural sociology and the sociology of emotions. The lens of phenomenology provided the contextual aspects of the individual experience, and design experiment was utilized as the research unfolded, affording continual redesign of the work. Issues of identity and group membership are central to this research, and I have explored connections between the emergence of solidarity within a group of teachers and the individual identity transformations supported through a collective sense of belonging. A key component of this study was an analysis of the co-responsibility nurtured through coteaching and cogenerative dialogue, and thus the dialectical relationship between the individual and the collective is critical to this research. At the individual level, I examined identity development, and individual participation in a field-based methods course. At the collective level, I considered the ways that participants form collective identities and group solidarity. Two of the chapters of my dissertation are coauthored with students, as I have sought to dismantle teacher-student hierarchies and replace them with complex relationships supported through polysemic and polyphonic approaches to research. In examining identity and solidarity as they emerged from this approach, I make the following contributions to science teacher education; (1) identify resources and practices in elementary science teaching that surface in a

  12. Design and validation of a standards-based science teacher efficacy instrument

    Science.gov (United States)

    Kerr, Patricia Reda

    National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA

  13. Attitudes Toward Integration as Perceived by Preservice Teachers Enrolled in an Integrated Mathematics, Science, and Technology Teacher Education Program.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    2002-01-01

    Describes the purpose of the Master of Education (M. Ed.) Program in Integrated Mathematics, Science, and Technology Education (MSAT Program) at The Ohio State University and discusses preservice teachers' attitudes and perceptions toward integrated curriculum. (Contains 35 references.) (YDS)

  14. Science teachers' worldviews and values regarding nature and the environment

    Science.gov (United States)

    Roberts, Wendy P.

    According to the National Science Education Standards (1996), science educators are challenged with the goal of educating future citizens and policy makers to make informed decisions concerning socio-scientific issues. Previous science education research has not explored the influence of science teachers' personal worldviews and values in achieving this educational goal. The purpose of this study was to investigate secondary science teachers' worldviews and values as they relate to nature and environmental education in their science classrooms. The participants' descriptions of their environmental personae and their perception of its influence in their classrooms were also examined. The participants represented a purposeful sample of twelve certified secondary school science teachers who teach in a suburban Atlanta, Georgia school. The study employed an interpretive, qualitative methodology using a constant comparative, inductive analysis design to develop grounded theory. Each participant's worldview, values, and environmental personae regarding the natural world and the environment were explored using William Cobern's (2000) Nature Card Sort instrument, responses to five environmental scenarios and individual interviews that addressed each participant's interpretation of the effect that personal worldviews and values have in their science classrooms. The participants' worldviews and values were disproportionately reflective of both science and society with far more weight given to the contextual values of society rather than the constitutive values of science. Most of these teachers had strong spiritual worldviews of nature; however, these views were of a Puritanical nature rather than Aboriginal. The participants felt conflicted about the appropriate course of action in many environmental issues. Contrary to other studies conducted in this field, there were few philosophical differences between teachers in the different disciplines of science, with the exception

  15. Using Educational Computer Games in the Classroom: Science Teachers' Experiences, Attitudes, Perceptions, Concerns, and Support Needs

    Science.gov (United States)

    An, Yun-Jo; Haynes, Linda; D'Alba, Adriana; Chumney, Frances

    2016-01-01

    Science teachers' experiences, attitudes, perceptions, concerns, and support needs related to the use of educational computer games were investigated in this study. Data were collected from an online survey, which was completed by 111 science teachers. The results showed that 73% of participants had used computer games in teaching. Participants…

  16. PolarTREC-Teachers and Researchers Exploring and Collaborating: Science Education from the Poles to the World

    Science.gov (United States)

    Warnick, W. K.; Breen, K.; Warburton, J.; Fischer, K.; Wiggins, H.; Owens, R.; Polly, B.; Wade, B.; Buxbaum, T.

    2007-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that advances polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. Currently in its second year, the program fosters the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science. Through PolarTREC, over 40 U.S. teachers will spend two to six weeks in the Arctic or Antarctic, working closely with researchers in the field as an integral part of the science team. Research projects focus on a wide range of IPY science themed topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and teacher peer groups. To learn more about PolarTREC visit the website at: http://www.polartrec.com or contact info@polartrec.com or 907-474-1600. PolarTREC is funded by NSF and managed by the Arctic Research Consortium of the US (ARCUS).

  17. Development of Socioscientific Issues-Based Teaching for Preservice Science Teachers

    OpenAIRE

    Prasart Nuangchalerm

    2009-01-01

    Problem statement: In the context of science education reform in Thailand, we need to prepare science teachers who can face science and social issues controversial; teachers can response the question socioscientific issues and let their students to meet the goal of science education. This study investigated the conception leading preservice science teachers approaching socioscientific issues-based teaching. The activities in classroom emphasized on peer discussion about science and social ref...

  18. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  19. The Current Situation of Field Experience in a Five-Year Science Teacher Education Program in Thailand

    Science.gov (United States)

    Faikhamta, Chatree; Jantarakantee, Ekgapoom; Roadrangka, Vantipa

    2011-01-01

    This research explored the current situation in managing the field experience of a five-year science teacher education program in one university in Thailand. A number of methods were used to assess field experience situation: (1) a questionnaire on the perceptions of pre-service science teachers of field experience management; (2) participant…

  20. National standards in science education: Teacher perceptions regarding utilization

    Science.gov (United States)

    Fletcher, Carol Louise Parsons

    teachers are unlikely to embrace national standards while others choose to utilize them as a tool for reforming science education in their classrooms, schools, or districts. As such, it can be used by reformers to design and diagnostically evaluate the implementation process and its related staff development.

  1. Pre-Service Teachers' Development of Technological Pedagogical Content Knowledge (TPACK) in the Context of a Secondary Science Teacher Education Program

    Science.gov (United States)

    Habowski, Thomas; Mouza, Chrystalla

    2014-01-01

    This study investigates pre-service teachers' TPACK development in a secondary science teacher education program that combined a content-specific technology integration course with extensive field experience. Both quantitative and qualitative data were collected. Quantitative data were collected through a pre-post administration of the…

  2. Perceptions on the importance of gerontological education by teachers and students of undergraduate health sciences

    Directory of Open Access Journals (Sweden)

    Correa-Muñoz Elsa

    2007-01-01

    Full Text Available Abstract Background The main challenge of higher education institutions throughout the world is to develop professionals capable of understanding and responding to the current social priorities of our countries. Given the utmost importance of addressing the complex needs of an increasingly elderly population in Mexico, the National Autonomous University of Mexico has systematically incorporated modules dealing with primary gerontological health care into several of its undergraduate programs in health sciences. The objective of this study was to analyze teacher's and student's perceptions about the current educational practices on gerontology. Methods A cross-sectional study was carried out with a sample of 26 teachers and 122 undergraduate students. Subjects were administered interviews and responded survey instrument. Results A vast proportion of the teachers (42% reported students' attitudes towards their academic training as the most important factor affecting learning in the field of gerontology, whereas students reported that the main problems of education in gerontology were theoretical (32% and methodological (28%. In addition, 41% of students considered education on ageing matters as an essential element for their professional development, as compared to 19% of teachers (p Conclusion Our findings suggest that the teachers' perceptions about the low importance of education on ageing matters for the professional practice of health sciences could be a negative factor for gerontology teaching.

  3. From Students to Teachers: Investigating the Science Teaching Efficacy Beliefs and Experiences of Graduate Primary Teachers

    Science.gov (United States)

    Deehan, James; Danaia, Lena; McKinnon, David H.

    2018-03-01

    The science achievement of primary students, both in Australia and abroad, has been the subject of intensive research in recent decades. Consequently, much research has been conducted to investigate primary science education. Within this literature, there is a striking juxtaposition between tertiary science teaching preparation programs and the experiences and outcomes of both teachers and students alike. Whilst many tertiary science teaching programs covary with positive outcomes for preservice teachers, reports of science at the primary school level continue to be problematic. This paper begins to explore this apparent contradiction by investigating the science teaching efficacy beliefs and experiences of a cohort of graduate primary teachers who had recently transitioned from preservice to inservice status. An opportunity sample of 82 primary teachers responded to the science teaching efficacy belief instrument A (STEBI-A), and 10 graduate teachers provided semi-structured interview data. The results showed that participants' prior science teaching efficacy belief growth, which occurred during their tertiary science education, had remained durable after they had completed their teaching degrees and began their careers. Qualitative data showed that their undergraduate science education had had a positive influence on their science teaching experiences. The participants' school science culture, however, had mixed influences on their science teaching. The findings presented within this paper have implications for the direction of research in primary science education, the design and assessment of preservice primary science curriculum subjects and the role of school contexts in the development of primary science teachers.

  4. Developing Partnerships between Higher Education Faculty, K-12 Science Teachers, and School Administrators via MSP initiatives: The RITES Model

    Science.gov (United States)

    Caulkins, J. L.; Kortz, K. M.; Murray, D. P.

    2011-12-01

    The Rhode Island Technology Enhanced Science Project (RITES) is a NSF-funded Math and Science Partnership (MSP) project that seeks to improve science education. RITES is, at its core, a unique partnership that fosters relationships between middle and high school science teachers, district and school administrators, higher education (HE) faculty members, and science education researchers. Their common goal is to enhance scientific inquiry, increase classroom technology usage, and improve state level science test scores. In one of the more visible examples of this partnership, middle and high school science teachers work closely with HE science faculty partners to design and teach professional development (PD) workshops. The PD sessions focus on technology-enhanced scientific investigations (e.g. use of probes, online simulations, etc.), exemplify inquiry-based instruction, and relate expert content knowledge. Teachers from these sessions express substantial satisfaction in the program, report increased comfort levels in teaching the presented materials (both via post-workshop surveys), and show significant gains in content knowledge (via pre-post assessments). Other benefits to this kind of partnership, in which K-12 and HE teachers are considered equals, include: 1) K-12 teachers are empowered through interactions with HE faculty and other science teachers in the state; 2) HE instructors become more informed not only about good pedagogical practices, but also practical aspects of teaching science such as engaging students; and 3) the PD sessions tend to be much stronger than ones designed and presented solely by HE scientists, for while HE instructors provide content expertise, K-12 teachers provide expertise in K-12 classroom practice and implementation. Lastly, the partnership is mutually beneficial for the partners involved because both sides learn practical ways to teach science and inquiry at different levels. In addition to HE faculty and K-12 science teacher

  5. Social science teachers on citizenship education: A comparative study of two post-communist countries

    NARCIS (Netherlands)

    Jeliazkova, Margarita I.

    2015-01-01

    This paper presents some of the results of a comparative study of high school social science teachers in two post-communist European countries: Bulgaria and Croatia. In both countries, citizenship education was implemented as a part of the EU accession efforts. I discuss the ways teachers deal with

  6. Teachers' Attitude towards Implementation of Learner-Centered Methodology in Science Education in Kenya

    Science.gov (United States)

    Ndirangu, Caroline

    2017-01-01

    This study aims to evaluate teachers' attitude towards implementation of learner-centered methodology in science education in Kenya. The study used a survey design methodology, adopting the purposive, stratified random and simple random sampling procedures and hypothesised that there was no significant relationship between the head teachers'…

  7. PolarTREC-Teachers and Researchers Exploring and Collaborating: Science Education from the Poles to the World

    Science.gov (United States)

    Timm, K. M.; Warburton, J.; Owens, R.; Warnick, W. K.

    2008-12-01

    PolarTREC--Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS), is a National Science Foundation (NSF)--funded International Polar Year (IPY) project in which K-12 educators participate in hands-on field experiences, working closely with IPY scientists as a pathway to improving science education. PolarTREC has developed a successful internet-based platform for teachers and researchers to interact and share their diverse experiences and expertise by creating interdisciplinary educational tools including online journals and forums, real-time Internet seminars, lesson plans, activities, audio, and other educational resources that address a broad range of scientific topics. These highly relevant, adaptable, and accessible resources are available to educators across the globe and have connected thousands of students and citizens to the excitement of polar science. By fostering the integration of research and education and infusing education with the thrill of discovery, PolarTREC will produce a legacy of long-term teacher-researcher collaborations and increased student knowledge of and interest in the polar regions well beyond the IPY time period. Educator and student feedback from preliminary evaluations has shown that PolarTREC's comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person in today's world, as well as increased self-reported knowledge and interest in Science, Technology, Engineering, and Mathematics content areas. PolarTREC provides a tested approach and a clear route for researcher participation in the education community

  8. TEACHER TRAINING: How to Produce Better Math and Science Teachers.

    Science.gov (United States)

    Mervis, J

    2000-09-01

    Two National Research Council panels have released new reports on improving science and math education in the United States. One panel says that the best way to improve teacher education is to make it a continuum, with school districts taking more responsibility for the initial preparation of new teachers and university faculty playing a bigger role in ongoing professional development. The other panel says that more recent science Ph.D.s would be willing to teach high school science and math if the government helped with the transition, if the certification process were compressed, and if they could retain ties to research.

  9. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  10. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  11. Suited for Spacewalking: A Teacher's Guide with Activities for Technology Education, Mathematics, and Science

    Science.gov (United States)

    Vogt, Gregory L.; George, Jane A. (Editor)

    1998-01-01

    A Teacher's Guide with Activities for Technology Education, Mathematics, and Science National Aeronautics and Space Administration Office of Human Resources and Education Education Division Washington, DC Education Working Group NASA Johnson Space Center Houston, Texas This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication.

  12. Investigating inquiry beliefs and nature of science (NOS) conceptions of science teachers as revealed through online learning

    Science.gov (United States)

    Atar, Hakan Yavuz

    Creating a scientifically literate society appears to be the major goal of recent science education reform efforts (Abd-El-Khalick, Boujaoude, Dushl, Lederman, Hofstein, Niaz, Tregust, & Tuan, 2004). Recent national reports in the U.S, such as Shaping the Future, New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology (NSF,1996), Inquiry in Science and In Classroom, Inquiry and the National Science Education Standards (NRC, 2001), Pursuing excellence: Comparison of international eight-grade mathematics and science achievement from a U.S. perspective (NCES, 2001), and Standards for Science Teacher Preparation (NSTA 2003) appear to agree on one thing: the vision of creating a scientifically literate society. It appears from science education literature that the two important components of being a scientifically literate individual are developing an understanding of nature of science and ability to conduct scientific inquiries. Unfortunately, even though teaching science through inquiry has been recommended in national reports since the 1950's, it has yet to find its way into many science classrooms (Blanchard, 2006; Yerrick, 2000). Science education literature identfies several factors for this including: (1) lack of content knowledge (Anderson, 2002; Lee, Hart Cuevas, & Enders, 2004; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Moscovici, 1999; Smith & Naele, 1989; Smith, 1989); (2) high stake tests (Aydeniz, 2006); (3) teachers' conflicting beliefs with inquiry-based science education reform (Blanchard, 2006; Wallace & Kang, 2004); and, (4) lack of collaboration and forums for communication (Anderson, 2002; Davis, 2003; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Wallace & Kang, 2004). In addition to the factors stated above this study suggest that some of the issues and problems that have impeded inquiry instruction to become the primary approach to teaching science in many science classrooms might be related to

  13. The Views of Science Pre-Service Teachers about the Usage of Basic Information Technologies (BIT) in Education and Instruction

    Science.gov (United States)

    Çetin, Oguz

    2016-01-01

    In this study aiming to present a description based on science pre-service teachers' views related to use of Basic Information Technologies (BIT) in education and training, an interview is carried out with 21 pre-service science teachers who study in different classes in Faculty of Education, Nigde University. For this aim, improved interview form…

  14. Quality Science Teacher Professional Development and Student Achievement

    Science.gov (United States)

    Dubner, J.

    2007-12-01

    Studies show that socio-economic background and parental education accounts for 50-60 percent of a child's achievement in school. School, and other influences, account for the remaining 40-50 percent. In contrast to most other professions, schools require no real apprenticeship training of science teachers. Overall, only 38 percent of United States teachers have had any on-the-job training in their first teaching position, and in some cases this consisted of a few meetings over the course of a year between the beginning teacher and the assigned mentor or master teacher. Since individual teachers determine the bulk of a student's school experiences, interventions focused on teachers have the greatest likelihood of affecting students. To address this deficiency, partnerships between scientists and K-12 teachers are increasingly recognized as an excellent method for improving teacher preparedness and the quality of science education. Columbia University's Summer Research Program for Science Teachers' (founded in 1990) basic premise is simple: teachers cannot effectively teach science if they have no firsthand experience doing science, hence the Program's motto, "Practice what you teach." Columbia University's Summer Research Program for Science Teachers provides strong evidence that a teacher research program is a very effective form of professional development for secondary school science teachers and has a direct correlation to increased student achievement in science. The author will present the methodology of the program's evaluation citing statistically significant data. The author will also show the economic benefits of teacher participation in this form of professional development.

  15. Interacting with a Suite of Educative Features: Elementary Science Teachers' Use of Educative Curriculum Materials

    Science.gov (United States)

    Arias, Anna Maria; Bismack, Amber Schultz; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of learning both the practices and content of science. This integration of practices and content requires sophisticated teaching that does not often happen in elementary classrooms. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited…

  16. Pre-Service Physics Teachers' Conceptions of Nature of Science

    Science.gov (United States)

    Buaraphan, Khajornsak

    2011-01-01

    Understanding of NOS (nature of science) appears as a prerequisite of a scientifically literate person. Promoting adequate understanding of NOS in pre-service physics teachers is, therefore, an important task of science educators. Before doing that, science educators must have information concerning their pre-service teachers' conceptions of NOS.…

  17. Teacher beliefs about teaching science through Science-Technology-Society (STS)

    Science.gov (United States)

    Massenzio, Lynn

    2001-07-01

    Statement of the problem. As future citizens, students will have the enormous responsibility of making decisions that will require an understanding of the interaction of science and technology and its interface with society. Since many societal issues today are grounded in science and technology, learning science in its social context is vital to science education reform. Science-Technology-Society (STS) has been strongly identified with meeting this goal, but despite its benefits, putting theory into practice has been difficult. Research design and methodology. The purpose of this study was to explore teacher beliefs about teaching science through STS. The following broad research questions guided the study: (1) What are the participants' initial beliefs about teaching science through STS? (2) What beliefs emerge as participants reflect upon and share their STS instructional experiences with their peers? A social constructivist theoretical framework was developed to plan interactions and collect data. Within this framework, a qualitative methodology was used to interpret the data and answer the research questions. Three provisionally certified science teachers engaged in a series of qualitative tasks including a written essay, verbal STS unit explanation, reflective journal writings, and focus group interviews. After implementing their STS unit, the participants engaged in meaningful dialogue with their peers as they reflected upon, shared, and constructed their beliefs. Conclusions. The participants strongly believed in STS as a means for achieving scientific and technological literacy, developing cognition, enhancing scientific habits of mind and affective qualities, and fostering citizen responsibility. Four major assertions were drawn: (a) Participants' initial belief in teaching for citizen responsibility did not fully align with practice, (b) Educators at the administrative level should be made aware of the benefits of teaching science through STS, (c

  18. News Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

    Science.gov (United States)

    2011-07-01

    Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

  19. Examining Preservice Science Teacher Understanding of Nature of Science: Discriminating Variables on the Aspects of Nature of Science

    Science.gov (United States)

    Jones, William I.

    This study examined the understanding of nature of science among participants in their final year of a 4-year undergraduate teacher education program at a Midwest liberal arts university. The Logic Model Process was used as an integrative framework to focus the collection, organization, analysis, and interpretation of the data for the purpose of (1) describing participant understanding of NOS and (2) to identify participant characteristics and teacher education program features related to those understandings. The Views of Nature of Science Questionnaire form C (VNOS-C) was used to survey participant understanding of 7 target aspects of Nature of Science (NOS). A rubric was developed from a review of the literature to categorize and score participant understanding of the target aspects of NOS. Participants' high school and college transcripts, planning guides for their respective teacher education program majors, and science content and science teaching methods course syllabi were examined to identify and categorize participant characteristics and teacher education program features. The R software (R Project for Statistical Computing, 2010) was used to conduct an exploratory analysis to determine correlations of the antecedent and transaction predictor variables with participants' scores on the 7 target aspects of NOS. Fourteen participant characteristics and teacher education program features were moderately and significantly ( p Middle Childhood with a science concentration program major or in the Adolescent/Young Adult Science Education program major were more likely to have an informed understanding on each of the 7 target aspects of NOS. Analyses of the planning guides and the course syllabi in each teacher education program major revealed differences between the program majors that may account for the results.

  20. Opening Pandora's Box: Texas Elementary Campus Administrators use of Educational Policy And Highly Qualified Classroom Teachers Professional Development through Data-informed Decisions for Science Education

    Science.gov (United States)

    Brown, Linda Lou

    Federal educational policy, No Child Left Behind Act of 2001, focused attention on America's education with conspicuous results. One aspect, highly qualified classroom teacher and principal (HQ), was taxing since states established individual accountability structures. The HQ impact and use of data-informed decision-making (DIDM) for Texas elementary science education monitoring by campus administrators, Campus Instruction Leader (CILs), provides crucial relationships to 5th grade students' learning and achievement. Forty years research determined improved student results when sustained, supported, and focused professional development (PD) for teachers is available. Using mixed methods research, this study applied quantitative and qualitative analysis from two, electronic, on-line surveys: Texas Elementary, Intermediate or Middle School Teacher Survey(c) and the Texas Elementary Campus Administrator Survey(c) with results from 22.3% Texas school districts representing 487 elementary campuses surveyed. Participants selected in random, stratified sampling of 5th grade teachers who attended local Texas Regional Collaboratives science professional development (PD) programs between 2003-2008. Survey information compared statistically to campus-level average passing rate scores on the 5th grade science TAKS using Statistical Process Software (SPSS). Written comments from both surveys analyzed with Qualitative Survey Research (NVivo) software. Due to the level of uncertainty of variables within a large statewide study, Mauchly's Test of Sphericity statistical test used to validate repeated measures factor ANOVAs. Although few individual results were statistically significant, when jointly analyzed, striking constructs were revealed regarding the impact of HQ policy applications and elementary CILs use of data-informed decisions on improving 5th grade students' achievement and teachers' PD learning science content. Some constructs included the use of data

  1. Developing networks to support science teachers work

    DEFF Research Database (Denmark)

    Sillasen, Martin Krabbe; Valero, Paola

    2012-01-01

    In educational research literature constructing networks among practitioners has been suggested as a strategy to support teachers’ professional development (Huberman, 1995; Jackson & Temperley, 2007; Van Driel, Beijaard, & Verloop, 2001). The purpose of this paper is to report on a study about how...... networks provide opportunities for teachers from different schools to collaborate on improving the quality of their own science teaching practices. These networks exist at the meso-level of the educational system between the micro-realities of teachers’ individual practice and the macro-level, where...... to develop collaborative activities in primary science teacher communities in schools to improve individual teachers practice and in networks between teachers from different schools in each municipality. Each network was organized and moderated by a municipal science coordinator....

  2. A Comparison of Swiss and Turkish Pre-Service Science Teachers' Attitudes, Anxiety and Self-Efficacy Regarding Educational Technology

    Science.gov (United States)

    Efe, Hülya Aslan; Efe, Rifat; Yücel, Sait

    2016-01-01

    In this study, pre-service science teachers' anxiety, self-efficacy and attitudes regarding educational technology were investigated. Given the increased emphasis on educational technology in the classroom, teachers' attitudes, anxiety and self-efficacy regarding educational technology are important. The study was conducted with a total of 726…

  3. Correctional Education Teachers' Teaching Competence and Use of ...

    African Journals Online (AJOL)

    Correctional Education Teachers' Teaching Competence Genet G. and Haftu H. 83. ORIGINAL ARTICLE. Correctional Education Teachers' ... Educational and Behavioral Sciences, Bahir Dar University. ** Assistant Professor, Teacher Education ... evaluation of available research, it is obvious that education programs in.

  4. Challenges of Virtual and Open Distance Science Teacher Education in Zimbabwe

    Science.gov (United States)

    Mpofu, Vongai; Samukange, Tendai; Kusure, Lovemore M.; Zinyandu, Tinoidzwa M.; Denhere, Clever; Huggins, Nyakotyo; Wiseman, Chingombe; Ndlovu, Shakespear; Chiveya, Renias; Matavire, Monica; Mukavhi, Leckson; Gwizangwe, Isaac; Magombe, Elliot; Magomelo, Munyaradzi; Sithole, Fungai; Bindura University of Science Education (BUSE),

    2012-01-01

    This paper reports on a study of the implementation of science teacher education through virtual and open distance learning in the Mashonaland Central Province, Zimbabwe. The study provides insight into challenges faced by students and lecturers on inception of the program at four centres. Data was collected from completed evaluation survey forms…

  5. Spanish Secondary-School Science Teachers' Beliefs About Science-Technology-Society (STS) Issues

    Science.gov (United States)

    Vázquez-Alonso, Ángel; García-Carmona, Antonio; Manassero-Mas, María Antonia; Bennàssar-Roig, Antoni

    2013-05-01

    This study analyzes the beliefs about science-technology-society, and other Nature of Science (NOS) themes, of a large sample (613) of Spanish pre- and in-service secondary education teachers through their responses to 30 items of the Questionnaire of Opinions on Science, Technology and Society. The data were processed by means of a multiple response model to generate the belief indices used as the bases for subsequent quantitative and qualitative analyses. Other studies have reported a negative profile of teachers' understanding in this area, but the diagnosis emerging from the present work is more complex. There was a mix of appropriate beliefs coexisting with others that are inappropriate on the topics analyzed. The overall assessment, however, is negative since clearly teachers need to have a better understanding of these questions. There were scant differences between the pre- and in-service teachers, and hence no decisive evidence that the practice of teaching contributes to improving the in-service teachers' understanding. These results suggest there is an urgent need to bring the initial and continuing education of science teachers up to date to improve their understanding of these topics of science curricula, and thus improve the teaching of science.

  6. A Mental Model of the Learner: Teaching the Basic Science of Educational Psychology to Future Teachers

    Science.gov (United States)

    Willingham, Daniel T.

    2017-01-01

    Although most teacher education programs include instruction in the basic science of psychology, practicing teachers report that this preparation has low utility. Researchers have considered what sort of information from psychology about children's thinking, emotion, and motivation would be useful for teachers' practice. Here, I take a different…

  7. Professionality of Junior High School (SMP) Science Teacher in Preparing Instructional Design of Earth and Space Sciences (IPBA)

    Science.gov (United States)

    Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.

    2017-02-01

    The teacher is one important factor in the provision of education in schools. Therefore, improving the quality of education means we need to enhance the quality and the professionalism of teachers. We offer a solution through education and training of junior high school science teachers in developing the instructional design of Earth and Space Sciences (IPBA). IPBA is part of the science subjects which is given to students from elementary school to college. This research is a preliminary study of junior high school science teacher professionalism in creating instructional design IPBA. Mixed method design is used to design the research. Preliminary studies conducted on junior high school science teacher in one MGMPs in South Sumatera, and the respondent are 18 teachers from 13 schools. The educational background of science teachers who teach IPBA not only from physical education but also biology and agriculture. The result of preliminary study showed that the ratio of teachers who teach IPBA are 56% from physic education, 39% from biology, and 5% from agriculture. The subjects of IPBA that considered difficult by teachers are the distribution of sun, moon, and satellite motion; specific processes in lithosphere and atmosphere; and the correlation between lithosphere and atmosphere with the environment. The teachers also face difficulty in preparing media, choosing the right methods in teaching IPBA.

  8. Fermilab Friends for Science Education | About Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us About Us national leader in precollege science education. From the first Summer Institute for Science Teachers held year over 37,000 students, and 2,500 teachers participated in programs through the Education Office

  9. Sharing our successes II: Changing the face of science and mathematics education through teacher-focused partnerships

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Industry Initiatives for Science and Math Education (IISME) in the San Francisco Bay Area planned and convened the second national conference for representatives of scientific work experience programs for K-12 teachers (SWEPs) at Lawrence Hall of Science, University of California at Berkeley October 13-14, 1994. The goal of this conference was to further strengthen the growing community of SWEP managers and teacher participants by providing an opportunity for sharing expertise and strategies about the following: (1) How SWEPs can complement and stimulate systemic education reform efforts; (2) Assessment strategies piloted by the ambitious multi-site evaluation project funded by the U.S. Department of Energy (DOE) as well as smaller evaluation projects piloted by other SWEPs; (3) Expanding and strengthening the base of teachers served by SWEPs; (4) Ensuring that SWEPs adequately support teachers in affecting classroom transfer and offer {open_quotes}more than just a summerjob{close_quotes}; (5) Sustaining and expanding new programs. A special teacher strand focused on leadership development supporting teachers to become effective change agents in their classrooms and schools, and developing strong teacher communities.

  10. Leadership in Mobile Technology: An Opportunity for Family and Consumer Sciences Teacher Educators

    Science.gov (United States)

    Godfrey, Roxie V.; Duke, Sandra E.

    2014-01-01

    A stroll across campus reveals that students are plugged into mobile technology. They never have to break stride in their social connectivity as they pursue an education.Where does the family and consumer sciences (FCS) teacher educator fit into this opportunistic scenario? From its inception, FCS has been at the forefront in the application of…

  11. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  12. Inquiry-Based Science Education Competencies of Primary School Teachers: A literature study and critical review of the American National Science Education Standards

    NARCIS (Netherlands)

    Alake - Tuenter, E.; Biemans, H.J.A.; Tobi, H.; Wals, A.E.J.; Oosterheert, I.; Mulder, M.

    2012-01-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils’ application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach

  13. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  14. Teacher and Student Perceptions on High School Science Flipped Classrooms: Educational Breakthrough or Media Hype?

    Science.gov (United States)

    Hunley, Rebecca C.

    For years educators have struggled to ensure students meet the rigors of state mandated tests. Challenges that often impede student success are student absences, school closings due to weather, and remediation for students who need additional help while advanced students can move ahead. Many educators, especially secondary math and science teachers, have responded to these issues by implementing a teaching strategy called the flipped classroom where students view lectures, power points, or podcasts outside of school and class time shifts to allow opportunities for collaborative learning. The purpose of this research was to evaluate teacher and student perceptions of high school flipped science classrooms. A qualitative phenomenological study was conducted to observe 3 high school science teachers from Georgia, North Carolina, and Tennessee selected through purposeful sampling who have used the flipped classroom method for a minimum of 2 years. Analysis of data from an online survey, direct observation, teacher interviews, and student focus groups helped to identify challenges and benefits of this teaching and learning strategy. Findings indicated that teachers find the flipped classroom beneficial to build student relationships but requires a significant amount of time to develop. Mixed student reactions revealed benefits of a flipped classroom as a successful learning tool for current and future endeavors for college or career preparation.

  15. Differentiating Science Instruction: Secondary science teachers' practices

    Science.gov (United States)

    Maeng, Jennifer L.; Bell, Randy L.

    2015-09-01

    This descriptive study investigated the implementation practices of secondary science teachers who differentiate instruction. Participants included seven high school science teachers purposefully selected from four different schools located in a mid-Atlantic state. Purposeful selection ensured participants included differentiated instruction (DI) in their lesson implementation. Data included semi-structured interviews and field notes from a minimum of four classroom observations, selected to capture the variety of differentiation strategies employed. These data were analyzed using a constant-comparative approach. Each classroom observation was scored using the validated Differentiated Instruction Implementation Matrix-Modified, which captured both the extent to which critical indicators of DI were present in teachers' instruction and the performance levels at which they engaged in these components of DI. Results indicated participants implemented a variety of differentiation strategies in their classrooms with varying proficiency. Evidence suggested all participants used instructional modifications that required little advance preparation to accommodate differences in students' interests and learning profile. Four of the seven participants implemented more complex instructional strategies that required substantial advance preparation by the teacher. Most significantly, this study provides practical strategies for in-service science teachers beginning to differentiate instruction and recommendations for professional development and preservice science teacher education.

  16. Technology-Enhanced Science Partnership Initiative: Impact on Secondary Science Teachers

    Science.gov (United States)

    Ng, Wan; Fergusson, Jennifer

    2017-07-01

    The issue of student disengagement in school science continues to pose a threat to lifting the participation rates of students undertaking STEM courses and careers in Australia and other countries globally. In Australia, several science initiatives to reverse the problem have been funded over the last two decades. Many of these initiatives involve partnerships with scientists, science educators and with industries, as is the case in this paper. The research in this paper investigated a recent partnership initiative between secondary science teachers, scientists and an educational technology company to produce science e-modules on adaptive learning platforms, enabling students to engage in personalised, inquiry-based learning and the investigation of real-world problems. One of the objectives of the partnership project was to build theoretical and pedagogical skills in teachers to deliver science by exposing them to new ways of engaging students with new digital tools, for example analytics. Using a mixed methods approach, the research investigated science teachers' pedagogical involvement in the partnership project and their perceptions of the project's impact on their teaching and students' learning. The findings indicate that the teachers believed that new technology could enhance their teaching and students' learning and that while their students were motivated by the online modules, there was still a need for scaffolding for many of the students. The effectiveness of this would depend on the teachers' ability to internalise the new technological and content knowledge resulting from the partnership and realign them with their existing pedagogical framework. The research is significant in identifying elements for successful partnership projects as well as challenges that need to be considered. It is significant in facilitating continuous discourse about new evidence-based pedagogical approaches to science education in engaging students to learn STEM subjects in a

  17. Educating Prospective Teachers of Biology: Introduction and Research Methods.

    Science.gov (United States)

    Hewson, Peter W.; Tabachnick, B. Robert; Zeichner, Kenneth M.; Blomker, Kathryn B.; Meyer, Helen; Lemberger, John; Marion, Robin; Park, Hyun-Ju; Toolin, Regina

    1999-01-01

    Introduces an issue that details a complex study of a science-teacher-education program whose goal was to graduate teachers who held conceptual change conceptions of teaching science and were disposed to put them into practice. Presents a conceptual framework for science-teacher education, and describes the context and major questions of the…

  18. Specifying a Curriculum for Biopolitical Critical Literacy in Science Teacher Education: Exploring Roles for Science Fiction

    Science.gov (United States)

    Gough, Noel

    2017-01-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of "biopolitics." I consider how such a biopolitically inflected critical literacy might find expression in…

  19. Investigation of preservice elementary teachers' thinking about science

    Science.gov (United States)

    Cobern, William W.; Loving, Cathleen C.

    2002-12-01

    It is not uncommon to find media reports on the failures of science education, nor uncommon to hear prestigious scientists publicly lament the rise of antiscience attitudes. Given the position elementary teachers have in influencing children, antiscience sentiment among them would be a significant concern. Hence, this article reports on an investigation in which preservice elementary teachers responded to the Thinking about Science survey instrument. This newly developed instrument addresses the broadrelationship of science to nine important areas of society and culture and is intended to reveal the extent of views being consistent with or disagreeing with a commonly held worldview of science portrayed in the media and in popular science and science education literature. Results indicate that elementary teachers discriminate with respect to different aspects of culture and science but they are not antiscience.

  20. Science Teacher Education in the Twenty-First Century: a Pedagogical Framework for Technology-Integrated Social Constructivism

    Science.gov (United States)

    Barak, Miri

    2017-04-01

    Changes in our global world have shifted the skill demands from acquisition of structured knowledge to mastery of skills, often referred to as twenty-first century competencies. Given these changes, a sequential explanatory mixed methods study was undertaken to (a) examine predominant instructional methods and technologies used by teacher educators, (b) identify attributes for learning and teaching in the twenty-first century, and (c) develop a pedagogical framework for promoting meaningful usage of advanced technologies. Quantitative and qualitative data were collected via an online survey, personal interviews, and written reflections with science teacher educators and student teachers. Findings indicated that teacher educators do not provide sufficient models for the promotion of reform-based practice via web 2.0 environments, such as Wikis, blogs, social networks, or other cloud technologies. Findings also indicated four attributes for teaching and learning in the twenty-first century: (a) adapting to frequent changes and uncertain situations, (b) collaborating and communicating in decentralized environments, (c) generating data and managing information, and (d) releasing control by encouraging exploration. Guided by social constructivist paradigms and twenty-first century teaching attributes, this study suggests a pedagogical framework for fostering meaningful usage of advanced technologies in science teacher education courses.

