WorldWideScience

Sample records for sciences education teacher

  1. Initial teacher education and continuing professional development for science teachers

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry

    2011-01-01

    Research into ways of improving the initial education and continuing professional development of science teachers is closely related to both common and unique strands. The field is complex since science teachers teach at different educational levels, are often educated in different science subjects......, and belong to various cultures, both educationally and socially. Section 1 presents a review of the research literature across these dimensions and looks at the knowledge, skills and competences needed for teaching science, specific issues within science teacher education, and strategies for educating...... and developing science teachers....

  2. Integration of Geospatial Science in Teacher Education

    Science.gov (United States)

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  3. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  4. Teacher Leaders in Research Based Science Education

    Science.gov (United States)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-12-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  5. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  6. Teacher Efficacy of Secondary Special Education Science Teachers

    Science.gov (United States)

    Bonton, Celeste

    Students with disabilities are a specific group of the student population that are guaranteed rights that allow them to receive a free and unbiased education in an environment with their non-disabled peers. The importance of this study relates to providing students with disabilities with the opportunity to receive instruction from the most efficient and prepared educators. The purpose of this study is to determine how specific factors influence special education belief systems. In particular, educators who provide science instruction in whole group or small group classrooms in a large metropolitan area in Georgia possess specific beliefs about their ability to provide meaningful instruction. Data was collected through a correlational study completed by educators through an online survey website. The SEBEST quantitative survey instrument was used on a medium sample size (approximately 120 teachers) in a large metropolitan school district. The selected statistical analysis was the Shapiro-Wilk and Mann-Whitney in order to determine if any correlation exists among preservice training and perceived self-efficacy of secondary special education teachers in the content area of science. The results of this study showed that special education teachers in the content area of science have a higher perceived self-efficacy if they have completed an alternative certification program. Other variables tested did not show any statistical significance. Further research can be centered on the analysis of actual teacher efficacy, year end teacher efficacy measurements, teacher stipends, increased recruitment, and special education teachers of multiple content areas.

  7. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  8. Special Education Teachers' Nature of Science Instructional Experiences

    Science.gov (United States)

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  9. Elementary science education: Dilemmas facing preservice teachers

    Science.gov (United States)

    Sullivan, Sherry Elaine

    Prospective teachers are involved in a process of induction into a culture of teaching that has rules, or codes of conduct for engaging in teaching practice. This same culture of teaching exists within a larger culture of schooling that also has values and norms for behaviors, that over time have become institutionalized. Teacher educators are faced with the challenging task of preparing preservice teachers to resolve dilemmas that arise from conflicts between the pressure to adopt traditional teaching practices of schooling, or to adopt inquiry-based teaching practices from their university methods classes. One task for researchers in teacher education is to define with greater precision what factors within the culture of schooling hinder or facilitate implementation of inquiry-based methods of science teaching in schools. That task is the focus of this study. A qualitative study was undertaken using a naturalistic research paradigm introduced by Lincoln and Guba in 1985. Participant observation, interviews, discourse analysis of videotapes of lessons from the methods classroom and written artifacts produced by prospective teachers during the semester formed the basis of a grounded theory based on inductive analysis and emergent design. Unstructured interviews were used to negotiate outcomes with participants. Brief case reports of key participants were also written. This study identified three factors that facilitated or hindered the prospective teachers in this research success in implementing inquiry-based science teaching in their field placement classrooms: (a) the culture of teaching/teacher role-socialization, (b) the culture of schooling and its resistance to change, and (c) the culture of teacher education, especially in regards to grades and academic standing. Some recommendations for overcoming these persistent obstacles to best practice in elementary science teaching include: (a) preparing prospective teachers to understand and cope with change

  10. Supporting new science teachers in pursuing socially just science education

    Science.gov (United States)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  11. Towards Science Education for all: Teacher Support for Female ...

    African Journals Online (AJOL)

    Towards Science Education for all: Teacher Support for Female Pupils in the Zimbabwean Science Class. ... Annals of Modern Education ... One hundred female pupils studying sciences at either Ordinary or Advanced level, and 10 science teachers from 10 selected secondary schools in one province in Zimbabwe, ...

  12. The feasibility of educating trainee science teachers in issues of science and religion

    Science.gov (United States)

    Poole, Michael

    2016-06-01

    This article reflects on Roussel De Carvalho's paper `Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom'. It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher education project more manageable.

  13. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    Science.gov (United States)

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  14. Building Future Directions for Teacher Learning in Science Education

    Science.gov (United States)

    Smith, Kathy; Lindsay, Simon

    2016-04-01

    In 2013, as part of a process to renew an overall sector vision for science education, Catholic Education Melbourne (CEM) undertook a review of its existing teacher in-service professional development programs in science. This review led to some data analysis being conducted in relation to two of these programs where participant teachers were positioned as active learners undertaking critical reflection in relation to their science teaching practice. The conditions in these programs encouraged teachers to notice critical aspects of their teaching practice. The analysis illustrates that as teachers worked in this way, their understandings about effective science pedagogy began to shift, in particular, teachers recognised how their thinking not only influenced their professional practice but also ultimately shaped the quality of their students' learning. The data from these programs delivers compelling evidence of the learning experience from a teacher perspective. This article explores the impact of this experience on teacher thinking about the relationship between pedagogical choices and quality learning in science. The findings highlight that purposeful, teacher-centred in-service professional learning can significantly contribute to enabling teachers to think differently about science teaching and learning and ultimately become confident pedagogical leaders in science. The future of quality school-based science education therefore relies on a new vision for teacher professional learning, where practice explicitly recognises, values and attends to teachers as professionals and supports them to articulate and share the professional knowledge they have about effective science teaching practice.

  15. Practice on the line - science teacher education in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    Pedagogical Content Knowledge (PCK) has been used when describing teacher knowledge for 20 years. Recently the terms CoRe (Content representation) and PaP-eR (Professional and Pedagogical experince Repertoire) have been employed to articulate and document PCK. This extended framework has been used...... with student science teachers from the teacher education programme in Aarhus, Denmark....

  16. The Feasibility of Educating Trainee Science Teachers in Issues of Science and Religion

    Science.gov (United States)

    Poole, Michael

    2016-01-01

    This article reflects on Roussel De Carvalho's paper "Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom" (EJ1102211). It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher…

  17. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Fančovičová, Jana; Erdoğan, Mehmet; Prokop, Pavol

    2010-12-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of science with 15 of the 28 survey items. Descriptive statistics through SPSS further showed that a teacher's enthusiastic nature (87%) and positive attitude towards science (87%) were regarded as highly memorable. In addition, explaining abstract concepts well (79%), and guiding the students' conceptual development with practical science activities (73%) may be considered as memorable secondary science teaching strategies. Implementing science lessons with one or more of these memorable science teaching practices may "make a difference" towards influencing high school students' positive long-term memories about science and their science education. Further research in other key learning areas may provide a clearer picture of high-impact teaching and a way to enhance pedagogical practices.

  18. Coteaching as a Model for Preservice Secondary Science Teacher Education

    Science.gov (United States)

    Scantlebury, Kathryn; Gallo-Fox, Jennifer; Wassell, Beth

    2008-01-01

    This paper focuses on a 3-year, longitudinal study of the implementation of coteaching, as an innovative approach for preparing high school science teachers enrolled in an undergraduate science teacher education programme located in the United States. The coteaching/co-generative dialogue/co-respect/co-responsibility dialectic is introduced as a…

  19. The Wow-Effect in Science Teacher Education

    Science.gov (United States)

    Kamstrupp, Anne Katrine

    2016-01-01

    This article explores the "wow-effect" as a phenomenon in science teacher education. Through ethnographic fieldwork at a teachers' college in Denmark, the author encounters a phenomenon enacted in a particular way of teaching that "wows" the students. The students are in the process of becoming natural science/technology and…

  20. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    Science.gov (United States)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  1. Earthworks: Educating Teachers in Earth System Sciences

    Science.gov (United States)

    Spetzler, H.; Weaver, A.; Buhr, S.

    2000-01-01

    Earthworks is a national community of teachers and scientists. Initiated in 1998 with funding from NASA, our summer workshops in the Rocky Mountains each year provide unique opportunities for teachers to design and conduct field research projects, working closely with scientists. Teachers then develop plans for classroom implementation during the school year, sharing their ideas and experiences with other community members through e-mail and a listserv. Scientists, from graduate students to expert senior researchers, share their knowledge of field methods in environmental science, and learn how to better communicate and teach about their research.

  2. Turkish Primary Science Teachers' Perceptions of an Ideal Teacher Education System

    Science.gov (United States)

    Korkmaz, Hunkar; Altindag, Ahmet

    2017-01-01

    The goals of this descriptive study were to determine Turkish pre-service science teachers' perceptions of an ideal teacher education system. The sample consisted of 137 pre-service teachers, including 74 females and 63 males. The questionnaire was based on open-ended questions and was developed to investigate ideal teacher education system…

  3. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Fancovicova, Jana; Erdogan, Mehmet; Prokop, Pavol

    2010-01-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of…

  4. Qualifying in-service education of Science Teachers (QUEST)

    DEFF Research Database (Denmark)

    Nielsen, Keld; Nielsen, Birgitte Lund; Pontoppidan, Birgitte

    The Danish QUEST-project is a large-scale (450 teachers), long-term (4 years) professional development project for science teachers. The project aims at closing the gap between the present inconsequential practice in in-service education and recent research results documenting conditions for effe......The Danish QUEST-project is a large-scale (450 teachers), long-term (4 years) professional development project for science teachers. The project aims at closing the gap between the present inconsequential practice in in-service education and recent research results documenting conditions...... and peer involvement in collaborative practices in the school science teacher group is specifically addressed and targeted throughout the project. A special way of working (the QUEST-Rhythm) has been developed to increase the degree of teacher collaboration and networking over the 4 years. The accompanying...

  5. Turkish Science Teachers' Use of Educational Research and Resources

    Science.gov (United States)

    Ilhan, Nail; Sözbilir, Mustafa; Sekerci, Ali Riza; Yildirim, Ali

    2015-01-01

    Research results demonstrate that there is a gap between educational research and practice. Turkey is not an exception in this case. This study aims to examine to what extent and how educational research and resources are being followed,understood and used in classroom practices by science teachers in Turkey. A sample of 968 science teachers…

  6. The Use of Journal Clubs in Science Teacher Education

    Science.gov (United States)

    Tallman, Karen A.; Feldman, Allan

    2016-01-01

    This qualitative study explored how in a 7-month-long journal club pre- and inservice science teachers engaged with education research literature relevant to their practice to reduce the theory-practice gap. In the journal club they had the opportunity to critique and analyze peer-reviewed science education articles in the context of their…

  7. When Nature of Science Meets Marxism: Aspects of Nature of Science Taught by Chinese Science Teacher Educators to Prospective Science Teachers

    Science.gov (United States)

    Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying

    2013-01-01

    Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators' conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content…

  8. Determination of Science Teachers' Opinions about Outdoor Education

    Science.gov (United States)

    Kubat, Ulas

    2017-01-01

    The aim of this research is to discover what science teachers' opinions about outdoor education learning environments are. Outdoor education learning environments contribute to problem-solving, critical and creative thinking skills of students. For this reason, outdoor education learning environments are very important for students to learn by…

  9. Praxeologies and Institutional Interactions in the Advanced Science Teacher Education

    DEFF Research Database (Denmark)

    Rasmussen, Klaus

    disciplines in conjunction. In particular the inquiry process of Study and Research Paths (SRP) is experimented as a promising design to bring about disciplinary interaction. SRP is internationally a very recent design, entirely new to Danish teacher education, and the thesis add to the knowledge of its......The present thesis consists of six papers that address three important aspects in mathematics and science teacher education: ‘Integrating two or more teaching disciplines’, ‘learning from practice’ and ‘interaction between institutions’. These aspects are studied in combination as they have...... unfolded in the context of developing and implementing a Danish education programme called the Advanced Science Teacher Education (ASTE), that aim to educate lower secondary school teachers, who among other things are to excel at interdisciplinarity. The essence of integrated teaching is elusive...

  10. Science teachers' knowledge development in the context of educational innovation

    NARCIS (Netherlands)

    Henze-Rietveld, Francina Adriana

    2006-01-01

    The research reported in this thesis is concerned with the knowledge development of a small sample of experienced science teachers in the context of a broad innovation in Dutch secondary education, including the introduction of a new syllabus on Public Understanding of Science. The aim of the study

  11. Educating Tomorrow's Science Teachers: STEM ACT Conference Report

    Science.gov (United States)

    Sternheim, Morton M.; Feldman, Allan; Berger, Joseph B.; Zhao, Yijie

    2008-01-01

    This document reports on the findings of an NSF-funded conference (STEM ACT) on the alternative certification of science teachers. The conference explored the issues that have arisen in science education as a result of the proliferation of alternative certification programs in the United States, and to identify the research that needs to be done…

  12. The wow-effect in science teacher education

    Science.gov (United States)

    Kamstrupp, Anne Katrine

    2016-12-01

    This article explores the wow- effect as a phenomenon in science teacher education. Through ethnographic fieldwork at a teachers' college in Denmark, the author encounters a phenomenon enacted in a particular way of teaching that wows the students. The students are in the process of becoming natural science/technology and biology teachers. This article explores and theorizes the wow-effect by examining tension fields within the phenomenon between boredom and engagement, new and old technologies, and being active and sedentary. By situating this phenomenon in a discussion of theory and practice in teacher education, the author discusses how teaching according to the wow-effect is both engaging for the students as well as problematic in relation to learning certain theoretical aspects of natural science/technology and biology.

  13. The Views of Turkish Science Teachers about Gender Equity within Science Education

    Science.gov (United States)

    Idin, Sahin; Dönmez, Ismail

    2017-01-01

    The aim of this study was to investigate Turkish Science teachers' views about gender equity in the scope of science education. This study was conducted with the quantitative methodology. Within this scope, a 35-item 5-point Likert scale survey was developed to determine Science teachers' views concerning gender equity issues. 160 Turkish Science…

  14. The wow-effect in science teacher education

    DEFF Research Database (Denmark)

    Kamstrup, Anne Katrine

    2016-01-01

    This article explores the wow-effect as a phenomenon in science teacher education. Through ethnographic fieldwork at a teachers’ college in Denmark, the author encounters a phenomenon enacted in a particular way of teaching that wows the students. The students are in the process of becoming natural...... in teacher education, the author discusses how teaching according to the wow-effect is both engaging for the students as well as problematic in relation to learning certain theoretical aspects of natural science/technology and biology....... science/technology and biology teachers. This article explores and theorizes the wow-effect by examining tension fields within the phenomenon between boredom and engagement, new and old technologies, and being active and sedentary. By situating this phenomenon in a discussion of theory and practice...

  15. Applying a Goal-Driven Model of Science Teacher Cognition to the Resolution of Two Anomalies in Research on the Relationship between Science Teacher Education and Classroom Practice

    Science.gov (United States)

    Hutner, Todd L.; Markman, Arthur B.

    2017-01-01

    Two anomalies continue to confound researchers and science teacher educators. First, new science teachers are quick to discard the pedagogy and practices that they learn in their teacher education programs in favor of a traditional, didactic approach to teaching science. Second, a discrepancy exists at all stages of science teachers' careers…

  16. Understanding the Educational Experiences of Science Teachers in a Five-Year Teacher Education Program: A Phenomenological Study

    Science.gov (United States)

    Srivastava, Nitin

    This qualitative study provides an overview of educational experiences of six in-service and three pre-service secondary science teachers in the Benedum Collaborative Five-Year Teacher Education Program at a land-grant university. The researcher interviewed secondary science teachers on the experiences they found meaningful in various program components that influenced their teacher identity, beliefs about science pedagogy, and their sense of preparedness for teaching. Document analysis of teachers' journals and lesson plans supplemented the qualitative data in addition to the researcher's role and knowledge as an outsider (non-Benedum graduate) and insider (facilitator and instructor in the technology integration based classes for one year) of the Benedum Collaborative Five-Year Teacher Education Program. Findings also supported the Holmes (1986) and Goodlad (1990) views for extended field experiences and "collaborative culture" in teacher education for well-prepared teachers.

  17. An Examination of Black Science Teacher Educators' Experiences with Multicultural Education, Equity, and Social Justice

    Science.gov (United States)

    Atwater, Mary M.; Butler, Malcolm B.; Freeman, Tonjua B.; Carlton Parsons, Eileen R.

    2013-12-01

    Diversity, multicultural education, equity, and social justice are dominant themes in cultural studies (Hall in Cultural dialogues in cultural studies. Routledge, New York, pp 261-274, 1996; Wallace 1994). Zeichner (Studying teacher education: The report of the AERA panel on research and teacher education. Lawrence Erlbaum Associates, Mahwah, pp 737-759, 2005) called for research studies of teacher educators because little research exists on teacher educators since the late 1980s. Thomson et al. (2001) identified essential elements needed in order for critical multiculturalism to be infused in teacher education programs. However, little is known about the commitment and experiences of science teacher educators infusing multicultural education, equity, and social justice into science teacher education programs. This paper examines twenty (20) Black science teacher educators' teaching experiences as a result of their Blackness and the inclusion of multicultural education, equity, and social justice in their teaching. This qualitative case study of 20 Black science teacher educators found that some of them have attempted and stopped due to student evaluations and the need to gain promotion and tenure. Other participants were able to integrate diversity, multicultural education, equity and social justice in their courses because their colleagues were supportive. Still others continue to struggle with this infusion without the support of their colleagues, and others have stopped The investigators suggest that if science teacher educators are going to prepare science teachers for the twenty first century, then teacher candidates must be challenged to grapple with racial, ethnic, cultural, instructional, and curricular issues and what that must mean to teach science to US students in rural, urban, and suburban school contexts.

  18. Learning design for science teacher training and educational development

    DEFF Research Database (Denmark)

    Bjælde, Ole Eggers; Caspersen, Michael E.; Godsk, Mikkel

    This paper presents the impact and perception of two initiatives at the Faculty of Science and Technology, Aarhus University: the teacher training module ‘Digital Learning Design’ (DiLD) for assistant professors and postdocs, and the STREAM learning design model and toolkit for enhancing and tran......This paper presents the impact and perception of two initiatives at the Faculty of Science and Technology, Aarhus University: the teacher training module ‘Digital Learning Design’ (DiLD) for assistant professors and postdocs, and the STREAM learning design model and toolkit for enhancing...... and transforming modules. Both DiLD and the STREAM model have proven to be effective and scalable approaches to encourage educators across all career steps to embrace the potentials of educational technology in science higher education. Moreover, the transformed modules have resulted in higher student satisfaction...

  19. Exploring Secondary Science Teachers' Perceptions on the Goals of Earth Science Education in Taiwan

    Science.gov (United States)

    Chang, Chun-Yen; Chang, Yueh-Hsia; Yang, Fang-Ying

    2009-01-01

    The educational reform movement since the 1990s has led the secondary earth science curriculum in Taiwan into a stage of reshaping. The present study investigated secondary earth science teachers' perceptions on the Goals of Earth Science Education (GESE). The GESE should express the statements of philosophy and purpose toward which educators…

  20. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-05-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants' perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers' perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.

  1. Education for sustainable development - Resources for physics and sciences teachers

    Science.gov (United States)

    Miličić, Dragana; Jokić, Ljiljana; Blagdanić, Sanja; Jokić, Stevan

    2016-03-01

    With this article we would like to stress science teachers must doing practical work and communicate on the basis of scientific knowledge and developments, but also allow their students opportunity to discover knowledge through inquiry. During the last five years Serbian project Ruka u testu (semi-mirror of the French project La main á la pâte), as well as European FIBONACCI and SUSTAIN projects have offered to our teachers the wide-scale learning opportunities based on Inquiry Based Science Education (IBSE) and Education for Sustainable Development (ESD). Our current efforts are based on pedagogical guidance, several modules and experimental kits, the website, exhibitions, and trainings and workshops for students and teachers.

  2. Working Alongside Scientists. Impacts on Primary Teacher Beliefs and Knowledge About Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-05-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.

  3. Cultural Memory Banking in Preservice Science Teacher Education

    Science.gov (United States)

    Handa, Vicente C.; Tippins, Deborah J.

    2012-12-01

    This study focused on the exemplification of cultural memory banking as an ethnographic tool to understand cultural practices relevant to science teaching and learning in a rural coastal village in a central island of the Philippine archipelago. Using the collaborative action ethnography as a research methodology, 10 prospective science teachers and a science teacher educator/doctoral candidate formed a research team and documented community funds of knowledge relevant to science teaching and learning through their participation in a Community Immersion course. The study employed the use of the cultural memory banking as a meditational tool to analyze, make sense of, and represent interview, focus-group discussion, and observation data, among others, for the development of culturally relevant science lessons. Originally used as an anthropological tool to preserve cultural knowledge associated with the cultivation of indigenous plant varieties, the cultural memory banking, as adapted in science education, was used, both as a data collection and analytic tool, to locate relevant science at the intersection of community life. The research team developed a cultural memory bank exemplar, "Ginamos: The Stinky Smell that Sells," to highlight the learning experiences and meaning-making process of those involved in its development. Dilemmas and insights on the development and use of cultural memory banking were discussed with respect to issues of knowledge mining and mainstreaming of indigenous/local funds of knowledge, troubling the privileged position of Western-inspired nature of science.

  4. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  5. Pre-Service Science Teacher Education System in South Korea: Prospects and Challenges

    Science.gov (United States)

    Im, Sungmin; Yoon, Hye-Gyoung; Cha, Jeongho

    2016-01-01

    While much is known about the high academic but low affective achievement of Korean students on international comparative studies, little is known about science teacher education in Korea. As the quality of science teachers is an important factor determining the quality of science education, gaining an understanding of science education in Korea…

  6. Becoming a science teacher: The competing pedagogies of schools and teacher education

    Science.gov (United States)

    Rozelle, Jeffrey J.

    A culminating student teaching or internship experience is a central component of nearly every teacher education program and has been for most of teacher education's history. New teachers cite field experience and student teaching as the most beneficial, authentic, or practical aspect of teacher education. Teacher educators, however, have cause to view student teaching skeptically; student teachers often move away from the reform-minded practices espoused in teacher education. This multi-site ethnographic study investigated a full-year internship experience for six science interns at three diverse high schools as part of a teacher preparation program at a large state university. In taking an ecological perspective, this study documented the dynamic and evolving relationships between interns, cooperating teachers, teacher educators, and the school and classroom contexts. The goals of the study were to describe the changes in interns throughout the course of a year-long internship as a science teacher and to determine the relative influences of the various aspects of the ecology on interns. Data include fieldnotes from 311 hours of participant observation, 38 interviews with interns, cooperating teachers, and teacher educators, and 190 documents including course assignments, evaluations, and reflective journals. Interns' teaching practices were strongly influenced by their cooperating teachers. During the first two months, all six interns "used their mentor's script." When teaching, they attempted to re-enact lessons they witnessed their cooperating teachers enact earlier in the day. This included following the lesson structure, but also borrowing physical mannerisms, representations, anecdotes, and jokes. When interns could no longer follow their cooperating teacher due to an increased teaching load, they "followed their mentors' patterns"---implementing instruction that emphasized similar strategies---regardless of whether they were experiencing success in the

  7. The compatibility of reform initiatives in inclusion and science education: Perceptions of science teachers

    Science.gov (United States)

    Chung, Su-Hsiang

    The purposes of this investigation were to examine science teachers' instructional adaptations, testing and grading policies, as well as their perceptions toward inclusion. In addition, whether the perceptions and adaptations differ among three disability areas (learning disabilities, emotional handicaps, and mental handicaps), school level (elementary, middle, and high school), course content (life and physical science), instructional approach (textbook-oriented or activity-oriented), and other related variables was examined. Especially, the intention was to determine whether the two educational reform efforts (inclusion and excellence in science education) are compatible. In this study, 900 questionnaires were mailed to teachers in Indiana and 424 (47%) were returned. Due to incomplete or blank data, 38 (4%) responses were excluded. The final results were derived from a total of 386 respondents contributing to this investigation. The descriptive data indicated that teachers adapted their instruction moderately to accommodate students' special needs. In particular, these adaptations were made more frequently for students with mental handicaps (MH) or learning disabilities (LD), but less for students with emotional handicaps (EH). With respect to testing policies, less than half of the teachers (44.5%) used "same testing standards as regular students" for integrated LD students, while a majority of the teachers (57%) used such a policy for EH students. Unfortunately, considerably fewer teachers modified their grading policies for these two groups of students. In contrast, approximately two thirds of the teachers indicated that they used different testing or grading policies for MH students who were in the regular settings. Moreover, the results also showed that changes in classroom procedure did not occur much in the science teachers' classrooms. Perceptions of science teachers toward inclusion practices were somewhat mixed. Overall, teachers had neutral attitudes

  8. Science Teacher Identity and Eco-Transformation of Science Education: Comparing Western Modernism with Confucianism and Reflexive "Bildung"

    Science.gov (United States)

    Sjöström, Jesper

    2018-01-01

    This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on "reform-minded" science teachers. The starting point is the paper "Science education reform in…

  9. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-01-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized…

  10. Principles of Professionalism for Science Educators. National Science Teachers Association Position Statement

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Science educators play a central role in educating, inspiring, and guiding students to become responsible, scientifically literate citizens. Therefore, teachers of science must uphold the highest ethical standards of the profession to earn and maintain the respect, trust, and confidence of students, parents, school leaders, colleagues, and other…

  11. The pedagogy of argumentation in science education: science teachers' instructional practices

    Science.gov (United States)

    Özdem Yilmaz, Yasemin; Cakiroglu, Jale; Ertepinar, Hamide; Erduran, Sibel

    2017-07-01

    Argumentation has been a prominent concern in science education research and a common goal in science curriculum in many countries over the past decade. With reference to this goal, policy documents burden responsibilities on science teachers, such as involving students in dialogues and being guides in students' spoken or written argumentation. Consequently, teachers' pedagogical practices regarding argumentation gain importance due to their impact on how they incorporate this practice into their classrooms. In this study, therefore, we investigated the instructional strategies adopted by science teachers for their argumentation-based science teaching. Participants were one elementary science teacher, two chemistry teachers, and four graduate students, who have a background in science education. The study took place during a graduate course, which was aimed at developing science teachers' theory and pedagogy of argumentation. Data sources included the participants' video-recorded classroom practices, audio-recorded reflections, post-interviews, and participants' written materials. The findings revealed three typologies of instructional strategies towards argumentation. They are named as Basic Instructional Strategies for Argumentation, Meta-level Instructional ‌St‌‌rategies for ‌Argumentation, and Meta-strategic Instructional ‌St‌‌rategies for ‌Argumentation. In conclusion, the study provided a detailed coding framework for the exploration of science teachers' instructional practices while they are implementing argumentation-based lessons.

  12. Beyond Evolution: Addressing Broad Interactions between Science and Religion in Science Teacher Education

    Science.gov (United States)

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-01-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion…

  13. New Technologies and Science Teachers Education within the Context of Distance Learning: A Case Study for the University of Lagos

    Science.gov (United States)

    Adewara, Ademola Johnson; Lawal, Olufunke

    2015-01-01

    The Open and Distance Learning (ODL) education for science teachers is seen as a solution to the problems of equity and access to teacher education in Nigeria. It is used to provide cost-effective Science Teacher Education, and to train large numbers of teachers within a short period of time. The need for training science teachers through ODL…

  14. The Use of Journal Clubs in Science Teacher Education

    Science.gov (United States)

    Tallman, Karen A.; Feldman, Allan

    2016-04-01

    This qualitative study explored how in a 7-month-long journal club pre- and inservice science teachers engaged with education research literature relevant to their practice to reduce the theory-practice gap. In the journal club they had the opportunity to critique and analyze peer-reviewed science education articles in the context of their classroom practice. Data sources included audio recordings of the meetings; semi-structured pre- and post-interviews of the teachers; focus groups; and artifacts (e.g., journal articles, reflective paper, email exchanges, and researcher's field notes). Data were analyzed using the techniques of grounded theory (Corbin & Strauss in Basics of qualitative research, 3rd ed. Sage, Thousand Oaks, 2008). In addition we used some preconceived categories that we created from existing literature on journal clubs and communities of practice (Newswander & Borrego in European Journal of Engineering Education 34(6): 561-571, 2009; Wenger in Communities of practice: learning, meaning, and identity. Cambridge University Press, Cambridge, 1998) and from our previous research (Tallman & Feldman, 2012). We found that the journal club incorporated the three characteristics of a community of practice (Wenger in Communities of practice: learning, meaning, and identity. Cambridge University Press, Cambridge, 1998) into its functioning (mutual engagement, joint enterprise, and shared repertoire). The teachers mutually engaged around the joint enterprise of reading, critiquing, and understanding the research studies with the goal of improving practice. The teachers also asked each other analytical questions, which became a shared repertoire of the journal club. They reflected on their practice by presenting, reading, and discussing the articles, which helped them to determine whether and how the findings from the articles could be incorporated into their teaching practice. In doing so, they learned the skills needed to critique the research literature in

  15. Opinions of Secondary School Science and Mathematics Teachers on STEM Education

    Science.gov (United States)

    Yildirim, Bekir; Türk, Cumhur

    2018-01-01

    In this study, the opinions of middle school science teachers and mathematics teachers towards STEM education were examined. The research was carried out for 30 hours with 28 middle school science and mathematics teachers who were working in Istanbul during the spring semester of 2016-2017 academic year. 75% of these teachers are female teachers…

  16. National standards in science education: Teacher perceptions regarding utilization

    Science.gov (United States)

    Fletcher, Carol Louise Parsons

    teachers are unlikely to embrace national standards while others choose to utilize them as a tool for reforming science education in their classrooms, schools, or districts. As such, it can be used by reformers to design and diagnostically evaluate the implementation process and its related staff development.

  17. Science teachers in deaf education: A national survey of K-8 teachers

    Science.gov (United States)

    Shaw, Cynthia

    A survey was conducted with 67 science teachers who taught deaf children at the elementary school level. Teacher background variables, information about teacher preparation and certification, preferred teaching methods, communication methodologies, curriculum, and the use of technology were gathered. A purposeful, convenience sampling technique was employed. Utilizing a non-experimental, basic research design and survey methodology, the researcher reviewed both quantitative and qualitative data. The majority of science teachers in this survey at the elementary school level are female and hearing. More than half have deaf education masters degrees. Few have science degrees. The majority of teachers had less than 10 years teaching experience with deaf students. Sixty percent were highly qualified in science; only forty percent were certified in science. They were equally employed at either a state residential school or a public day school. Two-way chi-square analyses were carried out. Hearing teachers preferred to observe other teachers teaching science compared to deaf teachers chi2 (1, N = 67) = 5.39, p translanguaging than hearing teachers (chi2 (1, N = 67) = 4.54, p < .05). Hearing teachers used the computer more often in the classroom than deaf teachers (chi 2 (1, N = 67) = 4.65, p < .01). Hearing teachers had their students use the computer more regularly than deaf teachers (chi2 (1, N = 67) = 11.49, p < .01). Teachers who worked in residential schools compared to working in public schools attended more state department of education science workshops chi2 (1, N = 67) = 6.83, p < .01, attended national or state science meetings chi2 (1, N = 67) = 7.96, p < .01, were familiar with the Star Schools program chi2 (1, N=67) = 13.23, p < .01, and participated more in Star Schools programs chi 2 (1, N = 67) = 15.96, p < .01. Compared to hearing teachers, the deaf teachers used web-based science materials (chi2 (1, N = 67) = 4.65, p < .01), used codeswitching chi2 (1, N

  18. Women and girls in science education: Female teachers' and students' perspectives on gender and science

    Science.gov (United States)

    Crotty, Ann

    Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and

  19. Reformed Teaching and Learning in Science Education: A Comparative Study of Turkish and US Teachers

    Science.gov (United States)

    Ozfidan, Burhan; Cavlazoglu, Baki; Burlbaw, Lynn; Aydin, Hasan

    2017-01-01

    Achievements of educational reform advantage constructivist understandings of teaching and learning, and therefore highlight a shift in beliefs of teachers and apply these perceptions to the real world. Science teachers' beliefs have been crucial in understanding and reforming science education as beliefs of teachers regarding learning and…

  20. Specifying a curriculum for biopolitical critical literacy in science teacher education: exploring roles for science fiction

    Science.gov (United States)

    Gough, Noel

    2017-12-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of biopolitics. I consider how such a biopolitically inflected critical literacy might find expression in a science teacher education curriculum and suggest a number of ways of materializing such a curriculum in specific literatures, media, procedures, and assessment tasks, with particular reference to the contributions of science fiction in popular media.

  1. Innovating Science Teacher Education: A History and Philosophy of Science Perspective

    Science.gov (United States)

    Niaz, Mansoor

    2010-01-01

    How teachers view the nature of scientific knowledge is crucial to their understanding of science content and how it can be taught. This book presents an overview of the dynamics of scientific progress and its relationship to the history and philosophy of science, and then explores their methodological and educational implications and develops…

  2. Accomplishing the Visions for Teacher Education Programs Advocated in the National Science Education Standards

    Science.gov (United States)

    Akcay, Hakan; Yager, Robert

    2010-10-01

    The purpose of this study was to investigate the advantages of an approach to instruction using current problems and issues as curriculum organizers and illustrating how teaching must change to accomplish real learning. The study sample consisted of 41 preservice science teachers (13 males and 28 females) in a model science teacher education program. Both qualitative and quantitative research methods were used to determine success with science discipline-specific “Societal and Educational Applications” courses as one part of a total science teacher education program at a large Midwestern university. Students were involved with idea generation, consideration of multiple points of views, collaborative inquiries, and problem solving. All of these factors promoted grounded instruction using constructivist perspectives that situated science with actual experiences in the lives of students.

  3. Science Teacher Education in Australia: Initiatives and Challenges to Improve the Quality of Teaching

    Science.gov (United States)

    Treagust, David F.; Won, Mihye; Petersen, Jacinta; Wynne, Georgie

    2015-02-01

    In this article, we describe how teachers in the Australian school system are educated to teach science and the different qualifications that teachers need to enter the profession. The latest comparisons of Australian students in international science assessments have brought about various accountability measures to improve the quality of science teachers at all levels. We discuss the issues and implications of government initiatives in preservice and early career teacher education programs, such as the implementation of national science curriculum, the stricter entry requirements to teacher education programs, an alternative pathway to teaching and the measure of effectiveness of teacher education programs. The politicized discussion and initiatives to improve the quality of science teacher education in Australia are still unfolding as we write in 2014.

  4. Collaboration between science teacher educators and science faculty from arts and sciences for the purpose of developing a middle childhood science teacher education program: A case study

    Science.gov (United States)

    Buck, Gayle A.

    1998-12-01

    The science teacher educators at a midwestern university set a goal to establish a collaborative relationship between themselves and representatives from the College of Arts & Sciences for the purpose of developing a middle childhood science education program. The coming together of these two faculties provided a unique opportunity to explore the issues and experiences that emerge as such a collaborative relationship is formed. In order to gain a holistic perspective of the collaboration, a phenomenological case study design and methods were utilized. The study took a qualitative approach to allow the experiences and issues to emerge in a naturalistic manner. The question, 'What are the issues and experiences that emerge as science teacher educators and science faculty attempt to form a collaborative relationship for the purpose of developing a middle childhood science teacher program?' was answered by gathering a wealth of data. These data were collected by means of semi-structured interviews, observations and written document reviews. An overall picture was painted of the case by means of heuristic, phenomenological, and issues analyses. The researcher followed Moustakas' Phases of Heuristic Research to answer the questions 'What does science mean to me?' and 'What are my beliefs about the issues guiding this case?' prior to completing the phenomenological analysis. The phenomenological analysis followed Moustakas' 'Modification of the Van Kaam Methods of Analysis of Phenomenological Data'. This inquiry showed that the participants in this study came to the collaboration for many different reasons and ideas about the purpose for such a relationship. The participants also had very different ideas about how such a relationship should be conducted. These differences combined to create some issues that affected the development of curriculum and instruction. The issues involved the lack of (a) mutual respect for the work of the partners, (b) understanding about the

  5. Elementary Science and Reading Activities for Teacher Educators.

    Science.gov (United States)

    Rezba, Richard J.

    The author suggests ways reading can be integrated with science and describes the reading activities in an elementary science methods course. The activities include: (1) selecting a science tradebook for children to review and for the teacher to analyze vocabulary; (2) helping children review science tradebooks; and (3) encouraging independent…

  6. Challenges and Changes: Developing Teachers' and Initial Teacher Education Students' Understandings of the Nature of Science

    Science.gov (United States)

    Ward, Gillian; Haigh, Mavis

    2017-12-01

    Teachers need an understanding of the nature of science (NOS) to enable them to incorporate NOS into their teaching of science. The current study examines the usefulness of a strategy for challenging or changing teachers' understandings of NOS. The teachers who participated in this study were 10 initial teacher education chemistry students and six experienced teachers from secondary and primary schools who were introduced to an explicit and reflective activity, a dramatic reading about a historical scientific development. Concept maps were used before and after the activity to assess teachers' knowledge of NOS. The participants also took part in a focus group interview to establish whether they perceived the activity as useful in developing their own understanding of NOS. Initial analysis led us to ask another group, comprising seven initial teacher education chemistry students, to take part in a modified study. These participants not only completed the same tasks as the previous participants but also completed a written reflection commenting on whether the activity and focus group discussion enhanced their understanding of NOS. Both Lederman et al.'s (Journal of Research in Science Teaching, 39(6), 497-521, 2002) concepts of NOS and notions of "naive" and "informed" understandings of NOS and Hay's (Studies in Higher Education, 32(1), 39-57, 2007) notions of "surface" and "deep" learning were used as frameworks to examine the participants' specific understandings of NOS and the depth of their learning. The ways in which participants' understandings of NOS were broadened or changed by taking part in the dramatic reading are presented. The impact of the data-gathering tools on the participants' professional learning is also discussed.

  7. Attitudes Toward Integration as Perceived by Preservice Teachers Enrolled in an Integrated Mathematics, Science, and Technology Teacher Education Program.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    2002-01-01

    Describes the purpose of the Master of Education (M. Ed.) Program in Integrated Mathematics, Science, and Technology Education (MSAT Program) at The Ohio State University and discusses preservice teachers' attitudes and perceptions toward integrated curriculum. (Contains 35 references.) (YDS)

  8. Preparing K-8 Teachers to Conduct Inquiry Oriented Science Education

    Science.gov (United States)

    Gross, N. A.; Garik, P.; Nolan, M. D.; Winrich, C.; Derosa, D.; Duffy, A.; Jariwala, M.; Konjoian, B.

    2010-12-01

    The need for STEM professional development for K-8 teachers is well documented. Such professional development promises broad impact, but it must have a positive effect on teachers’ knowledge and skills: 1) a focus on content knowledge, 2) opportunities for active learning, and 3) coherence with other activities. However, sustained impact is only achieved through intensive professional development. In response to the need for science education courses for K-8 teachers, for the past three years, the School of Education and the Department of Physics have collaborated to offer K-8 teachers science content courses of extended duration (75 contact hours) that emphasize inquiry based learning and investigation. The School of Education graduate courses have consisted of five three-hour meetings during the months of May and June, and a two week intensive period in July when the participants come for six hours per day. The alignment of these courses with inquiry teaching was confirmed using the Reformed Teaching Observation Protocol (RTOP). Courses offered in this format have been: --Immersion in Green Energy (IGE) -alternative sources of energy and how electricity is generated (75 teachers over the last 3 years), --Immersion in Global Energy Distribution (IGED) -understanding global climate as an outcome of insolation, convection, and radiation (27 teachers over the last 2 years) The Immersion courses cover a spectrum for inquiry learning that begins with introduction to equipment and experiments through guided discovery and culminates with students taking responsibility for defining and completing their own investigative projects. As a specific example, we consider here the IGED course. For IGED, the first five sessions are devoted to content and learning to use experimental equipment such as digital data collection probes to measure temperature, CO2 and salinity. Content addressed during these sessions include the differentiation between conduction, convection, and

  9. Specifying a Curriculum for Biopolitical Critical Literacy in Science Teacher Education: Exploring Roles for Science Fiction

    Science.gov (United States)

    Gough, Noel

    2017-01-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of "biopolitics." I consider how such a biopolitically inflected critical literacy might find expression in…

  10. Creating Science Education Specialists and Scientific Literacy in Students through a Successful Partnership among Scientists, Science Teachers, and Education Researchers

    Science.gov (United States)

    Metoyer, S.; Prouhet, T.; Radencic, S.

    2007-12-01

    The nature of science and the nature of learning are often assumed to have little practical relationship to each other. Scientists conduct research and science teachers teach. Rarely do the scientist and the science teacher have an opportunity to learn from each other. Here we describe results from a program funded by NSF, the Information Technology in Science (ITS) Center for Teaching and Learning. The ITS Center provided the support and structure necessary for successful long-term collaboration among scientists, science teachers, and education researchers that has resulted in the creation of new science education specialists. These specialists are not only among the science teachers, but also include avid recruits to science education from the scientists themselves. Science teachers returned to their classrooms armed with new knowledge of content, inquiry, and ideas for technology tools that could support and enhance students' scientific literacy. Teachers developed and implemented action research plans as a means of exploring educational outcomes of their use and understanding of new technologies and inquiry applied to the classroom. In other words, they tried something different in the class related to authentic inquiry and technology. They then assessed the students' to determine if there was an impact to the students in some way. Many of the scientists, on the other hand, report that they have modified their instructional practices for undergraduate courses based on their experiences with the teachers and the ITS Center. Some joined other collaborative projects pairing scientists and educators. And, many of the scientists continue on-going communication with the science teachers serving as mentors, collaborators, and as an "expert" source for the students to ask questions to. In order to convey the success of this partnership, we illustrate and discuss four interdependent components. First, costs and benefits to the science teacher are discussed through case

  11. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  12. Art and Science Education Collaboration in a Secondary Teacher Preparation Programme

    Science.gov (United States)

    Medina-Jerez, William; Dambekalns, Lydia; Middleton, Kyndra V.

