Sample records for sciences du climat

  1. simulation du climat futur et des rendements agricoles en region

    African Journals Online (AJOL)


    2017, African Crop Science Society. African Crop Science Journal by African Crop Science Society is licensed under a Creative Commons Attribution 3.0 Uganda License. Based on a work at and DOI: SIMULATION DU CLIMAT FUTUR ET DES ...

  2. Science et technologie du collage

    CERN Document Server

    Cognard, Jacques


    L'Homme a su coller avant de savoir écrire et compter. Le collage est en effet l'une des premières techniques d'assemblage d'une structure que l'homme ait utilisée, technique qui n'est devenue science qu'au début du 20e siècle avec la fabrication des premières colles synthétiques. Cette science de l'adhésion a considérablement progressé ces dix dernières années et ce livre présente l'état actuel des connaissances en décrivant les progrès considérables réalisés dans la compréhension des phénomènes fondamentaux qui font qu'un collage tient bien et durablement. Après l'exposé des bases scientifiques nécessaires et des modèles théoriques récents, l'auteur introduit la distinction entre collages faibles et collages forts puis expose les difficultés rencontrées dans les cas pratiques, difficultés souvent dues à la complexité de la chimie des surfaces et des réactions surface-polymère. L'ouvrage se termine par la présentation de quelques applications récentes, en particulier dans...

  3. Actes des 5èmes Journées Scientifiques du GDR3544 Sciences du Bois. Journées Annuelles du GDR 3544 Sciences du Bois


    CHAPLAIN, Myriam; CARE, Sabine; GRIL, Joseph


    Le Groupement de Recherche en Sciences du bois (GDR3544 Sciences du Bois) a été créé en 2012 par le CNRS et renouvelé en 2016 pour 5 ans. La mission de ce groupement est : (1) de structurer la recherche sur le bois en France pour lui donner une visibilité nationale, (2) de contribuer au développement de la formation en sciences du bois et (3) de servir de relai aux réseaux internationaux de sciences du bois. Les 5èmes journées annuelles du GDR Bois ont été organisées à Bordeaux, au domaine du...

  4. Climate science reconsidered


    Rapley, C.; De Meyer, K.


    There is a gap between the current role of the climate science community and the needs of society. Closing this gap represents a necessary but insufficient step towards improved public discourse and more constructive policy formulation on climate change.

  5. simulation du climat futur et des rendements agricoles en region

    African Journals Online (AJOL)


    REGION SOUDANO-SAHELIENNE EN REPUBLIQUE DU BENIN. S. KATE, O. TEKA1, ... La présente étude a été initiée pour déterminer les caractéristiques des rendements des principales ..... Climate change in cities due to global warming ...

  6. Climate Change Science Program Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  7. Mixed Messages on Climate Science (United States)

    Grifo, F.; Gutman, B. L.; Veysey, D.; El Gamal, A.


    While the private sector has a strong interest in climate science, and much at stake as the world comes to terms with the impacts of climate change, their legacy of climate denial has left the public confused. A few companies openly reject the basic science that ties emissions of greenhouse gases from human activities to warming temperatures and other consequences. Many companies play into the confusion by boasting of their green strategies while lobbying against climate bills. Still others joined pro-climate coalitions while donating heavily to politicians who openly reject the science of climate change. Many companies stand to see their business greatly affected by regulations to control greenhouse gas emissions or directly by changing weather patterns, rising sea levels, and varying water availability. Public statements, political activity, and corporate affiliations reveal inconsistent corporate postures. Congress, individuals, and the private sector can all play critical roles in holding corporate America to a higher standard bringing more clarity to science based climate policy discussions.

  8. Word diffusion and climate science.

    Directory of Open Access Journals (Sweden)

    R Alexander Bentley

    Full Text Available As public and political debates often demonstrate, a substantial disjoint can exist between the findings of science and the impact it has on the public. Using climate-change science as a case example, we reconsider the role of scientists in the information-dissemination process, our hypothesis being that important keywords used in climate science follow "boom and bust" fashion cycles in public usage. Representing this public usage through extraordinary new data on word frequencies in books published up to the year 2008, we show that a classic two-parameter social-diffusion model closely fits the comings and goings of many keywords over generational or longer time scales. We suggest that the fashions of word usage contributes an empirical, possibly regular, correlate to the impact of climate science on society.

  9. Climate Science: A Journalist's View (United States)

    Roosevelt, M.


    U.S. public opinion polls show that concern over global warming has dropped precipitously in the wake of economic turmoil. With a dearth of climate change coverage on network news, and in large newspapers and magazines, the public largely gets its climate news--and science news generally--from local TV weathermen. At the same time, many local weathercasters have little time to educate themselves about climate change--although the National Science Foundation is funding an effort to inform them. The Heartland Institute and other climate-skeptic organizations are reaching out to TV weathermen, and some prominent weathercasters have embraced the skeptics' arguments, but websites such as Climate Central, and blogs such as DotEarth are seeking to fill the void. The innate caution of climate scientists, most of whom are reluctant to extrapolate from a narrow study on, say, carbon flux or sea ice, to talk about why the planet is in danger is another challenge. For the most part, they don't want to stick their necks out for fear of professional retribution. When scientists limit themselves to talking about narrow results, journalists' eyes glaze over and no one connects the dots. Much attention is devoted to whether or not the media is doing a good job in covering climate change, when energy might better be spent on applying pressure to decision makers? The media can't make legislators vote for progressive climate change policies--only constituents can do that.

  10. Mathematical paradigms of climate science

    CERN Document Server

    Cannarsa, Piermarco; Jones, Christopher; Portaluri, Alessandro


    This book, featuring a truly interdisciplinary approach, provides an overview of cutting-edge mathematical theories and techniques that promise to play a central role in climate science. It brings together some of the most interesting overview lectures given by the invited speakers at an important workshop held in Rome in 2013 as a part of MPE2013 (“Mathematics of Planet Earth 2013”). The aim of the workshop was to foster the interaction between climate scientists and mathematicians active in various fields linked to climate sciences, such as dynamical systems, partial differential equations, control theory, stochastic systems, and numerical analysis. Mathematics and statistics already play a central role in this area. Likewise, computer science must have a say in the efforts to simulate the Earth’s environment on the unprecedented scale of petabytes. In the context of such complexity, new mathematical tools are needed to organize and simplify the approach. The growing importance of data assimilation te...

  11. Climate Science's Globally Distributed Infrastructure (United States)

    Williams, D. N.


    The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.

  12. Successful Climate Science Communication Strategies (United States)

    Sinclair, P.


    In the past decade, efforts to communicate the facts of global change have not successfully moved political leaders and the general public to action. In response, a number of collaborative efforts between scientists and professional communicators, writers, journalists, bloggers, filmmakers, artists and others have arisen seeking to bridge that gap. As a result, a new cadre of science-literate communicators, and media-savvy scientists have made themselves visible across diverse mainstream, traditional, and social media outlets. Because of these collaborations, in recent years, misinformation, and disinformation have been successfully met with accurate and credible rebuttals within a single news cycle.Examples of these efforts is the Dark Snow Project, a science/communication collaboration focusing initially on accelerated arctic melt and sea level rise, and the Climate Science Rapid Response team, which matches professional journalists with appropriate science experts in order to respond within a single news cycle to misinformation or misunderstandings about climate science.The session will discuss successful examples and suggest creative approaches for the future.

  13. Climate science, truth, and democracy. (United States)

    Keller, Evelyn Fox


    This essay was written almost ten years ago when the urgency of America's failure as a nation to respond to the threats of climate change first came to preoccupy me. Although the essay was never published in full, I circulated it informally in an attempt to provoke a more public engagement among my colleagues in the history, philosophy, and sociology of science. In particular, it was written in almost direct response to Philip Kitcher's own book, Science, Truth and Democracy (2001), in an attempt to clarify what was special about Climate Science in its relation to truth and democracy. Kitcher's response was immensely encouraging, and it led to an extended dialogue that resulted, first, in a course we co-taught at Columbia University, and later, to the book The Seasons Alter: How to Save Our Planet in Six Acts (W. W. Norton) published this spring. The book was finished just after the Paris Climate Accord, and it reflects the relative optimism of that moment. Unfortunately events since have begun to evoke, once again, the darker mood of this essay. I am grateful to Greg Radick for suggesting its publication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Science of Climate Responsibility (United States)

    Mitchell, D.; Frumhoff, P. C.; Sparrow, S.; Allen, M. R.


    Extreme events linked with human induced climate change have now been reported around the globe. Among the most troublesome impacts are increased wild fires, failed crop yields, extreme flooding and increase human mortality (Hansen and Cramer, 2015). Many of these impacts are predicted to increase into the future. Non-industrialised communities around the world will be the least capable of adapting, while the industrial communities, who are often responsible for historical carbon emissions, will find adaptation easier. Such a situation lends itself to the issue of responsibility. In order to assess responsibility, it must first be established where the major carbon and methane emissions are originating. It must then be estimated how these emissions project onto localised climate, which is often the primary indicator behind impacts on society. In this study, we address this question using a 25 km regional climate model capable of simulating climate thousands of times under the Weather@home citizen science project. The use of this framework allows us to generate huge data sample sizes, which can be put in the context of very low sample sizes of observational data. We concentrate on the 2003 heat wave over Europe, but show how this method could be applied to less data rich regions, including the Middle East and the Horn of Africa.

  15. Climate change science compendium 2009

    Energy Technology Data Exchange (ETDEWEB)

    McMullen, C.P.; Jabbour, J.


    In a matter of a few weeks' time, governments will gather in Copenhagen, Denmark, for a crucial UN climate convention meeting. Many governments and stakeholders have requested an annual snapshot of how the science has been evolving since the publication of the IPCC's landmark fourth assessment in advance of the panel's next one in 2014. This Climate Change Science Compendium, based on the wealth of peerreviewed research published by researchers and institutions since 2006, has been compiled by UNEP in response to that request. The findings indicate that ever more rapid environmental change is underway with the pace and the scale of climate change accelerating, along with the confidence among researchers in their forecasts. The Arctic, with implications for the globe, is emerging as an area of major concern. There is growing evidence that the ice there is melting far faster than had been previously supposed. Mountains glaciers also appear to be retreating faster. Scientists now suggest that the Arctic could be virtually ice free in September of 2037 and that a nearly ice-free September by 2028 is well within the realms of possibility. Recent findings also show that significant warming extends well beyond the Antarctic Peninsula to cover most of West Antarctica, an area of warming much larger than previously reported. The impact on the Earth's multi-trillion dollar ecosystems is also a key area of concern. Under a high emission scenario-the one that most closely matches current trends-12-39 per cent of the planet's terrestrial surface could experience novel climate conditions and 10-48 per cent could suffer disappearing climates by 2100. Rising levels of aridity are also concentrating scientific minds. New research indicates that by the end of the 21st century the Mediterranean region will also experience much more severe increases in aridity than previously estimated rendering the entire region, but particularly the southern Mediterranean

  16. Climate change science - beyond IPCC

    International Nuclear Information System (INIS)

    Nicholls, N.


    Full text: Full text: The main conclusions of the IPCC Working Group I assessment of the physical science of climate change, from the Fourth IPCC Assessment, will be presented, along with the evidence supporting these conclusions. These conclusions include: Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values determined from ice cores spanning many thousands of years. The global increases in carbon dioxide concentration are due primarily to fossil fuel use and land use change, while those of methane and nitrous oxide are primarily due to agriculture; The understanding of anthropogenic warming and cooling influences on climate has improved since the Third Assessment Report, leading to very high confidence that the global average net effect of human activities since 1750 has been one of warming, with a radiative forcing of +1.6 [+0.6 to +2.4] Wm-2; Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level; At continental, regional and ocean basin scales, numerous long-term changes in climate have been observed. These include changes in arctic temperatures and ice, widespread changes in precipitation amounts, ocean salinity, wind patterns and aspects of extreme weather including droughts, heavy precipitation, heat waves and the intensity of tropical cyclones. Palaeo-climatic information supports the interpretation that the warmth of the last half-century is unusual in at least the previous 1,300 years; Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations; Discernible human influences now extend to other aspects of climate, including ocean warming, continental

  17. Agriculture et forêts au secours du climat


    Locatelli , Bruno


    National audience; L‘agriculture et la forêt doivent s‘adapter au changement climatique. Mais l‘une et l‘autre permettent d’atténuer ce changement. Pour conjuguer efficacement adaptation et atténuation, il faut savoir concilier la réponse aux enjeux globaux et la prise en compte des contraintes du développement local. Les défis sont autant politiques que scientifiques.

  18. Climate Change: Science, Health and the Environment

    Centers for Disease Control (CDC) Podcasts

    Climate Change: Science, Health and the Environment Howard Frumkin, MD, DrPH, Director of CDC's National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, discusses the science of climate change, the potential for shifts in the natural world to affect our wellbeing, and the challenges of emerging issues in environmental health.

  19. Journal of Meteorology and Climate Science

    African Journals Online (AJOL)

    The Journal of Meteorology and Climate Science publishes rigorous theoretical reasoning and advanced empirical research in all areas of Meteorology and Climate Sciences. We welcome articles or proposals from all perspectives and on all subjects pertaining to Meteorology, Agriculture, Humanity, Physics, Geography, ...

  20. Science Teachers' Perspectives about Climate Change (United States)

    Dawson, Vaille


    Climate change and its effects are likely to present challenging problems for future generations of young people. It is important for Australian students to understand the mechanisms and consequences of climate change. If students are to develop a sophisticated understanding, then science teachers need to be well-informed about climate change…

  1. Proudhon, science ou métaphysique du travail


    Lecerf , Eric


    La philosophie de Proudhon, même si elle trouve son concept essentiel dans la justice, est intégralement une philosophie du travail, non pas que le travail en constitue l'objet unique, mais car c'est en lui que les tensions du réel sont concrètement identifiables. C'est dans sa critique que l'agir humain se donne comme émancipation et/ou aliénation, autrement dit que la dialectique acquiert toute sa justification. La philosophie du travail de Proudhon donnera lieu à deux lectures opposées : c...

  2. Climate Change Education in Earth System Science (United States)

    Hänsel, Stephanie; Matschullat, Jörg


    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  3. L’Imaginaire du temps dans le fantastique et la science-fiction (2011

    Directory of Open Access Journals (Sweden)

    Julie Schutz


    Full Text Available Ce numéro des cahiers du LAPRIL contient vingt-deux contributions sur la question du temps en science-fiction et dans le fantastique, dans sa dimension thématique, mais aussi pour faire ressortir l'influence de cette question sur l'évolution même de ces genres. Une partie des réflexions concerne aussi les représentations d'un temps « mythique ».

  4. L’Imaginaire du temps dans le fantastique et la science-fiction (2011)


    Julie Schutz


    Ce numéro des cahiers du LAPRIL contient vingt-deux contributions sur la question du temps en science-fiction et dans le fantastique, dans sa dimension thématique, mais aussi pour faire ressortir l'influence de cette question sur l'évolution même de ces genres. Une partie des réflexions concerne aussi les représentations d'un temps « mythique ».

  5. The economy of the climatic change; Economie du changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, J.


    In his introduction, the author recalls that the climatic warming up is admitted by everybody and that the Total firm follows the recommendations of the main point of the scientific community to integrate it in a permanent way in its approach. (O.M.)

  6. Regional climate science: lessons and opportunities (United States)

    Mote, P. W.; Miles, E. L.; Whitely Binder, L.


    Since its founding in 1995, the Climate Impacts Group (CIG) at the University of Washington (UW) has achieved remarkable success at translating global- and regional-scale science into forms and products that are useful to, and used by, decision-makers. From GCM scenarios to research on the connection between global climate patterns and locally important factors like floods and wildfires, CIG's strong physical science foundation is matched by a vigorous and successful outreach program. As a result, CIG and its partner the Office of Washington State Climatologist at UW have made substantial progress at bridging the gap between climate science and decision-making, and are deeply involved in advising all levels of government and many business interests on adapting to climate variability and change. This talk will showcase some of the specific activities and tools, describe lessons learned, and illustrate how such efforts fit into a "National Climate Service."

  7. Climate Change: Science, Health and the Environment

    Centers for Disease Control (CDC) Podcasts


    Climate Change: Science, Health and the Environment Howard Frumkin, MD, DrPH, Director of CDC's National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, discusses the science of climate change, the potential for shifts in the natural world to affect our wellbeing, and the challenges of emerging issues in environmental health.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  8. Meteorology and Climate Inspire Secondary Science Students (United States)

    Charlton-Perez, Andrew; Dacre, Helen; Maskell, Kathy; Reynolds, Ross; South, Rachel; Wood, Curtis


    As part of its National Science and Engineering Week activities in 2009 and 2010, the University of Reading organised two open days for 60 local key stage 4 pupils. The theme of both open days was "How do we predict weather and climate?" Making use of the students' familiarity with weather and climate, several concepts of relevance to secondary…

  9. Climate change projections: past and future mysteries of climate science

    International Nuclear Information System (INIS)

    Meehl, Gerald A.