  1. Preparing Science Teachers for the future

    Science.gov (United States)

    Stein, Fredrick

    2002-04-01

    What will teachers need in the future to be successful? What will "successful" mean in the future? Are the teaching approaches learned 40 years ago still relevant for tomorrow's classrooms? Will technology really change the way physics is taught (K-16)? Will we close the performance gap between students of differing ethnicity? Are schools of education rising to the challenge to answer these questions? Can college and university physics departments rise to the challenge of presenting physics to all students in an engaging manner? What can the APS, in partnership with AAPT and AIP, do to find the answers and provide strategies to improve the science preparation of future teachers? PhysTEC aims to help physics and education faculty work together to provide an education for future teachers that emphasizes a student-centered, hands-on, inquiry-based approach to learning science. The compelling evidence produced from Physics Education Research warrants this approach. A National Science Foundation grant of 5.76 million and a 498 thousand grant from the Fund for the Improvement of Postsecondary Education support PhysTEC, its partners and activities. http://www.phystec.org/

  2. Revising Teacher Candidates' Views of Science and Self: Can Accounts from the History of Science Help?

    Science.gov (United States)

    Lewthwaite, Brian; Murray, John; Hechter, Richard

    2012-01-01

    Our inquiry uses accounts from the history of science to develop teacher-candidate (student teacher) understanding of the nature of science (NOS) in a science teacher education methods course. This understanding of the NOS is then used as a foundation for developing teacher candidate appreciation of the attributes of authentic science lessons.…

  3. Investigation of Inquiry-based Science Pedagogy among Middle Level Science Teachers: A Qualitative Study

    Science.gov (United States)

    Weiland, Sunny Minelli

    This study implemented a qualitative approach to examine the phenomenon of "inquiry-based science pedagogy or inquiry instruction" as it has been experienced by individuals. Data was collected through online open-ended surveys, focus groups, and teacher reported self-reflections to answer the research questions: 1) How do middle level science teachers conceptualize "inquiry-based instruction?" 2) What are preferred instructional strategies for implementation in middle level science classrooms? And 3) How do middle level science teachers perceive the connection between science instruction and student learning? The participants within this research study represent 33 percent of teachers in grades 5 through 9 within six school districts in northeastern Pennsylvania. Of the 12 consent forms originally obtained, 10 teachers completed all three phases of the data collection, including the online survey, participation in focus groups, and teacher self-reflection. 60 percent of the participants taught only science, and 40 percent taught all content areas. Of the ten participants, 50 percent were certified teachers of science and 50 percent were certified as teachers of elementary education. 70 percent of the research participants reflected having obtained a master's, with 60 percent of these degrees being received in areas of education, and 10 percent in the area of science. The research participants have a total of 85 collective years of experience as professional educators, with the average years of experience being 8.5 years. Analysis of data revealed three themes related to research question #1) How do middle-level science teachers conceptualize inquiry-based instruction? and sub-question #1) How do middle-level science teachers characterize effective instruction? The themes that capture the essence of teachers' formulation of inquiry-based instruction that emerged in this study were student centered, problem solving, and hands-on . Analysis of data revealed one theme

  4. Primary science education: Views from three Australian States

    Science.gov (United States)

    Jeans, Bruce; Farnsworth, Ian

    1992-12-01

    This paper reports an empirical study of science education in Australian primary schools. The data show that, while funding is seen as a major determinant of what is taught and how it is taught, teacher-confidence and teacher-knowledge are also important variables. Teachers are most confident with topics drawn from the biological sciences, particularly things to do with plants. With this exception there is no shared body of science education knowledge that could be used to develop a curriculum for science education. There was evidence that most teachers see a need for a hands-on approach to primary science education involving the use of concrete materials. A substantial proportion of teachers agree that some of the problems would be alleviated by having a set course together with simple, prepared kits containing sample learning experiences. Any such materials must make provision for individual teachers to capitalise on critical teaching incidents as they arise and must not undermine the professional pride that teachers have in their work.

  5. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    Science.gov (United States)

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-06-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own classrooms. The study analyzed the mean scale scores for the science portion of the state's high school graduation test for the years 2004 through 2007 to determine whether schools receiving the intervention scored significantly higher than comparison schools receiving no intervention. The results showed that all schools achieved significant improvement of scale scores between 2004 and 2007, but there were no significant performance differences between intervention and comparison schools, nor were there any significant differences between various subgroups in intervention and comparison schools. However, one subgroup, economically disadvantaged (ED) students, from high-level intervention schools closed the achievement gap with ED students from no-intervention schools across the period of the study. The study provides important information to guide future research on and design of large-scale professional development programs to foster inquiry-based science.

  6. A Self-Study of a Thai Teacher Educator Developing a Better Understanding of PCK for Teaching about Teaching Science

    Science.gov (United States)

    Faikhamta, Chatree; Clarke, Anthony

    2013-01-01

    In this study, I, the first author as a Thai teacher educator employed self-study as a research methodology to investigate my own understandings, questions, and curiosities about pedagogical content knowledge (PCK) for teaching science student teachers and the ways I engaged student teachers in a field-based science methods course designed to help…

  7. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    Science.gov (United States)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  8. A study of the effectiveness of a four semester preservice Secondary Science Teacher Education program regarding changes in teacher perceptions and practices

    Science.gov (United States)

    Yakar, Zeha

    The purpose of this study was to investigate the development and change in constructivist behaviors of preservice science teachers of the Iowa-Secondary Science Teacher Education Program (SSTEP) over the four semester sequence. Constructivist behaviors were investigated from four perspectives; including actual classroom performances as viewed from videotapes, teacher perceptions of teacher use of constructivist teaching practices, and teacher beliefs as gained from open-ended questions, and written artifacts. The participants of the study included a total of 41 secondary science preservice teachers in four different semesters of their teacher preparation program. Three instruments were used to generate the main data to answer the research questions. The three instruments were: (1) Constructivist Learning Environment Survey (CLES), (2) Philosophy of Teaching and Learning (PTL), and (3) videotape portfolio evaluated with the Reformed Teaching Observation Protocol (RTOP). Major findings include the following: (1) Preservice teachers' perceptions regarding constructivist approaches become significantly and increasingly more student-centered in terms of Personal Relevance, Critical Voice, Shared Control, and Student Negotiation as they prepare through the four semester sequence. (2) Preservice teachers' conceptions concerning teaching and learning become significantly and increasingly more student-centered in terms of what students need to do to improve their understanding of science concepts. (3) Preservice teachers conceptions and their perceptions about actual classroom practices rarely align with observed teaching practices in their classrooms. Although preservice teachers hold student-centered beliefs and perceptions, their actual classroom teaching practices were "transitional constructivist". (4) Preservice teachers' constructivist practices of teaching and learning began to decline in the third semester with preservice teachers moving towards more teacher

  9. `You Have to Give Them Some Science Facts': Primary Student Teachers' Early Negotiations of Teacher Identities in the Intersections of Discourses About Science Teaching and About Primary Teaching

    Science.gov (United States)

    Danielsson, Anna T.; Warwick, Paul

    2014-04-01

    In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on a whole range of interrelated sociocultural factors. This paper aims to explore how intersections between different Discourses about primary teaching and about science teaching are evidenced in primary school student teachers' talk about becoming teachers. The study is founded in a conceptualisation of learning as a process of social participation. The conceptual framework is crafted around two key concepts: Discourse (Gee 2005) and identity (Paechter, Women's Studies International Forum, 26(1):69-77, 2007). Empirically, the paper utilises semi-structured interviews with 11 primary student teachers enrolled in a 1-year Postgraduate Certificate of Education course. The analysis draws on five previously identified teacher Discourses: `Teaching science through inquiry', `Traditional science teacher', `Traditional primary teacher', `Teacher as classroom authority', and `Primary teacher as a role model' (Danielsson and Warwick, International Journal of Science Education, 2013). It explores how the student teachers, at an early stage in their course, are starting to intersect these Discourses to negotiate their emerging identities as primary science teachers.

  10. Preparing K-8 Teachers to Conduct Inquiry Oriented Science Education

    Science.gov (United States)

    Gross, N. A.; Garik, P.; Nolan, M. D.; Winrich, C.; Derosa, D.; Duffy, A.; Jariwala, M.; Konjoian, B.

    2010-12-01

    The need for STEM professional development for K-8 teachers is well documented. Such professional development promises broad impact, but it must have a positive effect on teachers’ knowledge and skills: 1) a focus on content knowledge, 2) opportunities for active learning, and 3) coherence with other activities. However, sustained impact is only achieved through intensive professional development. In response to the need for science education courses for K-8 teachers, for the past three years, the School of Education and the Department of Physics have collaborated to offer K-8 teachers science content courses of extended duration (75 contact hours) that emphasize inquiry based learning and investigation. The School of Education graduate courses have consisted of five three-hour meetings during the months of May and June, and a two week intensive period in July when the participants come for six hours per day. The alignment of these courses with inquiry teaching was confirmed using the Reformed Teaching Observation Protocol (RTOP). Courses offered in this format have been: --Immersion in Green Energy (IGE) -alternative sources of energy and how electricity is generated (75 teachers over the last 3 years), --Immersion in Global Energy Distribution (IGED) -understanding global climate as an outcome of insolation, convection, and radiation (27 teachers over the last 2 years) The Immersion courses cover a spectrum for inquiry learning that begins with introduction to equipment and experiments through guided discovery and culminates with students taking responsibility for defining and completing their own investigative projects. As a specific example, we consider here the IGED course. For IGED, the first five sessions are devoted to content and learning to use experimental equipment such as digital data collection probes to measure temperature, CO2 and salinity. Content addressed during these sessions include the differentiation between conduction, convection, and

  11. Leadership that promotes teacher empowerment among urban middle school science teachers

    Science.gov (United States)

    Howard-Skipper, Joni

    In this study, the focus was on determining leadership strategies that promote teacher empowerment among urban middle school science teachers. The purpose of the paper was to determine if leadership strategies are related to teacher empowerment. The emphasis was on various forms of leadership and the empowerment of teachers in context in restructuring the democratic structure. An effective leadership in science education entails empowering others, especially science teachers. In this regard, no published studies had examined this perspective on empowering teachers and school leadership. Therefore, this study determined if a relationship exists between leadership strategy actions and teacher empowerment. The significance of the study is to determine a relationship between leadership strategies and teacher empowerment as a positive approach toward developing successful schools. Empowerment is essential for implementing serious improvements. Empowering others in schools must form a major component of an effective principal's agenda. It is becoming clearer in research literature that complex changes in education sometimes require active initiation. For this study, a quantitative methodology was used. Primary data enabled the research questions to be answered. The reliability and validity of the research were ensured. The results of this study showed that 40% of the administrators establish program policies with teachers, and 53% of teachers make decisions about new programs in schools. Furthermore, the findings, their implications, and recommendations are discussed.

  12. An educational ethnography of teacher-developed science curriculum implementation: Enacting conceptual change-based science inquiry with Hispanic students

    Science.gov (United States)

    Brunsell, Eric Steven

    An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.

  13. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  14. Emotional climate of a pre-service science teacher education class in Bhutan

    Science.gov (United States)

    Rinchen, Sonam; Ritchie, Stephen M.; Bellocchi, Alberto

    2016-09-01

    This study explored pre-service secondary science teachers' perceptions of classroom emotional climate in the context of the Bhutanese macro-social policy of Gross National Happiness. Drawing upon sociological perspectives of human emotions and using Interaction Ritual Theory this study investigated how pre-service science teachers may be supported in their professional development. It was a multi-method study involving video and audio recordings of teaching episodes supported by interviews and the researcher's diary. Students also registered their perceptions of the emotional climate of their classroom at 3-minute intervals using audience response technology. In this way, emotional events were identified for video analysis. The findings of this study highlighted that the activities pre-service teachers engaged in matter to them. Positive emotional climate was identified in activities involving students' presentations using video clips and models, coteaching, and interactive whole class discussions. Decreases in emotional climate were identified during formal lectures and when unprepared presenters led presentations. Emotions such as frustration and disappointment characterized classes with negative emotional climate. The enabling conditions to sustain a positive emotional climate are identified. Implications for sustaining macro-social policy about Gross National Happiness are considered in light of the climate that develops in science teacher education classes.

  15. Inquiry-based science education: towards a pedagogical framework for primary school teachers

    Science.gov (United States)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2016-02-01

    Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their pupils during the different phases of an open IBSE project, such as formulating a research question and designing and conducting an investigation. The current study aims to meet these challenges by presenting a pedagogical framework in which four domains of scientific knowledge are addressed in seven phases of inquiry. The framework is based on video analyses of pedagogical interventions by primary school teachers participating in open IBSE projects. Our results show that teachers can guide their pupils successfully through the process of open inquiry by explicitly addressing the conceptual, epistemic, social and/or procedural domain of scientific knowledge in the subsequent phases of inquiry. The paper concludes by suggesting further research to validate our framework and to develop a pedagogy for primary school teachers to guide their pupils through the different phases of open inquiry.

  16. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  17. Mothers as informal science class teachers

    Science.gov (United States)

    Katz, Phyllis

    This study explores the participation of mothers as teachers (termed "Adult Leaders") in the Hands On Science Outreach (HOSO) informal science program for pre-kindergarten through sixth grade children. Since women continue to be underrepresented in the sciences (AAUW, 1992; AAUW 1998), there is a need to probe the nature of mothers' choices in science experiences, in the family context, and as role models. Mothers of school age children who choose to lead informal science activities are in a position to teach and learn not only within this alternative setting, but within their homes where values, attitudes, beliefs and motivations are continually cultivated by daily choices (Gordon, 1972; Tamir, 1990; Gerber, 1997). Policy makers recognize that schools are only one environment from many for learning science (National Science Board, 1983; National Research Council, 1996). Using complementary methodology, this study was conducted in two HOSO sessions that extended over six months. Twelve mothers who were HOSO teachers were case study participants. Primary data collection strategies were interviews, journals, and "draw-a-scientist." A larger sample of HOSO mother-teachers (N = 112) also contributed to a surrey, developed from an analysis of the case studies. Informal learning settings must, by their non-compulsory nature, focus on the affective component of learning as a necessity of participation. The framework for the qualitative analysis was from the affective characteristics described by Simpson et al. (1994). The interpretation is informed by sociobiology, science education and adult education theories. The study finds that the twelve mothers began their HOSO teaching believing in science as a way of knowing and valuing the processes and information from its practice. These women perceive their participation as a likely means to increase the success of their child(ren)'s education and are interested in the potential personal gains of leading an informal science

  18. Primary Connections: Simulating the Classroom in Initial Teacher Education

    Science.gov (United States)

    Hume, Anne Christine

    2012-01-01

    The challenge of preparing novice primary teachers for teaching in an educational environment, where science education has low status and many teachers have limited science content knowledge and lack the confidence to teach science, is great. This paper reports on an innovation involving a sustained simulation in an undergraduate science education…

  19. Identity Discourse in Preservice Teachers' Science Learning Autobiographies and Science Teaching Philosophies

    Science.gov (United States)

    Hsu, Pei-Ling; Reis, Giuliano; Monarrez, Angelica

    2017-01-01

    Research in science education has shown that one's identities as science learner and teacher can mediate their pedagogical practices. Grounded in the perspective that language is a resource for identity (re)construction (Gee, 2000), the present study sought to understand how preservice science teachers' identities were manifested in their…

  20. Second-career science teachers' classroom conceptions of science and engineering practices examined through the lens of their professional histories

    Science.gov (United States)

    Antink-Meyer, Allison; Brown, Ryan A.

    2017-07-01

    Science standards in the U.S. have shifted to emphasise science and engineering process skills (i.e. specific practices within inquiry) to a greater extent than previous standards' emphases on broad representations of inquiry. This study examined the alignment between second-career science teachers' personal histories with the latter and examined the extent to which they viewed that history as a factor in their teaching. Four, second-career science teachers with professional backgrounds in engineering, environmental, industrial, and research and development careers participated. Through the examination of participants' methodological and contextual histories in science and engineering, little evidence of conflict with teaching was found. They generally exemplified the agency and motivation of a second-career teacher-scientist that has been found elsewhere [Gilbert, A. (2011). There and back again: Exploring teacher attrition and mobility with two transitioning science teachers. Journal of Science Teacher Education, 22(5), 393-415; Grier, J. M., & Johnston, C. C. (2009). An inquiry into the development of teacher identities in STEM career changers. Journal of Science Teacher Education, 20(1), 57-75]. The methodological and pedagogical perspectives of participants are explored and a discussion of the implications of findings for science teacher education are presented.

  1. Mathematics and science Teachers' Understanding and Practices of ...

    African Journals Online (AJOL)

    Amy Stambach

    It employed qualitative methods of data collection including in-depth interviews and ... Education, Science, Technology, Scientific Research, 2003; Rwanda Education .... Rwandan science teachers were not having common understanding of ...

  2. Tech-Savvy Science Education? Understanding Teacher Pedagogical Practices for Integrating Technology in K-12 Classrooms

    Science.gov (United States)

    Hechter, Richard; Vermette, Laurie Anne

    2014-01-01

    This paper examines the technology integration practices of Manitoban K-12 inservice science educators based on the Technological, Pedagogical, and Content knowledge (TPACK) framework. Science teachers (n = 433) completed a 10-item online survey regarding pedagogical beliefs about technology integration, types of technology used, and how often…

  3. Education program at the Massachusetts Institute of Technology research reactor for pre-college science teachers

    International Nuclear Information System (INIS)

    Hopkins, G.R.; Fecych, W.; Harling, O.K.

    1989-01-01

    A Pre-College Science Teacher (PCST) Seminar program has been in place at the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory for 4 yr. The purpose of the PCST program is to educate teachers in nuclear technology and to show teachers, and through them the community, the types of activities performed at research reactors. This paper describes the background, content, and results of the MIT PCST program

  4. Investigating the Relationship between Teachers' Nature of Science Conceptions and Their Practice of Inquiry Science

    Science.gov (United States)

    Atar, Hakan Yavuz; Gallard, Alejandro

    2011-01-01

    In addition to recommending inquiry as the primary approach to teaching science, developers of recent reform efforts in science education have also strongly suggested that teachers develop a sound understanding of the nature of science. Most studies on teachers' NOS conceptions and inquiry beliefs investigated these concepts of teachers' NOS…

  5. The development and implementation of a teacher education model in environmental science education for Indian Certificate of Secondary Education (ICSE) schools

    Science.gov (United States)

    Patil, Anuradha

    This research study is concerned with the teaching of Environmental Science in the ninth and tenth grades of ICSE schools in Mumbai, India and the development and implementation of a new teacher education model. The instructional strategies practiced by the teachers were investigated using a questionnaire, semi-structured interview schedule and classroom observation. Based on these data, a new model of teacher education was developed with the help of a small cohort of teachers. The rationale for the model was that it should be a non-prescriptive framework that provided a coherently organized, concise guide for environmental education teachers that incorporated modern perspectives on content knowledge, effective pedagogical practices including constructivist approaches and active learning, and a set of guidelines for effectively integrating pedagogy with science content knowledge. The model was in the form of a two-way matrix, with the columns providing the pedagogy and the rows indicating the content knowledge. The intersections of the columns and rows to form individual cells of the matrix yielded a synthesis of pedagogical content knowledge (PCK). The model was discussed with the participating teachers, who prepared revised lesson plans using the model and delivered the lessons, which were observed by the researcher. On using the model, the teaching became more student-centered, as the teachers strove to include constructive and inquiry-based approaches. The use of technology enhanced the effectiveness of the lessons and teachers evaluated the students on all three domains of learning (i.e., affective, cognitive, and psychomotor). Most teachers agreed that it was possible to use the model to plan their lesson and implement it in the classroom; however, they needed to put in more time and effort to get used to a change in their teaching methodology. There is no doubt that teacher professional development is a long process and change does not occur immediately

  6. Realizing a Democratic Community of Teachers: John Dewey and the Idea of a Science of Education

    Science.gov (United States)

    Frank, Jeff

    2017-01-01

    In this paper, I make the case that John Dewey's philosophy of education aims to bring about a democratic community of teachers capable of creating a science of teaching. To make this case, I will do a three things. First, I will discuss "Sources of a Science of Education" and argue that this work is deeply connected to a work written at…

  7. Learning the 'grammar of science': The influence of a physical science content course on teachers' understanding of the nature of science

    Science.gov (United States)

    Hanuscin, Deborah L.

    This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.

  8. Needs assessment of science teachers in secondary schools in Kumasi, Ghana: A basis for in-service education training programs at the Science Resource Centers

    Science.gov (United States)

    Gyamfi, Alexander

    The purpose of this study was twofold. First, it identified the priority needs common to all science teachers in secondary schools in Kumasi, Ghana. Second, it investigated the relationship existing between the identified priority needs and the teacher demographic variables (type of school, teacher qualification, teaching experience, subject discipline, and sex of teacher) to be used as a basis for implementing in-service education training programs at the Science Resource Centers in Kumasi Ghana. An adapted version of the Moore Assessment Profile (MAP) survey instrument and a set of open-ended questions were used to collect data from the science teachers. The researcher handed out one hundred and fifty questionnaire packets, and all one hundred and fifty (100%) were collected within a period of six weeks. The data were analyzed using descriptive statistics, content analysis, and inferential statistics. The descriptive statistics reported the frequency of responses, and it was used to calculate the Need Index (N) of the identified needs of teachers. Sixteen top-priority needs were identified, and the needs were arranged in a hierarchical order according to the magnitude of the Need Index (0.000 ≤ N ≤ 1.000). Content analysis was used to analyze the responses to the open-ended questions. One-way analysis of variance (ANOVA) was used to test the null hypotheses of the study on each of the sixteen identified top-priority needs and the teacher demographic variables. The findings of this study were as follows: (1) The science teachers identified needs related to "more effective use of instructional materials" as a crucial area for in-service training. (2) Host and Satellite schools exhibited significant difference on procuring supplementary science books for students. Subject discipline of teachers exhibited significant differences on utilizing the library and its facilities by students, obtaining information on where to get help on effective science teaching

  9. Rethinking Recruitment: The Comprehensive and Strategic Recruitment of Secondary Science Teachers

    Science.gov (United States)

    Luft, Julie A.; Wong, Sissy S.; Semken, Steve

    2011-01-01

    The shortage of science teachers has spurred a discussion about their retention and recruitment. While discussion about retaining science teachers has increased dramatically in just the last few years, science teacher educators have not attended to the recruitment of science teachers with the same tenacity. This paper is our effort to initiate…

  10. PolarTREC-Teachers and Researchers Exploring and Collaborating: Innovative Science Education from the Poles to the World

    Science.gov (United States)

    Warnick, W. K.; Warburton, J.; Breen, K.; Wiggins, H. V.; Larson, A.; Behr, S.

    2006-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that will advance polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. PolarTREC builds on the strengths of the existing TREC program in the Arctic, an NSF supported program managed by the Arctic Research Consortium of the US (ARCUS), to embrace a wide range of activities occurring at both poles during and after IPY. PolarTREC will foster the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science and IPY. PolarTREC will enable thirty-six teachers to spend two to six weeks in the Arctic or Antarctic, working closely with researchers investigating a wide range of IPY science themed topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and teacher peer groups. For further information on PolarTREC, contact Wendy Warnick, ARCUS Executive Director at warnick@arcus.org or 907-474-1600 or visit www.arcus.org/trec/

  11. The Nature and Influence of Teacher Beliefs and Knowledge on the Science Teaching Practice of Three Generalist New Zealand Primary Teachers

    Science.gov (United States)

    Anderson, Dayle

    2015-06-01

    Students' negative experiences of science in the primary sector have commonly been blamed on poor teacher content knowledge. Yet, teacher beliefs have long been identified as strong influences on classroom practice. Understanding the nature of teacher beliefs and their influence on primary science teaching practice could usefully inform teacher development initiatives. In science education, teacher beliefs about teaching and learning have been proposed as key influences in the development of pedagogical content knowledge for science teaching. This paper uses a multiple qualitative case study design to examine the nature and influence of beliefs on the practice and knowledge development of three generalist primary teachers during the implementation of a unit of work in science. Data for each case study included observations and transcripts of recordings of the lessons forming each science unit, together with multiple interviews with the teacher throughout its implementation. Findings support those of other researchers suggesting that beliefs about purposes of science education, the nature of science, and science teaching and learning strongly influence teacher practice and knowledge. Beliefs about the purposes of science education were found to be a particularly strong influence on practice in the observed cases. However, beliefs about students and the teachers' aims for education generally, as well as teachers' notions concerning vertical science curriculum, were also crucially influential on the type of science learning opportunities that were promoted. Beliefs were found to additionally influence the nature of both subject matter knowledge and pedagogical content knowledge for science developed by the teachers.

  12. Science Teacher Educators' Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    Science.gov (United States)

    Fraser, William J.

    2017-01-01

    This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…

  13. An Analysis of Teachers' Perceptions through Metaphors: Prospective Turkish Teachers of Science, Math and Social Science in Secondary Education

    Science.gov (United States)

    Akçay, Süleyman

    2016-01-01

    In this study, teachers' perceptions of prospective Turkish teachers (that is, those who have completed their undergraduate studies) in the fields of Science, Mathematics and Social Sciences are investigated through teacher metaphors. These perceptions were classified in accordance with their answers to two open-ended questions within a metaphoric…

  14. The Level of Utilizing Blended Learning in Teaching Science from the Point of View of Science Teachers in Private Schools of Ajman Educational Zone

    Science.gov (United States)

    Al-Derbashi, Khaled Y.; Abed, Osama H.

    2017-01-01

    This study aims to define the level of utilizing blended learning in teaching science from the point of view of science teachers (85 male and female teachers) who are working in private schools of Ajman Educational Zone. The study also aims to find if there are significant differences according to gender, years of experience, or the fact that…

  15. A Tale of Two Courses: Exploring Teacher Candidates' Translation of Science and Special Education Methods Instruction into Inclusive Science Practices

    Science.gov (United States)

    Kahn, Sami; Pigman, Ryan; Ottley, Jennifer

    2017-01-01

    Early childhood educators teach science to all students, including students with disabilities. Strategies for accommodating students with disabilities in science, including familiarity with equitable frameworks such as Universal Design for Learning (UDL) are therefore a critical aspect of early childhood teacher candidates' pedagogical content…

  16. Pre-Service Science Teacher Preparation in China: Challenges and Promises

    Science.gov (United States)

    Liu, Enshan; Liu, Cheng; Wang, Jian

    2015-01-01

    The purpose of this article was to present an overview of pre-service science teacher preparation in China, which is heavily influenced by Chinese tradition, Confucianism, and rapid social and economic development. The policies, science teacher education systems and related programs jointly contribute to producing enough science teachers for…

  17. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  18. Examining Teachers' Hurdles to `Science for All'

    Science.gov (United States)

    Southerland, Sherry; Gallard, Alejandro; Callihan, Laurie

    2011-11-01

    The goal of this research is to identify science teachers' beliefs and conceptions that play an important role in shaping their understandings of and attempts to enact inclusive science teaching practices. We examined the work products, both informal (online discussions, email exchanges) and formal (papers, unit plans, peer reviews), of 14 teachers enrolled in a master's degree course focused on diversity in science teaching and learning. These emerging understandings were member-checked via a series of interviews with a subset of these teachers. Our analysis was conducted in two stages: (1) describing the difficulties the teachers identified for themselves in their attempts to teach science to a wide range of students in their classes and (2) analyzing these self-identified barriers for underlying beliefs and conceptions that serve to prohibit or allow for the teachers' understanding and enactment of equitable science instruction. The teachers' self-identified barriers were grouped into three categories: students, broader social infrastructure, and self. The more fundamental barriers identified included teacher beliefs about the ethnocentrism of the mainstream, essentialism/individualism, and beliefs about the meritocracy of schooling. The implications of these hurdles for science teacher education are discussed.

  19. The Challenges Faced by New Science Teachers in Saudi Arabia

    Science.gov (United States)

    Alsharari, Salman

    2016-01-01

    Growing demand for science teachers in the Kingdom of Saudi Arabia, fed by increasing numbers of public school students, is forcing the Saudi government to attract, recruit and retain well-qualified science teachers. Beginning science teachers enter the educational profession with a massive fullfilment and satisfaction in their roles and positions…

  20. An examination of key experiences which contribute to a positive change in attitude toward science in two elementary education teacher candidates at the University of Wyoming

    Science.gov (United States)

    Cason, Maggie A.

    This investigation utilized life history methodology (Armstrong, 1987; Bogdan & Biklen, 1998; Lawrence-Lightfoot, 1977; Marshall & Rossman, 1995; Patton, 1987; Taylor & Bogdan; 1984) to examine lifelong science experiences of two elementary education teacher candidates at a land grant institution with a large, undergraduate teacher education program. Purposive sampling techniques (Bogdan & Biklen, 1998) led to the selection of two teacher candidates who reported high science anxiety when they began university coursework. The investigation focused on five broad questions: (a) What were key experiences in the elementary teacher education program which contributed to a positive change in attitude toward science? (b) What science experiences, in and out of school, did the teacher candidates encounter while they were in elementary school, junior high school, high school, and college? (c) How did the elementary education program's science course structure, professors, and field experiences contribute to the change in attitude toward science? (d) How much time was involved in the change in attitude toward science? and (e) What were the effects of the change in attitude on the teaching of science in the elementary classroom? Each candidate completed approximately twenty hours of interviews yielding rich descriptions of their lifelong science experiences. Data also included interviews with science and science education professors, journaling, and observations of student teaching experiences. Data analysis revealed four over-arching themes with implications for teacher educators. First, data showed the importance of relationship building between professors and teacher candidates. Professors must know and work with teacher candidates, and provide a structure that encourages question asking. Second, course structure including hands-on teaching strategies and students working in small groups over an extended period of time was vital. Third, integrating language arts with

  1. Toward Understanding the Nature of a Partnership between an Elementary Classroom Teacher and an Informal Science Educator

    Science.gov (United States)

    Weiland, Ingrid S.; Akerson, Valarie L.

    2013-01-01

    This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was…

  2. Enlist micros: Training science teachers to use microcomputers

    Science.gov (United States)

    Baird, William E.; Ellis, James D.; Kuerbis, Paul J.

    A National Science Foundation grant to the Biological Sciences Curriculum Study (BSCS) at The Colorado College supported the design and production of training materials to encourage literacy of science teachers in the use of microcomputers. ENLIST Micros is based on results of a national needs assessment that identified 22 compentencies needed by K-12 science teachers to use microcomputers for instruction. A writing team developed the 16-hour training program in the summer of 1985, and field-test coordinators tested it with 18 preservice or in-service groups during the 1985-86 academic year at 15 sites within the United States. The training materials consist of video programs, interactive computer disks for the Apple II series microcomputer, a training manual for participants, and a guide for the group leader. The experimental materials address major areas of educational computing: awareness, applications, implementation, evaluation, and resources. Each chapter contains activities developed for this program, such as viewing video segments of science teachers who are using computers effectively and running commercial science and training courseware. Role playing and small-group interaction help the teachers overcome their reluctance to use computers and plan for effective implementation of microcomputers in the school. This study examines the implementation of educational computing among 47 science teachers who completed the ENLIST Micros training at a southern university. We present results of formative evaluation for that site. Results indicate that both elementary and secondary teachers benefit from the training program and demonstrate gains in attitudes toward computer use. Participating teachers said that the program met its stated objectives and helped them obtain needed skills. Only 33 percent of these teachers, however, reported using computers one year after the training. In June 1986, the BSCS initiated a follow up to the ENLIST Micros curriculum to

  3. Science teachers' perceptions of the effectiveness of technology in the laboratories: Implications for science education leadership

    Science.gov (United States)

    Yaseen, Niveen K.

    2011-12-01

    The purpose of this study was to identify science teachers' perceptions concerning the use of technology in science laboratories and identify teachers' concerns and recommendations for improving students' learning. Survey methodology with electronic delivery was used to gather data from 164 science teachers representing Texas public schools. The data confirmed that weaknesses identified in the 1990s still exist. Lack of equipment, classroom space, and technology access, as well as large numbers of students, were reported as major barriers to the implementation of technology in science laboratories. Significant differences were found based on gender, grade level, certification type, years of experience, and technology proficiency. Females, elementary teachers, traditionally trained teachers, and less experienced teachers revealed a more positive attitude toward the use of technology in science laboratories. Participants in this study preferred using science software simulations to support rather than replace traditional science laboratories. Teachers in this study recommended professional development programs that focused on strategies for a technology integrated classroom.

  4. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    Science.gov (United States)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  5. Why Do They Stay? A Phenomenological Study of Secondary Science Teacher Experiences

    Science.gov (United States)

    Lastica, Joelle Ramirez

    In 2004, The U.S. Department of Education reported that 20% of schoolteachers (public and private) leave their classrooms during the first year of teaching, and nearly twice as many leave within the first three years of teaching (Koppich, 2004). According to the 2007 Condition of Education report, the U.S. Department of Education estimated there were nearly 380,000 public school math and science teachers during the 2003-2004 school year, and of those, approximately 23,000 left the teaching profession the following school year. Yet despite these reports, in 2004-2005, approximately 360,000 public school math and science teachers remained in their classrooms. In this phenomenological dissertation study, I sought to discover how eight secondary science teachers (whose years of teaching experience range from five to 30 years) make meaning of their decisions to remain in teaching. Through semi-structured interviews, these teacher participants and I discussed how each of them decided to become a science teacher, how each of them think of themselves as a science teacher, and how each of them decided to remain teaching despite the ever-growing list of challenges (s)he faces in and out of his/her classroom. These teacher participants chose to become science teachers because they loved their subject area and working with secondary students. These teachers enjoyed working with their students and their teaching colleagues. However, they acknowledged there were also tensions and frustrations in their work, including not feeling supported by school and district administrators and being overwhelmed with the demands of their workload and time. These eight science teachers chose to remain classroom teachers because they have a profound love for their students, a deep admiration for their colleagues, and a strong sense of mission in their work. It is my intent that the stories shared by the teacher participants in this study will shed light upon concerns, tensions and experiences

  6. Elementary Science and Reading Activities for Teacher Educators.

    Science.gov (United States)

    Rezba, Richard J.

    The author suggests ways reading can be integrated with science and describes the reading activities in an elementary science methods course. The activities include: (1) selecting a science tradebook for children to review and for the teacher to analyze vocabulary; (2) helping children review science tradebooks; and (3) encouraging independent…

  7. Promoting Pre-college Science Education

    Science.gov (United States)

    Lee, R. L.

    1999-11-01

    The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.

  8. Delaware Technical & Community College's response to the critical shortage of Delaware secondary science teachers

    Science.gov (United States)

    Campbell, Nancy S.

    This executive position paper examines the critical shortage of Delaware high school science teachers and Delaware Technical & Community College's possible role in addressing this shortage. A concise analysis of economic and political implications of the science teacher shortage is presented. The following topics were researched and evaluated: the specific science teacher needs for Delaware school districts; the science teacher education program offerings at Delaware universities and colleges; the Alternative Route to Teacher Certification (ARTC); and the state of Delaware's scholarship response to the need. Recommendations for Delaware Tech's role include the development and implementation of two new Associate of Arts of Teaching programs in physics secondary science education and chemistry secondary science education.

  9. Preservice science teachers' experiences with repeated, guided inquiry

    Science.gov (United States)

    Slack, Amy B.