    2012-01-01

    Background and purpose: The purpose of this study was to record and measure the level of involvement and appreciation that prospective teachers in art and science education programmes demonstrated during a four-session integrated activity. Art and science education prospective teachers from a Rocky Mountain region university in the US worked in…

  13. Developing a Material-Dialogic Approach to Pedagogy to Guide Science Teacher Education

    Science.gov (United States)

    Hetherington, Lindsay; Wegerif, Rupert

    2018-01-01

    Dialogic pedagogy is being promoted in science teacher education but the literature on dialogic pedagogy tends to focus on explicit voices, and so runs the risk of overlooking the important role that material objects often play in science education. In this paper we use the findings of a teacher survey and classroom case study to argue that there…

  14. Investigation of Pre-Service Science Teachers' Attitudes towards Sustainable Environmental Education

    Science.gov (United States)

    Keles, Özgül

    2017-01-01

    The purpose of the current study is to investigate pre-service science teachers' sustainable environmental education attitudes and the factors affecting them in terms of some variables (gender and grade level). The study group of the current research is comprised of 154 pre-service teachers attending the Department of Science Education in the…

  15. Science teacher learning for MBL-supported student-centered science education in the context of secondary education in Tanzania

    NARCIS (Netherlands)

    Voogt, Joke; Tilya, F.; van den Akker, Jan

    2009-01-01

    Science teachers from secondary schools in Tanzania were offered an in-service arrangement to prepare them for the integration of technology in a student-centered approach to science teaching. The in-service arrangement consisted of workshops in which educative curriculum materials were used to

  16. Reconceptualizing Elementary Teacher Preparation: A Case for Informal Science Education

    Science.gov (United States)

    Avraamidou, Lucy

    2015-01-01

    The purpose of this case study was to explore the ways in which 3 different informal science experiences in the context of an elementary methods course influenced a group of prospective elementary teachers' ideas about science teaching and learning as well as their understandings about the role of informal science environments to teaching and…

  17. Developing Practical Knowledge of the Next Generation Science Standards in Elementary Science Teacher Education

    Science.gov (United States)

    Hanuscin, Deborah L.; Zangori, Laura

    2016-12-01

    Just as the Next Generation Science Standards (NGSSs) call for change in what students learn and how they are taught, teacher education programs must reconsider courses and curriculum in order to prepare teacher candidates to understand and implement new standards. In this study, we examine the development of prospective elementary teachers' practical knowledge of the NGSS in the context of a science methods course and innovative field experience. We present three themes related to how prospective teachers viewed and utilized the standards: (a) as a useful guide for planning and designing instruction, (b) as a benchmark for student and self-evaluation, and (c) as an achievable vision for teaching and learning. Our findings emphasize the importance of collaborative opportunities for repeated teaching of the same lessons, but question what is achievable in the context of a semester-long experience.

  18. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; McGinnis, J. Randy; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-01-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews,…

  19. Beyond Evolution: Addressing Broad Interactions Between Science and Religion in Science Teacher Education

    Science.gov (United States)

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-03-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion interactions so that they may better assist pre- and in-service science teachers with addressing topics such as the age and origins of the universe and biological evolution in an appropriate manner. We first introduce some foundational scholarship into the historical interactions between science and religion as well as current efforts to maintain healthy dialogue between perspectives that are frequently characterized as innately in conflict with or mutually exclusive of one another. Given that biological evolution is the dominant science-religion issue of our day, in particular in the USA, we next summarize the origins and strategies of anti-evolution movements via the rise and persistence of Christian Fundamentalism. We then summarize survey and qualitative sociological research indicating disparities between academic scientists and the general public with regard to religious beliefs to help us further understand our students' worldviews and the challenges they often face in campus-to-classroom transitions. We conclude the essay by providing resources and practical suggestions, including legal considerations, to assist science teacher educators with their curriculum and outreach.

  20. Model program for the recruitment and preparation of high ability elementary mathematics/science teachers: A collaborative project among scientists, teacher educators and classroom teachers

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This teacher education program will provide a model for recruiting, educating and retaining high ability students to become mathematics and science lead teachers in elementary schools. The quality experiences and support provided these students will help them develop the knowledge and attitudes necessary to provide leadership for elementary mathematics and science programs. Students will have research experiences at the Ames Laboratory, high quality field experiences with nationally recognized mathematics and science teachers in local schools and opportunities to meaningfully connect these two experiences. This program, collaboratively designed and implemented by scientists, teacher educators and classroom teachers, should provide a replicatable model for other teacher education institutions. In addition, materials developed for the project should help other laboratories interface more effectively with K-8 schools and help other teacher education programs incorporate real science and mathematics experience into their curriculum.

  1. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  2. Reconceptualizing Elementary Teacher Preparation : A case for informal science education

    NARCIS (Netherlands)

    Avraamidou, Lucy

    2015-01-01

    The purpose of this case study was to explore the ways in which 3 different informal science experiences in the context of an elementary methods course influenced a group of prospective elementary teachers' ideas about science teaching and learning as well as their understandings about the role of

  3. Scientists are from Mars, educators are from Venus: Relationships in the ecosystem of science teacher preparation

    Science.gov (United States)

    Duggan-Haas, Don Andrew

    2000-10-01

    Great problems exist in science teaching from kindergarten through the college level (NRC, 1996; NSF, 1996). The problem may be attributed to the failure of teachers to integrate their own understanding of science content with appropriate pedagogy (Shulman, 1986, 1987). All teachers were trained by college faculty and therefore some of the blame for these problems rests on those faculty. This dissertation presents three models for describing secondary science teacher preparation. Two Programs, Two Cultures adapts C. P. Snow's classic work (1959) to describe the work of a science teacher candidate as that of an individual who navigates between two discrete programs: one in college science and the second in teacher education. The second model, Scientists Are from Mars, Educators Are from Venus adapts the popular work of John Gray to describe the system of science teacher education as hobbled by the dysfunctional relationships among the major players and describes the teacher as progeny from this relationship. The third model, The Ecosystem of Science Teacher Preparation reveals some of the deeper complexities of science teacher education and posits that the traditional college science approach treats students as a monoculture when great diversity in fact exists. The three models are described in the context of a large Midwestern university's teacher education program as that program is construed for future biology teachers. Four undergraduate courses typically taken by future biology teachers were observed and described: an introductory biology course; an introductory teacher education course; an upper division course in biochemistry and a senior level science teaching methods course. Seven second semester seniors who were biological Science majors were interviewed. All seven students had taken all of the courses observed. An organization of scientists and educators working together to improve science teaching from kindergarten through graduate school is also

  4. Interacting with a Suite of Educative Features: Elementary Science Teachers' Use of Educative Curriculum Materials

    Science.gov (United States)

    Arias, Anna Maria; Bismack, Amber Schultz; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2016-01-01

    New reform documents underscore the importance of learning both the practices and content of science. This integration of practices and content requires sophisticated teaching that does not often happen in elementary classrooms. Educative curriculum materials--materials explicitly designed to support teacher and student learning--have been posited…

  5. A Mental Model of the Learner: Teaching the Basic Science of Educational Psychology to Future Teachers

    Science.gov (United States)

    Willingham, Daniel T.

    2017-01-01

    Although most teacher education programs include instruction in the basic science of psychology, practicing teachers report that this preparation has low utility. Researchers have considered what sort of information from psychology about children's thinking, emotion, and motivation would be useful for teachers' practice. Here, I take a different…

  6. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    Science.gov (United States)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  7. Using Educational Computer Games in the Classroom: Science Teachers' Experiences, Attitudes, Perceptions, Concerns, and Support Needs

    Science.gov (United States)

    An, Yun-Jo; Haynes, Linda; D'Alba, Adriana; Chumney, Frances

    2016-01-01

    Science teachers' experiences, attitudes, perceptions, concerns, and support needs related to the use of educational computer games were investigated in this study. Data were collected from an online survey, which was completed by 111 science teachers. The results showed that 73% of participants had used computer games in teaching. Participants…

  8. Science Teacher Education in Australia: Initiatives and Challenges to Improve the Quality of Teaching

    Science.gov (United States)

    Treagust, David F.; Won, Mihye; Petersen, Jacinta; Wynne, Georgie

    2015-01-01

    In this article, we describe how teachers in the Australian school system are educated to teach science and the different qualifications that teachers need to enter the profession. The latest comparisons of Australian students in international science assessments have brought about various accountability measures to improve the quality of science…

  9. The effects of two secondary science teacher education program structures on teachers' habits of mind and action

    Science.gov (United States)

    Bergman, Daniel Jay

    2007-12-01

    This study investigated the effects of the Iowa State University Secondary Science Teacher Education Program (ISU SSTEP) on the educational goals and habits of mind exhibited by its graduates. Ten teachers from ISU SSTEP participated in the study---five from the former program featuring one semester of science teaching methods, five from the current program featuring three semesters of science teaching methods (four for the graduate certification consortium). A naturalistic inquiry research approach included the following methods used with each teacher: three classroom observations, classroom artifact analysis, teacher questionnaires and semi-structured interviews, and questionnaires for students about perceived emphasis of educational goals. Evidence exists that graduates from the current ISU SSTEP format exhibited a closer match to the educational goals promoted, modeled, and advocated by the science teaching methods faculty. Graduates from the current ISU SSTEP also exhibited a closer match to the habits of mind---understanding, action, reflection, action plan for improvement---promoted and modeled by the program. This study has implications for other secondary science teacher education programs, particularly increasing the number of science teaching methods courses; teaching meaningful content of both concepts and skills through a research-based framework; modeling the appropriate teacher behaviors, strategies, habits, and goal promotion by methods instructors; and addressing issues of institutional constraints experienced by future teachers.

  10. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    Science.gov (United States)

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  11. Early Childhood Pre-Service Teachers' Self-Images of Science Teaching in Constructivism Science Education Courses

    Science.gov (United States)

    Go, Youngmi; Kang, Jinju

    2015-01-01

    The purpose of this study is two-fold. First, it investigates the self-images of science teaching held by early childhood pre-service teachers who took constructivism early childhood science education courses. Second, it analyzes what aspects of those courses influenced these images. The participants were eight pre-service teachers who took these…

  12. A confluence of traditions: Examining teacher practice in the merging of secondary science and environmental education

    Science.gov (United States)

    Astrid, Steele

    Embedding environmental education within secondary science curriculum presents both philosophical and practical difficulties for teachers. This ethnographic/narrative study, with its methodology grounded in eco-feminism and realism/constructivism, examines the work of six secondary science teachers as they engage in an action research project focused on merging environmental education in their science lessons. Over the course of several months the teachers examine and discuss their views and their professional development related to the project. In the place of definitive conclusions, eight propositions relating the work of secondary science teachers to environmental education, form the basis for a discussion of the implications of the study. The implications are particularly relevant to secondary schools in Ontario, Canada, where the embedding of environmental education in science studies has been mandated.

  13. Working Alongside Scientists: Impacts on Primary Teacher Beliefs and Knowledge about Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-01-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the…

  14. Science education reform in Confucian learning cultures: teachers' perspectives on policy and practice in Taiwan

    Science.gov (United States)

    Huang, Ying-Syuan; Asghar, Anila

    2018-03-01

    This empirical study investigates secondary science teachers' perspectives on science education reform in Taiwan and reflects how these teachers have been negotiating constructivist and learner-centered pedagogical approaches in contemporary science education. It also explores the challenges that teachers encounter while shifting their pedagogical focus from traditional approaches to teaching science to an active engagement in students' learning. Multiple sources of qualitative data were obtained, including individual interviews with science teachers and teachers' reflective journals about Confucianism in relation to their educational philosophies. Thematic analysis and constant comparative method were used to analyze the data. The findings revealed that Confucian traditions play a significant role in shaping educational practices in Taiwan and profoundly influence teachers' epistemological beliefs and their actual classroom practice. Indeed, science teachers' perspectives on Confucian learning traditions played a key role in supporting or obstructing their pedagogical commitments to inquiry-based and learner-centered approaches. This study draws on the literature concerning teachers' professional struggles and identity construction during educational reform. Specifically, we explore the ways in which teachers respond to educational changes and negotiate their professional identities. We employed various theories of identity construction to understand teachers' struggles and challenges while wrestling with competing traditional and reform-based pedagogical approaches. Attending to these struggles and the ways in which they inform the development of a teacher's professional identity is vital for sustaining current and future educational reform in Taiwan as well as in other Eastern cultures. These findings have important implications for teachers' professional development programs in East Asian cultures.

  15. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    Science.gov (United States)

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…

  16. Science Education Reform in Confucian Learning Cultures: Teachers' Perspectives on Policy and Practice in Taiwan

    Science.gov (United States)

    Huang, Ying-Syuan; Asghar, Anila

    2018-01-01

    This empirical study investigates secondary science teachers' perspectives on science education reform in Taiwan and reflects how these teachers have been negotiating constructivist and learner-centered pedagogical approaches in contemporary science education. It also explores the challenges that teachers encounter while shifting their pedagogical…

  17. Suited for Spacewalking: A Teacher's Guide with Activities for Technology Education, Mathematics, and Science

    Science.gov (United States)

    Vogt, Gregory L.; George, Jane A. (Editor)

    1998-01-01

    A Teacher's Guide with Activities for Technology Education, Mathematics, and Science National Aeronautics and Space Administration Office of Human Resources and Education Education Division Washington, DC Education Working Group NASA Johnson Space Center Houston, Texas This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication.

  18. Science teachers' perceptions of the effectiveness of technology in the laboratories: Implications for science education leadership

    Science.gov (United States)

    Yaseen, Niveen K.

    2011-12-01

    The purpose of this study was to identify science teachers' perceptions concerning the use of technology in science laboratories and identify teachers' concerns and recommendations for improving students' learning. Survey methodology with electronic delivery was used to gather data from 164 science teachers representing Texas public schools. The data confirmed that weaknesses identified in the 1990s still exist. Lack of equipment, classroom space, and technology access, as well as large numbers of students, were reported as major barriers to the implementation of technology in science laboratories. Significant differences were found based on gender, grade level, certification type, years of experience, and technology proficiency. Females, elementary teachers, traditionally trained teachers, and less experienced teachers revealed a more positive attitude toward the use of technology in science laboratories. Participants in this study preferred using science software simulations to support rather than replace traditional science laboratories. Teachers in this study recommended professional development programs that focused on strategies for a technology integrated classroom.

  19. Possibilities and Limits of Integrating Science and Diversity Education in Preservice Elementary Teacher Preparation

    Science.gov (United States)

    Bravo, Marco A.; Mosqueda, Eduardo; Solís, Jorge L.; Stoddart, Trish

    2014-08-01

    In this paper we present findings from a project that documented the development of preservice teachers' beliefs and practices in delivering science instruction that considers issues of language and culture. Teacher candidates in the intervention group ( n = 65) received a science methods course and teaching practicum experience that provided guidance in teaching science in culturally and linguistically responsive ways. Comparisons between a control group of preservice teachers ( n = 45) and those involved in the intervention yielded stronger beliefs about the efficacy in promoting collaboration in science teaching than the intervention group. Observations of these preservice teachers during their teaching practicum revealed differences in favor of the intervention group in: (a) implementing science instruction that addressed the language and literacy involved in science; (b) using questions that elicited higher order thinking and; (c) providing scaffolds (e.g., purposeful feedback, probing student background knowledge) when confronting abstract scientific concepts. Implications for preservice teacher education are addressed.

  20. Turkish Preservice Primary School Teachers' Science Teaching Efficacy Beliefs and Attitudes toward Science: The Effect of a Primary Teacher Education Program

    Science.gov (United States)

    Bayraktar, Sule

    2011-01-01

    The main purpose of this study was to investigate the effectiveness of a primary teacher education program in improving science teaching efficacy beliefs (personal science teaching efficacy beliefs and outcome expectancy beliefs) of preservice primary school teachers. The study also investigated whether the program has an effect on student…

  1. Teachers as Producers of Data Analytics: A Case Study of a Teacher-Focused Educational Data Science Program

    Science.gov (United States)

    McCoy, Chase; Shih, Patrick C.

    2016-01-01

    Educational data science (EDS) is an emerging, interdisciplinary research domain that seeks to improve educational assessment, teaching, and student learning through data analytics. Teachers have been portrayed in the EDS literature as users of pre-constructed data dashboards in educational technologies, with little consideration given to them as…

  2. Pedagogical practices in Youth and Adult Education: concepts and practices of Sciences teachers

    OpenAIRE

    Karen Martins Limberger; Valderez Marina do Rosário Lima; Renata Medina Silva

    2014-01-01

    The present work aimed to analyze how the pedagogical practices of Sciences teachers in Youth and Adults Education (YAE) are developed. The study had a qualitative approach and employed semi-structured recorded interviews for data survey, which was later evaluated through the Discursive Textual Analysis. It was verified that YAE Sciences teachers’ planning is based on regular education textbooks and focuses on conceptual contents. Teachers use different teaching strategies, such as movies pic...

  3. An Analysis of Teachers' Perceptions through Metaphors: Prospective Turkish Teachers of Science, Math and Social Science in Secondary Education

    Science.gov (United States)

    Akçay, Süleyman

    2016-01-01

    In this study, teachers' perceptions of prospective Turkish teachers (that is, those who have completed their undergraduate studies) in the fields of Science, Mathematics and Social Sciences are investigated through teacher metaphors. These perceptions were classified in accordance with their answers to two open-ended questions within a metaphoric…

  4. Realizing a Democratic Community of Teachers: John Dewey and the Idea of a Science of Education

    Science.gov (United States)

    Frank, Jeff

    2017-01-01

    In this paper, I make the case that John Dewey's philosophy of education aims to bring about a democratic community of teachers capable of creating a science of teaching. To make this case, I will do a three things. First, I will discuss "Sources of a Science of Education" and argue that this work is deeply connected to a work written at…

  5. Emotional Climate and High Quality Learning Experiences in Science Teacher Education

    Science.gov (United States)

    Bellocchi, Alberto; Ritchie, Stephen M.; Tobin, Kenneth; King, Donna; Sandhu, Maryam; Henderson, Senka

    2014-01-01

    The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study, we explore the emotional climates (ECs), that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality…

  6. Citizenship education: social science teachers' views in three European countries

    NARCIS (Netherlands)

    Jeliazkova, Margarita I.

    2015-01-01

    The aim of the study presented in this study is to map the diverse views of secondary school teachers on citizenship education in Bulgaria, Croatia, and the Netherlands; to explore these views and to compare them, in order to arrive at a richer understanding and possibly to suggest ways for engaging

  7. Extended education and the re-definition of the role of educational psychology for science and mathematics teachers

    OpenAIRE

    Maria Marques Zanforlin Pires de Almeida, Inês; Francesca Conte de Almeida, Sandra

    2012-01-01

    This article aims to address the topic of continued teacher education, one of the main themes of the PhD thesis in psychology Re-definition of the Role cif Educational Psychology in Continued Education of Science and Mathetnatics Teachers. By tracing the historical path of the different trends, concepts and movements regarding continued education and the relationship between psychology and education, it has been possible to develop severa! guidelines and reflections related to pedagogical...

  8. Science Education for Empowerment and Social Change: A Case Study of a Teacher Educator in Urban Pakistan.

    Science.gov (United States)

    Zahur, Rubina; Barton, Angela Calabrese; Upadhyay, Bhaskar Raj

    2002-01-01

    Discusses the purpose of science education for children of the very poor classes in caste-oriented developing countries such as Pakistan. Presents a case study of one teacher educator whose beliefs and practices sharply deviated from the norm--she believes that science education ought to be about empowering students to make physical and political…

  9. Educating science teachers for sustainability: questions, contradictions and possibilities for rethinking learning and pedagogy

    Science.gov (United States)

    Rahm, Jrène; Gorges, Anna

    2017-09-01

    In this review, we explore what educating science teachers for sustainability implies according to the 23 book chapters and many sampled teacher education and science methods courses in the edited book by Susan Stratton, Rita Hagevick, Allan Feldman and Mark Bloom, entitled Educating Science Teachers for Sustainability, published in 2015 by Springer as part of the ASTE Series in Science Education. We situate the review in the current complex landscape of discourses around sustainability education, exploring its grounding in an anthropocentric ideology next to emancipatory practices and a holistic vision of the world. We offer a quick overview of the chapters and themes addressed. We then take up some ideas to think with. We are particularly invested in thinking about the implications of sustainability education as going beyond science teachers and science education, and as implying a serious engagement with and critique of current unsustainable ways of living. We play with the idea of taking sustainability education beyond neoliberal ideals of education and offer some suggestions by bringing in voices of students, youth, land-based learning and the idea of living sustainability. We also explore what indigenous scholars and epistemologies could have contributed to an exploration of sustainability education, a voice that was absent in the book, yet helps desettle the conversation and actions taken, moving the discourse beyond an Eurocentric grounding.

  10. Promoting Issues-based STSE Perspectives in Science Teacher Education: Problems of Identity and Ideology

    Science.gov (United States)

    Pedretti, Erminia G.; Bencze, Larry; Hewitt, Jim; Romkey, Lisa; Jivraj, Ashifa

    2008-09-01

    Although science, technology, society and environment (STSE) education has gained considerable force in the past few years, it has made fewer strides in practice. We suggest that science teacher identity plays a role in the adoption of STSE perspectives. Simply put, issues-based STSE education challenges traditional images of a science teacher and science instructional ideologies. In this paper, we briefly describe the development of a multimedia documentary depicting issues-based STSE education in a teacher’s class and its subsequent implementation with 64 secondary student-teachers at a large Canadian university. Specifically, we set out to explore: (1) science teacher candidates’ responses to a case of issues-based STSE teaching, and (2) how science teacher identity intersects with the adoption of STSE perspectives. Findings reveal that although teacher candidates expressed confidence and motivation regarding teaching STSE, they also indicated decreased likelihood to teach these perspectives in their early years of teaching. Particular tensions or problems of practice consistently emerged that helped explain this paradox including issues related to: control and autonomy; support and belonging; expertise and negotiating curriculum; politicization and action; and biases and ideological bents. We conclude our paper with a discussion regarding the lessons learned about STSE education, teacher identity and the role of multimedia case methods.

  11. Infusing Science, Technology, and Society Into an Elementary Teacher Education Program: The Impact on Preservice Teachers

    Science.gov (United States)

    Henning, Mary Beth; Peterson, Barbara R.; King, Kenneth Paul

    2011-01-01

    In an effort to improve science and social studies instruction, preservice teachers developed original science, technology, and society units to teach in elementary and middle school classrooms during their clinical field experience. Data revealed that the preservice teachers fell into categories of being skeptics, open-minded instructors, or…

  12. Using a Multicultural Social Justice Framework to Analyze Elementary Teachers' Meanings of Multicultural Science Education

    Science.gov (United States)

    Kye, Hannah Anne

    In response to the persistent gaps in science opportunities and outcomes across lines of race, class, gender, and disability, decades of science reforms have called for "science for all." For elementary teachers, science for all demands that they not only learn to teach science but learn to teach it in ways that promote more equitable science learning opportunities and outcomes. In this qualitative case study, I use a framework of multicultural social justice education to examine three teachers' beliefs and practices of multicultural science education. The teachers, one preservice and two in-service, taught elementary science in a month-long summer program and met weekly with this researcher to discuss connections between their expressed commitments about teaching toward social justice and their work as science teachers. The data sources for this study included audio recordings of weekly meetings, science lessons, and semi-structured individual interviews. These data were transcribed, coded, and analyzed to define the most salient themes and categories among the individual teachers and across cases. I found that the teachers' beliefs and practices aligned with traditional approaches to school and science wherein science was a set of scripted right answers, diversity was only superficially acknowledged, and multiculturalizing the curriculum meant situating science in unfamiliar real world contexts. These meanings of science positioned the teacher as authority and operated outside of a structural analysis of the salience of race, culture, gender, and disability in students' science learning experiences. As they taught and reflected on their teaching in light of their social justice commitments, I found that the teachers negotiated more constructivist and student-centered approaches to science education. These meanings of science required teachers to learn about students and make their experiences more central to their learning. Yet they continued to only acknowledge

  13. Teachers' Attitude towards Implementation of Learner-Centered Methodology in Science Education in Kenya

    Science.gov (United States)

    Ndirangu, Caroline

    2017-01-01

    This study aims to evaluate teachers' attitude towards implementation of learner-centered methodology in science education in Kenya. The study used a survey design methodology, adopting the purposive, stratified random and simple random sampling procedures and hypothesised that there was no significant relationship between the head teachers'…

  14. Social science teachers on citizenship education: A comparative study of two post-communist countries

    NARCIS (Netherlands)

    Jeliazkova, Margarita I.

    2015-01-01

    This paper presents some of the results of a comparative study of high school social science teachers in two post-communist European countries: Bulgaria and Croatia. In both countries, citizenship education was implemented as a part of the EU accession efforts. I discuss the ways teachers deal with

  15. Filling the Educator Pipeline: Recruiting Male Family and Consumer Sciences Teachers

    Science.gov (United States)

    Godfrey, Roxie V.; Manis, Kerry T.

    2017-01-01

    To encourage males to enter the teaching field, specifically in family and consumer sciences (FCS), FCS professionals should participate in recruitment initiatives aimed at males. Administrators, teacher educators, career counselors, and FCS teachers can play a significant role in this comprehensive and systematic effort. This paper adopts the…

  16. Diffusing Innovations: Adoption of Serious Educational Games by K-12 Science Teachers

    Science.gov (United States)

    Vallett, David; Annetta, Leonard; Lamb, Richard; Bowling, Brandy

    2014-01-01

    Innovation is a term that has become widely used in education; especially as it pertains to technology infusion. Applying the corporate theory of diffusing innovation to educational practice is an innovation in itself. This mixed-methods study examined 38 teachers in a science educational gaming professional development program that provided…

  17. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  18. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  19. [Teacher education in health sciences: from prescribing to form].

    Science.gov (United States)

    Schwartzman, Gisela; Roni, Carolina; Eder, María L

    2013-01-01

    From the Pedagogical Advisory of Italian Hospital's University Institute is a need to develop training processes regarding teaching practices that promote changes in regular teaching proposals. Teachers "in training", involved in counseling under the Teacher Education Program, in most cases have a career in the practice of teaching. That's why it is intended to recover their experiences and, at the same time, conduct them to a critical analysis towards improving their daily work. In this paper we review, and consider the perspective of those who have been trained under this system, the principles supporting the pedagogical counseling approach: the dialectical relationship between theory and practice, the reflection on action, and interventions redefinitions towards maintaining and reviewing its educational purposes.

  20. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  1. Education program at the Massachusetts Institute of Technology research reactor for pre-college science teachers

    International Nuclear Information System (INIS)

    Hopkins, G.R.; Fecych, W.; Harling, O.K.

    1989-01-01

    A Pre-College Science Teacher (PCST) Seminar program has been in place at the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory for 4 yr. The purpose of the PCST program is to educate teachers in nuclear technology and to show teachers, and through them the community, the types of activities performed at research reactors. This paper describes the background, content, and results of the MIT PCST program

  2. Implementation of National Science Education Standards in suburban elementary schools: Teachers' perceptions and classroom practices

    Science.gov (United States)

    Khan, Rubina Samer

    2005-07-01

    This was an interpretive qualitative study that focused on how three elementary school science teachers from three different public schools perceived and implemented the National Science Education Standards based on the Reformed Teaching Observation Protocol and individual interviews with the teachers. This study provided an understanding of the standards movement and teacher change in the process. Science teachers who were experienced with the National Science Education Standards were selected as the subjects of the study. Grounded in the theory of teacher change, this study's phenomenological premise was that the extent to which a new reform has an effect on students' learning and achievement on standardized tests depends on the content a teacher teaches as well as the style of teaching. It was therefore necessary to explore how teachers understand and implement the standards in the classrooms. The surveys, interviews and observations provided rich data from teachers' intentions, reflections and actions on the lessons that were observed while also providing the broader contextual framework for the understanding of the teachers' perspectives.

  3. Science teacher identity and eco-transformation of science education: comparing Western modernism with Confucianism and reflexive Bildung

    Science.gov (United States)

    Sjöström, Jesper

    2018-03-01

    This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on `reform-minded' science teachers. The starting point is the paper Science education reform in Confucian learning cultures: teachers' perspectives on policy and practice in Taiwan by Ying-Syuan Huang and Anila Asghar. It highlights several factors that can explain the difficulties of implementing "new pedagogy" in science education. One important factor is Confucian values and traditions, which seem to both hinder and support the science teachers' implementation of inquiry-based and learner-centered approaches. In this article Confucianism is compared with other learning cultures and also discussed in relation to different worldviews and educational philosophies in science education. Just like for the central/north European educational tradition called Bildung, there are various interpretations of Confucianism. However, both have subcultures (e.g. reflexive Bildung and Neo-Confucianism) with similarities that are highlighted in this article. If an "old pedagogy" in science education is related to essentialism, rationalist-objectivist focus, and a hierarchical configuration, the so called "new pedagogy" is often related to progressivism, modernism, utilitarianism, and a professional configuration. Reflexive Bildung problematizes the values associated with such a "new pedagogy" and can be described with labels such as post-positivism, reconstructionism and problematizing/critical configurations. Different educational approaches in science education, and corresponding eco-identities, are commented on in relation to transformation of educational practice.

  4. A Research-Based Science Teacher Education Program for a Competitive Tomorrow

    Science.gov (United States)

    Clary, R. M.; Hamil, B.; Beard, D. J.; Chevalier, D.; Dunne, J.; Saebo, S.

    2009-12-01

    A united commitment between the College of Education and the College of Arts and Sciences at Mississippi State University, in partnership with local high-need school districts, has the goal of increasing the number of highly qualified science teachers through authentic science research experiences. The departments of Geosciences, Biological Sciences, Chemistry, and Physics offer undergraduate pre-service teachers laboratory experiences in science research laboratories, including 1) paleontological investigations of Cretaceous environments, 2) NMR studies of the conformation of tachykinin peptides, 3) FHA domains as regulators of cell signaling in plants, 4) intermediate energy nuclear physics studies, and 5) computational studies of cyclic ketene acetals. Coordinated by the Department of Curriculum and Instruction, these research experiences involve extensive laboratory training in which the pre-teacher participants matriculate through a superior education curriculum prior to administrating their individual classrooms. Participants gain valuable experience in 1) performing literature searches and reviews; 2) planning research projects; 3) recording data; 4) presenting laboratory results effectively; and 5) writing professional scientific manuscripts. The research experience is available to pre-service teachers who are science education majors with a declared second major in a science (i.e., geology, biology, physics, or chemistry). Students are employed part-time in various science university laboratories, with work schedules arranged around their individual course loads. While the focus of this endeavor is upon undergraduate pre-service teachers, the researchers also target practicing science teachers from the local high-need school districts. A summer workshop provides practicing science teachers with a summative laboratory experience in several scientific disciplines. Practicing teachers also are provided lesson plans and ideas to transform their classrooms into

  5. Life Science Teachers' Decision Making on Sex Education

    Science.gov (United States)

    Gill, Puneet Singh

    2013-01-01

    The desires of young people and especially young bodies are constructed at the intersections of policies that set the parameters of sex education policies, the embodied experiences of students in classrooms, and the way bodies are discussed in the complex language of science. Moreover, more research points to the lack of scientifically and…

  6. Tech-Savvy Science Education? Understanding Teacher Pedagogical Practices for Integrating Technology in K-12 Classrooms

    Science.gov (United States)

    Hechter, Richard; Vermette, Laurie Anne

    2014-01-01

    This paper examines the technology integration practices of Manitoban K-12 inservice science educators based on the Technological, Pedagogical, and Content knowledge (TPACK) framework. Science teachers (n = 433) completed a 10-item online survey regarding pedagogical beliefs about technology integration, types of technology used, and how often…

  7. Model of training of computer science teachers by means of distant education technologies

    Directory of Open Access Journals (Sweden)

    Т А Соловьева

    2009-03-01

    Full Text Available Training of future computer science teachers in conditions of informatization of education is analyzed. Distant educational technologies (DET and traditional process of training, their advantages and disadvantages are considered, active functions of DET as the basis of the model of training by means of DET is stressed. It is shown that mixed education combining both distant ant traditional technologies takes place on the basis of the created model. Practical use of the model is shown on the example of the course «Recursion» for future computer science teachers.

  8. Leadership in Mobile Technology: An Opportunity for Family and Consumer Sciences Teacher Educators

    Science.gov (United States)

    Godfrey, Roxie V.; Duke, Sandra E.

    2014-01-01

    A stroll across campus reveals that students are plugged into mobile technology. They never have to break stride in their social connectivity as they pursue an education.Where does the family and consumer sciences (FCS) teacher educator fit into this opportunistic scenario? From its inception, FCS has been at the forefront in the application of…

  9. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    Science.gov (United States)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition

  10. Identifying and Formulating Teachers' Beliefs and Motivational Orientations for Computer Science Teacher Education

    Science.gov (United States)

    Bender, Elena; Schaper, Niclas; Caspersen, Michael E.; Margaritis, Melanie; Hubwieser, Peter

    2016-01-01

    How teachers are able to adapt to a changing environment is essentially dependent on their beliefs and motivational orientations. The development of these aspects in the context of professional competence takes place during teachers' educational phase and professional practice. The overall understanding of professional competence for teaching…

  11. Globalization and Teacher Education

    Science.gov (United States)

    Flinders, David J.

    2009-01-01

    Educational researchers and teacher educators are often concerned with immediate and practical questions. How can health teachers help youth avoid substance abuse? Should a high school biology teacher show Al Gore's "An Inconvenient Truth," or is that film too political for a science classroom? What sports should be included in a physical…

  12. A Self-Study of a Thai Teacher Educator Developing a Better Understanding of PCK for Teaching about Teaching Science

    Science.gov (United States)

    Faikhamta, Chatree; Clarke, Anthony

    2013-01-01

    In this study, I, the first author as a Thai teacher educator employed self-study as a research methodology to investigate my own understandings, questions, and curiosities about pedagogical content knowledge (PCK) for teaching science student teachers and the ways I engaged student teachers in a field-based science methods course designed to help…

  13. Training teachers to promote Talent Development in Science Students In Science Education

    NARCIS (Netherlands)

    van der Valk, Ton

    2014-01-01

    In recent years, the interest of governments and schools in challenging gifted and talented (G+T) science students has grown (Taber, 2007). In the Netherlands, the government promotes developing science programmes for talented secondary science students. This causes a need for training teachers, but

  14. Pedagogical perspectives and implicit theories of teaching: First year science teachers emerging from a constructivist science education program

    Science.gov (United States)

    Dias, Michael James

    Traditional, teacher-centered pedagogies dominate current teaching practice in science education despite numerous research-based assertions that promote more progressive, student-centered teaching methods. Best-practice research emerging from science education reform efforts promotes experiential, collaborative learning environments in line with the constructivist referent. Thus there is a need to identify specific teacher education program designs that will promote the utilization of constructivist theory among new teachers. This study explored the learning-to-teach process of four first-year high school teachers, all graduates of a constructivist-based science education program known as Teacher Education Environments in Mathematics and Science (TEEMS). Pedagogical perspectives and implicit theories were explored to identify common themes and their relation to the pre-service program and the teaching context. Qualitative methods were employed to gather and analyze the data. In depth, semi-structured interviews (Seidman, 1998) formed the primary data for probing the context and details of the teachers' experience as well as the personal meaning derived from first year practice. Teacher journals and teaching artifacts were utilized to validate and challenge the primary data. Through an open-coding technique (Strauss & Corbin, 1990) codes, and themes were generated from which assertions were made. The pedagogical perspectives apparent among the participants in this study emerged as six patterns in teaching method: (1) utilization of grouping strategies, (2) utilization of techniques that allow the students to help teach, (3) similar format of daily instructional strategy, (4) utilization of techniques intended to promote engagement, (5) utilization of review strategies, (6) assessment by daily monitoring and traditional tests, (7) restructuring content knowledge. Assertions from implicit theory data include: (1) Time constraints and lack of teaching experience made

  15. Developing Elementary Science PCK for Teacher Education: Lessons Learned from a Second Grade Partnership

    Science.gov (United States)

    Bradbury, Leslie U.; Wilson, Rachel E.; Brookshire, Laura E.

    2017-06-01

    In this self-study, two science educators partnered with two elementary teachers to plan, implement, and reflect on a unit taught in second grade classrooms that integrated science and language arts. The researchers hoped to increase their pedagogical content knowledge (PCK) for elementary science teaching so that they might use their experiences working in an elementary context to modify their practices in their elementary science method instruction. The research question guiding the study was: What aspects of our PCK for elementary science teaching do we as science educators develop by co-planning, co-teaching, and reflecting with second grade teachers? Data include transcripts of planning meetings, oral reflections about the experience, and videos of the unit being enacted. Findings indicate that managing resources for science teaching, organizing students for science learning, and reflecting on science teaching were themes prevalent in the data. These themes were linked to the model of PCK developed by Park and Oliver (Research in Science Education, 38, 261-284, 2008) and demonstrate that we developed PCK for elementary science teaching in several areas. In our discussion, we include several proposed changes for our elementary science methods course based on the outcomes of the study.

  16. Do Inquiring Minds Have Positive Attitudes? The Science Education of Preservice Elementary Teachers

    Science.gov (United States)

    Riegle-Crumb, Catherine; Morton, Karisma; Moore, Chelsea; Chimonidou, Antonia; Labrake, Cynthia; Kopp, Sacha

    2016-01-01

    Due to their potential impact on students' cognitive and non-cognitive outcomes, the negative attitudes towards science held by many elementary teachers are a critical issue that needs to be addressed. This study focuses on the science education of pre-service elementary teachers with the goal of improving their attitudes before they begin their professional lives as classroom teachers. Specifically, this study builds on a small body of research to examine whether exposure to inquiry-based science content courses that actively involve students in the collaborative process of learning and discovery can promote a positive change in attitudes towards science across several different dimensions. To examine this issue, surveys and administrative data were collected from over 200 students enrolled in the Hands on Science (HoS) program for pre-service teachers at the University of Texas at Austin, as well as more than 200 students in a comparison group enrolled in traditional lecture-style classes. Quantitative analyses reveal that after participating in HoS courses, pre-service teachers significantly increased their scores on scales measuring confidence, enjoyment, anxiety, and perceptions of relevance, while those in the comparison group experienced a decline in favorable attitudes to science. These patterns offer empirical support for the attitudinal benefits of inquiry-based instruction and have implications for the future learning opportunities available to students at all education levels. PMID:27667862

  17. The Views of Science Pre-Service Teachers about the Usage of Basic Information Technologies (BIT) in Education and Instruction

    Science.gov (United States)

    Çetin, Oguz

    2016-01-01

    In this study aiming to present a description based on science pre-service teachers' views related to use of Basic Information Technologies (BIT) in education and training, an interview is carried out with 21 pre-service science teachers who study in different classes in Faculty of Education, Nigde University. For this aim, improved interview form…

  18. Challenges of Virtual and Open Distance Science Teacher Education in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Vongai Mpofu

    2012-01-01

    Full Text Available This paper reports on a study of the implementation of science teacher education through virtual and open distance learning in the Mashonaland Central Province, Zimbabwe. The study provides insight into challenges faced by students and lecturers on inception of the program at four centres. Data was collected from completed evaluation survey forms of forty-two lecturers who were directly involved at the launch of the program and in-depth interviews. Qualitative data analysis revealed that the programme faces potential threat from centre-, institution-, lecturer-, and student-related factors. These include limited resources, large classes, inadequate expertise in open and distance education, inappropriate science teacher education qualifications, implementer conflict of interest in program participation, students’ low self-esteem, lack of awareness of quality parameters of delivery systems among staff, and lack of standard criteria to measure the quality of services. The paper recommends that issues raised be addressed in order to produce quality teachers.

  19. Educating elementary-aged English learners in science: Scientists and teachers working together

    Science.gov (United States)

    Banuelos, Gloria Rodriguez

    California's K-12 schools contain 40% of the nation's English learners, the majority of them enrolled at the elementary level. Traditionally, English learners in California have difficulty performing at the same level as their native English speaking counterparts on national achievement tests, such as the National Assessment of Educational Progress. In 1998, California voters passed Proposition 227 mandating that English learners be taught "overwhelmingly" in English, thus making teachers, many without expertise, responsible for teaching multilevel English proficient students subject matter. I studied the use of scientist-teacher partnerships as a resource for teachers of English learners. University scientists (graduate students) partnered with local elementary school teachers designed and implemented integrated science and English lessons for classrooms with at least 30% English learners. The study explored two major foci. First, integrated science and language lessons implemented by six scientist-teacher partnerships were investigated. Second, the responsibilities taken on by the team members during the implementation of integrated science and language lessons were examined. Three data sources were analyzed: (1) six lesson sequences comprised of 28 lessons; (2) 18 lesson worksheet; and (3) 24 participant Retrospective interview transcripts (12 scientists and 12 teachers). Lessons across were examined according to four analytical categories which included the following: (1) nature of the science activities (e.g. hands-on); nature of language activities (e.g. speaking); (2) nature of instructional practices (e.g. student grouping); and (3) responsibilities of teachers and scientists (e.g. classroom). A micro level analysis illustrates how one scientist-teacher team innovatively used a children's story, Goldilocks and the Three Bears, to teach the measurement of length and temperature. A macro level analysis identified three characteristics of science activities

  20. Working with mathematics and science teachers on Inquiry Based Learning (IBL) approaches : teacher belief. [VISIONS 2011: Teacher Education

    NARCIS (Netherlands)

    Sikko, S.A.; Lyngved, R.; Pepin, B.

    2012-01-01

    This paper reports on mathematics and science teachers’ beliefs concerning the use of inquiry-based teaching strategies. Two different surveys were conducted: one with 24 teachers who were to become future instructional leaders; and one with 75 teachers as part of an international baseline study. We

  1. If Science Teachers Are Positively Inclined Toward Inclusive Education, Why Is It So Difficult?

    Science.gov (United States)

    Spektor-Levy, Ornit; Yifrach, Merav

    2017-08-01

    This paper describes the unique challenges that students with learning disabilities (LD) experience in science studies and addresses the question of the extent to which science teachers are willing and prepared to teach in inclusive classrooms. We employed the theory of planned behavior (TPB), according to which behavioral intentions are a function of individuals' attitudes toward the behavior, their subjective norms, and their perceived control—i.e., their perception of the simplicity and benefits of performing the behavior. The study comprised 215 junior high school science teachers, who answered a TPB-based quantitative questionnaire. Semi-structured interviews were conducted to support and enrich the findings and conclusions. We found that teachers held positive attitudes and were willing to adapt their teaching methods (perceived control), which correlated and contributed to their behavioral intention. In terms of subjective norms, however, they felt a lack of support and ongoing guidance in providing the appropriate pedagogy to meet the needs of students with LD. We therefore recommend that educational policy makers and school management devote attention and resources to providing professional training and appropriate instructional materials and to establishing frameworks for meaningful cooperation between the science teachers and special education staff. This could ensure the efficient cooperation and coordination of all the involved parties and send a positive message of support to the science teachers who are the actual implementers of change.