    Full text: Full text: The history of climate change has been wrapped in mysteries. Some have been solved, and we await the outcome of others. The major mystery of 20th century climate was why did temperatures rise in the early part of the century, level off, and then rise rapidly again after the 1970s? It has only been in the past seven years that advances in climate modelling have allowed us to deconstruct 20th century climate to pull apart the separate influences of natural and human-caused factors. This has allowed us to understand the subtle interplay between these various influences that produced the temperature time evolution. Another mystery has involved extreme weather and climate events. Again, climate models have allowed us to quantify how the small changes in average climate translate into much larger changes of regional extremes. The biggest remaining mysteries in climate science involve the future, and how the climate will evolve over the coming century. Up until now, various scenarios postulating different possible outcomes for 21st century climate, assuming different types of human activities, have been run in the climate models to provide a wide range of possible futures. However, more recently the outlook for global warming is being framed as a combination of mitigation and adaptation. If policy actions are taken to mitigate part of the problem of global warming, then climate models must be relied on to quantify the time-evolving picture of how much regional climate change we must adapt to. Solving this mystery will be the biggest and most important challenge ever taken on by the climate modelling community

  10. Creative Change: Art, Music, and Climate Science (United States)

    Dahlberg, R. A.; Hoffman, J. S.; Maurakis, E. G.


    As part of ongoing climate science education initiatives, the Science Museum of Virginia hosted Creative Change in March 2017. The event featured multidisciplinary programming created by scientists, artists, and students reacting to and interpreting climate change and resiliency through a variety of artistic mediums and informal science education. Creative Change was developed in consideration of studies conducted at Columbia University that indicate traditional educational approaches, which rely heavily on scientific information and data literacy, fail to engage and inspire action in a majority of people. Our informal science education programming developed for Creative Change, by contrast, is inclusive to all ages and backgrounds, integrating scientific data and an artistic human touch. Our goal was to increase public awareness of climate change and resiliency through the humanities in support of the Museum's mission to inspire Virginians to enrich their lives through science. Visitors were invited to attend Coral Reef Fever, a dance performance of coral bleaching; high school and university art exhibitions; climate data performed by a string quartet; poetry, rap, and theater performances; and a panel discussion by artists and scientists on communicating science through the arts and humanities. Based on 26 post- event survey results, we found as a result that visitors enjoyed the event (mean of 9.58 out of 10), learned new information (9.07), and strongly agreed that the arts and humanities should be used more in communicating science concepts (9.77). Funded in part by Bond Bradley Endowment and NOAA ELG Award #NA15SEC0080009.

  11. Climate Communication from a Science Perspective (United States)

    Somerville, R. C.


    Today, the world faces crucial choices in deciding what to do about climate change. Wise policy can be usefully informed by sound science. Scientists who are both climate experts and skilled communicators can provide valuable input into this policy process. They can help the public, media and policymakers learn what science has discovered about climate change. Scientists as a group are widely admired throughout the world. They can often use their prestige as well as their technical knowledge to advantage in publicizing and illuminating the findings of climate science. However, most scientists are unaware of the main obstacles to effective communication, such as the distrust that arises when the scientist and the audience do not have a shared worldview and shared cultural values. Many climate scientists also fail to realize that the jargon they use in their work is a significant barrier to communication, and that their messages requires skilled translation into the everyday language that people understand. Scientists need to recognize that lecturing is almost always poor communication. Speaking in a television interview or a Congressional hearing is completely unlike teaching a class of graduate students. The people whom one is trying to reach are rarely hungry for pure scientific information. Instead, they want to know how climate change will affect them and what can be done about it. Communicating climate science resembles skiing or speaking a foreign language: it is a skill that can be learned, but beginners are well advised to take lessons from expert instructors. Becoming adept at climate communication requires study and practice. Effective professional training in climate communication is available for those scientists who have the time and the willingness to improve as communicators.

  12. Le monstre du Loch Ness : entre science et folklore


    Fairise, Nicolas


    Depuis sa première véritable observation alléguée en 1933 jusqu'à nos jours, le monstre du loch Ness n'a cessé de défrayer la chronique. Cette fameuse créature est ainsi devenue l'un des rares mythes zoologiques modernes. Dans un premier temps, la présente étude s'intéresse au lac lui-même, notamment sur les plans géophysique et biologique, afin de donner des éléments de description concernant le cadre souvent méconnu d'une des énigmes les plus médiatisées du siècle dernier. Tantôt anecdotiqu...

  13. The Science of Climate Change (United States)

    Oppenheimer, Michael; Anttila-Hughes, Jesse K.


    Michael Oppenheimer and Jesse Anttila-Hughes begin with a primer on how the greenhouse effect works, how we know that Earth is rapidly getting warmer, and how we know that the recent warming is caused by human activity. They explain the sources of scientific knowledge about climate change as well as the basis for the models scientists use to…

  14. Climate Science in a Postmodern World (United States)

    Verosub, Kenneth L.


    Like many readers of Eos, I have found it hard to understand the persistence of climate doubters and climate skeptics. How can they not accept the science? An important clue can be found in an editorial by Daniel Henninger in the Wall Street Journal that made a connection between climate science and postmodernism [Henninger, 2009]. Postmodernism is a concept that permeates the humanities and the social sciences. In its simplest terms, it postulates that truth is a relative concept. Facts exist, but their interpretation is determined as much by society, culture, politics, and economics as by scientific objectivity. From this perspective, any interpretation is as valid as any other. So, for instance, Herman Melville's Moby Dick can be seen as a novel equally about morality, homosexuality, the repression of the masses, the quest for God, or the killing of whales in the nineteenth century. All interpretations are valid, and all truth is relative.

  15. Climate Change Science,Technology & Policy

    Indian Academy of Sciences (India)

    Table of contents. Climate Change Science,Technology & Policy · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Millions at Risk from Parry et al., 2001 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Climate Change · Is the global warming in the 20th century due to the increase in radiation emitted by the sun? Frohlich C, Lean J. 1998; ...

  16. Revolutionizing Climate Science: Using Teachers as Communicators (United States)

    Warburton, J.; Crowley, S.; Wood, J.


    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the Polar Regions. Teachers are the dynamic conduits for communicating climate science. In the PolarTREC final report, researchers found that teachers were vital in refining the language of their science and have shaped the goals of the scientific project. Program data demonstrates that science in classrooms is better understood when teachers have a full-spectrum grasp of project intricacies from defining the project, to field data collection, encountering situations for creativity and critical thinking, as well as participating in data and project analysis. Teachers' translating the authentic scientific process is integral in communicating climate science to the broader public. Teachers playing a major role in polar science revolutionize the old paradigm of "in-school learning". Through daily online journaling and forums, social media communication, live webinars with public, and professional development events, these teachers are moving beyond classrooms to communicate with society. Through teachers, climate policy can be shaped for the future by having scientifically literate students as well as assessable science. New paradigms come as teachers attain proficient levels of scientific understanding paired with the expert abilities for communication with years of experience. PolarTREC teachers are a model for new interactions peer-to-peer learning and mentorship for young scientists. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach exponential audiences in media, policy, and classrooms. Modeling this program, we designed and conducted a teacher training on climate science in Denali National Park. Utilizing expert university

  17. Derivatives Trading, Climate Science and Human Rights

    DEFF Research Database (Denmark)

    Haigh, Matthew

    for capital flows associated with climate management. Media communications and decision making theories are used to interpret data drawn from participant observation and interviews with climate scientists, policy makers and institutional investors. Findings - The framework suggests a digital divide between...... the heaviest polluters as contributing to carbon-minimised investment portfolios. Assets owned by privately managed pension funds have remained materially exposed to risks posed by climate change. In public finance, a narrow range of financial instruments centred on derivatives trading has entrenched global...... between human rights, climate change, and the stability of private pensions provision. Originality/value - Provides policy sciences useful assessments of communication media and financial instruments used in climate management. Establishes bases for theoretical and applied communications research...

  18. When climate science became climate politics: British media representations of climate change in 1988. (United States)

    Jaspal, Rusi; Nerlich, Brigitte


    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  19. CLIMANDES climate science e-learning course (United States)

    Hunziker, Stefan; Giesche, Alena; Jacques-Coper, Martín; Brönnimann, Stefan


    Over the past three years, members of the Oeschger Centre for Climate Change Research (OCCR) and the Climatology group at the Institute of Geography at the University of Bern, have developed a new climate science e-learning course as part of the CLIMANDES project. This project is a collaboration between Peruvian and Swiss government, research, and education institutions. The aim of this e-learning material is to strengthen education in climate sciences at the higher education and professional level. The course was recently published in 2015 by Geographica Bernensia, and is hosted online by the Peruvian Servicio Nacional de Meteorología e Hidrología (SENAMHI): The course is furthermore available for offline use through USB sticks, and a number of these are currently being distributed to regional training centers around the world by the WMO (World Meteorological Organization). There are eight individual modules of the course that each offer approximately 2 hours of individual learning material, featuring several additional learning activities, such as the online game "The Great Climate Poker" ( Overall, over 50 hours of learning material are provided by this course. The modules can be integrated into university lectures, used as single units in workshops, or be combined to serve as a full course. This e-learning course presents a broad spectrum of topics in climate science, including an introduction to climatology, atmospheric and ocean circulation, climate forcings, climate observations and data, working with data products, and climate models. This e-learning course offers a novel approach to teaching climate science to students around the world, particularly through three important features. Firstly, the course is unique in its diverse range of learning strategies, which include individual reading material, video lectures, interactive graphics, responsive quizzes, as well as group

  20. Climate Change: From Science to Practice. (United States)

    Wheeler, Nicola; Watts, Nick


    Climate change poses a significant threat to human health. Understanding how climate science can be translated into public health practice is an essential first step in enabling robust adaptation and improving resiliency to climate change. Recent research highlights the importance of iterative approaches to public health adaptation to climate change, enabling uncertainties of health impacts and barriers to adaptation to be accounted for. There are still significant barriers to adaptation, which are context-specific and thus present unique challenges to public health practice. The implementation of flexible adaptation approaches, using frameworks targeted for public health, is key to ensuring robust adaptation to climate change in public health practice. The BRACE framework provides an excellent approach for health adaptation to climate change. Combining this with the insights provided and by the adaptation pathways approach allows for more deliberate accounting of long-term uncertainties. The mainstreaming of climate change adaptation into public health practice and planning is important in facilitating this approach and overcoming the significant barriers to effective adaptation. Yet, the immediate and future limits to adaptation provide clear justification for urgent and accelerated efforts to mitigate climate change.

  1. weaving together climate science and chemistry education

    African Journals Online (AJOL)

    Preferred Customer

    ... students, educators, and the general public, designed to help bridge the gap ... Design Principles of Visualizing and Understanding the Science of Climate ... The user is also able to examine simple models for these predictions ... Figure 6 illustrates the fluctuations in mean global temperature over an 800 ka span and.

  2. The Science of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.


    What constitutes 'dangerous anthropogenic interference' is a value judgment arrived at through a socio-political process, taking issues like equity and sustainability into account. Science provides key information needed to arrive at an informed judgment. However, that judgment is primarily a political one, and not a purely scientific decision. Such judgments are based on risk assessment, and lead to risk management choices by decision makers, about actions and policies.

  3. Climate change studies and the human sciences (United States)

    Holm, Poul; Winiwarter, Verena


    Policy makers have made repeated calls for integration of human and natural sciences in the field of climate change. Serious multidisciplinary attempts began already in the 1950s. Progress has certainly been made in understanding the role of humans in the planetary system. New perspectives have clarified policy advice, and three insights are singled out in the paper: the critique of historicism, the distinction between benign and wicked problems, and the cultural critique of the 'myths of nature'. Nevertheless, analysis of the IPCC Assessment Reports indicates that integration is skewed towards a particular dimension of human sciences (economics) and major insights from cultural theory and historical analysis have not made it into climate science. A number of relevant disciplines are almost absent in the composition of authorship. Nevertheless, selective assumptions and arguments are made about e.g. historical findings in key documents. In conclusion, we suggest to seek remedies for the lack of historical scholarship in the IPCC reports. More effort at science-policy exchange is needed, and an Integrated Platform to channel humanities and social science expertise for climate change research might be one promising way.

  4. IPCC. 4. climate assessment report, 2007; GIEC. 4. rapport d'evaluation du climat, 2007

    Energy Technology Data Exchange (ETDEWEB)



    The mission and challenge of the Intergovernmental panel on climate change (IPCC, GIEC in French) is to evaluate, synthesize and make available the sum of scientific and economic information of the complex domain of climatic change, and in addition to make the results of these works accepted by government representatives of 192 states. This document makes a brief synthesis in three parts of the 4. assessment report of the IPCC: 1 - physical scientific bases of climatic change: characteristic of the phenomenon, greenhouse gas emissions trend, already observed effects, forecasts of climate models; 2 - impacts, adaptations and vulnerabilities of climatic change: types of future impacts, impacts per sector, regional impacts, limits of ecosystems adaptation; 3 - mitigation of climatic changes: past emissions and future trends, possible mitigation actions and cost, possible political levers for emissions abatement. A last part introduces the French researchers involved in IPCC's works. (J.S.)

  5. Constructivist Learning Theory and Climate Science Communication (United States)

    Somerville, R. C.


    Communicating climate science is a form of education. A scientist giving a television interview or testifying before Congress is engaged in an educational activity, though one not identical to teaching graduate students. Knowledge, including knowledge about climate science, should never be communicated as a mere catalogue of facts. Science is a process, a way of regarding the natural world, and a fascinating human activity. A great deal is already known about how to do a better job of science communication, but implementing change is not easy. I am confident that improving climate science communication will involve the paradigm of constructivist learning theory, which traces its roots to the 20th-century Swiss epistemologist Jean Piaget, among others. This theory emphasizes the role of the teacher as supportive facilitator rather than didactic lecturer, "a guide on the side, not a sage on the stage." It also stresses the importance of the teacher making a serious effort to understand and appreciate the prior knowledge and viewpoint of the student, recognizing that students' minds are not empty vessels to be filled or blank slates to be written on. Instead, students come to class with a background of life experiences and a body of existing knowledge, of varying degrees of correctness or accuracy, about almost any topic. Effective communication is also usually a conversation rather than a monologue. We know too that for many audiences, the most trusted messengers are those who share the worldview and cultural values of those with whom they are communicating. Constructivist teaching methods stress making use of the parallels between learning and scientific research, such as the analogies between assessing prior knowledge of the audience and surveying scientific literature for a research project. Meanwhile, a well-funded and effective professional disinformation campaign has been successful in sowing confusion, and as a result, many people mistakenly think climate

  6. Time for Change? Climate Science Reconsidered: Report of the UCL Policy Commission on Communicating Climate Science, 2014


    Rapley, C. G.; De Meyer, K.; Carney, J.; Clarke, R.; Howarth, C.; Smith, N.; Stilgoe, J.; Youngs, S.; Brierley, C.; Haugvaldstad, A.; Lotto, B.; Michie, S.; Shipworth, M.; Tuckett, D.


    The UCL Policy Commission on the Communication of Climate Science, chaired by Professor Chris Rapley comprises a cross-disciplinary project group of researchers from psychology, neuroscience, science and technology studies, earth sciences and energy research. The Commission examined the challenges faced in communicating climate science effectively to policy-makers and the public, and the role of climate scientists in communication. / The Commission explored the role of climate scientists in c...

  7. Successful Massive Open Online Climate Course on Climate Science and Psychology (United States)

    Nuccitelli, D. A.; Cook, J.


    In 2015, the University of Queensland and edX launched a Massive Open Online Course (MOOC), 'Making Sense of Climate Science Denial.' The MOOC debunked approximately 50 common climate myths using elements of both physical science and psychology. Students learned how to recognise the social and psychological drivers of climate science denial, how to better understand climate change, how to identify the techniques and fallacies that climate myths employ to distort climate science, and how to effectively debunk climate misinformation. Contributors to the website Skeptical Science delivered the lectures, which were reinforced via interviews with climate science and psychology experts. Over 15,000 students from 167 countries enrolled in the course, and student feedback was overwhelmingly positive. This MOOC provides a model for effective climate science education.

  8. Science of adaptation to climate change and science for adaptation

    Directory of Open Access Journals (Sweden)

    Rob eSwart


    Full Text Available Adaptation to climate change has gained a prominent place next to mitigation on global, national and local policy agendas. However, while an abundance of adaptation strategies, plans and programmes have been developed, progress in turning these into action has been slow. The development of a sound knowledge basis to support adaptation globally is suggested to accelerate progress, but has lagged behind. The emphasis in both current and newly proposed programmes is very much on practice-oriented research with strong stakeholder participation. This paper supports such practice-oriented research, but argues that this is insufficient to support adaptation policy and practice in a productive manner. We argue that there is not only a need for science for adaptation, but also a science of adaptation. The paper argues that participatory, practice-oriented research is indeed essential, but has to be complemented by and connected to more fundamental inquiry and concept development, which takes into account knowledge that has been developed in disciplinary sciences and on issues other than climate change adaptation. At the same time, the level and method of participation in science for adaptation should be determined on the basis of the specific project context and goals. More emphasis on science of adaptation can lead to improved understanding of the conditions for successful science for adaptation.