    The purpose of this study was to examine preservice science teachers' experiences with repeated scientific inquiry (SI) activities. The National Science Education Standards (National Research Council, 1996) stress students should understand and possess the abilities to do SI. For students to meet these standards, science teachers must understand and be able to perform SI; however, previous research demonstrated that many teachers have naive understandings in this area. Teacher preparation programs provide an opportunity to facilitate the development of inquiry understandings and abilities. In this study, preservice science teachers had experiences with two inquiry activities that were repeated three times each. The research questions for this study were (a) How do preservice science teachers' describe their experiences with repeated, guided inquiry activities? (b) What are preservice science teachers' understandings and abilities of SI? This study was conducted at a large, urban university in the southeastern United States. The 5 participants had bachelor's degrees in science and were enrolled in a graduate science education methods course. The researcher was one of the course instructors but did not lead the activities. Case study methodology was used. Data was collected from a demographic survey, an open-ended questionnaire with follow-up interviews, the researcher's observations, participants' lab notes, personal interviews, and participants' journals. Data were coded and analyzed through chronological data matrices to identify patterns in participants' experiences. The five domains identified in this study were understandings of SI, abilities to conduct SI, personal feelings about the experience, science content knowledge, and classroom implications. Through analysis of themes identified within each domain, the four conclusions made about these preservice teachers' experiences with SI were that the experience increased their abilities to conduct inquiry

  10. Technology and Early Science Education: Examining Generalist Primary School Teachers' Views on Tacit Knowledge Assessment Tools

    Science.gov (United States)

    Hast, Michael

    2017-01-01

    For some time a central issue has occupied early science education discussions--primary student classroom experiences and the resulting attitudes towards science. This has in part been linked to generalist teachers' own knowledge of science topics and pedagogical confidence. Recent research in cognitive development has examined the role of…

  11. Who Are the Science Teachers That Seek Professional Development in Research Experience for Teachers (RET's)? Implications for Teacher Professional Development

    Science.gov (United States)

    Saka, Yavuz

    2013-01-01

    To address the need to better prepare teachers to enact science education reforms, the National Science Foundation has supported a Research Experience for Teachers (RET's) format for teacher professional development. In these experiences, teachers work closely with practicing scientists to engage in authentic scientific inquiry. Although…

  12. Pura Vida: Teacher Experiences in a Science Education Study Abroad Course in Costa Rica

    Science.gov (United States)

    Medina, Stephanie Rae

    The purpose of this study was to explore the experiences of classroom teachers who participated in a science-focused study abroad during their time as a preservice teacher and to explore how they are using their study abroad experiences in science curriculum planning and in classroom instruction. This study is guided by two research questions: 1) what are the study abroad experiences that have influenced classroom teachers; and, 2) how do classroom teachers incorporate study abroad experiences into science curriculum planning and instruction in the classroom? Participants were two in-service science teachers from schools located in the Southwestern United States. The participants were enrolled in the course, Environmental Science and Multicultural Experience for K-8 Teachers offered through the Department of Educational Leadership, Curriculum and Instruction during their time as preservice teachers. The course included a two-week study abroad component in Costa Rica. Participants spent their mornings observing a monolingual, Spanish-speaking elementary classroom followed by a faculty-led multicultural seminar. Afternoons during the study abroad experience were dedicated to field science activities such as quantifying plant and animal biodiversity, constructing elevation profiles, determining nutrient storage in soil, and calculating river velocity. Throughout the course students participated in science-focused excursions. A cross case study design was used to answer the two research questions guiding this dissertation study. Data collection included participant-created concept maps of the science experiences during the study abroad experience, in-depth interviews detailing the study abroad experience and classroom instruction, and participant reflective journal entries. Cross-caseanalysis was employed to explore the uniqueness of each participant's experience and commonalities between the cases. Trustworthiness was established by utilizing multiple sources of data

  13. Exploring the Effects of Specific, Hands-On Interventions, on Environmental Science Topics in Teacher Education Programs

    Science.gov (United States)

    Bullock, S. M.; Hayhoe, D.

    2012-12-01

    With increased concern over the environment, all Ontario students now study soils, energy conservation, water systems, and climate change & the greenhouse effect in Grades 3, 5, 7, 8 and 10. Unfortunately, many prospective teachers at the elementary and intermediate levels come to teacher education programs with little or no formal science education beyond their own experiences as students in the K-12 system. We devised a series of concept tests (some binary choice, some multiple choice) designed to assess teacher candidates' conceptual understandings of soils, energy, water systems, and climate change and the greenhouse effect - the very content they are expected to teach their future students in the school system. We administered a pre-test to our students at two institutions to establish a baseline of their understanding. Then, we specifically devoted class time to exploring each of these themes in our science curriculum methods courses in order using research-based principles of teaching devoted to promoting conceptual change through the use of hands-on, inquiry approaches in science. After a few months had passed, we again administered the same tests to teacher candidates to measure candidates' conceptual gain. Some teacher candidates also participated in follow-up focus group interviews so that they could have the opportunity to articulate their understandings of concepts in environmental science using their own words. In this poster we will report on data collected for this project over the past two academic years. We have reached two broad conclusions. First, teacher candidates know a considerable amount about the four environmental topics that were selected, despite the fact that most participants in the research did not have post-secondary training in science. For example, participants tended to know that planting different crops on the soil in different years helps to maintain fertile soils and that warmer oceans will cause an increase in the severity of

  14. Primary Teachers' Attitudes toward Science: A New Theoretical Framework

    Science.gov (United States)

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; Asma, Lieke J. F.

    2012-01-01

    Attention to the attitudes of preservice and inservice primary teachers toward science is of fundamental importance to research on primary science education. However, progress in this field of research has been slow due to the poor definition and conceptualization of the construct of primary teachers' attitude toward science. This poor theoretical…

  15. An Analysis of Science Student Teachers' Epistemological Beliefs and Metacognitive Perceptions about the Nature of Science

    Science.gov (United States)

    Yenice, Nilgün

    2015-01-01

    This study has been carried out to identify the relationship between the epistemological beliefs of student teachers and their metacognitive perceptions about the nature of science. The participants of the study totaled 336 student teachers enrolled in the elementary science education division of the department of elementary education at the…

  16. Influences on teachers' curricular choices in project-based science classrooms

    Science.gov (United States)

    Laba, Karen Anne

    This descriptive research will present two case studies of experienced science teachers using project-based curricula in all or part of their secondary life science/biology courses. The purpose of this study is to reveal the underlying relationships between teachers' conceptions of the nature of science, their understanding of their role as science teachers and their expectations for appropriate and worthwhile student learning, and to describe the influence of these factors on their curricular choices within the project-based framework. Using a modification of Hewson, Kerby and Cook's (1995) Conceptions of Teaching Science protocol as a model, teachers' beliefs and intentions are classified and examined to identify organizing themes. Comparisons between teachers' beliefs and the actions they take in their project-based classroom are used to reveal relationships among the choices that result in students' learning experiences. Finally, the curricula presented by these two exemplary teachers are compared with the teaching standards and content goals defined in the National Science Education Standards (NRC, 1996). Recommendations for the application of the case study perspective of the evolution of learning experiences to reform efforts are offered to practitioners, policy makers, curriculum developers and teacher educators.

  17. Impact of Texas high school science teacher credentials on student performance in high school science

    Science.gov (United States)

    George, Anna Ray Bayless

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.

  18. Preparing teachers for ambitious and culturally responsive science teaching

    Science.gov (United States)

    Seiler, Gale

    2013-03-01

    Communities, schools and classrooms across North America are becoming more ethnically, racially, and linguistically diverse, particularly in urban areas. Against this backdrop, underrepresentation of certain groups in science continues. Much attention has been devoted to multicultural education and the preparation of teachers for student diversity. In science education, much research has focused on classrooms as cultural spaces and the need for teachers to value and build upon students' everyday science knowledge and ways of sense-making. However it remains unclear how best to prepare science teachers for this kind of culturally responsive teaching. In attempting to envision how to prepare science teachers with cross-cultural competency, we can draw from a parallel line of research on preparing teachers for ambitious science instruction. In ambitious science instruction, students solve authentic problems and generate evidence and models to develop explanations of scientific phenomenon, an approach that necessitates great attention to students' thinking and sense-making, thus making it applicable to cultural relevance aims. In addition, this line of research on teacher preparation has developed specific tools and engages teachers in cycles of reflection and rehearsal as they develop instructional skills. While not addressing cross-cultural teaching specifically, this research provides insights into specific ways through which to prepare teachers for culturally responsive practices. In my presentation, I will report on efforts to join these two areas of research, that is, to combine ideas about multicultural science teacher preparation with what has been learned about how to develop ambitious science instruction. This research suggests a new model for urban science teacher preparation--one that focuses on developing specific teaching practices that elicit and build on student thinking, and doing so through cycles of individual and collective planning, rehearsal

  19. Development environmental attitude of prospective science teachers

    International Nuclear Information System (INIS)

    Iqbal, H.M.

    2000-01-01

    Since the last three decades or so, we have witnessed the growing concern of human beings, all over the world, to adopt measures to conserve and preserve environment of the planet earth, because the same has been threatened by human activity and by way of our unparalleled intervention in the otherwise balanced environment. This awareness and concern has emerged as a need of incorporating environmental Issues into the normal curricula, so that we can educate the young generation to become informed decision-makers of the future. UNESCO and UNEP have advocated (since the last three decades) to teach environmentalised science to students. In Pakistan, there have been attempts to change curricula in accordance with the need of the time. Teachers need new kinds of skills, attitudes and commitment to teach science in an environmentalised fashion. This article discusses the impact of a semester-course on change in environmental attitudes of prospective science-teachers. A pre-test, post-test method was used to ascertain any change in environmental attitude of prospective science-teachers, after studying the environmental education course. It has been shown that there was a change in the environmental attitude of science-teachers as a result of the one-semester course, but the change or the level of attitude was not substantial or satisfactory. There seems to be a need of adopting a comprehensive approach to environmental education, and introducing teaching of environmental concepts at a very early age. (author)

  20. American Elementary Education Pre-Service Teachers' Attitudes towards Biotechnology Processes

    Science.gov (United States)

    Chabalengula, Vivien Mweene; Mumba, Frackson; Chitiyo, Jonathan

    2011-01-01

    This study examined elementary education pre-service teachers' attitudes towards biotechnology processes. A sample comprised 88 elementary education pre-service teachers at a mid-sized university in the Midwest of the USA. Sixty and 28 of these pre-service teachers were enrolled in Introductory Science Methods course and Advance Science Methods…

  1. Persisting mathematics and science high school teachers: A Q-methodology study

    Science.gov (United States)

    Robbins-Lavicka, Michelle M.

    There is a lack of qualified mathematics and science teachers at all levels of education in Arkansas. Lasting teaching initiative programs are needed to address retention so qualified teachers remain in the classroom. The dearth of studies regarding why mathematics and science teachers persist in the classroom beyond the traditional 5-year attrition period led this Q-methodological study to evaluate the subjective perceptions of persistent mathematics and science teachers to determine what makes them stay. This study sought to understand what factors persisting mathematics and science teachers used to explain their persistence in the classroom beyond 5 years and what educational factors contributed to persisting mathematics and science teachers. Q-methodology combines qualitative and quantitative techniques and provided a systematic means to investigate personal beliefs by collecting a concourse, developing a Q-sample and a person-sample, conducting a Q-sorting process, and analyzing the data. The results indicated that to encourage longevity within mathematics and science classrooms (a) teachers should remain cognizant of their ability to influence student attitudes toward teaching; (b) administrators should provide support for teachers and emphasize the role and importance of professional development; and (c) policy makers should focus their efforts and resources on developing recruitment plans, including mentorship programs, while providing and improving financial compensation. Significantly, the findings indicate that providing mentorship and role models at every level of mathematics and science education will likely encourage qualified teachers to remain in the mathematics and science classrooms, thus increasing the chance of positive social change.

  2. Writing in elementary school science: Factors that influence teacher beliefs and practices

    Science.gov (United States)

    Glen, Nicole J.

    Recent calls for scientifically literate citizens have prompted science educators to examine the roles that literacy holds in students' science learning processes. Although many studies have investigated the cognitive gains students acquire when they write in science, these writing-to-learn studies have typically been conducted with only middle and secondary school students. Few studies have explored how teachers, particularly elementary teachers, understand the use of writing in science and the factors that influence their science and writing lessons. This was a qualitative case study conducted in one suburban school with four elementary teachers. The purpose of this study was to understand: (a) how teachers' uses of and purposes for writing in science compared to that in English language arts; (b) the factors that drove teachers' pedagogical decisions to use writing in certain ways; (c) teachers' beliefs about science teaching and learning and its relation to how they used writing; (d) teachers' perceptions of students' writing abilities and its relation to how they used writing; and (e) teachers' views about how writing is used by scientists. Seven main findings resulted from this research. In summary, teachers' main uses of and purposes for writing were similar in science and English language arts. For much of the writing done in both subjects, teachers' expectations of students' writing were typically based on their general literacy writing skills. The teachers believed that scientific writing is factual, for the purpose of communicating about science, and is not as creative or "fun" as other types of writing. The teachers' pedagogical practices in science included teaching by experiences, reading, and the transmission of information. These practices were related to their understanding of scientific writing. Finally, additional factors drove the decisions teachers made regarding the use of writing in science, including time, knowledge of curriculum

  3. Negotiating science and engineering: an exploratory case study of a reform-minded science teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-05-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the perspective of the science teacher, this would require not only the development of knowledge and pedagogies associated with engineering, but also the construction of new identities operating within the reforms and within the context of their school. In this study, a middle school science teacher was observed and interviewed over a period of nine months to explore his experiences as he adopted new values, discourses, and practices and constructed his identity as a reform-minded science teacher. Our findings revealed that, as the teacher attempted to become a reform-minded science teacher, he constantly negotiated his professional identities - a dynamic process that created conflicts in his classroom practices. Several differences were observed between the teacher's science and engineering instruction: hands-on activities, depth and detail of content, language use, and the way the teacher positioned himself and his students with respect to science and engineering. Implications for science teacher professional development are discussed.

  4. Science, technology, and pedagogy: Exploring secondary science teachers' effective uses of technology

    Science.gov (United States)

    Guzey, Siddika Selcen

    Technology has become a vital part of our professional and personal lives. Today we cannot imagine living without many technological tools such as computers. For the last two decades technology has become inseparable from several areas, such as science. However, it has not been fully integrated into the field of education. The integration of technology in teaching and learning is still challenging even though there has been a historical growth of Internet access and available technology tools in schools (U.S. Department of Education, National Center for Education Statistics, 2006). Most teachers have not incorporated technology into their teaching for various reasons such as lack of knowledge of educational technology tools and having unfavorable beliefs about the effectiveness of technology on student learning. In this study, three beginning science teachers who have achieved successful technology integration were followed to investigate how their beliefs, knowledge, and identity contribute to their uses of technology in their classroom instruction. Extensive classroom observations and interviews were conducted. The findings demonstrate that the participating teachers are all intrinsically motivated to use technology in their teaching and this motivation allows them to enjoy using technology in their instruction and keeps them engaged in technology use. These teachers use a variety of technology tools in their instruction while also allowing students to use them, and they posit a belief set in favor of technology. The major findings of the study are displayed in a model which indicates that teachers' use of technology in classroom instruction was constructed jointly by their technology, pedagogy, and content knowledge; identity; beliefs; and the resources that are available to them and that the internalization of the technology use comes from reflection. The study has implications for teachers, teacher educators, and school administrators for successful technology

  5. Investigating the Self-Perceived Science Teaching Needs of Local Elementary Educators

    Science.gov (United States)

    Carver, Cynthia G.

    Elementary teachers in one school system have expressed low self-efficacy teaching science and desire more support teaching science. However, little research has been conducted on how best to meet these teachers' needs. The theories of perceived self-efficacy, social cognition, and behaviorism make up the conceptual framework of this study. The focus of this qualitative project study was on the needs of local elementary educators. These teachers were asked what they felt they needed most to be more effective science educators. The methodology of phenomenology was used in this study in which local elementary teachers were questioned in focus groups regarding their own science teaching efficacy and perceived needs. Using inductive analysis, data were coded for links to discussion questions as well as any additional patterns that emerged. Findings indicated that local elementary teachers desire improved communication among administrators and teachers as well as better science content support and training. Focus group participants agreed that teacher self-efficacy affects the time spent, effort toward, and quality of elementary science education. Using the results of the study, a science mentor program was developed to support the needs of elementary teachers and increase teacher self-efficacy, thus improving local elementary science education. Implications for positive social change include the development and support of elementary science programs in other school systems with the goal of improving science education for elementary students.

  6. Some Aspects of Science Education in European Context

    Science.gov (United States)

    Naumescu, Adrienne Kozan; Pasca, Roxana-Diana

    2008-01-01

    Some up-to-date problems in science education in European context are treated in this paper. The characteristics of science education across Europe are presented. Science teachers' general competencies are underlined. An example of problem-solving as teaching method in chemistry is studied in knowledge based society. Transforming teacher practice…

  7. Teaching Teachers of Science

    Science.gov (United States)

    Lockman, F. J.; Heatherly, S. A.

    2001-05-01

    Most K-12 teachers of science have never actually done research, and this creates considerable confusion and misunderstanding about the nature of science. For more than 10 years the NRAO at Green Bank has conducted programs of teacher training, funded by the NSF, which provide a research experience in radio astronomy that can be generalized and applied in the classroom. Our program is under the direction of educators from the NRAO and WVU, but uses the unique facilities of the Observatory and the active participation of its scientific staff. Evaluations have shown that the two-week programs are effective in making significant, positive changes in attitude and understanding of the participants. We are in the process of expanding our educational activities so that every student in the region and the State will be able to participate in at least one program at the Observatory before they graduate from high school.

  8. The Six-Legged Subject: A Survey of Secondary Science Teachers' Incorporation of Insects into U.S. Life Science Instruction.

    Science.gov (United States)

    Ingram, Erin; Golick, Douglas

    2018-03-14

    To improve students' understanding and appreciation of insects, entomology education efforts have supported insect incorporation in formal education settings. While several studies have explored student ideas about insects and the incorporation of insects in elementary and middle school classrooms, the topic of how and why insects are incorporated in secondary science classrooms remains relatively unexplored. Using survey research methods, this study addresses the gap in the literature by (1) describing in-service secondary science teachers' incorporation of insects in science classrooms; (2) identifying factors that support or deter insect incorporation and (3) identifying teachers' preferred resources to support future entomology education efforts. Findings indicate that our sample of U.S. secondary science teachers commonly incorporate various insects in their classrooms, but that incorporation is infrequent throughout the academic year. Insect-related lesson plans are commonly used and often self-created to meet teachers' need for standards-aligned curriculum materials. Obstacles to insect incorporation include a perceived lack of alignment of insect education materials to state or national science standards and a lack of time and professional training to teach about insects. Recommendations are provided for entomology and science education organizations to support teachers in overcoming these obstacles.

  9. Working Alongside Scientists: Impacts on Primary Teacher Beliefs and Knowledge about Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-01-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the…

  10. Teacher in Residence: Bringing Science to Students

    CERN Multimedia

    Daisy Yuhas

    CERN welcomes its first Teacher in Residence, Terrence Baine of the University of Oslo. Baine, who originally hails from Canada, will be concurrently completing his PhD in Physics Education during his time at CERN. Like CERN’s High School Teacher Programme (HST), of which Baine is an alumnus, the Teacher in Residence position is designed to help educators spread the science of CERN in a form that is accessible to students and can encourage them to pursue physics throughout their education.   Terrence Baine, first 'teacher in residence' at CERN Baine explains, “It’s very important to have a teacher present who can be that middle person between the young peoplecoming here, whom we are trying to enlighten, and the physicists who work at CERN. The Teacher in Residence can act as an on-site educational consultant.” As Teacher in Residence, Baine’s primary project will be to develop teaching modules, or a series of lesson plans, that can help high schoo...

  11. Earthworks: Educating Teachers in Earth System Sciences

    Science.gov (United States)

    Spetzler, H.; Weaver, A.; Buhr, S.

    2000-01-01

    Earthworks is a national community of teachers and scientists. Initiated in 1998 with funding from NASA, our summer workshops in the Rocky Mountains each year provide unique opportunities for teachers to design and conduct field research projects, working closely with scientists. Teachers then develop plans for classroom implementation during the school year, sharing their ideas and experiences with other community members through e-mail and a listserv. Scientists, from graduate students to expert senior researchers, share their knowledge of field methods in environmental science, and learn how to better communicate and teach about their research.

  12. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    Science.gov (United States)

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  13. Pre-service secondary school science teachers science teaching ...

    African Journals Online (AJOL)

    PROF.MIREKU

    pre-service secondary science teachers' self-efficacy beliefs with regard to gender and educational .... outcome. As a consequence, instruments for the determination of self-efficacy ...... Sex Roles: A Journal of Research, 42, 119–31. Bursal, M.

  14. Senior science teachers' experience of teaching in a changing multicultural classroom: A case study

    Science.gov (United States)

    Ryan, Mark

    Demographic changes within the US are bringing significant changes in the cultural make-up of the classrooms in our schools. Results from national and state assessments indicate a growing achievement gap between the science scores of white students and students from minority communities. This gap indicates a disconnect somewhere in the science classrooms. This study examines the teacher's perspective of the changing learning environment. The study focuses on senior teachers with traditional Midwestern backgrounds and little multicultural experience assuming these teachers had little or no education in multicultural education. Senior teachers are also more likely to have completed their science education within a traditional Universalist perspective of science and likewise have little or no education in multicultural science. The research method was comparative case studies of a purposeful sample of nine science teachers within a community experiencing significant demographic change, seven core senior teachers and two frame of reference teachers. The interviews examined the teachers' awareness of their own cultural beliefs and the impact of those beliefs on classroom practices, the teachers' understanding of cultural influences on the students' academic performance, and the relationships between the teachers' understanding of the cultural aspects of the nature of science and their classroom practices. Analysis of the interview data revealed that the teachers maintain a strong, traditional Midwestern worldview for classroom expectations and they are generally unaware of the impact of those standards on the classroom environment. The teachers were supportive of minority students within their classroom, changing several practices to accommodate student needs, but they were unaware of the broader cultural influences on student learning. The teachers had a poor understanding of the nature of science and none of them recognized a cultural element of NOS. They maintained a

  15. How Pre-Service Teachers' Understand and Perform Science Process Skills

    Science.gov (United States)

    Chabalengula, Vivien Mweene; Mumba, Frackson; Mbewe, Simeon

    2012-01-01

    This study explored pre-service teachers' conceptual understanding and performance on science process skills. A sample comprised 91 elementary pre-service teachers at a university in the Midwest of the USA. Participants were enrolled in two science education courses; introductory science teaching methods course and advanced science methods course.…

  16. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    Science.gov (United States)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  17. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  18. Pedagogical innovation for science teachers training in the information age

    International Nuclear Information System (INIS)

    Horta, L.M.P.

    2009-01-01

    It urges to improve internet skills on the people, for dealing with lots of different global important issues such as health, education, economy, environment, food chemistry, Portuguese Cultural Heritage, sustainable development. The available information in the internet and the interactive resources is immense, but we have to elaborate education strategies for the enriching, discerning and pedagogic use of the internet. We are in the information age, being crucial to get to transform the information in knowledge and to transform knowledge produced in to information, effectively and efficiently. The introduction of new ideas, theories, methodologies, contexts, technological innovations as in students of the basis and secondary education (the new generations), as in science teachers through new practices and knowledge using the science, technology, society and environment perspective present in the Portuguese curricula for motivating students and with strategies that allow them to identify, to observe of to scrutiny on science, technology and society applications, being the internet the privileged vehicle of that whole new knowledge. Can be targeted and developed to Physics and Chemistry teachers; Biology and Geology teachers; Mathematics and Nature Sciences Teachers; Physical Education Teachers. Science teachers training courses design in the information age challenges us to rethink global environment, and many factors (quick examples are how close the interactive virtual lab model is to the real world or the psychological effect of color) present in the web for the human learning must be subject of consideration. (author)

  19. Reshaping teacher thinking, planning and practice using embedded assessment: Case studies of three middle school science teachers

    Science.gov (United States)

    Jeranyama, Letina Ngwenya

    At the dawn of the 21st century the science education community is seeking ways of improving science education to produce a scientific literate citizenry. They have put forth new goals. Teachers are key to all efforts to improve schools, that without their full participation, any move to reform education nor matter how well intentioned is doomed to failure. The changes in the goals of science education imply that teachers have to change the way they teach science. Some scholars have suggested that one way to help teachers attain the reform goals is by using embedded assessment. Embedded assessment is defined as a cyclical and ongoing process whereby teachers gather data about students' understanding as they teach, they analyze the data formally or informally and use the analysis to plan or adjust teaching immediately, for the next hour, day, topic, unit or year. The next day's activities also include embedded assessment and so the cycle repeats itself. This study investigates how teachers make sense of embedded assessment, how embedded assessment looks in practice, how it influences teachers and their classroom environments and the challenges teachers face as they use embedded assessment. Three middle school science teachers were involved in the study. Data were collected through semi-structured interviews with open-ended questions, participant observations and professional development conversations. Data were analyzed using the qualitative method of constant comparative analysis. The findings indicate that teachers passed through different stages in conceptualizing embedded assessment. This conceptualization influenced the way embedded assessment looked in the classroom. Embedded assessment took many forms and shapes in the teachers' classrooms. Embedded assessment influenced the teachers' perspectives about the curriculum, students, teaching, assessment, planning and reflection in ways that enabled the teachers to be investigators of their students' understanding

  20. Science teacher’s idea about environmental concepts in science learning as the first step of science teacher training

    Science.gov (United States)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-05-01

    To refresh natural environmental concepts in science, science teacher have to attend a teacher training. In teacher training, all participant can have a good sharing and discussion with other science teacher. This study is the first step of science teacher training program held by education foundation in Bandung and attended by 20 science teacher from 18 Junior High School. The major aim of this study is gathering science teacher’s idea of environmental concepts. The core of questions used in this study are basic competencies linked with environmental concepts, environmental concepts that difficult to explain, the action to overcome difficulties and references in teaching environmental concepts. There are four major findings in this study. First finding, most environmental concepts are taught in 7th grade. Second finding, most difficult environmental concepts are found in 7th grade. Third finding, there are five actions to overcome difficulties. Fourth finding, science teacher use at least four references in mastering environmental concepts. After all, teacher training can be a solution to reduce difficulties in teaching environmental concepts.

  1. Primary Teachers' Reflections on Inquiry- and Context-Based Science Education

    Science.gov (United States)

    Walan, Susanne; Mc Ewen, Birgitta

    2017-04-01

    Inquiry- and context-based teaching strategies have been proven to stimulate and motivate students' interests in learning science. In this study, 12 teachers reflected on these strategies after using them in primary schools. The teachers participated in a continuous professional development (CPD) programme. During the programme, they were also introduced to a teaching model from a European project, where inquiry- and context-based education (IC-BaSE) strategies were fused. The research question related to teachers' reflections on these teaching strategies, and whether they found the model to be useful in primary schools after testing it with their students. Data collection was performed during the CPD programme and consisted of audio-recorded group discussions, individual portfolios and field notes collected by researchers. Results showed that compared with using only one instructional strategy, teachers found the new teaching model to be a useful complement. However, their discussions also showed that they did not reflect on choices of strategies or purposes and aims relating to students' understanding, or the content to be taught. Before the CPD programme, teachers discussed the use of inquiry mainly from the aspect that students enjoy practical work. After the programme, they identified additional reasons for using inquiry and discussed the importance of knowing why inquiry is performed. However, to develop teachers' knowledge of instructional strategies as well as purposes for using certain strategies, there is need for further investigations among primary school teachers.

  2. Revolutionizing Climate Science: Using Teachers as Communicators

    Science.gov (United States)

    Warburton, J.; Crowley, S.; Wood, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the Polar Regions. Teachers are the dynamic conduits for communicating climate science. In the PolarTREC final report, researchers found that teachers were vital in refining the language of their science and have shaped the goals of the scientific project. Program data demonstrates that science in classrooms is better understood when teachers have a full-spectrum grasp of project intricacies from defining the project, to field data collection, encountering situations for creativity and critical thinking, as well as participating in data and project analysis. Teachers' translating the authentic scientific process is integral in communicating climate science to the broader public. Teachers playing a major role in polar science revolutionize the old paradigm of "in-school learning". Through daily online journaling and forums, social media communication, live webinars with public, and professional development events, these teachers are moving beyond classrooms to communicate with society. Through teachers, climate policy can be shaped for the future by having scientifically literate students as well as assessable science. New paradigms come as teachers attain proficient levels of scientific understanding paired with the expert abilities for communication with years of experience. PolarTREC teachers are a model for new interactions peer-to-peer learning and mentorship for young scientists. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach exponential audiences in media, policy, and classrooms. Modeling this program, we designed and conducted a teacher training on climate science in Denali National Park. Utilizing expert university

  3. NGSS and the Next Generation of Science Teachers

    Science.gov (United States)

    Bybee, Rodger W.

    2014-01-01

    This article centers on the "Next Generation Science Standards" (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts--interconnecting science and engineering…

  4. Crossing borders: High school science teachers learning to teach the specialized language of science

    Science.gov (United States)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  5. A Course in Earth System Science: Developed for Teachers by Teachers

    Science.gov (United States)

    Wong, K.; Read, K.; Charlevoix, D.; Tomkin, J.; Hug, B.; Williams, M.; Pianfetti, E.

    2008-12-01

    ESES 202 is a new general education course in physical science at the University of Illinois's School of Earth, Society and Environment, designed for pre-service K-8 teachers. The goal of the course is to help future classroom teachers become confident with teaching earth science content. The designers of this course include a faculty expert in earth system science, a pre-service teacher and a former middle school science teacher. The goal of the in the curriculum design was to utilize the unique perspectives and experiences of our team. Our poster will highlight the unique nature of the curriculum development outlining the challenges and successes of designing the course. The general format of the class will be a combination of discussions, hands on experiences, and opportunities for students to design their own lessons. Class meetings will be once per week in a three-hour block, allowing students to immediately transfer new content knowledge into classroom activities. The end goal is that they can use these same activities with their students once they are practicing teachers. The content of the course shall be taught using an earth systems approach by showing the relationships among the four spheres: biosphere, hydrosphere, atmospheric, and anthrosphere. There are five units in the course: Introduction to Earth Systems, Carbon Cycle, Water Quality, El Niño and Climate Change. In addition to the science portion of the course, students will spend time reflecting on the classroom activities from the perspective of future educators. Activities will be presented at a late elementary school level; however, time will be devoted to discussing methods to adapt the lesson to different grade levels and differentiation needs within a classroom. Additionally, students in this course will be instructed on how to utilize a multitude of resources from stream tables to science education databases to prepare them for the dynamic nature of the classroom. By the end of the class

  6. The Learning Assistant Model for Science Teacher Recruitment and Preparation

    Science.gov (United States)

    Otero, Valerie

    2006-04-01

    There is a shortage of high quality physical science teachers in the United States. In 2001, less than 50% of teachers who taught physics held a major or minor in physics or physics education (Neuschatz & McFarling, 2003). Studies point to content knowledge as one of the two factors that is positively correlated with teacher quality. However, those directly responsible for the science content preparation of teachers, specifically science research faculty, are rarely involved in focused efforts to improve teacher quality or to create alternative paths for becoming a teacher. What role should science research faculty play in the recruitment and preparation of science teachers? How might teacher recruitment and preparation be conceived so that science research faculty members' participation in these efforts is not at odds with the traditional scientific research foci of science research departments? To address this issue, we have coupled our teacher recruitment and preparation efforts with our efforts for transforming our large-enrollment, undergraduate science courses. This is achieved through the undergraduate Learning Assistant (LA) program, where talented mathematics and science majors are hired to assist in transforming large enrollment courses to student-centered, collaborative environments. These LAs are the target of our teacher recruitment efforts. Science research faculty, in collaboration with faculty from the school of education have established a community that supports LAs in making decisions to explore K12 teaching as a career option. Fifteen percent of the LAs who have participated in this program have entered teaching credential programs and now plan to become K12 teachers. An added effect of this program is that research faculty have developed skills and knowledge regarding inquiry-based and student-centered pedagogy and theories of student learning. The Learning Assistant program has led to increased subject matter knowledge among learning

  7. The impact of federal policy on teachers' use of science manipulatives: A survey of teacher philosophy and practices

    Science.gov (United States)

    Helgoe, Catherine A.

    Recently, educators in public K-12 schools have added testing of science knowledge to the measures of Adequate Yearly Progress required by the federal No Child Left Behind (NCLB) legislation. Research of the impact of NCLB policy on general teaching practices had credited the policy with improving instruction; however, negative impacts noted included the concern that teachers "teach to the test," narrowing the curriculum. Testing as an assessment strategy was not advocated by the professional educators and scientists responsible for the National Science Education Standards (NSES). Results from previous studies pointed to a potential conflict between the NCLB reforms and the National Science Education Standards science standards, in which teachers might reduce or eliminate hands-on activities and other constructivist practices in order to focus class time on other topics and tasks. Most research on NCLB policy, however, had not evaluated instructional practices regarding science education. This study examined the relationship among teacher beliefs, specifically the strength of their constructivist versus traditional beliefs, teachers' responses to NCLB policy, and teachers' use of constructivist practices in the form of manipulatives. This study showed that national policy did have an impact on teachers; however, that impact was not specific to the hands-on practices in science education. Teachers who responded to this survey had found many benefits in student learning using manipulatives and those positive impacts on their students justified the increased use of manipulatives in the classroom. The strength of teachers' constructivist beliefs showed a weak positive correlation to choices related to curriculum priorities, learning goals and advantages in using manipulatives. However, a relationship to beliefs was not found in the changes teachers made to various instructional practices, or in how they viewed certain manipulative materials, or in how they viewed

  8. Instructional Support and Implementation Structure during Elementary Teachers' Science Education Simulation Use

    Science.gov (United States)

    Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.

    2016-01-01

    This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results…

  9. Challenges of Virtual and Open Distance Science Teacher Education in Zimbabwe

    OpenAIRE

    Vongai Mpofu; Tendai Samukange; Lovemore M Kusure; Tinoidzwa M Zinyandu; Clever Denhere; Nyakotyo Huggins; Chingombe Wiseman; Shakespear Ndlovu; Rennias Chiveya; Monica Matavire; Leckson Mukavhi; Isaac Gwizangwe; Elliot Magombe; Munyaradzi Magomelo; Fungai Sithole

    2012-01-01

    This paper reports on a study of the implementation of science teacher education through virtual and open distance learning in the Mashonaland Central Province, Zimbabwe. The study provides insight into challenges faced by students and lecturers on inception of the program at four centres. Data was collected from completed evaluation survey forms of forty-two lecturers who were directly involved at the launch of the program and in-depth interviews. Qualitative data analysis revealed that the ...

  10. Schools of California Online Resources for Education: History-Social Science One Stop Shopping for California's Social Studies Teachers.

    Science.gov (United States)

    Hill, Margaret; Benoit, Robert

    1998-01-01

    Reviews the resources available for social studies teachers from the Schools of California Online Resources for Education (SCORE): History Social Science World Wide Web site. Includes curriculum-aligned resources and lessons; standards and assessment information; interactive projects and field trips; teacher chat area; professional development…

  11. Argumentation in Science Teacher Education: The simulated jury as a resource for teaching and learning

    Science.gov (United States)

    Drumond Vieira, Rodrigo; da Rocha Bernardo, José Roberto; Evagorou, Maria; Florentino de Melo, Viviane

    2015-05-01

    In this article, we focus on the contributions that a simulated jury-based activity might have for pre-service teachers, especially for their active participation and learning in teacher education. We observed a teacher educator using a series of simulated juries as teaching resources to help pre-service teachers develop their pedagogical knowledge and their argumentation abilities in a physics teacher methods course. For the purposes of this article, we have selected one simulated jury-based activity, comprising two opposed groups of pre-service teachers that presented aspects that hinder the teachers' development of professional knowledge (against group) and aspects that allow this development (favor group). After the groups' presentations, a group of judges was formed to evaluate the discussion. We applied a multi-level method for discourse analysis and the results showed that (1) the simulated jury afforded the pre-service teachers to position themselves as active knowledge producers; (2) the teacher acted as 'animator' of the pre-service teachers' actions, showing responsiveness to the emergence of circumstantial teaching and learning opportunities and (3) the simulated jury culminated in the judges' identification of the pattern 'concrete/obstacles-ideological/possibilities' in the groups' responses, which was elaborated by the teacher for the whole class. Implications from this study include using simulated juries for teaching and learning and for the development of the pre-service teachers' argumentative abilities. The potential of simulated juries to improve teaching and learning needs to be further explored in order to inform the uses and reflections of this resource in science education.

  12. Professional development and poststructural analysis: Stories of African-American science teachers

    Science.gov (United States)

    Moore, Felicia Michelle

    2003-10-01

    professionally. The three teachers had different and similar experiences based upon race/ethnicity, gender, class, and age. Taking differences and similarities into consideration, recommendations were offered to balance relations of power in science teaching, learning, and teacher professional development through multicultural education, culturally relevant pedagogy, and feminist pedagogy for their particular teaching contexts. Feminist poststructuralism offers an alternative and critical perspective for science education research.

  13. Assessment of an On-Line Earth System Science Course for Teachers

    Science.gov (United States)

    Shuster, R. D.; Grandgenett, N.