  2. Initial Science Teacher Education in Portugal: The Thoughts of Teacher Educators about the Effects of the Bologna Process

    Science.gov (United States)

    Leite, Laurinda; Dourado, Luís; Morgado, Sofia

    2016-01-01

    Between the 1980s and 2007, Portugal used to have one-stage (5-year period) initial teacher education (ITE) programs. In 2007 and consistent with the Bologna process guidelines, Portuguese teacher education moved toward a two-stage model, which includes a 3-year undergraduate program of subject matter that leads to a "licenciatura" (or…

  3. Strengthening Mathematics And Science Education (SMASE) For Improving The Quality Of Teachers in Nigeria

    Science.gov (United States)

    Shuaibu, Zainab Muhammad

    2016-04-01

    The education system in Nigeria, especially at the basic education level, teachers who teach mathematics and science need to be confident with what they are teaching, they need to have appropriate techniques and strategies of motivating the pupils. If these subjects are not taught well at the basic education level its extraordinarily hard to get them (pupils/students) back to track, no matter what will be done in the secondary and tertiary level. Teachers as the driving force behind improvements in the education system are in the best position to understand and propose solutions to problems faced by students. Teachers must have access to sustainable, high quality professional development in order to improve teaching and student learning. Teachers' professional development in Nigeria, however, has long been criticized for its lack of sustainability and ability to produce effective change in teaching and students achievement. Education theorists today believe that a critical component of educational reform lies in providing teachers with various opportunities and supports structures that encourage ongoing improvement in teachers' pedagogy and discipline-specific content knowledge. However, the ongoing reforms in education sector and the need to refocus the Nigeria education system towards the goal of the National Economical Empowerment and Development Strategies (NEEDS) demand that the existing In-service and Education Training (INSET) in Nigeria be refocused. It is against this premise that an INSET programme aimed at Strengthening Mathematics And Science Education (SMASE) for primary and secondary school teachers was conceived. The relevance of the SMASE INSET according to the Project Design Matrix (PDM) was derived from an In-service aimed at enhancing the quality of teachers in terms of positive attitude, teaching methodology, mastery of content, resource mobilization and utilization of locally available teaching and learning materials. The intervention of

  4. Argumentation in Science Teacher Education: The simulated jury as a resource for teaching and learning

    Science.gov (United States)

    Drumond Vieira, Rodrigo; da Rocha Bernardo, José Roberto; Evagorou, Maria; Florentino de Melo, Viviane

    2015-05-01

    In this article, we focus on the contributions that a simulated jury-based activity might have for pre-service teachers, especially for their active participation and learning in teacher education. We observed a teacher educator using a series of simulated juries as teaching resources to help pre-service teachers develop their pedagogical knowledge and their argumentation abilities in a physics teacher methods course. For the purposes of this article, we have selected one simulated jury-based activity, comprising two opposed groups of pre-service teachers that presented aspects that hinder the teachers' development of professional knowledge (against group) and aspects that allow this development (favor group). After the groups' presentations, a group of judges was formed to evaluate the discussion. We applied a multi-level method for discourse analysis and the results showed that (1) the simulated jury afforded the pre-service teachers to position themselves as active knowledge producers; (2) the teacher acted as 'animator' of the pre-service teachers' actions, showing responsiveness to the emergence of circumstantial teaching and learning opportunities and (3) the simulated jury culminated in the judges' identification of the pattern 'concrete/obstacles-ideological/possibilities' in the groups' responses, which was elaborated by the teacher for the whole class. Implications from this study include using simulated juries for teaching and learning and for the development of the pre-service teachers' argumentative abilities. The potential of simulated juries to improve teaching and learning needs to be further explored in order to inform the uses and reflections of this resource in science education.

  5. Challenges of Virtual and Open Distance Science Teacher Education in Zimbabwe

    Science.gov (United States)

    Mpofu, Vongai; Samukange, Tendai; Kusure, Lovemore M.; Zinyandu, Tinoidzwa M.; Denhere, Clever; Huggins, Nyakotyo; Wiseman, Chingombe; Ndlovu, Shakespear; Chiveya, Renias; Matavire, Monica; Mukavhi, Leckson; Gwizangwe, Isaac; Magombe, Elliot; Magomelo, Munyaradzi; Sithole, Fungai; Bindura University of Science Education (BUSE),

    2012-01-01

    This paper reports on a study of the implementation of science teacher education through virtual and open distance learning in the Mashonaland Central Province, Zimbabwe. The study provides insight into challenges faced by students and lecturers on inception of the program at four centres. Data was collected from completed evaluation survey forms…

  6. Perceptions on the importance of gerontological education by teachers and students of undergraduate health sciences

    Directory of Open Access Journals (Sweden)

    Correa-Muñoz Elsa

    2007-01-01

    Full Text Available Abstract Background The main challenge of higher education institutions throughout the world is to develop professionals capable of understanding and responding to the current social priorities of our countries. Given the utmost importance of addressing the complex needs of an increasingly elderly population in Mexico, the National Autonomous University of Mexico has systematically incorporated modules dealing with primary gerontological health care into several of its undergraduate programs in health sciences. The objective of this study was to analyze teacher's and student's perceptions about the current educational practices on gerontology. Methods A cross-sectional study was carried out with a sample of 26 teachers and 122 undergraduate students. Subjects were administered interviews and responded survey instrument. Results A vast proportion of the teachers (42% reported students' attitudes towards their academic training as the most important factor affecting learning in the field of gerontology, whereas students reported that the main problems of education in gerontology were theoretical (32% and methodological (28%. In addition, 41% of students considered education on ageing matters as an essential element for their professional development, as compared to 19% of teachers (p Conclusion Our findings suggest that the teachers' perceptions about the low importance of education on ageing matters for the professional practice of health sciences could be a negative factor for gerontology teaching.

  7. A Comparison of Swiss and Turkish Pre-Service Science Teachers' Attitudes, Anxiety and Self-Efficacy Regarding Educational Technology

    Science.gov (United States)

    Efe, Hülya Aslan; Efe, Rifat; Yücel, Sait

    2016-01-01

    In this study, pre-service science teachers' anxiety, self-efficacy and attitudes regarding educational technology were investigated. Given the increased emphasis on educational technology in the classroom, teachers' attitudes, anxiety and self-efficacy regarding educational technology are important. The study was conducted with a total of 726…

  8. Analysing the problems of science teachers that they encounter while teaching physics education

    Directory of Open Access Journals (Sweden)

    Cihat Demir

    2015-12-01

    Full Text Available Even though physical science is very important in our daily lives, it is insufficiently understood by students. In order for students to get a better physical education, the teachers who have given physics lesson should first eliminated the problems that they face during the teaching process. The aim of this survey is to specify the matters encountered by science teachers during the teaching of physics and to provide them with solutions. The study group consisted of 50 science teachers who worked in Diyarbakır and Batman over the period of 2014 - 2015. This research is a descriptive study carried out by content analysis. In this study, semi-structured interview have been used along with qualitative research methods. According to the research findings, the top problems that the physics teachers encountered in physics lesson while processing the topics were laboratory problems. Some solutions have been introduced for science teachers in order to help them provide a better physics education.

  9. A study of the influence of a preservice science teacher education program over time

    Science.gov (United States)

    Maher, Terrence Patrick

    2009-12-01

    This dissertation looks at the beliefs and practices of thirteen science teachers across the teaching continuum. Three pre-service teachers, four student teachers, three first year teachers and three teachers with three or more years of experience were participants in this longitudinal study that took place between 2006 and 2009. All participants were graduates of a large university in the southeastern United States. The study found that inquiry-based teaching practices were taught at the university and most participants believe that it is a superior way of teaching science. Using the Reformed Teaching Observation Protocol (RTOP) instrument to measure the amount of inquiry-based teaching, the following findings were made: The highest level of inquiry-based teaching occurs during pre-service education. This was the only group to score within the "reformed-based" teaching range. The total RTOP scores decreased into the traditional teaching practice range during student teaching. The scores continued to decrease during the first and second years of teaching, showing an even stronger prevalence toward traditional teaching. A slight increase in the average total RTOP scores was noted with teachers having three or more years of experience. But even these teachers' scores were well within the traditional teaching method range. When interviewed, the most common reasons cited by these teachers for not using inquiry-based practice in the public classrooms were high stakes testing, crowded class sizes, and lack of equipment/support.

  10. Counter-storying the grand narrative of science (teacher) education: towards culturally responsive teaching

    Science.gov (United States)

    Taylor, Peter Charles

    2011-12-01

    John Settlage's article— Counterstories from White Mainstream Preservice Teachers: Resisting the Master Narrative of Deficit by Default—outlines his endeavour to enable pre-service teachers to develop culturally responsive science teaching identities for resisting the master narrative of deficit thinking when confronted by the culturally different `other.' Case study results are presented of the role of counterstories in enabling five pre-service teachers to overcome deficit thinking. In this forum, Philip Moore, a cultural anthropologist and university professor, deepens our understanding of the power and significance of counterstories as an educational tool for enabling students to deconstruct oppressive master narratives. Jill Slay, dean of a science faculty, examines her own master narrative about the compatibility of culturally similar academics and graduate students, and finds it lacking. But first, I introduce this scholarship with background notes on the critical paradigm and its adversary, the grand narrative of science education, following which I give an appreciative understanding of John's pedagogical use of counterstories as a transformative strategy for multi-worldview science teacher education.

  11. Exploring the role of curriculum materials to support teachers in science education reform

    Science.gov (United States)

    Schneider, Rebecca M.

    2001-07-01

    For curriculum materials to succeed in promoting large-scale science education reform, teacher learning must be supported. Materials were designed to reflect desired reforms and to be educative by including detailed lesson descriptions that addressed necessary content, pedagogy, and pedagogical content knowledge for teachers. The goal of this research was to describe how such materials contributed to classroom practices. As part of an urban systemic reform effort, four middle school teachers' initial enactment of an inquiry-based science unit on force and motion were videotaped. Enactments focused on five lesson sequences containing experiences with phenomena, investigation, technology use, or artifact development. Each sequence spanned three to five days across the 10-week unit. For each lesson sequence, intended and actual enactment were compared using ratings of (1) accuracy and completeness of science ideas presented, (2) amount student learning opportunities, similarity of learning opportunities with those intended, and quality of adaptations , and (3) amount of instructional supports offered, appropriateness of instructional supports and source of ideas for instructional supports. Ratings indicated two teachers' enactments were consistent with intentions and two teachers' enactments were not. The first two were in school contexts supportive of the reform. They purposefully used the materials to guide enactment, which tended to be consistent with standards-based reform. They provided students opportunities to use technology tools, design investigations, and discuss ideas. However, enactment ratings were less reflective of curriculum intent when challenges were greatest, such as when teachers attempted to present challenging science ideas, respond to students' ideas, structure investigations, guide small-group discussions, or make adaptations. Moreover, enactment ratings were less consistent in parts of lessons where materials did not include lesson specific

  12. Teacher and Student Perceptions on High School Science Flipped Classrooms: Educational Breakthrough or Media Hype?

    Science.gov (United States)

    Hunley, Rebecca C.

    For years educators have struggled to ensure students meet the rigors of state mandated tests. Challenges that often impede student success are student absences, school closings due to weather, and remediation for students who need additional help while advanced students can move ahead. Many educators, especially secondary math and science teachers, have responded to these issues by implementing a teaching strategy called the flipped classroom where students view lectures, power points, or podcasts outside of school and class time shifts to allow opportunities for collaborative learning. The purpose of this research was to evaluate teacher and student perceptions of high school flipped science classrooms. A qualitative phenomenological study was conducted to observe 3 high school science teachers from Georgia, North Carolina, and Tennessee selected through purposeful sampling who have used the flipped classroom method for a minimum of 2 years. Analysis of data from an online survey, direct observation, teacher interviews, and student focus groups helped to identify challenges and benefits of this teaching and learning strategy. Findings indicated that teachers find the flipped classroom beneficial to build student relationships but requires a significant amount of time to develop. Mixed student reactions revealed benefits of a flipped classroom as a successful learning tool for current and future endeavors for college or career preparation.

  13. Integrating Art into Science Education: A Survey of Science Teachers' Practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-01-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science…

  14. Hopes and Fears for Science Teaching: The Possible Selves of Preservice Teachers in a Science Education Program

    Science.gov (United States)

    Hong, Ji; Greene, Barbara

    2011-01-01

    Given the high attrition rate of beginning science teachers, it is imperative to better prepare science preservice teachers, so that they can be successful during the early years of their teaching. The purpose of this study was to explore science preservice teachers' views of themselves as a future teacher, in particular their hopes and fears for…

  15. Inquiry-Based Science Education Competencies of Primary School Teachers: A Literature Study and Critical Review of the American National Science Education Standards

    Science.gov (United States)

    Alake-Tuenter, Ester; Biemans, Harm J. A.; Tobi, Hilde; Wals, Arjen E. J.; Oosterheert, Ida; Mulder, Martin

    2012-01-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils' application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach inquiry-based science. Our purpose is to develop a…

  16. An educational ethnography of teacher-developed science curriculum implementation: Enacting conceptual change-based science inquiry with Hispanic students

    Science.gov (United States)

    Brunsell, Eric Steven

    An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.

  17. The Current Situation of Field Experience in a Five-Year Science Teacher Education Program in Thailand

    Science.gov (United States)

    Faikhamta, Chatree; Jantarakantee, Ekgapoom; Roadrangka, Vantipa

    2011-01-01

    This research explored the current situation in managing the field experience of a five-year science teacher education program in one university in Thailand. A number of methods were used to assess field experience situation: (1) a questionnaire on the perceptions of pre-service science teachers of field experience management; (2) participant…

  18. Educating for Sustainability: Environmental Pledges as Part of Tertiary Pedagogical Practice in Science Teacher Education

    Science.gov (United States)

    Paige, Kathryn

    2017-01-01

    Educating for sustainability has been a key principle underpinning the primary/middle undergraduate teacher education programme at an Australian University for the past decade. Educating for sustainability seeks to provide knowledge and understanding of the physical, biological, and human world, and involves students making decisions about a range…

  19. Developing a science teacher education course that supports student teachers' thinking and teaching about the nature of science

    Science.gov (United States)

    Sorensen, Pete; Newton, Len; McCarthy, Sue

    2012-04-01

    Background and purpose . This paper reports on part of an ongoing research project in England concerning the Nature of Science (NOS). The particular focus is on the initial thinking of the graduate scientists starting a one-year, Postgraduate Certificate of Education (PGCE) course and the way the course approaches adopted influence their views and understanding of NOS and their teaching. The research is set against a wealth of literature indicating that teachers find it difficult to teach curricula that emphasise NOS. Thus a key impetus for research in this area has been to look for ways that beginning teachers might be better prepared to face such challenges. Sample The paper draws on data from three cohorts of secondary PGCE students in a university-schools partnership, involving a total of 169 students. Design and method The research lies within a design research tradition. It has used mixed methods, involving written tasks, interviews and focus groups, with an iterative approach where the outcomes from one cohort have been used to inform course developments in successive years. Results The results from these cohorts suggest that, while the students starting the course have a less restricted view of NOS than indicated by some other studies, in most cases there is a lack of breadth and depth to their understanding. There is some evidence that the use of specific tasks focusing on NOS in university-based sessions may be helping to develop and deepen understanding. However, the impact of current approaches remains fairly limited and attempts to develop teaching practices often face considerable barriers in the school-based practicum. Conclusions Graduate science students' understanding of NOS as they embark on the PGCE is not highly developed. Hence, the emphasis on aspects of NOS in the school curriculum presents a considerable challenge. This study suggests that there is a need to both further develop an explicit focus on NOS in university-based sessions and to

  20. Expressions of agency within complex policy structures: science teachers' experiences of education policy reforms in Sweden

    Science.gov (United States)

    Ryder, Jim; Lidar, Malena; Lundqvist, Eva; Östman, Leif

    2018-03-01

    We explore the experiences of school science teachers as they enact three linked national curriculum and assessment policy reforms in Sweden. Our goal is to understand teachers' differing responses to these reforms. A sample of 13 teachers engaged in 2 interviews over a 6-9-month period. Interviews included exploration of professional background and school context, perceptions of the aims of the policy reforms and experiences of working with these reforms in the classroom. Analysis was guided by an individual-oriented sociocultural perspective on professional agency. Here teaching is conceptualised as an ongoing interplay between teachers' knowledge, skills and personal goals, and the characteristics of the social, institutional and policy settings in which they work. Our analysis shows that navigating the ensuing continuities and contradictions results in many different expressions of teacher agency, e.g. loss of autonomy and trust, pushing back, subversion, transfer of authority, and creative tensions. Typically, an individual teacher's enactment of these reforms involved several of these expressions of agency. We demonstrate that the sociocultural perspective provides insights into teachers' responses to education policy reform likely to be missed by studies that focus largely on individual teacher knowledge/beliefs about reform or skills in 'implementing' reform practices.

  1. Master teachers' responses to twenty literacy and science/mathematics practices in deaf education.

    Science.gov (United States)

    Easterbrooks, Susan R; Stephenson, Brenda; Mertens, Donna

    2006-01-01

    Under a grant to improve outcomes for students who are deaf or hard of hearing awarded to the Association of College Educators--Deaf/Hard of Hearing, a team identified content that all teachers of students who are deaf and hard of hearing must understand and be able to teach. Also identified were 20 practices associated with content standards (10 each, literacy and science/mathematics). Thirty-seven master teachers identified by grant agents rated the practices on a Likert-type scale indicating the maximum benefit of each practice and maximum likelihood that they would use the practice, yielding a likelihood-impact analysis. The teachers showed strong agreement on the benefits and likelihood of use of the rated practices. Concerns about implementation of many of the practices related to time constraints and mixed-ability classrooms were themes of the reviews. Actions for teacher preparation programs were recommended.

  2. Cultural Memory Banking in Preservice Science Teacher Education

    Science.gov (United States)

    Handa, Vicente C.; Tippins, Deborah J.

    2012-01-01

    This study focused on the exemplification of cultural memory banking as an ethnographic tool to understand cultural practices relevant to science teaching and learning in a rural coastal village in a central island of the Philippine archipelago. Using the collaborative action ethnography as a research methodology, 10 prospective science teachers…

  3. Precipitation Education: Connecting Students and Teachers with the Science of NASA's GPM Mission

    Science.gov (United States)

    Weaver, K. L. K.

    2015-12-01

    The Global Precipitation Measurement (GPM) Mission education and communication team is involved in variety of efforts to share the science of GPM via hands-on activities for formal and informal audiences and engaging students in authentic citizen science data collection, as well as connecting students and teachers with scientists and other subject matter experts. This presentation will discuss the various forms of those efforts in relation to best practices as well as lessons learned and evaluation data. Examples include: GPM partnered with the Global Observations to Benefit the Environment (GLOBE) Program to conduct a student precipitation field campaign in early 2015. Students from around the world collected precipitation data and entered it into the GLOBE database, then were invited to develop scientific questions to be answered using ground observations and satellite data available from NASA. Webinars and blogs by scientists and educators throughout the campaign extended students' and teachers' knowledge of ground validation, data analysis, and applications of precipitation data. To prepare teachers to implement the new Next Generation Science Standards, the NASA Goddard Earth science education and outreach group, led by GPM Education Specialists, held the inaugural Summer Watershed Institute in July 2015 for 30 Maryland teachers of 3rd-5th grades. Participants in the week-long in-person workshop met with scientists and engineers at Goddard, learned about NASA Earth science missions, and were trained in seven protocols of the GLOBE program. Teachers worked collaboratively to make connections to their own curricula and plan for how to implement GLOBE with their students. Adding the arts to STEM, GPM is producing a comic book story featuring the winners of an anime character contest held by the mission during 2013. Readers learn content related to the science and technology of the mission as well as applications of the data. The choice of anime/manga as the style

  4. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    Science.gov (United States)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  5. Exploring the development of science self-efficacy in preservice elementary school teachers participating in a science education methods course

    Science.gov (United States)

    Gunning, Amanda M.

    The demands of society's increasing dependence on science and technology call for our students to have a solid foundation in science education, starting in the earliest grades. However, elementary school teachers often lack the necessary experiences to deliver that education. This qualitative study seeks to explore the development of six preservice elementary teachers in a semester-long science methods course. The course consisted of many components; one in particular was a microteaching experience, which emerged as especially significant. The participants' experiences throughout the semester were studied primarily through the lens of self-efficacy, but were also examined considering learning theories and mental models. It was found that two participants in particular were self-directed learners and were able to construct for themselves a self-selected cognitive apprenticeship. Other findings include the significance of a microteaching experience on development of self-efficacy in science teaching and the role mental models may or may not play in development of self-efficacy in the science methods course. This study has implications both for preservice elementary education in science and in general.

  6. Action research in gender issues in science education: Towards an understanding of group work with science teachers

    Science.gov (United States)

    Nyhof-Young, Joyce Marion

    Action research is emerging as a promising means of promoting individual and societal change in the context of university programmes in teacher education. However, significant gaps exist in the literature regarding the use of action research groups for the education of science teachers. Therefore, an action research group, dealing with gender issues in science education, was established within the context of a graduate course in action research at OISE. For reasons outlined in the thesis, action research was deemed an especially appropriate means for addressing issues of gender. The group met 14 times from September 1992 until May 1993 and consisted of myself and five other science teachers from the Toronto area. Two of us were in the primary panel, two in the intermediate panel, and two in the tertiary panel. Five teachers were female. One was male. The experiences of the group form the basis of this study. A methodology of participant observation supported by interviews, classroom visits, journals, group feedback and participant portfolios provides a means of examining experiences from the perspective of the participants in the group. The case study investigates the nature of the support and learning opportunities that the action research group provided for science teachers engaged in curiculum and professional development in the realm of gender issues in science education, and details the development of individuals, the whole group and myself (as group worker, researcher and participant) over the life of the project. The action research group became a resource for science teachers by providing most participants with: A place to personalize learning and research; a place for systematic reflection and research; a forum for discussion; a source of personal/professional support; a source of friendship; and a place to break down isolation and build self-confidence. This study clarifies important relational and political issues that impinge on action research in

  7. Inspiring Climate Education Excellence(ICEE): Developing Elearning professional development modules - secondary science teachers

    Science.gov (United States)

    Kellagher, E.; Buhr, S. M.; Lynds, S. E.; McCaffrey, M. S.; Cires Education Outreach

    2011-12-01

    Inspiring Climate Education Excellence (ICEE) is a NASA-funded project to develop content knowledge and knowledge of effective teaching strategies in climate education among secondary science teachers. ICEE resources are aligned with the Essential Principles of Climate Science. Building upon a needs assessment and face to face workshop, ICEE resources include iTunesU videos, an ICEE 101 resource site with videos and peer-reviewed learning activities, and a moderated online forum. Self-directed modules and an online course are being developed around concepts and topics in which teachers express the most interest and need for instruction. ICEE resources include attention to effective teaching strategies, such as awareness of student misconceptions, strategies for forestalling controversy and advice from master teachers on implementation and curriculum development. The resources are being developed in partnership with GLOBE, and the National Science Digital Library (NSDL) and are informed by the work of the Climate Literacy and Energy Awareness Network (CLEAN) project. ICEE will help to meet the professional development needs of teachers, including those participating in the GLOBE Student Climate Research Campaign.

  8. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    Science.gov (United States)

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-06-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own classrooms. The study analyzed the mean scale scores for the science portion of the state's high school graduation test for the years 2004 through 2007 to determine whether schools receiving the intervention scored significantly higher than comparison schools receiving no intervention. The results showed that all schools achieved significant improvement of scale scores between 2004 and 2007, but there were no significant performance differences between intervention and comparison schools, nor were there any significant differences between various subgroups in intervention and comparison schools. However, one subgroup, economically disadvantaged (ED) students, from high-level intervention schools closed the achievement gap with ED students from no-intervention schools across the period of the study. The study provides important information to guide future research on and design of large-scale professional development programs to foster inquiry-based science.

  9. Challenges of Virtual and Open Distance Science Teacher Education in Zimbabwe

    OpenAIRE

    Vongai Mpofu; Tendai Samukange; Lovemore M Kusure; Tinoidzwa M Zinyandu; Clever Denhere; Nyakotyo Huggins; Chingombe Wiseman; Shakespear Ndlovu; Rennias Chiveya; Monica Matavire; Leckson Mukavhi; Isaac Gwizangwe; Elliot Magombe; Munyaradzi Magomelo; Fungai Sithole

    2012-01-01

    This paper reports on a study of the implementation of science teacher education through virtual and open distance learning in the Mashonaland Central Province, Zimbabwe. The study provides insight into challenges faced by students and lecturers on inception of the program at four centres. Data was collected from completed evaluation survey forms of forty-two lecturers who were directly involved at the launch of the program and in-depth interviews. Qualitative data analysis revealed that the ...

  10. Science education for empowerment and social change: a case study of a teacher educator in urban Pakistan

    Science.gov (United States)

    Zahur, Rubina; Calabrese Barton, Angela; Upadhyay, Bhaskar Raj

    2002-09-01

    In this manuscript we focus on the question, 'What should be the purpose of science education for children of the very poor class in caste-oriented developing countries such as Pakistan?' In other words, in a country where the literacy rate hovers around 10 per cent for the poorest segment of society and where there is no expectation that children will complete primary school, of what importance is primary science education and to what end should it be offered in schools? We begin a conversation around this question by presenting, in this manuscript, a case study of one teacher educator whose beliefs and practices sharply deviate from the norm - she believes science education ought to be about empowering students to make physical and political changes in their community. In particular, using the rich, contextual interview and observational data generated through case study, we show how Haleema's (pseudonym) orientation to science teacher education are buttressed by three fundamental beliefs: that low levels of literacy and school achievement among poor children have as much to do with poor families' lack of power/influence on the purposes and processes of schooling as it has to do with opportunities and resources; that school science can begin to address inequalities in power by fostering a kind of scientific literacy among children that leads to individual and community empowerment around health and environmental issues, the very science-related issues that divide quality of life and opportunity for poor families; and that teacher education programmes can play a role in transforming a society's views about how science and scientific practices might play a role in bringing communities together to effect change for the better.

  11. Primary Teachers' Reflections on Inquiry- and Context-Based Science Education

    Science.gov (United States)

    Walan, Susanne; Mc Ewen, Birgitta

    2017-04-01

    Inquiry- and context-based teaching strategies have been proven to stimulate and motivate students' interests in learning science. In this study, 12 teachers reflected on these strategies after using them in primary schools. The teachers participated in a continuous professional development (CPD) programme. During the programme, they were also introduced to a teaching model from a European project, where inquiry- and context-based education (IC-BaSE) strategies were fused. The research question related to teachers' reflections on these teaching strategies, and whether they found the model to be useful in primary schools after testing it with their students. Data collection was performed during the CPD programme and consisted of audio-recorded group discussions, individual portfolios and field notes collected by researchers. Results showed that compared with using only one instructional strategy, teachers found the new teaching model to be a useful complement. However, their discussions also showed that they did not reflect on choices of strategies or purposes and aims relating to students' understanding, or the content to be taught. Before the CPD programme, teachers discussed the use of inquiry mainly from the aspect that students enjoy practical work. After the programme, they identified additional reasons for using inquiry and discussed the importance of knowing why inquiry is performed. However, to develop teachers' knowledge of instructional strategies as well as purposes for using certain strategies, there is need for further investigations among primary school teachers.

  12. The Level of Utilizing Blended Learning in Teaching Science from the Point of View of Science Teachers in Private Schools of Ajman Educational Zone

    Science.gov (United States)

    Al-Derbashi, Khaled Y.; Abed, Osama H.

    2017-01-01

    This study aims to define the level of utilizing blended learning in teaching science from the point of view of science teachers (85 male and female teachers) who are working in private schools of Ajman Educational Zone. The study also aims to find if there are significant differences according to gender, years of experience, or the fact that…

  13. Instructional Support and Implementation Structure during Elementary Teachers' Science Education Simulation Use

    Science.gov (United States)

    Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.

    2016-01-01

    This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results…

  14. Pura Vida: Teacher Experiences in a Science Education Study Abroad Course in Costa Rica

    Science.gov (United States)

    Medina, Stephanie Rae

    The purpose of this study was to explore the experiences of classroom teachers who participated in a science-focused study abroad during their time as a preservice teacher and to explore how they are using their study abroad experiences in science curriculum planning and in classroom instruction. This study is guided by two research questions: 1) what are the study abroad experiences that have influenced classroom teachers; and, 2) how do classroom teachers incorporate study abroad experiences into science curriculum planning and instruction in the classroom? Participants were two in-service science teachers from schools located in the Southwestern United States. The participants were enrolled in the course, Environmental Science and Multicultural Experience for K-8 Teachers offered through the Department of Educational Leadership, Curriculum and Instruction during their time as preservice teachers. The course included a two-week study abroad component in Costa Rica. Participants spent their mornings observing a monolingual, Spanish-speaking elementary classroom followed by a faculty-led multicultural seminar. Afternoons during the study abroad experience were dedicated to field science activities such as quantifying plant and animal biodiversity, constructing elevation profiles, determining nutrient storage in soil, and calculating river velocity. Throughout the course students participated in science-focused excursions. A cross case study design was used to answer the two research questions guiding this dissertation study. Data collection included participant-created concept maps of the science experiences during the study abroad experience, in-depth interviews detailing the study abroad experience and classroom instruction, and participant reflective journal entries. Cross-caseanalysis was employed to explore the uniqueness of each participant's experience and commonalities between the cases. Trustworthiness was established by utilizing multiple sources of data

  15. Fostering solidarity and transforming identities: A collaborative approach to elementary science teacher education

    Science.gov (United States)

    Siry, Christina A.

    This study explores the use of coteaching and cogenerative dialogue in pre-service elementary teacher education, and the ways in which collaborating to share responsibility for learning and teaching can afford the development of solidarity and new teachers' identity transformations. Specifically, the research detailed in this dissertation focuses on learning to teach science in a field-based methods course taught partially on a college campus and partially in an urban elementary school. I used critical ethnography guided by the theoretical frameworks of cultural sociology and the sociology of emotions. The lens of phenomenology provided the contextual aspects of the individual experience, and design experiment was utilized as the research unfolded, affording continual redesign of the work. Issues of identity and group membership are central to this research, and I have explored connections between the emergence of solidarity within a group of teachers and the individual identity transformations supported through a collective sense of belonging. A key component of this study was an analysis of the co-responsibility nurtured through coteaching and cogenerative dialogue, and thus the dialectical relationship between the individual and the collective is critical to this research. At the individual level, I examined identity development, and individual participation in a field-based methods course. At the collective level, I considered the ways that participants form collective identities and group solidarity. Two of the chapters of my dissertation are coauthored with students, as I have sought to dismantle teacher-student hierarchies and replace them with complex relationships supported through polysemic and polyphonic approaches to research. In examining identity and solidarity as they emerged from this approach, I make the following contributions to science teacher education; (1) identify resources and practices in elementary science teaching that surface in a

  16. A study of the effectiveness of a four semester preservice Secondary Science Teacher Education program regarding changes in teacher perceptions and practices

    Science.gov (United States)

    Yakar, Zeha

    The purpose of this study was to investigate the development and change in constructivist behaviors of preservice science teachers of the Iowa-Secondary Science Teacher Education Program (SSTEP) over the four semester sequence. Constructivist behaviors were investigated from four perspectives; including actual classroom performances as viewed from videotapes, teacher perceptions of teacher use of constructivist teaching practices, and teacher beliefs as gained from open-ended questions, and written artifacts. The participants of the study included a total of 41 secondary science preservice teachers in four different semesters of their teacher preparation program. Three instruments were used to generate the main data to answer the research questions. The three instruments were: (1) Constructivist Learning Environment Survey (CLES), (2) Philosophy of Teaching and Learning (PTL), and (3) videotape portfolio evaluated with the Reformed Teaching Observation Protocol (RTOP). Major findings include the following: (1) Preservice teachers' perceptions regarding constructivist approaches become significantly and increasingly more student-centered in terms of Personal Relevance, Critical Voice, Shared Control, and Student Negotiation as they prepare through the four semester sequence. (2) Preservice teachers' conceptions concerning teaching and learning become significantly and increasingly more student-centered in terms of what students need to do to improve their understanding of science concepts. (3) Preservice teachers conceptions and their perceptions about actual classroom practices rarely align with observed teaching practices in their classrooms. Although preservice teachers hold student-centered beliefs and perceptions, their actual classroom teaching practices were "transitional constructivist". (4) Preservice teachers' constructivist practices of teaching and learning began to decline in the third semester with preservice teachers moving towards more teacher

  17. Preparing "Professional" Science Teachers: Critical Goals.

    Science.gov (United States)

    Dass, Pradeep Maxwell

    This paper focuses on pre-service teacher education and elaborates on the critical importance of three attributes to the development of professional science teachers: (1) science teachers must be reflective practitioners of their profession; (2) all instructional practice and decisions of science teachers must be backed by a research-based…

  18. Perceptions of Science Teachers on Implementation of Seven Principles for Good Practice in Education by Chickering and Gamson in Courses

    Science.gov (United States)

    Ugras, Mustafa; Asiltürk, Erol

    2018-01-01

    The present study aimed to determine the perceptions of science teachers on the implementation of the seven principles for good practice in education by Chickering and Gamson in their courses. Seven principles for good science education were used as a data collection tool in the survey. "The seven principles for good practice in science…

  19. Toward Understanding the Nature of a Partnership between an Elementary Classroom Teacher and an Informal Science Educator

    Science.gov (United States)

    Weiland, Ingrid S.; Akerson, Valarie L.

    2013-01-01

    This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was…

  20. Professional Development in Climate Science Education as a Model for Navigating the Next Generations Science Standards - A High School Science Teacher's Perspective

    Science.gov (United States)

    Manning, C.; Buhr, S. M.

    2012-12-01

    The Next Generation Science Standards attempt to move the American K12 education system into the 21st century by focusing on science and engineering practice, crosscutting concepts, and the core ideas of the different disciplines. Putting these standards into practice will challenge a deeply entrenched system and science educators will need significant financial support from state and local governments, professional development from colleges and universities, and the creation of collegial academic networks that will help solve the many problems that will arise. While all of this sounds overwhelming, there are proven strategies and mechanisms already in place. Educators who tackle challenging topics like global climate change are turning to scientists and other like-minded teachers. Many of these teachers have never taken a class in atmospheric science but are expected to know the basics of climate and understand the emerging science as well. Teachers need scientists to continue to reach out and provide rigorous and in-depth professional development opportunities that enable them to answer difficult student questions and deal with community misconceptions about climate science. Examples of such programs include Earthworks, ICEE (Inspiring Climate Education Excellence) and ESSEA (Earth System Science Education Alliance). Projects like CLEAN (Climate Literacy and Energy Awareness Network) provide excellent resources that teachers can integrate into their lessons. All of these benefit from the umbrella of documents like Climate Literacy: The Essential Principles of Climate Science. Support from the aforementioned networks has encouraged the development of effective approaches for teaching climate science. From the perspective of a Geoscience master teacher and instructional coach, this presentation will demonstrate how scientists, researchers, and science education professionals have created models for professional development that create long-term networks supporting

  1. Technology and Early Science Education: Examining Generalist Primary School Teachers' Views on Tacit Knowledge Assessment Tools

    Science.gov (United States)

    Hast, Michael

    2017-01-01

    For some time a central issue has occupied early science education discussions--primary student classroom experiences and the resulting attitudes towards science. This has in part been linked to generalist teachers' own knowledge of science topics and pedagogical confidence. Recent research in cognitive development has examined the role of…

  2. Emotional climate of a pre-service science teacher education class in Bhutan

    Science.gov (United States)

    Rinchen, Sonam; Ritchie, Stephen M.; Bellocchi, Alberto

    2016-09-01

    This study explored pre-service secondary science teachers' perceptions of classroom emotional climate in the context of the Bhutanese macro-social policy of Gross National Happiness. Drawing upon sociological perspectives of human emotions and using Interaction Ritual Theory this study investigated how pre-service science teachers may be supported in their professional development. It was a multi-method study involving video and audio recordings of teaching episodes supported by interviews and the researcher's diary. Students also registered their perceptions of the emotional climate of their classroom at 3-minute intervals using audience response technology. In this way, emotional events were identified for video analysis. The findings of this study highlighted that the activities pre-service teachers engaged in matter to them. Positive emotional climate was identified in activities involving students' presentations using video clips and models, coteaching, and interactive whole class discussions. Decreases in emotional climate were identified during formal lectures and when unprepared presenters led presentations. Emotions such as frustration and disappointment characterized classes with negative emotional climate. The enabling conditions to sustain a positive emotional climate are identified. Implications for sustaining macro-social policy about Gross National Happiness are considered in light of the climate that develops in science teacher education classes.

  3. Using case method to explicitly teach formative assessment in preservice teacher science education

    Science.gov (United States)

    Bentz, Amy Elizabeth

    The process of formative assessment improves student understanding; however, the topic of formative assessment in preservice education has been severely neglected. Since a major goal of teacher education is to create reflective teaching professionals, preservice teachers should be provided an opportunity to critically reflect on the use of formative assessment in the classroom. Case method is an instructional methodology that allows learners to engage in and reflect on real-world situations. Case based pedagogy can play an important role in enhancing preservice teachers' ability to reflect on teaching and learning by encouraging alternative ways of thinking about assessment. Although the literature on formative assessment and case methodology are extensive, using case method to explore the formative assessment process is, at best, sparse. The purpose of this study is to answer the following research questions: To what extent does the implementation of formative assessment cases in methods instruction influence preservice elementary science teachers' knowledge of formative assessment? What descriptive characteristics change between the preservice teachers' pre-case and post-case written reflection that would demonstrate learning had occurred? To investigate these questions, preservice teachers in an elementary methods course were asked to reflect on and discuss five cases. Pre/post-case data was analyzed. Results indicate that the preservice teachers modified their ideas to reflect the themes that were represented within the cases and modified their reflections to include specific ideas or examples taken directly from the case discussions. Comparing pre- and post-case reflections, the data supports a noted change in how the preservice teachers interpreted the case content. The preservice teachers began to evaluate the case content, question the lack of formative assessment concepts and strategies within the case, and apply formative assessment concepts and

  4. Satisfaction of Social and Legal Sciences teachers with the introduction of the European Higher Education Area

    Directory of Open Access Journals (Sweden)

    Tania Ariza

    2014-01-01

    Full Text Available University teachers are one of the main figures in the European convergence process, but their attitude towards the reform of Spanish university studies is unknown. Therefore, the objective of this study is to evaluate the satisfaction of Social and Legal Sciences teachers towards the introduction of the European Higher Education Area (EHEA. The sample was made up of 3,068 teachers from Spanish public universities, who teach in the said field. An online questionnaire was created for this purpose, with questions relating to the EHEA, teacher tasks and training, as well as aspects related to methodology and the teaching and learning process, amongst others. Cronbach´s alpha coefficient was .81. It is a population-based, descriptive study using a cross-sectional survey with a probability sample. In the results it can be observed that only 9.3% of teachers are satisfied with the adaptation of higher education to the EHEA. Finally, the limitations faced by teaching staff in consolidating this process will be discussed.

  5. Teaching Teachers of Science

    Science.gov (United States)

    Lockman, F. J.; Heatherly, S. A.

    2001-05-01

    Most K-12 teachers of science have never actually done research, and this creates considerable confusion and misunderstanding about the nature of science. For more than 10 years the NRAO at Green Bank has conducted programs of teacher training, funded by the NSF, which provide a research experience in radio astronomy that can be generalized and applied in the classroom. Our program is under the direction of educators from the NRAO and WVU, but uses the unique facilities of the Observatory and the active participation of its scientific staff. Evaluations have shown that the two-week programs are effective in making significant, positive changes in attitude and understanding of the participants. We are in the process of expanding our educational activities so that every student in the region and the State will be able to participate in at least one program at the Observatory before they graduate from high school.

  6. Training Teachers for the Knowledge Society: Social Media in Science Education

    Directory of Open Access Journals (Sweden)

    Dana Crăciun

    2016-01-01

    Full Text Available Internet and social media (SM have revolutionized the way scientific information is disseminated within our society. Nowadays professional and/or social networks are increasingly used for learning and informal science education successfully supplements the formal one at alleducational levels. Students become addicted to technology from an early age and consistently use SM for communication purposes and personal image. In this context, it is reasonable to assume that the use of Web 2.0 and SM can be successfully integrated in formal science education. This integration, however, depends mainly on how teachers design the learning activities using Web 2.0 and SM, on their digital skills and expertise, on their attitude towards using SM to communicate for personal and professional purposes and to obtain educational benefits. In this study we start from the premise that a positive attitude of future science teachers towards ICT integration and theirwillingness to use SM in their educational communication can be formed in the initial teacher training program, being a crucial factor for the effective use of such tools in education in the future. We detail two activities and analyze them from the SM and Web 2.0 integration perspectives. The first activity is an extracurricular one in which students had to create a digital story and present it to secondary school children in class. The second activity is a curricular one aimed to promote a project-based learning and based on making a comic about an optical phenomenon taught in secondary school. We present and discuss these activities to emphasize how the skills that targetscience teaching using ICT and SM can be developed.

  7. Inquiry-Based Science Education Competencies of Primary School Teachers: A literature study and critical review of the American National Science Education Standards

    NARCIS (Netherlands)

    Alake - Tuenter, E.; Biemans, H.J.A.; Tobi, H.; Wals, A.E.J.; Oosterheert, I.; Mulder, M.

    2012-01-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils’ application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach

  8. Schools of California Online Resources for Education: History-Social Science One Stop Shopping for California's Social Studies Teachers.

    Science.gov (United States)

    Hill, Margaret; Benoit, Robert

    1998-01-01

    Reviews the resources available for social studies teachers from the Schools of California Online Resources for Education (SCORE): History Social Science World Wide Web site. Includes curriculum-aligned resources and lessons; standards and assessment information; interactive projects and field trips; teacher chat area; professional development…

  9. Prospective Turkish Elementary Science Teachers' Knowledge Level about the Greenhouse Effect and Their Views on Environmental Education in University

    Science.gov (United States)

    Kisoglu, Mustafa; Gürbüz, Hasan; Erkol, Mehmet; Akar, Muhammed Said; Akilli, Mustafa

    2010-01-01

    The fundamental factor of environmental education is teachers who are well-informed about environmental issues. This research aimed to determine prospective Turkish elementary science teachers' knowledge level about causes, consequences and reducing of the greenhouse effect and to investigate the effect of gender, information source and membership…

  10. Pre-Service Teachers' Development of Technological Pedagogical Content Knowledge (TPACK) in the Context of a Secondary Science Teacher Education Program

    Science.gov (United States)

    Habowski, Thomas; Mouza, Chrystalla

    2014-01-01

    This study investigates pre-service teachers' TPACK development in a secondary science teacher education program that combined a content-specific technology integration course with extensive field experience. Both quantitative and qualitative data were collected. Quantitative data were collected through a pre-post administration of the…

  11. A Global Approach to STEM Education: ASTA Science Teachers Exchange--Japan 2015

    Science.gov (United States)

    Teaching Science, 2015

    2015-01-01

    The new Australian Curriculum includes among its three cross-curriculum priorities a focus on Asia and Australia's engagement with Asia. The Australian Science Teachers Association (ASTA)'s Science Teachers Exchange--JAPAN program provides teachers with direct, personal insight into one of Australia's key Asian neighbours.

  12. Exploring reforms while learning to teach science: Facilitating exploration of theory-practice relationships in a teacher education study group

    Science.gov (United States)

    Foster, Jacob G.