  9. Sample classroom activities based on climate science (United States)

    Miler, T.


    We present several activities developed for the middle school education based on a climate science. The first activity was designed to teach about the ocean acidification. A simple experiment can prove that absorption of CO2 in water increases its acidity. A liquid pH indicator is suitable for the demonstration in a classroom. The second activity uses data containing coordinates of a hurricane position. Pupils draw a path of a hurricane eye in a tracking chart (map of the Atlantic ocean). They calculate an average speed of the hurricane, investigate its direction and intensity development. The third activity uses pictures of the Arctic ocean on September when ice extend is usually the lowest. Students measure the ice extend for several years using a square grid printed on a plastic foil. Then they plot a graph and discuss the results. All these activities can be used to improve the natural science education and increase the climate change literacy.

  10. Mapping Climate Science Information Needs and Networks in the Northwest, USA through Evaluating the Northwest Climate Science Center Climate Science Digest (United States)

    Gergel, D. R.; Watts, L. H.; Salathe, E. P.; Mankowski, J. D.


    Climate science, already a highly interdisciplinary field, is rapidly evolving, and natural resource managers are increasingly involved in policymaking and adaptation decisions to address climate change that need to be informed by state-of-the-art climate science. Consequently, there is a strong demand for unique organizations that engender collaboration and cooperation between government, non-profit, academic and for-profit sectors that are addressing issues relating to natural resources management and climate adaptation and resilience. These organizations are often referred to as boundary organizations. The Northwest Climate Science Center (NW CSC) and the North Pacific Landscape Conservation Cooperative (NP LCC) are two such boundary organizations operating in different contexts. Together, the NW CSC and the NP LCC fulfill the need for sites of co-production between researchers and managers working on climate-related issues, and a key component of this work is a monthly climate science newsletter that includes recent climate science journal articles, reports, and climate-related events. Our study evaluates the effectiveness of the climate science digest (CSD) through a three-pronged approach: a) in-depth interviews with natural resource managers who use the CSD, b) poll questions distributed to CSD subscribers, and c) quantitative analysis of CSD effectiveness using analytics from MailChimp distribution. We aim to a) map the reach of the CSD across the Northwest and at a national level; b) understand the efficacy of the CSD at communicating climate science to diverse audiences; c) evaluate the usefulness of CSD content for diverse constituencies of subscribers; d) glean transferrable knowledge for future evaluations of boundary management tools; and e) establish a protocol for designing climate science newsletters for other agencies disseminating climate science information. We will present results from all three steps of our evaluation process and describe

  11. Teaching Climate Social Science and Its Practices: A Two-Pronged Approach to Climate Literacy (United States)

    Shwom, R.; Isenhour, C.; McCright, A.; Robinson, J.; Jordan, R.


    The Essential Principles of Climate Science Literacy states that a climate-literate individual can: "understand the essential principles of Earth's climate system, assess scientifically credible information about climate change, communicate about climate and climate change in a meaningful way, and make informed and responsible decisions with regard to actions that may affect climate." We argue that further integration of the social science dimensions of climate change will advance the climate literacy goals of communication and responsible actions. The underlying rationale for this argues: 1) teaching the habits of mind and scientific practices that have synergies across the social and natural sciences can strengthen students ability to understand and assess science in general and that 2) understanding the empirical research on the social, political, and economic processes (including climate science itself) that are part of the climate system is an important step for enabling effective action and communication. For example, while climate literacy has often identified the public's faulty mental models of climate processes as a partial explanation of complacency, emerging research suggests that the public's mental models of the social world are equally or more important in leading to informed and responsible climate decisions. Building student's ability to think across the social and natural sciences by understanding "how we know what we know" through the sciences and a scientific understanding of the social world allows us to achieve climate literacy goals more systematically and completely. To enable this integration we first identify the robust social science insights for the climate science literacy principles that involve social systems. We then briefly identify significant social science contributions to climate science literacy that do not clearly fit within the seven climate literacy principles but arguably could advance climate literacy goals. We conclude

  12. The Economic Value of Climate Science (United States)

    Wielicki, B. A.; Cooke, R.; Young, D. F.; Mlynczak, M. G.


    While demonstrating the economic value of science is challenging, it can be more direct for some Earth observations. For example, suppose a climate science mission can yield decisive information on climate change within a shortened time frame. How much should society be willing to pay for this knowledge today? The US interagency memo on the social cost of carbon (SCC) provides a standard for valuing damages from carbon emissions. We illustrate how value of information (VOI) calculations can be used to monetize the relative value of different climate observations. We follow the SCC, stipulating uncertainty in climate sensitivity, using discount rates of 2.5%, 3% and 5%, and using one of the Integrated Assessment Models sanctioned in SCC (DICE, Nordhaus 2008). We consider three mitigation scenarios: Business as Usual (BAU), a moderate response (DICE Optimal), and a strong response (Stern). To illustrate results, suppose that we would switch from BAU to the Stern emissions path if we learn with 90% confidence that the decadal rate of temperature change reaches or exceeds 0.2 C/decade. Under the SCC assumptions, the year in which this happens, if it happens, depends on uncertain climate sensitivity and on the emissions path. The year in which we become 90% certain also depends on our Earth observations, their accuracy, and their completeness. The resolving power of a climate observing system cannot exceed climate system natural variability. All climate observations add noise to natural variability caused by observing limitations, including calibration errors and space/time sampling uncertainty. The basic concept is that more accurate observations can advance the time for societal decisions. The economic value of the resulting averted damages depends on the discount rate, and the years in which the damages occur. A new climate observation would be economically justified if the net present value (NPV) of the difference in averted damages, relative to the existing systems

  13. Room for climate debate : perspectives on the interaction between climate politics, science and the media

    NARCIS (Netherlands)

    Sluijs, van der J.P.; Est, van R.; Riphagen, M.


    Room for climate debate: perspectives on the interaction between climate politics, science and the media The present study offers a picture of the complex interaction between climate politics, science and the media. During the 1970s and 1980s, politics and the sciences focused increasingly on the

  14. An Agenda for Climate Impacts Science (United States)

    Kaye, J. A.


    The report Global Change Impacts in the United States released by the US Global Change Research Program in June 2009 identifies a number of areas in which inadequate information or understanding hampers our ability to estimate likely future climate change and its impacts. In this section of the report, the focus is on those areas of climate science that could contribute most towards advancing our knowledge of climate change impacts and those aspects of climate change responsible for these impacts in order to continue to guide decision making. The Report identifies the six most important gaps in knowledge and offers some thoughts on how to address those gaps: 1. Expand our understanding of climate change impacts. There is a clear need to increase understanding of how ecosystems, social and economic systems, human health, and the built environment will be affected by climate change in the context of other stresses. 2. Refine ability to project climate change, including extreme events, at local scales. While climate change is a global issue, it has a great deal of regional variability. There is an indisputable need to improve understanding of climate system effects at these smaller scales, because these are often the scales of decision-making in society. This includes advances in modeling capability and observations needed to address local scales and high-impact extreme events. 3. Expand capacity to provide decision makers and the public with relevant information on climate change and its impacts. Significant potential exists in the US to create more comprehensive measurement, archive, and data-access systems that could provide great benefit to society, which requires defining needed information, gathering it, expanding capacity to deliver it, and improving tools by which decision makers use it to best advantage. 4. Improve understanding of thresholds likely to lead to abrupt changes in climate or ecosystems. Potential areas of research include thresholds that could

  15. Climate Science: An Empirical Example of Postnormal Science. (United States)

    Bray, Dennis; von Storch, Hans


    This paper addresses the views regarding the certainty and uncertainty of climate science knowledge held by contemporary climate scientists. More precisely, it addresses the extension of this knowledge into the social and political realms as per the definition of postnormal science. The data for the analysis is drawn from a response rate of approximately 40% from a survey questionnaire mailed to 1000 scientists in Germany, the United States, and Canada, and from a series of in-depth interviews with leading scientists in each country. The international nature of the sample allows for cross-cultural comparisons.With respect to the relative scientific discourse, similar assessments of the current state of knowledge are held by the respondents of each country. Almost all scientists agreed that the skill of contemporary models is limited. Minor differences were notable. Scientists from the United States were less convinced of the skills of the models than their German counterparts and, as would be expected under such circumstances, North American scientists perceived the need for societal and political responses to be less urgent than their German counterparts. The international consensus was, however, apparent regarding the utility of the knowledge to date: climate science has provided enough knowledge so that the initiation of abatement measures is warranted. However, consensus also existed regarding the current inability to explicitly specify detrimental effects that might result from climate change. This incompatibility between the state of knowledge and the calls for action suggests that, to some degree at least, scientific advice is a product of both scientific knowledge and normative judgment, suggesting a socioscientific construction of the climate change issue.

  16. Climate change adaptation and social sciences

    International Nuclear Information System (INIS)

    Charles, L.


    Climate change subjects societies to a large range of uncertainties concerning the future and their development orientation. It came up as a scientific global problem, extended to political concerns first at a global and then national scales. Though it has long been the object of economic approaches which have notably contributed to its recognition, particularly the Stern Report, social sciences have hardly been mobilized as part of policies to counteract it. Social sciences strongly question the notion of climate change being built as a global scale transcendent phenomenon, analyzed by several authors. With the rise of adaptation policies, the question becomes even more important. Adaptation first comes up as a spontaneous behaviour, independent of policy, in close relationship to social dimensions as a basic way through which climate change is grasped collectively. Thus adaptation policies' social aspects need to be carefully worked in relation with more general goals for adaptation policies to be implemented efficiently, on the basis of wide interactions between local and global scales. (author)

  17. Interior's Climate Science Centers: Focus or Fail (United States)

    Udall, B.


    After a whirlwind two years of impressive and critical infrastructure building, the Department of Interior's Climate Science Centers are now in a position to either succeed or fail. The CSCs have a number of difficult structural problems including too many constituencies relative to the available resources, an uneasy relationship among many of the constituencies including the DOI agencies themselves, a need to do science in a new, difficult and non-traditional way, and a short timeframe to produce useful products. The CSCs have built a broad and impressive network of scientists and stakeholders. These entities include science providers of the universities and the USGS, and decision makers from the states, tribes, DOI land managers and other federal agencies and NGOs. Rather than try to support all of these constituencies the CSCs would be better served by refocusing on a core mission of supporting DOI climate related decision making. The CSCs were designed to service the climate science needs of DOI agencies, many of which lost their scientific capabilities in the 1990s due to a well-intentioned but ultimately harmful re-organization at DOI involving the now defunct National Biological Survey. Many of these agencies would like to have their own scientists, have an uneasy relationship with the nominal DOI science provider, the USGS, and don't communicate effectively among themselves. The CSCs must not succumb to pursuing science in either the traditional mode of the USGS or in the traditional mode of the universities, or worse, both of them. These scientific partners will need to be flexible, learn how to collaborate and should expect to see fewer resources. Useful CSC processes and outputs should start with the recommendations of the 2009 NRC Report Informing Decisions in a Changing Climate: (1) begin with users' needs; (2) give priority to process over products; (3) link information producers and users; (4) build connections across disciplines and organizations

  18. BURECS: An Interdisciplinary Undergraduate Climate Science Program (United States)

    Dennis, D. P.; Marchant, D. R.; Christ, A. J.; Ehrenfeucht, S.


    The current structure of many undergraduate programs, particularly those at large research universities, requires students to engage with a major or academic emphasis early in their university careers. This oftentimes curbs exploration outside the major and can inhibit interdisciplinary collaboration. The Boston University Research Education and Communication of Science (BURECS) program seeks to bridge this institutional divide by fostering interdisciplinary and multidisciplinary collaboration on climate change-related issues by students from across Boston University (B.U.). Every year, approximately fifteen first-year students from B.U.'s College of Arts and Sciences, College of Communication, and School of Education are selected to join BURECS, which includes a climate science seminar, a hands-on lab course, a supported summer internship with Boston-area researchers, and the opportunity to participate in Antarctic field work during subsequent B.U. Antarctic Research Group expeditions. Currently in its third year, BURECS is funded through the Howard Hughes Medical Institute (HHMI) Professors Program.

  19. Public Perception of Uncertainties Within Climate Change Science. (United States)

    Visschers, Vivianne H M


    Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.

  20. W. E. B. Du Bois at the center: from science, civil rights movement, to Black Lives Matter. (United States)

    Morris, Aldon


    I am honoured to present the 2016 British Journal of Sociology Annual Lecture at the London School of Economics. My lecture is based on ideas derived from my new book, The Scholar Denied: W.E.B. Du Bois and the Birth of Modern Sociology. In this essay I make three arguments. First, W.E.B. Du Bois and his Atlanta School of Sociology pioneered scientific sociology in the United States. Second, Du Bois pioneered a public sociology that creatively combined sociology and activism. Finally, Du Bois pioneered a politically engaged social science relevant for contemporary political struggles including the contemporary Black Lives Matter movement. © London School of Economics and Political Science 2017.

  1. The Future of Climate Science (Invited) (United States)

    Bishop, R.


    High Performance Computing is currently deployed in several centers for climate research, but not at the levels needed to achieve substantial success on a global basis, given the complexity of the problem. A quantum leap in capabilities will be necessary to handle next-generation climate models that integrate newly emerging sciences, high-resolution grids, and voluminous observational data from satellites and sophisticated ground devices. Dr. Bishop will discuss efforts to build an International Centre for Earth Simulation (ICES) based in Switzerland that takes an holistic systems approach, and that has the competence and resources to achieve new insights in this new decade, and is capable to globally influence public policy with respect to weather, climate, environment, disaster risk reduction and socio-economic development. On this progressively crowded and fragile planet, such a capability will be invaluable, Bishop believes, if not imperative, for our long-term survival. ICES could serve as a test-bed for large scale public and private development planning. Decision makers could ask ‘what if’ questions for major construction projects (such as China’s Three Gorges Dam), and then interactively evaluate alternative scenarios. Likewise, ICES could help uncover the possible unintended consequences of climate remediation and adaptation strategies, geo-engineering ideas, CO2 sequestration, deep sea drilling, etc. ICES would be a resource for building more resilient societies in an era of rapid climate change and frequent natural disasters (such as flooding, extreme weather events and volcanic ash clouds), and therefore of great consequence to our future well-being. It would ultimately play a major role in the education and training of policy-makers, the public, and future Earth Scientists - in conjunction with the current national and regional centers.

  2. Voyage au cœur d’un futur inconnu : analyse du genre dans le cinéma de science-fiction chinois du nouveau millénaire


    Yang, Wei


    Cet article étudie le cinéma de science-fiction comme nouveau genre du cinéma chinois. Tout en empruntant largement à son équivalent hollywoodien – costumes, décor, intrigue, caractérisation, effets visuels, et ainsi de suite – le cinéma de science-fiction chinois met rarement en scène les conceptions ou explorations scientifiques qui ont marqué un grand nombre de films de science-fiction ambitieux en Occident. En partie à cause du monopole hollywoodien du genre, les films de science-fiction ...

  3. Climate Change or Climate Variability? History, Science and Politics in the Mesoamerican Climate

    Directory of Open Access Journals (Sweden)

    Daniel Poleo


    Full Text Available Climate variations in Mesoamerica have influenced the development and decay of populations from the earliest human settlements. The present time is no exception; there is no evidence that global warming will impact rainfall in the region, but rather there are important studies showing a response of rainfall to climate variability in the American tropics. Since our tropical region is vulnerable to climate variability, public policies must be congruent to avoid the mistakes of previous generations and achieve, with the help of science, a real progress in the fight against global warming.

  4. Recent Challenges Facing US Government Climate Science Access and Application (United States)

    Goldman, G. T.; Carter, J. M.; Licker, R.


    Climate scientists have long faced politicization of their work, especially those working within the US federal government. However, political interference in federal government climate change science has escalated in the current political era with efforts by political actors to undermine and disrupt infrastructure supporting climate science. This has included funding changes, decreased access to climate science information on federal agency websites, restrictions on media access to scientific experts within the government, and rolling back of science-based policies designed to incorporate and respond to climate science findings. What are the impacts of such changes for both the climate science community and the broader public? What can be done to ensure that access to and application of climate change-related research to policy decisions continues? We will summarize and analyze the state of climate change research and application in the US government. The impacts of political interference in climate change science as well as opportunities the scientific community has to support climate science in the US government, will be discussed.