    2009-12-01

    The University of Nebraska at Omaha (UNO) has been offering on-line Earth System Science coursework to in-service teachers in Nebraska since 2002 through the Earth Systems Science Education Alliance (ESSEA). The goal of this course is to increase teacher content knowledge in Earth Science, introduce them to Earth System Science, and have them experience cooperative learning. We have offered three different ESSEA courses, with nearly 200 students having taken ESSEA courses at UNO for graduate credit. This effort represents a close collaboration between faculty and students from the Colleges of Arts & Sciences and Education, with periodic assistance of the local schools. In a follow-up study related to ESSEA coursework, UNO examined the perceptions of teachers who have taken the course and the potential benefits of the ESSEA courses for their own educational settings. The study was descriptive in design and included an online survey and a focus group. The results of these assessments indicated that the teachers felt very positive about what they learned in these courses, and in particular, how they could incorporate cooperative learning, inquiry based activities, and Earth System Science interconnections in their own classrooms. Problems identified by the teachers included a perceived lack of time to be able to integrate the learned material into their science curriculua and a lack of computer and/or technological resources in their educational settings. In addition, this Fall, we will conduct two teacher case studies, where we will interview two teachers, visit their classrooms, acquire work samples and talk with students. All of the results of our survey and focus group will be presented.

  14. Effects of a Teacher Professional Development Program on Science Teachers' Views about Using Computers in Teaching and Learning

    Science.gov (United States)

    Çetin, Nagihan Imer

    2016-01-01

    The purpose of this study was to examine science teachers' level of using computers in teaching and the impact of a teacher professional development program (TPDP) on their views regarding utilizing computers in science education. Forty-three in-service science teachers from different regions of Turkey attended a 5 day TPDP. The TPDP was…

  15. Perception of Science Standards' Effectiveness and Their Implementation by Science Teachers

    Science.gov (United States)

    Klieger, Aviva; Yakobovitch, Anat

    2011-06-01

    The introduction of standards into the education system poses numerous challenges and difficulties. As with any change, plans should be made for teachers to understand and implement the standards. This study examined science teachers' perceptions of the effectiveness of the standards for teaching and learning, and the extent and ease/difficulty of implementing science standards in different grades. The research used a mixed methods approach, combining qualitative and quantitative research methods. The research tools were questionnaires that were administered to elementary school science teachers. The majority of the teachers perceived the standards in science as effective for teaching and learning and only a small minority viewed them as restricting their pedagogical autonomy. Differences were found in the extent of implementation of the different standards and between different grades. The teachers perceived a different degree of difficulty in the implementation of the different standards. The standards experienced as easiest to implement were in the field of biology and materials, whereas the standards in earth sciences and the universe and technology were most difficult to implement, and are also those evaluated by the teachers as being implemented to the least extent. Exposure of teachers' perceptions on the effectiveness of standards and the implementation of the standards may aid policymakers in future planning of teachers' professional development for the implementation of standards.

  16. Doing Better: Illuminating a Framework of Equitable Science Pedagogy through a Cross- Case Analysis of Urban High School Science Teachers

    Science.gov (United States)

    Sheth, Manali J.

    Students of color are routinely asked to participate in science education that is less intellectually rich and self-affirming. Additionally, teachers have trouble embarking on professional growth related to issues of equity and diversity in science. The purpose of this dissertation research is to develop a multi-dimensional framework for equitable science pedagogy (ESP) through analyzing the efforts and struggles of high school science teachers. This study is grounded in a conceptual framework derived from scholarship in science education, multicultural education, critical science studies, and teacher learning. The following questions guide this research: 1) What visions and enactments emerge in teachers' practices towards equitable science pedagogy? 2) How are teachers' practice decisions towards ESP influenced by their personal theories of race/culture, science, and learning and sociocultural contexts? 3) Why are there consistencies and variances across teachers' practices? This study employs a qualitative multiple case study design with ethnographic data collection to explore the practices of three urban high school science teachers who were identified as being committed to nurturing the science learning of students of color. Data include over 120 hours of classroom observation, 60 hours of teacher interviews, and 500 teacher- and student-generated artifacts. Data analysis included coding teachers' practices using theory- and participant generated codes, construction of themes based on emergent patterns, and cross-case analysis. The affordances and limitations of the participants' pedagogical approaches inform the following framework for equitable science pedagogy: 1) Seeing race and culture and sharing responsibility for learning form foundational dimensions. Practices from the other three dimensions--- nurturing students' identities, re-centering students' epistemologies, and critiquing structural inequities---emerge from the foundation. As emergent practices

  17. A Pedagogical Framework for Developing Innovative Science Teachers with ICT

    Science.gov (United States)

    Rogers, Laurence; Twidle, John

    2013-01-01

    Background: The authors have conducted a number of research projects into the use of ICT in science teaching and most recently have collaborated with five European partners in teacher education to develop resources to assist teacher trainers in delivering courses for the professional development of science teachers. Purpose: 1. To describe the…

  18. Global reproduction and transformation of science education

    Science.gov (United States)

    Tobin, Kenneth

    2011-03-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and derivative sensibilities, including standards, competition, and accountability systems, that mediate enacted curricula. I investigate these referents in relation to science education in two geographically and temporally discrete contexts Western Australia in the 1960s and 1970s and more recently in an inner city high school in the US. In so doing I problematize some of the taken for granted aspects of science education, including holding teachers responsible for establishing and maintaining control over students, emphasizing competition between individuals and between collectives such as schools, school districts and countries, and holding teachers and school leaders accountable for student achievement.

  19. Can a Three-Day Training Focusing on the Nature of Science and Science Practices as They Relate to Mind in the Making Make a Difference in Preschool Teachers' Self-Efficacy Engaging in Science Education?

    Science.gov (United States)

    Meacham, Colleen

    As technology and our world understanding develop, we will need citizens who are able to ask and answer questions that have not been thought of yet. Currently, high school and college graduates entering the workforce demonstrate a gap in their ability to develop unique solutions and fill the current technology-driven jobs. To address this gap, science needs to be prioritized early in children's lives. The focus of this research was to analyze a science training program that would help pre-school teachers better understand Mind in the Making life skills, the nature of science, science practices, and improve their self-efficacy integrating science education into their classrooms and curriculum. Seventy-one teachers enrolled in two three-day, professional development trainings that were conducted over three, five-hour sessions approximately one month apart... During that training the teachers learned hands-on activities for young children that introduced life and physical science content. They were also given the task of developing and implementing a science-based lesson for their students and then analyzing it with other participants. The information from the lesson plans was collected for analysis. After the last training the teachers were given a pre/post retrospective survey to measure effective outcomes. The results from the lesson plans and surveys indicate that the trainings helped improve the teachers' understanding of Mind in the Making, the nature of science, and science practices. The results also show that the teachers felt more comfortable integrating science education into their classrooms and curriculum.

  20. The Challenges Faced by New Science Teachers in Saudi Arabia

    Science.gov (United States)

    Alsharari, Salman

    Growing demand for science teachers in the Kingdom of Saudi Arabia, fed by increasing numbers of public school students, is forcing the Saudi government to attract, recruit and retain well-qualified science teachers. Beginning science teachers enter the educational profession with a massive fullfilment and satisfaction in their roles and positions as teachers to educating children in a science classroom. Nevertheless, teachers, over their early years of practice, encounter numerous challenges to provide the most effective science instruction. Therefore, the current study was aimed to identify academic and behavioral classroom challenges faced by science teachers in their first three years of teaching in the Kingdom of Saudi Arabia. In addition, new science teacher gender, school level and years of teaching experience differences in perceptions of the challenges that they encountered at work were analyzed. The present study also investigated various types of support that new science teachers may need to overcome academic and behavioral classroom challenges. In order to gain insights about ways to adequately support novice science teachers, it was important to examine new science teachers' beliefs, ideas and perceptions about effective science teaching. Three survey questionnaires were developed and distributed to teachers of both sexes who have been teaching science subjects, for less than three years, to elementary, middle and high school students in Al Jouf public schools. A total of 49 novice science teachers responded to the survey and 9 of them agreed to participate voluntarily in a face-to-face interview. Different statistical procedures and multiple qualitative methodologies were used to analyze the collected data. Findings suggested that the top three academic challenges faced by new science teachers were: poor quality of teacher preparation programs, absence of appropriate school equipment and facilities and lack of classroom materials and instructional

  1. The Black Cultural Ethos and science teachers' practices: A case study exploring how four high school science teachers meet their African American students' needs in science

    Science.gov (United States)

    Strachan, Samantha L.

    The underachievement of African American students in science has been a persistent problem in science education. The achievement patterns of African American students indicate that researchers must take a closer look at the types of practices that are being used to meet these students' needs in science classrooms. Determining why science teachers decide to employ certain practices in their classrooms begins with a careful examination of teachers' beliefs as well as their instructional approaches. The purpose of this study was to explore four urban high school science teachers' beliefs about their African American students' learning needs and to investigate how these teachers go about addressing students' needs in science classrooms. This research study also explored the extent to which teachers' practices aligned with the nine dimensions of an established cultural instructional theory, namely the Black Cultural Ethos. Qualitative research methods were employed to gather data from the four teachers. Artifact data were collected from the teachers and they were interviewed and observed. Believing that their students had academic-related needs as well as needs tied to their learning preferences, the four science teachers employed a variety of instructional strategies to meet their students where they were in learning. Overall, the instructional strategies that the teachers employed to meet their students' needs aligned with five of the nine tenets of the Black Cultural Ethos theory.

  2. Hopes and Fears for Science Teaching: The Possible Selves of Preservice Teachers in a Science Education Program

    Science.gov (United States)

    Hong, Ji; Greene, Barbara

    2011-01-01

    Given the high attrition rate of beginning science teachers, it is imperative to better prepare science preservice teachers, so that they can be successful during the early years of their teaching. The purpose of this study was to explore science preservice teachers' views of themselves as a future teacher, in particular their hopes and fears for…

  3. First-year Pre-service Teachers in Taiwan—Do they enter the teacher program with satisfactory scientific literacy and attitudes toward science?

    Science.gov (United States)

    Chin, Chi-Chin

    2005-10-01

    Scientific literacy and attitudes toward science play an important role in human daily lives. The purpose of this study was to investigate whether first-year pre-service teachers in colleges in Taiwan have a satisfactory level of scientific literacy. The domains of scientific literacy selected in this study include: (1) science content; (2) the interaction between science, technology and society (STS); (3) the nature of science; and (4) attitudes toward science. In this study, the instruments used were Chinese translations of the Test of Basic Scientific Literacy (TBSL) and the Test of Science-related Attitudes. Elementary education majors (n = 141) and science education majors (n = 138) from four teachers’ colleges responded to these instruments. The statistical results from the tests revealed that, in general, the basic scientific literacy of first-year pre-service teachers was at a satisfactory level. Of the six scales covered in this study, the pre-service teachers displayed the highest literacy in health science, STS, and life science. Literacy in the areas of the nature of science and earth science was rated lowest. The results also showed that science education majors scored significantly higher in physical science, life science, nature of science, science content, and the TBSL than elementary science majors. Males performed better than females in earth science, life science, science content, and the TBSL. Next, elementary education majors responded with more “don’t know” responses than science education majors. In general, the pre-service teachers were moderately positive in terms of attitudes toward science while science education majors had more positive attitudes toward science. There was no significant difference in attitudes between genders. Previous experience in science indicated more positive attitudes toward science. The results from stepwise regression revealed that STS, the nature of science, and attitudes toward science could explain 50

  4. Training teachers to promote Talent Development in Science Students In Science Education

    NARCIS (Netherlands)

    van der Valk, Ton

    2014-01-01

    In recent years, the interest of governments and schools in challenging gifted and talented (G+T) science students has grown (Taber, 2007). In the Netherlands, the government promotes developing science programmes for talented secondary science students. This causes a need for training teachers, but

  5. Using case method to explicitly teach formative assessment in preservice teacher science education

    Science.gov (United States)

    Bentz, Amy Elizabeth

    The process of formative assessment improves student understanding; however, the topic of formative assessment in preservice education has been severely neglected. Since a major goal of teacher education is to create reflective teaching professionals, preservice teachers should be provided an opportunity to critically reflect on the use of formative assessment in the classroom. Case method is an instructional methodology that allows learners to engage in and reflect on real-world situations. Case based pedagogy can play an important role in enhancing preservice teachers' ability to reflect on teaching and learning by encouraging alternative ways of thinking about assessment. Although the literature on formative assessment and case methodology are extensive, using case method to explore the formative assessment process is, at best, sparse. The purpose of this study is to answer the following research questions: To what extent does the implementation of formative assessment cases in methods instruction influence preservice elementary science teachers' knowledge of formative assessment? What descriptive characteristics change between the preservice teachers' pre-case and post-case written reflection that would demonstrate learning had occurred? To investigate these questions, preservice teachers in an elementary methods course were asked to reflect on and discuss five cases. Pre/post-case data was analyzed. Results indicate that the preservice teachers modified their ideas to reflect the themes that were represented within the cases and modified their reflections to include specific ideas or examples taken directly from the case discussions. Comparing pre- and post-case reflections, the data supports a noted change in how the preservice teachers interpreted the case content. The preservice teachers began to evaluate the case content, question the lack of formative assessment concepts and strategies within the case, and apply formative assessment concepts and

  6. Summer Institute for Physical Science Teachers

    Science.gov (United States)

    Maheswaranathan, Ponn; Calloway, Cliff

    2007-04-01

    A summer institute for physical science teachers was conducted at Winthrop University, June 19-29, 2006. Ninth grade physical science teachers at schools within a 50-mile radius from Winthrop were targeted. We developed a graduate level physics professional development course covering selected topics from both the physics and chemistry content areas of the South Carolina Science Standards. Delivery of the material included traditional lectures and the following new approaches in science teaching: hands-on experiments, group activities, computer based data collection, computer modeling, with group discussions & presentations. Two experienced master teachers assisted us during the delivery of the course. The institute was funded by the South Carolina Department of Education. The requested funds were used for the following: faculty salaries, the University contract course fee, some of the participants' room and board, startup equipment for each teacher, and indirect costs to Winthrop University. Startup equipment included a Pasco stand-alone, portable Xplorer GLX interface with sensors (temperature, voltage, pH, pressure, motion, and sound), and modeling software (Wavefunction's Spartan Student and Odyssey). What we learned and ideas for future K-12 teacher preparation initiatives will be presented.

  7. Family and Consumer Sciences Teacher Needs Assessment of a STEM-Enhanced Food and Nutrition Sciences Curriculum

    OpenAIRE

    Merrill, Cathy A.

    2016-01-01

    Science, technology, engineering and mathematics (STEM) education concepts are naturally contextualized in the study of food and nutrition. In 2014 a pilot group of Utah high school Career and Technical Education Family and Consumer Sciences teachers rewrote the Food and Nutrition Sciences curriculum to add and enhance the STEM-related content. This study is an online needs assessment by Utah Food and Nutrition 1 teachers on the implementation of the STEM-enhanced curriculum after its first y...

  8. Teaching science to English Language Learners: Instructional approaches of high school teachers

    Science.gov (United States)

    Frank, Betty-Vinca N.

    Students who are English Language Learners (ELLs) form the fastest growing segment of the American school population. Prompted by the call for scientific literacy for all citizens, science educators too have investigated the intersection of language and science instruction of ELLs. However these studies have typically been conducted with elementary students. Few studies have explored how high school science teachers, particularly those who have not received any special training, approach science instruction of ELLs and what supports them in this endeavor. This was a qualitative case study conducted with five science teachers in one small urban high school that predominantly served ELLs. The purpose of this study was to examine instructional approaches used by teachers to make science accessible to ELLs and the factors that supported or inhibited them in developing their instructional approaches. This goal encompassed the following questions: (a) how teachers viewed science instruction of ELLs, (b) how teachers designed a responsive program to teach science to ELLs, (c) what approaches teachers used for curriculum development and instruction, (d) how teachers developed classroom learning communities to meet the needs of ELLs. Seven instructional strategies and five perceived sources of support emerged as findings of this research. In summary, teachers believed that they needed to make science more accessible for their ELL students while promoting their literacy skills. Teachers provided individualized attention to students to provide relevant support. Teachers engaged their students in various types of active learning lessons in social contexts, where students worked on both hands-on and meaning-making activities and interacted with their peers and teachers. Teachers also created classroom communities and learning spaces where students felt comfortable to seek and give help. Finally, teachers identified several sources of support that influenced their instructional

  9. "You Have to Give Them Some Science Facts": Primary Student Teachers' Early Negotiations of Teacher Identities in the Intersections of Discourses about Science Teaching and about Primary Teaching

    Science.gov (United States)

    Danielsson, Anna T.; Warwick, Paul

    2014-01-01

    In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on…

  10. Bringing Science to Life for Students, Teachers and the Community

    Science.gov (United States)

    Pratt, K.

    2012-04-01

    Bringing Science to Life for Students, Teachers and the Community Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of year 5, our teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 121% and another site by 152%.

  11. Talking about science: An interpretation of the effects of teacher talk in a high school science classroom

    Science.gov (United States)

    Moje, Elizabeth B.

    This paper builds on research in science education, secondary education, and sociolinguistics by arguing that high school classrooms can be considered speech communities in which language may be selectively used and imposed on students as a means of fostering academic speech community identification. To demonstrate the ways in which a high school teacher's language use may encourage subject area identification, the results of an interactionist analysis of data from a 2-year ethnographic study of one high school chemistry classroom are presented. Findings indicate that this teacher's uses of language fell into three related categories. These uses of language served to foster identification with the academic speech community of science. As a result of the teacher's talk about science according to these three patterns, students developed or reinforced particular views of science. In addition, talking about science in ways that fostered identity with the discipline promoted the teacher as expert and built classroom solidarity or community. These results are discussed in light of sociolinguistic research on classroom competence and of the assertions of science educators regarding social and ideologic implications of language use in science instruction.Received: 23 September 1993; Revised: 15 September 1994;

  12. Capturing and portraying science student teachers' pedagogical content knowledge through CoRe construction

    Science.gov (United States)

    Thongnoppakun, Warangkana; Yuenyong, Chokchai

    2018-01-01

    Pedagogical content knowledge (PCK) is an essential kind of knowledge that teacher have for teaching particular content to particular students for enhance students' understanding, therefore, teachers with adequate PCK can give content to their students in an understandable way rather than transfer subject matter knowledge to learner. This study explored science student teachers' PCK for teaching science using Content representation base methodology. Research participants were 68 4th year science student teachers from department of General Science, faculty of Education, Phuket Rajabhat University. PCK conceptualization for teaching science by Magnusson et al. (1999) was applied as a theoretical framework in this study. In this study, Content representation (CoRe) by Loughran et al. (2004) was employed as research methodology in the lesson preparation process. In addition, CoRe consisted of eight questions (CoRe prompts) that designed to elicit and portray teacher's PCK for teaching science. Data were collected from science student teachers' CoRes design for teaching a given topic and student grade. Science student teachers asked to create CoRes design for teaching in topic `Motion in one direction' for 7th grade student and further class discussion. Science student teachers mostly created a same group of science concepts according to subunits of school science textbook rather than planned and arranged content to support students' understanding. Furthermore, they described about the effect of student's prior knowledge and learning difficulties such as students' knowledge of Scalar and Vector quantity; and calculating skill. These responses portrayed science student teacher's knowledge of students' understanding of science and their content knowledge. However, they still have inadequate knowledge of instructional strategies and activities for enhance student learning. In summary, CoRes design can represented holistic overviews of science student teachers' PCK related

  13. Quality of secondary preservice mathematics teacher education programs

    OpenAIRE

    Gómez, Pedro

    2005-01-01

    Characterizing the quality of teacher education programs and courses Supported by the Ministry of Science and Technology Working for three years Three universities working on secondary mathematics pre- service teacher education Almeria, Cantabria and Granada With a common model

  14. Comparing three attitude-behavior theories for predicting science teachers' intentions

    Science.gov (United States)

    Zint, Michaela

    2002-11-01

    Social psychologists' attitude-behavior theories can contribute to understanding science teachers' behaviors. Such understanding can, in turn, be used to improve professional development. This article describes leading attitude-behavior theories and summarizes results from past tests of these theories. A study predicting science teachers' intention to incorporate environmental risk education based on these theories is also reported. Data for that study were collected through a mail questionnaire (n = 1336, radjusted = 80%) and analyzed using confirmatory factor and multiple regression analysis. All determinants of intention to act in the Theory of Reasoned Action and Theory of Planned Behavior and some determinants in the Theory of Trying predicted science teachers' environmental risk education intentions. Given the consistency of results across studies, the Theory of Planned Behavior augmented with past behavior is concluded to provide the best attitude-behavior model for predicting science teachers' intention to act. Thus, science teachers' attitude toward the behavior, perceived behavioral control, and subjective norm need to be enhanced to modify their behavior. Based on the Theory of Trying, improving their attitude toward the process and toward success, and expectations of success may also result in changes. Future research should focus on identifying determinants that can further enhance the ability of these theories to predict and explain science teachers' behaviors.

  15. South African physical sciences teachers' perceptions of new ...

    African Journals Online (AJOL)

    This paper reports on South African teachers' perceptions of the educational value of new topics in a revised physical sciences high school curriculum, their content .... identify the core issues surrounding teachers' views on the new topics, and ... A were generated, enabling us to construct a profile of schools and teachers.

  16. The Iowa K-12 Climate Science Education Initiative: a comprehensive approach to meeting in-service teachers' stated needs for teaching climate literacy with NGSS

    Science.gov (United States)

    Stanier, C. O.; Spak, S.; Neal, T. A.; Herder, S.; Malek, A.; Miller, Z.

    2017-12-01

    The Iowa Board of Education voted unanimously in 2015 to adopt NGSS performance standards. The CGRER - College of Education Iowa K-12 Climate Science Education Initiative was established in 2016 to work directly with Iowa inservice teachers to provide what teachers need most to teach climate literacy and climate science content through investigational learning aligned with NGSS. Here we present teachers' requests for teaching climate with NGSS, and an approach to provide resources for place-based authentic inquiry on climate, developed, tested, and refined in partnership with inservice and preservice teachers. A survey of inservice middle school and high school science teachers was conducted at the 2016 Iowa Council of Teachers of Mathematics/Iowa Academy of Sciences - Iowa Science Teaching Section Fall Conference and online in fall 2016. Participants (n=383) were asked about their prior experience and education, the resources they use and need, their level of comfort in teaching climate science, perceived barriers, and how they address potential controversy. Teachers indicated preference for professional development on climate content and complete curricula packaged with lessons and interactive models aligned to Iowa standards, as well as training on instructional strategies to enhance students' ability to interpret scientific evidence. We identify trends in responses by teaching experience, climate content knowledge and its source, grade level, and urban and rural districts. Less than 20% of respondents reported controversy or negativity in teaching climate to date, and a majority were comfortable teaching climate science and climate change, with equal confidence in teaching climate and other STEM content through investigational activities. We present an approach and materials to meet these stated needs, created and tested in collaboration with Iowa teachers. We combine professional development and modular curricula with bundled standards, concepts, models, data

  17. Reform of teacher education and teacher educator competences

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    Despite it is well known known and recognized that teacher educators’ competences play a decisive role for the education of new teachers and also for the quality of the profession as such very little research is conducted on the competences of teacher educators and their training. It is also...... an established fact that the implementation of teacher education reforms to a large extent stands and falls with the competences of the teacher educators. Not least it is of importance that teacher educators possess the kind of competences that are needed to meet the intentions of a reform. Failing teacher...... educator competences might just as well be an explanation for frequent reforms in teacher education as it can be failure of the reforms themselves. Danish teacher education was in 2012 reformed for the third time in only fifteen years, but teacher educator competences were not mapped at all during...

  18. Ways to prepare future teachers to teach science in multicultural classrooms

    Science.gov (United States)

    Billingsley, Berry

    2016-06-01

    Roussel De Carvalho uses the notion of superdiversity to draw attention to some of the pedagogical implications of teaching science in multicultural schools in cosmopolitan cities such as London. De Carvalho makes the case that if superdiverse classrooms exist then Science Initial Teacher Education has a role to play in helping future science teachers to become more knowledgeable and reflective about how to teach school students with a range of worldviews and religious beliefs. The aim of this paper is to take that proposition a step further by considering what the aims and content of a session in teacher education might be. The focus is on helping future teachers develop strategies to teach school students to think critically about the nature of science and what it means to have a scientific worldview. The paper draws on data gathered during an interview study with 28 students at five secondary schools in England. The data was analysed to discover students' perceptions of science and their perceptions of the way that science responds to big questions about being human. The findings are used to inform a set of three strategies that teachers could use to help young people progress in their understanding of the nature of science. These strategies together with the conceptual framework that underpins them are used to develop a perspective on what kinds of pedagogical content knowledge teacher education might usefully provide.

  19. Planning for Reform-Based Science: Case Studies of Two Urban Elementary Teachers

    Science.gov (United States)

    Mangiante, Elaine Silva

    2018-02-01

    The intent of national efforts to frame science education standards is to promote students' development of scientific practices and conceptual understanding for their future role as scientifically literate citizens (NRC 2012). A guiding principle of science education reform is that all students receive equitable opportunities to engage in rigorous science learning. Yet, implementation of science education reform depends on teachers' instructional decisions. In urban schools serving students primarily from poor, diverse communities, teachers typically face obstacles in providing reform-based science due to limited resources and accountability pressures, as well as a culture of teacher-directed pedagogy, and deficit views of students. The purpose of this qualitative research was to study two white, fourth grade teachers from high-poverty urban schools, who were identified as transforming their science teaching and to investigate how their beliefs, knowledge bases, and resources shaped their planning for reform-based science. Using the Shavelson and Stern's decision model for teacher planning to analyze evidence gathered from interviews, documents, planning meetings, and lesson observations, the findings indicated their planning for scientific practices was influenced by the type and extent of professional development each received, each teacher's beliefs about their students and their background, and the mission and learning environment each teacher envisioned for the reform to serve their students. The results provided specific insights into factors that impacted their planning in high-poverty urban schools and indicated considerations for those in similar contexts to promote teachers' planning for equitable science learning opportunities by all students.

  20. Exploring Science Teachers' Argumentation and Personal Epistemology About Global Climate Change

    Science.gov (United States)

    Liu, Shiyu; Roehrig, Gillian

    2017-06-01

    This case study investigated the nature of in-service science teachers' argumentation and personal epistemology about global climate change during a 3-year professional development program on climate change education. Qualitative analysis of data from interviews and written assessments revealed that while these teachers grounded their arguments on climate issues in evidence, the evidence was often insufficient to justify their causal claims. Compared with generating arguments for their own views, teachers had more difficulties in constructing evidence-based arguments for alternative perspectives. Moreover, while these teachers shared some similarities in their epistemology about climate science, they varied in their beliefs about specific aspects such as scientists' expertise and the credibility of scientific evidence. Such similarities and distinctions were shown to relate to how teachers used evidence to justify claims in their arguments. The findings also suggested a mismatch between teachers' personal epistemology about science in general and climate science, which was revealed through their argumentation. This work helps to further the ongoing discussions in environmental education about what knowledge and skills teachers need in order to teach climate issues and prepare students for future decision making. It constitutes first steps to facilitate reasoning and argumentation in climate change education and provides important implications for future design of professional development programs.

  1. Predicting Pre-Service Classroom Teachers' Civil Servant Recruitment Examination's Educational Sciences Test Scores Using Artificial Neural Networks

    Science.gov (United States)

    Demir, Metin

    2015-01-01

    This study predicts the number of correct answers given by pre-service classroom teachers in Civil Servant Recruitment Examination's (CSRE) educational sciences test based on their high school grade point averages, university entrance scores, and grades (mid-term and final exams) from their undergraduate educational courses. This study was…

  2. Beginning science teachers' performances: Assessment in times of reform

    Science.gov (United States)

    Budzinsky, Fie K.

    2000-10-01

    The current reform in science education and the research on effective teaching and student learning have reinforced the importance of teacher competency. To better measure performances in the teaching of science, performance assessment has been added to Connecticut's licensure process for beginning science teachers. Teaching portfolios are used to document teaching and learning over time. Portfolios, however, are not without problems. One of the major concerns with the portfolio assessment process is its subjectivity. Assessors may not have opportunities to ask clarifying or follow-up questions to enhance the interpretation of a teacher's performance. In addition, portfolios often contain components based on self-documentation, which are subjective. Furthermore, the use of portfolios raises test equity issues. These concerns present challenges for persons in charge of establishing the validity of a portfolio-based licensure process. In high-stakes decision processes, such as teaching licensure, the validity of the assessment instruments must be studied. The primary purpose of this study was to explore the criterion-related validity of the Connecticut State Department of Education's Beginning Science Teaching Portfolio by comparing the interpretations of performances from science teaching portfolios to those derived from another assessment method, the Expert Science Teaching Educational and Evaluation Model, (ESTEEM). The analysis of correlations between the Beginning Science Teaching Portfolio and ESTEEM instrument scores was the primary method for establishing support for validity. The results indicated moderate correlations between all Beginning Science Teaching Portfolio and ESTEEM category and total variables. Multiple regression was used to examine whether differences existed in beginning science teachers' performances based on gender, poverty group, school level, and science discipline taught. None of these variables significantly contributed to the

  3. Administrative support of novice science teachers: A multiple case study

    Science.gov (United States)

    Iacuone, Leann

    Novice science teachers leave the confines of colleges and universities to embark on a new adventure in education where they aim to influence young minds, make a difference in the world, and share their love for their content. They have learned their pedagogical skills with the support and assistance of fellow classmates, a supporting professor, and a cooperating teacher. These teachers enter their new place of employment and are met with many unexpected challenges, such as a lack of resources, no one to ask questions of, and a busy staff with already established relationships, causing them to feel an overall lack of support and resulting in many new teachers rethinking their career choice and leaving the field of education within 5 years of entering. This multiple-case study investigated the administrative support 4 novice science teachers received during an academic year and the novice teachers' perceptions of the support they received to answer the following research question: How do novice science teachers who have consistent interactions with administrators develop during their first year? To answer this question, semistructured interviews, reflection journals, observations, resumes, long-range plans, and student discipline referrals were collected. The findings from this study show novice science teachers who had incidents occur in the classroom requiring administrative assistance and guidance felt more confident in enforcing their classroom management policies and procedures as the year progressed to change student behavior. The novice science teachers perceived administrators who provided resources including technology, office supplies, science supplies, and the guidance of a mentor as supportive. Novice science teachers who engaged in dialogue after administrative observations, were provided the opportunity to attend professional development outside the district, and had a mentor who taught the same discipline made more changes to their instructional

  4. Effects of a Science Content Course on Elementary Preservice Teachers' Self-Efficacy of Teaching Science

    Science.gov (United States)

    Bergman, Daniel J.; Morphew, Jason

    2015-01-01

    The preparation of elementary teachers to successfully teach science in their classrooms is a central issue in science education. The teacher preparation program at a large Midwestern university was modified to include a new science content course aimed at this need. A pre-/postassessment research model involved participants (N = 154) completing a…

  5. Searching for a “pedagogy of hope”: Teacher education and the ...

    African Journals Online (AJOL)

    I analyse module outlines within a particular school of social sciences located in a faculty of education, and uncover the evolving systems of teaching social sciences in a teacher education curriculum. The data are analysed through two theoretical lenses: firstly, through the lense of models of teacher education and ...

  6. Elementary General Education Teachers' Knowledge of and Experience Teaching Students with Disabilities in Science and Social Studies

    Science.gov (United States)

    Rice, Diane

    In Grades 3 to 5 at a suburban southeastern elementary school, the percentage of students with disabilities (SWDs) who do not meet state standards in science and social studies is greater than that of their nondisabled peers. To address this disparity, district administrators required that proficiency ratings increase for SWDs without providing general education (GE) teachers with training. A qualitative bounded case study was used to understand how GE teachers constructed their knowledge of and met SWDs instructional needs and to understand GE teachers' needs as they worked toward meeting the district goals. Piaget's constructivist learning theory served as the conceptual framework for this study. A purposeful sample of 6 GE teachers, 2 each from Grades 3-5 whose classrooms included SWDs, volunteered to participate in open-ended interviews. Qualitative data were analyzed using provisional coding and pattern coding. A primary finding was that the participants identified teacher collaboration and professional development necessary to accommodate SWDs in the GE setting. This finding led to a recommendation that school leaders provide ongoing professional development for GE teachers as well as ongoing opportunities for collaboration between GE and special education teachers. These endeavors may contribute to positive social change by providing GE teachers instructional strategies and accommodations for meeting the learning needs of SWDs to increase the number and percentage of SWDs who meet the state standards and district goals in science and social studies.

  7. A study of the influence of a preservice science teacher education program over time

    Science.gov (United States)

    Maher, Terrence Patrick

    2009-12-01

    This dissertation looks at the beliefs and practices of thirteen science teachers across the teaching continuum. Three pre-service teachers, four student teachers, three first year teachers and three teachers with three or more years of experience were participants in this longitudinal study that took place between 2006 and 2009. All participants were graduates of a large university in the southeastern United States. The study found that inquiry-based teaching practices were taught at the university and most participants believe that it is a superior way of teaching science. Using the Reformed Teaching Observation Protocol (RTOP) instrument to measure the amount of inquiry-based teaching, the following findings were made: The highest level of inquiry-based teaching occurs during pre-service education. This was the only group to score within the "reformed-based" teaching range. The total RTOP scores decreased into the traditional teaching practice range during student teaching. The scores continued to decrease during the first and second years of teaching, showing an even stronger prevalence toward traditional teaching. A slight increase in the average total RTOP scores was noted with teachers having three or more years of experience. But even these teachers' scores were well within the traditional teaching method range. When interviewed, the most common reasons cited by these teachers for not using inquiry-based practice in the public classrooms were high stakes testing, crowded class sizes, and lack of equipment/support.

  8. The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers

    Science.gov (United States)

    Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu

    2013-10-01

    We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers’ developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The Science Semester was designed to provide inquiry-oriented and problem-based learning experiences, opportunities to examine socially relevant issues through cross-disciplinary perspectives, and align with content found in elementary curricula and standards. By the end of the semester, prospective elementary teachers moved from naïve to intermediate understandings of inquiry and significantly increased self-efficacy for science teaching as measured on one subscore of the STEBI-B. Reflecting on the semester, prospective teachers understood and appreciated the goals of the course and the PBL format, but struggled with the open-ended and student-directed elements of the course.

  9. A Bolman and Deal Framework of Science Teachers' Beliefs on Teacher Preparation and Reform Practices for Diverse Learners

    Science.gov (United States)

    Whitmyer, Charnita P.

    This dissertation uses Bolman and Deal's Four Framework approach to reframing an organization to examine science teachers' beliefs on teacher preparation and reform practices for diverse learners. Despite the national emphasis on "science for all students" in the National Science Education Standards (NRC, 2011), some traditionally underserved groups tend to underperform on standardized measures of science learning (Kober, 2001; Darling-Hammond, 2010; Bracey, 2009; Kozol, 2009, 2007; PCAST, 2012); and teachers struggle to meet the needs of these students (Hira, 2010). The literature is replete with calls for a better understanding of teacher quality as an entry point into increased student achievement in science. In the current study, the 2012 National Survey of Science and Mathematics Education (NSSME) was used to gain an understanding of science teacher quality in the United States, and SPSS 22.0 software was used to evaluate descriptive and inferential statistics, including bivariate correlation analysis, simple linear regression, and a multiple regression of the survey responses. The findings indicated that professional development was the most salient predictor of teachers' preparedness to teach diverse learners. Findings further showed that teachers who held favorable perceptions of preparedness to teach diverse learners were more likely to use reform-oriented practices. This study contributes to an emerging area of research on science teacher quality and its influence on instructional reform for diverse learners. The study concludes with a discussion of supports and obstacles that may enable or inhibit the development of these relationships.

  10. Elementary teachers' knowledge and practices in teaching science to English language learners

    Science.gov (United States)

    Santau, Alexandra O.

    Efforts to improve education---more concretely science education---by creating fundamental shifts in standards for students and teachers have been launched by educators and policy makers in recent years. The new standards for science instruction address improvements in student learning, program development, assessment, and professional development for teachers, with the goal to prepare US students for the academic demands of the 21st century. The study examined teachers' knowledge and practices in science instruction with English language learning (ELL) students. It also examined relationships among key domains of science instruction with ELL students, as well as profiles of teaching practices. The four domains included: (1) teachers' knowledge of science content, (2) teaching practices to promote scientific understanding, (3) teaching practices to promote scientific inquiry, and (4) teaching practices to support English language development during science instruction. The study was part of a larger 5-year research and development intervention aimed at promoting science and literacy achievement of ELL students in urban elementary schools. The study involved 32 third grade, 21 fourth grade, and 17 fifth grade teachers participating in the first-year implementation of the intervention. Based on teachers' questionnaire responses, classroom observation ratings, and post-observation interviews, results indicated that (1) teachers' knowledge and practices were within the bounds of the intervention, but short of reform-oriented practices and (2) relationships among the four domains existed, especially at grade 5. These findings can provide insights for professional development and future research, along with accountability policies.