    This dissertation inserts a new view into an old problem in teacher education. The study explores the theory-practice gap, the large distance between what preservice science teachers experience in schools, are able to enact, and are told they should hold themselves to in their practice. It does so by narrowing the focus of analysis to a secondary science study group and examining how the facilitator uses sociocultural constructivism to promote discussion. The analysis surfaces key communicative moves made by the facilitator and preservice teachers that yield fruitful discussion of theory-practice relationships. Additionally, the study's use of discourse analysis as a methodology and intertextuality as a conceptual framework opens new directions for applied sociolinguistic research and scholarship in science teacher education. Findings from the study focus on what was discussed and how explorations of theory-practice relationships were facilitated. Preservice teachers in the study group engaged in meaningful conversations about constructivist theory and its application to their students and teaching of science. They discussed many science education topics such as planning science lessons that actively engage students, assessment of content understanding, and management of content-based activities. Discussions of broader science education goals, including implementation of inquiry or development of collaborative communities, were not promoted. Examination of the facilitation illuminates a number of strategies found to be helpful in supporting these explorations. This study shows that facilitation can successfully support preservice teachers to construct understanding of social constructivist assumptions underlying the National Science Education Standards (NSES), as well as a few components of the Standards themselves. The focus on the underlying assumptions suggests that science teacher education should focus on these so that preservice teachers can build a strong

  13. Use of Future Scenarios as a Pedagogical Approach for Science Teacher Education

    Science.gov (United States)

    Paige, Kathryn; Lloyd, David

    2016-04-01

    Futures studies is usually a transdisciplinary study and as such embraces the physical world of the sciences and system sciences and the subjective world of individuals and cultures, as well as the time dimension—past, present and futures. Science education, where student interests, opportunities and challenges often manifest themselves, can provide a suitable entry point for futures work. In this paper, we describe how we have used futures themes, concepts and techniques both implicitly and explicitly in our undergraduate middle school teacher education courses and, in particular, science curriculum and general studies courses. Taking a critical orientation to the past and the present in these courses enables the future to be more than a mere reproduction of the status quo and opens up a range of possible futures in the areas of current interest. For example, having studied middle school teaching and learning in mathematics and science, students explore the past, present and possible future of a natural part of a university campus. In a general studies course on the science of the Earth's atmosphere, students construct a normative futures scenario on living in a changing climate. One way to gain insight into an uncertain future is to construct scenarios. This technique has been used since the 1970s to bring issues of environment and development—areas with strong science content—to the attention of both scientists and policymakers.

  14. Expanding Computer Science Education in Schools: Understanding Teacher Experiences and Challenges

    Science.gov (United States)

    Yadav, Aman; Gretter, Sarah; Hambrusch, Susanne; Sands, Phil

    2017-01-01

    The increased push for teaching computer science (CS) in schools in the United States requires training a large number of new K-12 teachers. The current efforts to increase the number of CS teachers have predominantly focused on training teachers from other content areas. In order to support these beginning CS teachers, we need to better…

  15. How to Motivate Science Teachers to Use Science Experiments

    Directory of Open Access Journals (Sweden)

    Josef Trna

    2012-10-01

    Full Text Available A science experiment is the core tool in science education. This study describes the science teachers' professional competence to implement science experiments in teaching/learning science. The main objective is the motivation of science teachers to use science experiments. The presented research tries to answer questions aimed at the science teachers' skills to use science experiments in teaching/learning science. The research discovered the following facts: science teachers do not include science experiments in teaching/learning in a suitable way; are not able to choose science experiments corresponding to the teaching phase; prefer teachers' demonstration of science experiments; are not able to improvise with the aids; use only a few experiments. The important research result is that an important motivational tool for science teachers is the creation of simple experiments. Examples of motivational simple experiments used into teachers' training for increasing their own creativity and motivation are presented.

  16. Inquiry-based science education: towards a pedagogical framework for primary school teachers

    Science.gov (United States)

    van Uum, Martina S. J.; Verhoeff, Roald P.; Peeters, Marieke

    2016-02-01

    Inquiry-based science education (IBSE) has been promoted as an inspiring way of learning science by engaging pupils in designing and conducting their own scientific investigations. For primary school teachers, the open nature of IBSE poses challenges as they often lack experience in supporting their pupils during the different phases of an open IBSE project, such as formulating a research question and designing and conducting an investigation. The current study aims to meet these challenges by presenting a pedagogical framework in which four domains of scientific knowledge are addressed in seven phases of inquiry. The framework is based on video analyses of pedagogical interventions by primary school teachers participating in open IBSE projects. Our results show that teachers can guide their pupils successfully through the process of open inquiry by explicitly addressing the conceptual, epistemic, social and/or procedural domain of scientific knowledge in the subsequent phases of inquiry. The paper concludes by suggesting further research to validate our framework and to develop a pedagogy for primary school teachers to guide their pupils through the different phases of open inquiry.

  17. The Significance of Ongoing Teacher Support in Earth Science Education Programs: Evidence from the GLOBE Program

    Science.gov (United States)

    Penuel, B.; Korbak, C.; Shear, L.

    2003-12-01

    The GLOBE program provides a rich context for examining issues concerning implementation of inquiry-oriented, scientist-driven educational programs, because the program has both a history of collecting evaluation data on implementation and mechanisms for capturing program activity as it occurs. In this paper, researchers from SRI International's evaluation team explore the different roles that regional partners play in preparing and supporting teachers to implement the GLOBE Program, an international inquiry-based Earth science education initiative that has trained over 14,000 teachers worldwide. GLOBE program evaluation results show the program can be effective in increasing students' inquiry skills, but that the program is also hard for teachers to implement (Means et al., 2001; Penuel et al., 2002). An analysis of GLOBE's regional partner organizations, which are tasked with preparing teachers to implement its data collection and reporting protocols with students, shows that some partners are more successful than others. This paper reports findings from a quantitative analysis of the relationship between data reporting and partner support activities and from case studies of two such regional partners focused on analyzing what makes them successful. The first analysis examined associations between partner training and support activities and data reporting. For this analysis, we used data from the GLOBE Student Data Archive matched with survey data collected from a large sample of GLOBE teachers as part of SRI's Year 5 evaluation of GLOBE. Our analyses point to the central importance of mentoring and material support to teachers. We found that incentives, mentoring, and other on-site support to teachers have a statistically significant association with higher data reporting levels. We also found that at present, teachers access these supports less often than they access listservs and e-mail communication with teachers after GLOBE training. As a follow-up to this

  18. News Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

    Science.gov (United States)

    2011-07-01

    Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

  19. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    Science.gov (United States)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These

  20. Inquiry-Based Science Education Competencies of Primary School Teachers: A literature study and critical review of the American National Science Education Standards

    Science.gov (United States)

    Alake-Tuenter, Ester; Biemans, Harm J. A.; Tobi, Hilde; Wals, Arjen E. J.; Oosterheert, Ida; Mulder, Martin

    2012-11-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils' application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach inquiry-based science. Our purpose is to develop a profile of professional competence, required for effective inquiry-based science teaching in primary schools in the Netherlands. This article reviews literature and compares the outcomes to the American National Science Education Standards (NSES). In so doing, it seeks to answer the following research questions: What elements of competencies required by primary school teachers who teach inquiry-based science are mentioned, discussed and researched in recent literature? To what extent are the American NSES (introduced 15 years ago) consistent with elements of competencies found in recent literature? A comprehensive literature review was conducted using Educational Resources Information Centre and Google Scholar databases. Fifty-seven peer-reviewed scientific journal articles from 2004 to 2011 were found using keyword combinations. Analysis of these articles resulted in the identification and classification of 22 elements of competencies. This outcome was compared to the American NSES, revealing gaps in the standards with respect to a lack of focus on how teachers view science teaching and themselves as teachers. We also found that elements of competencies are connected and poor mastery of one may affect a teacher's mastery of another. Therefore, we propose that standards for the Netherlands should be presented in a non-linear, holistic, competence-based model.

  1. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  2. Needs assessment of science teachers in secondary schools in Kumasi, Ghana: A basis for in-service education training programs at the Science Resource Centers

    Science.gov (United States)

    Gyamfi, Alexander

    The purpose of this study was twofold. First, it identified the priority needs common to all science teachers in secondary schools in Kumasi, Ghana. Second, it investigated the relationship existing between the identified priority needs and the teacher demographic variables (type of school, teacher qualification, teaching experience, subject discipline, and sex of teacher) to be used as a basis for implementing in-service education training programs at the Science Resource Centers in Kumasi Ghana. An adapted version of the Moore Assessment Profile (MAP) survey instrument and a set of open-ended questions were used to collect data from the science teachers. The researcher handed out one hundred and fifty questionnaire packets, and all one hundred and fifty (100%) were collected within a period of six weeks. The data were analyzed using descriptive statistics, content analysis, and inferential statistics. The descriptive statistics reported the frequency of responses, and it was used to calculate the Need Index (N) of the identified needs of teachers. Sixteen top-priority needs were identified, and the needs were arranged in a hierarchical order according to the magnitude of the Need Index (0.000 ≤ N ≤ 1.000). Content analysis was used to analyze the responses to the open-ended questions. One-way analysis of variance (ANOVA) was used to test the null hypotheses of the study on each of the sixteen identified top-priority needs and the teacher demographic variables. The findings of this study were as follows: (1) The science teachers identified needs related to "more effective use of instructional materials" as a crucial area for in-service training. (2) Host and Satellite schools exhibited significant difference on procuring supplementary science books for students. Subject discipline of teachers exhibited significant differences on utilizing the library and its facilities by students, obtaining information on where to get help on effective science teaching

  3. Persistence and withdrawal by students in a preservice science and mathematics teacher education course

    Science.gov (United States)

    Tulip, David F.; Lucas, Keith B.

    1991-12-01

    At a time when recruitment into preservice teacher education courses in mathematics and science is difficult, one strategy to increase the number of graduates is to minimise the number of students who fail to complete their university courses. This study sought to determine factors which distinguish withdrawers from persisters in the first semester of a B.Ed course. Discriminant analysis was employed; a discriminant function employing seven factors resulted in correct classification in 81% of cases. Further analysis distinguishing between dropouts and transferees resulted in two discriminant functions with some common variables.

  4. Predicting Pre-Service Classroom Teachers' Civil Servant Recruitment Examination's Educational Sciences Test Scores Using Artificial Neural Networks

    Science.gov (United States)

    Demir, Metin

    2015-01-01

    This study predicts the number of correct answers given by pre-service classroom teachers in Civil Servant Recruitment Examination's (CSRE) educational sciences test based on their high school grade point averages, university entrance scores, and grades (mid-term and final exams) from their undergraduate educational courses. This study was…

  5. National Science Teachers Association

    Science.gov (United States)

    ; Resources Books, Articles, and More NSTA Press® NSTA Journals Science and Children Science Scope The Science Teacher Journal of College Science Teaching Connected Science Learning NSTA Learning Center Online Resources: Calendar, Freebies ... e-Newsletters NSTA Science Store New Releases Bestsellers Award Winners

  6. "From the Beginning, I Felt Empowered": Incorporating an Ecological Approach to Learning in Elementary Science Teacher Education

    Science.gov (United States)

    Birmingham, Daniel; Smetana, Lara; Coleman, Elizabeth

    2017-09-01

    While a renewed national dialog promotes the importance of science education for future technological and economic viability, students must find science personally relevant to themselves and their communities if the goals set forth in recent reform movements are to be achieved. In this paper, we investigate how incorporating an ecological perspective to learning in teacher education, including opportunities to participate with science in connection to their everyday lives, influenced the ways in which elementary teacher candidates (TCs) envisioned learning and doing science and its potential role in their future classroom. We draw from data collected across three sections of a field-based elementary methods course focused on learning to teach science and social studies through inquiry. We argue that participating in an authentic interdisciplinary inquiry project impacted the ways in which TCs conceived of science, their identities as science learners and teachers and their commitments to bringing inquiry-based science instruction to their future classrooms. This paper addresses issues regarding access to quality science learning experiences in elementary classrooms through empowering TCs to build identities as science learners and teachers in order to impact conditions in their future classrooms.

  7. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  8. Determining Science Teachers' Levels of Motivation and Self-Regulation Regarding Use of Education Technologies

    Science.gov (United States)

    Efe, Hülya Aslan; Baysal, Yunus Emre

    2017-01-01

    In line with the growing importance of use of education technologies in the field of education, teachers are increasingly expected to use education technologies in class environment and to provide students with appropriate environments and opportunities to use these technologies. This situation makes it necessary to investigate teachers'…

  9. Possibilities and Limits of Integrating Science and Diversity Education in Preservice Elementary Teacher Preparation

    Science.gov (United States)

    Bravo, Marco A.; Mosqueda, Eduardo; Solís, Jorge L.; Stoddart, Trish

    2014-01-01

    In this paper we present findings from a project that documented the development of preservice teachers' beliefs and practices in delivering science instruction that considers issues of language and culture. Teacher candidates in the intervention group (n = 65) received a science methods course and teaching practicum experience that provided…

  10. Analysis of Turkish Prospective Science Teachers' Perceptions on Technology in Education

    Science.gov (United States)

    Koksal, Mustafa Serdar; Yaman, Suleyman; Saka, Yavuz

    2016-01-01

    Purpose of this study was to determine and analyze Turkish pre-service science teachers' perceptions on technology in terms of learning style, computer competency level, possession of a computer, and gender. The study involved 264 Turkish pre-service science teachers. Analyses were conducted through four-way ANOVA, t-tests, Mann Whitney U test and…

  11. Changes in Science Teaching Self-Efficacy among Primary Teacher Education Students

    Science.gov (United States)

    Palmer, David; Dixon, Jeanette; Archer, Jennifer

    2015-01-01

    Many preservice primary teachers have low self-efficacy for science teaching. Although science methods courses have often been shown to enhance self-efficacy, science content courses have been relatively ineffective in this respect. This study investigated whether a tailored science content course would enhance self-efficacy. The participants were…

  12. Correctional Education Teachers' Teaching Competence and Use of ...

    African Journals Online (AJOL)

    Correctional Education Teachers' Teaching Competence Genet G. and Haftu H. 83. ORIGINAL ARTICLE. Correctional Education Teachers' ... Educational and Behavioral Sciences, Bahir Dar University. ** Assistant Professor, Teacher Education ... evaluation of available research, it is obvious that education programs in.

  13. PolarTREC-Teachers and Researchers Exploring and Collaborating: Science Education from the Poles to the World

    Science.gov (United States)

    Warnick, W. K.; Breen, K.; Warburton, J.; Fischer, K.; Wiggins, H.; Owens, R.; Polly, B.; Wade, B.; Buxbaum, T.

    2007-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that advances polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. Currently in its second year, the program fosters the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science. Through PolarTREC, over 40 U.S. teachers will spend two to six weeks in the Arctic or Antarctic, working closely with researchers in the field as an integral part of the science team. Research projects focus on a wide range of IPY science themed topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and teacher peer groups. To learn more about PolarTREC visit the website at: http://www.polartrec.com or contact info@polartrec.com or 907-474-1600. PolarTREC is funded by NSF and managed by the Arctic Research Consortium of the US (ARCUS).

  14. The effects of a professional development geoscience education institute upon secondary school science teachers in Puerto Rico

    Science.gov (United States)

    Llerandi Roman, Pablo Antonio

    The geographic and geologic settings of Puerto Rico served as the context to develop a mixed methods investigation on: (1) the effects of a five-day long constructivist and field-based earth science education professional development institute upon 26 secondary school science teachers' earth science conceptual knowledge, perceptions of fieldwork, and beliefs about teaching earth science; and (2) the implementation of participants' newly acquired knowledge and experience in their science lessons at school. Qualitative data included questionnaires, semi-structured interviews, reflective journals, pre-post concept maps, and pre-post lesson plans. The Geoscience Concept Inventory and the Science Outdoor Learning Environment Inventory were translated into Spanish and culturally validated to collect quantitative data. Data was analyzed through a constructivist grounded theory methodology, descriptive statistics, and non-parametric methods. Participants came to the institute with serious deficiencies in earth science conceptual understanding, negative earth science teaching perspectives, and inadequate earth science teaching methodologies. The institute helped participants to improve their understanding of earth science concepts, content, and processes mostly related to the study of rocks, the Earth's structure, plate tectonics, maps, and the geology of Puerto Rico. Participants also improved their earth science teaching beliefs, perceptions on field-based education, and reflected on their environmental awareness and social responsibility. Participants greatly benefited from the field-based learning environment, inquiry-based teaching approaches modeled, the attention given to their affective domain, and reflections on their teaching practice as part of the institute's activities. The constructivist learning environment and the institute's contextualized and meaningful learning conceptual model were effective in generating interest and confidence in earth science teaching

  15. ICT use in science and mathematics teacher education in Tanzan: Developing Technological Pedagogical Content Knowledge

    NARCIS (Netherlands)

    Kafyulilo, A.; Fisser, P.; Pieters, J.; Voogt, J.

    2015-01-01

    Currently, teacher education colleges in Tanzania are being equipped with computers to prepare teachers who can integrate technology in teaching. Despite these efforts, teachers are not embracing the use of technology in their teaching. This study adopted Technological Pedagogical Content Knowledge

  16. ICT Use in Science and Mathematics Teacher Education in Tanzania: Developing Technological Pedagogical Content Knowledge

    NARCIS (Netherlands)

    Kafyulilo, Ayoub; Fisser, Petra; Pieters, Julius Marie; Voogt, Joke

    2015-01-01

    Currently, teacher education colleges in Tanzania are being equipped with computers to prepare teachers who can integrate technology in teaching. Despite these efforts, teachers are not embracing the use of technology in their teaching. This study adopted Technological Pedagogical Content Knowledge

  17. Trends in Soil Science education: moving from teacher's questioning to student's questioning

    Science.gov (United States)

    Roca, Núria

    2017-04-01

    Soil science has suffered from communication problems within its own discipline, with other disciplines (except perhaps agronomy) and with the general public. Prof. Dennis Greenland wrote the following in the early 1990s: "…soil scientists have also been frustrated as their advice has gone apparently unheeded. This may be because the advice is couched in terms more easily understood by other soil scientists than by politicians and economists who control the disposition of land. If soil science is to serve society fully it is essential that its arguments are presented in terms readily understood by all and with both scientific and economic rigor so that they are not easily refuted". Soil is a 3-dimensional body with properties that reflect the impact of climate, vegetation, fauna, man and topography on the soil's parent material over a variable time span. Therefore, soil sciences must integrate different knowledge of many disciplines. How should one go about the teaching and learning of a subject like soil science? This is an ever present question resident in the mind of a soil science teacher who knows that students will find soil science an inherently difficult subject to understand. Therefore, Soil Science cannot be taught in the same way. This paper proposes a mural construction that allows to understand soil formation, soil evolution and soil distribution. This experience has been realized with secondary teachers to offer tools for active learning methodologies. Therefore, this teaching project starts with a box and a global soil map distribution in a wall mural. The box contains many cards with soil properties, soil factors, soil process, soils orders and different natural soil photos as the pieces of a big puzzle. All these pieces will be arranged in the wall mural. These environments imply a new perspective of teaching: moving from a teacher-centered teaching to a student-centered teaching. In contrast to learning-before-doing— the model of most

  18. A Tale of Two Courses: Exploring Teacher Candidates' Translation of Science and Special Education Methods Instruction into Inclusive Science Practices

    Science.gov (United States)

    Kahn, Sami; Pigman, Ryan; Ottley, Jennifer

    2017-01-01

    Early childhood educators teach science to all students, including students with disabilities. Strategies for accommodating students with disabilities in science, including familiarity with equitable frameworks such as Universal Design for Learning (UDL) are therefore a critical aspect of early childhood teacher candidates' pedagogical content…

  19. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  20. Developing Partnerships between Higher Education Faculty, K-12 Science Teachers, and School Administrators via MSP initiatives: The RITES Model

    Science.gov (United States)

    Caulkins, J. L.; Kortz, K. M.; Murray, D. P.

    2011-12-01

    The Rhode Island Technology Enhanced Science Project (RITES) is a NSF-funded Math and Science Partnership (MSP) project that seeks to improve science education. RITES is, at its core, a unique partnership that fosters relationships between middle and high school science teachers, district and school administrators, higher education (HE) faculty members, and science education researchers. Their common goal is to enhance scientific inquiry, increase classroom technology usage, and improve state level science test scores. In one of the more visible examples of this partnership, middle and high school science teachers work closely with HE science faculty partners to design and teach professional development (PD) workshops. The PD sessions focus on technology-enhanced scientific investigations (e.g. use of probes, online simulations, etc.), exemplify inquiry-based instruction, and relate expert content knowledge. Teachers from these sessions express substantial satisfaction in the program, report increased comfort levels in teaching the presented materials (both via post-workshop surveys), and show significant gains in content knowledge (via pre-post assessments). Other benefits to this kind of partnership, in which K-12 and HE teachers are considered equals, include: 1) K-12 teachers are empowered through interactions with HE faculty and other science teachers in the state; 2) HE instructors become more informed not only about good pedagogical practices, but also practical aspects of teaching science such as engaging students; and 3) the PD sessions tend to be much stronger than ones designed and presented solely by HE scientists, for while HE instructors provide content expertise, K-12 teachers provide expertise in K-12 classroom practice and implementation. Lastly, the partnership is mutually beneficial for the partners involved because both sides learn practical ways to teach science and inquiry at different levels. In addition to HE faculty and K-12 science teacher

  1. Ethical sensitivity intervention in science teacher education: Using computer simulations and professional codes of ethics

    Science.gov (United States)

    Holmes, Shawn Yvette

    A simulation was created to emulate two Racial Ethical Sensitivity Test (REST) videos (Brabeck et al., 2000). The REST is a reliable assessment for ethical sensitivity to racial and gender intolerant behaviors in educational settings. Quantitative and qualitative analysis of the REST was performed using the Quick-REST survey and an interview protocol. The purpose of this study was to affect science educator ability to recognize instances of racial and gender intolerant behaviors by levering immersive qualities of simulations. The fictitious Hazelton High School virtual environment was created by the researcher and compared with the traditional REST. The study investigated whether computer simulations can influence the ethical sensitivity of preservice and inservice science teachers to racial and gender intolerant behaviors in school settings. The post-test only research design involved 32 third-year science education students enrolled in science education classes at several southeastern universities and 31 science teachers from the same locale, some of which were part of an NSF project. Participant samples were assigned to the video control group or the simulation experimental group. This resulted in four comparison group; preservice video, preservice simulation, inservice video and inservice simulation. Participants experienced two REST scenarios in the appropriate format then responded to Quick-REST survey questions for both scenarios. Additionally, the simulation groups answered in-simulation and post-simulation questions. Nonparametric analysis of the Quick-REST ascertained differences between comparison groups. Cronbach's alpha was calculated for internal consistency. The REST interview protocol was used to analyze recognition of intolerant behaviors in the in-simulation prompts. Post-simulation prompts were analyzed for emergent themes concerning effect of the simulation on responses. The preservice video group had a significantly higher mean rank score than

  2. Supporting Beginning Teacher Planning and Enactment of Investigation-based Science Discussions: The Design and Use of Tools within Practice-based Teacher Education

    Science.gov (United States)

    Kademian, Sylvie M.

    Current reform efforts prioritize science instruction that provides opportunities for students to engage in productive talk about scientific phenomena. Given the challenges teachers face enacting instruction that integrates science practices and science content, beginning teachers need support to develop the knowledge and teaching practices required to teach reform-oriented science lessons. Practice-based teacher education shows potential for supporting beginning teachers while they are learning to teach in this way. However, little is known about how beginning elementary teachers draw upon the types of support and tools associated with practice-based teacher education to learn to successfully enact this type of instruction. This dissertation addresses this gap by investigating how a practice-based science methods course using a suite of teacher educator-provided tools can support beginning teachers' planning and enactment of investigation-based science lessons. Using qualitative case study methodologies, this study drew on video-records, lesson plans, class assignments, and surveys from one cohort of 22 pre-service teachers (called interns in this study) enrolled in a year-long elementary education master of the arts and teaching certification program. Six focal interns were also interviewed at multiple time-points during the methods course. Similarities existed across the types of tools and teaching practices interns used most frequently to plan and enact investigation-based discussions. For the focal interns, use of four synergistic teaching practices throughout the lesson enactments (including consideration of students' initial ideas; use of open-ended questions to elicit, extend, and challenge ideas; connecting across students' ideas and the disciplinary core ideas; and use of a representation to organize and highlight students' ideas) appeared to lead to increased opportunities for students to share their ideas and engage in data analysis, argumentation and

  3. Concerns of early career agricultural science teachers and the perceived effectiveness of educator preparation programs in addressing those concerns

    Science.gov (United States)

    Pearson, Camilla E.

    Little is known about the concerns and needs of early career agricultural teachers associated with the various routes to certification and how these routes address those concerns. The purpose of this study is to determine how selected early career agriculture teachers perceive their teacher preparation program and how effective their programs were at addressing these concerns during their first year of teaching. The sample consisted of secondary agricultural teachers in Texas FFA Areas V and VI, who self-identified themselves as an early career agricultural teacher in their first 3 years of teaching. The first phase included a web-based survey administered to assess the concerns of early career agricultural teachers. Two Likert-type scales were used, and these were used to assess the perceived importance of problems faced by early career agricultural teachers and the frequency in which they encounter those problems. The second phase included a qualitative interview to better understand the perceived relationship between participants' undergraduate preparation, experiences in agriculture and related organizations, and other related activities in preparing them as agriculture science teachers. The teachers interviewed in this study indicated that overall, they were pleased with their preparation. Teacher educators from both programs should address the concerns presented from all teachers to further prepare them for issues faced by early career teachers because it is evident that these issues are not going away.

  4. Investigation of the Self-Efficacy Beliefs of Pre-Service Science Teachers in Terms of Following and Using the Innovations in the Field of Education

    Science.gov (United States)

    Dede, Hulya; Yilmaz, Zeynel Abidin; Ilhan, Nail

    2017-01-01

    One of the factors influencing teachers' and pre-service teachers' self-efficacy beliefs is the use of innovations and research in education (scientific articles, thesis, and new teaching materials). This study aims to examine to what extent pre-service science teachers follow the innovations in the field of education and use these innovations in…

  5. PolarTREC-Teachers and Researchers Exploring and Collaborating: Science Education from the Poles to the World

    Science.gov (United States)

    Timm, K. M.; Warburton, J.; Owens, R.; Warnick, W. K.

    2008-12-01

    PolarTREC--Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS), is a National Science Foundation (NSF)--funded International Polar Year (IPY) project in which K-12 educators participate in hands-on field experiences, working closely with IPY scientists as a pathway to improving science education. PolarTREC has developed a successful internet-based platform for teachers and researchers to interact and share their diverse experiences and expertise by creating interdisciplinary educational tools including online journals and forums, real-time Internet seminars, lesson plans, activities, audio, and other educational resources that address a broad range of scientific topics. These highly relevant, adaptable, and accessible resources are available to educators across the globe and have connected thousands of students and citizens to the excitement of polar science. By fostering the integration of research and education and infusing education with the thrill of discovery, PolarTREC will produce a legacy of long-term teacher-researcher collaborations and increased student knowledge of and interest in the polar regions well beyond the IPY time period. Educator and student feedback from preliminary evaluations has shown that PolarTREC's comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person in today's world, as well as increased self-reported knowledge and interest in Science, Technology, Engineering, and Mathematics content areas. PolarTREC provides a tested approach and a clear route for researcher participation in the education community

  6. Preservice Teachers and Their Preconceptions of the NGSS Science and Engineering Practice of Developing and Using Models in Elementary Science Education

    Science.gov (United States)

    Burks, Lizette A.

    The science and engineering practice of developing and using models is a new science practice identified to achieve the vision of three-dimensional teaching and learning and as such should be an important new component of teacher preparation programs (NRC, 2012). Developing and using models is a high-leverage practice in teacher preparation because of the use of discourse in its implementation that is also used in other practices utilized within the NGSS (NGSS Lead States, 2013) science classroom. Additionally, the overlap between the other seven identified NGSS (NGSS Lead States, 2013) practices and the development and use of models along with the use of models represented in two of the overall three dimensions of the new vision for science education (NRC, 2012) contribute to its high leverage nature. The intent of this study was to examine elementary science preservice teachers' understandings and preconceptions about the practice of developing and using models. This study provides important information for teacher preparation to use this high-leverage practice. The study examined preservice teachers' preconceptions about the practice of developing and using models including discourse patterns the preservice teachers identified as being critical to the success of this practice in the classroom. Data were gathered through a written survey in which preservice teachers described their initial understanding about different components of modeling instruction. A video was used to elicit their initial understandings about certain components of modeling instruction. A sample of the preservice teachers were interviewed to elaborate on their responses to the survey. The results of the study indicated that when preservice teachers initially described how this practice might look in the classroom, only two of the six categories described in A Science Framework for K-12 Science Education (NRC, 2012) for this practice were described by most participants. Of those two

  7. PolarTREC-Teachers and Researchers Exploring and Collaborating: Innovative Science Education from the Poles to the World

    Science.gov (United States)

    Warnick, W. K.; Warburton, J.; Breen, K.; Wiggins, H. V.; Larson, A.; Behr, S.

    2006-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that will advance polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. PolarTREC builds on the strengths of the existing TREC program in the Arctic, an NSF supported program managed by the Arctic Research Consortium of the US (ARCUS), to embrace a wide range of activities occurring at both poles during and after IPY. PolarTREC will foster the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science and IPY. PolarTREC will enable thirty-six teachers to spend two to six weeks in the Arctic or Antarctic, working closely with researchers investigating a wide range of IPY science themed topics such as sea-ice dynamics, terrestrial ecology, marine biology, atmospheric chemistry, and long-term climate change. While in the field, teachers and researchers will communicate extensively with their colleagues, communities, and hundreds of students of all ages across the globe, using a variety of tools including satellite phones, online journals, podcasts and interactive "Live from IPY" calls and web-based seminars. The online outreach elements of the project convey these experiences to a broad audience far beyond the classrooms of the PolarTREC teachers. In addition to field research experiences, PolarTREC will support teacher professional development and a sustained community of teachers, scientists, and the public through workshops, Internet seminars, an e-mail listserve, and teacher peer groups. For further information on PolarTREC, contact Wendy Warnick, ARCUS Executive Director at warnick@arcus.org or 907-474-1600 or visit www.arcus.org/trec/

  8. Science Teacher Educators' Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    Science.gov (United States)

    Fraser, William J.

    2017-01-01

    This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…

  9. Elementary General Education Teachers' Knowledge of and Experience Teaching Students with Disabilities in Science and Social Studies

    Science.gov (United States)

    Rice, Diane

    In Grades 3 to 5 at a suburban southeastern elementary school, the percentage of students with disabilities (SWDs) who do not meet state standards in science and social studies is greater than that of their nondisabled peers. To address this disparity, district administrators required that proficiency ratings increase for SWDs without providing general education (GE) teachers with training. A qualitative bounded case study was used to understand how GE teachers constructed their knowledge of and met SWDs instructional needs and to understand GE teachers' needs as they worked toward meeting the district goals. Piaget's constructivist learning theory served as the conceptual framework for this study. A purposeful sample of 6 GE teachers, 2 each from Grades 3-5 whose classrooms included SWDs, volunteered to participate in open-ended interviews. Qualitative data were analyzed using provisional coding and pattern coding. A primary finding was that the participants identified teacher collaboration and professional development necessary to accommodate SWDs in the GE setting. This finding led to a recommendation that school leaders provide ongoing professional development for GE teachers as well as ongoing opportunities for collaboration between GE and special education teachers. These endeavors may contribute to positive social change by providing GE teachers instructional strategies and accommodations for meeting the learning needs of SWDs to increase the number and percentage of SWDs who meet the state standards and district goals in science and social studies.

  10. Enhancing Science and Mathematics Education for Child Care Providers and Preschool Teachers.

    Science.gov (United States)

    White, Jennifer Meux; Hosoume, Kimi

    The Lawrence Hall of Science (LHS), University of California at Berkeley has completed a 3-year project to develop a science and mathematics education course and science curriculum for early childhood educators. This project was in response to the need for improving the science and mathematics knowledge and teaching skills of adults who work with…

  11. Epistemology and Science Education: A Study of Epistemological Views of Teachers

    Science.gov (United States)

    Apostolou, Alexandros; Koulaidis, Vasilis

    2010-01-01

    The aim of this paper is to study the epistemological views of science teachers for the following epistemological issues: scientific method, demarcation of scientific knowledge, change of scientific knowledge and the status of scientific knowledge. Teachers' views for each one of these epistemological questions were investigated during…

  12. ESL Mentoring for Secondary Rural Educators: Math and Science Teachers Become Second Language Specialists through Collaboration

    Science.gov (United States)

    Hansen-Thomas, Holly; Grosso Richins, Liliana

    2015-01-01

    This article draws on data from the capstone graduate course in a specially designed professional development program for rural math and science teachers that describes how participant teachers translated their newly acquired knowledge about English as a second language (ESL) into a mentoring experience for their rural content specialist peers.…

  13. Development of a pre-service teacher training course on integration of ICT into inquiry based science education.

    NARCIS (Netherlands)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos; Dvořák, Leoš; Koudelková, Věra

    In order to be able to integrate ICT into Inquiry Based Science Education (IBSE), teachers need much time and support for mastering ICT tools, learning the basis of IBSE, and getting experience in applying these tools in pupil investigations. For this purpose, we have developed a course within the

  14. Investigation of Pre-Service Teachers' Opinions about Science in Terms of the Basic Elements of the Education Program

    Science.gov (United States)

    Sengul, Ozge Aydin

    2016-01-01

    The purpose of the current study is to investigate the pre-service teachers' opinions about science within the context of the basic elements of the education program, such as objectives, content, learning-teaching process and evaluation. The study was designed as a case study, one of the qualitative research methods. The participants of the study…

  15. A Comparative Study of the Professional and Curricular Conceptions of the Secondary Education Science Teacher in Spain

    Science.gov (United States)

    del Pozo, Martin R.; Martinez-Aznar, M.; Rodrigo, M.; Varela, P.

    2004-01-01

    This article presents a comparison between the professional and curricular conceptions of two samples of secondary education science teachers in Spain, who differed in their years of teaching experience and in whether or not they had participated in a long-duration scientific-pedagogical refresher course. Using the data from their responses to a…

  16. High school science teacher perceptions of the science proficiency testing as mandated by the State of Ohio Board of Education

    Science.gov (United States)

    Jeffery, Samuel Shird

    There is a correlation between the socioeconomic status of secondary schools and scores on the State of Ohio's mandated secondary science proficiency tests. In low scoring schools many reasons effectively explain the low test scores as a result of the low socioeconomics. For example, one reason may be that many students are working late hours after school to help with family finances; parents may simply be too busy providing family income to realize the consequences of the testing program. There are many other personal issues students face that may cause them to score poorly an the test. The perceptions of their teachers regarding the science proficiency test program may be one significant factor. These teacher perceptions are the topic of this study. Two sample groups ware established for this study. One group was science teachers from secondary schools scoring 85% or higher on the 12th grade proficiency test in the academic year 1998--1999. The other group consisted of science teachers from secondary schools scoring 35% or less in the same academic year. Each group of teachers responded to a survey instrument that listed several items used to determine teachers' perceptions of the secondary science proficiency test. A significant difference in the teacher' perceptions existed between the two groups. Some of the ranked items on the form include teachers' opinions of: (1) Teaching to the tests; (2) School administrators' priority placed on improving average test scores; (3) Teacher incentive for improving average test scores; (4) Teacher teaching style change as a result of the testing mandate; (5) Teacher knowledge of State curriculum model; (6) Student stress as a result of the high-stakes test; (7) Test cultural bias; (8) The tests in general.

  17. Simulation-based Serious Games for Science Education and teacher assessment

    Directory of Open Access Journals (Sweden)

    Seungho Baek

    2016-09-01

    Full Text Available This paper presents serious games developed for the science subject in elementary and middle schools, specifically on the three topics of “Force and Motion,” “State Change of Water,” and “Earth and Moon.” The PC game “Force and Motion” implemented frictional/gravitational/magnetic force simulations, in the mobile game “State Change of Water,” particle-based fluid simulations were implemented, and in the PC- and mobile-based multi-platform game “Earth and Moon,” a solar system simulation was implemented. In order to find out the essential components for the science educational games, the components of each topic were thoroughly analyzed, and then a game-based curriculum was developed for the components classified as having high- or mid-level difficulties in both teaching and learning. Based on the curriculum, the three games were created. The games were evaluated by elementary and middle school teachers, and the evaluation results showed that simulation-based serious games are promising tools for improving learning effects in science-related subjects.

  18. Sharing our successes II: Changing the face of science and mathematics education through teacher-focused partnerships

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Industry Initiatives for Science and Math Education (IISME) in the San Francisco Bay Area planned and convened the second national conference for representatives of scientific work experience programs for K-12 teachers (SWEPs) at Lawrence Hall of Science, University of California at Berkeley October 13-14, 1994. The goal of this conference was to further strengthen the growing community of SWEP managers and teacher participants by providing an opportunity for sharing expertise and strategies about the following: (1) How SWEPs can complement and stimulate systemic education reform efforts; (2) Assessment strategies piloted by the ambitious multi-site evaluation project funded by the U.S. Department of Energy (DOE) as well as smaller evaluation projects piloted by other SWEPs; (3) Expanding and strengthening the base of teachers served by SWEPs; (4) Ensuring that SWEPs adequately support teachers in affecting classroom transfer and offer {open_quotes}more than just a summerjob{close_quotes}; (5) Sustaining and expanding new programs. A special teacher strand focused on leadership development supporting teachers to become effective change agents in their classrooms and schools, and developing strong teacher communities.

  19. Narrative Inquiry for Science Education: Teachers' repertoire-making in the case of environmental curriculum

    Science.gov (United States)

    Hwang, Seyoung

    2011-04-01

    This paper considers how the school science curriculum can be conceptualised in order to address the contingent and complex nature of environmental and sustainability-related knowledge and understanding. A special concern lies in the development of research perspectives and tools for investigating ways, in which teachers are faced with complex and various situations in the sense-making of science-related issues, and subsequent pedagogic issues. Based on an empirical examination of Korean teachers' sense-making of their curricular practice, the paper develops a narrative approach to teachers' perspectives and knowledge by considering the value of stories as sense-making tools for reflective questioning of what is worth teaching, how and why. By employing the idea of 'repertoire', the study regards teachers' stories about their environment-related personal and teaching experiences as offering angles with which to understand teachers' motivation and reflection in curricular development and implementation. Furthermore, three empirical cases present ways in which the nature of knowledge and understanding is recognised and potentially integrated into pedagogies through teachers' narratives. Finally, the paper argues for the need to reconsider the role of the science teacher in addressing environmental and sustainability-related issues, in ways that facilitate teachers' reflexive interpretation of meanings in cultural texts and the construction of pedagogic text.

  20. A phenomenological case study concerning science teacher educators' beliefs and teaching practices about culturally relevant pedagogy and preparing K-12 science teachers to engage African American students in K-12 science

    Science.gov (United States)

    Underwood, Janice Bell

    Due to the rising diversity in today's schools, science teacher educators (STEs) suggest that K-12 teachers must be uniquely prepared to engage these students in science classrooms. Yet, in light of the increasing white-black science achievement gap, it is unclear how STEs prepare preservice teachers to engage diverse students, and African Americans in particular. Therefore, the purpose of this study was to find out how STEs prepare preservice teachers to engage African American students in K-12 science. Thus, using the culturally relevant pedagogy (CRP) framework, this phenomenological case study explored beliefs about culturally relevant science teaching and the influence of reported beliefs and experiences related to race on STEs' teaching practices. In the first phase, STE's in a mid-Atlantic state were invited to participate in an electronic survey. In the second phase, four participants, who were identified as exemplars, were selected from the survey to participate in three semi-structured interviews. The data revealed that STEs were more familiar with culturally responsive pedagogy (CResP) in the context of their post-secondary classrooms as opposed to CRP. Further, most of the participants in part one and two described modeling conventional ways they prepare their preservice teachers to engage K-12 students, who represent all types of diversity, without singling out any specific race. Lastly, many of the STEs' in this study reported formative experiences related to race and beliefs in various manifestations of racism have impacted their teaching beliefs and practices. The findings of this study suggest STEs do not have a genuine understanding of the differences between CRP and CResP and by in large embrace CResP principles. Secondly, in regards to preparing preservice teachers to engage African American students in science, the participants in this study seemed to articulate the need for ideological change, but were unable to demonstrate pedagogical changes

  1. The (non)making/becoming of inquiry practicing science teachers

    Science.gov (United States)

    Sharma, Ajay; Muzaffar, Irfan

    2012-03-01

    Teacher education programs have adopted preparing science teachers that teach science through inquiry as an important pedagogic agenda. However, their efforts have not met with much success. While traditional explanations for this failure focus largely on preservice science teachers' knowledge, beliefs and conceptions regarding science and science teaching, this conceptual paper seeks to direct attention toward discursive practices surrounding inquiry science teaching in teacher education programs for understanding why most science teachers do not teach science through inquiry. The paper offers a theoretical framework centered on critical notions of subjection and performativity as a much needed perspective on making/becoming of science teachers through participation in discursive practices of science teacher education programs. It argues that research based on such perspectives have much potential to offer a deeper understanding of the difficult challenges teacher education programs face in preparing inquiry practicing science teachers.

  2. The influence of secondary science teachers' pedagogical content knowledge, educational beliefs and perceptions of the curriculum on implementation and science reform

    Science.gov (United States)

    Bonner, Portia Selene

    2001-07-01

    Science education reform is one of the focal points of restructuring the educational system in the United States. However, research indicates a slow change in progression towards science literacy among secondary students. One of the factors contributing to slow change is how teachers implement the curriculum in the classroom. Three constructs are believed to be influential in curriculum implementation: educational beliefs, pedagogical knowledge and perception of the curriculum. Earlier research suggests that there is a strong correlation between teachers' educational beliefs and instructional practices. These beliefs can be predictors of preferred strategies employed in the classroom. Secondly, teachers' pedagogical knowledge, that is the ability to apply theory and appropriate strategies associated with implementing and evaluating a curriculum, contributes to implementation. Thirdly, perception or how the curriculum itself is perceived also effects implementation. Each of these constructs has been examined independently, but never the interplay of the three. The purpose of this qualitative study was to examine the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of a science curriculum with respect to how these influence curriculum implementation. This was accomplished by investigating the emerging themes that evolved from classroom observations, transcripts from interview and supplementary data. Five high school biology teachers in an urban school system were observed for ten months for correspondence of teaching strategies to the curriculum. Teachers were interviewed formally and informally about their perceptions of science teaching, learning and the curriculum. Supplementary material such as lesson plans, course syllabus and notes from classroom observations were collected and analyzed. Data were transcribed and analyzed for recurring themes using a thematic matrix. A theoretical model was developed from the emerging

  3. Investigating Image Formation with a Camera Obscura: a Study in Initial Primary Science Teacher Education

    Science.gov (United States)

    Muñoz-Franco, Granada; Criado, Ana María; García-Carmona, Antonio

    2018-04-01

    This article presents the results of a qualitative study aimed at determining the effectiveness of the camera obscura as a didactic tool to understand image formation (i.e., how it is possible to see objects and how their image is formed on the retina, and what the image formed on the retina is like compared to the object observed) in a context of scientific inquiry. The study involved 104 prospective primary teachers (PPTs) who were being trained in science teaching. To assess the effectiveness of this tool, an open questionnaire was applied before (pre-test) and after (post-test) the educational intervention. The data were analyzed by combining methods of inter- and intra-rater analysis. The results showed that more than half of the PPTs advanced in their ideas towards the desirable level of knowledge in relation to the phenomena studied. The conclusion reached is that the camera obscura, used in a context of scientific inquiry, is a useful tool for PPTs to improve their knowledge about image formation and experience in the first person an authentic scientific inquiry during their teacher training.