  6. Climate economics: post-Kyoto tracks; Economie du climat: pistes pour l'apres-Kyoto

    Energy Technology Data Exchange (ETDEWEB)

    Godard, Olivier; Ponssard, Jean-Pierre [Laboratoire d' Econometrie, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau (France)


    Commitments obtained by the Kyoto protocol will end in 2012. An impressive series of conferences - Bali (2007), Copenhagen (2009), Cancun (2010) to mention the main ones - were organised to prepare the post-2012 regime. Everything was supposed to be decided at the Copenhagen meeting but the state representatives came up against the obstacle. The pre-Copenhagen hope has given place to disillusion and has led to a turn-off towards a weekly coordinated regime which requires a strategic revision of approaches. This book presents the lessons learnt from the relative failure of these negotiations and proposes new paths for the future. It puts forward some strategic stakes that have to be taken into account for the future: the equity between very heterogeneous countries and populations, the industrial competitiveness, the carbon leaks and the violation of the most ambitious climate policies due to the heterogeneity of commitment levels, and the geopolitical reality. The world will have to live for a long time with heterogeneous carbon prices, themselves reflecting heterogeneous commitment levels. New modalities have to be defined which would manage to combine justice and efficiency. Two complementary paths are developed in this book: the establishing of adjustment mechanisms at borders and of international sectoral agreements. (J.S.)

  7. Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning (United States)

    Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott


    The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.

  8. The Perceptions of Pre-Service Science Teachers and Science Teachers About Climate Change


    Meilinda, M; Rustaman, N. Y; Tjasyono, B


    The global climate phenomenon in the context of climate change is the impact of both the dynamic complex climate system and human behaviors that affect environmental sustainability. Human is an important component that should be considered in science teaching that is believed to improve human attitudes towards the environmental sustainability. The research aims to investigate the perceptions of pre-service science teachers and science teachers in South Sumatra who teach climate change and glo...

  9. An Interface between Law and Science: The Climate Change Regime (United States)

    Kuleshov, Y.; Grandbois, M.; Kaniaha, S.


    Law and Science are jointly building the international climate change regime. Up to date, international law and climate science have been unable to take into consideration both regional law and Pacific climate science in this process. Under the International Climate Change Adaptation Initiative (the Australian Government Initiative to assist with high priority climate adaptation needs in vulnerable countries in the Asia-Pacific region) significant efforts were dedicated to improve understanding of climate in the Pacific through the Pacific Climate Change Science Program (PCCSP) and through the Pacific Adaptation Strategy Assistance Program (PASAP). The first comprehensive PCCSP scientific report on the South Pacific climate has been published in 2011. Under the PASAP, web-based information tools for seasonal climate prediction have been developed and now outputs from dynamical climate model are used in 15 countries of the North-West and South Pacific for enhanced prediction of rainfall, air and sea surface temperatures which reduces countries' vulnerability to climate variability in the context of a changing climate. On a regional scale, the Meteorological and Geohazards Department of Vanuatu is preparing a full report on Climate change impacts on the country. These scientific reports and tools could lead to a better understanding of climate change in the South Pacific and to a better understanding of climate change science, for lawyers and policy-makers. The International climate change regime develops itself according to science findings, and at the pace of the four scientific reports issued by the Intergovernmental Panel on Climate Change (IPCC). In return, Law is a contributing factor to climate change, a structural data in the development and perception of environmental issues and it exerts an influence on Science. Because of the dependency of law on science, the PCCSP and PASAP outcomes will also stimulate and orientate developments in law of the Pacific

  10. Meningitis and Climate: From Science to Practice (United States)

    Perez Garcia-Pando, Carlos; Thomson, Madeleine C.; Stanton, Michelle C.; Diggle, Peter J.; Hopson, Thomas; Pandya, Rajul; Miller, Ron L.; Hugonnet, Stephane


    Meningococcal meningitis is a climate sensitive infectious disease. The regional extent of the Meningitis Belt in Africa, where the majority of epidemics occur, was originally defined by Lapeysonnie in the 1960s. A combination of climatic and environmental conditions and biological and social factors have been associated to the spatial and temporal patterns of epidemics observed since the disease first emerged in West Africa over a century ago. However, there is still a lack of knowledge and data that would allow disentangling the relative effects of the diverse risk factors upon epidemics. The Meningitis Environmental Risk Information Technologies Initiative (MERIT), a collaborative research-to-practice consortium, seeks to inform national and regional prevention and control strategies across the African Meningitis Belt through the provision of new data and tools that better determine risk factors. In particular MERIT seeks to consolidate a body of knowledge that provides evidence of the contribution of climatic and environmental factors to seasonal and year-to-year variations in meningococcal meningitis incidence at both district and national scales. Here we review recent research and practice seeking to provide useful information for the epidemic response strategy of National Ministries of Health in the Meningitis Belt of Africa. In particular the research and derived tools described in this paper have focused at "getting science into policy and practice" by engaging with practitioner communities under the umbrella of MERIT to ensure the relevance of their work to operational decision-making. We limit our focus to that of reactive vaccination for meningococcal meningitis. Important but external to our discussion is the development and implementation of the new conjugate vaccine, which specifically targets meningococcus A

  11. Identifying Crucial Issues in Climate Science (United States)

    Ikeda, Motoyoshi; Greve, Ralf; Hara, Toshika; Watanabe, Yutaka W.; Ohmura, Atsumu; Ito, Akihiko; Kawamiya, Michio


    Drastic Change in the Earth System During Global Warming; Sapporo, Japan, 24 June 2008; The Nobel Peace Prize awarded to the Intergovernmental Panel on Climate Change (IPCC) and former U.S. vice president Al Gore indicates that global warming is recognized as a real phenomenon critical to human beings. However, humanity's knowledge concerning global warming is based on an uncertainty larger than 50% in the warming rate during the past century. Therefore, scientific clarification is needed to understand important mechanisms that potentially produce positive feedbacks in the Earth system-such mechanisms must be better understood before scientists can develop more reliable predictions. To plan for the future, a symposium was organized at Japan's Hokkaido University in association with the G8 Summit, where the most recent updates on the five urgent issues in climate science were discussed. These issues, considered to be crucial as severe impacts on human society continue to rise, included (1) causes and magnitude of sea level rise; (2) decay of glaciers and the Greenland and Antarctic ice sheets; (3) disappearance of the summer Arctic sea ice; (4) carbon uptake or emission by the terrestrial ecosystem; and (5) marine ecosystem change resulting in carbon emissions.

  12. Science Matters Podcast: Climate Change Research (United States)

    Listen to a podcast with Dr. Andy Miller, the Associate Director for Climate for the Agency's Air, Climate, and Energy Research Program, as he answers questions about climate change research, or read some of the highlights from the conversation here.

  13. Room for climate debate : perspectives on the interaction between climate politics, science and the media

    NARCIS (Netherlands)

    van der Sluijs, J.P.; van Est, R.; Riphagen, M.


    The present study offers a picture of the complex interaction between climate politics, science and the media. During the 1970s and 1980s, politics and the sciences focused increasingly on the climate problem, at the time known as the greenhouse effect. Due to a lack of sufficient scientific

  14. Climate change: Conflict of observational science, theory, and politics (United States)

    Gerhard, L.C.


    Debate over whether human activity causes Earth climate change obscures the immensity of the dynamic systems that create and maintain climate on the planet. Anthropocentric debate leads people to believe that they can alter these planetary dynamic systems to prevent that they perceive as negative climate impacts on human civilization. Although politicians offer simplistic remedies, such as the Kyoto Protocol, global climate continues to change naturally. Better planning for the inevitable dislocations that have followed natural global climate changes throughout human history requires us to accept the fact that climate will change, and that human society must adapt to the changes. Over the last decade, the scientific literature reported a shift in emphasis from attempting to build theoretical models of putative human impacts on climate to understanding the planetwide dynamic processes that are the natural climate drivers. The current scientific literature is beginning to report the history of past climate change, the extent of natural climate variability, natural system drivers, and the episodicity of many climate changes. The scientific arguments have broadened from focus upon human effects on climate to include the array of natural phenomena that have driven global climate change for eons. However, significant political issues with long-term social consequences continue their advance. This paper summarizes recent scientific progress in climate science and arguments about human influence on climate. ?? 2004. The American Association of Petroleum Geologists. All rights reserved.

  15. Climate Change: Science and Policy Implications

    National Research Council Canada - National Science Library

    Leggett, Jane A


    .... During the 20th Century, some areas became wetter while others experienced more drought. Most climate scientists conclude that humans have induced a large part of the climate change since the 1970s...

  16. Climate wars: why we kill in the 21. century; Les guerres du climat: pourquoi on tue au 21. siecle

    Energy Technology Data Exchange (ETDEWEB)

    Welzer, H.


    In the author's view, global warming is less an issue for natural sciences than it is for cultural existence, as it threatens the shared living of human beings. Rising temperatures cause arable lands and inhabitable zones to shrink, deserts expand, water reserves dwindle or land is flooded. The poorest nations suffer the hardest, especially those with the weakest institutions and most limited capacities for countering catastrophe. In a struggle for survival, citizens of these nations will turn to violence to preserve the rights the now unprotected by the impoverished state. Climate change and violence result in sorely increased numbers of refugees; by 2050 their number will have grown tenfold. By that point, and as a result of the collapse of political and economic relations, the consequences of global warming will finally strike those comparatively unaffected nations, which the author dubs the 'trigger states'

  17. Weather on Steroids: The Art of Climate Change Science. (United States)

    Boudrias, M. A.; Gershunov, A.; Sizonenko, T.; Wiese, A.; Fox, H.


    There have been many different kinds of efforts to improve climate change literacy of diverse audiences in the past several years. The challenge has been to balance science content with audience-specific messaging that engages them in both rational and affective ways. In the San Diego Region, Climate Education Partners (CEP) has been working with business leaders, elected officials, tribal leaders, and other community leaders to develop a suite of programs and activities to enhance the channels of communication outside traditional settings. CEP has partnered with the La Jolla Historical Society and the Scripps Institution of Oceanography in a unique exhibition of art inspired by climate science, a project blending science and art to communicate the science of climate change in a new way and engage audiences more effectively. Weather on Steroids: the Art of Climate Change Science explores the question of consequences, challenges, and opportunities that arise from the changing climate on our planet. The exhibition merges the artistic and scientific to create a visual dialogue about the vexing problem of climate change, explores how weather variability affects the day-to-day life of local communities, and investigates Southern California vulnerability to climate change. Science serves as the inspiration for the creative responses from visual artists, who merge subjective images with empirical observation to reveal how climate variations upset the planet's balance with extreme weather impacts. Both the scientists and artists created didactic pages to explain their perspectives and each pair worked closely to incorporate the information into the creative piece so that the connection of each of 11 art installations to the science that inspired them is clear. By illuminating the reality of climate change, Weather on Steroids aspires to proactively stimulate public dialogue about one of the most important issues of our time.

  18. Climate Science Program at California State University, Northridge (United States)

    Steele Cox, H.; Klein, D.; Cadavid, A. C.; Foley, B.


    Due to its interdisciplinary nature, climate science poses wide-ranging challenges for science and mathematics students seeking careers in this field. There is a compelling need for universities to provide coherent programs in climate science in order to train future climate scientists. With funding from NASA Innovations in Climate Education (NICE), California State University, Northridge (CSUN), is creating the CSUN Climate Science Program. An interdisciplinary team of faculty members is working in collaboration with UCLA, Santa Monica College and NASA/JPL partners to create a new curriculum in climate science. The resulting sequence of climate science courses, or Pathway for studying the Mathematics of Climate Change (PMCC), is integrated into a Bachelor of Science degree program in the Applied Mathematical Sciences offered by the Mathematics Department at CSUN. The PMCC consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for Ph.D. programs in technical fields relevant to global climate change and related careers. The students who choose to follow this program will be guided to enroll in the following sequence of courses for their 12 units of upper division electives: 1) A newly created course junior level course, Math 396CL, in applied mathematics which will introduce students to applications of vector calculus and differential equations to the study of thermodynamics and atmospheric dynamics. 2) An already existing course, Math 483, with new content on mathematical modeling specialized for this program; 3) An improved version of Phys 595CL on the mathematics and physics of climate change with emphasis on Radiative Transfer; 4) A choice of Geog 407 on Remote Sensing or Geog 416 on Climate Change with updated content to train the students in the analysis of satellite data obtained with the NASA Earth Observing System and instruction in the analysis of data obtained within a Geographical

  19. Simulation of recent and future climates using CNRM and IPSL models; Simulation du climat recent et futur par les modeles du CNRM et de l'IPSL

    Energy Technology Data Exchange (ETDEWEB)

    Dufresne, J.L.; Bony, S.; Fairhead, L.; Grandpeix, J.Y.; Hourdin, F.; Idelkadi, A.; Musat, I. [Universite Pierre et Marie Curie, Lab. de Meteorologie Dynamique (LMD-IPSL), CNRS, 75 - Paris (France); Salas y Melia, D.; Tyteca, S.; Chauvin, F.; Deque, M.; Douville, H.; Gueremy, J.F.; Marquet, P.; Planton, S.; Royer, J.F.; Voldoire, A. [Meteo France Centre National de Recherches Meteorologiques, 31 - Toulouse (France); Denvil, S.; Cadule, P.; Foujols, M.A. [Universite Pierre et Marie Curie, Institut Pierre-Simon Laplace, CNRS, 75 - Paris (France); Arzel, O.; Fichefet, T. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium). Inst. d' Astronomie et de Geophysique G. Lemaitre; Braconnot, P.; Brockmann, P.; Caubel, A.; Friedlingstein, P.; Marti, O.; Swingedouw, D. [Laboratoire des Sciences du Climat et de l' Environnement, Domaine du CNRS, 91 - Gif Sur Yvette (France); Krinner, G. [Universite Joseph-Fourier, Grenoble I, Lab. de Glaciologie et Geophysique de l' Environnement (LGGE), CNRS, 38 - Saint Martin d' Heres (France); Levy, C.; Madec, G. [Universite Pierre et Marie Curie, Lab. d' Oceanographie et Climat (Locean-IPLS), CNRS, 75 - Paris (France)


    In support of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) that should appear in early 2007, modelling groups world-wide have performed a huge coordinated exercise of climate change runs for the 20. and 21. centuries. In this paper we present the results of the two French climate models, CNRM and IPSL. In particular we emphasize the progress made since the previous IPCC report and we identify which results are comparable among models and which strongly differ. (authors)

  20. Using an interdisciplinary MOOC to teach climate science and science communication to a global classroom (United States)

    Cook, J.


    MOOCs (Massive Open Online Courses) are a powerful tool, making educational content available to a large and diverse audience. The MOOC "Making Sense of Climate Science Denial" applied science communication principles derived from cognitive psychology and misconception-based learning in the design of video lectures covering many aspects of climate change. As well as teaching fundamental climate science, the course also presented psychological research into climate science denial, teaching students the most effective techniques for responding to misinformation. A number of enrolled students were secondary and tertiary educators, who adopted the course content in their own classes as well as adapted their teaching techniques based on the science communication principles presented in the lectures. I will outline how we integrated cognitive psychology, educational research and climate science in an interdisciplinary online course that has had over 25,000 enrolments from over 160 countries.

  1. Our Changing Climate: A Brand New Way to Study Climate Science (United States)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.


    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy

  2. Climate Change: Science and Policy in the Arctic Climate Change: Science and Policy in the Arctic (United States)

    Bigras, S. C.


    It is an accepted fact that the Earth’s climate is warming. Recent research has demonstrated the direct links between the Arctic regions and the rest of the planet. We have become more aware that these regions are feeling the effects of global climate change more intensely than anywhere else on Earth -- and that they are fast becoming the new frontiers for resources and political disputes. This paper examines some of the potential climate change impacts in the Arctic and how the science of climate change can be used to develop policies that will help mitigate some of these impacts. Despite the growing body of research we do not yet completely understand the potential consequences of climate change in the Arctic. Climate models predict significant changes and impacts on the northern physical environment and renewable resources, and on the communities and societies that depend on them. Policies developed and implemented as a result of the research findings will be designed to help mitigate some of the more serious consequences. Given the importance of cost in making policy decisions, the financial implications of different scenarios will need to be considered. The Arctic Ocean Basin is a complex and diverse environment shared by five Arctic states. Cooperation among the states surrounding the Arctic Ocean is often difficult, as each country has its own political and social agenda. Northerners and indigenous peoples should be engaged and able to influence the direction of northern adaptation policies. Along with climate change, the Arctic environment and Arctic residents face many other challenges, among them safe resource development. Resource development in the Arctic has always been a controversial issue, seen by some as a solution to high unemployment and by others as an unacceptably disruptive and destructive force. Its inherent risks need to be considered: there are needs for adaptation, for management frameworks, for addressing cumulative effects, and for

  3. Variability of photosynthetic parameters of Pinus sibirica Du Tour needles under changing climatic factors

    Directory of Open Access Journals (Sweden)

    A.P. Zotikova


    Full Text Available The air temperature and relative humidity and the intensity of photosynthetically active radiation are the basic ecological factors determining geographical distribution of a species. Wood plant adaptation depends on the intensity of physiological and biochemicalprocesses of plants as a response to changing environmental factors. Investigations to reveal (detect the variability of modification andgenetic components of the photosynthetic parameters in needles of the Siberian cedar (Pinus sibirica Du Tour mountain ecotypes, distributed in central part of the Altai Mountains, were carried out. Also, the survey was extended to some experiments with these ecotypes introduced to mild climate and flat regions from south-western of Siberia. The length and thickness of needles, the size of chloroplasts, content of the photosynthetic pigments, and the functional activity of chloroplastsat the level of photo system II were the evaluated traits. Growing under mountainous conditions (at about 2000m elevation, the two-year-old needles were shorter and thicker and contained very large in size chloroplasts while the content of chlorophylls and carotinoids was twice lower than that in the local ecotype growing in the lowlands. On the other hand, more green and yellow pigments were found in needles of mountain ecotypes planted in the lowlands compared to the local lowland ectype trees. A decrease in pool of the photosynthetic pigments in the highlands ecotypes is probably due to decreased biosynthesis andincreased photo-destruction caused by severe light and temperature conditions. These parameters are likely to be associated withmodifications due to intense insolation, low temperature, ozone concentration, UV radiation, and other negative factors that are morepronounced at high elevation. Despite the large pool of accumulated photosynthetic pigments, the functional activity of chloroplasts in themountain ecotype at the level

  4. Building the Capacity for Climate Services: Thoughts on Training Next Generation Climate Science Integrators (United States)

    Garfin, G. M.; Brugger, J.; Gordon, E. S.; Barsugli, J. J.; Rangwala, I.; Travis, W.