  11. Microcomputers, Secondary Education and Teacher Training.

    Science.gov (United States)

    Atherton, Roy

    1979-01-01

    Reviews the use of computers in Great Britain's educational system, and discusses the development of computer science education, computer assisted instruction, standardization of software and hardware, computer awareness, computers in school administration and teacher training, and future trends for educational computing. (RAO)

  12. Student and Teacher Perceptions of Teacher Immediacy Behaviors and the Influence of Teacher Immediacy Behaviors on Student Motivation to Learn Science

    Science.gov (United States)

    Littlejohn, Vania

    The National Assessment on Educational Progress signals that American students are not being adequately prepared to compete globally in an ever changing scientific society. As a result, legislation mandated that all students be assessed and show proficiency in scientific literacy beginning in Grade 4 with the reauthorization of the Elementary and Secondary Education Act of 2002 also known as No Child Left Behind. Research indicates a disturbing decline in the number of U.S. students pursuing more rigorous science courses in high school, majoring in scientific areas in college, and choosing future careers in science. With a need to improve science instruction and enhance science literacy for all students, this study focuses on immediate communication behaviors of the classroom teacher as a deciding factor in the opinions of high school students towards science. The purpose of this study was to reveal high school science student perceptions of teacher communication patterns, both verbal and nonverbal, and how they influence their motivation to learn science. The researcher utilized a nonexperimental, quantitative research design to guide this study. Teacher and student data were collected using the Teacher Communication Behavior Questionnaire (TCBQ). The Student Motivation to Learn Instrument (SMLI) across gender, ethnicity, and socioeconomic status survey was used to evaluate student motivation in science. Participants were encouraged to be honest in reporting and sharing information concerning teacher communication behaviors. The data revealed that teacher immediacy behaviors, both verbal and nonverbal, were perceived differently in terms of student gender, ethnicity, and socioeconomic class. The results showed that teachers who display positive communication behaviors and use challenging questioning followed with positive responses create pathways to potentially powerful relationships. These relationships between teachers and students can lead to increased student

  13. Qualitative exploration of centralities in municipal science education networks

    DEFF Research Database (Denmark)

    von der Fehr, Ane; Sølberg, Jan

    2016-01-01

    This article examines the social nature of educational change by conducting a social network analysis of social networks involving stakeholders of science education from teachers to political stakeholders. Social networks that comprise supportive structures for development of science education ar...... of science education, especially if they are aware of their own centrality and are able to use their position intentionally for the benefit of science education.......This article examines the social nature of educational change by conducting a social network analysis of social networks involving stakeholders of science education from teachers to political stakeholders. Social networks that comprise supportive structures for development of science education...... are diverse and in order to understand how municipal stakeholders may support such development, we explored four different municipal science education networks (MSE networks) using three different measures of centrality. The centrality measures differed in terms of what kind of stakeholder functions...

  14. Use of Future Scenarios as a Pedagogical Approach for Science Teacher Education

    Science.gov (United States)

    Paige, Kathryn; Lloyd, David

    2016-04-01

    Futures studies is usually a transdisciplinary study and as such embraces the physical world of the sciences and system sciences and the subjective world of individuals and cultures, as well as the time dimension—past, present and futures. Science education, where student interests, opportunities and challenges often manifest themselves, can provide a suitable entry point for futures work. In this paper, we describe how we have used futures themes, concepts and techniques both implicitly and explicitly in our undergraduate middle school teacher education courses and, in particular, science curriculum and general studies courses. Taking a critical orientation to the past and the present in these courses enables the future to be more than a mere reproduction of the status quo and opens up a range of possible futures in the areas of current interest. For example, having studied middle school teaching and learning in mathematics and science, students explore the past, present and possible future of a natural part of a university campus. In a general studies course on the science of the Earth's atmosphere, students construct a normative futures scenario on living in a changing climate. One way to gain insight into an uncertain future is to construct scenarios. This technique has been used since the 1970s to bring issues of environment and development—areas with strong science content—to the attention of both scientists and policymakers.

  15. Master teachers' responses to twenty literacy and science/mathematics practices in deaf education.

    Science.gov (United States)

    Easterbrooks, Susan R; Stephenson, Brenda; Mertens, Donna

    2006-01-01

    Under a grant to improve outcomes for students who are deaf or hard of hearing awarded to the Association of College Educators--Deaf/Hard of Hearing, a team identified content that all teachers of students who are deaf and hard of hearing must understand and be able to teach. Also identified were 20 practices associated with content standards (10 each, literacy and science/mathematics). Thirty-seven master teachers identified by grant agents rated the practices on a Likert-type scale indicating the maximum benefit of each practice and maximum likelihood that they would use the practice, yielding a likelihood-impact analysis. The teachers showed strong agreement on the benefits and likelihood of use of the rated practices. Concerns about implementation of many of the practices related to time constraints and mixed-ability classrooms were themes of the reviews. Actions for teacher preparation programs were recommended.

  16. Educating Prospective Teachers of Biology: Findings, Limitations, and Recommendations.

    Science.gov (United States)

    Hewson, Peter W.; Tabachnick, B. Robert; Zeichner, Kenneth M.; Lemberger, John

    1999-01-01

    Summarizes a complex study of a science-teacher-education program whose goal was to graduate teachers who held conceptual change conceptions of teaching science and were disposed to put hem into practice. Concludes that there are influences on prospective teachers from their content coursework that have significant implications for how they view…

  17. Prospective Turkish Elementary Science Teachers' Knowledge Level about the Greenhouse Effect and Their Views on Environmental Education in University

    Science.gov (United States)

    Kisoglu, Mustafa; Gürbüz, Hasan; Erkol, Mehmet; Akar, Muhammed Said; Akilli, Mustafa

    2010-01-01

    The fundamental factor of environmental education is teachers who are well-informed about environmental issues. This research aimed to determine prospective Turkish elementary science teachers' knowledge level about causes, consequences and reducing of the greenhouse effect and to investigate the effect of gender, information source and membership…

  18. A Global Approach to STEM Education: ASTA Science Teachers Exchange--Japan 2015

    Science.gov (United States)

    Teaching Science, 2015

    2015-01-01

    The new Australian Curriculum includes among its three cross-curriculum priorities a focus on Asia and Australia's engagement with Asia. The Australian Science Teachers Association (ASTA)'s Science Teachers Exchange--JAPAN program provides teachers with direct, personal insight into one of Australia's key Asian neighbours.

  19. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  20. The pathways of high school science teachers and policy efforts to alter the pipeline

    Science.gov (United States)

    Sass, Tim

    2012-03-01

    There is currently much interest in improving the quality of science education in K-12 schools and encouraging more students, particularly minorities and women, to pursue careers in STEM fields. Two interrelated issues are at the forefront: the quality of science teachers and the supply of science teachers. Education research in general finds that the single most important school-based factor affecting student achievement is teacher quality. While there is little evidence that teacher credentials matter for student achievement in the lower grades, there is at least some evidence that content knowledge is an important determinant of teacher quality in middle and secondary schools. However, little is known about the pre-service preparation of high school science teachers and how the training of science teachers affects their performance in the classroom. While there are many efforts underway to increase the supply of science teachers, little is known about the supply of science teachers from different pathways and the factors that lead science teachers to leave the profession. In this presentation I discuss recent work on the supply of teachers from alternative pathways, focusing on high school science teachers. I also summarize the literature on teacher quality and attrition, emphasizing the current state of knowledge on secondary school teachers. Finally, I present current policy initiatives and discuss the likelihood of their success given current research findings.

  1. The Long-Term Impact of an Education for Sustainability Course on Israeli Science and Technology Teachers' Pro-Environment Awareness, Commitment and Behaviour

    Science.gov (United States)

    Abramovich, Anat; Loria, Yahavit

    2015-01-01

    The impact of an Education for Sustainability (EfS) course for science and technology junior high school teachers on the intentional and actual environmental behaviour of participants was studied by researching the EfS implementation of 13 science and technology teachers within their family, community, and work environment. The research was…

  2. Professional Development in a Reform Context: Understanding the Design and Enactment of Learning Experiences Created by Teacher Leaders for Science Educators

    Science.gov (United States)

    Shafer, Laura

    Teacher in-service learning about education reforms like NGSS often begin with professional development (PD) as a foundational component (Supovitz & Turner, 2000). Teacher Leaders, who are early implementers of education reform, are positioned to play a contributing role to the design of PD. As early implementers of reforms, Teacher Leaders are responsible for interpreting the purposes of reform, enacting reforms with fidelity to meet those intended goals, and are positioned to share their expertise with others. However, Teacher Leader knowledge is rarely accessed as a resource for the design of professional development programs. This study is unique in that I analyze the knowledge Teacher Leaders, who are positioned as developers of PD, bring to the design of PD around science education reform. I use the extended interconnected model of professional growth (Clarke & Hollingsworth, 2002; Coenders & Terlouw, 2015) to analyze the knowledge pathways Teacher Leaders' access as PD developers. I found that Teacher Leaders accessed knowledge pathways that cycled through their personal domain, domain of practice and domain of consequence. Additionally the findings indicated when Teacher Leaders did not have access to these knowledge domains they were unwilling to continue with PD design. These findings point to how Teacher Leaders prioritize their classroom experience to ground PD design and use their perceptions of student learning outcomes as an indicator of the success of the reform. Because professional development (PD) is viewed as an important resource for influencing teachers' knowledge and beliefs around the implementation of education reform efforts (Garet, et al., 2001; Suppovitz & Turner, 2000), I offer that Teacher Leaders, who are early implementers of reform measures, can contribute to the professional development system. The second part of this dissertation documents the instantiation of the knowledge of Teacher Leaders, who are positioned as designers and

  3. Perceptions of Science Teachers on Implementation of Seven Principles for Good Practice in Education by Chickering and Gamson in Courses

    Science.gov (United States)

    Ugras, Mustafa; Asiltürk, Erol

    2018-01-01

    The present study aimed to determine the perceptions of science teachers on the implementation of the seven principles for good practice in education by Chickering and Gamson in their courses. Seven principles for good science education were used as a data collection tool in the survey. "The seven principles for good practice in science…

  4. Cognitive dissonance of science and religion in pre-service elementary school teachers

    Science.gov (United States)

    Malloy, Robert Earl, Sr.

    Throughout history science and religion have been in conflict. Many of the theories of science do not agree with the religious beliefs of pre-service teachers. Those teachers who will be teaching in the science classroom, must be able to present science without prejudice of personal religious beliefs. Are pre-service teachers prepared for science/religion conflicts? How much conflict do pre-service teachers have between science and religion? This study suggests that pre-service teachers may have a high degree of conflict between science and religion, and that they have received no educational experience on how to deal with this conflict. Such conflict poses a potential problem when presenting science in the classroom, in that non-science information may not be separated from the science presented.

  5. Impacting the Science Community through Teacher Development: Utilizing Virtual Learning.

    Science.gov (United States)

    Boulay, Rachel; van Raalte, Lisa

    2014-01-01

    Commitment to the STEM (science, technology, engineering, math) pipeline is slowly declining despite the need for professionals in the medical field. Addressing this, the John A. Burns School of Medicine developed a summer teacher-training program with a supplemental technology-learning component to improve science teachers' knowledge and skills of Molecular Biology. Subsequently, students' skills, techniques, and application of molecular biology are impacted. Science teachers require training that will prepare them for educating future professionals and foster interest in the medical field. After participation in the program and full access to the virtual material, twelve high school science teachers completed a final written reflective statement to evaluate their experiences. Using thematic analysis, knowledge and classroom application were investigated in this study. Results were two-fold: teachers identified difference areas of gained knowledge from the teacher-training program and teachers' reporting various benefits in relation to curricula development after participating in the program. It is concluded that participation in the program and access to the virtual material will impact the science community by updating teacher knowledge and positively influencing students' experience with science.

  6. Science student teacher's perceptions of good teaching | Setlalentoa ...

    African Journals Online (AJOL)

    Science student teacher's perceptions of good teaching. ... of 50 senior students enrolled in the Bachelor of Education (Further Education and Training ... and teaching strategies employed are perceived to influence what students perceived as ...

  7. Teachers' Perceptions of Infusion of Values in Science Lessons: a Qualitative Study

    Science.gov (United States)

    Kumarassamy, Jayanthy; Koh, Caroline

    2017-06-01

    Much has been written and debated on the importance of including moral, character or values education in school curricula. In line with this, teachers' views with regard to values education have often been sought. However, a search into the literature on values in science education has revealed little on this domain. In an attempt to close this gap, this study explored the views of teachers with regard to values infusion in the teaching of science. The aim was to investigate teachers' perceptions on two broad areas: (i) how values were infused or addressed in lower secondary science and (ii) how values-infused science lessons influenced their students' dispositions and actions. The participants who took part in the interviews were lower secondary science teachers teaching Grade 8 in selected Singapore and New Delhi schools. The findings showed that values inherent in the discipline of science, such as validity, fairness, honesty, rigour, predominated in the lessons conducted by the teachers in both contexts. Furthermore, in Singapore, equal numbers of teachers made references to values upheld and practised by scientists and values arising from the interplay between people and scientific processes and products. In New Delhi however, the emphasis was higher on the latter category of values than on the former. Generally, in both contexts, values infusion in science lessons was not planned but occurred spontaneously as values issues surfaced in class. Teachers in both Singapore and New Delhi used strategies such as questioning, discussion, activities and direct instructions to carry out values infusion, although they experienced challenges that included content and time constraints, lack of student readiness and of teacher competency. Nevertheless, the teachers interviewed perceived that values in science lessons brought about changes in students' personal attributes, affect and behaviour, such as greater interest and prosocial engagement.

  8. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  9. Elementary school science teachers' reflection for nature of science: Workshop of NOS explicit and reflective on force and motion learning activity

    Science.gov (United States)

    Patho, Khanittha; Yuenyong, Chokchai; Chamrat, Suthida

    2018-01-01

    The nature of science has been part of Thailand's science education curriculum since 2008. However, teachers lack of understanding about the nature of science (NOS) and its teaching, particularly element school science teachers. In 2012, the Science Institute of Thailand MOE, started a project of Elementary Science Teacher Professional Development to enhance their thinking about the Nature of Science. The project aimed to enhance teachers' understanding of NOS, science teaching for explicit and reflective NOS, with the aim of extending their understanding of NOS to other teachers. This project selected 366 educational persons. The group was made up of a teacher and a teacher supervisor from 183 educational areas in 74 provinces all Thailand. The project provided a one week workshop and a year's follow up. The week-long workshop consisted of 11 activities of science teaching for explicit reflection on 8 aspects of NOS. Workshop of NOS explicit and reflective on force and motion learning activity is one of eight activities. This activity provided participants to learn force and motion and NOS from the traditional toy "Bang-Poh". The activity tried to enhance participants to explicit NOS for 5 aspects including empirical basis, subjectivity, creativity, observation and inference, and sociocultural embeddedness. The explicit NOS worksheet provided questions to ask participants to reflect their existing ideas about NOS. The paper examines elementary school science teachers' understanding of NOS from the force and motion learning activity which provided explicit reflection on 5 NOS aspects. An interpretive paradigm was used to analyse the teachers' reflections in a NOS worksheet. The findings indicated that majority of them could reflect about the empirical basis of science and creativity but few reflected on observation and inference, or sociocultural embeddedness. The paper will explain the teachers' NOS thinking and discuss the further enhancing of their understanding

  10. A qualitative, phenomenological study on the lived experiences of science teachers in The Bahamas

    Science.gov (United States)

    Micklewhite, Thalia Vionne

    This phenomenological study investigates the lived experiences and perceptions of secondary science teachers in the archipelagic country of The Bahamas and how these teachers make meaning of the secondary science program in The Bahamas through the lens of life in a democratic society. The study's purpose was to answer the question: What are the lived experiences of secondary science teachers in The Bahamas in terms of their working conditions'? Using principles of phenomenological research to approach meaning, in-depth interviewing was conducted with six secondary science teachers on four islands of The Bahamas, including the capital of New Providence. The participants and the selected islands are representative of the diversity of teachers, the population, and school climates and structures throughout the country. Narratives were obtained via three ninety-minute interviews with each participant; and thematic analysis was the instrument by which three central themes emerged. Analysis of narratives reveals that lived experience of secondary science teachers revolve around themes of: (1) The Professional Self, (2) Curriculum Leadership, and (3) Curriculum. Most participants are in the career of secondary science education as second choice but are still committed to the profession. Participants overwhelmingly commented that there was a lack of supportive frameworks for critical elements of their daily work, and a need for clear, visionary and decisive curriculum leadership by The Ministry of Education and private School Boards. Participants also desired more appropriate and alternative science curricula that would meet the need of non-academically inclined Bahamian students. Antecedent to their calls was a pressing recognition that they lacked participatory democratic voice in national secondary science education evidenced by years of unrecognized and unattended suggestions sent to those in authority. As a result of these findings, the researcher was propelled towards

  11. Science Education & Advocacy: Tools to Support Better Education Policies

    Science.gov (United States)

    O'Donnell, Christine; Cunningham, B.; Hehn, J. G.

    2014-01-01

    Education is strongly affected by federal and local policies, such as testing requirements and program funding, and many scientists and science teachers are increasingly interested in becoming more engaged with the policy process. To address this need, I worked with the American Association of Physics Teachers (AAPT) --- a professional membership society of scientists and science teachers that is dedicated to enhancing the understanding and appreciation of physics through teaching --- to create advocacy tools for its members to use, including one-page leave-behinds, guides for meeting with policymakers, and strategies for framing issues. In addition, I developed a general tutorial to aid AAPT members in developing effective advocacy strategies to support better education policies. This work was done through the Society for Physics Students (SPS) Internship program, which provides a range of opportunities for undergraduates, including research, education and public outreach, and public policy. In this presentation, I summarize these new advocacy tools and their application to astronomy education issues.

  12. An exploration of middle school science teachers' understandings and teaching practice of science as inquiry

    Science.gov (United States)

    Castle, Margaret Ann

    A number of reports have raised a concern that the U.S. is not meeting the demands of 21st century skill preparation of students, teachers, and practitioners in the areas of science, technology, engineering, and mathematics (STEM). In 2005 and 2006 five reports were released indicating a need for improvement in science and mathematics education in the U.S. The reports were: Keeping America Competitive: Five Strategies To Improve Mathematics and Science Education (Coble & Allen, 2005); National Defense Education and Innovation Initiative: Meeting America's Economic and Security Challenges in the 21st Century (The Association of American Universities, 2006); Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future (National Academies Press, 2007); Tapping America's Potential: The Education for Innovation Initiative (Business Roundtable Taskforce , 2005); and Waiting for Sputnik: Basic Research and Strategic Competition (Lewis, 2005). Consensus of data in these reports indicates that the U.S., as compared to other industrialized nations, does not fare very well in science achievement and STEM degree attainment. For example, on the 2003 Program for International Assessment (PISA), 15-year-old students in the U.S. ranked 28th in math and 24th in science literacy (Kuenzi, Matthews, & Mangon, 2006). Furthermore, the U.S. ranked 20th among all nations in the proportion of 24-year-olds who earned degrees in natural sciences or engineering (Kuenzi, 2008). As a result, if the U.S. is to remain scientifically and technologically competitive in the world, it is necessary to increase our efforts to incorporate scientific practices associated with science, technology, engineering, and mathematics into the science classroom. Middle school is a critical point in students' science education and it is in middle school that they begin to dislike science. Research indicates that when students learn science through inquiry their interest in and

  13. Using Citizen Science to Engage Preservice Elementary Educators in Scientific Fieldwork

    Science.gov (United States)

    Scott, Catherine M.

    2016-01-01

    Preservice elementary teachers' lack of confidence in teaching science is an ongoing concern. Only 29% of elementary teachers in the field felt "very well prepared to teach life science," according to the National Survey of Science and Mathematics Education. Research has suggested that bridging informal and formal science education can…

  14. Case study of science teaching in an elementary school: Characteristics of an exemplary science teacher

    Science.gov (United States)

    Kao, Huey-Lien

    Improving the quality of science teaching is one of the greatest concerns in recent science education reform efforts. Many science educators suggest that case studies of exemplary science teachers may provide guidance for these reform efforts. For this reason, the characteristics of exemplary science teaching practices have been identified in recent years. However, the literature lacks research exploring exemplary teacher beliefs about the nature of science and science pedagogy, the relationships between their beliefs and practices, or how outstanding teachers overcome difficulties in order to facilitate their students' science learning. In this study, Sam-Yu, an identified exemplary science teacher who teaches in an elementary school in Pintung, Taiwan, was the subject. An interpretative research design (Erickson, 1986) based on principles of naturalistic inquiry (Lincoln & Guba, 1985) was used. Both qualitative and quantitative methods were employed in this case study. The qualitative method involved conducting interviews with the teacher and students, observing classroom activities and analyzing the structure of the learning materials. The quantitative methods involved using the Learning Climate Inventory (LCI) (Lin, 1997) instrument to assess the learning environment of the exemplary science classroom. This study found that Sam-Yu had a blend of views on the nature of science and a varied knowledge about science pedagogy. Personal preferences, past experiences, and the national science curriculum all played important roles in the development and refinement of Sam-Yu's beliefs about science and pedagogy. Regarding his teaching practices, Sam-Yu provided the best learning experiences, as evidenced in both classroom observations and the survey results, for his students by using a variety of strategies. In addition, his classroom behaviors were highly associated with his beliefs about science and pedagogy. However, due to school-based and socio-cultural constraints

  15. Spanish Secondary-School Science Teachers' Beliefs about Science-Technology-Society (STS) Issues

    Science.gov (United States)

    Vazquez-Alonso, Angel; Garcia-Carmona, Antonio; Manassero-Mas, Maria Antonia; Bennassar-Roig, Antoni

    2013-01-01

    This study analyzes the beliefs about science-technology-society, and other Nature of Science (NOS) themes, of a large sample (613) of Spanish pre- and in-service secondary education teachers through their responses to 30 items of the Questionnaire of Opinions on Science, Technology and Society. The data were processed by means of a multiple…

  16. In Your View: What Is a Good Science Teacher?

    Science.gov (United States)

    Piggott, Andy

    2014-01-01

    Search the Internet for the qualities of a good teacher and you'll find that an entire range of ideas are offered. Having spent half a working life as a science teacher and the remainder as a science education consultant (and, for a period, an Ofsted team inspector!), the author would like to attempt to tease out what makes a "good science…

  17. The role of entomology in environmental and science education: Comparing outreach methods for their impact on student and teacher content knowledge and motivation

    Science.gov (United States)

    Weeks, Faith J.

    Outreach programming can be an important way for local students and teachers to be exposed to new fields while enhancing classroom learning. University-based outreach programs are offered throughout the country, including most entomology departments as few individuals learn about insects in school and these programs can be excellent sources of entomological education, as well as models to teach environmental and science education. Each department utilizes different instructional delivery methods for teaching about insects, which may impact the way in which students and teachers understand the insect concepts presented. To determine the impact of using entomology to enhance science and environmental education, this study used a series of university-based entomology outreach programs to compare three of the most common delivery methods for their effect on teacher and student content knowledge and motivation, specifically student interest in entomology and teacher self-efficacy. Twenty fifth grade classrooms were assessed over the course of one school year. The results show that teacher knowledge significantly increased when teachers were unfamiliar with the content and when trained by an expert, and teacher self-efficacy did not decrease when asked about teaching with insects. For students, content knowledge increased for each lesson regardless of treatment, suggesting that outreach program providers should focus on working with local schools to integrate their field into the classroom through the delivery methods best suited to the needs of the university, teachers, and students. The lessons also had an impact on student interest in science and environmental education, with an overall finding that student interest increases when using insects in the classroom.

  18. The Natural Science Institute for Teachers of Minority Students: Performance report

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.J.

    1995-02-01

    The purpose of the Natural Science Institute for Teachers of Minority Students is to enhance the science knowledge and skills of grades four through twelve science teachers in the District of Columbia Public Schools. The Institute brings school teachers together with practicing scientists and experienced science educators who are currently doing or involved in research and publication, especially in the area of global change. Special emphasis is placed on the interdisciplinary nature of science and the part played by the understanding and teaching about the dynamics of the environment and global change. In addition to these goals, teachers will learn a number of successful alternate strategies for teaching science to minority, disabled and non-English speaking students.

  19. Simulation-based Serious Games for Science Education and teacher assessment

    Directory of Open Access Journals (Sweden)

    Seungho Baek

    2016-09-01

    Full Text Available This paper presents serious games developed for the science subject in elementary and middle schools, specifically on the three topics of “Force and Motion,” “State Change of Water,” and “Earth and Moon.” The PC game “Force and Motion” implemented frictional/gravitational/magnetic force simulations, in the mobile game “State Change of Water,” particle-based fluid simulations were implemented, and in the PC- and mobile-based multi-platform game “Earth and Moon,” a solar system simulation was implemented. In order to find out the essential components for the science educational games, the components of each topic were thoroughly analyzed, and then a game-based curriculum was developed for the components classified as having high- or mid-level difficulties in both teaching and learning. Based on the curriculum, the three games were created. The games were evaluated by elementary and middle school teachers, and the evaluation results showed that simulation-based serious games are promising tools for improving learning effects in science-related subjects.

  20. Possible directions in the strategy of continuous education of primary teachers

    Directory of Open Access Journals (Sweden)

    Cvjetićanin Stanko

    2012-09-01

    Full Text Available Modern concepts of education include the continuous development of primary teachers in all areas of natural, social and mathematical sciences. The obtained results were selected and differentiated facilities for further education of teachers within the model of professional development. Analysis of teachers' knowledge was made on the basis of results obtained using surveys. The study involved 60 primary teachers from Serbia. A descriptive analytical method, as well as a method of modeling was used. Survey was the research technique used. Results show that teachers are not sufficiently connecting and jointly implementing the contents of natural sciences and mathematics, because they lack a sufficient level of knowledge. It is necessary for them to further educate in the field of integrating the content of natural sciences and mathematics, scientific method and its applications (particularly in mini-projects as well as in the application of quantitative experiments. This would affect the quality of teaching, their professional competence, as well as it would affect their lifelong education.

  1. Investigation of the Self-Efficacy Beliefs of Pre-Service Science Teachers in Terms of Following and Using the Innovations in the Field of Education

    Science.gov (United States)

    Dede, Hulya; Yilmaz, Zeynel Abidin; Ilhan, Nail

    2017-01-01

    One of the factors influencing teachers' and pre-service teachers' self-efficacy beliefs is the use of innovations and research in education (scientific articles, thesis, and new teaching materials). This study aims to examine to what extent pre-service science teachers follow the innovations in the field of education and use these innovations in…

  2. What Kills Science in School?: Lessons from Pre-Service Teachers' Responses to Urban children's Science Inquiries.

    Science.gov (United States)

    Matusov, Eugene

    2018-06-01

    This opportunistic case-study highlights striking differences in 6 urban children's and 12 preservice suburban middle-class teachers' perception of science and discuss consequences of science education and beyond. I found that all of the interviewed urban children demonstrated scientific inquiries and interests outside of the school science education that can be characterized by diverse simultaneous discourses from diverse practices, i.e., "heterodiscoursia" (Matusov in Culture & Psychology, 17(1), 99-119, 2011b), despite their diverse, positive and negative, attitudes toward school science. In contrast to the urban children's mixed attitudes to science, the preservice teachers view science negatively. They could not see science inquiries in the videotaped interviews of the urban children. There seemed to be many reasons for that. One of the possible reasons for that was that the preservice teachers tried to purify the science practice. Another reason was that they did not see a necessity to be interested and engaged in the curriculum that they are going to teach in future. The pedagogical consequences and remedies are discussed.

  3. Teacher participation in science fairs as professional development in South Africa

    Directory of Open Access Journals (Sweden)

    Clement K. Mbowane

    2017-07-01

    Full Text Available This research was undertaken to understand the perceptions of the Physical Sciences teachers who participate in the South African ‘Eskom Expo for Young Scientists’, regarding the educational significance of the science fair, and the extent to which expo participation provides an opportunity for professional development. The educational significance of this article is found in its contribution to the professional identity of teachers in their roles as organisers, mentors and judges. The model of Beijaard et al. (Teach Teach Educ. 2004;20:107–128 was used to characterise the teachers’ professional identity in terms of professional knowledge, attitudes, beliefs, norms and values, as well as emotions and agency. Interviews with the Physical Sciences teachers were analysed using thematic analysis, ultimately interpreting and linking the categories of responses to the theme of professional identity. The study found that expo participation contributes to pedagogical knowledge, content knowledge (as both procedural and declarative or factual knowledge and pedagogical content knowledge. Self-efficacy beliefs were strengthened, positive attitudes were developed, and strategies of inquiry-based learning and effective methodological instruction were observed during participation, which contributed to the participants’ school-based teaching. Teachers learn both from their engagement with learners, and through networking opportunities with fellow teachers. Teachers themselves value these aspects, and consequently, science fair participation is a sustainable form of professional development. It is recommended that the opportunity for professional development that is provided by teachers’ participation in such school-level science fairs should be acknowledged and promoted by schools and fair organisers. Significance: Science expos offer professional development to participating teachers and improve learners’ academic performance.

  4. IS THE INQUIRY-BASED SCIENCE EDUCATION THE BEST?

    Directory of Open Access Journals (Sweden)

    Milan Kubiatko

    2016-10-01

    Full Text Available The science education is fighting with a relatively big problem. Many academicians, teachers and also laic society are still perceiving difficulty in understanding of concepts from science subject and lack of interest about this group of subjects. In the past the teaching process was very formal focused on the memorizing of the facts without any deeper understanding of the processes in the nature. Pupils and students knew all definitions about concepts in the science subjects, but practical application was on the low level. The academicians, teachers and other people interested in the science education were eager to change system of education.

  5. Reaching the Future Teachers in Your Classroom: New Directions in Pre-Service Education

    Science.gov (United States)

    Grier, Jennifer A.; Ruberg, L.

    2006-09-01

    We will present results and progress from initiatives seeking to improve the experiences of future teachers in college level science classes. A future teacher (pre-service teacher) is inspired to teach science based on personal experiences with college science classes. The most critical opportunity to make a real difference in science education in schools comes when the teachers themselves are first being educated. Given the difficulties in identifying future teachers and the wide variations in their needs, how can we best help future teachers in training? What critical thinking skills are most important for them to absorb from their exposure to science as undergraduates and graduate students? What teaching and learning experiences can we offer that will help science teachers in training confidently assess the relationship between evidence and explanations and then bring that understanding and experience effectively into their own classroom? Recent initiatives in pre-service education have identified several key strategies for improving teacher preparation at the post-secondary level: - Using a constructivist approach to teach physical science concepts and guided inquiry - Knowing common misconceptions about key scientific concepts that students bring to college-level science classrooms - Applying documented strategies for identifying and addressing student misconceptions; and - Knowing how to select and adapt curriculum materials based on common preconceptions held by students. The challenge of reaching these outcomes is complex and cannot be addressed with simple solutions. Teaching strategies that help prepare future teachers include modeling effective teaching of science, understanding the relationship between student/teacher misconceptions, designing and implementing evaluation and assessment, appropriate use of technology tools, and tapping into the existing community of learners to provide ongoing education opportunities and support as the pre

  6. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  7. Negotiating Science and Engineering: An Exploratory Case Study of a Reform-Minded Science Teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-01-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the…

  8. A comparison of bilingual education and generalist teachers' approaches to scientific biliteracy

    Science.gov (United States)

    Garza, Esther

    The purpose of this study was to determine if educators were capitalizing on bilingual learners' use of their biliterate abilities to acquire scientific meaning and discourse that would formulate a scientific biliterate identity. Mixed methods were used to explore teachers' use of biliteracy and Funds of Knowledge (Moll, L., Amanti, C., Neff, D., & Gonzalez, N., 1992; Gonzales, Moll, & Amanti, 2005) from the students' Latino heritage while conducting science inquiry. The research study explored four constructs that conceptualized scientific biliteracy. The four constructs include science literacy, science biliteracy, reading comprehension strategies and students' cultural backgrounds. There were 156 4th-5th grade bilingual and general education teachers in South Texas that were surveyed using the Teacher Scientific Biliteracy Inventory (TSBI) and five teachers' science lessons were observed. Qualitative findings revealed that a variety of scientific biliteracy instructional strategies were frequently used in both bilingual and general education classrooms. The language used to deliver this instruction varied. A General Linear Model revealed that classroom assignment, bilingual or general education, had a significant effect on a teacher's instructional approach to employ scientific biliteracy. A simple linear regression found that the TSBI accounted for 17% of the variance on 4th grade reading benchmarks. Mixed methods results indicated that teachers were utilizing scientific biliteracy strategies in English, Spanish and/or both languages. Household items and science experimentation at home were encouraged by teachers to incorporate the students' cultural backgrounds. Finally, science inquiry was conducted through a universal approach to science learning versus a multicultural approach to science learning.

  9. Satisfaction of Social and Legal Sciences teachers with the introduction of the European Higher Education Area

    Directory of Open Access Journals (Sweden)

    Tania Ariza

    2014-01-01

    Full Text Available University teachers are one of the main figures in the European convergence process, but their attitude towards the reform of Spanish university studies is unknown. Therefore, the objective of this study is to evaluate the satisfaction of Social and Legal Sciences teachers towards the introduction of the European Higher Education Area (EHEA. The sample was made up of 3,068 teachers from Spanish public universities, who teach in the said field. An online questionnaire was created for this purpose, with questions relating to the EHEA, teacher tasks and training, as well as aspects related to methodology and the teaching and learning process, amongst others. Cronbach´s alpha coefficient was .81. It is a population-based, descriptive study using a cross-sectional survey with a probability sample. In the results it can be observed that only 9.3% of teachers are satisfied with the adaptation of higher education to the EHEA. Finally, the limitations faced by teaching staff in consolidating this process will be discussed.

  10. Teacher students' dilemmas when teaching science through inquiry

    Science.gov (United States)

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-09-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE is rarely adopted in schools. Often barriers for teachers account for this lack, with the result that even good teachers struggle to teach science as inquiry. More importantly, studies indicate that several barriers and constraints could be ascribed to problems teacher students have at the university stage. Purpose: The purpose of this explorative investigation is to examine the problems teacher students have when teaching science through inquiry. In order to draw a holistic picture of these problems, we identified problems from three different points of view leading to the research question: What problems regarding IBSE do teacher students have from an objective, a subjective, and a self-reflective perspective? Design & method: Using video analysis and observation tools as well as qualitative content analysis and open questionnaires we identified problems from each perspective. Results: The objectively stated problems comprise the lack of essential features of IBSE especially concerning 'Supporting pupils' own investigations' and 'Guiding analysis and conclusions.' The subjectively perceived problems comprise concerns about 'Teachers' abilities' and 'Pupils' abilities,' 'Differentiated instruction' and institutional frame 'Conditions' while the self-reflectively noticed problems mainly comprise concerns about 'Allowing inquiry,' 'Instructional Aspects,' and 'Pupils' behavior.' Conclusions: Each of the three different perspectives provides plenty of problems, partially overlapping, partially complementing one another, and partially revealing completely new problems. Consequently, teacher educators have to consider these

  11. The mathematics/science teachers' factor in achievement of the goal ...

    African Journals Online (AJOL)

    The Teacher is the key factor in the success of any Educational endeavor at all levels. The introduction of the Universal Basic Education (UBE) necessitates a finding on the state of readiness of mathematics/science teachers in the field who will implement the programme towards the participatory level of ...