  4. Pre-Service Teachers' Maturing Perceptions of a TPACK-Framed Signature Pedagogy in Science Education

    Science.gov (United States)

    Hechter, Richard P.

    2012-01-01

    Teacher education programs across North America are transforming. What were once piecemeal programs consisting of often unrelated courses are now becoming coherent and intertwined trajectories toward teacher certification. Part of this transformation can be attributed to the weaving of "signature pedagogies" throughout overarching…

  5. Teachers' Practice a Decade After an Extensive Professional Development Program in Science Education

    Science.gov (United States)

    Furman Shaharabani, Yael; Tal, Tali

    2017-10-01

    Science teachers are expected to teach in innovative ways that are different from their long experience as students. Professional development programs are planned to help teachers' development, yet, there is little knowledge of the long-term effects of professional development programs (PDPs), and especially on actual practice. The purpose of this study is to gain a long-term perspective of the ways in which the process and outcomes of a reform-oriented, extended PDP are expressed in science teachers' practice. Data sources included interviews and documents. The study presents four case studies of the practices of junior high school science teachers (grades 7-9) in Israel, with respect to a past PDP in which they took part a decade ago. The cases are presented in pairs of a leader and a follower. Each case details the teacher's work context, sustained implementation, coherence of tools and approaches, and adaptations. All four teachers shared the view that scientific skills are important to their students as learners in a changing world. All four teachers adopted one or two major approaches, which were the PDP's main focus. In addition, the two leaders adopted two more approaches. The teachers were still using many strategies associated with the major foci of the PDP. The level of enactment and modifications of the strategies varied. Usability of innovations is discussed in relation to the teachers' context. We suggest that science teachers' professional development include the ability to adapt the innovation to their teaching context in order to sustain the changes for a long period of time.

  6. Differentiating Science Instruction: Secondary science teachers' practices

    Science.gov (United States)

    Maeng, Jennifer L.; Bell, Randy L.

    2015-09-01

    This descriptive study investigated the implementation practices of secondary science teachers who differentiate instruction. Participants included seven high school science teachers purposefully selected from four different schools located in a mid-Atlantic state. Purposeful selection ensured participants included differentiated instruction (DI) in their lesson implementation. Data included semi-structured interviews and field notes from a minimum of four classroom observations, selected to capture the variety of differentiation strategies employed. These data were analyzed using a constant-comparative approach. Each classroom observation was scored using the validated Differentiated Instruction Implementation Matrix-Modified, which captured both the extent to which critical indicators of DI were present in teachers' instruction and the performance levels at which they engaged in these components of DI. Results indicated participants implemented a variety of differentiation strategies in their classrooms with varying proficiency. Evidence suggested all participants used instructional modifications that required little advance preparation to accommodate differences in students' interests and learning profile. Four of the seven participants implemented more complex instructional strategies that required substantial advance preparation by the teacher. Most significantly, this study provides practical strategies for in-service science teachers beginning to differentiate instruction and recommendations for professional development and preservice science teacher education.

  7. Science Teacher Education in the Twenty-First Century: a Pedagogical Framework for Technology-Integrated Social Constructivism

    Science.gov (United States)

    Barak, Miri

    2017-04-01

    Changes in our global world have shifted the skill demands from acquisition of structured knowledge to mastery of skills, often referred to as twenty-first century competencies. Given these changes, a sequential explanatory mixed methods study was undertaken to (a) examine predominant instructional methods and technologies used by teacher educators, (b) identify attributes for learning and teaching in the twenty-first century, and (c) develop a pedagogical framework for promoting meaningful usage of advanced technologies. Quantitative and qualitative data were collected via an online survey, personal interviews, and written reflections with science teacher educators and student teachers. Findings indicated that teacher educators do not provide sufficient models for the promotion of reform-based practice via web 2.0 environments, such as Wikis, blogs, social networks, or other cloud technologies. Findings also indicated four attributes for teaching and learning in the twenty-first century: (a) adapting to frequent changes and uncertain situations, (b) collaborating and communicating in decentralized environments, (c) generating data and managing information, and (d) releasing control by encouraging exploration. Guided by social constructivist paradigms and twenty-first century teaching attributes, this study suggests a pedagogical framework for fostering meaningful usage of advanced technologies in science teacher education courses.

  8. Sustainability, the Next Generation Science Standards, and the Education of Future Teachers

    Science.gov (United States)

    Egger, Anne E.; Kastens, Kim A.; Turrin, Margaret K.

    2017-01-01

    The Next Generation Science Standards (NGSS) emphasize how human activities affect the Earth and how Earth processes impact humans, placing the concept of sustainability within the Earth and Space Sciences. We ask: how prepared are future teachers to address sustainability and systems thinking as encoded in the NGSS? And how can geoscientists…

  9. A Problem-Based Learning Scenario That Can Be Used in Science Teacher Education

    Science.gov (United States)

    Sezgin Selçuk, Gamze

    2015-01-01

    The purpose of this study is to introduce a problem-based learning (PBL) scenario that elementary school science teachers in middle school (5th-8th grades) can use in their in-service training. The scenario treats the subjects of heat, temperature and thermal expansion within the scope of the 5th and 6th grade science course syllabi and has been…

  10. Instructional support and implementation structure during elementary teachers' science education simulation use

    Science.gov (United States)

    Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.

    2016-07-01

    This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results indicated teachers used a one-to-one student-to-computer ratio most often either during class-wide individual computer use or during a rotating station structure. Worksheets, general support, and peer collaboration were the most common forms of instructional support. The least common instructional support forms included lesson pacing, initial play, and a closure discussion. Students' simulation use was supported in the fewest ways during a rotating station structure. Results suggest that simulation professional development with elementary teachers needs to explicitly focus on implementation structures and instructional support to enhance participants' pedagogical knowledge and improve instructional simulation use. In addition, research is needed to provide theoretical explanations for the observed patterns that should subsequently be addressed in supporting teachers' instructional simulation use during professional development or in teacher preparation programs.

  11. How One Science Teacher Redefines a Science Teaching Practice around a Theme: A Case Study in the Context of Educational Reform in Quebec

    Science.gov (United States)

    Barma, Sylvie; Bader, Barbara

    2013-01-01

    In the context of an education reform in Quebec, this case study illustrates how a science teacher's practice was redefined with nine classes over a period of four months on a specific, integrative theme inspired by issues of daily life in an attempt to increase her students' motivation and to better make sense of some scientific concepts…

  12. The Long-Term Impact of an Education for Sustainability Course on Israeli Science and Technology Teachers' Pro-Environment Awareness, Commitment and Behaviour

    Science.gov (United States)

    Abramovich, Anat; Loria, Yahavit

    2015-01-01

    The impact of an Education for Sustainability (EfS) course for science and technology junior high school teachers on the intentional and actual environmental behaviour of participants was studied by researching the EfS implementation of 13 science and technology teachers within their family, community, and work environment. The research was…

  13. The development and implementation of a teacher education model in environmental science education for Indian Certificate of Secondary Education (ICSE) schools

    Science.gov (United States)

    Patil, Anuradha

    This research study is concerned with the teaching of Environmental Science in the ninth and tenth grades of ICSE schools in Mumbai, India and the development and implementation of a new teacher education model. The instructional strategies practiced by the teachers were investigated using a questionnaire, semi-structured interview schedule and classroom observation. Based on these data, a new model of teacher education was developed with the help of a small cohort of teachers. The rationale for the model was that it should be a non-prescriptive framework that provided a coherently organized, concise guide for environmental education teachers that incorporated modern perspectives on content knowledge, effective pedagogical practices including constructivist approaches and active learning, and a set of guidelines for effectively integrating pedagogy with science content knowledge. The model was in the form of a two-way matrix, with the columns providing the pedagogy and the rows indicating the content knowledge. The intersections of the columns and rows to form individual cells of the matrix yielded a synthesis of pedagogical content knowledge (PCK). The model was discussed with the participating teachers, who prepared revised lesson plans using the model and delivered the lessons, which were observed by the researcher. On using the model, the teaching became more student-centered, as the teachers strove to include constructive and inquiry-based approaches. The use of technology enhanced the effectiveness of the lessons and teachers evaluated the students on all three domains of learning (i.e., affective, cognitive, and psychomotor). Most teachers agreed that it was possible to use the model to plan their lesson and implement it in the classroom; however, they needed to put in more time and effort to get used to a change in their teaching methodology. There is no doubt that teacher professional development is a long process and change does not occur immediately

  14. Understanding Standards and Assessment Policy in Science Education: Relating and Exploring Variations in Policy Implementation by Districts and Teachers in Wisconsin

    Science.gov (United States)

    Anderson, Kevin John Boyett

    Current literature shows that many science teachers view policies of standards-based and test-based accountability as conflicting with research-based instruction in science education. With societal goals of improving scientific literacy and using science to spur economic growth, improving science education policy becomes especially important. To understand perceived influences of science education policy, this study looked at three questions: 1) How do teachers perceive state science standards and assessment and their influence on curriculum and instruction? 2) How do these policy perspectives vary by district and teacher level demographic and contextual differences? 3) How do district leaders' interpretations of and efforts within these policy realms relate to teachers' perceptions of the policies? To answer these questions, this study used a stratified sample of 53 districts across Wisconsin, with 343 middle school science teachers responding to an online survey; science instructional leaders from each district were also interviewed. Survey results were analyzed using multiple regression modeling, with models generally predicting 8-14% of variance in teacher perceptions. Open-ended survey and interview responses were analyzed using a constant comparative approach. Results suggested that many teachers saw state testing as limiting use of hands-on pedagogy, while standards were seen more positively. Teachers generally held similar views of the degree of influence of standards and testing regardless of their experience, background in science, credentials, or grade level taught. District SES, size and past WKCE scores had some limited correlations to teachers' views of policy, but teachers' perceptions of district policies and leadership consistently had the largest correlation to their views. District leadership views of these state policies correlated with teachers' views. Implications and future research directions are provided. Keywords: science education, policy

  15. A Cultural Historical Activity Theory Approach in Natural Sciences Education Laboratory Lessons towards Reforming Teachers Training

    Science.gov (United States)

    Kolokouri, Eleni; Theodoraki, Xarikleia; Plakitsi, Katerina

    2012-01-01

    This paper focuses on connecting natural sciences education with Cultural Historical Activity Theory (CHAT). In this sense, natural sciences education is considered as a lifelong learning procedure, not seen as an individual but as a collective activity. Moreover, learning becomes a human activity in which theory and praxis are strongly connected…

  16. Science and mathematics teachers of the future

    DEFF Research Database (Denmark)

    Michelsen, Claus; Nielsen, Jan Alexis; Petersen, Morten Rask

    2008-01-01

    This paper presents the project Science and Mathematics Teachers of the Future. The aim of the project is to develop and implement a graduate level equivalent degree program in mathematics and science instruction for in-service teachers of lower secondary education. This aim is achieved...... in the programme through involving the teachers in design, implementation and evaluation of innovative instructional sequences, which deals with a wide range of aspects of mathematics and science, e.g. modern science and the importance of science in society. In the program contemporary science and mathematics...... education research serves as a basis for the design and development of warranted practices with which the teachers may experiment in their classroom. We will focus on the outcomes of offering a program which is intimately tied to (i) contemporary science and mathematics education research, (ii) modern...

  17. Opening Pandora's Box: Texas Elementary Campus Administrators use of Educational Policy And Highly Qualified Classroom Teachers Professional Development through Data-informed Decisions for Science Education

    Science.gov (United States)

    Brown, Linda Lou

    Federal educational policy, No Child Left Behind Act of 2001, focused attention on America's education with conspicuous results. One aspect, highly qualified classroom teacher and principal (HQ), was taxing since states established individual accountability structures. The HQ impact and use of data-informed decision-making (DIDM) for Texas elementary science education monitoring by campus administrators, Campus Instruction Leader (CILs), provides crucial relationships to 5th grade students' learning and achievement. Forty years research determined improved student results when sustained, supported, and focused professional development (PD) for teachers is available. Using mixed methods research, this study applied quantitative and qualitative analysis from two, electronic, on-line surveys: Texas Elementary, Intermediate or Middle School Teacher Survey(c) and the Texas Elementary Campus Administrator Survey(c) with results from 22.3% Texas school districts representing 487 elementary campuses surveyed. Participants selected in random, stratified sampling of 5th grade teachers who attended local Texas Regional Collaboratives science professional development (PD) programs between 2003-2008. Survey information compared statistically to campus-level average passing rate scores on the 5th grade science TAKS using Statistical Process Software (SPSS). Written comments from both surveys analyzed with Qualitative Survey Research (NVivo) software. Due to the level of uncertainty of variables within a large statewide study, Mauchly's Test of Sphericity statistical test used to validate repeated measures factor ANOVAs. Although few individual results were statistically significant, when jointly analyzed, striking constructs were revealed regarding the impact of HQ policy applications and elementary CILs use of data-informed decisions on improving 5th grade students' achievement and teachers' PD learning science content. Some constructs included the use of data

  18. Educating mathematics teacher educators

    DEFF Research Database (Denmark)

    Højgaard, Tomas; Jankvist, Uffe Thomas

    2014-01-01

    The paper argues for a three-dimensional course design structure for future mathematics teacher educators. More precisely we describe the design and implementation of a course basing itself on: the two mathematical competencies of modelling and problem tackling, this being the first dimension......; the two mathematical topics of differential equations and stochastics, this being the second dimension; and finally a third dimension the purpose of which is to deepen the two others by means of a didactical perspective....

  19. Pre-Service Science Teacher Education in Africa: Prospects and Challenges

    Science.gov (United States)

    Ogunniyi, M. B.; Rollnick, Marissa

    2015-01-01

    Since the independence era in the 1950s and 1960s, many African countries have recognised the important role that science plays in the socio-economic development of any country. As a result, various African governments have enacted policies and allocated a large proportion of their gross national product to the science and science education sector…

  20. Teacher Educator Technology Competencies

    Science.gov (United States)

    Foulger, Teresa S.; Graziano, Kevin J.; Schmidt-Crawford, Denise A.; Slykhuis, David A.

    2017-01-01

    The U.S. National Educational Technology Plan recommends the need to have a common set of technology competencies specifically for teacher educators who prepare teacher candidates to teach with technology (U.S. Department of Education, Office of Educational Technology, 2017). This study facilitated the co-creation of the Teacher Educator…

  1. The emergence and institutional co-determination of sustainability as a teaching topic in interdisciplinary science teacher education

    DEFF Research Database (Denmark)

    Rasmussen, Klaus

    2016-01-01

    This paper takes an institutional perspective on the topic of sustainability in order to analyse how this ‘idea’ enters science teacher education through an interdisciplinary approach. It shows how the development and implementation of a course for Danish pre-service teachers was conditioned......, conceptualised through a new reference model that separates the analysis from the usual sustainability dimensions. The findings reveal how sustainability as a teaching topic can be a unifying idea in an interdisciplinary setting. Disciplinary differences evidently impact course planning and implementation...

  2. The Impact of the Social Norms of Education on Beginning Science Teachers' Understanding of NOS During their First Three Years in the Classroom

    Science.gov (United States)

    Firestone, Jonah B.

    An understanding of the Nature of Science (NOS) remains a fundamental goal of science education in the Unites States. A developed understanding of NOS provides a framework in which to situate science knowledge. Secondary science teachers play a critical role in providing students with an introduction to understanding NOS. Unfortunately, due to the high turnover rates of secondary science teachers in the United States, this critical role is often filled by relatively novice teachers. These beginning secondary science teachers make instructional decisions regarding science that are drawn from their emerging knowledge base, including a tentative understanding of NOS. This tentative knowledge can be affected by environment and culture of the classroom, school, and district in which beginning teachers find themselves. When examining NOS among preservice and beginning teachers the background and demographics of the teachers are often ignored. These teachers are treated as a homogenous block in terms of their initial understanding of NOS. This oversight potentially ignores interactions that may happen over time as teachers cross the border from college students, preservice teachers, and scientists into the classroom environment. Through Symbolic Interactionism we can explain how teachers change in order to adapt to their new surroundings and how this adaptation may be detrimental to their understanding of NOS and ultimately to their practice. 63 teachers drawn from a larger National Science Foundation (NSF) funded study were interviewed about their understanding of NOS over three years. Several demographic factors including college major, preservice program, number of History and Philosophy of Science classes, and highest academic degree achieve were shown to have an affect on the understanding of NOS over time. In addition, over time, the teachers tended to 'converge' in their understanding of NOS regardless of preservice experiences or induction support. Both the affect

  3. Swiss and Turkish Pre-Service Science Teachers' Anxiety Levels for Educational Technology

    Science.gov (United States)

    Efe, Hulya Aslan; Efe, Rifat

    2016-01-01

    This study aims to culturally explain pre-service science teachers' instructional technology-related anxiety levels by analyzing the variables of their instructional technology using experiences, frequency of using instructional technologies, access to instructional technologies, instructional technology-related attitude and their instructional…

  4. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  5. Physics Education: Effect of Micro-Teaching Method Supported by Educational Technologies on Pre-Service Science Teachers' Misconceptions on Basic Astronomy Subjects

    Science.gov (United States)

    Gurbuz, Fatih

    2016-01-01

    The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…

  6. Revising Teacher Candidates' Views of Science and Self: Can Accounts from the History of Science Help?

    Science.gov (United States)

    Lewthwaite, Brian; Murray, John; Hechter, Richard

    2012-01-01

    Our inquiry uses accounts from the history of science to develop teacher-candidate (student teacher) understanding of the nature of science (NOS) in a science teacher education methods course. This understanding of the NOS is then used as a foundation for developing teacher candidate appreciation of the attributes of authentic science lessons.…

  7. Science’s Education and Teaching. A case of study about of a Secundary’s Sciences teacher

    Directory of Open Access Journals (Sweden)

    Bartolomé Vázquez Bernal

    2009-10-01

    Full Text Available This article shows the conclusions of an investigation plan which was showed in the Human Sciences Facultity and Education of Huesca, in the election of assistances for the realisation of the Act of Improvement Program of Education, with the tittle of "School Practices I, II and III from the view of the credits ECTS.One of the main aims of this project was to know the attitude of the University teachers before the school practices course, that is why we did a cuestionary to a big number of partners of Faculty Education of Huesca, Zaragoza and Teruel, with the purpose that they could transmit us their thougths and to be able to offer a solution to elaborate and develop the new plans of teacher degree, specially, refered to practicum.

  8. Signature of the Joint Declaration by the Minor Academy of Science of Ukraine and CERN concerning participation by Ukrainian teachers and students in educational programmes at CERN

    CERN Multimedia

    Hoch, Michael

    2011-01-01

    Signature of the Joint Declaration by the Minor Academy of Science of Ukraine and CERN concerning participation by Ukrainian teachers and students in educational programmes at CERN The signatories: Dr Rolf Landua Education Group Leader Professor Stanislav Dovgyi President of the Minor Academy of Science of Ukraine On the photos: Mick Storr, Marina Savino, Rolf Landua, Stanislav Dovgyi, Tetiana Hryn'Ova

  9. Social science teachers on citizenship education: a comparative study of three European countries

    NARCIS (Netherlands)

    Jeliazkova, Margarita I.

    2014-01-01

    This paper presents a comparison of high school teachers’ views on citizenship education in three European countries – the Netherlands, Bulgaria, and Croatia. In all these countries, citizenship is an important part of school curriculum. The teachers need to find ways to deal with the everyday

  10. AGI's Earth Science Week and Education Resources Network: Connecting Teachers to Geoscience Organizations and Classroom Resources that Support NGSS Implementation

    Science.gov (United States)

    Robeck, E.; Camphire, G.; Brendan, S.; Celia, T.

    2016-12-01

    There exists a wide array of high quality resources to support K-12 teaching and motivate student interest in the geosciences. Yet, connecting teachers to those resources can be a challenge. Teachers working to implement the NGSS can benefit from accessing the wide range of existing geoscience resources, and from becoming part of supportive networks of geoscience educators, researchers, and advocates. Engaging teachers in such networks can be facilitated by providing them with information about organizations, resources, and opportunities. The American Geoscience Institute (AGI) has developed two key resources that have great value in supporting NGSS implement in these ways. Those are Earth Science Week, and the Education Resources Network in AGI's Center for Geoscience and Society. For almost twenty years, Earth Science Week, has been AGI's premier annual outreach program designed to celebrate the geosciences. Through its extensive web-based resources, as well as the physical kits of posters, DVDs, calendars and other printed materials, Earth Science Week offers an array of resources and opportunities to connect with the education-focused work of important geoscience organizations such as NASA, the National Park Service, HHMI, esri, and many others. Recently, AGI has initiated a process of tagging these and other resources to NGSS so as to facilitate their use as teachers develop their instruction. Organizing Earth Science Week around themes that are compatible with topics within NGSS contributes to the overall coherence of the diverse array of materials, while also suggesting potential foci for investigations and instructional units. More recently, AGI has launched its Center for Geoscience and Society, which is designed to engage the widest range of audiences in building geoscience awareness. As part of the Center's work, it has launched the Education Resources Network (ERN), which is an extensive searchable database of all manner of resources for geoscience

  11. Nihithewak Ithiniwak, Nihithewatisiwin and science education: An exploratory narrative study examining Indigenous-based science education in K--12 classrooms from the perspectives of teachers in Woodlands Cree community contexts

    Science.gov (United States)

    Michell, Herman Jeremiah

    This study was guided by the following research questions: What do the stories of teachers in Nihithewak (Woodlands Cree) school contexts reveal about their experiences and tendencies towards cultural and linguistic-based pedagogical practices and actions in K-12 classrooms? How did these teachers come to teach this way? How do their beliefs and values from their experiences in science education and cultural heritage influence their teaching? Why do these teachers do what they do in their science classroom and instructional practices? The research explores Indigenous-based science education from the perspectives and experiences of science teachers in Nihithewak school contexts. Narrative methodology (Clandinin & Connelly, 2000) was used as a basis for collecting and analyzing data emerging from the research process. The results included thematic portraits and stories of science teaching that is connected to Nihithewak and Nihithewatisiwin (Woodlands Cree Way of Life). Major data sources included conversational interviews, out-of-class observations and occasional in-class observations, field notes, and a research journal. An interview guide with a set of open-ended and semi-structured questions was used to direct the interviews. My role as researcher included participation in storied conversations with ten selected volunteer teachers to document the underlying meanings behind the ways they teach science in Nihithewak contexts. This research is grounded in socio-cultural theory commonly used to support the examination and development of school science in Indigenous cultural contexts (Lemke, 2001; O'Loughlin, 1992). Socio-cultural theory is a framework that links education, language, literacy, and culture (Nieto, 2002). The research encapsulates a literature review that includes the history of Aboriginal education in Canada (Battiste & Barman, 1995; Kirkness, 1992; Perley, 1993), Indigenous-based science education (Cajete, 2000; Aikenhead, 2006a), multi

  12. The Research as Natural Sciences Teaching Strategy: Pedagogical Conceptions of Secondary Education Teachers at Instituto Pedagógico Nacional

    Directory of Open Access Journals (Sweden)

    Dayana Milena Bejarano Muñoz

    2017-01-01

    Full Text Available This text is a look to the research as a transformation and generation axis of knowledge among middle school students, based on the analysis of teachers’ pedagogical conceptions at Instituto Pedagógico Nacional around natural sciences research and teaching. A qualitative methodology from the interpretive approach was implemented, which allowed, from case study, to establish pedagogical conceptions of secondary education teachers in natural sciences about research. In addition, pedagogical elements are proposed about inclusion of school research in secondary education as natural sciences teaching strategy, which contributes to the construction and transformation of educational experiences. As a conclusion, teachers’ trend of conceptions was towards positivism, which is part of disciplinary and quantitative researches, looking at science from the application of scientific method. Even though, pedagogical interpretive and critical-social current begins to be included, by socializing quantitative findings obtained generating social changes from the intervention with the community. Likewise, teachers recognize the academic, social, interpersonal and working benefits obtained in a research process, such as generating and deepening of knowledge, monitoring of methodical processes in search of information and data collection, interpretation and reasoning about phenomena, and critical development from their daily lives, all leading students to be actors of transformation processes from their own interest.

  13. Teachers' perceptions on primary science teaching

    Science.gov (United States)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  14. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  15. Assessment of general education teachers' Tier 1 classroom practices: contemporary science, practice, and policy.

    Science.gov (United States)

    Reddy, Linda A; Fabiano, Gregory A; Jimerson, Shane R

    2013-12-01

    Progress monitoring is a type of formative assessment. Most work on progress monitoring in elementary school settings has been focused on students. However, teachers also can benefit from frequent evaluations. Research addressing teacher progress monitoring is critically important given the recent national focus on teacher evaluation and effectiveness. This special topic section of School Psychology Quarterly is the first to showcase the current research on measuring Tier 1 instructional and behavioral management practices used by prekindergarten and elementary school teachers in general education settings. The three studies included in the special section describe the development and validation efforts of several teacher observational and self-report measures of instruction and/or behavioral management. These studies provide evidence for the utility of such assessments for documenting the use of classroom practices, and these assessment results may be leveraged in innovative coaching models to promote best practice. These articles also offer insight and ideas for the next generation of teacher practice assessment for the field. Finally, the special topic is capped by a commentary synthesizing the current work and offers "big ideas" for future measurement development, policy, and professional development initiatives. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Teachers' Concerns about Biotechnology Education

    Science.gov (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  17. An examination of key experiences which contribute to a positive change in attitude toward science in two elementary education teacher candidates at the University of Wyoming

    Science.gov (United States)

    Cason, Maggie A.

    This investigation utilized life history methodology (Armstrong, 1987; Bogdan & Biklen, 1998; Lawrence-Lightfoot, 1977; Marshall & Rossman, 1995; Patton, 1987; Taylor & Bogdan; 1984) to examine lifelong science experiences of two elementary education teacher candidates at a land grant institution with a large, undergraduate teacher education program. Purposive sampling techniques (Bogdan & Biklen, 1998) led to the selection of two teacher candidates who reported high science anxiety when they began university coursework. The investigation focused on five broad questions: (a) What were key experiences in the elementary teacher education program which contributed to a positive change in attitude toward science? (b) What science experiences, in and out of school, did the teacher candidates encounter while they were in elementary school, junior high school, high school, and college? (c) How did the elementary education program's science course structure, professors, and field experiences contribute to the change in attitude toward science? (d) How much time was involved in the change in attitude toward science? and (e) What were the effects of the change in attitude on the teaching of science in the elementary classroom? Each candidate completed approximately twenty hours of interviews yielding rich descriptions of their lifelong science experiences. Data also included interviews with science and science education professors, journaling, and observations of student teaching experiences. Data analysis revealed four over-arching themes with implications for teacher educators. First, data showed the importance of relationship building between professors and teacher candidates. Professors must know and work with teacher candidates, and provide a structure that encourages question asking. Second, course structure including hands-on teaching strategies and students working in small groups over an extended period of time was vital. Third, integrating language arts with

  18. Exploring the Effects of Specific, Hands-On Interventions, on Environmental Science Topics in Teacher Education Programs

    Science.gov (United States)

    Bullock, S. M.; Hayhoe, D.

    2012-12-01

    With increased concern over the environment, all Ontario students now study soils, energy conservation, water systems, and climate change & the greenhouse effect in Grades 3, 5, 7, 8 and 10. Unfortunately, many prospective teachers at the elementary and intermediate levels come to teacher education programs with little or no formal science education beyond their own experiences as students in the K-12 system. We devised a series of concept tests (some binary choice, some multiple choice) designed to assess teacher candidates' conceptual understandings of soils, energy, water systems, and climate change and the greenhouse effect - the very content they are expected to teach their future students in the school system. We administered a pre-test to our students at two institutions to establish a baseline of their understanding. Then, we specifically devoted class time to exploring each of these themes in our science curriculum methods courses in order using research-based principles of teaching devoted to promoting conceptual change through the use of hands-on, inquiry approaches in science. After a few months had passed, we again administered the same tests to teacher candidates to measure candidates' conceptual gain. Some teacher candidates also participated in follow-up focus group interviews so that they could have the opportunity to articulate their understandings of concepts in environmental science using their own words. In this poster we will report on data collected for this project over the past two academic years. We have reached two broad conclusions. First, teacher candidates know a considerable amount about the four environmental topics that were selected, despite the fact that most participants in the research did not have post-secondary training in science. For example, participants tended to know that planting different crops on the soil in different years helps to maintain fertile soils and that warmer oceans will cause an increase in the severity of

  19. Preschool Teachers' Attitudes and Beliefs Toward Science

    Science.gov (United States)

    Lloyd, Sharon Henry

    In the United States, a current initiative, Advancing Active STEM Education for Our Youngest Learners, aims to advance science, technology, engineering, and math (STEM) education in early childhood. The purpose of this study was to understand preschool teachers' proficiency with science and address the problem of whether or not science learning opportunities are provided to young children based on teachers' attitudes and beliefs. A theoretical framework for establishing teachers' attitudes toward science developed by van Aalderen-Smeets, van der Molen, and Asma, along with Bandura's theory of self-efficacy were the foundations for this research. Research questions explored preschool teachers' attitudes and beliefs toward science in general and how they differed based on education level and years of preschool teaching experience. Descriptive comparative data were collected from 48 preschool teacher participants using an online format with a self-reported measure and were analyzed using nonparametric tests to describe differences between groups based on identified factors of teacher comfort, child benefit, and challenges. Results indicated that the participants believed that early childhood science is developmentally appropriate and that young children benefit from science instruction through improved school-readiness skills. Preschool teachers with a state credential or an associate's degree and more teaching experience had more teacher comfort toward science based on attitudes and beliefs surveyed. The data indicated participating preschool teachers experienced few challenges in teaching science. The study may support positive social change through increased awareness of strengths and weaknesses of preschool teachers for the development of effective science professional development. Science is a crucial component of school-readiness skills, laying a foundation for success in later grades.

  20. Retraining Institute in Teacher Education

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, H.B.; Jennings, R.

    1992-07-31

    This endeavor was comprised of three companion projects. They are interdependent components which together provide a significant enhancement to the existing programs in the School of Education at Norfolk state University.The primary focus of the project was in instructing regular and special education undergraduate students and teachers. As a result of this endeavor, instruction in science and engineering majors was enhanced.

  1. Professional Identity Development of Teacher Candidates Participating in an Informal Science Education Internship: A Focus on Drawings as Evidence

    Science.gov (United States)

    Katz, Phyllis; McGinnis, J. Randy; Hestness, Emily; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy; Pease, Rebecca

    2011-01-01

    This study investigated the professional identity development of teacher candidates participating in an informal afterschool science internship in a formal science teacher preparation programme. We used a qualitative research methodology. Data were collected from the teacher candidates, their informal internship mentors, and the researchers. The…

  2. Pre-service secondary school science teachers science teaching ...

    African Journals Online (AJOL)

    PROF.MIREKU

    pre-service secondary science teachers' self-efficacy beliefs with regard to gender and educational .... outcome. As a consequence, instruments for the determination of self-efficacy ...... Sex Roles: A Journal of Research, 42, 119–31. Bursal, M.

  3. On Reconceptualizing Teacher Education.

    Science.gov (United States)

    Yates, Robert; Muchisky, Dennis

    2003-01-01

    Raises questions about what has been referred to as a "reconceptualization of teacher education," which advocates that teacher education in TESOL focuses more on the act of teaching and learning to teach. Argues that this perspective threatens to deemphasize what language teachers need to know about language and language acquisition. (Author/VWL)

  4. Preparing pre-service teachers to integrate technology into inquiry-based science education: Three case studies in The Netherlands

    Science.gov (United States)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos

    2016-05-01

    Integration of technology ( e.g. measuring with sensors, video measurement, and modeling) into secondary-school science teaching is a need globally recognized. A central issue of incorporating these technologies in teaching is how to turn manipulations of equipment and software into manipulations of ideas. Therefore, preparation for pre-service teachers to apply ICT tools should be combined with the issues of minds-on inquiring and meaning-making. From this perspective, we developed a course within the post-graduate teacher-education program in the Netherlands. During the course, pre-service teachers learnt not only to master ICT skills but also to design, teach, and evaluate an inquiry-based lesson in which the ICT tool was integrated. Besides three life sessions, teachers' learning scenario also consisted of individual tasks which teachers could carry out mostly in the school or at home with support materials and online assistance. We taught three iterations of the course within a design-research framework in 2013, 2014 and collected data on the teacher learning processes and outcomes. The analyses of these data from observation, interviews, questionnaires, and documents were to evaluate implementation of the course, then suggest for revisions of the course set-up, which was executed and then assessed again in a subsequent case study. Main outcomes of the three case studies can be summarized as follows: within a limited time (3 life sessions spread over 2-3 months), the heterogeneous groups of pre-service teachers achieved a reasonable level of competence regarding the use of ICT tools in inquiry-based lessons. The blended set-up with support materials, especially the Coach activities and the lesson-plan form for an ICT-integrated inquiry-based lesson, contributed to this result under the condition that the course participants really spent considerable time outside the life sessions. There was a need for more time for hands-on, in-group activities in life

  5. Supporting metacognitive development in early science education: Exploring elementary teachers' beliefs and practices in metacognition

    Science.gov (United States)

    Braund, Heather Leigh-Anne

    Metacognition is the understanding and control of cognitive processes. Students with high levels of metacognition achieve greater academic success. The purpose of this mixed-methods study was to examine elementary teachers' beliefs about metacognition and integration of metacognitive practices in science. Forty-four teachers were recruited through professional networks to complete a questionnaire containing open-ended questions (n = 44) and Likert-type items (n = 41). Five respondents were selected to complete semi-structured interviews informed by the questionnaire. The selected interview participants had a minimum of three years teaching experience and demonstrated a conceptual understanding of metacognition. Statistical tests (Pearson correlation, t-tests, and multiple regression) on quantitative data and thematic analysis of qualitative data indicated that teachers largely understood metacognition but had some gaps in their understanding. Participants' reported actions (teaching practices) and beliefs differed according to their years of experience but not gender. Hierarchical multiple regression demonstrated that the first block of gender and experience was not a significant predictor of teachers' metacognitive actions, although experience was a significant predictor by itself. Experience was not a significant predictor once teachers' beliefs were added. The majority of participants indicated that metacognition was indeed appropriate for elementary students. Participants consistently reiterated that students' metacognition developed with practice, but required explicit instruction. A lack of consensus remained around the domain specificity of metacognition. More specifically, the majority of questionnaire respondents indicated that metacognitive strategies could not be used across subject domains, whereas all interviewees indicated that they used strategies across subjects. Metacognition was integrated frequently into Ontario elementary classrooms; however

  6. Science Teacher Education for Sustainable Development: A Case Study of a Residential Field Course in a Norwegian Pre-Service Teacher Education Programme

    Science.gov (United States)

    Jegstad, Kirsti Marie; Gjøtterud, Sigrid Marie; Sinnes, Astrid Tonette

    2018-01-01

    In this paper, we explore how a Norwegian teacher education institution promotes education for sustainable development (ESD) through a residential field course. The residential field course was located in a mountain area and data were collected through participant observation. The data included--together with instructional artefacts--evaluation…

  7. Teacher Education that Works: Preparing Secondary-Level Math and Science Teachers for Success with English Language Learners Through Content-Based Instruction

    Directory of Open Access Journals (Sweden)

    Margo Elisabeth DelliCarpini

    2014-11-01

    Full Text Available Little research exists on effective ways to prepare secondary mathematics and science teachers to work with English language learners (ELLs in mainstream mathematics and science (subsequently referred to as STEM classrooms. Given the achievement gap that exists between ELLs and their native-speaking counterparts in STEM subjects, as well as the growing numbers of ELLs in US schools, this becomes a critical issue, as academic success for these students depends on the effectiveness of instruction they receive not only in English as a second language classes (ESL, but in mainstream classrooms as well. This article reports on the effects of a program restructuring that implemented coursework specifically designed to prepare pre-service and in-service mathematics, science, and ESL teachers to work with ELLs in their content and ESL classrooms through collaboration between mainstream STEM and ESL teachers, as well as effective content and language integration. We present findings on teachers’ attitudes and current practices related to the inclusion of ELLs in the secondary-level content classroom and their current level of knowledge and skills in collaborative practice. We further describe the rationale behind the development of the course, provide a description of the course and its requirements as they changed throughout its implementation during two semesters, and present findings from the participants enrolled. Additionally, we discuss the lessons learned; researchers’ innovative approaches to implementation of content-based instruction (CBI and teacher collaboration, which we term two-way CBI (DelliCarpini & Alonso, 2013; and implications for teacher education programs.

  8. Science teacher's discourse about reading

    Directory of Open Access Journals (Sweden)

    Isabel Martins

    2006-08-01

    Full Text Available In this research we start from the assumption that teachers act as mediators of reading practices in school and problematise their practices, meanings and representations of reading. We have investigated meanings constructed by a group of teachers of Physics, Chemistry and Biology, working at a federal technical school. Having French discourse analysis as our theoretical-methodological framework, we considered that meanings, concepts and conceptions of reading are built historically through discourses, which produce meanings that determine ideological practices. Our results show that, for that group of teachers, there were no opportunities during either initial training or on-going education for reflecting upon the role of reading in science teaching and learning. Moreover, there seems to be an association between the type of discourse and modes of reading, so that unique meanings are attributed to scientific texts and their reading are linked to search and assimilation of information.

  9. Religion as a Support Factor for Women of Color Pursuing Science Degrees: Implications for Science Teacher Educators

    Science.gov (United States)

    Ceglie, Robert

    2013-02-01

    This study explores the influence of religion as a support factor for a group of Latina and African-American women majoring in science. The current project is a part of a larger study that investigated persistence factors of underrepresented woman who were enrolled as science majors at United States colleges and universities. This paper focuses on one theme that emerged among six participants who disclosed how religion was a significant influence on their persistence in science fields. The strength and support offered by religious values is certainly not specific to science content; however, the support received from their beliefs highlights a potential area for further exploration. Given the importance of increasing participation by students from diverse backgrounds into science fields, it is critical to recognize how some of these differences may be the key factors influencing the way these students look at the world. This study offers evidence that science educators need to consider what role religious beliefs have for students who may be considering science or science education as a future career, particularly for those students from underrepresented groups.

  10. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    Science.gov (United States)

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  11. Turkish Pre-Service Science Teachers' Views on Science-Technology-Society Issues

    Science.gov (United States)

    Yalvac, Bugrahan; Tekkaya, Ceren; Cakiroglu, Jale; Kahyaoglu, Elvan

    2007-01-01

    The international science education community recognises the role of pre-service science teachers' views about the interdependence of Science, Technology, and Society (STS) in achieving scientific literacy for all. To this end, pre-service science teachers' STS views signal the strengths and the weaknesses of science education reform movements.…

  12. Nebraska Earth Science Education Network: Enhancing the NASA, University, and Pre-College Science Teacher Connection with Electronic Communication

    Science.gov (United States)

    Gosselin, David C.

    1997-01-01

    The primary goals of this project were to: 1. Promote and enhance K-12 earth science education; and enhance the access to and exchange of information through the use of digital networks in K-12 institutions. We have achieved these two goals. Through the efforts of many individuals at the University of Nebraska-Lincoln (UNL), Nebraska Earth Science Education Network (NESEN) has become a viable and beneficial interdisciplinary outreach program for K-12 educators in Nebraska. Over the last three years, the NASA grant has provided personnel and equipment to maintain, expand and develop NESEN into a program that is recognized by its membership as a valuable source of information and expertise in earth systems science. Because NASA funding provided a framework upon which to build, other external sources of funding have become available to support NESEN programs.

  13. Technology Integration in Science Education: A Study of How Teachers Use Modern Learning Technologies in Biology Classrooms

    Science.gov (United States)

    Gnanakkan, Dionysius Joseph

    This multiple case-study investigated how high school biology teachers used modern learning technologies (probes, interactive simulations and animations, animated videos) in their classrooms and why they used the learning technologies. Another objective of the study was to assess whether the use of learning technologies alleviated misconceptions in Biology documented by American Association for the Advancement of Science. The sample consisted of eight teachers: four rural public school teachers, two public selective enrollment school teachers, and two private school teachers. Each teacher was followed for two Units of instruction. Data collected included classroom observations, field notes, student assignments and tests, teacher interviews, and pre-and post-misconception assessments. Paired t-tests were done to analyze the pre-post test data at a significance level of 0.05 and the qualitative data was analyzed using the constant comparative method. Each case study was characterized and then a cross-case analyses was done to find common themes across the different cases. Teachers were found to use the learning technologies as a tool to supplement instruction to visualize abstract processes, collect data, and explore abstract concepts and processes. Teachers were found to situate learning, use scaffolding and questioning and make students work in collaborative groups. The genetics, photosynthesis, and evolution misconceptions were better alleviated than cellular respiration. Student work that was collected demonstrated a superficial understanding of the concepts under discussion even when they had misconceptions. The teachers used the learning technologies in their classrooms for a variety of reasons: visual illustrations, time-saving measure to collect data, best way to collect data, engaging and fun for students and the interactive nature of the visualization tools and models. The study's findings had many implications for research, professional development

  14. Preparing pre-service teachers to integrate technology into inquiry-based science education: Three case studies in The Netherlands

    International Nuclear Information System (INIS)

    Tran, Trinh-Ba; Ed van den Berg, Ed; Beishuizen, Jos; Ellermeijer, Ton

    2015-01-01

    Integration of technology (e.g. measuring with sensors, video measurement, and modeling) into secondary-school science teaching is a need globally recognized. A central issue of incorporating these technologies in teaching is how to turn manipulations of equipment and software into manipulations of ideas. Therefore, preparation for pre-service teachers to apply ICT tools should be combined with the issues of minds-on inquiring and meaning-making. From this perspective, we developed a course within the post-graduate teacher-education program in the Netherlands. During the course, pre-service teachers learnt not only to master ICT skills but also to design, teach, and evaluate an inquiry-based lesson in which the ICT tool was integrated. Besides three life sessions, teachers’ learning scenario also consisted of individual tasks which teachers could carry out mostly in the school or at home with support materials and online assistance. We taught three iterations of the course within a design-research framework in 2013, 2014 and collected data on the teacher learning processes and outcomes. The analyses of these data from observation, interviews, questionnaires, and documents were to evaluate implementation of the course, then suggest for revisions of the course set-up, which was executed and then assessed again in a subsequent case study. Main outcomes of the three case studies can be summarized as follows: within a limited time (3 life sessions spread over 2–3 months), the heterogeneous groups of pre-service teachers achieved a reasonable level of competence regarding the use of ICT tools in inquiry-based lessons. The blended set-up with support materials, especially the Coach activities and the lesson-plan form for an ICT-integrated inquiry-based lesson, contributed to this result under the condition that the course participants really spent considerable time outside the life sessions. There was a need for more time for hands-on, in-group activities in life

  15. Can a Three-Day Training Focusing on the Nature of Science and Science Practices as They Relate to Mind in the Making Make a Difference in Preschool Teachers' Self-Efficacy Engaging in Science Education?