    For more than a decade, stakeholder needs assessments and reports, including the recent National Climate Assessment, have pointed out the need for climate "science translators" or "science integrators" who can help bridge the gap between the cultures and contexts of researchers and decision-makers. Integration is important for exchanging and enhancing knowledge, building capacity to use climate information in decision making, and fostering more robust planning for decision-making in the context of climate change. This talk will report on the characteristics of successful climate science integrators, and a variety of models for training the upcoming generation of climate science integrators. Science integration characteristics identified by an experienced vanguard in the U.S. include maintaining credibility in both the scientific and stakeholder communities, a basic respect for stakeholders demonstrated through active listening, and a deep understanding of the decision-making context. Drawing upon the lessons of training programs for Cooperative Extension, public health professionals, and natural resource managers, we offer ideas about training next generation climate science integrators. Our model combines training and development of skills in interpersonal relations, communication of science, project implementation, education techniques and practices - integrated with a strong foundation in disciplinary knowledge.

  5. Enhancing climate governance through indigenous knowledge: Case in sustainability science

    Directory of Open Access Journals (Sweden)

    Nelson Chanza


    Full Text Available The current tempo of climate change strategies puts the notion of sustainability in question. In this philosophy, mitigation and adaptation strategies ought to be appropriate to the sectors and communities that are targeted. There is a growing realisation that the effectiveness of both strategies hinges on climate governance, which also informs their sustainability. The application of the climate governance concept by the technocratic divide (policymakers and climate practitioners to communities facing climate change impacts, however, is still a poorly developed field, despite extensive treatment by academia. By drawing heavily from conceptual and analytical review of scholarship on the utility of indigenous knowledge (IK in climate science, these authors argue that IK can be deployed in the practice of climate governance. It reveals that the merits of such a deployment lie in the understanding that the tenets of IK and climate governance overlap and are complementary. This is exhibited by examining the conceptual, empirical and sustainability strands of the climate governance-IK nexus. In the milieu of climate change problems, it is argued that the basic elements of climate governance, where actions are informed by the principles of decentralisation and autonomy; accountability and transparency; responsiveness and flexibility; and participation and inclusion, can be pragmatic particularly to communities who have been religiously observing changes in their environment. Therefore, it becomes necessary to invigorate the participation of communities, with their IK, in designing climate change interventions, which in this view can be a means to attain the objectives of climate governance.

  6. Climate change science: The literacy of Geography teachers in the ...

    African Journals Online (AJOL)

    This response requires, among other things, teachers who are fully literate about climate change science, so that they can explain the concepts underlying the causes, impacts and solutions of climate change as accurately as possible to learners. The main intention of this study was to understand high school Geography ...

  7. Using Data from Climate Science to Teach Introductory Statistics (United States)

    Witt, Gary


    This paper shows how the application of simple statistical methods can reveal to students important insights from climate data. While the popular press is filled with contradictory opinions about climate science, teachers can encourage students to use introductory-level statistics to analyze data for themselves on this important issue in public…

  8. Engaging Students In The Science Of Climate Change (United States)

    Rhew, R. C.; Halversen, C.; Weiss, E.; Pedemonte, S.; Weirman, T.


    Climate change is arguably the defining environmental issue of our generation. It is thus increasingly necessary for every member of the global community to understand the basic underlying science of Earth's climate system and how it is changing in order to make informed, evidence-based decisions about how we will respond individually and as a society. Through exploration of the inextricable interconnection between Earth's ocean, atmosphere and climate, we believe students will be better prepared to tackle the complex issues surrounding the causes and effects of climate change and evaluate possible solutions. If students are also given opportunities to gather evidence from real data and use scientific argumentation to make evidence-based explanations about climate change, not only will they gain an increased understanding of the science concepts and science practices, the students will better comprehend the nature of climate change science. Engaging in argument from evidence is a scientific practice not only emphasized in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), but also emphasized in the Common Core State Standards for English Language Arts & Literacy in History/Social Studies and Science (CCSS). This significant overlap between NGSS and CCSS has implications for science and language arts classrooms, and should influence how we support and build students' expertise with this practice of sciences. The featured exemplary curricula supports middle school educators as they address climate change in their classrooms. The exemplar we will use is the NOAA-funded Ocean Sciences Sequence (OSS) for Grades 6-8: The ocean-atmosphere connection and climate change, which are curriculum units that deliver rich science content correlated to the Next Generation Science Standards (NGSS) Disciplinary Core Ideas and an emphasis on the Practices of Science, as called for in NGSS and the Framework. Designed in accordance with the latest

  9. Social Climate Science: A New Vista for Psychological Science. (United States)

    Pearson, Adam R; Schuldt, Jonathon P; Romero-Canyas, Rainer


    The recent Paris Agreement to limit greenhouse gas emissions, adopted by 195 nations at the 2015 United Nations Climate Change Conference, signaled unprecedented commitment by world leaders to address the human social aspects of climate change. Indeed, climate change increasingly is recognized by scientists and policymakers as a social issue requiring social solutions. However, whereas psychological research on intrapersonal and some group-level processes (e.g., political polarization of climate beliefs) has flourished, research into other social processes-such as an understanding of how nonpartisan social identities, cultural ideologies, and group hierarchies shape public engagement on climate change-has received substantially less attention. In this article, we take stock of current psychological approaches to the study of climate change to explore what is "social" about climate change from the perspective of psychology. Drawing from current interdisciplinary perspectives and emerging empirical findings within psychology, we identify four distinct features of climate change and three sets of psychological processes evoked by these features that are fundamentally social and shape both individual and group responses to climate change. Finally, we consider how a more nuanced understanding of the social underpinnings of climate change can stimulate new questions and advance theory within psychology. © The Author(s) 2016.

  10. Getting The Picture: Our Changing Climate- A new learning tool for climate science (United States)

    Yager, K.; Balog, J. D.


    Earth Vision Trust (EVT), founded by James Balog- photographer and scientist, has developed a free, online, multimedia climate science education tool for students and educators. Getting The Picture (GTP) creates a new learning experience, drawing upon powerful archives of Extreme Ice Survey's unique photographs and time-lapse videos of changing glaciers around the world. GTP combines the latest in climate science through interactive tools that make the basic scientific tenets of climate science accessible and easy to understand. The aim is to use a multidisciplinary approach to encourage critical thinking about the way our planet is changing due to anthropogenic activities, and to inspire students to find their own voice regarding our changing climate The essence of this resource is storytelling through the use of inspiring images, field expedition notes and dynamic multimedia tools. EVT presents climate education in a new light, illustrating the complex interaction between humans and nature through their Art + Science approach. The overarching goal is to educate and empower young people to take personal action. GTP is aligned with national educational and science standards (NGSS, CCSS, Climate Literacy) so it may be used in conventional classrooms as well as education centers, museum kiosks or anywhere with Internet access. Getting The Picture extends far beyond traditional learning to provide an engaging experience for students, educators and all those who wish to explore the latest in climate science.


    Directory of Open Access Journals (Sweden)

    MIKA J.


    Full Text Available Observed climate processes play important role in understanding the ongoing changes in the climate system. Our paper intends to present this cross-section of climate science illustrated by selected satellite images and diagrams in four parts. (i. Technical possibilities of the observations are briefly surveyed first. Many satellite platforms and devices started working in the 1980 and 1990s, definitely for climate purposes. (ii. Climate forcing factors and their radiation effects are comprehended, including direct observation of solar irradiance and volcanic aerosol concentration allowing us to compare natural factors to the anthropogenic ones. (iii. Detection of changes in the Earth climate system follows next, including the atmosphere, the oceans and the cryosphere, as well. (iv. Finally, satellite-born results in validation of climate models are presented in three aspects: reconstruction of present climate, validation of simulated changes and investigation of feedback mechanisms driving climate sensitivity to the external forcing factors. The above possibilities of using satellite information in climate science are mostly illustrated by key figures of the IPCC AR5 Report (2013.

  12. TECA: Petascale pattern recognition for climate science

    Energy Technology Data Exchange (ETDEWEB)

    Prabhat, . [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Byna, Surendra [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vishwanath, Venkatram [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wehner, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Climate Change is one of the most pressing challenges facing humanity in the 21st century. Climate simulations provide us with a unique opportunity to examine effects of anthropogenic emissions. Highresolution climate simulations produce “Big Data”: contemporary climate archives are ≈ 5PB in size and we expect future archives to measure on the order of Exa-Bytes. In this work, we present the successful application of TECA (Toolkit for Extreme Climate Analysis) framework, for extracting extreme weather patterns such as Tropical Cyclones, Atmospheric Rivers and Extra-Tropical Cyclones from TB-sized simulation datasets. TECA has been run at full-scale on Cray XE6 and IBM BG/Q systems, and has reduced the runtime for pattern detection tasks from years to hours. TECA has been utilized to evaluate the performance of various computational models in reproducing the statistics of extreme weather events, and for characterizing the change in frequency of storm systems in the future.

  13. Requirements Engineering in Building Climate Science Software (United States)

    Batcheller, Archer L.

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling Framework assists modeling applications, the Earth System Grid distributes data via a web portal, and the NCAR (National Center for Atmospheric Research) Command Language is used to convert, analyze and visualize data. Document analysis, observation, and interviews were used to investigate the requirements-related work. The first research question is about how and why stakeholders engage in a project, and what they do for the project. Two key findings arise. First, user counts are a vital measure of project success, which makes adoption important and makes counting tricky and political. Second, despite the importance of quantities of users, a few particular "power users" develop a relationship with the software developers and play a special role in providing feedback to the software team and integrating the system into user practice. The second research question focuses on how project objectives are articulated and how they are put into practice. The team seeks to both build a software system according to product requirements but also to conduct their work according to process requirements such as user support. Support provides essential communication between users and developers that assists with refining and identifying requirements for the software. It also helps users to learn and apply the software to their real needs. User support is a vital activity for scientific software teams aspiring to create infrastructure. The third research question is about how change in scientific practice and knowledge leads to changes in the software, and vice versa. The "thickness" of a layer of software infrastructure impacts whether the

  14. Predictors of trust in the general science and climate science research of US federal agencies. (United States)

    Myers, Teresa A; Kotcher, John; Stenhouse, Neil; Anderson, Ashley A; Maibach, Edward; Beall, Lindsey; Leiserowitz, Anthony


    In this article, we focus on a key strategic objective of scientific organizations: maintaining the trust of the public. Using data from a nationally representative survey of American adults ( n = 1510), we assess the extent to which demographic factors and political ideology are associated with citizens' trust in general science and climate science research conducted by US federal agencies. Finally, we test whether priming individuals to first consider agencies' general science research influences trust in their climate science research, and vice versa. We found that federal agencies' general science research is more trusted than their climate science research-although a large minority of respondents did not have an opinion-and that political ideology has a strong influence on public trust in federal scientific research. We also found that priming participants to consider general scientific research does not increase trust in climate scientific research. Implications for theory and practice are discussed.

  15. Progress, decline, and the public uptake of climate science. (United States)

    Rudiak-Gould, Peter


    Previous research has sought to explain public perception of climate change science in terms of individuals' "prior commitment" to such ideological stances as just-world belief, system justification, and liberalism/conservatism. One type of prior commitment that has received little formal attention in the literature is narratives of the moral trajectory of society. A theory of climate science uptake based on beliefs in societal progress or decline is more easily portable to non-Western settings; in a case study of global warming attitudes in the Marshall Islands, trajectory narratives indeed account for public belief, concern, blame, and response more aptly than existing theories, and accord well with qualitative analysis of Marshallese climate change discourse. In Western settings, progress/decline narratives may explain much of the variation in climate change attitudes previously accounted for by other ideological variables, promising a more penetrating explanation for the divergence of climate change attitudes within and between societies.

  16. Climate science agenda for Canada 2002-2012

    International Nuclear Information System (INIS)

    Bruce, J.P.


    The development of this agenda was the result of discussions held at a multi-stakeholder workshop in Ottawa in March 2002, an experts panel meeting of leading scientists and policy makers also in Ottawa in March 2002, and a review of related assessments undertaken on a global scale in the United States and Canada. Policies concerning climate change in Canada must be developed for the long-term, despite critical urgency in the short-term. The author recommended the following timetable for action: (1) decision on the measures required for the implementation of the Kyoto Protocol to be made in 2002, (2) a suitable carbon trading policy and mechanism to be developed, (3) the extent to which carbon sinks can be claimed by Canada to be decided by 2006, (4) decide on optimum strategies for negotiating emission reductions in second commitment period after 2012, by 2006-2008, (5) start adaptation measures to mitigate adverse climate change impacts on Canadian economy, people, and environment, (6) implement ratified commitments for the 2008-2012 commitment period. It is more effective to respond to seasonal variations in climate in agriculture, water management, energy, transportation and other sectors, based on more reliable science. Research efforts in the field of climate science in Canada must be supported, in order to find answers to seven questions asked in the document. The document was divided into eight sections. Section 1 dealt with the climate: public policy issues, and section 2 looked at climate science: a basic national need. In section 3, the author looked at international comparisons, and the role of climate science in policy development 2002-2012 was discussed in section 4. Interdisciplinary and international dimensions were the topic discussed in section 5, while section 6 dealt with science needs and priorities 2002-2012. Coordination mechanisms were examined in section 7 and communicating climate science was explored in section 8. 5 refs., 1 tab

  17. Cool Science: K-12 Climate Change Art Displayed on Buses (United States)

    Chen, R. F.; Lustick, D. S.; Lohmeier, J.; Thompson, S. R.


    Cool science is an art contest where K12 students create placards (7" x 22") to educate the public about climate change. Students are prompted to create their artwork in response to questions such as: What is the evidence for climate change? How does climate change impact your local community? What can you do to reduce the impacts of climate change? In each of three years, 500-600 student entrees have been submitted from more than 12 school districts across Massachusetts. A panel of judges including scientists, artists, rapid transit representatives, and educators chooses elementary, middle, and high school winners. Winners (6), runners-up (6), and honorable mentions (12) and their families and teachers are invited to an annual Cool Science Award Ceremony to be recognized and view winning artwork. All winning artwork is posted on the Cool Science website. The winning artwork (2 per grade band) is converted into placards (11" x 28") and posters (2.5' x 12') that are placed on the inside (placards) and outside (posters) of buses. Posters are displayed for one month. So far, Cool Science was implemented in Lowell, MA where over 5000 public viewers see the posters daily on the sides of Lowell Rapid Transit Authority (LRTA) buses, making approximately 1,000,000 impressions per year. Cool Science acts to increase climate literacy in children as well as the public, and as such promotes intergenerational learning. Using art in conjunction with science learning about climate change appears to be effective at engaging not just traditionally high achieving science students, but also those interested in the creative arts. Hearing winners' stories about how they created their artwork and what this contest meant to them supports the idea that Cool Science attracts a wide diversity of students. Parents discuss climate change with their children. Multiple press releases announcing the winners further promotes the awareness of climate change throughout school districts and their

  18. Climate Change: Science and Policy Implications

    National Research Council Canada - National Science Library

    Leggett, Jane A


    .... Although natural forces such as solar irradiance and volcanoes contribute to variability, scientists cannot explain the climate changes of the past few decades without including the effects of elevated greenhouse gas (GHG...

  19. A Path to Actionable Climate Science: Perspectives from the Field (United States)

    DeCrappeo, Nicole M.; Bisbal, Gustavo A.; Meadow, Alison M.


    The U.S. Department of the Interior Climate Science Centers (CSCs) work with natural and cultural resource managers and scientists to gather information and build tools needed to help fish, wildlife, and ecosystems adapt to the impacts of climate change. The CSCs prioritize the delivery of actionable science products (e.g., synthesized scientific information, maps, decision support tools, etc.) that are focused on key management priorities and co-produced by teams of scientists and managers. In the specific case of the Northwest CSC, we have been successful at promoting and supporting the co-production of actionable climate science at the individual project level, but it has been more difficult to replicate this success at the regional program level. Here we identify the most significant challenges in satisfying this mandate and propose the creation of a Science Advisory Panel to provide improved interface between resource managers and scientists engaged with the Northwest CSC.