  12. The efficacy beliefs of preservice science teachers in professional development school and traditional school settings

    Science.gov (United States)

    Newsome, Demetria Lynn

    Teachers' efficacy beliefs have been shown to correlate positively with to the successful implementation of science reform measures (National Research Council, 1996) and are context specific (Koul & Rubba, 1999). Studies on teacher efficacy in specific contexts have been conducted including the availability of resources and parent support (Tschannen-Moran & Hoy, 2002), classroom management (Emmer & Hickman, 1990; Raudenbush, Rowen, & Cheong, 1992); and institutional climate and behavior of the principal (Hoy & Woolfolk, 1993). The purpose of this study was to compare the science teaching efficacy beliefs of teacher interns prepared in professional development schools with those of student teachers prepared in traditional school settings. Other variables examined included academic level, academic major, and area of science concentration. Preservice science teacher efficacy beliefs were measured using the Science Teaching Efficacy Beliefs Instrument for Preservice Science Teachers, STEBI Form B (Enoch & Riggs, 1990) with demographic information being collected by an accompanying questionnaire. Analyses included scoring the surveys on two scales, Personal Science Teaching Efficacy Beliefs Scale and the Outcome Expectancy Scale, calculating descriptive statistics, as well as performing MANOVAS and correlations. Results indicate that preservice science teachers working in professional development schools exhibit higher personal science teaching efficacy beliefs. This finding corroborates previous studies on the efficacy beliefs of preservice teachers working in PDS schools (Long, 1996; Sandholtz & Dadlez, 2000). Results also show a strong correlation between the personal science teaching efficacy beliefs and the setting where student teaching takes place. In addition, significant differences were found in the personal science teaching efficacy beliefs between elementary education majors and science majors, science education majors, and secondary education majors

  13. Exploring the meaning of practicing classroom inquiry from the perspectives of National Board Certified Science Teachers

    Science.gov (United States)

    Karaman, Ayhan

    Inquiry has been one of the most prominent terms of the contemporary science education reform movement (Buck, Latta, & Leslie-Pelecky, 2007; Colburn, 2006; Settlage, 2007). Practicing classroom inquiry has maintained its central position in science education for several decades because science education reform documents promote classroom inquiry as the potential savior of science education from its current problems. Likewise, having the capabilities of teaching science through inquiry has been considered by National Board for Professional Teaching Standards [NBPTS] as one of the essential elements of being an accomplished science teacher. Successful completion of National Board Certification [NBC] assessment process involves presenting a clear evidence of enacting inquiry with students. Despite the high-profile of the word inquiry in the reform documents, the same is not true in schools (Crawford, 2007). Most of the science teachers do not embrace this type of approach in their everyday teaching practices of science (Johnson, 2006; Luera, Moyer, & Everett, 2005; Smolleck, Zembal-Saul, & Yoder, 2006; Trumbull, Scarano, & Bonney, 2006). And the specific meanings attributed to inquiry by science teachers do not necessarily match with the original intentions of science education reform documents (Matson & Parsons, 2006; Wheeler, 2000; Windschitl, 2003). Unveiling the various meanings held by science teachers is important in developing better strategies for the future success of science education reform efforts (Jones & Eick, 2007; Keys & Bryan, 2001). Due to the potential influences of National Board Certified Science Teachers [NBCSTs] on inexperienced science teachers as their mentors, examining inquiry conceptions of NBCSTs is called for. How do these accomplished practitioners understand and enact inquiry? The purpose of this dissertation research study was twofold. First, it investigated the role of NBC performance assessment process on the professional development

  14. Science and Scientific Curiosity in Pre-school—The teacher's point of view

    Science.gov (United States)

    Spektor-Levy, Ornit; Kesner Baruch, Yael; Mevarech, Zemira

    2013-09-01

    Nowadays, early science education is well-accepted by researchers, education professionals and policy makers. Overall, teachers' attitudes and conceptions toward the science subject domain and science education influence their ways of teaching and engagement. However, there is a lack of research regarding factors that affect this engagement in pre-school years. The main assumption of this study is that teachers' attitudes regarding science in pre-school can shape children's engagement in science and develop their scientific curiosity. Therefore, the main objectives of this study are to investigate the attitudes of pre-school teachers toward engaging in science and to explore their views about the nature of curiosity: who is a curious child and how can a child's natural curiosity be fostered? An extensive survey was conducted among 146 pre-school teachers by employing both qualitative and quantitative approaches. Results indicate that most of the participants believe that scientific education should begin in early childhood; very young children can investigate and take part in a process of inquiry; and scientific activities in pre-school can influence children's long-term attitudes toward science. Despite these views, most participants felt they did not possess sufficient scientific knowledge. Furthermore, participants expressed diverse opinions when asked to identify what constitutes curiosity, how the curious child can be identified and how a child's curiosity can be fostered. The research findings carry significant implications regarding how to implement scientific activities in pre-school, and how to encourage pre-school teachers to engage children in scientific activities in a way that will nurture their natural curiosity.

  15. AGI's Earth Science Week and Education Resources Network: Connecting Teachers to Geoscience Organizations and Classroom Resources that Support NGSS Implementation

    Science.gov (United States)

    Robeck, E.; Camphire, G.; Brendan, S.; Celia, T.

    2016-12-01

    There exists a wide array of high quality resources to support K-12 teaching and motivate student interest in the geosciences. Yet, connecting teachers to those resources can be a challenge. Teachers working to implement the NGSS can benefit from accessing the wide range of existing geoscience resources, and from becoming part of supportive networks of geoscience educators, researchers, and advocates. Engaging teachers in such networks can be facilitated by providing them with information about organizations, resources, and opportunities. The American Geoscience Institute (AGI) has developed two key resources that have great value in supporting NGSS implement in these ways. Those are Earth Science Week, and the Education Resources Network in AGI's Center for Geoscience and Society. For almost twenty years, Earth Science Week, has been AGI's premier annual outreach program designed to celebrate the geosciences. Through its extensive web-based resources, as well as the physical kits of posters, DVDs, calendars and other printed materials, Earth Science Week offers an array of resources and opportunities to connect with the education-focused work of important geoscience organizations such as NASA, the National Park Service, HHMI, esri, and many others. Recently, AGI has initiated a process of tagging these and other resources to NGSS so as to facilitate their use as teachers develop their instruction. Organizing Earth Science Week around themes that are compatible with topics within NGSS contributes to the overall coherence of the diverse array of materials, while also suggesting potential foci for investigations and instructional units. More recently, AGI has launched its Center for Geoscience and Society, which is designed to engage the widest range of audiences in building geoscience awareness. As part of the Center's work, it has launched the Education Resources Network (ERN), which is an extensive searchable database of all manner of resources for geoscience

  16. Teachers' Concerns about Biotechnology Education

    Science.gov (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  17. Continuous Enhancement of Science Teachers' Knowledge and Skills through Scientific Lecturing.

    Science.gov (United States)

    Azevedo, Maria-Manuel; Duarte, Sofia

    2018-01-01

    Due to their importance in transmitting knowledge, teachers can play a crucial role in students' scientific literacy acquisition and motivation to respond to ongoing and future economic and societal challenges. However, to conduct this task effectively, teachers need to continuously improve their knowledge, and for that, a periodic update is mandatory for actualization of scientific knowledge and skills. This work is based on the outcomes of an educational study implemented with science teachers from Portuguese Basic and Secondary schools. We evaluated the effectiveness of a training activity consisting of lectures covering environmental and health sciences conducted by scientists/academic teachers. The outcomes of this educational study were evaluated using a survey with several questions about environmental and health scientific topics. Responses to the survey were analyzed before and after the implementation of the scientific lectures. Our results showed that Basic and Secondary schools teachers' knowledge was greatly improved after the lectures. The teachers under training felt that these scientific lectures have positively impacted their current knowledge and awareness on several up-to-date scientific topics, as well as their teaching methods. This study emphasizes the importance of continuing teacher education concerning knowledge and awareness about health and environmental education.

  18. Initial Science Teacher Education in Portugal: The Thoughts of Teacher Educators about the Effects of the Bologna Process

    Science.gov (United States)

    Leite, Laurinda; Dourado, Luís; Morgado, Sofia

    2016-01-01

    Between the 1980s and 2007, Portugal used to have one-stage (5-year period) initial teacher education (ITE) programs. In 2007 and consistent with the Bologna process guidelines, Portuguese teacher education moved toward a two-stage model, which includes a 3-year undergraduate program of subject matter that leads to a "licenciatura" (or…

  19. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2016-08-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher-students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants' instruction with computer technology was ( Teacher) initiation-( Student and Teacher) response sequences-( Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers' learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers' own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.

  20. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    Science.gov (United States)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  1. Infusing Science, Technology, and Society Into an Elementary Teacher Education Program: The Impact on Preservice Teachers

    Science.gov (United States)

    Henning, Mary Beth; Peterson, Barbara R.; King, Kenneth Paul

    2011-01-01

    In an effort to improve science and social studies instruction, preservice teachers developed original science, technology, and society units to teach in elementary and middle school classrooms during their clinical field experience. Data revealed that the preservice teachers fell into categories of being skeptics, open-minded instructors, or…

  2. Science and Scientific Curiosity in Pre-School--The Teacher's Point of View

    Science.gov (United States)

    Spektor-Levy, Ornit; Baruch, Yael Kesner; Mevarech, Zemira

    2013-01-01

    Nowadays, early science education is well-accepted by researchers, education professionals and policy makers. Overall, teachers' attitudes and conceptions toward the science subject domain and science education influence their ways of teaching and engagement. However, there is a lack of research regarding factors that affect this engagement in…

  3. Motivation of Civic Education Teachers-in-Training in the Field of Education for Sustainable Development

    Science.gov (United States)

    Hiller, Katharina; Reichhart, Barbara

    2017-01-01

    The objective of teacher-training at university for political science is the development of professional competencies that enable teachers-in-training to act proficiently in all aspects of civic education. Although there are some studies that focus on civic education for teachers' professional competencies, most of them relate to general…

  4. Analysis of Turkish Prospective Science Teachers' Perceptions on Technology in Education

    Science.gov (United States)

    Koksal, Mustafa Serdar; Yaman, Suleyman; Saka, Yavuz

    2016-01-01

    Purpose of this study was to determine and analyze Turkish pre-service science teachers' perceptions on technology in terms of learning style, computer competency level, possession of a computer, and gender. The study involved 264 Turkish pre-service science teachers. Analyses were conducted through four-way ANOVA, t-tests, Mann Whitney U test and…

  5. The evolution of a science teacher: An autobiography

    Science.gov (United States)

    Vincent, Daniel E.

    This qualitative study explores the experiences of a science teacher as he seeks to understand the foundations of his pedagogy, his view of learning, and his role as a teacher. By using the autobiographical style of currere, the author investigates the significant events of his educational journey and describes the transformation that occurred while teaching science in secondary schools. The author discovers how his instructional methods were intimately linked to his perception of the content and nature of science, how his interactions with others within a learning community challenged him to grow professionally, and how his educational metaphors helped him make sense of teaching, learning, and life. By telling his story, the author/researcher was able to use his transformed notions of how people learn to construct personal meaning about his own educational foundations and pedagogical perspectives, and in turn, give others a story within which they might find their own personal meaning.

  6. Meeting Classroom Needs: Designing Space Physics Educational Outreach for Science Education Standards

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M.

    2008-12-01

    As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.

  7. Science’s Education and Teaching. A case of study about of a Secundary’s Sciences teacher

    Directory of Open Access Journals (Sweden)

    Bartolomé Vázquez Bernal

    2009-10-01

    Full Text Available This article shows the conclusions of an investigation plan which was showed in the Human Sciences Facultity and Education of Huesca, in the election of assistances for the realisation of the Act of Improvement Program of Education, with the tittle of "School Practices I, II and III from the view of the credits ECTS.One of the main aims of this project was to know the attitude of the University teachers before the school practices course, that is why we did a cuestionary to a big number of partners of Faculty Education of Huesca, Zaragoza and Teruel, with the purpose that they could transmit us their thougths and to be able to offer a solution to elaborate and develop the new plans of teacher degree, specially, refered to practicum.

  8. The influence inquiry-based science has on elementary teachers' perception of instruction and self-efficacy

    Science.gov (United States)

    Lewis, Felecia J.

    The nature and purpose of this study was to examine the self-efficacy of teachers who use an inquiry-based science program to provide authentic experiences within the elementary school setting. It is essential to explore necessary improvements to bring about effective science education. Using a mixed methods study, the researcher conducted interviews with elementary teachers from five elementary schools within the same school district. The interviews focused on the teachers' experiences with inquiry-based science and their perceptions of quality science instruction. The Teachers' Sense of Efficacy Scale was used to collect quantitative data regarding the teachers' perception of instructional practice and student engagement. The study revealed that limited science content knowledge, inadequate professional development, and a low sense of self-efficacy have a substantial effect on teacher outcomes, instructional planning, and ability to motivate students to participate in inquiry-based learning. It will take a collective effort from administrators, teachers, parents, and students to discover ways to improve elementary science education.

  9. The Ohio Partnership for the Far East Region Science Teachers

    Science.gov (United States)

    Beiersdorfer, Raymond; Sturrus, W. Gregg

    2008-03-01

    The Ohio Partnership for Far East Region Science Teachers (OPFERST) is a three-year project funded by Federal Math Science Partnership Funds through a grant to the Ohio Dept. of Education. OPFERST is a partnership (opferst.ysu.edu) of Youngstown State University science and education faculty, trained facilitators and the county and city science consultants. Every (47) school district in the region signed on and during the first year 32 districts participated. During the first two years, 198 teachers representing Ashtabula, Columbiana, Mahoning and Trumbull Counties, as well as Warren City and Youngstown City schools have participated. The vision of OPFERST is to improve the teaching and learning of the Ohio Science Academic Content Standards. Project goals are: 1) Increase science content knowledge of teachers; 2) Implement effective instructional practices; 3) Improve students performance in science; and 4) Develop professional learning communities which will lead to programmatic changes within districts. Goals one through three are met by modeling inquiry-based methods for teaching science content standards. Goal four is met by ongoing meetings through-out the school year, classroom visits by YSU faculty and fieldtrips to the YSU Campus by classes led by OPFERST teachers. Evaluation of OPFERST includes demographic and classroom practice data, pre- and post-tests of participants, journals, homework and the administration of evaluation instruments with some OPFERST participants' students.

  10. The perception of science teachers on the role of student relationships in the classroom

    Science.gov (United States)

    Mattison, Cheryl Ann

    With the increased accountability of educators comes the responsibility of the entire educational community to find ways in which we can help our students succeed in the classroom. In addition, it is important to discover what it takes to keep those students in school Many science teachers enter the profession unprepared to handle the regular classroom routine. Classroom management, grading, lesson planning, setting up labs, and the myriad of other obligations, can leave teachers overwhelmed and sometimes can get in the way of actually helping students be successful. This study investigated how science teachers viewed the importance of developing strong teacher/student relationships to the increase of student success in a science classroom. I attempted to answer 4 major questions: · How do science teachers in a select high school community view the role of interactive relationships in their classrooms and how that might impact their students? · How do science teachers in a select high school community believe they establish successful interactive relationships with their students? · What do science teachers in a select high school community believe are some of the outcomes of those relationships? · What do science teachers suggest to increase the teacher's ability to form good relationships with their students? A qualitative research method was used including observations, interviews and group discussions of 5 high school science teachers in a small urban school.

  11. Elementary Science Indoors and Out: Teachers, Time, and Testing

    Science.gov (United States)

    Carrier, Sarah J.; Tugurian, Linda P.; Thomson, Margareta M.

    2013-10-01

    In this article, we present the results from a mixed-methods research study aimed to document indoor and outdoor fifth grade science experiences in one school in the USA in the context of accountability and standardized testing. We used quantitative measures to explore students' science knowledge, environmental attitudes, and outdoor comfort levels, and via qualitative measures, we examined views on science education and environmental issues from multiple sources, including the school's principal, teachers, and students. Students' science knowledge in each of the four objectives specified for grade 5 significantly improved during the school year. Qualitative data collected through interviews and observations found limited impressions of outdoor science. Findings revealed that, despite best intentions and a school culture that supported outdoor learning, it was very difficult in practice for teachers to supplement their classroom science instruction with outdoor activities. They felt constrained by time and heavy content demands and decided that the most efficient way of delivering science instruction was through traditional methods. Researchers discuss potentials and obstacles for the science community to consider in supporting teachers and preparing elementary school teachers to provide students with authentic experiential learning opportunities. We further confront teachers' and students' perceptions that science is always best and most efficiently learned inside the classroom through traditional text-driven instruction.

  12. Trends in Soil Science education: moving from teacher's questioning to student's questioning

    Science.gov (United States)

    Roca, Núria

    2017-04-01

    Soil science has suffered from communication problems within its own discipline, with other disciplines (except perhaps agronomy) and with the general public. Prof. Dennis Greenland wrote the following in the early 1990s: "…soil scientists have also been frustrated as their advice has gone apparently unheeded. This may be because the advice is couched in terms more easily understood by other soil scientists than by politicians and economists who control the disposition of land. If soil science is to serve society fully it is essential that its arguments are presented in terms readily understood by all and with both scientific and economic rigor so that they are not easily refuted". Soil is a 3-dimensional body with properties that reflect the impact of climate, vegetation, fauna, man and topography on the soil's parent material over a variable time span. Therefore, soil sciences must integrate different knowledge of many disciplines. How should one go about the teaching and learning of a subject like soil science? This is an ever present question resident in the mind of a soil science teacher who knows that students will find soil science an inherently difficult subject to understand. Therefore, Soil Science cannot be taught in the same way. This paper proposes a mural construction that allows to understand soil formation, soil evolution and soil distribution. This experience has been realized with secondary teachers to offer tools for active learning methodologies. Therefore, this teaching project starts with a box and a global soil map distribution in a wall mural. The box contains many cards with soil properties, soil factors, soil process, soils orders and different natural soil photos as the pieces of a big puzzle. All these pieces will be arranged in the wall mural. These environments imply a new perspective of teaching: moving from a teacher-centered teaching to a student-centered teaching. In contrast to learning-before-doing— the model of most

  13. A five year study of the attitudes, perceptions, and philosophies of five secondary science education teachers prepared in the constructivist teaching methodology advanced at the University of Iowa

    Science.gov (United States)

    Hollenbeck, James Edward

    1999-11-01

    The present study researched the attitudes, Perceptions, and philosophies of five secondary education science teachers prepared in the constructivist teaching methodology advanced at the University of Iowa. This study is a continuation of a three-year study---the Salish I Project supported by the US Department of Education. The teachers studied are five 1993 University of Iowa Science Education Center graduates who have taught for five years. The main objective of the present study was finding answers to four questions aiming at further understanding of the impact and importance of the preservice education in I the constructivist teaching methodology of new teachers, and the changes they experience in the first five years of teaching. The instruments used in the study are various as they cover a wide range of different categories of beliefs I in terms of teaching, learning, teacher performance and view of school. The following trends came out on reviewing all of the data: in the first year of teaching three of the five teachers studied taught as constructivist teachers. in the third year of teaching, the classroom practices of the teachers converged more closely to their beliefs and preservice preparation. In the fifth year, all five teachers were ranked as constructivist in their teaching methodology in the classroom. Using the Wilcoxson test, significant, positive relationships were revealed between the teacher's philosophy of teaching and learning, with their actual practice. Teacher's philosophy and teaching practice were compared with selected standards set forth by the National Science Education Standards and were found to be in close alignment in their fifth year of teaching. Teachers prepared in the constructivist methodology are concerned about their subject content and value student input and reflection. The teachers reported using student-initiated ideas, alternative assessment strategies and being receptive to alternatives. Other important factors

  14. Advancing Climate Literacy through Investment in Science Education Faculty, and Future and Current Science Teachers: Providing Professional Learning, Instructional Materials, and a Model for Locally-Relevant and Culturally-Responsive Content

    Science.gov (United States)

    Halversen, C.; Apple, J. K.; McDonnell, J. D.; Weiss, E.

    2014-12-01

    The Next Generation Science Standards (NGSS) call for 5th grade students to "obtain and combine information about ways individual communities use science ideas to protect Earth's resources and environment". Achieving this, and other objectives in NGSS, will require changes in the educational system for both students and teachers. Teachers need access to high quality instructional materials and continuous professional learning opportunities starting in pre-service education. Students need highly engaging and authentic learning experiences focused on content that is strategically interwoven with science practices. Pre-service and early career teachers, even at the secondary level, often have relatively weak understandings of the complex Earth systems science required for understanding climate change and hold alternative ideas and naïve beliefs about the nature of science. These naïve understandings cause difficulties in portraying and teaching science, especially considering what is being called for in NGSS. The ACLIPSE program focuses on middle school pre-service science teachers and education faculty because: (1) the concepts that underlie climate change align well with the disciplinary core ideas and practices in NGSS for middle grades; and (2) middle school is a critical time for capturing students interest in science as student engagement by eighth grade is the most effective predictor of student pursuit of science in high school and college. Capturing student attention at this age is critical for recruitment to STEM careers and lifelong climate literacy. THE ACLIPSE program uses cutting edge research and technology in ocean observing systems to provide educators with new tools to engage students that will lead to deeper understanding of the interactions between the ocean and climate systems. Establishing authentic, meaningful connections between indigenous and place-based, and technological climate observations will help generate a more holistic perspective

  15. Instructional support and implementation structure during elementary teachers' science education simulation use

    Science.gov (United States)

    Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.

    2016-07-01

    This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results indicated teachers used a one-to-one student-to-computer ratio most often either during class-wide individual computer use or during a rotating station structure. Worksheets, general support, and peer collaboration were the most common forms of instructional support. The least common instructional support forms included lesson pacing, initial play, and a closure discussion. Students' simulation use was supported in the fewest ways during a rotating station structure. Results suggest that simulation professional development with elementary teachers needs to explicitly focus on implementation structures and instructional support to enhance participants' pedagogical knowledge and improve instructional simulation use. In addition, research is needed to provide theoretical explanations for the observed patterns that should subsequently be addressed in supporting teachers' instructional simulation use during professional development or in teacher preparation programs.

  16. Science Education: Issues, Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Shairose Irfan Jessani

    2015-06-01

    Full Text Available In today’s global education system, science education is much more than fact-based knowledge. Science education becomes meaningless and incomprehensible for learners, if the learners are unable to relate it with their lives. It is thus recommended that Pakistan, like many other countries worldwide should adopt Science Technology Society (STS approach for delivery of science education. The purpose of the STS approach lies in developing scientifically literate citizens who can make conscious decisions about the socio-scientific issues that impact their lives. The challenges in adopting this approach for Pakistan lie in four areas that will completely need to be revamped according to STS approach. These areas include: the examination system; science textbooks; science teacher education programs; and available resources and school facilities.

  17. The Study of Literacy Reinforcement of Science Teachers in Implementing 2013 Curriculum

    Science.gov (United States)

    Dewi, W. S.; Festiyed, F.; Hamdi, H.; Sari, S. Y.

    2018-04-01

    This research aims to study and collect data comprehensively, new and actual about science literacy to improve the ability of educators in implementing the 2013 Curriculum at Junior High School Padang Pariaman District. The specific benefit of this research is to give description and to know the problem of science literacy problem in interaction among teacher, curriculum, facilities and infrastructure, evaluation, learning technology and students. This study uses explorative in deep study approach, studying and collecting data comprehensively from the interaction of education process components (curriculum, educator, learner, facilities and infrastructure, learning media technology, and evaluation) that influence the science literacy. This research was conducted in the districts of Padang Pariaman consisting of 17 subdistricts and 84 junior high schools managed by the government and private. The sample of this research is science teachers of Padang Pariaman District with sampling technique is stratified random sampling. The instrument used in this study is a questionnaire to the respondents. Research questionnaire data are processed by percentage techniques (quantitative). The results of this study explain that the understanding of science teachers in Padang Pariaman District towards the implementation of 2013 Curriculum is still lacking. The science teachers of Padang Pariaman District have not understood the scientific approach and the effectiveness of 2013 Curriculum in shaping the character of the students. To improve the understanding of the implementation of Curriculum 2013, it is necessary to strengthen the literacy toward science teachers at the Junior High School level in Padang Pariaman District.

  18. Middle school girls: Experiences in a place-based education science classroom

    Science.gov (United States)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  19. Investigation By Skills of Pre-Service Science Teachers' Reflective Thinking From Journals

    Directory of Open Access Journals (Sweden)

    Ufuk TÖMAN

    2014-12-01

    Full Text Available The aim of this study is to determine reflective thinking skills of the pre-service science teachers according to data gathered from the journals in teacher training portfolios. Participants were third grade pre-service science teachers at Bayburt University, Faculty of Education, Department of Elementary Science Teacher Training Program. The data of this study were composed of totally 32 journals which 32 pre-service science teachers’ wrote in their teacher training portfolios. The journal of the pre-service science teachers were investigated through the method of document analysis. The statements in their journals were descriptively analyzed. From the statements in the pre-service science teachers’ journals, it was concluded that most of the pre-service science teachers’ technical reflective thinking skills were better than critical reflective thinking skills. In the area of critical reflective thinking skills that have almost no noteworthy. Work towards the development of pre-service teachers' reflective thinking skills are complemented by recommendations.

  20. Ciencias 2. Manual do Professor (Science Teacher's Manual).

    Science.gov (United States)

    Raposo, Lucilia

    This is the teacher's manual for Ciencias 2, the second in a series of elementary science textbooks for Portuguese-speaking students. The student textbook contains 10 chapters and 57 activities. The teacher's manual presents an explanation of the educational goals and the organization of the content, Topics included are environment, the human,…

  1. Teaching Chemistry in a Spiral Progression Approach: Lessons from Science Teachers in the Philippines

    Science.gov (United States)

    Orbe, Joymie R.; Espinosa, Allen A.; Datukan, Janir T.

    2018-01-01

    As the Philippines moves towards implementing the K-12 curriculum, there has been a mismatch in teacher preparation in science. The present teacher education curriculum prepares science teachers to specialise in a specific field (e.g. integrated science, biology, chemistry, and physics). However, in the K-12 curriculum, they are required to teach…

  2. The impact of inquiry-based learning on the critical thinking dispositions of pre-service science teachers

    Science.gov (United States)

    Arsal, Zeki

    2017-07-01

    In the study, the impact of inquiry-based learning on pre-service teachers' critical thinking dispositions was investigated. The sample of the study comprised of 56 pre-service teachers in the science education teacher education programme at the public university in the north of Turkey. In the study, quasi-experimental design with an experimental and a control group were applied to find out the impact of inquiry-based learning on the critical thinking dispositions of the pre-service teachers in the teacher education programme. The results showed that the pre-service teachers in the experimental group did not show statistically significant greater progress in terms of critical thinking dispositions than those in the control group. Teacher educators who are responsible for pedagogical courses in the teacher education programme should consider that the inquiry-based learning could not be effective method to improve pre-service teachers' critical thinking dispositions. The results are discussed in relation to potential impact on science teacher education and implications for future research.

  3. Ethical sensitivity intervention in science teacher education: Using computer simulations and professional codes of ethics

    Science.gov (United States)

    Holmes, Shawn Yvette

    A simulation was created to emulate two Racial Ethical Sensitivity Test (REST) videos (Brabeck et al., 2000). The REST is a reliable assessment for ethical sensitivity to racial and gender intolerant behaviors in educational settings. Quantitative and qualitative analysis of the REST was performed using the Quick-REST survey and an interview protocol. The purpose of this study was to affect science educator ability to recognize instances of racial and gender intolerant behaviors by levering immersive qualities of simulations. The fictitious Hazelton High School virtual environment was created by the researcher and compared with the traditional REST. The study investigated whether computer simulations can influence the ethical sensitivity of preservice and inservice science teachers to racial and gender intolerant behaviors in school settings. The post-test only research design involved 32 third-year science education students enrolled in science education classes at several southeastern universities and 31 science teachers from the same locale, some of which were part of an NSF project. Participant samples were assigned to the video control group or the simulation experimental group. This resulted in four comparison group; preservice video, preservice simulation, inservice video and inservice simulation. Participants experienced two REST scenarios in the appropriate format then responded to Quick-REST survey questions for both scenarios. Additionally, the simulation groups answered in-simulation and post-simulation questions. Nonparametric analysis of the Quick-REST ascertained differences between comparison groups. Cronbach's alpha was calculated for internal consistency. The REST interview protocol was used to analyze recognition of intolerant behaviors in the in-simulation prompts. Post-simulation prompts were analyzed for emergent themes concerning effect of the simulation on responses. The preservice video group had a significantly higher mean rank score than

  4. Integrating Science and Technology: Using Technological Pedagogical Content Knowledge as a Framework to Study the Practices of Science Teachers

    Science.gov (United States)

    Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.

    2015-01-01

    In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…

  5. Advancing Pre-college Science and Mathematics Education

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Rick [General Atomics, San Diego, CA (United States)

    2015-05-06

    With support from the US Department of Energy, Office of Science, Fusion Energy Sciences, and General Atomics, an educational and outreach program primarily for grades G6-G13 was developed using the basic science of plasma and fusion as the content foundation. The program period was 1994 - 2015 and provided many students and teachers unique experiences such as a visit to the DIII-D National Fusion Facility to tour the nation’s premiere tokamak facility or to interact with interesting and informative demonstration equipment and have the opportunity to increase their understanding of a wide range of scientific content, including states of matter, the electromagnetic spectrum, radiation & radioactivity, and much more. Engaging activities were developed for classroom-size audiences, many made by teachers in Build-it Day workshops. Scientist and engineer team members visited classrooms, participated in science expositions, held workshops, produced informational handouts in paper, video, online, and gaming-CD format. Participants could interact with team members from different institutions and countries and gain a wider view of the world of science and engineering educational and career possibilities. In addition, multiple science stage shows were presented to audiences of up to 700 persons in a formal theatre setting over a several day period at Science & Technology Education Partnership (STEP) Conferences. Annually repeated participation by team members in various classroom and public venue events allowed for the development of excellent interactive skills when working with students, teachers, and educational administrative staff members. We believe this program has had a positive impact in science understanding and the role of the Department of Energy in fusion research on thousands of students, teachers, and members of the general public through various interactive venues.

  6. Preparing prospective physics teachers to teach integrated science in junior high school

    Science.gov (United States)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  7. Reflection after teaching a lesson: Experiences of secondary school science teachers

    Science.gov (United States)

    Halstead, Melissa A.

    Secondary science teachers spend most of their time planning, collaborating, and teaching, but spend little time reflecting after teaching a single lesson. The theoretical framework of the adult learning theory and the transformative learning theory was the basis of this study. This qualitative research study was conducted to understand the reflective experiences of secondary science educators after teaching a single or several lessons. The collection of data consisted of interviews from a group of purposefully selected secondary science teachers who met the criteria set forth by the researcher. Through a qualitative analysis of interviews and field notes, the researcher determined that the secondary science teachers in this study shared similar as well as different experiences regarding collaborative and individual reflection after teaching a single or several lessons. The findings from this study also suggested that secondary science educators prefer to collaboratively reflect and then reflect alone to allow for further thought. Additionally, a supportive school culture increases the secondary science teacher’s desire to engage in collaborative as well as individual reflection. The information from this study could be used to close the gaps that exist in the teacher professional development programs.

  8. Expanding Computer Science Education in Schools: Understanding Teacher Experiences and Challenges

    Science.gov (United States)

    Yadav, Aman; Gretter, Sarah; Hambrusch, Susanne; Sands, Phil

    2017-01-01

    The increased push for teaching computer science (CS) in schools in the United States requires training a large number of new K-12 teachers. The current efforts to increase the number of CS teachers have predominantly focused on training teachers from other content areas. In order to support these beginning CS teachers, we need to better…

  9. Using the instructional congruence model to change a science teacher's practices and English language learners' attitudes and achievement in science

    Science.gov (United States)

    Salame, Hania Moussa

    The purpose of the current study was to examine the effects of adapting the instructional congruence model on the English Language Learners' (ELL) attitudes and achievement in science. Changes in teacher's views and practices were documented. The mixed-method approach was adapted. Data sources were the "Attitude Towards Science" survey, VNOS-C questionnaire, Luykx and Lee (2007) observational instrument, Gee (1997) discussion categories, video recordings, and pre- and post-tests. A science teacher and a class of 24 ELL female students in a charter school participated in this research. The results of this study indicated that student achievement increased significantly and students' attitudes improved in all contexts. At the conclusion of the study, all teacher's views on NOS were reported to be informed, teacher's practices were rated higher, and different classroom interactions increased significantly. The instructional congruence model in science education has been successful in reaching different learners, improving students' attitudes and achievement in science and enhancing teacher's views and practices. This model has significant potential for meeting the challenging goals of reformed science education.

  10. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    Science.gov (United States)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  11. Symposium 1: Challenges in science education and popularization of Science

    Directory of Open Access Journals (Sweden)

    Ildeo de Castro Moreira

    2014-08-01

    Full Text Available Science education and popularization of science are important elements for social inclusion. The Brazil exhibits strong inequalities regarding the distribution of wealth, access to cultural assets and appropriation of scientific and technological knowledge. Each Brazilian should have the opportunity to acquire a basic knowledge of science and its operation that allow them to understand their environment and expand their professional opportunities. However, the overall performance of Brazilian students in science and math is bad. The basic science education has, most often, few resources and is discouraging, with little appreciation of experimentation, interdisciplinarity and creativity. Beside the shortage of science teachers, especially teachers with good formation, predominate poor wage and working conditions, and deficiencies in instructional materials and laboratories. If there was a significant expansion in access to basic education, the challenge remains to improve their quality. According to the last National Conference of STI, there is need of a profound educational reform at all levels, in particular with regard to science education. Already, the popularization of science can be an important tool for the construction of scientific culture and refinement of the formal teaching instrument. However, we still lack a comprehensive and adequate public policy to her intended. Clearly, in recent decades, an increase in scientific publication occurred: creating science centers and museums; greater media presence; use of the internet and social networks; outreach events, such as the National Week of CT. But the scenario is shown still fragile and limited to broad swathes of Brazilians without access to scientific education and qualified information on CT. In this presentation, from a general diagnosis of the situation, some of the main challenges related to education and popularization of science in the country will address herself.

  12. Excavating silences and tensions of agency|passivity in science education reform

    Science.gov (United States)

    Rivera Maulucci, Maria S.

    2010-12-01

    I reflect on studies by Rodriguez and Carlone, Haun-Frank, and Kimmel to emphasize the ways in which they excavate silences in the science education literature related to linguistic and cultural diversity and situating the problem of reform in teachers rather than contextual factors, such as traditional schooling discourses and forces that serve to marginalize science. I propose that the current push for top-down reform and accountability diminishes opportunities for receptivity, learning with and from students in order to transform teachers' practices and promote equity in science education. I discuss tensions of agency and passivity in science education reform and argue that attention to authentic caring constitutes another silence in the science education literature. I conclude that the current policy context positions teachers and science education researchers as tempered radicals struggling against opp(reg)ressive reforms and that there is a need for more studies to excavate these and other silences.

  13. Teaching science with a multicultural agenda: The challenges and conflicts for preservice teachers

    Science.gov (United States)

    Yang, Kimberley

    This dissertation examines the challenges and conflicts that preservice teachers have when teaching science with a multicultural agenda. This study is based on the experience of three preservice teachers who have participated in a one or two semester(s) volunteered commitment teaching science to pre-kindergarten students at a homeless shelter in the South Bronx of New York City. Findings derived from in-depth interviews, observations, lesson planning and debriefing sessions, journals, questionnaires and extracurricular interaction of the researcher and participants, indicate that preservice teachers were initially uncertain about the philosophy and actual practice of teaching science with a multicultural agenda. Their experience at the homeless shelter brings up issues of social class and family background as determinants of access and success in science education, multicultural science as exclusive from the accepted science canon, and the value of practicing science education with a multicultural agenda. The philosophical framework for teaching science from a multicultural framework is based on ideas that stem from feminist theories of valuing the lived social and educational experiences of children, and critical theory that examines the role of school and science as culture. The intention of multicultural science education is to create a science education that is inclusive for students regardless of cultural background. This includes students who have been traditionally marginalized from school science. In many instances, children from severe inner-city economically impoverished environments have been overlooked as science-able within school culture.

  14. A Case Study on Science Teacher Leadership to Address Diversity and Equity Through Professional Development

    Science.gov (United States)

    Doraiswamy, Nithya

    This qualitative case study focused on the multifaceted issue of exploring science teacher leaders understanding and addressing of issues of diversity and equity with peers through professional development. The purpose of the study was to highlight the opportunities and barriers to the addressing of issues of diversity and equity through the work of a community of teachers leaders in science professional development. To frame this study, the researcher drew from the interdisciplinary field of multicultural education, transformative learning, and teacher leadership. In drawing out the connections from these vast bodies of literature, the study speaks to the need of both, creating teacher leaders in science education who are capable of meeting the twin demands of excellence and equity, and also attending to the challenges in the professional learning continuums of teachers leaders and their peers towards addressing issues of diversity and equity in science education.