    Science.gov (United States)

    Meacham, Colleen

    As technology and our world understanding develop, we will need citizens who are able to ask and answer questions that have not been thought of yet. Currently, high school and college graduates entering the workforce demonstrate a gap in their ability to develop unique solutions and fill the current technology-driven jobs. To address this gap, science needs to be prioritized early in children's lives. The focus of this research was to analyze a science training program that would help pre-school teachers better understand Mind in the Making life skills, the nature of science, science practices, and improve their self-efficacy integrating science education into their classrooms and curriculum. Seventy-one teachers enrolled in two three-day, professional development trainings that were conducted over three, five-hour sessions approximately one month apart... During that training the teachers learned hands-on activities for young children that introduced life and physical science content. They were also given the task of developing and implementing a science-based lesson for their students and then analyzing it with other participants. The information from the lesson plans was collected for analysis. After the last training the teachers were given a pre/post retrospective survey to measure effective outcomes. The results from the lesson plans and surveys indicate that the trainings helped improve the teachers' understanding of Mind in the Making, the nature of science, and science practices. The results also show that the teachers felt more comfortable integrating science education into their classrooms and curriculum.

  16. Fermilab Friends for Science Education | About Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us About Us national leader in precollege science education. From the first Summer Institute for Science Teachers held year over 37,000 students, and 2,500 teachers participated in programs through the Education Office

  17. Teachers for Multicultural Education.

    Science.gov (United States)

    Rivlin, Harry N.; Gold, Milton J.

    Developing teachers for multicultural education is an essential assignment for teacher education and school administration today so that educators might help their students learn to live in a multicultural society. In an earlier view, public schools were considered the "great equalizers" among America's social institutions. The assumption was that…

  18. TEACHER TRAINING: How to Produce Better Math and Science Teachers.

    Science.gov (United States)

    Mervis, J

    2000-09-01

    Two National Research Council panels have released new reports on improving science and math education in the United States. One panel says that the best way to improve teacher education is to make it a continuum, with school districts taking more responsibility for the initial preparation of new teachers and university faculty playing a bigger role in ongoing professional development. The other panel says that more recent science Ph.D.s would be willing to teach high school science and math if the government helped with the transition, if the certification process were compressed, and if they could retain ties to research.

  19. The Challenges Faced by New Science Teachers in Saudi Arabia

    Science.gov (United States)

    Alsharari, Salman

    2016-01-01

    Growing demand for science teachers in the Kingdom of Saudi Arabia, fed by increasing numbers of public school students, is forcing the Saudi government to attract, recruit and retain well-qualified science teachers. Beginning science teachers enter the educational profession with a massive fullfilment and satisfaction in their roles and positions…

  20. Science Teachers' Analogical Reasoning

    Science.gov (United States)

    Mozzer, Nilmara Braga; Justi, Rosária

    2013-08-01

    Analogies can play a relevant role in students' learning. However, for the effective use of analogies, teachers should not only have a well-prepared repertoire of validated analogies, which could serve as bridges between the students' prior knowledge and the scientific knowledge they desire them to understand, but also know how to introduce analogies in their lessons. Both aspects have been discussed in the literature in the last few decades. However, almost nothing is known about how teachers draw their own analogies for instructional purposes or, in other words, about how they reason analogically when planning and conducting teaching. This is the focus of this paper. Six secondary teachers were individually interviewed; the aim was to characterize how they perform each of the analogical reasoning subprocesses, as well as to identify their views on analogies and their use in science teaching. The results were analyzed by considering elements of both theories about analogical reasoning: the structural mapping proposed by Gentner and the analogical mechanism described by Vosniadou. A comprehensive discussion of our results makes it evident that teachers' content knowledge on scientific topics and on analogies as well as their pedagogical content knowledge on the use of analogies influence all their analogical reasoning subprocesses. Our results also point to the need for improving teachers' knowledge about analogies and their ability to perform analogical reasoning.

  1. A nonpedagogical teacher education?

    DEFF Research Database (Denmark)

    Kvols, Anja Madsen; Madsen, Peter Hougaard; Beck, Mette Holdsendorf

    regarding changes in education – which seem to come from evaluations more than from educational and pedagogical theories (Gruschka, 2011). Moreover, the teacher education has increased its focus on both research-based academic training and professional training at the same time. Our study is double – 1...... characterizes teacher professionalism? (Subject studies? Pedagogical studies? Professional training? Academic studies? Bildung studies? Etc.) - What characterizes ‘pedagogy of teacher education’ (Darling-Hammond, 2006; Loughran, 2008; Zeichner, 2005)?...

  2. Science and Theatre Education: A Cross-Disciplinary Approach of Scientific Ideas Addressed to Student Teachers of Early Childhood Education

    Science.gov (United States)

    Tselfes, Vasilis; Paroussi, Antigoni

    2009-01-01

    There is, in Greece, an ongoing attempt to breach the boundaries established between the different teaching-learning subjects of compulsory education. In this context, we are interested in exploring to what degree the teaching and learning of ideas from the sciences' "internal life" (Hacking, in: Pickering (ed) "Science as practice…

  3. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  4. [The portfolio in health sciences teacher education: a tool for learning and assessment].

    Science.gov (United States)

    Roni, Carolina; Eder, María L; Schwartzman, Gisela

    2013-01-01

    The Portfolio is an assessment tool of learning that recently appears in academic forums, and since 2008 is part of the University Teacher Education Program (Teaching Training) at University Institute of Hospital Italiano. Was included to allow teachers reflect on their own practices and accompany them in their educational work everyday. This paper shares the evaluative experience focused on the educational value of the writing process of the Portfolio, as long as is a reflection and a learning tool, by the relationship that promotes between theory and practice. Writing promotes psychological processes that enable students gain new meanings of the knowledge and take over them. At the same time, it can attend the construction of practical rationality that governs the ways of intervening in the classroom, because they write and reflect from their own teaching work. They have been introduced changes in the proposed during the course of its implementation to preserve its purposes: to accompany the draft review, jointly define index, etc. Students point that it is high impact training and conclude that writing is re-think about what they have learned, and therefore keep learning.

  5. Mathematics and science Teachers' Understanding and Practices of ...

    African Journals Online (AJOL)

    Amy Stambach

    It employed qualitative methods of data collection including in-depth interviews and ... Education, Science, Technology, Scientific Research, 2003; Rwanda Education .... Rwandan science teachers were not having common understanding of ...

  6. A five year study of the attitudes, perceptions, and philosophies of five secondary science education teachers prepared in the constructivist teaching methodology advanced at the University of Iowa

    Science.gov (United States)

    Hollenbeck, James Edward

    1999-11-01

    The present study researched the attitudes, Perceptions, and philosophies of five secondary education science teachers prepared in the constructivist teaching methodology advanced at the University of Iowa. This study is a continuation of a three-year study---the Salish I Project supported by the US Department of Education. The teachers studied are five 1993 University of Iowa Science Education Center graduates who have taught for five years. The main objective of the present study was finding answers to four questions aiming at further understanding of the impact and importance of the preservice education in I the constructivist teaching methodology of new teachers, and the changes they experience in the first five years of teaching. The instruments used in the study are various as they cover a wide range of different categories of beliefs I in terms of teaching, learning, teacher performance and view of school. The following trends came out on reviewing all of the data: in the first year of teaching three of the five teachers studied taught as constructivist teachers. in the third year of teaching, the classroom practices of the teachers converged more closely to their beliefs and preservice preparation. In the fifth year, all five teachers were ranked as constructivist in their teaching methodology in the classroom. Using the Wilcoxson test, significant, positive relationships were revealed between the teacher's philosophy of teaching and learning, with their actual practice. Teacher's philosophy and teaching practice were compared with selected standards set forth by the National Science Education Standards and were found to be in close alignment in their fifth year of teaching. Teachers prepared in the constructivist methodology are concerned about their subject content and value student input and reflection. The teachers reported using student-initiated ideas, alternative assessment strategies and being receptive to alternatives. Other important factors

  7. Use of information and communication technologies (ICT) in science education: The views and experiences of three high school teachers

    Science.gov (United States)

    Barreto-Marrero, Luz N.

    ; developed scientific and technological skills; worked real situations in a collaborative way guided by science standards; and that parents participated in their children's learning. The conditions that facilitated these processes were the availability of technological resources, practical and continuous professional development, colleague communication and collaboration, the paradigmatic change towards constructivism with changes in assessment, school texts, curriculum and educational software, and a new generation of students and teachers open towards ICT, and pre-service teachers with technological skills.

  8. Revolutionizing Climate Science: Using Teachers as Communicators

    Science.gov (United States)

    Warburton, J.; Crowley, S.; Wood, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the Polar Regions. Teachers are the dynamic conduits for communicating climate science. In the PolarTREC final report, researchers found that teachers were vital in refining the language of their science and have shaped the goals of the scientific project. Program data demonstrates that science in classrooms is better understood when teachers have a full-spectrum grasp of project intricacies from defining the project, to field data collection, encountering situations for creativity and critical thinking, as well as participating in data and project analysis. Teachers' translating the authentic scientific process is integral in communicating climate science to the broader public. Teachers playing a major role in polar science revolutionize the old paradigm of "in-school learning". Through daily online journaling and forums, social media communication, live webinars with public, and professional development events, these teachers are moving beyond classrooms to communicate with society. Through teachers, climate policy can be shaped for the future by having scientifically literate students as well as assessable science. New paradigms come as teachers attain proficient levels of scientific understanding paired with the expert abilities for communication with years of experience. PolarTREC teachers are a model for new interactions peer-to-peer learning and mentorship for young scientists. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach exponential audiences in media, policy, and classrooms. Modeling this program, we designed and conducted a teacher training on climate science in Denali National Park. Utilizing expert university

  9. Teachers and Educational Policy.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). International Inst. for Educational Planning.

    This study sets forth the results of an inquiry made at the request of UNESCO in the 30 countries in all parts of the world by four world teachers' organizations. Three organizations represent teachers in state systems and the fourth represents Catholic education. These teacher organizations chose 35 national organizations in countries spread over…

  10. Pre-Service Physics Teachers' Conceptions of Nature of Science

    Science.gov (United States)

    Buaraphan, Khajornsak

    2011-01-01

    Understanding of NOS (nature of science) appears as a prerequisite of a scientifically literate person. Promoting adequate understanding of NOS in pre-service physics teachers is, therefore, an important task of science educators. Before doing that, science educators must have information concerning their pre-service teachers' conceptions of NOS.…

  11. An Added Layer of Support: Introducing a Heterarchical Peer Mentoring Intervention to a Preservice Science Teacher Education Cohort

    Science.gov (United States)

    Neesemann, Lisa Ann

    2017-01-01

    In an effort to support preservice science teachers during their concurrent student teaching experiences and masters coursework, I created and implemented a Peer Mentoring Intervention to add an additional layer of support to those most traditionally curated. In this intervention, preservice secondary science teachers were paired into…

  12. Adoption of ICT in Science Education: A Case Study of Communication Channels in a Teachers' Professional Development Project

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari; Aksela, Maija; Meisalo, Veijo

    2009-01-01

    This paper analyses the use of various communication channels in science teachers' professional development project aiming to develop versatile uses for ICT (Information and Communication Technologies) in science teaching. A teacher network was created specifically for this project, and the researchers facilitated three forms of communication…

  13. An Analysis of the Model and Enacted Curricula for a History of Science Course in a Nationwide Teacher Education Program

    Science.gov (United States)

    Nouri, Noushin

    2017-01-01

    The UTeach program, a national model for undergraduate teacher preparation, includes "Perspectives on Science and Mathematics," a class designed to share content about the History of Science (HOS) with preservice teachers. UTeach provides a model curriculum as a sample for instructors teaching "Perspectives." The purpose of…

  14. Teacher Education in Scotland

    Science.gov (United States)

    Munn, Pamela

    2006-01-01

    Using the notion of travelling global policy, this paper discusses the ways in which teacher education in Scotland has responded to world-wide demands on school systems. It highlights the embedded practices which have resisted an unequivocal move to a market-based approach in initial teacher education and contrasts this with approaches to…

  15. Examining Teachers' Hurdles to `Science for All'

    Science.gov (United States)

    Southerland, Sherry; Gallard, Alejandro; Callihan, Laurie

    2011-11-01

    The goal of this research is to identify science teachers' beliefs and conceptions that play an important role in shaping their understandings of and attempts to enact inclusive science teaching practices. We examined the work products, both informal (online discussions, email exchanges) and formal (papers, unit plans, peer reviews), of 14 teachers enrolled in a master's degree course focused on diversity in science teaching and learning. These emerging understandings were member-checked via a series of interviews with a subset of these teachers. Our analysis was conducted in two stages: (1) describing the difficulties the teachers identified for themselves in their attempts to teach science to a wide range of students in their classes and (2) analyzing these self-identified barriers for underlying beliefs and conceptions that serve to prohibit or allow for the teachers' understanding and enactment of equitable science instruction. The teachers' self-identified barriers were grouped into three categories: students, broader social infrastructure, and self. The more fundamental barriers identified included teacher beliefs about the ethnocentrism of the mainstream, essentialism/individualism, and beliefs about the meritocracy of schooling. The implications of these hurdles for science teacher education are discussed.

  16. Educating Prospective Teachers of Biology: Introduction and Research Methods.

    Science.gov (United States)

    Hewson, Peter W.; Tabachnick, B. Robert; Zeichner, Kenneth M.; Blomker, Kathryn B.; Meyer, Helen; Lemberger, John; Marion, Robin; Park, Hyun-Ju; Toolin, Regina

    1999-01-01

    Introduces an issue that details a complex study of a science-teacher-education program whose goal was to graduate teachers who held conceptual change conceptions of teaching science and were disposed to put them into practice. Presents a conceptual framework for science-teacher education, and describes the context and major questions of the…

  17. Developing networks to support science teachers work

    DEFF Research Database (Denmark)

    Sillasen, Martin Krabbe; Valero, Paola

    2012-01-01

    In educational research literature constructing networks among practitioners has been suggested as a strategy to support teachers’ professional development (Huberman, 1995; Jackson & Temperley, 2007; Van Driel, Beijaard, & Verloop, 2001). The purpose of this paper is to report on a study about how...... networks provide opportunities for teachers from different schools to collaborate on improving the quality of their own science teaching practices. These networks exist at the meso-level of the educational system between the micro-realities of teachers’ individual practice and the macro-level, where...... to develop collaborative activities in primary science teacher communities in schools to improve individual teachers practice and in networks between teachers from different schools in each municipality. Each network was organized and moderated by a municipal science coordinator....

  18. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  19. Teacher educators and the challenge to enhance the teaching in chemical sciences in with the merger of mobile devices

    Directory of Open Access Journals (Sweden)

    Liliane da Silva Coelho Jacon

    2014-03-01

    Full Text Available Researches suggest that most teachers have not had the opportunity to qualify for the incorporation of Information and Communication Technologies (ICT in classroom practice. Many researches state that in order to incorporate ICT within a pedagogical framework that will result in real change in the teaching-learning process is essential to rethink the undergraduate syllabus, identifying and transforming practices in the preparation of future teachers. This paper presents partial results of a qualitative research that was developed as part of a doctorate and aims to promote the ongoing professional development of teacher training providers in the field of chemical science and informatics, thus providing a pedagogical practice beyond physical and formal context of traditional classroom-based. This study was an exploratory research developed through cooperation and collaboration and was especially designed by two trainers who prepared a directed study to be used with mobile devices with the goal to enhance the teaching knowledge of chemistry with mobile devices for students in their initial training course in Chemistry at Federal University of Rondonia (UNIR. The research was carried out on voluntary basis and despite of expectations to employ this technology in the educational field, it was found that just few students had access to mobile devices with compatible platform used in this research. The research showed that learning with mobile devices increases interest, motivation and most importantly, the curiosity of the students to learn in a different way. However technological and economic reasons remains a major issue.

  20. PRACTICUM EXPERIENCE IN TEACHER EDUCATION

    African Journals Online (AJOL)

    User

    therefore, argued that the academic program of the teacher education should be coupled ... practicum which provides students with supervised experiences and help the student teachers to ... Lecturer, Department of Pedagogy, Eduction Faculty, Jimma University. ... teachers, different approaches to teacher .... Leadership.

  1. The interaction between reflection and practice in the professional development of a secondary education science teachers: Case study

    Science.gov (United States)

    Vazquez Bernal, Bartolome

    The work that we describe here is a case study of two secondary education science teachers about how action-oriented reflection and action itself interact, and their influence on professional development. The study was carried out from two different viewpoints: a study with a qualitative orientation on the one hand, using diverse data collection and analysis instruments, and collaborative action research on the other, to form the backbone of professional development. In our theoretical outline, we stress the concepts of reflection which sustain the theoretical-practical dialectic, and of complexity which is seen to be a progression hypothesis of central importance, and in which we distinguish three dimensions: technique, practice, and criticism. The reflection data collection instruments were the teacher's diaries and memos, transcriptions of the work group meetings, questionnaires, and interviews. For the classroom practice the ethnographic notes and extracts from the videotapes of the class sessions, and other documentary sources such. The fundamental instrument for data analysis, both for reflection and practice, was the System of Categories that includes six analytical frames: ideological, teacher education, psychological, contextual, epistemological, and curricular. We also used third-order instruments for the representation, such as complexity spheres for reflection and practice and the reflection-practice integration horizon, which allowed the evolution of the teachers to be viewed over the course of the two school years that the research lasted, as well as giving an overall representation of the integration of reflection and practice. The results showed the teachers to be in transition from a technical to a practical dimension, with both her reflection and her classroom practice in the process of becoming more complex, and with the two being closely integrated. It was also found that she had a hard core of obstacles impeding her professional development. We

  2. Professional Development in a Reform Context: Understanding the Design and Enactment of Learning Experiences Created by Teacher Leaders for Science Educators

    Science.gov (United States)

    Shafer, Laura

    Teacher in-service learning about education reforms like NGSS often begin with professional development (PD) as a foundational component (Supovitz & Turner, 2000). Teacher Leaders, who are early implementers of education reform, are positioned to play a contributing role to the design of PD. As early implementers of reforms, Teacher Leaders are responsible for interpreting the purposes of reform, enacting reforms with fidelity to meet those intended goals, and are positioned to share their expertise with others. However, Teacher Leader knowledge is rarely accessed as a resource for the design of professional development programs. This study is unique in that I analyze the knowledge Teacher Leaders, who are positioned as developers of PD, bring to the design of PD around science education reform. I use the extended interconnected model of professional growth (Clarke & Hollingsworth, 2002; Coenders & Terlouw, 2015) to analyze the knowledge pathways Teacher Leaders' access as PD developers. I found that Teacher Leaders accessed knowledge pathways that cycled through their personal domain, domain of practice and domain of consequence. Additionally the findings indicated when Teacher Leaders did not have access to these knowledge domains they were unwilling to continue with PD design. These findings point to how Teacher Leaders prioritize their classroom experience to ground PD design and use their perceptions of student learning outcomes as an indicator of the success of the reform. Because professional development (PD) is viewed as an important resource for influencing teachers' knowledge and beliefs around the implementation of education reform efforts (Garet, et al., 2001; Suppovitz & Turner, 2000), I offer that Teacher Leaders, who are early implementers of reform measures, can contribute to the professional development system. The second part of this dissertation documents the instantiation of the knowledge of Teacher Leaders, who are positioned as designers and

  3. Investigating the Relationship between Teachers' Nature of Science Conceptions and Their Practice of Inquiry Science

    Science.gov (United States)

    Atar, Hakan Yavuz; Gallard, Alejandro

    2011-01-01

    In addition to recommending inquiry as the primary approach to teaching science, developers of recent reform efforts in science education have also strongly suggested that teachers develop a sound understanding of the nature of science. Most studies on teachers' NOS conceptions and inquiry beliefs investigated these concepts of teachers' NOS…

  4. A Pedagogical Framework for Developing Innovative Science Teachers with ICT

    Science.gov (United States)

    Rogers, Laurence; Twidle, John

    2013-01-01

    Background: The authors have conducted a number of research projects into the use of ICT in science teaching and most recently have collaborated with five European partners in teacher education to develop resources to assist teacher trainers in delivering courses for the professional development of science teachers. Purpose: 1. To describe the…

  5. Preservice Science Teachers' Science Teaching Orientations and Beliefs about Science

    Science.gov (United States)

    Kind, Vanessa

    2016-01-01

    This paper offers clarification of science teacher orientations as a potential component of pedagogical content knowledge. Science teaching orientations and beliefs about science held by 237 preservice science teachers were gathered via content-specific vignettes and questionnaire, respectively, prior to participation in a UK-based teacher…

  6. Quality Science Teacher Professional Development and Student Achievement

    Science.gov (United States)

    Dubner, J.

    2007-12-01

    Studies show that socio-economic background and parental education accounts for 50-60 percent of a child's achievement in school. School, and other influences, account for the remaining 40-50 percent. In contrast to most other professions, schools require no real apprenticeship training of science teachers. Overall, only 38 percent of United States teachers have had any on-the-job training in their first teaching position, and in some cases this consisted of a few meetings over the course of a year between the beginning teacher and the assigned mentor or master teacher. Since individual teachers determine the bulk of a student's school experiences, interventions focused on teachers have the greatest likelihood of affecting students. To address this deficiency, partnerships between scientists and K-12 teachers are increasingly recognized as an excellent method for improving teacher preparedness and the quality of science education. Columbia University's Summer Research Program for Science Teachers' (founded in 1990) basic premise is simple: teachers cannot effectively teach science if they have no firsthand experience doing science, hence the Program's motto, "Practice what you teach." Columbia University's Summer Research Program for Science Teachers provides strong evidence that a teacher research program is a very effective form of professional development for secondary school science teachers and has a direct correlation to increased student achievement in science. The author will present the methodology of the program's evaluation citing statistically significant data. The author will also show the economic benefits of teacher participation in this form of professional development.

  7. Quality of secondary preservice mathematics teacher education programs

    OpenAIRE

    Gómez, Pedro

    2005-01-01

    Characterizing the quality of teacher education programs and courses Supported by the Ministry of Science and Technology Working for three years Three universities working on secondary mathematics pre- service teacher education Almeria, Cantabria and Granada With a common model

  8. School Influence and Classroom Control: A Comparison of Career and Technical Education, Science, and Mathematics Teachers

    Science.gov (United States)

    Bowen, Bradley; Marx, Adam; Williams, Thomas; Napoleon, Larry, Jr.

    2017-01-01

    Teacher retention in the STEM fields is of national interest. Several factors, such as job satisfaction, classroom control, and school influence have been linked to teachers leaving the profession. By statistically analyzing various questions from the Schools and Staffing Survey Teacher Questionnaire, this study evaluated the current state of how…

  9. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  10. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  11. Improving Early Career Science Teachers' Ability to Teach Space Science

    Science.gov (United States)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  12. Reform of teacher education and teacher educator competences

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    Despite it is well known known and recognized that teacher educators’ competences play a decisive role for the education of new teachers and also for the quality of the profession as such very little research is conducted on the competences of teacher educators and their training. It is also...... an established fact that the implementation of teacher education reforms to a large extent stands and falls with the competences of the teacher educators. Not least it is of importance that teacher educators possess the kind of competences that are needed to meet the intentions of a reform. Failing teacher...... educator competences might just as well be an explanation for frequent reforms in teacher education as it can be failure of the reforms themselves. Danish teacher education was in 2012 reformed for the third time in only fifteen years, but teacher educator competences were not mapped at all during...

  13. Teachers as Rural Educators

    Science.gov (United States)

    Kristiansen, Andrew

    2014-01-01

    In the article, education is seen as a hierarchical cultural encounter between urban and rural values and ways of life. Good teachers do not only deliver curriculum, they also consider the needs and values of their students, as well as those of the local community. The article discusses how teachers' competence, knowledge and attitudes can affect…

  14. 1960-69 Cumulative Index of Articles Related to Oceanography and Limnology Education in The Science Teacher.

    Science.gov (United States)

    Cohen, Maxwell

    Indexed are articles relating to oceanography and limnology published in "The Science Teacher" between 1960 and 1969. Articles are indexed under title, author, and topic. Topics include background information, course descriptions, and laboratory equipment and techniques. (EB)

  15. The role of entomology in environmental and science education: Comparing outreach methods for their impact on student and teacher content knowledge and motivation

    Science.gov (United States)

    Weeks, Faith J.

    Outreach programming can be an important way for local students and teachers to be exposed to new fields while enhancing classroom learning. University-based outreach programs are offered throughout the country, including most entomology departments as few individuals learn about insects in school and these programs can be excellent sources of entomological education, as well as models to teach environmental and science education. Each department utilizes different instructional delivery methods for teaching about insects, which may impact the way in which students and teachers understand the insect concepts presented. To determine the impact of using entomology to enhance science and environmental education, this study used a series of university-based entomology outreach programs to compare three of the most common delivery methods for their effect on teacher and student content knowledge and motivation, specifically student interest in entomology and teacher self-efficacy. Twenty fifth grade classrooms were assessed over the course of one school year. The results show that teacher knowledge significantly increased when teachers were unfamiliar with the content and when trained by an expert, and teacher self-efficacy did not decrease when asked about teaching with insects. For students, content knowledge increased for each lesson regardless of treatment, suggesting that outreach program providers should focus on working with local schools to integrate their field into the classroom through the delivery methods best suited to the needs of the university, teachers, and students. The lessons also had an impact on student interest in science and environmental education, with an overall finding that student interest increases when using insects in the classroom.

  16. Teacher students experiences of the educations ability to prepare them for the challenges with second language students : an interview study with future teachers in social sciences

    OpenAIRE

    Ekedahl, Nils

    2015-01-01

    This study aims to investigate how a number of students who are at the end of a teachers’ educations program in social studies, geography, religion and history interpret that the national curriculums states that every teacher is responsible for students language development and should be supportive of language backgrounds. In the light of the curriculums the study explores how the teacher education students feel that the education has prepared them for teaching children with Swedish as a seco...

  17. Primary Connections: Simulating the Classroom in Initial Teacher Education

    Science.gov (United States)

    Hume, Anne Christine

    2012-01-01

    The challenge of preparing novice primary teachers for teaching in an educational environment, where science education has low status and many teachers have limited science content knowledge and lack the confidence to teach science, is great. This paper reports on an innovation involving a sustained simulation in an undergraduate science education…

  18. JAIF's teacher support activity on radiation education

    International Nuclear Information System (INIS)

    Kito, K.; Kudo, K.

    2016-01-01

    Japan Atomic Industrial Forum (JAIF) has been conducting science teacher support activities on radiation education since 2011, after the Fukushima NPP Accident, in cooperation with member organizations of the Japan Nuclear Human Resource Development Network (JN-HRD Net). (author)

  19. THE OBSERVATION OF TEACHER CANDIDATE RELATED SCIENCE AND TECHNOLOGY TEACHER'S PROFICIENCY

    OpenAIRE

    BAHŞİ, Muammer; TURAN, Mehmet; YILAYAZ, Ömer

    2009-01-01

    In this study it is evaluated science and tecnology teacher's proficiency based on students insights of science and tecnology education students in education faculty. It was used Standarts for Teacher Proficiency which is prepared from Ministry of National Education. The research was conducted on 85 Science and Tecnology students (4th classes) studying at the education faculty of Firat University. Data from results of study was analysed by using SPSS.

  20. Primary Teachers' Attitudes toward Science: A New Theoretical Framework

    Science.gov (United States)

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; Asma, Lieke J. F.

    2012-01-01

    Attention to the attitudes of preservice and inservice primary teachers toward science is of fundamental importance to research on primary science education. However, progress in this field of research has been slow due to the poor definition and conceptualization of the construct of primary teachers' attitude toward science. This poor theoretical…

  1. The Iowa K-12 Climate Science Education Initiative: a comprehensive approach to meeting in-service teachers' stated needs for teaching climate literacy with NGSS

    Science.gov (United States)

    Stanier, C. O.; Spak, S.; Neal, T. A.; Herder, S.; Malek, A.; Miller, Z.

    2017-12-01

    The Iowa Board of Education voted unanimously in 2015 to adopt NGSS performance standards. The CGRER - College of Education Iowa K-12 Climate Science Education Initiative was established in 2016 to work directly with Iowa inservice teachers to provide what teachers need most to teach climate literacy and climate science content through investigational learning aligned with NGSS. Here we present teachers' requests for teaching climate with NGSS, and an approach to provide resources for place-based authentic inquiry on climate, developed, tested, and refined in partnership with inservice and preservice teachers. A survey of inservice middle school and high school science teachers was conducted at the 2016 Iowa Council of Teachers of Mathematics/Iowa Academy of Sciences - Iowa Science Teaching Section Fall Conference and online in fall 2016. Participants (n=383) were asked about their prior experience and education, the resources they use and need, their level of comfort in teaching climate science, perceived barriers, and how they address potential controversy. Teachers indicated preference for professional development on climate content and complete curricula packaged with lessons and interactive models aligned to Iowa standards, as well as training on instructional strategies to enhance students' ability to interpret scientific evidence. We identify trends in responses by teaching experience, climate content knowledge and its source, grade level, and urban and rural districts. Less than 20% of respondents reported controversy or negativity in teaching climate to date, and a majority were comfortable teaching climate science and climate change, with equal confidence in teaching climate and other STEM content through investigational activities. We present an approach and materials to meet these stated needs, created and tested in collaboration with Iowa teachers. We combine professional development and modular curricula with bundled standards, concepts, models, data

  2. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    1987-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  3. Assessing the role of the teacher in introducing entrepreneurial education in engineering and science courses

    DEFF Research Database (Denmark)

    Teerijoki, Heidi Emilia; Murdock, Karen

    2014-01-01

    on the experience of the teachers of one participant university. It focuses on the role of teachers and emphasizes their perceptions and intention formation through the framework of the Theory of Planned Behavior. The results suggest that the program can positively impact the teacher’s perception although the link...

  4. Teachers' Perceptions and Practices of STEAM Education in South Korea

    Science.gov (United States)

    Park, HyunJu; Byun, Soo-yong; Sim, Jaeho; Han, Hyesook; Baek, Yoon Su

    2016-01-01

    This study examined teachers' perceptions and practices of science, technology, engineering, arts, and mathematics (STEAM) education in South Korea, drawing on a survey of teachers in STEAM model schools. Results showed that the majority of Korean teachers, especially experienced teachers and male teachers, had a positive view on the role of STEAM…

  5. The integration of Mathematics, Science and Technology in early childhood education and the foundation phase: The role of the formation of the professional identities of beginner teachers

    Directory of Open Access Journals (Sweden)

    Marie Botha

    2015-02-01

    Full Text Available This article focuses on the professional identity formation of six beginner teachers (three in early childhood education and three in the foundation phase, involved in the teaching of Mathematics, Science and Technology (MST. Attention is in particular being paid to the role of professional identity in how they applied innovative teaching methods such as enquiry-based teaching. The study is based on the personal narratives of the six teachers, regarding their own learning experiences in MST, the impact of their professional training at an institution of higher education, as well as their first experiences as MST teachers in the workplace. A qualitative research design was applied and data was obtained through visual (photo collages and written stories, observation and interviews. Whilst all the teachers held negative attitudes towards Mathematics, this situation was turned around during their university training. The three teachers in early childhood education experienced their entrance to the profession as positive, due mainly to the support of colleagues in their application of innovative teaching methods. Two teachers in the foundation phase, however, experienced the opposite. The findings emphasise the complex processes in the moulding of a professional teacher identity and how teaching practices are influenced by these processes.

  6. Science student teacher's perceptions of good teaching | Setlalentoa ...

    African Journals Online (AJOL)

    Science student teacher's perceptions of good teaching. ... of 50 senior students enrolled in the Bachelor of Education (Further Education and Training ... and teaching strategies employed are perceived to influence what students perceived as ...

  7. Rethinking Recruitment: The Comprehensive and Strategic Recruitment of Secondary Science Teachers

    Science.gov (United States)

    Luft, Julie A.; Wong, Sissy S.; Semken, Steve

    2011-01-01

    The shortage of science teachers has spurred a discussion about their retention and recruitment. While discussion about retaining science teachers has increased dramatically in just the last few years, science teacher educators have not attended to the recruitment of science teachers with the same tenacity. This paper is our effort to initiate…

  8. Mothers as informal science class teachers

    Science.gov (United States)

    Katz, Phyllis

    This study explores the participation of mothers as teachers (termed "Adult Leaders") in the Hands On Science Outreach (HOSO) informal science program for pre-kindergarten through sixth grade children. Since women continue to be underrepresented in the sciences (AAUW, 1992; AAUW 1998), there is a need to probe the nature of mothers' choices in science experiences, in the family context, and as role models. Mothers of school age children who choose to lead informal science activities are in a position to teach and learn not only within this alternative setting, but within their homes where values, attitudes, beliefs and motivations are continually cultivated by daily choices (Gordon, 1972; Tamir, 1990; Gerber, 1997). Policy makers recognize that schools are only one environment from many for learning science (National Science Board, 1983; National Research Council, 1996). Using complementary methodology, this study was conducted in two HOSO sessions that extended over six months. Twelve mothers who were HOSO teachers were case study participants. Primary data collection strategies were interviews, journals, and "draw-a-scientist." A larger sample of HOSO mother-teachers (N = 112) also contributed to a surrey, developed from an analysis of the case studies. Informal learning settings must, by their non-compulsory nature, focus on the affective component of learning as a necessity of participation. The framework for the qualitative analysis was from the affective characteristics described by Simpson et al. (1994). The interpretation is informed by sociobiology, science education and adult education theories. The study finds that the twelve mothers began their HOSO teaching believing in science as a way of knowing and valuing the processes and information from its practice. These women perceive their participation as a likely means to increase the success of their child(ren)'s education and are interested in the potential personal gains of leading an informal science

  9. ACTIVE STRATEGIES DURING INQUIRY-BASED SCIENCE TEACHER EDUCATION TO IMPROVE LONG-TERM TEACHER SELF-EFFICACY

    DEFF Research Database (Denmark)

    Evans, Robert Harry

    2012-01-01

    products, is the personal capacity belief of self- efficacy which has been shown to be important to personal behavioral change. The purpose of this research was to develop and test a model of teacher professional development (TPD) which adds specific elements for altering teacher self......-efficacies to existing FP7 IBST products. This model was tested for its usefulness in increasing participant self-efficacy as evidenced by short and long term quantitative measures as well as by evaluation of long terminquiry lessons. Workshops to promote IBST were conducted in five different countries. Each workshop...... months. The promotion of self-efficacy in TPD provides a consistent way of evaluating the impact of IBST workshops through the use of changes in self-efficacy....

  10. Development environmental attitude of prospective science teachers

    International Nuclear Information System (INIS)

    Iqbal, H.M.

    2000-01-01

    Since the last three decades or so, we have witnessed the growing concern of human beings, all over the world, to adopt measures to conserve and preserve environment of the planet earth, because the same has been threatened by human activity and by way of our unparalleled intervention in the otherwise balanced environment. This awareness and concern has emerged as a need of incorporating environmental Issues into the normal curricula, so that we can educate the young generation to become informed decision-makers of the future. UNESCO and UNEP have advocated (since the last three decades) to teach environmentalised science to students. In Pakistan, there have been attempts to change curricula in accordance with the need of the time. Teachers need new kinds of skills, attitudes and commitment to teach science in an environmentalised fashion. This article discusses the impact of a semester-course on change in environmental attitudes of prospective science-teachers. A pre-test, post-test method was used to ascertain any change in environmental attitude of prospective science-teachers, after studying the environmental education course. It has been shown that there was a change in the environmental attitude of science-teachers as a result of the one-semester course, but the change or the level of attitude was not substantial or satisfactory. There seems to be a need of adopting a comprehensive approach to environmental education, and introducing teaching of environmental concepts at a very early age. (author)

  11. News Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

    Science.gov (United States)

    2012-03-01

    Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

  12. Career education attitudes and practices of K-12 science educators

    Science.gov (United States)

    Smith, Walter S.

    A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.

  13. From Students to Teachers: Investigating the Science Teaching Efficacy Beliefs and Experiences of Graduate Primary Teachers

    Science.gov (United States)

    Deehan, James; Danaia, Lena; McKinnon, David H.

    2018-03-01

    The science achievement of primary students, both in Australia and abroad, has been the subject of intensive research in recent decades. Consequently, much research has been conducted to investigate primary science education. Within this literature, there is a striking juxtaposition between tertiary science teaching preparation programs and the experiences and outcomes of both teachers and students alike. Whilst many tertiary science teaching programs covary with positive outcomes for preservice teachers, reports of science at the primary school level continue to be problematic. This paper begins to explore this apparent contradiction by investigating the science teaching efficacy beliefs and experiences of a cohort of graduate primary teachers who had recently transitioned from preservice to inservice status. An opportunity sample of 82 primary teachers responded to the science teaching efficacy belief instrument A (STEBI-A), and 10 graduate teachers provided semi-structured interview data. The results showed that participants' prior science teaching efficacy belief growth, which occurred during their tertiary science education, had remained durable after they had completed their teaching degrees and began their careers. Qualitative data showed that their undergraduate science education had had a positive influence on their science teaching experiences. The participants' school science culture, however, had mixed influences on their science teaching. The findings presented within this paper have implications for the direction of research in primary science education, the design and assessment of preservice primary science curriculum subjects and the role of school contexts in the development of primary science teachers.

  14. Investigation the Role of Medical Teacher in Education in Universities of Medical Sciences in the Country from the Viewpoint of Medical Teachers

    Directory of Open Access Journals (Sweden)

    Hossein Jalahi

    2015-10-01

    Full Text Available Background and purpose: Ideal education is obtained when excellence and promotion of faculty members (faculty development considered in the university and it will not be possible unless the roles of faculty members (teachers are explained in education. In addition, by extracting these roles we can reason a part of policies of conditional employment (contractual and fixed employment, and theorize and reason their evaluation in order to promote and enhance.Methods: This study was done in two qualitative and quantitative stages. Qualitative stage is of content analysis type. Selection of participants was done based on the purpose. According to qualitative research method, open semi-structural interview was used which extracts the data. All interviews were handwritten word by word by the researcher. Same contents were in a group and each group was labeled based on its content meaning, which in this study the researcher named it the role of the professor. Ethical considerations were included in this research. In quantitative stage, in order to prioritize and the importance of extracted roles, a questionnaire was designed to achieve this important by the survey.Results: The study results are presented in two parts: 1. Qualitative study result 2. Quantitative study result, in qualitative study, 22 faculty members participated in the interview as participants. Extracted roles saturation occurred in 17th questionnaire analysis, but last role was obtained from 19th questionnaire. In this study 21 roles were extracted. In quantitative study (Poll the questionnaire was completed by 85 faculty members from six Universities of Medical Sciences of our country. The variables were defined in SPSS software and the scores were averaged and their difference was calculated in each role.Conclusions: Of 21 extracted roles, the role of parents, God reminder, critic and Critique giver, learner and self-assessor are of the cases that the researcher in no publication

  15. Teacher in Residence: Bringing Science to Students

    CERN Multimedia

    Daisy Yuhas

    CERN welcomes its first Teacher in Residence, Terrence Baine of the University of Oslo. Baine, who originally hails from Canada, will be concurrently completing his PhD in Physics Education during his time at CERN. Like CERN’s High School Teacher Programme (HST), of which Baine is an alumnus, the Teacher in Residence position is designed to help educators spread the science of CERN in a form that is accessible to students and can encourage them to pursue physics throughout their education.   Terrence Baine, first 'teacher in residence' at CERN Baine explains, “It’s very important to have a teacher present who can be that middle person between the young peoplecoming here, whom we are trying to enlighten, and the physicists who work at CERN. The Teacher in Residence can act as an on-site educational consultant.” As Teacher in Residence, Baine’s primary project will be to develop teaching modules, or a series of lesson plans, that can help high schoo...

  16. Teacher Self-Efficacy According to Turkish Cypriot Science Teachers

    Science.gov (United States)

    Olmez, Cemil; Ozbas, Serap

    2017-01-01

    This study examined the self-efficacy of Turkish Cypriot science teachers working at high schools in Northern Cyprus. The study sample was 200 science teachers who participated in the survey. The Teacher Self-Efficacy (TSE) Scale was used as a data source. It was observed that the science teachers' efficacy beliefs about student engagement in…

  17. Personalizing and Contextualizing Multimedia Case Methods in University-based Teacher Education: An Important Modification for Promoting Technological Design in School Science

    Science.gov (United States)

    Bencze, Larry; Hewitt, Jim; Pedretti, Erminia

    2009-01-01

    Results of various studies suggest that multimedia ‘case methods’ (activities associated with case documentaries) have many benefits in university-based teacher education contexts. They can, for example, help to ‘bridge the gap’ between perspectives and practices held by academic teacher educators and those held by student-teachers - who may adhere to perspectives and practices commonly supported in schools. On the other hand, some studies, along with theoretical arguments, suggest that there are limits to the effectiveness of multimedia case methods - because, for example, they can never fully represent realities of teaching and learning in schools. Furthermore, often missing from multimedia case methods is the student-teacher in the role of teacher. To address these concerns, we modified an existing multimedia case method by associating it with a special practice teaching situation in a school context. Qualitative data analyzed using constant comparative methods suggest that student-teachers engaged in this modified multimedia case method developed relatively deep commitments to encouraging students to conduct technology design projects - a non-traditional practice in school science. Factors that appeared to influence development of this motivation included student-teachers’ pre-instructional perspectives about science and the personalization and contextualization inherent to the modified multimedia case method.

  18. State Teacher Evaluation and Teacher Education

    Science.gov (United States)

    Marchant, Gregory J.; David, Kristine A.; Rodgers, Deborah; German, Rachel L.

    2015-01-01

    Current accountability trends suggest an increasing role in state mandates regarding teacher evaluation. With various evaluation models and components serving as the basis for quality teaching, teacher education programs need to recognize the role teacher evaluation plays and incorporate aspects where appropriate. This article makes that case and…

  19. The effect of activity-based nanoscience and nanotechnology education on pre-service science teachers' conceptual understanding

    Science.gov (United States)

    Şenel Zor, Tuba; Aslan, Oktay

    2018-03-01

    The purpose of the study was to examine the effect of activity-based nanoscience and nanotechnology education (ABNNE) on pre-service science teachers' (PST') conceptual understanding of nanoscience and nanotechnology. Within this context, the study was conducted according to mixed methods research with the use of both quantitative and qualitative methods. The participants were 32 PST who were determined by using criterion sampling that is one of the purposive sampling methods. ABNNE was carried out during 7 weeks as 2 h per week in special issues at physics course. Design and implementation of ABNNE were based on "Big Ideas" which was found in literature and provided guidance for teaching nanoscience and nanotechnology. All activities implemented during ABNNE were selected from literature. "Nanoscience and Nanotechnology Concept Test (NN-CT)" and "Activity-Based Nanoscience and Nanotechnology Education Assessment Form (ABNNE-AF)" were used as data collection tools in research. Findings obtained with data collection tools were discussed with coverage of literature. The findings revealed that PST conceptual understanding developed following ABNNE. Various suggestions for increasing PST conceptual understanding of nanoscience and nanotechnology were presented according to the results of the study.