  20. Climatic change science, experience and controversies

    International Nuclear Information System (INIS)

    Le Treut, H.; Van Ypersele, J.P.; Hallegatte, St.; Hourcade, J.Ch.


    The international scientific community, gathered in the framework of the inter-governmental group for climate evolution (Giec), has confirmed the influence of human activities on climate and on the global warming. However, this diagnosis is sometimes questioned in the press. This book, published by the institute of sustainable development, gathers a series of articles written by scientists who make comments on the last Giec reports and who outline the knowledge gained, the remaining uncertainties and the controversies. (J.S.)

  1. Etude de pratiques d'enseignement relatives a la modelisation en sciences et technologies avec des enseignants du secondaire (United States)

    Aurousseau, Emmanuelle

    Les modeles sont des outils amplement utilises en sciences et technologies (S&T) afin de representer et d’expliquer un phenomene difficilement accessible, voire abstrait. La demarche de modelisation est presentee de maniere explicite dans le programme de formation de l’ecole quebecoise (PFEQ), notamment au 2eme cycle du secondaire (Quebec. Ministere de l'Education du Loisir et du Sport, 2007a). Elle fait ainsi partie des sept demarches auxquelles eleves et enseignants sont censes recourir. Cependant, de nombreuses recherches mettent en avant la difficulte des enseignants a structurer leurs pratiques d’enseignement autour des modeles et de la demarche de modelisation qui sont pourtant reconnus comme indispensables. En effet, les modeles favorisent la conciliation des champs concrets et abstraits entre lesquels le scientifique, meme en herbe, effectue des allers-retours afin de concilier le champ experimental de reference qu’il manipule et observe au champ theorique relie qu’il construit. L’objectif de cette recherche est donc de comprendre comment les modeles et la demarche de modelisation contribuent a faciliter l’articulation du concret et de l’abstrait dans l’enseignement des sciences et des technologies (S&T) au 2eme cycle du secondaire. Pour repondre a cette question, nous avons travaille avec les enseignants dans une perspective collaborative lors de groupes focalises et d’observation en classe. Ces dispositifs ont permis d’examiner les pratiques d’enseignement que quatre enseignants mettent en oeuvre en utilisant des modeles et des demarches de modelisation. L’analyse des pratiques d’enseignement et des ajustements que les enseignants envisagent dans leur pratique nous permet de degager des connaissances a la fois pour la recherche et pour la pratique des enseignants, au regard de l’utilisation des modeles et de la demarche de modelisation en S&T au secondaire.

  2. Monsieur Omar Fassi Fihri Secrétaire perpétuel Académie HASSAN II des Sciences et Techniques Royaume du Maroc

    CERN Document Server

    Maximilien Brice


    CERN-HI-1007135 01: M. Gouighri, Boursier de l’Académie des Sciences, Université Hassan II; J. Collot, Directeur du Laboratoire international associé; R. Heuer,\tDirecteur général du CERN;O. Fassi Fehri, Secrétaire perpétuel, Académie Hassan II des Sciences et Techniques, Maroc; S. Boutouil, Boursière du Laboratoire international associé; R. Klapisch, Fondation Partager le Savoir, Président et fondateur; G.Carnot, Président de la Fondation Carnot.

  3. Threshold concepts as barriers to understanding climate science (United States)

    Walton, P.


    Whilst the scientific case for current climate change is compelling, the consequences of climate change have largely failed to permeate through to individuals. This lack of public awareness of the science and the potential impacts could be considered a key obstacle to action. The possible reasons for such limited success centre on the issue that climate change is a complex subject, and that a wide ranging academic, political and social research literature on the science and wider implications of climate change has failed to communicate the key issues in an accessible way. These failures to adequately communicate both the science and the social science of climate change at a number of levels results in ';communication gaps' that act as fundamental barriers to both understanding and engagement with the issue. Meyer and Land (2003) suggest that learners can find certain ideas and concepts within a discipline difficult to understand and these act as a barrier to deeper understanding of a subject. To move beyond these threshold concepts, they suggest that the expert needs to support the learner through a range of learning experiences that allows the development of learning strategies particular to the individual. Meyer and Land's research into these threshold concepts has been situated within Economics, but has been suggested to be more widely applicable though there has been no attempt to either define or evaluate threshold concepts to climate change science. By identifying whether common threshold concepts exist specifically in climate science for cohorts of either formal or informal learners, scientists will be better able to support the public in understanding these concepts by changing how the knowledge is communicated to help overcome these barriers to learning. This paper reports on the findings of a study that examined the role of threshold concepts as barriers to understanding climate science in a UK University and considers its implications for wider

  4. Downscaling Climate Science to the Classroom: Diverse Opportunities for Teaching Climate Science in Diverse Ways to Diverse Undergraduate Populations (United States)

    Jones, R. M.; Gill, T. E.; Quesada, D.; Hedquist, B. C.


    Climate literacy and climate education are important topics in current socio-political debate. Despite numerous scientific findings supporting global climate changes and accelerated greenhouse warming, there is a social inertia resisting and slowing the rate at which many of our students understand and absorb these facts. A variety of reasons, including: socio-economic interests, political and ideological biases, misinformation from mass media, inappropriate preparation of science teachers, and lack of numancy have created serious challenges for public awareness of such an important issue. Different agencies and organizations (NASA, NOAA, EPA, AGU, APS, AMS and others) have created training programs for educators, not involved directly in climatology research, in order to learn climate science in a consistent way and then communicate it to the public and students. Different approaches on how to deliver such information to undergraduate students in diverse environments is discussed based on the author's experiences working in different minority-serving institutions across the nation and who have attended AMS Weather and Climate Studies training workshops, MSI-REACH, and the School of Ice. Different parameters are included in the analysis: demographics of students, size of the institutions, geographical locations, target audience, programs students are enrolled in, conceptual units covered, and availability of climate-related courses in the curricula. Additionally, the feasibility of incorporating a laboratory and quantitative analysis is analyzed. As a result of these comparisons it seems that downscaling of climate education experiences do not always work as expected in every institution regardless of the student body demographics. Different geographical areas, student body characteristics and type of institution determine the approach to be adopted as well as the feasibility to introduce different components for weather and climate studies. Some ideas are shared

  5. Science and climate policy: A history lesson

    International Nuclear Information System (INIS)

    Herrick, C.N.


    As a nation, the authors are engaged in a great deal of soul searching about the consequences of possible global climate change, aware that the authors must make choices but unsure when to make them or what they should be. Contrary to popular belief, this is not the first time that the nation will have to make major policy decisions based on the possibility of human-induced climate change. More than 100 years ago, the US government encouraged wide-scale settlement and development of the West, partly because of a scientifically grounded belief that early Western pioneers had caused the climate to become moister. Today, the US Global Climate Research Program has embarked on the task of resolving the many scientific uncertainties. As Powell learned a century ago, however, such information is critical but not sufficient to determining how a nation might respond to risk. If global climate research and assessment are to be driven by social relevance rather than scientific curiosity, these studies must reflect sociocultural as well as physical factors

  6. How Climate Science got to be in the Next Generation Science Standards (Invited) (United States)

    Wysession, M. E.


    Climate science plays a prominent role in the new national K-12 Next Generation Science Standards (NGSS). This represents the culmination of a significant amount of effort by many different organizations that have worked hard to educate the public on one of the most interesting, complex, complicated, and societally important aspects of geoscience. While there are significant challenges to the full implementation of the NGSS, especially those aspects that relate to climate change, the fact that so many states are currently adopting the NGSS represents a significant milestone in geoscience education. When grade 6-12 textbooks were written ten years ago, such as Pearson's high school Physical Science: Concepts in Action (Wysession et al., 2004), very little mention of climate change was incorporated because it did not appear in state standards. Now, climate and climate change are an integral part of the middle school and high school NGSS standards, and textbook companies are fully incorporating this content into their programs. There are many factors that have helped the shift toward teaching about climate, such as the IPCC report, Al Gore's 'An Inconvenient Truth,' and the many reports on climate change published by the National Research Council (NRC). However, four major community-driven literacy documents (The Essential Principles of Ocean Science, Essential Principles and Fundamental Concepts for Atmospheric Science Literacy, The Earth Science Literacy Principles, and The Essential Principles of Climate Science) were essential in that they directly informed the construction of the Earth and Space Science (ESS) content of the NRC's 'Framework for K-12 Science Education' by the ESS Design Team. The actual performance expectations of the NGSS were then informed directly by the disciplinary core ideas of the NRC Framework, which were motivated by the community-driven literacy documents and the significant credentials these bore. The work in getting climate science

  7. Climate for women in climate science: Women scientists and the Intergovernmental Panel on Climate Change. (United States)

    Gay-Antaki, Miriam; Liverman, Diana


    The Intergovernmental Panel on Climate Change (IPCC) is an authoritative and influential source of reports on climate change. The lead authors of IPCC reports include scientists from around the world, but questions have been raised about the dominance of specific disciplines in the report and the disproportionate number of scholars from the Global North. In this paper, we analyze the as-yet-unexamined issue of gender and IPCC authorship, looking at changes in gender balance over time and analyzing women's views about their experience and barriers to full participation, not only as women but also at the intersection of nationality, race, command of English, and discipline. Over time, we show that the proportion of female IPCC authors has seen a modest increase from less than 5% in 1990 to more than 20% in the most recent assessment reports. Based on responses from over 100 women IPCC authors, we find that many women report a positive experience in the way in which they are treated and in their ability to influence the report, although others report that some women were poorly represented and heard. We suggest that an intersectional lens is important: not all women experience the same obstacles: they face multiple and diverse barriers associated with social identifiers such as race, nationality, command of English, and disciplinary affiliation. The scientific community benefits from including all scientists, including women and those from the Global South. This paper documents barriers to participation and identifies opportunities to diversify climate science. Copyright © 2018 the Author(s). Published by PNAS.

  8. The Graduate School of Climate Sciences, University of Bern (United States)

    Martin, L.


    The Graduate School of Climate Sciences, University of Bern, offers a specialised M.Sc. and a Ph.D. study programme in climate sciences. The graduate school has a highly interdisciplinary profile involving not only natural sciences, but also humanities/history, economics and law. The ten participating institutes with a total of 45 academics provide expertise in long-term climate variability, climate modelling, climate reconstruction, predictability of the future climate and extreme events, the impact of climate change on ecosystems and climate risks for society and economy. The graduate school is fully compliant with the Bologna Accords and collaborates closely with the sister institution C2SM at ETH Zurich by, e.g., jointly organised lectures. There are currently 23 master and 37 doctoral students in the programme. These originate from the University of Bern (28 %), from other Swiss universities (30 %) and from foreign universities (42 %). Comprehensive information about the Graduate School of Climate Sciences is available at . The M.Sc. in Climate Sciences programme (120 ECTS credits) is designed to attract students from all disciplines in natural sciences and offers them a tailor-made curriculum to reach their career aspirations. The students make their own course selection according to their profile envisaged (specialised versus broad education) and ideally already guided by a job perspective. Selecting the courses and the topic of the master thesis they specialise in one of five fields: climate and earth system science; atmospheric science; economics; economic, social and environmental history; statistics. Several courses are organised jointly with public authorities and the private industry, e.g. from experts working in the insurance business, in weather forecasting or in environmental pollution control. This provides the students hands-on experience and contacts to future employers. The master thesis (60 ECTS) involves the

  9. The climate. Sciences, diplomacy and solidarity

    International Nuclear Information System (INIS)

    Tardieu, Bernard


    Written by the president of the Commission for 'Energy and climate change' of the French academy of technologies, this book first proposes a discussed and commented overview of the evolution of decisions and commitments from the Kyoto protocol to the Lima COP20 (support mechanisms, European emission trading scheme, Copenhagen COP15, Cancun COP 16, Durban COP17, Doha COP18, Warsaw COP19). The second chapter briefly presents the stakes of the Paris COP21. Then, the author discusses sea and ocean level rise as an example of consequences of climate change, comments the 20-20-20 climate-energy package adopted by the European Union (a 20 per cent share of renewable energies, a 20 per cent reduction of CO 2 emissions, a 20 per cent increase of energy efficiency), and discusses the efficiency of the EU ETS (emission trading scheme). Then, after a discussion of the difficult issue of determination of water resource evolution, the author identifies and comments the various sources and origins of methane emission, the various methane sinks and mitigation solutions. He proposes an overview of the development climate geo-engineering (use of solar rays, carbon extraction and capture from the atmosphere). The next part proposes a detailed and discussed presentation and report of the Paris COP21 content, decisions and agreement. The last part addresses issues and challenges related to negotiations and actions before the Marrakech COP22

  10. Climate science and famine early warning. (United States)

    Verdin, James; Funk, Chris; Senay, Gabriel; Choularton, Richard


    Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised.

  11. Climate Change: Science and Policy Implications

    National Research Council Canada - National Science Library

    Leggett, Jane A


    .... Science indicates that the Earth s global average temperature is now approaching, or possibly has passed, the warmest experienced since human civilizations began to flourish about 12,000 years ago...

  12. Framing risk and uncertainty in social science articles on climate change, 1995-2012

    NARCIS (Netherlands)

    Shaw, C.; Hellsten, I.; Nerlich, B.; Crichton, J.; Candlin, C.N.; Firkins, A.S.


    The issue of climate change is intimately linked to notions of risk and uncertainty, concepts that pose challenges to climate science, climate change communication, and science-society interactions. While a large majority of climate scientists are increasingly certain about the causes of climate

  13. Computational data sciences for assessment and prediction of climate extremes (United States)

    Ganguly, A. R.


    Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.

  14. A Social Science Guide for Communication on Climate Change (United States)

    St John, C.; Marx, S.; Markowitz, E.


    Researchers from the Center for Research on Environmental Decisions (CRED) published "The Psychology of Climate Change Communication: A Guide for Scientists, Journalists, Educators, Political Aides, and the Interested Public" in 2009. This landmark guide provided climate change communicators a synthesis of the social science research that was pertinent to understanding how people think about climate change and how the practice could be improved. In the fall of 2014 this guide will be rereleased, with a new title, and in a partnership between CRED and ecoAmerica. The updated guide addresses how and why Americans respond in certain ways to climate change and explains how communicators can apply best practices to their own work. The guide, which includes research from a range of social science fields including psychology, anthropology, communications, and behavioral economics, is designed to be useful for experienced and novice communicators alike. Included in the guide are strategies to boost engagement, common mistakes to avoid, and best practices that organizations around the world have used to meaningfully engage individuals and groups on climate change. The proposed presentation will provide an overview of the main findings and tips from the 2014 climate change communication guide. It will provide a deeper look at a few of the key points that are crucial for increasing audience engagement with climate change including understanding how identity shapes climate change, how to lead with solutions, and how to bring the impacts of climate change close to home. It will highlight tips for motivating positive behavior change that will lead people down the path toward solutions. Finally, it will address the benefits and challenges associated with producing a communication guide and insight into synthesizing social science research findings into a usable format for a variety of audiences.

  15. Doing Climate Science in Indigenous Communities (United States)

    Pandya, R. E.; Bennett, B.


    Historically, the goal of broadening participation in the geosciences has been expressed and approached from the viewpoint of the majority-dominated geoscience community. The need for more students who are American Indian, Native Hawaiian, or Alaska Native is expressed in terms of the need to diversify the research community, and strategies to engage more students are often posed around the question “what can we do to get more indigenous students interested in coming to our institutions to do geosciences?” This approach can lead to neglecting indigenous ways of knowing, inadvertently prioritizes western values over traditional ones, and doesn’t necessarily honor tribal community’s desire to hold on to their talented youth. Further, while this approach has resulted in some modest success, the overall participation in geoscience by students from indigenous backgrounds remains low. Many successful programs, however, have tried an alternate approach; they begin by approaching the geosciences from the viewpoint of indigenous communities. The questions they ask center around how geosciences can advance the priorities of indigenous communities, and their approaches focus on building capacity for the geosciences within indigenous communities. Most importantly, perhaps, these efforts originate in Tribal communities themselves, and invite the geoscience research community to partner in projects that are rooted in indigenous culture and values. Finally, these programs recognize that scientific expertise is only one among many skills indigenous peoples employ in their relation with their homelands. Climate change, like all things related to the landscape, is intimately connected to the core of indigenous cultures. Thus, emerging concerns about climate change provide a venue for developing new, indigenous-centered, approaches to the persistent problem of broadening participation in the geoscience. This presentation will highlight three indigenous-led efforts in to

  16. Climate science to policy and back to science

    International Nuclear Information System (INIS)

    McBean, G.