  15. Investigating Elementary Teachers' Thinking About and Learning to Notice Students' Science Ideas

    Science.gov (United States)

    Luna, Melissa Jo

    Children naturally use observations and everyday thinking to construct explanations as to why phenomena happen in the world. Science instruction can benefit by starting with these ideas to help children build coherent scientific understandings of how the physical world works. To do so, science teaching must involve attending to students' ideas so that those ideas become the basis for learning. Yet while science education reform requires teachers to pay close attention to their students' ideas, we know little about what teachers think this means in practice. To examine this issue, my dissertation research is two-fold. First, I examine teacher thinking by investigating how teachers understand what it means to pay attention to students' science ideas. Specifically, using new digital technology, three participating teachers captured moments of student thinking in the midst of instruction. Analysis of these moments reveals that teachers capture many different kinds of moments containing students' ideas and think about students' science ideas in different ways at different times. In particular, these three teachers most often think about students' ideas as being (a) from authority, (b) from experience, and (c) under construction. Second, I examine teacher learning through the development of an innovative science teaching video club model. The model differs from previous research on video clubs in several key ways in an attempt to focus teachers on student thinking in a sustained way. I investigate the ways in which this model was effective for engaging teachers in noticing and making sense of their students' science ideas during one implementation. Results indicate that teachers talked about student thinking early, often, and in meaningful ways. Science education leaders have recognized the potential of science teaching video clubs as a form of professional development, and the model presented in this work promotes the conditions for successful teacher learning. This

  16. Symposium 3 - Science Education “Leopoldo de Meis”: The Critical Importance of Science Education for Society

    Directory of Open Access Journals (Sweden)

    Bruce Albert

    2015-08-01

    Full Text Available Symposium 3 - Science Education “Leopoldo de Meis” Chair: Wagner Seixas da Silva, Universidade Federal do Rio de JaneiroAbstract:Three ambitious goals for science education:1. Enable all children to acquire the problem-solving, thinking, and communication skills of scientists – so that they can be productive and competitive in the new world economy.2. Generate a “scientific temper” for each nation, with scientifically trained people in many professions, ensuring the rationality and the tolerance essential for a democratic society.3. Help each nation generate new scientific knowledge and technology by casting the widest possible net for talent.My preferred strategy for the United States:1. Science education should have a much larger role in all school systems, but only if this science education is of a different kind than is experienced in most schools today.2. Making such a change will require a redefinition of what we mean by the term  “science education”.3. To create continually improving education systems, we will need much more collaborative, effective, and use-inspired education research - research that is focused on real school needs and that integrates the best school teachers into the work.4. Our best teachers need to have a much larger voice in helping to steer our national and state policies, as well as in our local school systems!

  17. Educational Neuromyths among Teachers in Latin America

    Science.gov (United States)

    Gleichgerrcht, Ezequiel; Lira Luttges, Benjamin; Salvarezza, Florencia; Campos, Anna Lucia

    2015-01-01

    Neuroscientific knowledge has undeniably gained interest among educators worldwide. However, not all "brain facts" believed by teachers are supported by science. This study sought to evaluate the belief in these so-called "neuromyths" among 3,451 Latin American teachers. We found that, consistent with prior research among…

  18. Teacher Education that Works: Preparing Secondary-Level Math and Science Teachers for Success with English Language Learners Through Content-Based Instruction

    Directory of Open Access Journals (Sweden)

    Margo Elisabeth DelliCarpini

    2014-11-01

    Full Text Available Little research exists on effective ways to prepare secondary mathematics and science teachers to work with English language learners (ELLs in mainstream mathematics and science (subsequently referred to as STEM classrooms. Given the achievement gap that exists between ELLs and their native-speaking counterparts in STEM subjects, as well as the growing numbers of ELLs in US schools, this becomes a critical issue, as academic success for these students depends on the effectiveness of instruction they receive not only in English as a second language classes (ESL, but in mainstream classrooms as well. This article reports on the effects of a program restructuring that implemented coursework specifically designed to prepare pre-service and in-service mathematics, science, and ESL teachers to work with ELLs in their content and ESL classrooms through collaboration between mainstream STEM and ESL teachers, as well as effective content and language integration. We present findings on teachers’ attitudes and current practices related to the inclusion of ELLs in the secondary-level content classroom and their current level of knowledge and skills in collaborative practice. We further describe the rationale behind the development of the course, provide a description of the course and its requirements as they changed throughout its implementation during two semesters, and present findings from the participants enrolled. Additionally, we discuss the lessons learned; researchers’ innovative approaches to implementation of content-based instruction (CBI and teacher collaboration, which we term two-way CBI (DelliCarpini & Alonso, 2013; and implications for teacher education programs.

  19. Research in Science Education. Volume 21. Selected Refereed Papers from the Annual Conference of the Australasian Science Education Research Association (22nd, Surfers Paradise, Queensland, Australia, July 11-14, 1991).

    Science.gov (United States)

    Forgasz, Helen, Ed.

    1991-01-01

    This annual publication contains 43 research papers on a variety of issues related to science education. Topics include the following: mature-age students; teacher professional development; spreadsheets and science instruction; the Learning in Science Project and putting it into practice; science discipline knowledge in primary teacher education;…

  20. Student Attitudes, Student Anxieties, and How to Address Them; A handbook for science teachers

    Science.gov (United States)

    Kastrup, Helge

    2016-02-01

    This book is based on a commitment to teaching science to everybody. What may work for training professional scientists does not work for general science education. Students bring to the classrooms preconceived attitudes, as well as the emotional baggage called 'science anxiety'. Students may regard science as cold, unfriendly, and even inherently hostile and biased against women. This book has been designed to deal with each of these issues and results from research in both Denmark and the USA. The first chapter discusses student attitudes towards science and the second discusses science anxiety. The connection between the two is discussed before the introduction of constructivism as a pedagogy that can aid science learning if it also addresses attitudes and anxieties. Much of the book elucidates what the authors have learned as science teachers and science education researchers. They studied various groups including university students majoring in the sciences, mathematics, humanities, social sciences, business, nursing, and education; high-school students; teachers' seminary students; science teachers at all levels from middle school through college; and science administrators. The insights of these groups constitute the most important feature of the book, and by sharing them, the authors hope to help their fellow science teachers to understand student attitudes about science, to recognize the connections between these and science anxiety, and to see how a pedagogy that takes these into account can improve science learning.

  1. Investigating Teachers' Beliefs in the Implementation of Science Inquiry and Science Fair in Three Boston High Schools

    Science.gov (United States)

    De Barros Miller, Anne Marie

    In previous decades, inquiry has been the focus of science education reform in the United States. This study sought to investigate how teachers' beliefs affect their implementation of inquiry science and science fair. It was hypothesized that science teachers' beliefs about inquiry science and science fair are predictive of their implementation of such strategies. A case study approach and semi-structured interviews were employed to collect the data, and an original thematic approach was created to analyze the data. Findings seem to suggest that science teachers who embrace science inquiry and science fair believe these practices enhance students' performance, facilitate their learning experience, and allow them to take ownership of their learning. However, results also suggest that teachers who do not fully embrace inquiry science as a central teaching strategy tend to believe that it is not aligned with standardized tests and requires higher cognitive skills from students. Overall, the study seems to indicate that when inquiry is presented as a prescribed teaching approach, this elicits strong negative feelings/attitudes amongst science teachers, leading them not only to resist inquiry as a teaching tool, but also dissuading them from participating in science fair. Additionally, the findings suggest that such feelings among teachers could place the school at risk of not implementing inquiry science and science fair. In conclusion, the study reveals that science inquiry and science fair should not be prescribed to teachers as a top-down, mandatory approach for teaching science. In addition, the findings suggest that adequate teacher training in content knowledge and pedagogy in science inquiry and science fair should be encouraged, as this could help build a culture of science inquiry and implementation amongst teachers. This should go hand-in-hand with offering mentoring to science teachers new to inquiry and science fair for 2-5 years.

  2. Nature of Science and Models: Comparing Portuguese Prospective Teachers' Views

    Science.gov (United States)

    Torres, Joana; Vasconcelos, Clara

    2015-01-01

    Despite the relevance of nature of science and scientific models in science education, studies reveal that students do not possess adequate views regarding these topics. Bearing in mind that both teachers' views and knowledge strongly influence students' educational experiences, the main scope of this study was to evaluate Portuguese prospective…

  3. The implementation of a discovery-oriented science education program in a rural elementary school

    Science.gov (United States)

    Liddell, Martha Sue

    2000-10-01

    This study focused on the implementation of a discovery-oriented science education program at a rural elementary school in Mississippi. The instructional leadership role of the principal was examined in the study through identification and documentation of processes undertaken by the principal to implement a discovery-oriented science education program school. The goal of the study was to develop a suggested approach for implementing a discovery-oriented science education program for principals who wish to become instructional leaders in the area of science education at their schools. Mixed methods were used to collect, analyze, and interpret data. Subjects for the study consisted of teachers, students, and parents. Data were collected through field observation; observations of science education being taught by classroom teachers; examination of the principal's log describing actions taken to implement a discovery-oriented science education program; conducting semi-structured interviews with teachers as the key informants; and examining attitudinal data collected by the Carolina Biological Supply Company for the purpose of measuring attitudes of teachers, students, and parents toward the proposed science education program and the Science and Technology for Children (STC) program piloted at the school. To develop a suggested approach for implementing a discovery-oriented science education program, data collected from field notes, classroom observations, the principal's log of activities, and key informant interviews were analyzed and group into themes pertinent to the study. In addition to descriptive measures, chi-square goodness-of-fit tests were used to determine whether the frequency distribution showed a specific pattern within the attitudinal data collected by the Carolina Biological Supply Company. The pertinent question asked in analyzing data was: Are the differences significant or are they due to chance? An alpha level of .01 was selected to determine

  4. Science Professional Learning Communities: Beyond a singular view of teacher professional development

    Science.gov (United States)

    Jones, M. Gail; Gardner, Grant E.; Robertson, Laura; Robert, Sarah

    2013-07-01

    Professional Learning Communities (PLCs) are frequently being used as a vehicle to transform science education. This study explored elementary teachers' perceptions about the impact of participating in a science PLC on their own professional development. With the use of The Science Professional Learning Communities Survey and a semi-structured interview protocol, elementary teachers' perceptions of the goals of science PLCs, the constraints and benefits of participation in PLCs, and reported differences in the impact of PLC participation on novice and experienced teachers were examined. Sixty-five elementary teachers who participated in a science PLC were surveyed about their experiences, and a subsample of 16 teachers was interviewed. Results showed that most of the teachers reported their science PLC emphasized sharing ideas with other teachers as well as working to improve students' science standardized test scores. Teachers noted that the PLCs had impacted their science assessment practices as well as their lesson planning. However, a majority of the participants reported a differential impact of PLCs depending on a teacher's level of experience. PLCs were reported as being more beneficial to new teachers than experienced teachers. The interview results demonstrated that there were often competing goals and in some cases a loss of autonomy in planning science lessons. A significant concern was the impact of problematic interpersonal relationships and communication styles on the group functioning. The role of the PLC in addressing issues related to obtaining science resources and enhancing science content knowledge for elementary science teachers is discussed.

  5. Are Learning Assistants Better K-12 Science Teachers?

    Science.gov (United States)

    Gray, Kara E.; Webb, David C.; Otero, Valerie K.

    2010-10-01

    This study investigates how the undergraduate Learning Assistant (LA) experience affects teachers' first year of teaching. The LA Program provides interested science majors with the opportunity to explore teaching through weekly teaching responsibilities, an introduction to physics education research, and a learning community within the university. Some of these LAs are recruited to secondary science teacher certification programs. We hypothesized that the LA experience would enhance the teaching practices of the LAs who ultimately become teachers. To test this hypothesis, LAs were compared to a matched sample of teachers who completed the same teacher certification program as the LAs but did not have the LA "treatment." LAs and "non-LAs" were compared through interviews, classroom observations, artifact packages, and observations made with Reformed Teacher Observation Protocol (RTOP) collected within the first year of teaching. Some differences were found; these findings and their implications are discussed.

  6. Scientific Participation at the Poles: K-12 Teachers in Polar Science for Careers and Classrooms

    Science.gov (United States)

    Crowley, S.; Warburton, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the polar regions. PolarTREC highlights the importance of involving teachers in scientific research in regards to their careers as educators and their ability to engage students in the direct experience of science. To date, PolarTREC has placed over 90 teachers with research teams in the Arctic and Antarctic. Published results of our program evaluation quantify the effect of the field experience on the teachers' use of the real scientific process in the classroom, the improvement in science content taught in classrooms, and the use of non-fiction texts (real data and science papers) as primary learning tools for students. Teachers and students both report an increase of STEM literacy in the classroom content, confidence in science education, as well as a markedly broadened outlook of science as essential to their future. Research conducted with science teams affirms that they are achieving broader impacts when PolarTREC teachers are involved in their expeditions. Additionally, they reported that these teachers making vital contributions to the success of the scientific project.

  7. Reframing Teachers' Work for Educational Innovation

    Science.gov (United States)

    Kunnari, Irma; Ilomäki, Liisa

    2016-01-01

    The universities of applied sciences in Finland aim to support students in achieving work life competences by integrating authentic research, development and innovation (RDI) practices into learning. However, pursuing an educational change from a traditional higher education culture to a networked model of working is challenging for teachers. This…

  8. A New Lens for Supporting and Studying Science Teacher Reflections: Situating the Self in the [Activity] System

    Science.gov (United States)

    Criswell, Brett; Calandra, Brendan; Puvirajah, Anton; Brantley-Dias, Laurie

    2015-01-01

    This paper presents a new lens for analyzing written reflections on the teaching experiences of pre-service [science] teachers. The lens, which borrows heavily from Activity Theory, allows science education researchers and teacher educators to identify tensions, disturbances, conflicts, and contradictions within teachers' written reflections as a…

  9. Relationship between Teacher Candidates’ Literacy of Science and Information Technology

    OpenAIRE

    Orhan Karamustafaoğlu; Recep Çakır; Mert Kaya

    2013-01-01

    This study aims to determine the science teacher candidates’ literacy levels of science and information technology and intends to find out the relationship between them. In the study, correlational research methodology was used in the scope of correlational screening model. Research sample consists of totally 264 teacher candidates who are in their 3rd and 4th years and studying at the Department of Science and Technology Education in Amasya University. As the data collection instruments, the...

  10. Qualities of effective secondary science teachers: Perspectives of university biology students

    Science.gov (United States)

    McCall, Madelon J.

    This research was an attempt to hear the student voice concerning secondary science teacher effectiveness and to share that voice with those who impact the educational process. It was a snapshot of university freshmen biology students' opinions of the qualities of effective secondary science teachers based on their high school science experiences. The purpose of this study was to compile a list of effective secondary science teacher qualities as determined through a purposeful sampling of university second semester biology students and determine the role of the secondary science teacher in promoting interest and achievement in science, as well as the teacher's influence on a students' choice of a science career. The research was a mixed methods design using both quantitative and qualitative data obtained through the use of a 24 question electronic survey. There were 125 participants who provided information concerning their high school science teachers. Respondents provided information concerning the qualities of effective secondary science teachers and influences on the students' present career choice. The quantitative data was used to construct a hierarchy of qualities of effective secondary science teachers, divided into personal, professional, and classroom management qualities. The qualitative data was used to examine individual student responses to questions concerning secondary science teacher effectiveness and student career choice. The results of the research indicated that students highly value teachers who are both passionate about the subject taught and passionate about their students. High school science students prefer teachers who teach science in a way that is both interesting and relevant to the student. It was determined that the greatest influence on a secondary student's career choice came from family members and not from teachers. The secondary teacher's role was to recognize the student's interest in the career and provide encouragement

  11. Jordanian Preservice Primary Teachers' Perceptions of Mentoring in Science Teaching

    Science.gov (United States)

    Abed, Osama H.; Abd-El-Khalick, Fouad

    2015-03-01

    Quality mentoring is fundamental to preservice teacher education because of its potential to help student and novice teachers develop the academic and pedagogical knowledge and skills germane to successful induction into the profession. This study focused on Jordanian preservice primary teachers' perceptions of their mentoring experiences as these pertain to science teaching. The Mentoring for Effective Primary Science Teaching instrument was administered to 147 senior preservice primary teachers in a university in Jordan. The results indicated that the greater majority of participants did not experience effective mentoring toward creating a supportive and reflexive environment that would bolster their confidence in teaching science; further their understanding of primary science curriculum, and associated aims and school policies; help with developing their pedagogical knowledge; and/or furnish them with specific and targeted feedback and guidance to help improve their science teaching. Substantially more participants indicated that their mentors modeled what they perceived to be effective science teaching. The study argues for the need for science-specific mentoring for preservice primary teachers, and suggests a possible pathway for achieving such a model starting with those in-service primary teachers-much like those identified by participants in the present study-who are already effective in their science teaching.

  12. Improving Geoscience Education through the PolarTREC Teacher Research Experience Model (Invited)

    Science.gov (United States)

    Warburton, J.; Timm, K.; Larson, A. M.

    2010-12-01

    Teacher Research Experiences (TRE’s) are not new. For more than a decade, the National Science Foundation (NSF) as well as other federal agencies have been funding programs that place teachers with researchers in efforts to invigorate science education by bringing educators and researchers together through hands-on experiences. Many of the TRE’s are successful in providing a hands-on field experience for the teachers and researchers however many of the programs lack the resources to continue the collaborations and support the growing network of teachers that have had these field experiences. In 2007, NSF provided funding for PolarTREC—Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS). PolarTREC is a TRE where K-12 teachers participate in polar field research, working closely with scientists as a pathway to improving science education. In just three years, it has become a successful TRE. What makes PolarTREC different than other the teacher research experience programs and how can others benefit from what we have learned? During this presentation, we will share data collected through the program evaluation and on how PolarTREC contributes to the discipline of Science, Technology, Engineering, and Mathematics (STEM) education and pedagogy through a model program conceived and organized according to current best practices, such as pre-research training, mentoring, support for classroom transfer, and long-term access to resources and support. Data shows that PolarTREC’s comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person

  13. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  14. In-Service Science Teachers' Attitude towards Information Communication Technology

    Science.gov (United States)

    Kibirige, I.

    2011-01-01

    The purpose of this study is to determine the attitude of in-service science teachers towards information communication technology (ICT) in education. The study explores the relationship between in-service teachers and four independent variables: their attitudes toward computers; their cultural perception of computers; their perceived computer…

  15. Scientists and Educators: Joining Forces to Enhance Ocean Science Literacy

    Science.gov (United States)

    Keener-Chavis, P.

    2004-12-01

    The need for scientists to work with educators to enhance the general public's understanding of science has been addressed for years in reports like Science for All Americans (1990), NSF in a Changing World (1995), Turning to the Sea: America's Ocean Future (1999), Discovering the Earth's Final Frontier, A U.S. Strategy for Ocean Exploration (2000), and most recently, the U.S. Commission on Ocean Policy Report (2004). As reported in The National Science Foundation's Center for Ocean Science Education Excellence (COSEE) Workshop Report (2000), "The Ocean Sciences community did not answer (this) call, even though their discovery that the ocean was a more critical driving force in the natural environment than previously thought possessed great educational significance." It has been further acknowledged that "rapid and extensive improvement of science education is unlikely to occur until it becomes clear to scientists that they have an obligation to become involved in elementary- and secondary-level science (The Role of Scientists in the Professional Development of Science Teachers, National Research Council, 1996.) This presentation will focus on teachers' perceptions of how scientists conduct research, scientists' perceptions of how teachers should teach, and some misconceptions between the two groups. Criteria for high-quality professional development for teachers working with scientists will also be presented, along with a brief overview of the National Oceanic and Atmospheric Administration's Ocean Exploration program efforts to bring teachers and ocean scientists together to further ocean science literacy at the national level through recommendations put forth in the U.S. Commission on Ocean Policy Report (2004).

  16. Physics Education: Effect of Micro-Teaching Method Supported by Educational Technologies on Pre-Service Science Teachers' Misconceptions on Basic Astronomy Subjects

    Science.gov (United States)

    Gurbuz, Fatih

    2016-01-01

    The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…

  17. Simple webs of natural environment theme as a result of sharing in science teacher training

    Science.gov (United States)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-03-01

    Thematic learning is one type of integrated science (Biology, Physics, Chemistry and Earth Science) in Science Education. This study is concerning about simple webs of natural environment theme in science learning, as one of training material in science teacher training program. Making simple web is a goal of first step in teacher training program. Every group explain their web illustration to other group. Twenty Junior High School science teacher above one education foundation participate in science teacher training program. In order to gather simple webs, sharing method was used in this first step of science teacher training. The result of this study is five different simple web of natural environment themes. These webs represent science learning in class VII/Semester I, class VII/Semester II, Class VIII, Class IX/Semester I, Class IX/Semester II based on basic competency in National Curriculum 2013. Each group discussed web of natural environment theme based on their learning experience in real class which basic competency and subject matters are linked with natural environment theme. As a conclusion, simple webs are potential to develop in the next step of science teacher training program and to be implemented in real class.

  18. Effects of Lesson Study on Science Teacher Candidates' Teaching Efficacies

    Science.gov (United States)

    Pektas, Murat

    2014-01-01

    The aim of this study was to investigate the effects of the lesson study process on science teacher candidates' teaching in terms of lesson plan content, pedagogy and classroom management based on expert, peer and self-evaluations. The participants of this case study consisted of 16 teacher candidates in elementary science education in their…

  19. Retraining Institute in Teacher Education

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, H.B.; Jennings, R.

    1992-07-31

    This endeavor was comprised of three companion projects. They are interdependent components which together provide a significant enhancement to the existing programs in the School of Education at Norfolk state University.The primary focus of the project was in instructing regular and special education undergraduate students and teachers. As a result of this endeavor, instruction in science and engineering majors was enhanced.

  20. Research Experiences for Science Teachers: The Impact On Their Students

    Science.gov (United States)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  1. Using Mobile Devices to Connect Teachers and Museum Educators

    Science.gov (United States)

    Delen, Ibrahim; Krajcik, Joseph

    2017-01-01

    The use of mobile devices is increasing rapidly as a potential tool for science teaching. In this study, five educators (three middle school teachers and two museum educators) used a mobile application that supported the development of a driving question. Previous studies have noted that teachers make little effort to connect learning experiences…

  2. Identifying and Formulating Teachers' Beliefs and Motivational Orientations for Computer Science Teacher Education

    Science.gov (United States)

    Bender, Elena; Schaper, Niclas; Caspersen, Michael E.; Margaritis, Melanie; Hubwieser, Peter

    2016-01-01

    How teachers are able to adapt to a changing environment is essentially dependent on their beliefs and motivational orientations. The development of these aspects in the context of professional competence takes place during teachers' educational phase and professional practice. The overall understanding of professional competence for teaching…

  3. Global Reproduction and Transformation of Science Education

    Science.gov (United States)

    Tobin, Kenneth

    2011-01-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and…

  4. On the way to a philosophy of science education

    Science.gov (United States)

    Schulz, Roland M.

    This Thesis argues the case that a philosophy of science education is required for improving science education as a research field as well as curriculum and teacher pedagogy. It seeks to re-think science education as an educational endeavor by examining why past reform efforts have been only partially successful, including why the fundamental goal of achieving scientific literacy after several "reform waves" has proven to be so elusive. The identity of such a philosophy is first defined in relation to the fields of philosophy, philosophy of science, and philosophy of education. Considering science education as a research discipline it is emphasized a new field should be broached with the express purpose of developing a discipline-specific "philosophy of science education" (largely neglected since Dewey). A conceptual shift towards the philosophy of education. is needed, thereto, on developing and demarcating true educational theories which could in addition serve to reinforce science education's growing sense of academic autonomy and independence from socio-economic demands. Two educational metatheories are contrasted, those of Kieran Egan and the Northern European Bildung tradition, to illustrate the task of such a philosophy. Egan's cultural-linguistic metatheory is presented for two primary purposes: it is offered as a possible solution to the deadlock of the science literacy conceptions within the discipline; regarding practice, examples are provided how it can better guide the instructional practice of teachers, specifically how it reinforces the work of other researchers in the History and Philosophy of Science (HPS) reform movement who value narrative in learning science. Considering curriculum and instruction, a philosophy of science education is conceptualized as a "second order" reflective capacity of the teacher. This notion is aligned with Shulman's idea of Pedagogical Content Knowledge. It is argued that for educators the nature of science learning

  5. Elementary teachers' perceptions of science inquiry and professional development challenges and opportunities

    Science.gov (United States)

    Jones, Kathleen M.

    Inquiry science, including a focus on evidence-based discourse, is essential to spark interest in science education in the early grades and maintain that interest throughout children's schooling. The researcher was interested in two broad areas: inquiry science in the elementary classroom and the need/desire for professional development opportunities for elementary teachers related to science education, and specifically professional development focused on inquiry science. A cross sectional survey design was prepared and distributed in May 2005 and usable responses were received from 228 elementary teachers from the south-central area of Pennsylvania which was a representative sample of socio-economical and geographical factors. Areas of particular interest in the results section include: (1) The use of Science Kits which is popular, but may not have the desired impact since they are "adjusted" by teachers often removing the opportunity for evidence-based discourse by the students. This may be partly based on the lack of time dedicated to science instruction and, secondly, the teachers' lack of comfort with the science topics. Another issue arising from science kits is the amount of preparation time required to utilize them. (2) Teachers demonstrated understanding of the high qualities of professional development but, when it came to science content professional development, they were more inclined to opt for short-term opportunities as opposed to long-term learning opportunities. Since elementary teachers are generalists and most schools are not focusing on science, the lack of attention to a subject where they are least comfortable is understandable, but disappointing. (3) There is a great need for more training in evidence--based discourse so teachers can implement this needed skill and increase students' understanding of science content so they are more able to compete in the international science and math measurements. (4) Professional development, especially

  6. University-School Partnerships: Pre-Service and In-Service Teachers Working Together to Teach Primary Science

    Science.gov (United States)

    Kenny, John Daniel

    2012-01-01

    This paper reports on a partnership approach preparing pre-service primary teachers to teach science. Partnerships involving pre-service teachers and volunteer in-service colleagues were formed to teach science in the classroom of the colleague, with support from the science education lecturer. Each pre-service teacher collaboratively planned and…

  7. "Physics and Life" for Europe's Science Teachers

    Science.gov (United States)

    2003-04-01

    interest in science and current scientific research. The goals of "Physics On Stage 3" [EWST Logo] "Physics on Stage 3" also aims to facilitate the exchange of good practice and innovative ideas among Europe's science teachers and to provide a forum for a broad debate among educators, administrators and policy-makers about the key problems in science education today. Moreover, it will make available the considerable, combined expertise of the EIROforum organisations to the European scientific teaching community, in order to promote the introduction of "fresh" science into the curricula and thus to convey a more realistic image of modern science to the pupils. "Physics on Stage 3" is concerned with basic science and also with the cross-over between different science disciplines - a trend becoming more and more important in today's science, which is not normally reflected in school curricula. A key element of the programme is to give teachers an up-to-date "insiders'" view of what is happening in science and to tell them about new, highly-diverse and interesting career opportunities for their pupils. Theme of the activities The theme of "Physics on Stage" this year is "Physics and Life" , reflecting the decision to broaden the Physics on Stage activities to encompass all the natural sciences. Including other sciences will augment the already successful concept, introducing a mixture of cross-over projects that highlight the multidisciplinary aspects of modern science. Among the many subjects to be presented are radiation, physics and the environment, astrobiology (the search for life beyond earth), complex systems, self-organising systems, sports science, the medical applications of physics, mathematics and epidemiology, etc. The main elements National activities "Physics on Stage 3" has already started and National Steering Committees in 22 countries, composed of eminent science teachers, scientists, administrators and others involved in setting school curricula, are now

  8. Collaboration between research scientists and educators in implementation of a Masters program for training new Earth Science teachers in New York State

    Science.gov (United States)

    Nadeau, P. A.; Flores, K. E.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.; Kinzler, R. J.; Macdonald, M.; Mathez, E. A.; Mac Low, M.

    2012-12-01

    Educators and research scientists at the American Museum of Natural History are collaborating to implement a teacher education program with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State (NYS), particularly in high-needs schools with diverse populations. This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City. By placing teaching candidates in such schools, the project has potential to engage, motivate, and improve Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The museum is in a unique position of being able to break traditional educational barriers as a result of a long history of interdisciplinary collaborations between educators and research scientists, as well as being the only stand-alone science graduate degree-granting museum in the United States. The intensive 15-month curriculum for MAT candidates comprises one summer of museum teaching residency, a full academic year of residency in high-needs public schools, one summer of science research residency, and concurrent graduate-level courses in Earth and space sciences, pedagogy, and adolescent psychology. We emphasize field-based geological studies and experiential learning, in contrast to many traditional teacher education programs. In an effort to ensure that MAT candidates have a robust knowledge base in Earth science, and per NYS Department of Education requirements, we selected candidates with strong

  9. Researching Primary Teachers' Professional Agency: Employing Interactive Ethnography to Overcome Reluctance to Teach Science

    Science.gov (United States)

    Martin, Jenny

    2017-09-01

    This paper provides a report of a case study on the professional agency of an experienced early years teacher, Sarah, who successfully embedded a chemical science program of teaching-learning for her students aged between 6 and 8. Interactive ethnography informs the research design, and discursive psychology provides the tools for the analysis of Sarah's speech acts for her positioning as a responsible agent. Reframing the problem of primary teacher reluctance to teach science in terms of primary teachers' professional agency using discursive psychology, this ontological study provides new insight into issues related to the provision of science education in primary schools and asks: How do primary teachers position themselves and others in relation to science curriculum and education? The research calls for research methodologies and reform efforts in primary science that are better grounded in the local moral orders of primary schools.

  10. Reconceptualizing Elementary Teacher Preparation: A Case for Informal Science Education

    Science.gov (United States)

    Avraamidou, Lucy

    2015-01-01

    The purpose of this case study was to explore the ways in which 3 different informal science experiences in the context of an elementary methods course influenced a group of prospective elementary teachers' ideas about science teaching and learning as well as their understandings about the role of informal science environments to teaching and…

  11. The Research as Natural Sciences Teaching Strategy: Pedagogical Conceptions of Secondary Education Teachers at Instituto Pedagógico Nacional

    Directory of Open Access Journals (Sweden)

    Dayana Milena Bejarano Muñoz

    2017-01-01

    Full Text Available This text is a look to the research as a transformation and generation axis of knowledge among middle school students, based on the analysis of teachers’ pedagogical conceptions at Instituto Pedagógico Nacional around natural sciences research and teaching. A qualitative methodology from the interpretive approach was implemented, which allowed, from case study, to establish pedagogical conceptions of secondary education teachers in natural sciences about research. In addition, pedagogical elements are proposed about inclusion of school research in secondary education as natural sciences teaching strategy, which contributes to the construction and transformation of educational experiences. As a conclusion, teachers’ trend of conceptions was towards positivism, which is part of disciplinary and quantitative researches, looking at science from the application of scientific method. Even though, pedagogical interpretive and critical-social current begins to be included, by socializing quantitative findings obtained generating social changes from the intervention with the community. Likewise, teachers recognize the academic, social, interpersonal and working benefits obtained in a research process, such as generating and deepening of knowledge, monitoring of methodical processes in search of information and data collection, interpretation and reasoning about phenomena, and critical development from their daily lives, all leading students to be actors of transformation processes from their own interest.

  12. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  13. Development of a pre-service teacher training course on integration of ICT into inquiry based science education.

    NARCIS (Netherlands)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos; Dvořák, Leoš; Koudelková, Věra

    In order to be able to integrate ICT into Inquiry Based Science Education (IBSE), teachers need much time and support for mastering ICT tools, learning the basis of IBSE, and getting experience in applying these tools in pupil investigations. For this purpose, we have developed a course within the

  14. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    1987-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  15. A study of the Teachers` Academy for Mathematics and Science

    Energy Technology Data Exchange (ETDEWEB)

    Brett, B.; Scheirer, M.A.; Raizen, S.

    1994-09-15

    The Teachers` Academy for Mathematics and Science in Chicago (TAMS) is a freestanding institution founded in 1989 by scientists and a variety of other stakeholders, to advance the systemic reform of mathematics and science education in Chicago`s public schools. It focuses on the ``re-tooling`` of its elementary level teachers. The TAMS program, which has been funded in part by the DOE, contributes to strategic goals two through five of the Office of University and Science Education (OUSE). This evaluation of TAMS by the National Center for Improving Science Education is primarily a qualitative study that summarizes the history and current status of the organization and its programs. Data was obtained through extensive interviews, observations, and document review, using a framework of templates to guide data collection and analyses. The findings are organized around a series of lessons learned from the first three years of TAMS and conclusions about its current status.

  16. Teachers' Coping Strategies for Teaching Science in a ``Low-Performing'' School District

    Science.gov (United States)

    Moore, Felicia M.

    2007-10-01

    This study describes how teachers use their personal knowledge of a school district and their students to cope with teaching under stressful situations associated with economic, social, and institutional factors. The 3 teachers dealt with these issues in unique ways, focusing on helping students to overcome negative perceptions, value the importance of an education, and build strong relationships. A model of multicultural science professional development is proposed that complements the strengths that these teachers have. A task for science educators working with teachers and administration in schools and districts that are “critically low performing” is to support everyone in implementing pedagogical methods aimed at empowerment, social justice, and high achievement for all students.

  17. A Comparison of Student Teachers' Beliefs from Four Different Science Teaching Domains Using a Mixed Methods Design

    Science.gov (United States)

    Markic, Silvija; Eilks, Ingo

    2012-03-01

    The study presented in this paper integrates data from four combined research studies, which are both qualitative and quantitative in nature. The studies describe freshman science student teachers' beliefs about teaching and learning. These freshmen intend to become teachers in Germany in one of four science teaching domains (secondary biology, chemistry, and physics, respectively, as well as primary school science). The qualitative data from the first study are based on student teachers' drawings of themselves in teaching situations. It was formulated using Grounded Theory to test three scales: Beliefs about Classroom Organisation, Beliefs about Teaching Objectives, and Epistemological Beliefs. Three further quantitative studies give insight into student teachers' curricular beliefs, their beliefs about the nature of science itself, and about the student- and/or teacher-centredness of science teaching. This paper describes a design to integrate all these data within a mixed methods framework. The aim of the current study is to describe a broad, triangulated picture of freshman science student teachers' beliefs about teaching and learning within their respective science teaching domain. The study reveals clear tendencies between the sub-groups. The results suggest that freshman chemistry and-even more pronouncedly-freshman physics student teachers profess quite traditional beliefs about science teaching and learning. Biology and primary school student teachers express beliefs about their subjects which are more in line with modern educational theory. The mixed methods approach towards the student teachers' beliefs is reflected upon and implications for science education and science teacher education are discussed.

  18. The Role of the National Laboratory in Improving Secondary Science Education

    Energy Technology Data Exchange (ETDEWEB)

    White,K.; Morris, M.; Stegman, M.

    2008-10-20

    While the role of science, technology, engineering, and mathematics (STEM) teachers in our education system is obvious, their role in our economic and national security system is less so. Our nation relies upon innovation and creativity applied in a way that generates new technologies for industry, health care, and the protection of our national assets and citizens. Often, it is our science teachers who generate the excitement that leads students to pursue science careers. While academia provides these teachers with the tools to educate, the rigors of a science and technology curriculum, coupled with the requisite teaching courses, often limit teacher exposure to an authentic research environment. As the single largest funding agency for the physical sciences, the US Department of Energy's (DOE) Office of Science plays an important role in filling this void. For STEM teachers, the DOE Academies Creating Teacher Scientists program (ACTS) bridges the worlds of research and education. The ACTS program at Brookhaven National Laboratory (BNL), one of several across the country, exemplifies the value of this program for participating teachers. Outcomes of the work at BNL as evidenced by the balance of this report, include the following: (1) Teachers have developed long-term relationships with the Laboratory through participation in ongoing research, and this experience has both built enthusiasm for and enriched the content knowledge of the participants. (2) Teachers have modified the way they teach and are more likely to engage students in authentic research and include more inquiry-based activities. (3) Teachers have reported their students are more interested in becoming involved in science through classes, extra-curricular clubs, and community involvement. (4) Teachers have established leadership roles within their peer groups, both in their own districts and in the broader teaching community. National laboratories are making an important contribution to the

  19. Teacher candidates in an online post-baccalaureate science methods course: Implications for teaching science inquiry with technology

    Science.gov (United States)

    Colon, Erica L.

    Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods course. The purposes were to (a) explore whether the teacher candidates had a thorough understanding of scientific inquiry and how to implement higher-order thinking skills, (b) examine whether or not the teacher candidates used a variety of computer-based instructional technologies when choosing instructional objectives, and (c) identify barriers that impede teacher candidates from using science inquiry or technology singly, or the ability to incorporate technology into learning science inquiry. The findings indicate that an online approach in preparing science teachers holds great potential for using innovative technology to teach science inquiry. First, the teacher candidates did incorporate essential features of classroom inquiry, however it was limited and varied in the type of inquiry used. Second, of the 86 lesson plans submitted by the teacher candidates, less than twelve percent of the learning objectives involved higher-order skills that promoted science inquiry. Third, results supported that when using technology in their lesson planning, participants had widely varying backgrounds in reference to their familiarity with technology. However, even though each participant used some form or another, the technology used was fairly low level. Finally, when discussing implementing inquiry-based science in the lesson plans, this study identified time as a reason that participants may not be pushing for more inquiry-based lessons. The researcher also identifies that school placements were a huge factor in the amount of inquiry-based skills coded in the lesson plans. The study concludes that online teacher preparation

  20. Student teachers' views: what is an interesting life sciences curriculum?

    OpenAIRE

    Rian de Villiers

    2011-01-01

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET) phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university...

  1. Building an Understanding: What Motivates Teachers to use Science in Motion

    Science.gov (United States)

    Spuck, Karen M.

    Science education reform documents call for instructional practices that include scientific equipment and materials. Often, these types of resources are inaccessible for schools, especially those which are rural and socio-economically challenged, due largely to budgetary considerations. Science outreach partnerships are able to bridge the gap between what is called for in science education reform documents and the realities of many schools. Science in Motion is a science outreach partnership project located in rural Northwestern Pennsylvania, supported by state funds, that provides equipment, curricular materials, and professional development free of charge for area science educators. Teacher participation in this project is completely voluntary. Not a grassroots initiative, nor a top down mandated project, why do teachers decide to use this project? This study examined the volitional use of the Science in Motion project at Clarion University of Pennsylvania. Qualitative research methods were used to answer the following research question: what are the reasons for project use reported by teachers who use the project on a regular basis? Sub research questions were: what is it about the teacher that encouraged her/him to initiate Science in Motion services, and what is it about the teacher that encourages her/him to continue using Science in Motion services? Two focus group interviews as well as a paper/pencil questionnaire were used to collect data from teacher participants who use the project on a regular basis. A phenomenological lens was used to examine data. A grounded theory approach was used to analyze data. Research findings reveal teachers initiated use because: the project provided opportunities for teaching and learning that otherwise were inaccessible, the project was perceived as user friendly and easy to access, the project embedded professional development provided the support needed to encourage initial use, and the project resources were perceived as

  2. Developing pre-service science teachers' pedagogical content knowledge by using training program

    Science.gov (United States)

    Udomkan, Watinee; Suwannoi, Paisan

    2018-01-01

    A training program was developed for enhancing pre-service science teachers' pedagogical content knowledge (PCK). The pre-service science teachers are able to: understand science curriculum, knowledge of assessment in science, knowledge of students' understanding of science, instructional strategies and orientations towards science teaching, which is conceptualized as PCK [5]. This study examined the preservice science teachers' understandings and their practices which include five pre-service science teachers' PCK. In this study, the participants demonstrated their PCK through the process of the training program by writing content representations (CoRes), preparing the lesson plans, micro-teaching, and actual teaching respectively. All pre-service science teachers' performs were collected by classroom observations. Then, they were interviewed. The results showed that the pre-service science teachers progressively developed knowledge components of PCK. Micro-teaching is the key activities for developing PCK. However, they had some difficulties in their classroom teaching. They required of sufficient ability to design appropriate instructional strategies and assessment activities for teaching. Blending content and pedagogy is also a matter of great concern. The implication of this study was that science educators can enhance pre-service science teachers' PCK by fostering their better understandings of the instructional strategies, assessment activities and blending between content and pedagogy in their classroom.

  3. Impact of a Student-Teacher-Scientist Partnership on Students' and Teachers' Content Knowledge, Attitudes toward Science, and Pedagogical Practices

    Science.gov (United States)

    Houseal, Ana K.; Abd-El-Khalick, Fouad; Destefano, Lizanne

    2014-01-01

    Engaging K-12 students in science-based inquiry is at the center of current science education reform efforts. Inquiry can best be taught through experiential, authentic science experiences, such as those provided by Student-Teacher-Scientist Partnerships (STSPs). However, very little is known about the impact of STSPs on teachers' and…

  4. Science teacher development and the lens of social media: An investigation into the identity and influences upon the development of elementary pre-service science teachers

    Science.gov (United States)

    Wall, Steven D.

    Pre-service teacher education is committed to the cultivation of different forms of competency that include, but are not limited to, content knowledge and pedagogical skill (Levin, Hammer, & Coffey, 2009; Yerrick, 2005). While advances in practice have been made, pre-service elementary teachers (PS-ESTs) continue to exhibit anxiety and doubt about self-efficacy in science teaching. Teacher education is designed to encourage PS-ESTs to formulate useful practices, but PS-ESTs must first overcome limitations and anxiety generated by past, personal experiences and an acknowledged discomfort with science. While this goal is accomplished through contexts designed with that intent (e.g. methods courses, field experiences), challenges remain. Twenty-first century elementary teacher education research needs to examine influences associated with individual identities within specific roles (Gee, 2000), teaching and learning contexts and their inherent influences, and interactions that are enhanced by the increasing presence and influence of social networks. To examine and better understand identity, contexts, and interactional influences, blogs from two cohorts of PS-ESTs were examined to better understand how teacher education practices influenced PS-ESTs and to determine PS-ESTs beliefs about the teacher's role. The study was designed to answer the following research questions: "What is learned about the identity of PS-ESTs authored through social media, what contextual influences are acknowledged by PS-ESTs, and what interactions are occurring and what roles are they playing in the development of PS-ESTs?" This study used grounded theory and perceptual control theory (PCT) to analyze and reduce data to make assertions about PS-ESTs' development as teachers and influences upon their practices. Findings illuminated components of PS-EST teaching identities and suggested multiple implications within different domains, including the role of PST understandings of science

  5. Teaching Science for Social Justice: An Examination of Elementary Preservice Teachers' Beliefs

    Science.gov (United States)

    Eslinger, James C.

    This qualitative study examines the beliefs and belief changes of eleven elementary preservice teachers about teaching science for social justice. Using constructivist grounded theory, it forwards a new theory of belief change about teaching science for social justice. The theory posits that three teaching and learning conditions may facilitate belief change: preservice teachers need to recognize (1) the relationship between science and society; (2) the relationship between individuals and society; and (3) the importance of taking action on socioscientific issues. This research responds to calls by critical scholars of teacher education who contend that beliefs in relation to equity, diversity, and multiculturalism need to be explored. They have found that many preservice teachers hold beliefs that are antithetical to social justice tenets. Since beliefs are generally considered to be precursors to actions, identifying and promoting change in beliefs are important to teaching science for social justice. Such a move may lead to the advancement of curricular and pedagogical efforts to promote the academic participation and success in elementary science of Aboriginal and racialized minority students. The study was undertaken in a year-long science methods course taught by the researcher. It was centered on the preservice teachers -- their beliefs, their belief changes, and the course pedagogies that they identified as crucial to their changes. However, the course was based on the researcher-instructor's review of the scholarly literature on science education, teacher education, and social justice. It utilized a critical -- cultural theoretical framework, and was aligned to the three dimensions of critical nature of science, critical knowledge and pedagogy, and sociopolitical action. Findings indicate that, at the beginning of the year, preservice teachers held two types of beliefs (liberal and critical) and, by the end of the course, they experienced three kinds of

  6. Changes in Science Teaching Self-Efficacy among Primary Teacher Education Students

    Science.gov (United States)

    Palmer, David; Dixon, Jeanette; Archer, Jennifer

    2015-01-01

    Many preservice primary teachers have low self-efficacy for science teaching. Although science methods courses have often been shown to enhance self-efficacy, science content courses have been relatively ineffective in this respect. This study investigated whether a tailored science content course would enhance self-efficacy. The participants were…

  7. Integrating the New Generation Science Standards (NGSS) into K- 6 teacher training and curricula

    Science.gov (United States)

    Pinter, S.; Carlson, S. J.

    2017-12-01

    The Next Generation Science Standards is an initiative, adopted by 26 states, to set national education standards that are "rich in content and practice, arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education." Educators now must integrate these standards into existing curricula. Many grade-school (K-6) teachers face a particularly daunting task, as they were traditionally not required to teach science or only at a rudimentary level. The majority of K-6 teachers enter teaching from non-science disciplines, making this transition even more difficult. Since the NGSS emphasizes integrated and coherent progression of knowledge from grade to grade, prospective K-6 teachers must be able to deliver science with confidence and enthusiasm to their students. CalTeach/MAST (Mathematics and Science Teaching Program) at the University of California Davis, has created a two-quarter sequence of integrated science courses for undergraduate students majoring in non-STEM disciplines and intending to pursue multiple-subject K-6 credentials. The UCD integrated science course provides future primary school teachers with a basic, but comprehensive background in the physical and earth/space sciences. Key tools are taught for improving teaching methods, investigating complex science ideas, and solving problems relevant to students' life experiences that require scientific or technological knowledge. This approach allows prospective K-6 teachers to explore more effectively the connections between the disciplinary core ideas, crosscutting concepts, and scientific and engineering practices, as outlined in the NGSS. In addition, they develop a core set of science teaching skills based on inquiry activities and guided lab discussions. With this course, we deliver a solid science background to prospective K-6 teachers and facilitate their ability to teach science following the standards as articulated in the NGSS.

  8. Examining Teacher Talk in an Engineering Design-Based Science Curricular Unit

    Science.gov (United States)

    Aranda, Maurina L.; Lie, Richard; Selcen Guzey, S.; Makarsu, Murat; Johnston, Amanda; Moore, Tamara J.

    2018-03-01

    Recent science education reforms highlight the importance for teachers to implement effective instructional practices that promote student learning of science and engineering content and their practices. Effective classroom discussion has been shown to support the learning of science, but work is needed to examine teachers' enactment of engineering design-based science curricula by focusing on the content, complexity, structure, and orchestration of classroom discussions. In the present study, we explored teacher-student talk with respect to science in a middle school curriculum focused on genetics and genetic engineering. Our study was guided by the following major research question: What are the similarities and differences in teacher talk moves that occurred within an engineering design-based science unit enacted by two teachers? Through qualitative and quantitative approaches, we found that there were clear differences in two teachers' use of questioning strategies and presentation of new knowledge that affected the level of student involvement in classroom discourse and the richness and details of student contributions to the conversations. We also found that the verbal explanations of science content differed between two teachers. Collectively, the findings in this study demonstrate that although the teachers worked together to design an engineering designed-based science curriculum unit, their use of different discussion strategies and patterns, and interactions with students differed to affect classroom discourse.

  9. Teachers' Perceptions and Practices of STEAM Education in South Korea

    Science.gov (United States)

    Park, HyunJu; Byun, Soo-yong; Sim, Jaeho; Han, Hyesook; Baek, Yoon Su

    2016-01-01

    This study examined teachers' perceptions and practices of science, technology, engineering, arts, and mathematics (STEAM) education in South Korea, drawing on a survey of teachers in STEAM model schools. Results showed that the majority of Korean teachers, especially experienced teachers and male teachers, had a positive view on the role of STEAM…

  10. An Exploration of Teachers' Efforts to Understand Identity Work and its Relevance to Science Instruction

    Science.gov (United States)

    Smith, M. Cecil; Darfler, Anne

    2012-06-01

    US educators express concern that students are turning away from the study of science and have little interest in pursuing science careers. Nationally, science achievement scores for 8th graders are unchanged since 1996, but 12th graders' scores have significantly decreased. A shortcoming of education reform efforts is lack of attention to students' developmental needs. Science study should enable students to learn about themselves—to develop and refine their skills, define their values, explore personal interests, and understand the importance of science to themselves and others. Effective secondary science instruction requires attention to students' identity development—the key developmental task of adolescence. Secondary science teachers participated in an 8-week course focused on understanding adolescent identity development and methods for addressing identity. Transcripts of the teachers' online discussions of salient issues were analyzed to determine their perceptions regarding classroom identity work. Teachers identified several assets and obstacles to identity work that were organized into two broad categories: teacher knowledge, training opportunities, and administrative support, or lack of these; and, presence of inflexible curricula, standardized testing regimes, and increased teacher accountability. Implications for student growth and science teacher professional development are discussed.

  11. Teacher Self-Efficacy According to Turkish Cypriot Science Teachers

    Science.gov (United States)

    Olmez, Cemil; Ozbas, Serap

    2017-01-01

    This study examined the self-efficacy of Turkish Cypriot science teachers working at high schools in Northern Cyprus. The study sample was 200 science teachers who participated in the survey. The Teacher Self-Efficacy (TSE) Scale was used as a data source. It was observed that the science teachers' efficacy beliefs about student engagement in…

  12. Teachers' Practice a Decade After an Extensive Professional Development Program in Science Education

    Science.gov (United States)

    Furman Shaharabani, Yael; Tal, Tali

    2017-10-01

    Science teachers are expected to teach in innovative ways that are different from their long experience as students. Professional development programs are planned to help teachers' development, yet, there is little knowledge of the long-term effects of professional development programs (PDPs), and especially on actual practice. The purpose of this study is to gain a long-term perspective of the ways in which the process and outcomes of a reform-oriented, extended PDP are expressed in science teachers' practice. Data sources included interviews and documents. The study presents four case studies of the practices of junior high school science teachers (grades 7-9) in Israel, with respect to a past PDP in which they took part a decade ago. The cases are presented in pairs of a leader and a follower. Each case details the teacher's work context, sustained implementation, coherence of tools and approaches, and adaptations. All four teachers shared the view that scientific skills are important to their students as learners in a changing world. All four teachers adopted one or two major approaches, which were the PDP's main focus. In addition, the two leaders adopted two more approaches. The teachers were still using many strategies associated with the major foci of the PDP. The level of enactment and modifications of the strategies varied. Usability of innovations is discussed in relation to the teachers' context. We suggest that science teachers' professional development include the ability to adapt the innovation to their teaching context in order to sustain the changes for a long period of time.

  13. A mixed-methods study of mid-career science teachers: The growth of professional empowerment

    Science.gov (United States)

    Moreland, Amy Laphelia

    The purpose of this concurrent, mixed-methods study was to examine the professional empowerment qualities of mid-career (years 4-8), science teachers. I used the construct of professional empowerment as the theoretical frame to explore K-12 mid-career science teachers' career trajectories and consider how they can be supported professionally and ideally retained over time. In investigating the qualities of these teachers, I also constructed a new teaching trajectory model and tested the differences between mid-career and veteran science teachers. I analyzed seventy-eight surveys of mid-career science teachers across Texas, including six in-depth, interview-based case studies. The qualitative piece used behavior-over-time graphing combined with the interviews and the quantitative component used survey data from the Teacher Empowerment Survey (TES). Results indicated that science content knowledge gain through professional development opportunities was an especially important factor in supporting mid-career teachers' sense of empowerment. This increased content knowledge connected positively with the dimensions of decision-making, status, and impact. In a between-group analysis using a larger subset of TES data, I analyzed 254 surveys by conducting a nonparametric statistical test. A statistically significant difference was found between the two groups, in that mid-career science teachers had a lower sense of "status" than their more experienced counterparts (p empowerment. The study was situated within a broader scope of exploring how educational leaders and professional development providers can understand and support science teachers of varying experience levels. A well-designed and possibly differentiated professional development program could successfully connect with these kind of empowered and receptive mid-career science teachers, and thus increase the probability of implementing quality science education programs, content, and pedagogy into schools. The

  14. Teachers Training Teachers: Four Perspectives on an Innovative Mentoring Program for Intern Science Teachers.

    Science.gov (United States)

    Diehl, Christine L.; Harris, Jerilyn; Barrios, David; O'Connor, Heather; Fong, Jennifer

    The Graduate School of Education (GSE) at the University of California at Berkeley (UCB), the San Francisco Unified School District (SFUSD), and the Lawrence Berkeley National Laboratory (LBNL) have collaborated to pilot an on-site training and mentoring program for intern science teachers. Exit interviews suggest that its innovative mentoring…

  15. Teaching science as argument: Prospective elementary teachers' knowledge

    Science.gov (United States)

    Barreto-Espino, Reizelie

    processes. (4) Scaffolded protocols positively influenced participants' attention to having students construct evidence-based explanations during science planning and teaching. (5) Teachers' beliefs about children's science capabilities influence their attention to and adoption of practices associated with teaching science as argument. Findings are discussed in terms of their implications for teacher education, such as the use of coherent conceptual frameworks to guide coursework and field experiences and the development of video-based cases that represent "images of the possible" associated with challenging reform-oriented teaching practices.

  16. Meeting the Needs of High School Science Teachers in English Language Learner Instruction

    Science.gov (United States)

    Cho, Seonhee; McDonnough, Jacqueline T.

    2009-08-01

    This survey study explored high school science teachers’ challenges and needs specific to their growing English language learning (ELL) student population. Thirty-three science teachers from 6 English as a Second language (ESL)-center high schools in central Virginia participated in the survey. Issues surveyed were (a) strategies used by science teachers to accommodate ELL students’ special needs, (b) challenges they experienced, and (c) support and training necessary for effective ELL instruction. Results suggest that language barriers as well as ELL students’ lack of science foundational knowledge challenged teachers most. Teachers perceived that appropriate instructional materials and pedagogical training was most needed. The findings have implications for science teacher preservice and inservice education in regard to working with language minority students.

  17. The Impact of the Social Norms of Education on Beginning Science Teachers' Understanding of NOS During their First Three Years in the Classroom

    Science.gov (United States)

    Firestone, Jonah B.

    An understanding of the Nature of Science (NOS) remains a fundamental goal of science education in the Unites States. A developed understanding of NOS provides a framework in which to situate science knowledge. Secondary science teachers play a critical role in providing students with an introduction to understanding NOS. Unfortunately, due to the high turnover rates of secondary science teachers in the United States, this critical role is often filled by relatively novice teachers. These beginning secondary science teachers make instructional decisions regarding science that are drawn from their emerging knowledge base, including a tentative understanding of NOS. This tentative knowledge can be affected by environment and culture of the classroom, school, and district in which beginning teachers find themselves. When examining NOS among preservice and beginning teachers the background and demographics of the teachers are often ignored. These teachers are treated as a homogenous block in terms of their initial understanding of NOS. This oversight potentially ignores interactions that may happen over time as teachers cross the border from college students, preservice teachers, and scientists into the classroom environment. Through Symbolic Interactionism we can explain how teachers change in order to adapt to their new surroundings and how this adaptation may be detrimental to their understanding of NOS and ultimately to their practice. 63 teachers drawn from a larger National Science Foundation (NSF) funded study were interviewed about their understanding of NOS over three years. Several demographic factors including college major, preservice program, number of History and Philosophy of Science classes, and highest academic degree achieve were shown to have an affect on the understanding of NOS over time. In addition, over time, the teachers tended to 'converge' in their understanding of NOS regardless of preservice experiences or induction support. Both the affect

  18. Recent trends in secondary science education in New Jersey

    Science.gov (United States)

    Sousa, David

    This article compares the results of two surveys sent to New Jersey science supervisors in 1978 and 1982 regarding the status of secondary science education in their schools. It discusses trends that have developed during the four-year period and compares them to national trends revealed in recent studies. The comparison shows that New Jersey faces many of the same problems in science education found across the country. Instruction time in science, double laboratory periods, and the use of national curriculum studies have all declined. Respondents also reported a marked increase in the number of science teachers leaving the classroom for jobs in business and industry. The recruiting of qualified teachers was a difficult task and over 9% of the public schools reported having to use teachers with emergency certification in science to meet their staffing requirements. Difficulties in using staff effectively, in obtaining adequate financial support, and in providing professional development programs were the major concerns of science supervisors.Received: 12 April 1983

  19. The emergence and institutional co-determination of sustainability as a teaching topic in interdisciplinary science teacher education

    DEFF Research Database (Denmark)

    Rasmussen, Klaus

    2016-01-01

    This paper takes an institutional perspective on the topic of sustainability in order to analyse how this ‘idea’ enters science teacher education through an interdisciplinary approach. It shows how the development and implementation of a course for Danish pre-service teachers was conditioned......, conceptualised through a new reference model that separates the analysis from the usual sustainability dimensions. The findings reveal how sustainability as a teaching topic can be a unifying idea in an interdisciplinary setting. Disciplinary differences evidently impact course planning and implementation...

  20. Att skapa sammanhang: lärare i naturvetenskapliga ämnen, ämnesövergripande samarbete och etiska perspektiv i undervisningenTo create coherence: science teachers, interdisciplinary collaboration and ethical perspectives in the educational practice

    Directory of Open Access Journals (Sweden)

    Ingela Bursjöö

    2015-03-01

    Full Text Available This paper focuses on how experienced science teachers talk about interdisciplinary collaboration and ethical perspectives in their educational practice, two important components in science education and central in research on socio-scientific issues and education for sustainable development. The teachers in this interview study were asked in detail about how they integrate such components in their teaching practice. The findings indicate that the teachers in the study value interdisciplinary collaboration and try to integrate ethical aspects in their teaching. However, the science teachers in this study encounter problems in the practical implementation as it demands excellent communication in the team. Furthermore, the science teachers rate their ethical competence as rather low. They also show signs of a decrease in their professional capital, as in decisions they can make related to their teaching practice. The process of interacting with and learning from others, here called social learning, is vital for interdisciplinary collaboration and integration of ethical aspects. Such issues place severe demands, not only on the science teacher, but also on the whole educational system. 

  1. Pre-Service Teachers Methods of Teaching Science

    Directory of Open Access Journals (Sweden)

    Dr. Raquel C. Pambid

    2015-02-01

    Full Text Available The study described the teaching methods used by pre-service teachers in Science. It focused on the strategies, techniques, materials, innovative methods and pattern of teaching science used by the pre-service teachers as described in their lesson plans. The qualitative and quantitative design was used in the study. The books, teacher hand-outs from classroom lectures were the sources of methods, strategies and techniques. The chalkboard and self-made drawings and charts were the materials often used. Conventional methods like lecture, open class discussion and demonstration were commonly employed. The strategies included group discussion, use of motivating questions and stories to arouse the interest of students. The direct eye contact, body expressions, jokes and news/trivia were frequent techniques. Integration of values in the lesson became less as the year level increases. The pattern of teaching drawn followed the formal style: I Objectives, II Subject matter, III Learning Tasks, IV Synthesis of the lesson, V Assessment and VI Enrichment. The conventional method and pattern of teaching by the pre-service teachers of PSU suggest that students in the College of Teacher Education should be trained to be more innovative and open in trying out more advanced teaching methods. Furthermore, PSU science pre-service teachers should use methods which can develop higher order thinking skills among high school students.

  2. Working with mathematics and science teachers on Inquiry Based Learning (IBL) approaches : teacher belief. [VISIONS 2011: Teacher Education

    NARCIS (Netherlands)

    Sikko, S.A.; Lyngved, R.; Pepin, B.

    2012-01-01

    This paper reports on mathematics and science teachers’ beliefs concerning the use of inquiry-based teaching strategies. Two different surveys were conducted: one with 24 teachers who were to become future instructional leaders; and one with 75 teachers as part of an international baseline study. We

  3. Building Learning Communities for Research Collaboration and Cross-Cultural Enrichment in Science Education

    Science.gov (United States)

    Sparrow, E. B.

    2003-12-01

    The GLOBE program has provided opportunities for environmental science research and education collaborations among scientists, teachers and K-12 students, and for cross-cultural enrichment nationally and abroad. In Alaska, GLOBE has also provided funding leverage in some cases, and a base for several other science education programs that share a common goal of increasing student interest, understanding, process skills and achievement in science, through involvement in ongoing research investigations. These programs that use GLOBE methodologies (standardized scientific measurements and learning activities developed by scientists and educators) are: Global Change Education Using Western Science and Native Knowledge also known as "Observing Locally, Connecting Globally" (OLCG); Alaska Earth System Science Education Alliance: Improving Understanding of Climate Variability and Its Relevance to Rural Alaska; Schoolyard Long Term Ecological Research; Alaska Rural Research Partnership; Alaska Partnership for Teacher Enhancement; Alaska Lake Ice and Snow Observatory Network; Alaska Boreal Forest Council Education Outreach; Calypso Farm and Ecology Center; Environmental Education Outreach; and also GLOBE Arctic POPs (persistent organic pollutants) a program that involves countries in the circumpolar North. The University of Alaska GLOBE Partnership has collaborated with the BLM Campbell Creek Science Center Globe Partnership in facilitating GLOBE Training Workshops and providing teacher support. GLOBE's extensive website including data entry, archive, analysis and visualization capabilities; GLOBE Teacher Guide, videos and other materials provided; excellent GLOBE science research and education staff, training support office, GLOBE help desk, alignment of GLOBE curriculum with national science education standards and GLOBE certification of teachers trained on even just one GLOBE investigation, have made it easier to implement GLOBE in the classroom. Using GLOBE, whole

  4. Preservice Science Teachers' Epistemological Beliefs and Informal Reasoning Regarding Socioscientific Issues

    Science.gov (United States)

    Ozturk, Nilay; Yilmaz-Tuzun, Ozgul

    2017-12-01

    This study investigated preservice elementary science teachers' (PSTs) informal reasoning regarding socioscientific issues (SSI), their epistemological beliefs, and the relationship between informal reasoning and epistemological beliefs. From several SSIs, nuclear power usage was selected for this study. A total of 647 Turkish PSTs enrolled in three large universities in Turkey completed the open-ended questionnaire, which assessed the participants' informal reasoning about the target SSI, and Schommer's (1990) Epistemological Questionnaire. The participants' epistemological beliefs were assessed quantitatively and their informal reasoning was assessed both qualitatively and quantitatively. The findings revealed that PSTs preferred to generate evidence-based arguments rather than intuitive-based arguments; however, they failed to generate quality evidence and present different types of evidence to support their claims. Furthermore, among the reasoning quality indicators, PSTs mostly generated supportive argument construction. Regarding the use of reasoning modes, types of risk arguments and political-oriented arguments emerged as the new reasoning modes. The study demonstrated that the PSTs had different epistemological beliefs in terms of innate ability, omniscient authority, certain knowledge, and quick learning. Correlational analyses revealed that there was a strong negative correlation between the PSTs' certain knowledge and counterargument construction, and there were negative correlations between the PSTs' innate ability, certain knowledge, and quick learning dimensions of epistemological beliefs and their total argument construction. This study has implications for both science teacher education and the practice of science education. For example, PST teacher education programs should give sufficient importance to training teachers that are skillful and knowledgeable regarding SSIs. To achieve this, specific SSI-related courses should form part of science

  5. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    Science.gov (United States)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments

  6. Promising Teacher Practices: Students' Views about Their Science Learning

    Science.gov (United States)

    Moeed, Azra; Easterbrook, Matthew

    2016-01-01

    Internationally, conceptual and procedural understanding, understanding the Nature of Science, and scientific literacy are considered worthy goals of school science education in modern times. The empirical study presented here reports on promising teacher practices that in the students' views afford learning opportunities and support their science…

  7. PROGNOSIS OF VISUALIZATION USAGE IN THE SCIENCE EDUCATION PROCESS

    OpenAIRE

    Bilbokaite, Renata

    2016-01-01

    Future education depends on many external exogenous factors - society evolution, technologic progress, teachers’ opinion and their ability to organize the education process. Science education is difficult for many students but the progress of the society definitely correlated with achievements of science. This highlights the importance of teaching biology, chemistry, physics, geography and mathematics at school. Visualization helps students to learn science education but at the moment teacher...

  8. Teacher Educators' Views on Inclusive Education and Teacher Preparation in Ghana

    Science.gov (United States)

    Nketsia, William; Saloviita, Timo; Gyimah, Emmanuel Kofi

    2016-01-01

    The crucial role of initial teacher education programmes and teacher educators in preparing effective inclusive practitioners has been universally acknowledged. This study explored the attitudes of 125 teacher educators from four colleges of education towards inclusive education, their views and concerns about teacher preparation and the…

  9. The Effect of an Instructional Intervention on Enhancement Pre-Service Science Teachers' Science Processes Skills

    Science.gov (United States)

    Durmaz, Hüsnüye

    2016-01-01

    The aim of this study is to investigate the effects of an instructional intervention on enhancement the pre-service science teachers' (PSTs) science process skills (SPSs) and to identify problems in using SPSs through Laboratory Applications in Science Education-I course (LASE-I). One group pretest-posttest pre-experimental design was employed. An…

  10. A Comparative Study of the Professional and Curricular Conceptions of the Secondary Education Science Teacher in Spain

    Science.gov (United States)

    del Pozo, Martin R.; Martinez-Aznar, M.; Rodrigo, M.; Varela, P.

    2004-01-01

    This article presents a comparison between the professional and curricular conceptions of two samples of secondary education science teachers in Spain, who differed in their years of teaching experience and in whether or not they had participated in a long-duration scientific-pedagogical refresher course. Using the data from their responses to a…

  11. Improving Science Teacher Preparation through the APS PhysTEC and NSF Noyce Programs

    Science.gov (United States)

    Williams, Tasha; Tyler, Micheal; van Duzor, Andrea; Sabella, Mel

    2013-03-01

    Central to the recruitment of students into science teaching at a school like CSU, is a focus on the professional nature of teaching. The purpose of this focus is twofold: it serves to change student perceptions about teaching and it prepares students to become teachers who value continued professional development and value the science education research literature. The Noyce and PhysTEC programs at CSU place the professional nature of teaching front and center by involving students in education research projects, paid internships, attendance at conferences, and participation in a new Teacher Immersion Institute and a Science Education Journal Reading Class. This poster will focus on specific components of our teacher preparation program that were developed through these two programs. In addition we will describe how these new components provide students with diverse experiences in the teaching of science to students in the urban school district. Supported by the NSF Noyce Program (0833251) and the APS PhysTEC Program.

  12. Pre-Service Elementary Teachers' Scientific Literacy and Self-Efficacy in Teaching Science

    Science.gov (United States)

    Al Sultan, Adam; Henson, Harvey, Jr.; Fadde, Peter J.

    2018-01-01

    Many educators and educational institutions worldwide have agreed that the main goal of science education is to produce a scientifically literate community. Science teachers are key to the achievement of scientific literacy at all levels of education because of the essential role they play in preparing scientifically literate individuals. Studies…

  13. How Select Groups of Preservice Science Teachers with Inquiry Orientations View Teaching and Learning Science through Inquiry

    Science.gov (United States)

    Ward, Peggy

    Although hailed as a powerful form of instruction, in most teaching and learning contexts, inquiry-based instruction is fraught with ambiguous and conflicting definitions and descriptions. Yet little has been written about the experiences preservice science teacher have regarding their learning to teach science through inquiry. This project sought to understand how select preservice secondary science teachers enrolled in three UTeach programs in Arkansas conceptualize inquiry instruction and how they rationalize its value in a teaching and learning context. The three teacher education programs investigated in this study are adoption sites aligned with the UTeach Program in Austin, TX that distinguishes itself in part by its inquiry emphasis. Using a mixed method investigation design, this study utilized two sources of data to explore the preservice science teachers' thinking. In the first phase, a modified version of the Pedagogy of Science teaching Tests (POSTT) was used to identify select program participants who indicated preferences for inquiry instruction over other instructional strategies. Secondly, the study used an open-ended questionnaire to explore the selected subjects' beliefs and conceptions of teaching and learning science in an inquiry context. The study also focused on identifying particular junctures in the prospective science teachers' education preparation that might impact their understanding about inquiry. Using a constant comparative approach, this study explored 19 preservice science teachers' conceptions about inquiry. The results indicate that across all levels of instruction, the prospective teachers tended to have strong student-centered teaching orientations. Except subjects in for the earliest courses, subjects' definitions and descriptions of inquiry tended toward a few of the science practices. More advanced subjects, however, expressed more in-depth descriptions. Excluding the subjects who have completed the program, multiple

  14. Exploring the Relationships between Self-Efficacy and Preference for Teacher Authority among Computer Science Majors

    Science.gov (United States)

    Lin, Che-Li; Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung

    2013-01-01

    Teacher-centered instruction has been widely adopted in college computer science classrooms and has some benefits in training computer science undergraduates. Meanwhile, student-centered contexts have been advocated to promote computer science education. How computer science learners respond to or prefer the two types of teacher authority,…

  15. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    Science.gov (United States)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  16. Relationship Between Teacher Inquiry Science Instruction Self-Efficacy and Student Achievement

    Science.gov (United States)

    Hanners, Grace D.

    Standardized test data indicate that student achievement in science is a problem both nationally and locally. At the study site, only a small percentage of fifth-grade students score at the advanced level on the Maryland state science assessment (MSA). In addition, the performance of African American, economically disadvantaged, and special education students is well below that of the general student population. Some studies have shown that teacher self-efficacy affects student achievement. Therefore, the purpose of this study was to explore the relationship between fifth-grade teacher inquiry science instruction self-efficacy scores and the scores of their students on the MSA. Bandura's work on the effect of self-efficacy on human behavior provided the theoretical basis for this study. The research questions examined the relationship between teacher inquiry science instructional self-efficacy scores and students' science MSA scores as well as the relationship by student subgroups. A correlational research design was used. The Teaching Science as Inquiry survey instrument was used to quantify teacher self-efficacy, and archival MSA data were the source for student scores. The study included data from 22 teachers and 1,625 of their students. A 2-tailed Pearson coefficient analysis revealed significant, positive relationships with regard to overall student achievement ( r20 = .724, p < .01) and the achievement of each of the subgroups (African American: r20 = .549, p < .01; economically disadvantaged: r20 = .655, p < .01; and special education: r18 = .532, p < .05). The results of this study present an opportunity for positive social change because the local school system can provide professional development that may increase teacher inquiry science instruction self-efficacy as a possible means to improve overall science achievement and to reduce achievement gaps.

  17. Personalizing and Contextualizing Multimedia Case Methods in University-based Teacher Education: An Important Modification for Promoting Technological Design in School Science

    Science.gov (United States)

    Bencze, Larry; Hewitt, Jim; Pedretti, Erminia

    2009-01-01

    Results of various studies suggest that multimedia ‘case methods’ (activities associated with case documentaries) have many benefits in university-based teacher education contexts. They can, for example, help to ‘bridge the gap’ between perspectives and practices held by academic teacher educators and those held by student-teachers - who may adhere to perspectives and practices commonly supported in schools. On the other hand, some studies, along with theoretical arguments, suggest that there are limits to the effectiveness of multimedia case methods - because, for example, they can never fully represent realities of teaching and learning in schools. Furthermore, often missing from multimedia case methods is the student-teacher in the role of teacher. To address these concerns, we modified an existing multimedia case method by associating it with a special practice teaching situation in a school context. Qualitative data analyzed using constant comparative methods suggest that student-teachers engaged in this modified multimedia case method developed relatively deep commitments to encouraging students to conduct technology design projects - a non-traditional practice in school science. Factors that appeared to influence development of this motivation included student-teachers’ pre-instructional perspectives about science and the personalization and contextualization inherent to the modified multimedia case method.

  18. Science on TeacherTube: A Mixed Methods Analysis of Teacher Produced Video

    Science.gov (United States)

    Chmiel, Margaret (Marjee)

    Increased bandwidth, inexpensive video cameras and easy-to-use video editing software have made social media sites featuring user generated video (UGV) an increasingly popular vehicle for online communication. As such, UGV have come to play a role in education, both formal and informal, but there has been little research on this topic in scholarly literature. In this mixed-methods study, a content and discourse analysis are used to describe the most successful UGV in the science channel of an education-focused site called TeacherTube. The analysis finds that state achievement tests, and their focus on vocabulary and recall-level knowledge, drive much of the content found on TeacherTube.

  19. Reconceptualizing Elementary Teacher Preparation : A case for informal science education

    NARCIS (Netherlands)

    Avraamidou, Lucy

    2015-01-01

    The purpose of this case study was to explore the ways in which 3 different informal science experiences in the context of an elementary methods course influenced a group of prospective elementary teachers' ideas about science teaching and learning as well as their understandings about the role of

  20. Central Computer Science Concepts to Research-Based Teacher Training in Computer Science: An Experimental Study

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter

    2012-01-01

    The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…