  20. Educational Neuromyths among Teachers in Latin America

    Science.gov (United States)

    Gleichgerrcht, Ezequiel; Lira Luttges, Benjamin; Salvarezza, Florencia; Campos, Anna Lucia

    2015-01-01

    Neuroscientific knowledge has undeniably gained interest among educators worldwide. However, not all "brain facts" believed by teachers are supported by science. This study sought to evaluate the belief in these so-called "neuromyths" among 3,451 Latin American teachers. We found that, consistent with prior research among…

  1. Microcomputers, Secondary Education and Teacher Training.

    Science.gov (United States)

    Atherton, Roy

    1979-01-01

    Reviews the use of computers in Great Britain's educational system, and discusses the development of computer science education, computer assisted instruction, standardization of software and hardware, computer awareness, computers in school administration and teacher training, and future trends for educational computing. (RAO)

  2. Collaboration between research scientists and educators in implementation of a Masters program for training new Earth Science teachers in New York State

    Science.gov (United States)

    Nadeau, P. A.; Flores, K. E.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.; Kinzler, R. J.; Macdonald, M.; Mathez, E. A.; Mac Low, M.

    2012-12-01

    Educators and research scientists at the American Museum of Natural History are collaborating to implement a teacher education program with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State (NYS), particularly in high-needs schools with diverse populations. This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City. By placing teaching candidates in such schools, the project has potential to engage, motivate, and improve Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The museum is in a unique position of being able to break traditional educational barriers as a result of a long history of interdisciplinary collaborations between educators and research scientists, as well as being the only stand-alone science graduate degree-granting museum in the United States. The intensive 15-month curriculum for MAT candidates comprises one summer of museum teaching residency, a full academic year of residency in high-needs public schools, one summer of science research residency, and concurrent graduate-level courses in Earth and space sciences, pedagogy, and adolescent psychology. We emphasize field-based geological studies and experiential learning, in contrast to many traditional teacher education programs. In an effort to ensure that MAT candidates have a robust knowledge base in Earth science, and per NYS Department of Education requirements, we selected candidates with strong

  3. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  4. Prospective Elementary Teacher Understandings of Pest-Related Science and Agricultural Education Benchmarks.

    Science.gov (United States)

    Trexler, Cary J.; Heinze, Kirk L.

    2001-01-01

    Clinical interviews with eight preservice elementary teachers elicited their understanding of pest-related benchmarks. Those with out-of-school experience were better able to articulate their understanding. Many were unable to make connections between scientific, societal and technological concepts. (Contains 39 references.) (SK)

  5. South African physical sciences teachers' perceptions of new ...

    African Journals Online (AJOL)

    This paper reports on South African teachers' perceptions of the educational value of new topics in a revised physical sciences high school curriculum, their content .... identify the core issues surrounding teachers' views on the new topics, and ... A were generated, enabling us to construct a profile of schools and teachers.

  6. Inquiry-based Science Education Competence of Primary School Teachers: A Delphi Study

    NARCIS (Netherlands)

    Alake-Tuenter, E.; Biemans, H.J.A.; Tobi, H.; Mulder, M.

    2013-01-01

    Earlier, extracted inquiry-based science teaching competency elements and domains from the international literature were compared to the United States' National Science Teaching Standards. The present Delphi study aimed to validate the findings for the Netherlands, where such standards are lacking.

  7. An Analysis of Science Student Teachers' Epistemological Beliefs and Metacognitive Perceptions about the Nature of Science

    Science.gov (United States)

    Yenice, Nilgün

    2015-01-01

    This study has been carried out to identify the relationship between the epistemological beliefs of student teachers and their metacognitive perceptions about the nature of science. The participants of the study totaled 336 student teachers enrolled in the elementary science education division of the department of elementary education at the…

  8. Sustaining Physics Teacher Education Coalition programs in physics teacher education

    OpenAIRE

    Rachel E. Scherr; Monica Plisch; Renee Michelle Goertzen

    2017-01-01

    Understanding the mechanisms of increasing the number of physics teachers educated per year at institutions with thriving physics teacher preparation programs may inspire and support other institutions in building thriving programs of their own. The Physics Teacher Education Coalition (PhysTEC), led by the American Physical Society (APS) and the American Association of Physics Teachers (AAPT), has supported transformation of physics teacher preparation programs at a number of institutions aro...

  9. Teachers' voices: A comparison of two secondary science teacher preparation programs

    Science.gov (United States)

    Kohlhaas Labuda, Kathryn

    This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M-teachers

  10. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  11. Identity Discourse in Preservice Teachers' Science Learning Autobiographies and Science Teaching Philosophies

    Science.gov (United States)

    Hsu, Pei-Ling; Reis, Giuliano; Monarrez, Angelica

    2017-01-01

    Research in science education has shown that one's identities as science learner and teacher can mediate their pedagogical practices. Grounded in the perspective that language is a resource for identity (re)construction (Gee, 2000), the present study sought to understand how preservice science teachers' identities were manifested in their…

  12. The Pedagogy of Science Teachers from Non-Natural Science Backgrounds

    Science.gov (United States)

    Woods, Shaneka

    2017-01-01

    This is a descriptive, exploratory, qualitative, collective case study that explores the pedagogical practices of science teachers who do not hold natural science degrees. The intent of this study is to support the creation of alternative pathways for recruiting and retaining high-quality secondary science teachers in K-12 education. The…

  13. Religion as a Support Factor for Women of Color Pursuing Science Degrees: Implications for Science Teacher Educators

    Science.gov (United States)

    Ceglie, Robert

    2013-01-01

    This study explores the influence of religion as a support factor for a group of Latina and African-American women majoring in science. The current project is a part of a larger study that investigated persistence factors of underrepresented woman who were enrolled as science majors at United States colleges and universities. This paper focuses on…

  14. In Your View: What Is a Good Science Teacher?

    Science.gov (United States)

    Piggott, Andy

    2014-01-01

    Search the Internet for the qualities of a good teacher and you'll find that an entire range of ideas are offered. Having spent half a working life as a science teacher and the remainder as a science education consultant (and, for a period, an Ofsted team inspector!), the author would like to attempt to tease out what makes a "good science…

  15. Teacher Education--Online.

    Science.gov (United States)

    Leach, Jenny

    1996-01-01

    The Open University of United Kingdom's Postgraduate Certificate of Education program is an 18-month, part-time course that annually trains over 1000 graduate teachers via electronic conferencing and open learning methods. The program provides every student and tutor with a Macintosh computer, printer, and modem and builds on face-to-face contacts…

  16. Mathematics Teachers' Response to the Reform Agenda: Results of the 1993 National Survey of Science and Mathematics Education.

    Science.gov (United States)

    Weiss, Iris R.

    The NCTM Standards call for the introduction of challenging mathematics content for all students beginning in the early grades. If teachers are to guide students in their exploration of mathematics concepts, they must themselves have a firm grasp of powerful mathematics concepts. This paper uses data from the 1993 National Survey of Science and…

  17. Preparing Science Teachers for the future

    Science.gov (United States)

    Stein, Fredrick

    2002-04-01

    What will teachers need in the future to be successful? What will "successful" mean in the future? Are the teaching approaches learned 40 years ago still relevant for tomorrow's classrooms? Will technology really change the way physics is taught (K-16)? Will we close the performance gap between students of differing ethnicity? Are schools of education rising to the challenge to answer these questions? Can college and university physics departments rise to the challenge of presenting physics to all students in an engaging manner? What can the APS, in partnership with AAPT and AIP, do to find the answers and provide strategies to improve the science preparation of future teachers? PhysTEC aims to help physics and education faculty work together to provide an education for future teachers that emphasizes a student-centered, hands-on, inquiry-based approach to learning science. The compelling evidence produced from Physics Education Research warrants this approach. A National Science Foundation grant of 5.76 million and a 498 thousand grant from the Fund for the Improvement of Postsecondary Education support PhysTEC, its partners and activities. http://www.phystec.org/

  18. Summer Institute for Physical Science Teachers

    Science.gov (United States)

    Maheswaranathan, Ponn; Calloway, Cliff

    2007-04-01

    A summer institute for physical science teachers was conducted at Winthrop University, June 19-29, 2006. Ninth grade physical science teachers at schools within a 50-mile radius from Winthrop were targeted. We developed a graduate level physics professional development course covering selected topics from both the physics and chemistry content areas of the South Carolina Science Standards. Delivery of the material included traditional lectures and the following new approaches in science teaching: hands-on experiments, group activities, computer based data collection, computer modeling, with group discussions & presentations. Two experienced master teachers assisted us during the delivery of the course. The institute was funded by the South Carolina Department of Education. The requested funds were used for the following: faculty salaries, the University contract course fee, some of the participants' room and board, startup equipment for each teacher, and indirect costs to Winthrop University. Startup equipment included a Pasco stand-alone, portable Xplorer GLX interface with sensors (temperature, voltage, pH, pressure, motion, and sound), and modeling software (Wavefunction's Spartan Student and Odyssey). What we learned and ideas for future K-12 teacher preparation initiatives will be presented.

  19. Sustaining Physics Teacher Education Coalition programs in physics teacher education

    Directory of Open Access Journals (Sweden)

    Rachel E. Scherr

    2017-02-01

    Full Text Available Understanding the mechanisms of increasing the number of physics teachers educated per year at institutions with thriving physics teacher preparation programs may inspire and support other institutions in building thriving programs of their own. The Physics Teacher Education Coalition (PhysTEC, led by the American Physical Society (APS and the American Association of Physics Teachers (AAPT, has supported transformation of physics teacher preparation programs at a number of institutions around the country for over a decade. In 2012–2013, PhysTEC supported an independent study on the sustainability of its sites after project funding ends. The study sought to measure the extent to which programs have been sustained and to identify what features should be prioritized for building sustainable physics teacher preparation programs. Most of the studied sites have sustained increases in the number of physics teachers educated per year as well as funding for physics teacher preparation. About half of the programs are thriving, in that in the post-award period, they have further increased both the number of physics teachers educated per year and funding for physics teacher preparation. All studied sites that sustained increases in the number of physics teachers educated per year have two features in common: a champion of physics teacher education and institutional commitment. The thriving physics teacher preparation programs in this study implemented different elements of physics teacher preparation according to diverse local priorities and opportunities, including the unique expertise of local personnel.

  20. Effects of a Teacher Professional Development Program on Science Teachers' Views about Using Computers in Teaching and Learning

    Science.gov (United States)

    Çetin, Nagihan Imer

    2016-01-01

    The purpose of this study was to examine science teachers' level of using computers in teaching and the impact of a teacher professional development program (TPDP) on their views regarding utilizing computers in science education. Forty-three in-service science teachers from different regions of Turkey attended a 5 day TPDP. The TPDP was…

  1. Educating Prospective Teachers of Biology: Findings, Limitations, and Recommendations.

    Science.gov (United States)

    Hewson, Peter W.; Tabachnick, B. Robert; Zeichner, Kenneth M.; Lemberger, John

    1999-01-01

    Summarizes a complex study of a science-teacher-education program whose goal was to graduate teachers who held conceptual change conceptions of teaching science and were disposed to put hem into practice. Concludes that there are influences on prospective teachers from their content coursework that have significant implications for how they view…

  2. Sustaining Physics Teacher Education Coalition Programs in Physics Teacher Education

    Science.gov (United States)

    Scherr, Rachel E.; Plisch, Monica; Goertzen, Renee Michelle

    2017-01-01

    Understanding the mechanisms of increasing the number of physics teachers educated per year at institutions with thriving physics teacher preparation programs may inspire and support other institutions in building thriving programs of their own. The Physics Teacher Education Coalition (PhysTEC), led by the American Physical Society (APS) and the…

  3. Negotiating Science and Engineering: An Exploratory Case Study of a Reform-Minded Science Teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-01-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the…

  4. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  5. Who Are the Science Teachers That Seek Professional Development in Research Experience for Teachers (RET's)? Implications for Teacher Professional Development

    Science.gov (United States)

    Saka, Yavuz

    2013-01-01

    To address the need to better prepare teachers to enact science education reforms, the National Science Foundation has supported a Research Experience for Teachers (RET's) format for teacher professional development. In these experiences, teachers work closely with practicing scientists to engage in authentic scientific inquiry. Although…

  6. The droso4schools project: Long-term scientist-teacher collaborations to promote science communication and education in schools.

    Science.gov (United States)

    Patel, Sanjai; DeMaine, Sophie; Heafield, Joshua; Bianchi, Lynne; Prokop, Andreas

    2017-10-01

    Science communication is becoming an increasingly important part of a scientist's remit, and engaging with primary and secondary schools is one frequently chosen strategy. Here we argue that science communication in schools will be more effective if based on good understanding of the realities of school life, which can be achieved through structured participation and/or collaboration with teachers. For example, the Manchester Fly Facility advocates the use of the fruit fly Drosophila as an important research strategy for the discovery processes in the biomedical sciences. To communicate this concept also in schools, we developed the 'droso4schools' project as a refined form of scientist-teacher collaboration that embraces the expertise and interests of teachers. Within this project, we place university students as teaching assistants in university partner schools to collaborate with teachers and develop biology lessons with adjunct support materials. These lessons teach curriculum-relevant biology topics by making use of the profound conceptual understanding existing in Drosophila combined with parallel examples taken from human biology. By performing easy to implement experiments with flies, we bring living organisms into these lessons, thus endeavouring to further enhance the pupil's learning experience. In this way, we do not talk about flies but rather work with flies as powerful teaching tools to convey mainstream curriculum biology content, whilst also bringing across the relevance of Drosophila research. Through making these lessons freely available online, they have the potential to reach out to teachers and scientists worldwide. In this paper, we share our experiences and strategies to provide ideas for scientists engaging with schools, including the application of the droso4schools project as a paradigm for long-term school engagement which can be adapted also to other areas of science. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All

  7. Retraining Institute in Teacher Education. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, H.B.; Jennings, R.

    1992-07-31

    This endeavor was comprised of three companion projects. They are interdependent components which together provide a significant enhancement to the existing programs in the School of Education at Norfolk state University.The primary focus of the project was in instructing regular and special education undergraduate students and teachers. As a result of this endeavor, instruction in science and engineering majors was enhanced.

  8. Reframing Teachers' Work for Educational Innovation

    Science.gov (United States)

    Kunnari, Irma; Ilomäki, Liisa

    2016-01-01

    The universities of applied sciences in Finland aim to support students in achieving work life competences by integrating authentic research, development and innovation (RDI) practices into learning. However, pursuing an educational change from a traditional higher education culture to a networked model of working is challenging for teachers. This…

  9. Primary Teacher Education in Malaysia

    Science.gov (United States)

    Ching, Chin Phoi; Yee, Chin Peng

    2012-01-01

    In Malaysia the training of primary school teachers is solely carried out by teacher training institutes which offer the Bachelor of Teaching with Honors (Primary education) program and was first launched in 2007. This program prepares primary school teachers specializing in various subjects or major and is carried out in 27 teacher training…

  10. Higher Education Teachers' Descriptions of Their Own Learning: A Large-Scale Study of Finnish Universities of Applied Sciences

    Science.gov (United States)

    Töytäri, Aija; Piirainen, Arja; Tynjälä, Päivi; Vanhanen-Nuutinen, Liisa; Mäki, Kimmo; Ilves, Vesa

    2016-01-01

    In this large-scale study, higher education teachers' descriptions of their own learning were examined with qualitative analysis involving application of principles of phenomenographic research. This study is unique: it is unusual to use large-scale data in qualitative studies. The data were collected through an e-mail survey sent to 5960 teachers…

  11. A Study of Curriculum Literacy and Information Literacy Levels of Teacher Candidates in Department of Social Sciences Education

    Science.gov (United States)

    Sural, Serhat; Dedebali, Nurhak Cem

    2018-01-01

    The present study aims to investigate information literacy and curriculum literacy levels of teacher candidates and to identify the relationship between them through their course of study at Faculty of Education. The research model was designed as quantitative one and general screening model was employed. The study group is 895 students, who were…

  12. Values Education in 4th Grade Social Science Courses from the Perspectives of Teachers

    Science.gov (United States)

    Turan, Mehmet; Bozkurt, Eyüp

    2017-01-01

    In today's changing and developing world, the most important elements that enable people to live together in society are values. The education of such values start in the family and the social environment that they are in, from the moment a person is born and do continue in school as the child starts to study. Schools teach values to their…

  13. Development of Socioscientific Issues-Based Teaching for Preservice Science Teachers

    OpenAIRE

    Prasart Nuangchalerm

    2009-01-01

    Problem statement: In the context of science education reform in Thailand, we need to prepare science teachers who can face science and social issues controversial; teachers can response the question socioscientific issues and let their students to meet the goal of science education. This study investigated the conception leading preservice science teachers approaching socioscientific issues-based teaching. The activities in classroom emphasized on peer discussion about science and social ref...

  14. Preparing teachers for ambitious and culturally responsive science teaching

    Science.gov (United States)

    Seiler, Gale

    2013-03-01

    Communities, schools and classrooms across North America are becoming more ethnically, racially, and linguistically diverse, particularly in urban areas. Against this backdrop, underrepresentation of certain groups in science continues. Much attention has been devoted to multicultural education and the preparation of teachers for student diversity. In science education, much research has focused on classrooms as cultural spaces and the need for teachers to value and build upon students' everyday science knowledge and ways of sense-making. However it remains unclear how best to prepare science teachers for this kind of culturally responsive teaching. In attempting to envision how to prepare science teachers with cross-cultural competency, we can draw from a parallel line of research on preparing teachers for ambitious science instruction. In ambitious science instruction, students solve authentic problems and generate evidence and models to develop explanations of scientific phenomenon, an approach that necessitates great attention to students' thinking and sense-making, thus making it applicable to cultural relevance aims. In addition, this line of research on teacher preparation has developed specific tools and engages teachers in cycles of reflection and rehearsal as they develop instructional skills. While not addressing cross-cultural teaching specifically, this research provides insights into specific ways through which to prepare teachers for culturally responsive practices. In my presentation, I will report on efforts to join these two areas of research, that is, to combine ideas about multicultural science teacher preparation with what has been learned about how to develop ambitious science instruction. This research suggests a new model for urban science teacher preparation--one that focuses on developing specific teaching practices that elicit and build on student thinking, and doing so through cycles of individual and collective planning, rehearsal

  15. In response to David Greenwood's `Place mobility and faculty life: mindfulness through change' through the lens of science teacher education programs

    Science.gov (United States)

    Nyaema, Mary K.

    2017-06-01

    In writing this review, I draw on the experience of David Greenwood (Cult Stud Sci Educ 10:5-16, 2015) whose ethnographic study sheds light on his growth as a faculty member who has taught in various settings that are quite different from the culture that he grew up with. I extend his thoughts on ecological mindfulness to encompass a culturally aware method of teaching based on place sensitized more to the needs of science teacher preparation programs. The methods used in writing the review included literature searches for articles that incorporate ecological mindfulness and culturally responsive teaching in science teacher preparation programs and reflected ideas voiced in Greenwood's article. Although he seems that he is primarily addressing other faculty members, his experiences can be used as lifelong lessons for preservice teachers entering a primarily homogeneous workforce expected to teach an increasingly diverse student population. His humor, use of Haiku, poetry and mindfulness as a way of becoming one with a culture that he is not accustomed has many lessons that prove useful in training more culturally responsive teachers. In light of an increasingly diverse US student population versus a stagnantly homogeneous teaching workforce, his reflective practice will prove useful to teachers who are expected to teach students with cultures different from their own.

  16. Difficulties of Secondary school teachers implicating in the reading, innovation and research in science education (II: the problem of “hands-on”

    Directory of Open Access Journals (Sweden)

    Oliva Martínez, José María

    2012-04-01

    Full Text Available This work is a continuation of another recent article in these pages (Oliva, 2011, which dealt with the difficulties of high school teachers to start in the dynamics of innovation and research in science education. In another study that examined the views expressed by a sample of 16 secondary science teachers around the obstacles to immersion in these tasks, as well as comments, expressed doubts and obstacles they face the task write a short article in the context of an introductory training course on this subject. From the same source, in this other paper the intrinsic difficulties that arise once the teachers decide to engage in this type of work and faces the tasks associated with these processes. The problems identified in this case are due, among other reasons, lack of trust in teachers' own possibilities, difficulties in the formulating of the problem object of research, lack of theoretical and problems in drafting written work. From the above results makes some conclusions and implications for teacher training in this field.

  17. Delaware Technical & Community College's response to the critical shortage of Delaware secondary science teachers

    Science.gov (United States)

    Campbell, Nancy S.

    This executive position paper examines the critical shortage of Delaware high school science teachers and Delaware Technical & Community College's possible role in addressing this shortage. A concise analysis of economic and political implications of the science teacher shortage is presented. The following topics were researched and evaluated: the specific science teacher needs for Delaware school districts; the science teacher education program offerings at Delaware universities and colleges; the Alternative Route to Teacher Certification (ARTC); and the state of Delaware's scholarship response to the need. Recommendations for Delaware Tech's role include the development and implementation of two new Associate of Arts of Teaching programs in physics secondary science education and chemistry secondary science education.

  18. Teaching/learning styles, performance, and students' teaching evaluation in S/T/E/S-focused science teacher education: A quasiquantitative probe of a case study

    Science.gov (United States)

    Toller, Uri

    In response to the new needs for S/T/E/S-literate science teachers, an S/T/E/S-oriented ISMMC-IEE combination model of instruction was implemented in two specially designed undergraduate courses and one graduate course within college science teacher training programs. These three courses served as case studies for class-based, quasiquantitative pilot investigation aimed at gaining a deeper insight into some of the issues involved in the implementation in college of nontraditional, open-ended, problem-solving-oriented teaching strategies which are in dissonance with the cognitive or affective styles and functional paradigms of most students. This probe into the dissonance issue revealed that prospective teachers are capable of handling the new instructional model and do gain in their higher-level cognitive learning. However, undergraduates perceive these courses to be either difficult or not in accord with their needs, and their appreciation of the instructional techniques and style employed is different from that of graduate students accordingly. The current study suggests that although the ISMMC-IEE model is useful in S/T/E/S-oriented courses in science teacher training programs, special attention to the implementation stage is required to close the gap between students' and S/T/E/S educators' functional paradigms.

  19. Engineering Education in the Science Classroom: A Case Study of One Teacher's Disparate Approach with Ability-Tracked Classrooms

    Science.gov (United States)

    Schnittka, Christine G.

    2012-01-01

    Currently, unless a K-12 student elects to enroll in technology-focused schools or classes, exposure to engineering design and habits of mind is minimal. However, the "Framework for K-12 Science Education," published by the National Research Council in 2011, includes engineering design as a new and major component of the science content…

  20. THE INFLUENCE OF SCHOOL MANAGEMENT IN THE MOTIVATION OF THE TEACHERS OF THE FEDERAL INSTITUTE OF EDUCATION, SCIENCE AND TECHNOLOGY OF ESPÍRITO SANTO-BRASIL

    Directory of Open Access Journals (Sweden)

    Breno Bricio Amaral

    2017-08-01

    Full Text Available This article is the result of a dissertation about the curricular dynamics and teaching-learning process with the objective of answering the problem of School Management of the Federal Institute of Education, Science and Technology of Espírito Santo (Câmpus Vitória, specifically about the Mechanics offered by this institution. In the years 2011 to 2014, we sought to investigate the relationship between School Management and its influence on the motivation of teachers involved based on theories of Administration and Democratic Management. As a research hypothesis, it is assumed that the management model adopted by the institute has discouraged teachers from the Mechanical Engineering Course. The research was carried out through a field survey of the type of data collection, whose research instrument was the application of questionnaires and interviews to the subjects, the teachers of the course in question. It was possible to prove the hypothesis in the sense that the adopted management model has had a negative effect on the teacher motivation, generating emotional discomforts, professional insecurities, among other aspects. The final analysis showed that the management adopted, specifically in this campus, evokes a transformation to motivate teachers in their professional performance and personal fulfillment as members of the educational team of the institution.

  1. Teachers' and students' perceptions of seventh- and eighth-grade science education in a selected Seventh-day Adventist Union Conference

    Science.gov (United States)

    Sargeant, Marcel Andre Almont

    Problem. Science education has long been a great concern in the United States, where less than one-third of the students perform at or above the proficient level. The purpose of this study was to investigate the status of the science program in a selected Union Conference of the Seventh-day Adventist school system. Specifically, this study investigated the perceptions of teachers and students regarding the extent to which the science program meets the criteria of the National Commission on Mathematics and Science Teaching for the 21st century and to what extent these criteria are related to academic performance as indicated by Iowa Test of Basic Skills (ITBS) science scores. Method. Two questionnaires designed by the researcher were used to get responses from 424 students in seventh and eighth grades and 68 teachers to see how this school system compares to the criteria of National Commission on Mathematics and Science Teaching for the 21 st century. Three classroom configurations were investigated in this study, namely: (a) multigrade, (b) two-grade, and (c) single-grade. Crosstabulation, one-way analysis of variance, Kruskal-Wallis test, and linear regression were used to analyze the four research questions of this study. Results. The single-grade classroom configuration received a better rating for the science criteria (p century. Conclusions. The differences in teaching practices explained the discrepancies in the three classroom configurations. Schools can therefore develop policies and strategies to improve the practices in the teaching and learning process in science education that were identified as being deficient by the criteria of National Commission on Mathematics and Science Teaching for the 21st century.

  2. Counseling in teacher education

    DEFF Research Database (Denmark)

    Mølgaard, Dorthe Busk

    Counseling is about supporting and challenging students in making decisions, being adaptive, seeing opportunities and acquiring self-knowledge. Literaturesearch of articles about counseling research in nordic teacher education 2008-2013 shows no results. We started a participant-orientated pilotp......Counseling is about supporting and challenging students in making decisions, being adaptive, seeing opportunities and acquiring self-knowledge. Literaturesearch of articles about counseling research in nordic teacher education 2008-2013 shows no results. We started a participant......-orientated pilotproject about counseling in teacher education. The aim was to acquire knowledge about how students perceive counseling. This knowledge could help uncover potential areas of development for counselingpractice. In the pilotproject it is tested if the chosen method is suitable for bigger qualitative study....... The study is a qualitative questionnaire survey. The “lifeworld” is central, therefore a phenomenological and hermeneutical approach was chosen, where the student’s perception of the counseling is studied. Central themes: Setting of the counseling and progress of the counselingcourse, content and shape...

  3. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    Science.gov (United States)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  4. "Physics and Life" for Europe's Science Teachers

    Science.gov (United States)

    2003-04-01

    interest in science and current scientific research. The goals of "Physics On Stage 3" [EWST Logo] "Physics on Stage 3" also aims to facilitate the exchange of good practice and innovative ideas among Europe's science teachers and to provide a forum for a broad debate among educators, administrators and policy-makers about the key problems in science education today. Moreover, it will make available the considerable, combined expertise of the EIROforum organisations to the European scientific teaching community, in order to promote the introduction of "fresh" science into the curricula and thus to convey a more realistic image of modern science to the pupils. "Physics on Stage 3" is concerned with basic science and also with the cross-over between different science disciplines - a trend becoming more and more important in today's science, which is not normally reflected in school curricula. A key element of the programme is to give teachers an up-to-date "insiders'" view of what is happening in science and to tell them about new, highly-diverse and interesting career opportunities for their pupils. Theme of the activities The theme of "Physics on Stage" this year is "Physics and Life" , reflecting the decision to broaden the Physics on Stage activities to encompass all the natural sciences. Including other sciences will augment the already successful concept, introducing a mixture of cross-over projects that highlight the multidisciplinary aspects of modern science. Among the many subjects to be presented are radiation, physics and the environment, astrobiology (the search for life beyond earth), complex systems, self-organising systems, sports science, the medical applications of physics, mathematics and epidemiology, etc. The main elements National activities "Physics on Stage 3" has already started and National Steering Committees in 22 countries, composed of eminent science teachers, scientists, administrators and others involved in setting school curricula, are now

  5. Rethinking and Redesigning Teacher Education

    DEFF Research Database (Denmark)

    Baltzersen, Johnny

    to emphasize that I only consider my contribution to day as a humble effort to address highly complex and complicated issues and further emphasize that everyone seriously engaged in education reform, educational change and teacher education have much to do before we can embark on coherent and well......Teacher education and teachers are in most countries round the world under heavy criticism for not delivering what governments, many politicians and policy analysts and many sections of public life feel they should be delivering. And teacher education is at large on the defensive when confronted...

  6. Relationship between Teacher Candidates’ Literacy of Science and Information Technology

    OpenAIRE

    Orhan Karamustafaoğlu; Recep Çakır; Mert Kaya

    2013-01-01

    This study aims to determine the science teacher candidates’ literacy levels of science and information technology and intends to find out the relationship between them. In the study, correlational research methodology was used in the scope of correlational screening model. Research sample consists of totally 264 teacher candidates who are in their 3rd and 4th years and studying at the Department of Science and Technology Education in Amasya University. As the data collection instruments, the...

  7. Student teachers' views: what is an interesting life sciences curriculum?

    OpenAIRE

    Rian de Villiers

    2011-01-01

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET) phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university...

  8. Negotiating science and engineering: an exploratory case study of a reform-minded science teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-05-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the perspective of the science teacher, this would require not only the development of knowledge and pedagogies associated with engineering, but also the construction of new identities operating within the reforms and within the context of their school. In this study, a middle school science teacher was observed and interviewed over a period of nine months to explore his experiences as he adopted new values, discourses, and practices and constructed his identity as a reform-minded science teacher. Our findings revealed that, as the teacher attempted to become a reform-minded science teacher, he constantly negotiated his professional identities - a dynamic process that created conflicts in his classroom practices. Several differences were observed between the teacher's science and engineering instruction: hands-on activities, depth and detail of content, language use, and the way the teacher positioned himself and his students with respect to science and engineering. Implications for science teacher professional development are discussed.

  9. Nature of Science and Models: Comparing Portuguese Prospective Teachers' Views

    Science.gov (United States)

    Torres, Joana; Vasconcelos, Clara

    2015-01-01

    Despite the relevance of nature of science and scientific models in science education, studies reveal that students do not possess adequate views regarding these topics. Bearing in mind that both teachers' views and knowledge strongly influence students' educational experiences, the main scope of this study was to evaluate Portuguese prospective…

  10. NGSS and the Next Generation of Science Teachers

    Science.gov (United States)

    Bybee, Rodger W.

    2014-01-01

    This article centers on the "Next Generation Science Standards" (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts--interconnecting science and engineering…

  11. Teachers Training Teachers: Four Perspectives on an Innovative Mentoring Program for Intern Science Teachers.

    Science.gov (United States)

    Diehl, Christine L.; Harris, Jerilyn; Barrios, David; O'Connor, Heather; Fong, Jennifer

    The Graduate School of Education (GSE) at the University of California at Berkeley (UCB), the San Francisco Unified School District (SFUSD), and the Lawrence Berkeley National Laboratory (LBNL) have collaborated to pilot an on-site training and mentoring program for intern science teachers. Exit interviews suggest that its innovative mentoring…

  12. Valid and Reliable Science Content Assessments for Science Teachers

    Science.gov (United States)

    Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn

    2013-01-01

    Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper…

  13. Qualidade da educação científica na voz dos professores Quality of science education in teachers' voice

    Directory of Open Access Journals (Sweden)

    Flavia Rezende

    2011-01-01

    Full Text Available O objetivo desta pesquisa foi investigar os sentidos de qualidade atribuídos por professores do Ensino Médio ao ensino de ciências. O estudo baseia-se em um grupo focal realizado com nove professores das ciências naturais e de matemática de escolas públicas e privadas da cidade do Rio de Janeiro. A análise do discurso dos professores baseou-se na perspectiva sociocultural de Wertsch, que integra os conceitos fundamentais da filosofia da linguagem de Bakhtin. Inventariamos perspectivas de qualidade presentes nos discursos dos professores e seu diálogo com diferentes linguagens sociais. Apesar das diferenças entre contextos educacionais e linguagens sociais usadas pelos professores, percebemos um sentido negativo de qualidade atribuído por todos eles à educação científica. Assim, os professores enunciam o que seria a suposta qualidade por meio do discurso sobre sua falta. Identificamos tensões que problematizam suas perspectivas de qualidade acerca do currículo, do trabalho docente, da aprendizagem, das tecnologias e da legislação educacional.The purpose of this study was to investigate the meanings of quality attributed by secondary teachers to science education. The study was based in a focal group with nine science teachers from public and private schools of Rio de Janeiro. The discourse analysis was oriented by Wertsch's sociocultural perspective, which integrates the fundamental concepts of Bakhtin's philosophy of language. An inventory of the perspectives on quality in the teachers' discourse was done and their dialogue with different social languages. Despite the differences between educational contexts and between the social languages used by the teachers, we can point to the recurrent meaning of lack of quality, attributed by all the teachers to scientific education. Thus, teachers enunciate what the supposed quality would be through a discourse on its lack. We identified tensions that problematize the perspectives of

  14. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  15. The Consortium for Evidence Based Research in Rural Educational Settings (CEBRRES): Applying Collaborative Action Research as a Means of Enhancing the Development of Rural Middle School Science Teachers

    Science.gov (United States)

    Wulff, A. H.

    2006-05-01

    Kentucky ranks third in the U.S. in need of rural education attention. Rural schools in Kentucky serve nearly 40% of the total student population, and graduation rates and NAEP scores are low. A two-year pilot study is being completed addressing psychological, social, and content knowledge based constructs, as they apply to science and mathematics achievement in rural environments. The goals are to identify the key aspects of rural teachers knowledge and skills, use a framework to describe how knowledge and skills develop in the rural classroom, apply a useful model of intervention to promote teacher development and increased student learning. If proven successful the knowledge can be incorporated into the practice of current teaching and preservice pedagogical methods. The problem that was identified and addressed by CEBRRES is the high level of student disengagement and the shortage of rigorous stimulating curriculum models. The action taken was the development and implementation of model eliciting activities. Teachers at the target school were expected to utilize action research methodology to execute model-eliciting activities in the classroom, and then communicate results in forms that are useful for other teachers. Benefits to teachers included stipends, increased science content depth and breadth, support to achieve "highly qualified teacher status", extensive professional development, and technology, equipment, and supplies for their school. Survey instruments were devised to address school perceptions (61% worry that they are not doing well enough in school), future plans (80% expect to attend college vs. the current 47.5%), various self concepts, academic self concepts (23% feel that learning is difficult for them), and family self concepts. Science was identified by the students as the subject that interests them the most, followed by math, yet Kentucky ranks near the bottom of the U.S. in math and science training in the workplace. Geology

  16. Investigation of preservice elementary teachers' thinking about science

    Science.gov (United States)

    Cobern, William W.; Loving, Cathleen C.

    2002-12-01

    It is not uncommon to find media reports on the failures of science education, nor uncommon to hear prestigious scientists publicly lament the rise of antiscience attitudes. Given the position elementary teachers have in influencing children, antiscience sentiment among them would be a significant concern. Hence, this article reports on an investigation in which preservice elementary teachers responded to the Thinking about Science survey instrument. This newly developed instrument addresses the broadrelationship of science to nine important areas of society and culture and is intended to reveal the extent of views being consistent with or disagreeing with a commonly held worldview of science portrayed in the media and in popular science and science education literature. Results indicate that elementary teachers discriminate with respect to different aspects of culture and science but they are not antiscience.

  17. Science Education and Teacher Effectiveness: Implications of the Next Generation Science Standards (NGSS): Q&A with Chris Wilson, Ph.D., and Jody Bintz, M.S. REL Mid-Atlantic Teacher Effectiveness Webinar Series

    Science.gov (United States)

    Regional Educational Laboratory Mid-Atlantic, 2014

    2014-01-01

    This webinar explored how the Next Generation Science Standards (NGSS) provide an instructional framework to support professional growth and inform teacher evaluation systems for science instruction. This Q&A addressed the questions participants had for Dr. Wilson and Jody Bintz following the webinar. The webinar recording and PowerPoint…

  18. Global Reproduction and Transformation of Science Education

    Science.gov (United States)

    Tobin, Kenneth

    2011-01-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and…

  19. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  20. `You Have to Give Them Some Science Facts': Primary Student Teachers' Early Negotiations of Teacher Identities in the Intersections of Discourses About Science Teaching and About Primary Teaching

    Science.gov (United States)

    Danielsson, Anna T.; Warwick, Paul

    2014-04-01

    In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on a whole range of interrelated sociocultural factors. This paper aims to explore how intersections between different Discourses about primary teaching and about science teaching are evidenced in primary school student teachers' talk about becoming teachers. The study is founded in a conceptualisation of learning as a process of social participation. The conceptual framework is crafted around two key concepts: Discourse (Gee 2005) and identity (Paechter, Women's Studies International Forum, 26(1):69-77, 2007). Empirically, the paper utilises semi-structured interviews with 11 primary student teachers enrolled in a 1-year Postgraduate Certificate of Education course. The analysis draws on five previously identified teacher Discourses: `Teaching science through inquiry', `Traditional science teacher', `Traditional primary teacher', `Teacher as classroom authority', and `Primary teacher as a role model' (Danielsson and Warwick, International Journal of Science Education, 2013). It explores how the student teachers, at an early stage in their course, are starting to intersect these Discourses to negotiate their emerging identities as primary science teachers.

  1. Preservice Teachers' Perception about Nature of Science

    Science.gov (United States)

    Nuangchalerm, Prasart

    2009-01-01

    Teacher student is an important role improving their own perception what science should be anticipated in classroom. Also, science learning in the current studies try to have relied understanding in the nature of science. This research aimed to study teacher students' perception in the nature of science. One hundred and one of junior teacher…

  2. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  3. Moral values in teacher education

    NARCIS (Netherlands)

    Veugelers, W.; Peterson, P.; Baker, E.; McGaw, B.

    2010-01-01

    Moral values are interwoven in all aspects of teaching: in the curriculum, in the school culture, and as moral examples in teachers' behavior. Working with values is an essential part of teaching. Educating students to become teachers requires the teachers to learn how values are embedded in

  4. Teacher-Education-Desiring-Machines

    Science.gov (United States)

    Cole, David R.; Gannon, Susanne

    2017-01-01

    In this article, the authors argue that the notion of a teacher and the coexisting teacher education processes are being progressively emptied out, and replaced by the model of a corporate worker, serving the needs of a post-industrial financial capitalist society. They assert that teachers have had their identities stripped of their previous…

  5. Advancing Climate Literacy through Investment in Science Education Faculty, and Future and Current Science Teachers: Providing Professional Learning, Instructional Materials, and a Model for Locally-Relevant and Culturally-Responsive Content

    Science.gov (United States)

    Halversen, C.; Apple, J. K.; McDonnell, J. D.; Weiss, E.

    2014-12-01

    The Next Generation Science Standards (NGSS) call for 5th grade students to "obtain and combine information about ways individual communities use science ideas to protect Earth's resources and environment". Achieving this, and other objectives in NGSS, will require changes in the educational system for both students and teachers. Teachers need access to high quality instructional materials and continuous professional learning opportunities starting in pre-service education. Students need highly engaging and authentic learning experiences focused on content that is strategically interwoven with science practices. Pre-service and early career teachers, even at the secondary level, often have relatively weak understandings of the complex Earth systems science required for understanding climate change and hold alternative ideas and naïve beliefs about the nature of science. These naïve understandings cause difficulties in portraying and teaching science, especially considering what is being called for in NGSS. The ACLIPSE program focuses on middle school pre-service science teachers and education faculty because: (1) the concepts that underlie climate change align well with the disciplinary core ideas and practices in NGSS for middle grades; and (2) middle school is a critical time for capturing students interest in science as student engagement by eighth grade is the most effective predictor of student pursuit of science in high school and college. Capturing student attention at this age is critical for recruitment to STEM careers and lifelong climate literacy. THE ACLIPSE program uses cutting edge research and technology in ocean observing systems to provide educators with new tools to engage students that will lead to deeper understanding of the interactions between the ocean and climate systems. Establishing authentic, meaningful connections between indigenous and place-based, and technological climate observations will help generate a more holistic perspective

  6. Ciencias 2. Manual do Professor (Science Teacher's Manual).

    Science.gov (United States)

    Raposo, Lucilia

    This is the teacher's manual for Ciencias 2, the second in a series of elementary science textbooks for Portuguese-speaking students. The student textbook contains 10 chapters and 57 activities. The teacher's manual presents an explanation of the educational goals and the organization of the content, Topics included are environment, the human,…

  7. In-Service Science Teachers' Attitude towards Information Communication Technology

    Science.gov (United States)

    Kibirige, I.

    2011-01-01

    The purpose of this study is to determine the attitude of in-service science teachers towards information communication technology (ICT) in education. The study explores the relationship between in-service teachers and four independent variables: their attitudes toward computers; their cultural perception of computers; their perceived computer…

  8. Understanding Economic and Management Sciences Teachers' Conceptions of Sustainable Development

    Science.gov (United States)

    America, Carina

    2014-01-01

    Sustainable development has become a key part of the global educational discourse. Education for sustainable development (ESD) specifically is pronounced as an imperative for different curricula and regarded as being critical for teacher education. This article is based on research that was conducted on economic and management sciences (EMS)…

  9. Att skapa sammanhang: lärare i naturvetenskapliga ämnen, ämnesövergripande samarbete och etiska perspektiv i undervisningenTo create coherence: science teachers, interdisciplinary collaboration and ethical perspectives in the educational practice

    Directory of Open Access Journals (Sweden)

    Ingela Bursjöö

    2015-03-01

    Full Text Available This paper focuses on how experienced science teachers talk about interdisciplinary collaboration and ethical perspectives in their educational practice, two important components in science education and central in research on socio-scientific issues and education for sustainable development. The teachers in this interview study were asked in detail about how they integrate such components in their teaching practice. The findings indicate that the teachers in the study value interdisciplinary collaboration and try to integrate ethical aspects in their teaching. However, the science teachers in this study encounter problems in the practical implementation as it demands excellent communication in the team. Furthermore, the science teachers rate their ethical competence as rather low. They also show signs of a decrease in their professional capital, as in decisions they can make related to their teaching practice. The process of interacting with and learning from others, here called social learning, is vital for interdisciplinary collaboration and integration of ethical aspects. Such issues place severe demands, not only on the science teacher, but also on the whole educational system. 