    Human activities are touted as being the principal cause for the earth's changing climate. Due to the long lead time for climate adjustment, it will continue to change through this century. There is a need for an integrated response tof reducing greenhouse gas emissions while adapting to the changing climate. This article discussed political attention toward climate change as well as debates that have focused on emission reduction targets. The Climate Convention was discussed in detail, with particular reference to the Climate Convention Workshop on the Adaptation Fund in spring 2006, which recommended that greenhouse gas mitigation coupled with adaptation measures, be integrated into broader sustainable development objectives such as economic development, energy security, public health, air quality and local environmental protection. Environmental effects and impacts of greenhouse gas as well as long-term emission reduction targets were identified. Several impacts that were discussed were temperature changes as a result of rising sea levels; increased frequency of heat waves; heavy precipitation events; intense tropical cyclones and areas affected by droughts; challenges projected for crops that are near the warm end of their suitable range; and, the costs of recent droughts. In addition, disturbances from pests, diseases and fire are projected to have increasing impacts on forests, with an extended period of high fire risk and large increases in area burned as well as barren vast stretches of Canadian forests as a result of the western pine beetle. It was concluded that further research is needed to support an adaptation strategy and to guide longer-term emission reductions

  17. Predicting phenology by integrating ecology, evolution and climate science (United States)

    Pau, Stephanie; Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan; Kraft, Nathan J.B.; Bolmgren, Kjell; Betancourt, Julio L.; Cleland, Elsa E.


    Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology — the timing of life-history events. Phenology has well-demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology across species, habitats and time remains poor. Here, we outline how merging approaches from ecology, climate science and evolutionary biology can advance research on phenological responses to climate variability. Using insight into seasonal and interannual climate variability combined with niche theory and community phylogenetics, we develop a predictive approach for species' reponses to changing climate. Our approach predicts that species occupying higher latitudes or the early growing season should be most sensitive to climate and have the most phylogenetically conserved phenologies. We further predict that temperate species will respond to climate change by shifting in time, while tropical species will respond by shifting space, or by evolving. Although we focus here on plant phenology, our approach is broadly applicable to ecological research of plant responses to climate variability.

  18. Climate Change: Issues in the Science and Its Use (United States)


    Thomas Lovejoy , Mr. Stuart Eizenstat, and Ms. Stephanie Meeks. Hearing...I N S T I T U T E F O R D E F E N S E A N A LY S E S IDA Document D-3904 Log: H 09-000863 July 2009 Climate Change: Issues in the Science and...challenges. I N S T I T U T E F O R D E F E N S E A N A LY S E S IDA Document D-3904 Climate Change: Issues in the Science and Its Use

  19. Cool Science: Engaging Adult and K-16 Audiences in Climate Change Science (United States)

    Lustick, D.; Lohmeier, J.; Chen, R. F.


    A team of educators and scientists from the University of Massachusetts Lowell and the University of Massachusetts Boston will report on an informal science learning research project using mass transit spaces in Lowell, MA. Cool Science (CS) uses advertising spaces on buses and terminals to engage the public with an Out of Home Multi-Media (OHMM) learning experience. K-16 classrooms throughout Massachusetts will submit original artwork that conveys a scientific concept central to understanding climate change. The best 6 works submitted will be printed and placed on every bus in the city over a 6 month period during the first half of 2013. CS aims to promote and evaluate learning about climate change science among the general adult public and k-16 students/teachers. Cool Science offers teachers an efficient and effective means of seamlessly bringing the study of climate change into classroom learning both within science and across disciplines. The products of this effort are then used to improve public engagement with the science of climate change in mass transit environments. Cool Science is an example of Science, Technology, Engineering, Art and Math education (STEAM). The goals of CS are: 1) Engage professors, teachers, and their respective students in a climate change science communication competition. 2) Run the winning 6 selected placards and posters throughout the LRTA. 3) Identify how different communities of risk among the riding public approach and understand climate change. 4) Identify the advantages and disadvantages of using buses as a context for research on informal science learning. 5) Determine the extent to which student artwork serves as a trusted source of information. As advances in technology allow for more scientific knowledge to be generated, the role of informal education to improve adult understanding of science has never been greater. We see the convergence of circumstances (ISE, climate change, OHMM, mobile technology) as an enormous

  20. Games and Simulations for Climate, Weather and Earth Science Education (United States)

    Russell, R. M.; Clark, S.


    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (, webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  1. Communicating Climate Science: A Historic Look to the Future (United States)

    Byrne, James; Andronova, Natasha; Rasch, Philip


    The June 2013 Chapman Conference brought together a diverse group of researchers, educators, and media for 5 days in Colorado to explore how to better communicate climate science. Multidisciplinary thinking was a key theme of the meeting. Participant expertise included urban planning, science, psychology, philosophy, history, film and documentary production, communications, journalism, public relations, and business. All helped to create a stimulating and inspirational atmosphere. The meeting program accommodated almost 100 submitted abstracts.

  2. The Climate Science Special Report: Perspectives on Climate Change Mitigation (United States)

    DeAngelo, B. J.


    This chapter of CSSR provides scientific context for key issues regarding the long-term mitigation of climate change. Policy analysis and recommendations are beyond the scope of CSSR. Limiting and stabilizing warming to any level implies that there is an upper limit to the cumulative amount of CO2 that can be added to the atmosphere. Eventually stabilizing the global temperature requires CO2 emissions to approach zero. For a 3.6°F (2°C) or any desired global mean temperature target, an estimated range of allowable cumulative CO2 emissions from the current period onward can be calculated. Accounting for the temperature effects of non-CO2 species, cumulative CO2 emissions are required to stay below about 800 GtC in order to provide a two-thirds likelihood of preventing 3.6°F (2°C) of warming, meaning approximately 230 GtC more could be emitted globally. Assuming global emissions follow the range between the RCP8.5 and RCP4.5 scenarios, emissions could continue for approximately two decades before this cumulative carbon threshold is exceeded. Meeting a 2.7°F (1.5°C) target implies much tighter constraints. Mitigation of non-CO2 species contributes substantially to near-term cooling benefits but cannot be relied upon for ultimate stabilization goals. Successful implementation of the first round of Nationally Determined Contributions associated with the Paris Agreement will provide some likelihood of meeting the long-term temperature goal of limiting global warming to "well below" 3.6°F (2°C) above preindustrial levels; the likelihood depends strongly on the magnitude of global emission reductions after 2030. If interest in geoengineering increases, interest will also increase in assessments of the technical feasibilities, costs, risks, co-benefits, and governance challenges of these additional measures, which are as yet unproven at scale.

  3. Building partnerships to produce actionable science to support climate-informed management decisions: North Central Climate Science Center example (United States)

    Lackett, J.; Ojima, D. S.; McNeeley, S.


    As climate change impacts become more apparent in our environment, action is needed to enhance the social-ecological system resilience. Incorporating principles which lead to actionable research and project co-development, when appropriate, will facilitate building linkages between the research and the natural resource management communities. In order to develop strategies to manage for climatic and ecosystem changes, collaborative actions are needed between researchers and resource managers to apply appropriate knowledge of the ecosystem and management environments to enable feasible solutions and management actions to respond to climate change. Our team has been involved in developing and establishing a research and engagement center, the North Central Climate Science Center (NC CSC), for the US Department of Interior, to support the development and translation of pertinent climate science information to natural resource managers in the north central portion of the United States. The NC CSC has implemented a platform to support the Resource for Vulnerability Assessment, Adaptation, and Mitigation Projects (ReVAMP) with research, engagement, and training activities to support resource managers and researchers. These activities are aimed at the co-production of appropriate response strategies to climate change in the region, in particular to drought-related responses. Through this platform we, with other partners in the region, including the Department of Interior and the Department of Agriculture, are bringing various training tools, climate information, and management planning tools to resource managers. The implementation of ReVAMP has led to development of planning efforts which include a more explicit representation of climate change as a driver of drought events in our region. Scenario planning provides a process which integrates management goals with possible outcomes derived from observations and simulations of ecological impacts of climate change. Co

  4. Climate change as seen by science and scientific dissemination

    International Nuclear Information System (INIS)

    Bueno, Lilian de Oliveira


    The climate change approach by two daily newspapers and two weekly magazines in 2006 and 2007, and this theme perception by opinion-makers, constitute the major target of this work. A survey was conducted with subscribers to Folha de S. Paulo and O Estado de S. Paulo newspapers, Veja and Epoca magazines, with their journalists, as well as with climate change scientists. The survey showed that is equally high the public interest in general science subjects and in specific environmental themes. In the analyzed periodicals, some incorrect technical concepts were detected and the press coverage focused, mainly, on research into climate change impacts. Energy security, another factor strongly related to climate, was explored by the research to evaluate public view of a relation between climate change and nuclear energy. A parallel may be made between climate change and nuclear catastrophe, present in the popular imaginary, since the atomic bomb explosions in Hiroshima and Nagasaki. Considering the science role in general, it is essential to highlight the fact that the state of the art research should not be dissociated from efficient and effective communication, able to mobilize citizens and touch decision-makers. Although the dialogue between scientists and the public was considered, traditionally, as related to separated fields of awareness, it may be achieved and the media has a fundamental role in this process. (author)

  5. Summoned by Science. Reporting Climate Change at Copenhagen and Beyond

    International Nuclear Information System (INIS)

    Painter, J.


    The December 2009 summit on climate change in Copenhagen was remarkable not because it ended in an ambitious deal to curb greenhouse gas emissions but because of the unprecedented number of journalists, delegates, NGOs and scientists present. In this wide-ranging study, the author has produced a detailed analysis of the coverage of the summit across the globe through studying more than 400 articles published in two print media in 12 countries.The analysis reveals that articles written principally about the science of climate change represented less than 10 per cent of all those surveyed. The study makes extensive use of official UN figures to produce the first detailed assessment of who actually attended Copenhagen. It also includes a survey of over 50 environmental journalists and scientists across the 12 target countries post-Copenhagen to ascertain how they think climate change science might be best communicated.

  6. Summoned by Science. Reporting Climate Change at Copenhagen and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Painter, J.


    The December 2009 summit on climate change in Copenhagen was remarkable not because it ended in an ambitious deal to curb greenhouse gas emissions but because of the unprecedented number of journalists, delegates, NGOs and scientists present. In this wide-ranging study, the author has produced a detailed analysis of the coverage of the summit across the globe through studying more than 400 articles published in two print media in 12 countries.The analysis reveals that articles written principally about the science of climate change represented less than 10 per cent of all those surveyed. The study makes extensive use of official UN figures to produce the first detailed assessment of who actually attended Copenhagen. It also includes a survey of over 50 environmental journalists and scientists across the 12 target countries post-Copenhagen to ascertain how they think climate change science might be best communicated.

  7. Introduction. Progress in Earth science and climate studies. (United States)

    Thompson, J Michael T


    In this introductory paper, I review the 'visions of the future' articles prepared by top young scientists for the second of the two Christmas 2008 Triennial Issues of Phil. Trans. R. Soc.A, devoted respectively to astronomy and Earth science. Topics covered in the Earth science issue include: trace gases in the atmosphere; dynamics of the Antarctic circumpolar current; a study of the boundary between the Earth's rocky mantle and its iron core; and two studies of volcanoes and their plumes. A final section devoted to ecology and climate covers: the mathematical modelling of plant-soil interactions; the effects of the boreal forests on the Earth's climate; the role of the past palaeoclimate in testing and calibrating today's numerical climate models; and the evaluation of these models including the quantification of their uncertainties.

  8. Mediterranean climate modelling: variability and climate change scenarios; Modelisation climatique du Bassin mediterraneen: variabilite et scenarios de changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Somot, S


    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  9. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Caldwell, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Charles [Univ. of Texas, Austin, TX (United States); Kerstin, Van Dam [Brookhaven National Lab. (BNL), Upton, NY (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Daniel F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ostrouchov, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tuminaro, Raymond [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Paul [Univ. of California, Davis, CA (United States); Wild, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    This report presents results from the DOE-sponsored workshop titled, ``Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for

  10. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, E.; Evans, K.; Caldwell, P.; Hoffman, F.; Jackson, C.; Van Dam, K.; Leung, R.; Martin, D.; Ostrouchov, G.; Tuminaro, R.; Ullrich, P.; Wild, S.; Williams, S.


    This report presents results from the DOE-sponsored workshop titled, Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling

  11. Optimal climate change: economics and climate science policy histories (from heuristic to normative). (United States)

    Randalls, Samuel


    Historical accounts of climate change science and policy have reflected rather infrequently upon the debates, discussions, and policy advice proffered by economists in the 1980s. While there are many forms of economic analysis, this article focuses upon cost-benefit analysis, especially as adopted in the work of William Nordhaus. The article addresses the way in which climate change economics subtly altered debates about climate policy from the late 1970s through the 1990s. These debates are often technical and complex, but the argument in this article is that the development of a philosophy of climate change as an issue for cost-benefit analysis has had consequences for how climate policy is made today.

  12. Artificial climate experiment facility in Institute for Environmental Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Shunichi [Department of Radioecology, Institute for Environmental Sciences, Rokkasho, Aomori (Japan)


    The Institute for Environmental Sciences is now constructing the artificial climate experiment facility (ACEF) to research the effect of climate on movement of elements in the various environments. The ACEF will have one large, and five small artificial climate experiment chambers. The large chamber is designed to simulate climate conditions in all Japan. It will equip systems to simulate sunshine, rainfall (including acid rain), snowfall and fog (including acid fog). `Yamase` condition will also be reproduced in it. Yamase is a Japanese term describing the characteristic weather condition occurring mainly on the Pacific Ocean side at the northern Japan. While the small chamber will not have rainfall, snowfall and fog systems, radioisotopes will be used in the two small chambers which will be set up in a radioisotope facility. We describe here the outline of the ACEF and the preliminary research programs being undertaken using both kinds of chambers. (author)

  13. Artificial climate experiment facility in Institute for Environmental Sciences

    International Nuclear Information System (INIS)

    Hisamatsu, Shunichi


    The Institute for Environmental Sciences is now constructing the artificial climate experiment facility (ACEF) to research the effect of climate on movement of elements in the various environments. The ACEF will have one large, and five small artificial climate experiment chambers. The large chamber is designed to simulate climate conditions in all Japan. It will equip systems to simulate sunshine, rainfall (including acid rain), snowfall and fog (including acid fog). 'Yamase' condition will also be reproduced in it. Yamase is a Japanese term describing the characteristic weather condition occurring mainly on the Pacific Ocean side at the northern Japan. While the small chamber will not have rainfall, snowfall and fog systems, radioisotopes will be used in the two small chambers which will be set up in a radioisotope facility. We describe here the outline of the ACEF and the preliminary research programs being undertaken using both kinds of chambers. (author)

  14. A Science-Driven Photojournalistic Documentation of Climate Change (Invited) (United States)

    Braasch, G.; Rothlein, J. E.


    World View of Global Warming is an independent photojournalistic documentation of global warming and rapid climate change begun in 1999. The intended outcomes of the work - the photographs, reportage and publications - are based on the principles of scientific accuracy, a journalistic approach, strong photographic skills, long-term observations, science literacy, education, documentation for policy makers and inspiration to others. During the course of this project the team of photojournalist and public health toxicologist visited, interviewed and/or had correspondence with more than 150 scientists in the field on every continent. Hundreds more have influenced and informed the work. World View of Global Warming has tested the idea that climate change can be more easily understood by the public and government officials through photographs which accurately and engagingly depict the locations and the scientists involved in research, communities responding to impacts of climate change and innovations for mitigation. Use of the photographs by scientists to further their own work and outreach was an immediate and continuing result, including use in journals, reports, textbooks and conferences. This presentation will demonstrate the many uses of photography in climate change communications and discuss how scientists and educators can more effectively interact with the public and media and artists. The website for this project was established in 2002 and now has more than 100 pages of photographs and information. It is strictly non-commercial and documented. Wide and repeated publication indicates the value of the project's climate communication: Exhibition at the Boston Museum of Science (2013), the National Academy of Sciences and the American Assn. for the Advancement of Science and other venues; extended use by the United Nations, UNFCCC, World Meteorological Organization, Environmental Protection Agency and the Office of Science and Technology Policy in the Executive

  15. Framing risk and uncertainty in social science articles on climate change, 1995–2012


    Shaw, Chris; Hellsten, Iina; Nerlich, Brigitte


    The issue of climate change is intimately linked to notions of risk and uncertainty, concepts that pose challenges to climate science, climate change communication, and science-society interactions. While a large majority of climate scientists are increasingly certain about the causes of climate change and the risks posed by its impacts (see IPCC, 2013 and 2014), public perception of climate change is still largely framed by uncertainty, especially regarding impacts (Poortinga et al., 2011). ...

  16. Climate Science - getting the world to understand, and to care (United States)

    Jasmin, T.; Ackerman, S. A.; Whittaker, T. M.


    Effectively teaching and conveying climate science has become one of Earth Science's greatest challenges. Existing barriers are many and varied, from political, ideological, and religious, to purely economic. Additionally, studies show the general public at present has a surprising number of basic misconceptions regarding the Earth system, and Earth-Sun relationships. Addressing these misconceptions is the first hurdle to overcome for properly teaching climate science. This talk will discuss ways to address the various barriers. Strategies are being employed to arm teachers with new tools leveraging the move to online, interactive learning. Content can be tailored particular audiences. For any individual, learning will be most effective if there is an understood significance, the information is presented clearly and at an appropriate education level, and when possible some personal relevance can be inferred. People need a reason to care. Examples and approaches for several common education scenarios will be given. A simple "Climate Change 101" outline will be given, a blueprint that could be used to educate most of the general public. Freely available online resources to address Earth System misconceptions will be referenced. Finally, a case will be made that a dramatic improvement in climate literacy worldwide may be the only viable means to successfully tackling global warming.