  10. Pre-Service Science Teacher Preparation in China: Challenges and Promises

    Science.gov (United States)

    Liu, Enshan; Liu, Cheng; Wang, Jian

    2015-01-01

    The purpose of this article was to present an overview of pre-service science teacher preparation in China, which is heavily influenced by Chinese tradition, Confucianism, and rapid social and economic development. The policies, science teacher education systems and related programs jointly contribute to producing enough science teachers for…

  11. Teaching Chemistry in a Spiral Progression Approach: Lessons from Science Teachers in the Philippines

    Science.gov (United States)

    Orbe, Joymie R.; Espinosa, Allen A.; Datukan, Janir T.

    2018-01-01

    As the Philippines moves towards implementing the K-12 curriculum, there has been a mismatch in teacher preparation in science. The present teacher education curriculum prepares science teachers to specialise in a specific field (e.g. integrated science, biology, chemistry, and physics). However, in the K-12 curriculum, they are required to teach…

  12. Question Asking in the Science Classroom: Teacher Attitudes and Practices

    Science.gov (United States)

    Eshach, Haim; Dor-Ziderman, Yair; Yefroimsky, Yana

    2014-02-01

    Despite the wide agreement among educators that classroom learning and teaching processes can gain much from student and teacher questions, their potential is not fully utilized. Adopting the view that reporting both teachers' (of varying age groups) views and actual classroom practices is necessary for obtaining a more complete view of the phenomena at hand, the present study closely examines both cognitive and affective domains of: (a) teachers' views (via interviews) concerning: (1) importance and roles of teacher and student questions, (2) teacher responses, and (3) planning and teacher training; and (b) teachers' actual practices (via classroom observations) concerning: (1) number and (2) level of teacher and student questions, as well as (3) teachers' responses to questions. The data were collected from 3 elementary, 3 middle, and 3 high school science teachers and their respective classroom students. The findings lay out a wide view of classroom questioning and teachers' responses, and relate what actually occurs in classes to teachers' stated views. Some of the study's main conclusions are that a gap exists between how science researchers and teachers view the role of teacher questions: the former highlight the cognitive domain, while the latter emphasize the affective domain.

  13. Professional Development in a Reform Context: Understanding the Design and Enactment of Learning Experiences Created by Teacher Leaders for Science Educators

    Science.gov (United States)

    Shafer, Laura

    2017-01-01

    Teacher in-service learning about education reforms like NGSS often begin with professional development (PD) as a foundational component (Supovitz & Turner, 2000). Teacher Leaders, who are early implementers of education reform, are positioned to play a contributing role to the design of PD. As early implementers of reforms, Teacher Leaders…

  14. Some Aspects of Science Education in European Context

    Science.gov (United States)

    Naumescu, Adrienne Kozan; Pasca, Roxana-Diana

    2008-01-01

    Some up-to-date problems in science education in European context are treated in this paper. The characteristics of science education across Europe are presented. Science teachers' general competencies are underlined. An example of problem-solving as teaching method in chemistry is studied in knowledge based society. Transforming teacher practice…

  15. Teacher preparedness for inclusive education

    African Journals Online (AJOL)

    lynette

    man rights had been abused for centuries. The human rights issue in ... the empowerment of educators/teachers is once again neglected in the. South African ..... Previous experience and training in working with children with special education ...

  16. The Challenges Faced by New Science Teachers in Saudi Arabia

    Science.gov (United States)

    Alsharari, Salman

    Growing demand for science teachers in the Kingdom of Saudi Arabia, fed by increasing numbers of public school students, is forcing the Saudi government to attract, recruit and retain well-qualified science teachers. Beginning science teachers enter the educational profession with a massive fullfilment and satisfaction in their roles and positions as teachers to educating children in a science classroom. Nevertheless, teachers, over their early years of practice, encounter numerous challenges to provide the most effective science instruction. Therefore, the current study was aimed to identify academic and behavioral classroom challenges faced by science teachers in their first three years of teaching in the Kingdom of Saudi Arabia. In addition, new science teacher gender, school level and years of teaching experience differences in perceptions of the challenges that they encountered at work were analyzed. The present study also investigated various types of support that new science teachers may need to overcome academic and behavioral classroom challenges. In order to gain insights about ways to adequately support novice science teachers, it was important to examine new science teachers' beliefs, ideas and perceptions about effective science teaching. Three survey questionnaires were developed and distributed to teachers of both sexes who have been teaching science subjects, for less than three years, to elementary, middle and high school students in Al Jouf public schools. A total of 49 novice science teachers responded to the survey and 9 of them agreed to participate voluntarily in a face-to-face interview. Different statistical procedures and multiple qualitative methodologies were used to analyze the collected data. Findings suggested that the top three academic challenges faced by new science teachers were: poor quality of teacher preparation programs, absence of appropriate school equipment and facilities and lack of classroom materials and instructional

  17. Environmental Education. Teacher's Handbook, Grade 5.

    Science.gov (United States)

    Nashville - Davidson County Metropolitan Public Schools, TN.

    Prepared for use in the 5th grade, this teacher's handbook consists of 19 science units dealing with environmental education. Topics are ecology, language arts, rocks and fossils, soil, noise pollution, Nashville pioneers and American Indians, conservation, waste and litter, water pollution, compass and mapping, plants and trees, use of the…

  18. Qualities of Ideal Teacher Educators

    Directory of Open Access Journals (Sweden)

    Nihal Tunca

    2015-04-01

    Full Text Available Abstract Generally, the relationship between the teacher educators' qualities and the quality of teacher education has not been discussed extensively in the literature. At the same time, various studies can be found in the eastern literature examining the characteristics of faculty members at the education faculties. The effect of teacher educators over teacher candidates has not been explored, and in this sense, there is limited number of studies examining faculty members at education faculties in Turkey. Mostly employing quantitative research designs, these studies have focused on faculty members in terms of various characteristics However, which qualities that faculty members should have as a whole have not been studied. However, faculty members, as well as teachers who are a matter of debate in terms of the qualities they are supposed to have should be examined in research studies. In this context, this study aims to identify the qualities that an ideal teacher educator should have from the perspective of education faculty students as future teachers. The current research is a qualitative study in phenomenology design. The participants of the study are third and fourth year 214 pre-service teachers from the departments of Science and Technology Teaching, Pre-School Teacher Education, Classroom Teacher Education, Social Studies Teaching and Turkish Language Teaching. Criterion sampling was used for participant selection. The data gathering tool consisted of an open-ended question that would reveal the qualities that an ideal teacher educator should have based on teacher candidates’ views. Junior and senior teacher candidates’ views were asked and the data were analyzed according to content analysis approach. As a result, the qualities that an ideal teacher educator should have been gathered under five main themes including ‘professional roles and responsibilities, professional values, personal characteristics, professional ethic

  19. Nuclear science and engineering workshop for secondary science teachers

    International Nuclear Information System (INIS)

    Miller, W.H.; Neumeyer, G.M.; Langhorst, S.M.

    1992-01-01

    A 2-week workshop has been held for the past 10 yr at the University of Missouri-Columbia for secondary science teachers to increase their knowledge of nuclear science and its applications. It is sponsored jointly by Union Electric Company (St. Louis, Missouri), the University of Missouri-Columbia, the American Nuclear Society (ANS) student branch at the University of Missouri-Columbia, and the Central/Eastern Section of the ANS. The workshop focuses on two principal educational areas: basic nuclear science and its applications and nuclear energy systems. The philosophy of the workshop is to provide factual information without emphasis on the political issues of the use of nuclear without emphasis on the political issues of the use of nuclear science in the modern society, allowing the participants to form their own perceptions of the risks and benefits of nuclear technology. The paper describes the workshop organization, curriculum, and evaluation

  20. Reclaiming Accountability in Teacher Education

    Science.gov (United States)

    Cochran-Smith, Marilyn; Carney, Molly Cummings; Keefe, Elizabeth Stringer; Burton, Stephani; Chang, Wen-Chia; Fernández, M. Beatriz; Miller, Andrew F.; Sánchez, Juan Gabriel; Baker, Megina

    2018-01-01

    Teacher accountability has been a major strategy for "fixing" education for the last 2 decades. In this book, Cochran-Smith and her research team argue that it is time for teacher educators to reclaim accountability by adopting a new approach that features intelligent professional responsibility, challenges the structures and processes…

  1. Teacher Education: A Nontraditional Response.

    Science.gov (United States)

    Simbol, Mary Ann

    1989-01-01

    Discusses sex bias and stereotyping in society, focusing on one university professor's decision to educate her children at home after experiencing sexism in the schools. Her experiences illuminate needed changes in society. Teacher education must address teachers' ability to change existing attitudes and make children aware of sex bias. (SM)

  2. Physical Education Teachers' Organizational Commitment

    Science.gov (United States)

    Demir, Hayri

    2013-01-01

    The aim of this study was to determine physical education teachers' organizational commitment levels. The sample consisted of 204 physical education teachers working in the city center of Konya in the 2011 to 2012 academic year. The respondents were randomly selected in this research. Data collected for this research by using the Scale for…

  3. Teacher Educators' Perceptions and Practices Pertaining to Multicultural Teacher Education.

    Science.gov (United States)

    Burcalow, Janet V.

    This study focuses on three questions: (1) What are the perceptions of teacher educators regarding five education approaches titled: "Educational Equality,""Cultural Understanding,""Individual Development,""Power Parity," and "Bilingual/Bicultural Education"? (2) Do variables such as age, race, gender, or professional responsibilities affect the…

  4. Science teachers' worldviews and values regarding nature and the environment

    Science.gov (United States)

    Roberts, Wendy P.

    According to the National Science Education Standards (1996), science educators are challenged with the goal of educating future citizens and policy makers to make informed decisions concerning socio-scientific issues. Previous science education research has not explored the influence of science teachers' personal worldviews and values in achieving this educational goal. The purpose of this study was to investigate secondary science teachers' worldviews and values as they relate to nature and environmental education in their science classrooms. The participants' descriptions of their environmental personae and their perception of its influence in their classrooms were also examined. The participants represented a purposeful sample of twelve certified secondary school science teachers who teach in a suburban Atlanta, Georgia school. The study employed an interpretive, qualitative methodology using a constant comparative, inductive analysis design to develop grounded theory. Each participant's worldview, values, and environmental personae regarding the natural world and the environment were explored using William Cobern's (2000) Nature Card Sort instrument, responses to five environmental scenarios and individual interviews that addressed each participant's interpretation of the effect that personal worldviews and values have in their science classrooms. The participants' worldviews and values were disproportionately reflective of both science and society with far more weight given to the contextual values of society rather than the constitutive values of science. Most of these teachers had strong spiritual worldviews of nature; however, these views were of a Puritanical nature rather than Aboriginal. The participants felt conflicted about the appropriate course of action in many environmental issues. Contrary to other studies conducted in this field, there were few philosophical differences between teachers in the different disciplines of science, with the exception

  5. An Added Layer of Support: Introducing a Heterarchical Peer Mentoring Intervention to a Preservice Science Teacher Education Cohort

    Science.gov (United States)

    Neesemann, Lisa Ann

    In an effort to support preservice science teachers during their concurrent student teaching experiences and masters coursework, I created and implemented a Peer Mentoring Intervention to add an additional layer of support to those most traditionally curated. In this intervention, preservice secondary science teachers were paired into heterarchical (as contrasted with hierarchical) mentoring groups, instructed in norms of collaboration and given class time to work as dyads offering support and feedback to one another. During the three-semester span of the intervention data was collected in many forms, such as prompted journal entries, course assignments and semi-structured interviews. Qualitative findings are reported and the case study of one dyad is also presented. Findings included concerns and solutions regarding relating to the assigned peer, developing academic and organizational skills, navigating and learning to appreciate different layers of support, a deeper level of reflection, varying levels of commitment to social justice, and realized self-efficacy. Next steps include refining and implementing the program with a new cohort of students as well as following the participants as they move forward in their teaching careers as well as rethinking the role of mentorship to realize equality among members and challenge the traditionally established hierarchies in mentor relationships.

  6. Research Experiences for Science Teachers: The Impact On Their Students

    Science.gov (United States)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  7. Bringing Science to Life for Students, Teachers and the Community

    Science.gov (United States)

    Pratt, K.

    2012-04-01

    Bringing Science to Life for Students, Teachers and the Community Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of year 5, our teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 121% and another site by 152%.

  8. Motivation of Civic Education Teachers-in-Training in the Field of Education for Sustainable Development

    Science.gov (United States)

    Hiller, Katharina; Reichhart, Barbara

    2017-01-01

    The objective of teacher-training at university for political science is the development of professional competencies that enable teachers-in-training to act proficiently in all aspects of civic education. Although there are some studies that focus on civic education for teachers' professional competencies, most of them relate to general…

  9. Views on Values Education: From Teacher Candidates to Experienced Teachers

    Science.gov (United States)

    Iscan, Canay Demirhan

    2015-01-01

    This study aimed to identify the views of experienced class teachers and class teacher candidates on values education. It conducted standard open-ended interviews with experienced class teachers and teacher candidates. The study group comprised 9 experienced class teachers from different socio-economic levels and 9 teacher candidates with…

  10. Evaluation in science teachers training

    Directory of Open Access Journals (Sweden)

    Melina Gabriela Furman

    2012-06-01

    Full Text Available This research analyzes the final evaluations of the major in Biology Teaching in an institution in northeastern Argentina. The evaluation circumstances were observed, and the professors were subsequently interviewed. The questions formulated by the professors in the test were analyzed according to the objective of their speech and the dimension of the evaluated sciences, by using the categories of science as a product (set of knowledge and as a process (ways to know. 78% of the questions correspond to the category of science as a product compared to 22% as a process. Most of the formulated questions aimed to lowcomplex cognitive processes such as the enunciation of definitions or descriptions, and simple scientific skills as classifying. These results contradict professors’ concern about their students’ low level of reading comprehension and their stated objective of ‘teaching them to think’. This paper brings evidences as for the imperative need of strengthening the work with teacher trainers in learning evaluation aspects.

  11. Preservice Elementary Teachers' Science Self-Efficacy Beliefs and Science Content Knowledge

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2016-10-01

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers' science self-efficacy beliefs. However, there are few studies examining the relationship between science self-efficacy beliefs and science content knowledge. The purpose of this mixed methods study is to investigate changes in preservice teachers' science self-efficacy beliefs and science content knowledge and the relationship between the two variables as they co-evolve in a specialized science content course. Results from pre- and post-course administrations of the Science Teaching Efficacy Belief Instrument-B (Bleicher, 2004) and a physical science concept test along with semi-structured interviews, classroom observations and artifacts served as data sources for the study. The 18 participants belonged to three groups representing low, medium and high initial levels of self-efficacy beliefs. A repeated measures multivariate analysis of variance design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs and science conceptual understandings. Additionally, a positive moderate relationship between gains in science conceptual understandings and gains in personal science teaching efficacy beliefs was found. Qualitative analysis of the participants' responses indicated positive shifts in their science teacher self-image and they credited their experiences in the course as sources of new levels of confidence to teach science. The study includes implications for preservice teacher education programs, science teacher education, and research.

  12. Global reproduction and transformation of science education

    Science.gov (United States)

    Tobin, Kenneth

    2011-03-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and derivative sensibilities, including standards, competition, and accountability systems, that mediate enacted curricula. I investigate these referents in relation to science education in two geographically and temporally discrete contexts Western Australia in the 1960s and 1970s and more recently in an inner city high school in the US. In so doing I problematize some of the taken for granted aspects of science education, including holding teachers responsible for establishing and maintaining control over students, emphasizing competition between individuals and between collectives such as schools, school districts and countries, and holding teachers and school leaders accountable for student achievement.

  13. Prospective Elemantary Science Teachers' Epistemological Beliefs

    Science.gov (United States)

    Macaroglu Akgul, Esra; Oztuna Kaplan, Aysun

    2009-01-01

    This research study examined "prospective elementary science teachers' epistemological beliefs". Forty-nine prospective elementary science teachers participated into research. The research was designed in both quantitative and qualitative manner, within the context of "Special Methods in Science Teaching I" course.…

  14. Administrative support of novice science teachers: A multiple case study

    Science.gov (United States)

    Iacuone, Leann

    Novice science teachers leave the confines of colleges and universities to embark on a new adventure in education where they aim to influence young minds, make a difference in the world, and share their love for their content. They have learned their pedagogical skills with the support and assistance of fellow classmates, a supporting professor, and a cooperating teacher. These teachers enter their new place of employment and are met with many unexpected challenges, such as a lack of resources, no one to ask questions of, and a busy staff with already established relationships, causing them to feel an overall lack of support and resulting in many new teachers rethinking their career choice and leaving the field of education within 5 years of entering. This multiple-case study investigated the administrative support 4 novice science teachers received during an academic year and the novice teachers' perceptions of the support they received to answer the following research question: How do novice science teachers who have consistent interactions with administrators develop during their first year? To answer this question, semistructured interviews, reflection journals, observations, resumes, long-range plans, and student discipline referrals were collected. The findings from this study show novice science teachers who had incidents occur in the classroom requiring administrative assistance and guidance felt more confident in enforcing their classroom management policies and procedures as the year progressed to change student behavior. The novice science teachers perceived administrators who provided resources including technology, office supplies, science supplies, and the guidance of a mentor as supportive. Novice science teachers who engaged in dialogue after administrative observations, were provided the opportunity to attend professional development outside the district, and had a mentor who taught the same discipline made more changes to their instructional

  15. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  16. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  17. Pedagogical innovation for science teachers training in the information age

    International Nuclear Information System (INIS)

    Horta, L.M.P.

    2009-01-01

    It urges to improve internet skills on the people, for dealing with lots of different global important issues such as health, education, economy, environment, food chemistry, Portuguese Cultural Heritage, sustainable development. The available information in the internet and the interactive resources is immense, but we have to elaborate education strategies for the enriching, discerning and pedagogic use of the internet. We are in the information age, being crucial to get to transform the information in knowledge and to transform knowledge produced in to information, effectively and efficiently. The introduction of new ideas, theories, methodologies, contexts, technological innovations as in students of the basis and secondary education (the new generations), as in science teachers through new practices and knowledge using the science, technology, society and environment perspective present in the Portuguese curricula for motivating students and with strategies that allow them to identify, to observe of to scrutiny on science, technology and society applications, being the internet the privileged vehicle of that whole new knowledge. Can be targeted and developed to Physics and Chemistry teachers; Biology and Geology teachers; Mathematics and Nature Sciences Teachers; Physical Education Teachers. Science teachers training courses design in the information age challenges us to rethink global environment, and many factors (quick examples are how close the interactive virtual lab model is to the real world or the psychological effect of color) present in the web for the human learning must be subject of consideration. (author)

  18. The Effect of an Instructional Intervention on Enhancement Pre-Service Science Teachers' Science Processes Skills

    Science.gov (United States)

    Durmaz, Hüsnüye

    2016-01-01

    The aim of this study is to investigate the effects of an instructional intervention on enhancement the pre-service science teachers' (PSTs) science process skills (SPSs) and to identify problems in using SPSs through Laboratory Applications in Science Education-I course (LASE-I). One group pretest-posttest pre-experimental design was employed. An…

  19. Spanish Secondary-School Science Teachers' Beliefs about Science-Technology-Society (STS) Issues

    Science.gov (United States)

    Vazquez-Alonso, Angel; Garcia-Carmona, Antonio; Manassero-Mas, Maria Antonia; Bennassar-Roig, Antoni

    2013-01-01

    This study analyzes the beliefs about science-technology-society, and other Nature of Science (NOS) themes, of a large sample (613) of Spanish pre- and in-service secondary education teachers through their responses to 30 items of the Questionnaire of Opinions on Science, Technology and Society. The data were processed by means of a multiple…

  20. Central Computer Science Concepts to Research-Based Teacher Training in Computer Science: An Experimental Study

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter

    2012-01-01

    The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…

  1. Impacting the Science Community through Teacher Development: Utilizing Virtual Learning.

    Science.gov (United States)

    Boulay, Rachel; van Raalte, Lisa

    2014-01-01

    Commitment to the STEM (science, technology, engineering, math) pipeline is slowly declining despite the need for professionals in the medical field. Addressing this, the John A. Burns School of Medicine developed a summer teacher-training program with a supplemental technology-learning component to improve science teachers' knowledge and skills of Molecular Biology. Subsequently, students' skills, techniques, and application of molecular biology are impacted. Science teachers require training that will prepare them for educating future professionals and foster interest in the medical field. After participation in the program and full access to the virtual material, twelve high school science teachers completed a final written reflective statement to evaluate their experiences. Using thematic analysis, knowledge and classroom application were investigated in this study. Results were two-fold: teachers identified difference areas of gained knowledge from the teacher-training program and teachers' reporting various benefits in relation to curricula development after participating in the program. It is concluded that participation in the program and access to the virtual material will impact the science community by updating teacher knowledge and positively influencing students' experience with science.

  2. Supporting Teachers in Inclusive Education

    Directory of Open Access Journals (Sweden)

    Alekhina S.V.

    2015-03-01

    Full Text Available The article regards the issues of support provision to teachers involved in inclusive education as the main requirement for successful realization of inclusion. The methodological framework used in the study is a resource approach. The article describes the ways of extending the means of supporting teachers. The article also arguments for consolidating all the educators of inclusive schools into inclusive teams equally interested in joint work of administration and educators of intervention programs.

  3. Determining discourses: Constraints and resources influencing early career science teachers

    Science.gov (United States)

    Grindstaff, Kelly E.

    This study explores the thinking and practices of five early-career teachers of grades eight to ten science, in relation to their histories, schools, students, and larger cultural and political forces. All the teachers are young women, two in their fourth year of teaching, who teach together in an affluent suburb, along with one first-year teacher. The other two are first-year teachers who teach in an urban setting. All of these teachers most closely associated good science teaching with forming relationships with students. They filtered science content through a lens of relevance (mostly to everyday life) and interest for students. Thus they filtered science content through a commitment to serving students, which makes sense since I argue that the primary motivations for teaching had more to do with working with students and helping people than the disciplines of science. Thus, within the discourse of the supremacy of curriculum and the prevalence of testing, these teachers enact hybrid practices which focus on covering content -- to help ensure the success of students -- and on relevance and interest, which has more to do with teaching styles and personality than disciplines of science. Ideas of good teaching are not very focused on science, which contradicts the type of support they seek and utilize around science content. This presents a challenge to pre- and in-service education and support to question what student success means, what concern for students entails and how to connect caring and concern for students with science.

  4. Taiwanese Preservice Teachers' Science, Technology, Engineering, and Mathematics Teaching Intention

    Science.gov (United States)

    Lin, Kuen-Yi; Williams, P. John

    2016-01-01

    This study applies the theory of planned behavior as a basis for exploring the impact of knowledge, values, subjective norms, perceived behavioral controls, and attitudes on the behavioral intention toward science, technology, engineering, and mathematics (STEM) education among Taiwanese preservice science teachers. Questionnaires (N = 139)…

  5. Promising Teacher Practices: Students' Views about Their Science Learning

    Science.gov (United States)

    Moeed, Azra; Easterbrook, Matthew

    2016-01-01

    Internationally, conceptual and procedural understanding, understanding the Nature of Science, and scientific literacy are considered worthy goals of school science education in modern times. The empirical study presented here reports on promising teacher practices that in the students' views afford learning opportunities and support their science…

  6. Enhancing Teacher Efficacy in Special Education.

    Science.gov (United States)

    McDaniel, Elizabeth A.; McCarthy, Holly DiBella

    1989-01-01

    A special education teacher's sense of teaching efficacy and personal teaching efficacy influences teacher motivation and effort, teacher-student interactions, and student achievement. Methods for enhancing teachers' sense of efficacy are suggested. (JDD)

  7. TRAINING FUTURE TEACHERS OF COMPUTER SCIENCE FOR WORKING OUT TECHNOLOGICAL CARDS OF LESSONS IN THE CONDITIONS OF REALIZATION OF THE FEDERAL STATE EDUCATIONAL STANDARD FOR GENERAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Екатерина Николаевна Кувшинова

    2017-12-01

    Full Text Available This article is devoted to a problem of readiness of future teachers of informatics for development of flow charts of the lessons displaying the main requirements of Federal state educational standards of the main general education (FGOS of Ltd company to planning and the organization of educational process taking into account system and activity approach in training. Content of system and activity approach in training, the universal educational actions (UEA reveals. Main units of the flow chart of a lesson of informatics are considered. The substantial block of the flow chart of a lesson of informatics determined by a training material which provides achievement of the planned subject results of training, and also forming and development of UUD, all-educational skills, ICT competences, competences of educational and research and project activities is stated.Subject results of training to which the abilities specific to a subject, types of activity on receipt of new knowledge within a subject, to its transformation and application in educational, educational and project and social and project situations, forming of scientific type of thinking, scientific ideas of key theories, types and types of the relations, ownership of scientific terminology, key concepts, methods and acceptances belong [10] are analyzed.Step-by-step training of future teachers of informatics for development of flow charts of lessons is discussed.

  8. Using Mobile Devices to Connect Teachers and Museum Educators

    Science.gov (United States)

    Delen, Ibrahim; Krajcik, Joseph

    2017-01-01

    The use of mobile devices is increasing rapidly as a potential tool for science teaching. In this study, five educators (three middle school teachers and two museum educators) used a mobile application that supported the development of a driving question. Previous studies have noted that teachers make little effort to connect learning experiences…

  9. Comparison between Primary Teacher Educators' and Primary School Teachers' Beliefs of Primary Geography Education Quality

    Science.gov (United States)

    Bent, Gert Jan; Bakx, Anouke; den Brok, Perry

    2016-01-01

    In this study teacher educators' beliefs concerning primary geography education have been investigated and compared with primary school teachers' beliefs. In this study 45 teacher educators and 489 primary school teachers completed a questionnaire, and nine teacher educators have been interviewed as well. It has been found that teacher educators…

  10. How Pre-Service Teachers' Understand and Perform Science Process Skills

    Science.gov (United States)

    Chabalengula, Vivien Mweene; Mumba, Frackson; Mbewe, Simeon

    2012-01-01

    This study explored pre-service teachers' conceptual understanding and performance on science process skills. A sample comprised 91 elementary pre-service teachers at a university in the Midwest of the USA. Participants were enrolled in two science education courses; introductory science teaching methods course and advanced science methods course.…

  11. Exploring the Relationships between Self-Efficacy and Preference for Teacher Authority among Computer Science Majors

    Science.gov (United States)

    Lin, Che-Li; Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung

    2013-01-01

    Teacher-centered instruction has been widely adopted in college computer science classrooms and has some benefits in training computer science undergraduates. Meanwhile, student-centered contexts have been advocated to promote computer science education. How computer science learners respond to or prefer the two types of teacher authority,…

  12. Expanding Roles: Teacher Educators' Perspectives on Educating English Learners

    Science.gov (United States)

    Daniel, Shannon; Peercy, Megan Madigan

    2014-01-01

    Although the underpreparation of teachers to work with English learners is a documented problem in teacher education, little research has addressed teacher educators' perspectives in guiding prospective teachers to educate English learners. This case study of one 13-month elementary certification program highlights teacher educators' efforts and…

  13. Leadership that promotes teacher empowerment among urban middle school science teachers

    Science.gov (United States)

    Howard-Skipper, Joni

    In this study, the focus was on determining leadership strategies that promote teacher empowerment among urban middle school science teachers. The purpose of the paper was to determine if leadership strategies are related to teacher empowerment. The emphasis was on various forms of leadership and the empowerment of teachers in context in restructuring the democratic structure. An effective leadership in science education entails empowering others, especially science teachers. In this regard, no published studies had examined this perspective on empowering teachers and school leadership. Therefore, this study determined if a relationship exists between leadership strategy actions and teacher empowerment. The significance of the study is to determine a relationship between leadership strategies and teacher empowerment as a positive approach toward developing successful schools. Empowerment is essential for implementing serious improvements. Empowering others in schools must form a major component of an effective principal's agenda. It is becoming clearer in research literature that complex changes in education sometimes require active initiation. For this study, a quantitative methodology was used. Primary data enabled the research questions to be answered. The reliability and validity of the research were ensured. The results of this study showed that 40% of the administrators establish program policies with teachers, and 53% of teachers make decisions about new programs in schools. Furthermore, the findings, their implications, and recommendations are discussed.

  14. METHODOLOGY EDUCATIONAL PROCESS ORGANIZATION OF FUTURE MAGISTRA TEACHER EDUCATION ON THE EXAMPLE OF THE COURSE «INFORMATION TECHNOLOGIES IN SCIENCE AND EDUCATION»

    OpenAIRE

    V. Shelud’ko

    2013-01-01

    The article provides a technique of training activities for future masters of using information technology as an example of discipline "Information technologies in science and education." Defined and characterized every stage of the educational process masters in the application of learning technologies and the use of certain technologies. The results verify the effectiveness of this technique and the analysis of questionnaires experimental groups.

  15. Are Learning Assistants Better K-12 Science Teachers?

    Science.gov (United States)

    Gray, Kara E.; Webb, David C.; Otero, Valerie K.

    2010-10-01

    This study investigates how the undergraduate Learning Assistant (LA) experience affects teachers' first year of teaching. The LA Program provides interested science majors with the opportunity to explore teaching through weekly teaching responsibilities, an introduction to physics education research, and a learning community within the university. Some of these LAs are recruited to secondary science teacher certification programs. We hypothesized that the LA experience would enhance the teaching practices of the LAs who ultimately become teachers. To test this hypothesis, LAs were compared to a matched sample of teachers who completed the same teacher certification program as the LAs but did not have the LA "treatment." LAs and "non-LAs" were compared through interviews, classroom observations, artifact packages, and observations made with Reformed Teacher Observation Protocol (RTOP) collected within the first year of teaching. Some differences were found; these findings and their implications are discussed.

  16. The Role of Non-Formal Contexts in Teacher Education for STEM: The Case of Horno[superscript 3] Science and Technology Interactive Centre

    Science.gov (United States)

    Fernández-Limón, Claudia; Fernández-Cárdenas, Juan Manuel; Gómez Galindo, Alma Adrianna

    2018-01-01

    Teacher education can benefit directly from experiences in non-formal settings. This article presents a research study with elementary teachers who were teaching in public schools in the state of Nuevo León, México, and participated in a STEM Continuous Professional Development (CPD) workshop. The workshop provided a platform for teachers to…

  17. Reflective Practices for Teacher Education

    Directory of Open Access Journals (Sweden)

    Paulus Kuswandono

    2017-01-01

    Full Text Available Studies on reflective practice in teacher education are increasingly getting more attention at least in the last 2 decades. This article discusses concepts of reflection and how it is implemented in educating pre-service teachers on their early stage of professional learning. The purposes of doing the reflection for pre-service teachers are not only for illuminating their professional learning experiences, but also to critically reflect their vocation as teachers, including the values which may be dictated to them through rigid regulations. Reflection in teacher education is crucial as it connects well with learning in that learners use reflection to exercise their mind and to evaluate their learning experiences. Besides, this article also highlights some perceived difficulties to implement reflective practice, as well as ways how to promote reflection.   DOI: https://doi.org/10.24071/llt.2012.150102

  18. TEACHER PERFORMANCE AND QUALITY EDUCATION

    Directory of Open Access Journals (Sweden)

    Guadalupe Iván Martínez-Chairez

    2016-07-01

    Full Text Available This research report comes from a study that developed during the school years, 2014-2015, 2015-206 in the southern state of Chihuahua, in the education sector 25 central regio, consisting of five school zones that provide their services to the municipalities of Meoqui, Julimes and Delicias. The study is of mixed cutting - correlational comprehensive sequential procedure. Some of the results is that teachers believe that quality education depends not only on their teaching performance, but there are four factors (school context, teachers, government who need to work collaboratively. In addition there is a correlation .578 between the years of service of teachers and their students score on standardized tests that impact on the teacher, but there is no relationship between teacher performance and quality education from the perspective of imputs.

  19. Science in early childhood education

    DEFF Research Database (Denmark)

    Broström, Stig

    2015-01-01

    Bildung Didaktik, and a learning approach based on a Vygotskian cultural-historical activity theory. A science-oriented dynamic contextual didactical model was developed as a tool for educational thinking and planning. The article presents five educational principles for a preschool science Didaktik......Based on an action research project with 12 preschools in a municipality north of Copenhagen the article investigates and takes a first step in order to create a preschool science Didaktik. The theoretical background comprises a pedagogical/didactical approach based on German critical constructive....... Several problems are discussed, the main being: How can preschool teachers balance children’s sense of wonder, i.e. their construction of knowledge (which often result in a anthropocentric thinking) against a teaching approach, which gives children a scientific understanding of scientific phenomena....

  20. Jordanian Preservice Primary Teachers' Perceptions of Mentoring in Science Teaching

    Science.gov (United States)

    Abed, Osama H.; Abd-El-Khalick, Fouad

    2015-03-01

    Quality mentoring is fundamental to preservice teacher education because of its potential to help student and novice teachers develop the academic and pedagogical knowledge and skills germane to successful induction into the profession. This study focused on Jordanian preservice primary teachers' perceptions of their mentoring experiences as these pertain to science teaching. The Mentoring for Effective Primary Science Teaching instrument was administered to 147 senior preservice primary teachers in a university in Jordan. The results indicated that the greater majority of participants did not experience effective mentoring toward creating a supportive and reflexive environment that would bolster their confidence in teaching science; further their understanding of primary science curriculum, and associated aims and school policies; help with developing their pedagogical knowledge; and/or furnish them with specific and targeted feedback and guidance to help improve their science teaching. Substantially more participants indicated that their mentors modeled what they perceived to be effective science teaching. The study argues for the need for science-specific mentoring for preservice primary teachers, and suggests a possible pathway for achieving such a model starting with those in-service primary teachers-much like those identified by participants in the present study-who are already effective in their science teaching.

  1. The pathways of high school science teachers and policy efforts to alter the pipeline

    Science.gov (United States)

    Sass, Tim

    2012-03-01

    There is currently much interest in improving the quality of science education in K-12 schools and encouraging more students, particularly minorities and women, to pursue careers in STEM fields. Two interrelated issues are at the forefront: the quality of science teachers and the supply of science teachers. Education research in general finds that the single most important school-based factor affecting student achievement is teacher quality. While there is little evidence that teacher credentials matter for student achievement in the lower grades, there is at least some evidence that content knowledge is an important determinant of teacher quality in middle and secondary schools. However, little is known about the pre-service preparation of high school science teachers and how the training of science teachers affects their performance in the classroom. While there are many efforts underway to increase the supply of science teachers, little is known about the supply of science teachers from different pathways and the factors that lead science teachers to leave the profession. In this presentation I discuss recent work on the supply of teachers from alternative pathways, focusing on high school science teachers. I also summarize the literature on teacher quality and attrition, emphasizing the current state of knowledge on secondary school teachers. Finally, I present current policy initiatives and discuss the likelihood of their success given current research findings.

  2. Effects of a Science Content Course on Elementary Preservice Teachers' Self-Efficacy of Teaching Science

    Science.gov (United States)

    Bergman, Daniel J.; Morphew, Jason

    2015-01-01

    The preparation of elementary teachers to successfully teach science in their classrooms is a central issue in science education. The teacher preparation program at a large Midwestern university was modified to include a new science content course aimed at this need. A pre-/postassessment research model involved participants (N = 154) completing a…

  3. Integrating Science and Technology: Using Technological Pedagogical Content Knowledge as a Framework to Study the Practices of Science Teachers

    Science.gov (United States)

    Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.

    2015-01-01

    In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Issue front cover thumbnail Issue ... pp 985-1006 General Article. The Ziegler Catalysts: Serendipity or .... Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2018 · More Details Abstract Fulltext PDF.

  5. Challenges to Vocational Teacher Education.

    Science.gov (United States)

    Erickson, Richard C.

    1985-01-01

    Challenges to vocational teacher education include technological change that is sending large numbers of adults back to school; increasing numbers of women, minorities, and handicapped individuals who are seeking employment in nontraditional occupations; vocational preparation for jobs in the information economy; teacher recruitment; and creative…

  6. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    , 2007). Some of these newer formats are developed in partnerships between research and education institutions and game developers and are based on learning theory as well as game design methods. Games well suited for creating narrative framework or simulations where students gain first-hand experience......This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  7. Science, Worldviews, and Education

    Science.gov (United States)

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  8. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  9. Educational Reconstruction and Today's Teacher Education.

    Science.gov (United States)

    Stone, Frank Andrews

    1994-01-01

    An educator reflects on preservice teachers in his class who were concerned with issues of interpersonal relations and classroom dynamics but not with socioeconomic, intercultural, and political contexts of education. Nevertheless, there were some faculty and students involved in urban schools bringing reconstructionist ideas of education for…

  10. Crossing borders: High school science teachers learning to teach the specialized language of science

    Science.gov (United States)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  11. "You Have to Give Them Some Science Facts": Primary Student Teachers' Early Negotiations of Teacher Identities in the Intersections of Discourses about Science Teaching and about Primary Teaching

    Science.gov (United States)

    Danielsson, Anna T.; Warwick, Paul

    2014-01-01

    In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on…

  12. Teachers' Understanding and Operationalisation of `Science Capital'

    Science.gov (United States)

    King, Heather; Nomikou, Effrosyni; Archer, Louise; Regan, Elaine

    2015-12-01

    Across the globe, governments, industry and educationalists are in agreement that more needs to be done to increase and broaden participation in post-16 science. Schools, as well as teachers, are seen as key in this effort. Previous research has found that engagement with science, inclination to study science and understanding of the value of science strongly relates to a student's science capital. This paper reports on findings from the pilot year of a one-year professional development (PD) programme designed to work with secondary-school teachers to build students' science capital. The PD programme introduced teachers to the nature and importance of science capital and thereafter supported them to develop ways of implementing science capital-building pedagogy in their practice. The data comprise interviews with the participating teachers (n = 10), observations of classroom practices and analyses of the teachers' accounts of their practice. Our findings suggest that teachers found the concept of science capital to be compelling and to resonate with their own intuitive understandings and experiences. However, the ways in which the concept was operationalised in terms of the implementation of pedagogical practices varied. The difficulties inherent in the operationalisation are examined and recommendations for future work with teachers around the concept of science capital are developed.

  13. Using Climate Change for Teaching Experimental Sciences in Teacher Education through Research Projects on Recycling at the University of Lleida (Western Catalonia)

    Science.gov (United States)

    Sebastia, M. T.; Verdú, N.

    2016-12-01

    Although climate change is one of the most pressing challenges faced by humankind, climate change illiteracy is frequent among primary school teacher college students reaching the second school year at the University of Lleida (UdL). Climate change was chosen to structure the course on Experimental Sciences of the bilingual group because this topic involves all sciences, and because of the importance of the subject for future educators. In the bilingual group of the Education Faculty, Experimental Sciences is taught in English, and there are usually 1-2 international students in addition to around 20 local students. To increase the awareness about climate change and make this topic closer to the students' daily experience, a research project on recycling at the University of Lleida was assigned per groups of 4 students. The assignment was semi-structured, the students received a reduced set of instructions and large freedom to focus their particular projects. Additional instructions were provided along the way. We present results from the comparisons among faculties at UdL, and among the different users: students, professors and researchers, and administration staff. We also discuss the impact that this project had in the learning ability of the students and their awareness about climate change.

  14. The Impact of Science Teachers' Beliefs on Teaching Science: The Case of Saudi Science Teachers

    Science.gov (United States)

    Alabdulkareem, Saleh Abdullah

    2016-01-01

    The researcher aims to investigate Saudi science teachers' beliefs about learning and teaching issues. The sample consisted of 247 middle school teachers in Riyadh, Saudi Arabia. The study conducted in the academic school year 2014/2015, and utilized a questionnaire and an interview that included 10% of the sample. The questionnaire targeted the…

  15. Physics Teachers' Views on Their Initial Teacher Education

    Science.gov (United States)

    Buabeng, Isaac; Conner, Lindsey; Winter, David

    2016-01-01

    This paper explores New Zealand (NZ) physics teachers' and physics educators' views about Initial Teacher Education (ITE). Perspectives of physics teachers nationally indicated that in general, teachers considered themselves not well-prepared in some content areas including electronics, modern physics, and atomic and nuclear physics. This may be…

  16. Relationships between Prospective Elementary Teachers' Classroom Practice and Their Conceptions of Biology and of Teaching Science.

    Science.gov (United States)

    Meyer, Helen; Tabachnick, B. Robert; Hewson, Peter W.; Lemberger, John; Park, Hyun-Ju

    1999-01-01

    Discusses three prospective elementary teachers' conceptions of teaching science and selected portions of their knowledge base in life science. Explores how these teachers' conceptions, along with their teaching actions, developed during the course of a teacher-education program. Contains 21 references. (Author/WRM)

  17. Perceptions of Support, Induction, and Intentions by Secondary Science and Mathematics Teachers on Job Retention

    Science.gov (United States)

    Bond, Sharon C.

    2012-01-01

    This study was designed to examine the teacher characteristics, workplace factors, and type of induction supports that contribute to the retention of secondary science and mathematics teachers. Using the sample of secondary science and mathematics teachers extracted from the National Center for Educational Statistics (NCES) 2007-2008 Schools and…

  18. The Relationship between Academic Procrastination Behaviors of Preservice Science Teachers and Their Attitudes toward Social Media

    Science.gov (United States)

    Aslan Efe, Hülya; Efe, Rifat

    2018-01-01

    In this study, the relationship between study preservice science teachers' academic procrastination and their attitudes toward social media was investigated. The study was carried out with the participation of 511 preservice science teachers (F: 346, M:165) on teacher education course at Dicle University during 2014-2015 academic year. The date…

  19. Elementary Science Indoors and Out: Teachers, Time, and Testing

    Science.gov (United States)

    Carrier, Sarah J.; Tugurian, Linda P.; Thomson, Margareta M.

    2013-10-01

    In this article, we present the results from a mixed-methods research study aimed to document indoor and outdoor fifth grade science experiences in one school in the USA in the context of accountability and standardized testing. We used quantitative measures to explore students' science knowledge, environmental attitudes, and outdoor comfort levels, and via qualitative measures, we examined views on science education and environmental issues from multiple sources, including the school's principal, teachers, and students. Students' science knowledge in each of the four objectives specified for grade 5 significantly improved during the school year. Qualitative data collected through interviews and observations found limited impressions of outdoor science. Findings revealed that, despite best intentions and a school culture that supported outdoor learning, it was very difficult in practice for teachers to supplement their classroom science instruction with outdoor activities. They felt constrained by time and heavy content demands and decided that the most efficient way of delivering science instruction was through traditional methods. Researchers discuss potentials and obstacles for the science community to consider in supporting teachers and preparing elementary school teachers to provide students with authentic experiential learning opportunities. We further confront teachers' and students' perceptions that science is always best and most efficiently learned inside the classroom through traditional text-driven instruction.

  20. Preservice Science Teachers' Beliefs about Astronomy Concepts

    Science.gov (United States)

    Ozkan, Gulbin; Akcay, Hakan

    2016-01-01

    The purpose of this study was to investigate preservice science teachers' conceptual understanding of astronomy concepts. Qualitative research methods were used. The sample consists of 118 preservice science teachers (40 freshmen, 31 sophomores, and 47 juniors). The data were collected with Astronomy Conceptual Questionnaire (ACQ) that includes 13…