  17. Speaking truth to power revisited: science, policy and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Bray, D. [GKSS-Forschungszentrum Geesthacht GmbH, Magdeburg (Germany). Inst. fuer Gewaesserforschung; Krueck, C. [VDI-Technologiezentrum Physikalische Technologien, Duesseldorf (Germany). Abt. Zukuenftige Technologien


    The issue of climate change from the perspectives of climate change scientists and climate policy makers is discussed using results from two survey questionnaires. Emphasis is given to the German context. Included is the self assessment of the state of the art of the climate sciences and the importance assigned to different sources of information by policy makers. Conclusions indicate that policy makers rely on a number of sources other than the direct results of science, and have assigned a greater sense of urgency to the issue of climate change than have scientists. (orig.) [German] Auf Grundlage der Ergebnisse zweier Fragebogenaktionen wird diskutiert, wie sich die Problematik von Klimaveraenderungen aus der Perspektive von Klimaforschern und aus der Perspektive von mit Klimapolitik befassten Entscheidungstraegern darstellt. Die Betonung liegt auf den Verhaeltnissen in Deutschland. Eingeschlossen ist eine Einschaetzung des aktuellen Standes der Klimaforschung durch die Wissenschaftler selbst sowie der Bedeutung, welche von politischen Entscheidungstraegern verschiedenen Informationsquellen beigemessen wird. Es zeigt sich, dass sich politische Entscheidungstraeger auf zahlreiche Informationsquellen verlassen, die nur indirekt die Resultate der Klimaforschung wiedergeben und, dass dieser Personenkreis das Problem der Klimaveraenderungen als draengender ansieht als die Wissenschaftler selbst. (orig.)

  18. Teaching climate science within the transdisciplinary framework of Critical Zone science (United States)

    White, T. S.; Wymore, A.; Dere, A. L. D.; Washburne, J. C.; Hoffman, A.; Conklin, M. H.


    During the past decade a new realm of Earth surface and environmental science has evolved, Critical Zone (CZ) science. The CZ is the outermost layer of the continents spanning from the top of the vegetation canopy down to the bottom of the fresh groundwater zone. CZ science integrates across many disciplines and cross cutting concepts, including climate science, and much progress has been made by the CZ community to develop educational curricula - descriptions of the climate science aspects of two of those follows. An interdisciplinary team of CZ scientists developed an undergraduate course entitled "Introduction to CZ science". The semester-long course is modular, has been tested in multiple university settings, and the content is available online. A primary tenet of the course is that to achieve environmental sustainability, society must understand the CZ system, the natural processes and services of the CZ that are of value to society, and how those processes operate with and without the presence of humanity. A fundamental concept in the course is that the fluxes of water, C, energy, reactive gases, particulates and nutrients throughout the CZ are directly and indirectly related to climatic phenomenon and processes. Units on land-atmosphere interactions, weathering, and water budgets highlight the connection between CZ science and climate science, and are augmented by learning activities that consider climate links to soil development and landscape evolution. An online open-source course entitled "Earth 530: Earth Surface Processes in the Critical Zone'" is offered as part of The Pennsylvania State University's Masters of Education in Earth Sciences program. The course is designed to educate teachers interested in incorporating CZ science into their classrooms, though it is usable by anyone with a basic understanding of Earth surface and environmental science. Earth 530 introduces students to knowledge needed to understand the CZ through integration of

  19. ClimateNet: A Machine Learning dataset for Climate Science Research (United States)

    Prabhat, M.; Biard, J.; Ganguly, S.; Ames, S.; Kashinath, K.; Kim, S. K.; Kahou, S.; Maharaj, T.; Beckham, C.; O'Brien, T. A.; Wehner, M. F.; Williams, D. N.; Kunkel, K.; Collins, W. D.


    Deep Learning techniques have revolutionized commercial applications in Computer vision, speech recognition and control systems. The key for all of these developments was the creation of a curated, labeled dataset ImageNet, for enabling multiple research groups around the world to develop methods, benchmark performance and compete with each other. The success of Deep Learning can be largely attributed to the broad availability of this dataset. Our empirical investigations have revealed that Deep Learning is similarly poised to benefit the task of pattern detection in climate science. Unfortunately, labeled datasets, a key pre-requisite for training, are hard to find. Individual research groups are typically interested in specialized weather patterns, making it hard to unify, and share datasets across groups and institutions. In this work, we are proposing ClimateNet: a labeled dataset that provides labeled instances of extreme weather patterns, as well as associated raw fields in model and observational output. We develop a schema in NetCDF to enumerate weather pattern classes/types, store bounding boxes, and pixel-masks. We are also working on a TensorFlow implementation to natively import such NetCDF datasets, and are providing a reference convolutional architecture for binary classification tasks. Our hope is that researchers in Climate Science, as well as ML/DL, will be able to use (and extend) ClimateNet to make rapid progress in the application of Deep Learning for Climate Science research.

  20. 78 FR 50085 - Advisory Committee on Climate Change and Natural Resource Science (United States)


    ... Climate Change and Natural Resource Science AGENCY: U.S. Geological Survey, Interior. ACTION: Meeting.... 2, we announce that the Advisory Committee on Climate Change and Natural Resource Science will hold... Partnership Coordinator, National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201...

  1. Communicating Climate Change: Sometimes It's Not about the Science (United States)

    Mandia, S. A.


    Although there is an overwhelming scientific consensus that humans are driving modern day climate change, a significant portion of Americans are not convinced. This gap in understanding challenges both instructors and students who wish to effectively communicate climate change science. Individuals subconsciously resist factual information that threatens their worldview. Their misperceptions are reinforced by journalistic false balance, coordinated misinformation campaigns, and incorrect or misleading information that is easily accessible via social media. Here the author presents effective refutation strategies that avoid the most common backfire effects while also offering strategies to properly frame the discussion to audiences holding diverse worldviews.

  2. Earth Science Week 2009, "Understanding Climate", Highlights and News Clippings

    Energy Technology Data Exchange (ETDEWEB)

    Robeck, Edward C. [American Geological Inst., Alexandria, VA (United States)


    The American Geological Institute (AGI) proposes to expand its influential Earth Science Week Program in 2009, with the support of the U.S. Department of Energy, to disseminate DOE's key messages, information, and resources on climate education and to include new program components. These components, ranging from online resources to live events and professional networks, would significantly increase the reach and impact of AGI's already successful geoscience education and public awareness effort in the United States and abroad in 2009, when the campaign's theme will be "Understanding Climate."

  3. La connaissance du climat au Brésil : entre le vernaculaire et le scientifique O conhecimento do clima no Brasil : Entre o vernacular e o científico The knowledge of the climate in Brazil: Between the vernacular and scientific

    Directory of Open Access Journals (Sweden)

    Francisco Mendonça


    Full Text Available La connaissance du climat au Brésil résulte du chevauchement entre le savoir vernaculaire et le savoir scientifique, même si dans le cadre académique la conception scientifique et technique est prédominante. Pour la plus grande partie de la population, le savoir vernaculaire (ou traditionnel sur le climat est plus important que le savoir scientifique. Toutefois, dans le cadre de la science, le développement et la consolidation de la climatologie brésilienne ne se font remarquer qu’autour des 70 dernières années. La diffusion du principe de la météorologie dynamique était un des aspects principaux au développement de l’étude des climats brésiliens. L’analyse rythmique des types de temps et les études du climat urbain sont deux exemples du progrès et de l’originalité de la climatologie brésilienne. La question environnementale, l’utilisation des images de satellite et le débat à propos des changements globaux sont les sujets principaux d’intérêt de la climatologie brésilienne dans le temps présent. Un courant d’études lié à la perception du climat a attribué plus d’importance à la connaissance vernaculaire du climat au Brésil, en inaugurant une nouvelle opportunité à la science, une approche plus ouverte, plurielle et donc plus riche que la science strictement moderne.O conhecimento acerca do clima do Brasil é resultado tanto do conhecimento científico quanto do conhecimento vernacular, mesmo se no âmbito da academia prevaleça a perspectiva cientifico-técnica. Para a maioria da população o saber vernacular (tradicional sobre o clima é mais importante que o saber científico. Todavia, do ponto de vista da ciência, o desenvolvimento e a consolidação da climatologia brasileira só veio a ocorrer nos últimos 70 anos. A difusão do príncipio da meteorologia dinâmica constituiu-se num dos principais aspectos para o desenvolvimento dos estudos dos climas do Brasil. Neste período a

  4. Wetlands in a changing climate: Science, policy and management (United States)

    Moomaw, William R.; Chmura, G.L.; Davies, Gillian T.; Finlayson, Max; Middleton, Beth A.; Natali, Sue M.; Perry, James; Roulet, Nigel; Sutton-Grier, Ariana


    Part 1 of this review synthesizes recent research on status and climate vulnerability of freshwater and saltwater wetlands, and their contribution to addressing climate change (carbon cycle, adaptation, resilience). Peatlands and vegetated coastal wetlands are among the most carbon rich sinks on the planet sequestering approximately as much carbon as do global forest ecosystems. Estimates of the consequences of rising temperature on current wetland carbon storage and future carbon sequestration potential are summarized. We also demonstrate the need to prevent drying of wetlands and thawing of permafrost by disturbances and rising temperatures to protect wetland carbon stores and climate adaptation/resiliency ecosystem services. Preventing further wetland loss is found to be important in limiting future emissions to meet climate goals, but is seldom considered. In Part 2, the paper explores the policy and management realm from international to national, subnational and local levels to identify strategies and policies reflecting an integrated understanding of both wetland and climate change science. Specific recommendations are made to capture synergies between wetlands and carbon cycle management, adaptation and resiliency to further enable researchers, policy makers and practitioners to protect wetland carbon and climate adaptation/resiliency ecosystem services.

  5. Astroclimate, a Citizen Science Climate Awareness (United States)

    Asorey, H.; Balaguera-Rojas, A.; Martínez-Méndez, A.; Núñez, L. A.; Peña-Rodríguez, J.; Salgado-Meza, P.; Sarmiento-Cano, C.; Suárez-Durán, M.


    Exploration and searching for life in other stellar systems have shown that its development and sustainability depend of very specific environment conditions. Due to that, preservation of the equilibrium of this conditions in our planet is very important, because small changes on it can generate high repercussions in its habitability. This work shows some preliminary results from an environmental monitoring network (RACIMO, Red Ambiental Ciudadana de Monitoreo) conformed by automatic meteorologic stations located on seven high-schools at metropolitan zone of Bucaramanga, Colombia. Data recorded by monitoring network are stored in an open web repository which can be accessed by citizens from any place with internet connection. These stations called UVAs, were developed under creative commons license, that is to say, software, hardware and data free, besides these can be built by students due to its flexibility. The UVAs are modular and re-programmable, that is, any sensor can be added to the stations and then re-configure its firmware remotely. Besides, UVAs work in automatic way, after the first setup, they will be self-sufficient and won't depend of human intervention. The data, of each UVA, are recorded with a temporal synchrony and then are upload at central repository by means of WiFi, ethernet or GSM connection. The stations can be power supplied by a solar system or the electrical grid. Currently, UVA record variables such as: pressure, temperature, humidity, irradiance, iluminance, ambient noise, rain, cloudiness, CO2 and NO2 concentration, lighting, seismic movements and its geographic position. On other hand, a calibration system has been developed to validate the data recorded by RACIMO. This project, started from an astroclimate an exoplanets habitability conditions, became an independent citizen science project to rise awareness about the very particular conditions enjoyed in our Earth planet.

  6. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses. (United States)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.


    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included

  7. Climate populism: Claude Allegre and Co., investigation on science enemies

    International Nuclear Information System (INIS)

    Foucart, St.


    Todays, there is no serious uncertainty about the fact that climate is warming up and that human activities are the main contribution to this global warming. However, in France, some learned scientists in connivance with influent think tanks have mounted a campaign against science with or without the tacit support of institutions. All along this book, the author dissects the 'arguments' (errors and lies) and the manipulations of climate-skeptics and explains how this disinformation can propagates and can be taken over by intellectuals who become in turn the spokesmen of climate-skeptics. The result is frightening: a whole domain of study is becoming discredited, the public opinion is demobilized, and the political inaction is encouraged. (J.S.)

  8. Successful Coproduction in Water Management and Climate Science (United States)

    Kaatz, L.


    Frequently described as the "canary in the coal mine," the water sector has been one of the first to experience and begin preparing for the impacts of climate change. Water utilities have lead the way in developing and testing climate information in practice with the end goal of building resiliency and avoiding catastrophic disasters. A key aspect of this leadership is strong, collaborative partnerships resulting in the coproduction of knowledge and actionable science. In this session we will hear from the decision-maker perspective regarding what effective partnerships in real-world applications look like using examples from the Water Utility Climate Alliances (WUCA), and the experience and outcomes of a unique decade-long partnership between Denver Water and the National Center for Atmospheric Research. The lessons learned and challenges encountered in these examples of coproduction are not unique to WUCA, Denver Water nor the water sector, rather they are applicable across sectors and may inform future coproduction efforts.

  9. Joint sciences academies statement: global response to climate change

    International Nuclear Information System (INIS)


    Taking into account that there is now strong evidence that significant global warming is occurring, the Joint Science Academies, urge, by this statement, all nations in the line with the UNFCCC principles, to take prompt action to reduce the causes of climate change, adapt to its impacts and ensure that the issue is included in all relevant national and international strategies. Some recommendations are also given. (A.L.B.)

  10. Celebrity Climate Contrarians: Understanding a keystone species in contemporary climate science-policy-public interactions (United States)

    Boykoff, M. T.


    Since the 1980s, a keystone species called 'climate contrarians' has emerged and thrived. Through resistance to dominant interpretations of scientific evidence, and often outlier views on optimal responses to climate threats, contrarians have raised many meta-level questions: for instance, questions involve to what extent have their varied interventions been effective in terms of sparking a new and wise Copernican revolution; or do their amplified voices instead service entrenched carbon-based industry interests while they blend debates over 'climate change' with other culture wars? While the value of their influence has generated numerous debates, there is no doubt that climate contrarians have had significant influence on climate science, policy and public communities in ways that are larger than would be expected from their relative abundance in society. As such, a number of these actors have achieved 'celebrity status' in science-policy circles, and, at times, larger public spaces. This presentation focuses on how - particularly through amplified mass media attention to their movements - various outlier interventions have demonstrated themselves to be (often deliberately) detrimental to efforts that seek to enlarge rather than constrict the spectrum of possibility for mobilizing appropriate responses to ongoing climate challenges. Also, this work analyses the growth pathways of these charismatic megafauna through interview data and participant observations completed by the author at the 2011 Heartland Institute's Sixth International Conference on Climate Change. This provides detail on how outlier perspectives characterized as climate contrarians do work in these spaces under the guise of public intellectualism to achieve intended goals and objectives. The research undertaken and related in the presentation here seeks to better understand motivations that prop up these contrarian stances, such as possible ideological or evidentiary disagreement to the orthodox

  11. Does the public deserve free access to climate system science? (United States)

    Grigorov, Ivo


    Some time ago it was the lack of public access to medical research data that really stirred the issue and gave inertia for legislation and a new publishing model that puts tax payer-funded medical research in the hands of those who fund it. In today's age global climate change has become the biggest socio-economic challenge, and the same argument resonates: climate affects us all and the publicly-funded science quantifying it should be freely accessible to all stakeholders beyond academic research. Over the last few years the ‘Open Access' movement to remove as much as possible subscription, and other on-campus barriers to academic research has rapidly gathered pace, but despite significant progress, the climate system sciences are not among the leaders in providing full access to their publications and data. Beyond the ethical argument, there are proven and tangible benefits for the next generation of climate researchers to adapt the way their output is published. Through the means provided by ‘open access', both data and ideas can gain more visibility, use and citations for the authors, but also result in a more rapid exchange of knowledge and ideas, and ultimately progress towards a sought solution. The presentation will aim to stimulate discussion and seek progress on the following questions: Should free access to climate research (& data) be mandatory? What are the career benefits of using ‘open access' for young scientists? What means and methods should, or could, be incorporated into current European graduate training programmes in climate research, and possible ways forward?

  12. Regional climate change-Science in the Southeast (United States)

    Jones, Sonya A.


    Resource managers are at the forefront of a new era of management. They must consider the potential impacts of climate change on the Nation's resources and proactively develop strategies for dealing with those impacts on plants, animals, and ecosystems. This requires rigorous, scientific understanding of environmental change. The role of the U.S. Geological Survey (USGS) in this effort is to analyze climate-change data and develop tools for assessing how changing conditions are likely to impact resources. This information will assist Federal, State, local, and tribal partners manage resources strategically. The 2008 Omnibus Budget Act and Secretarial Order 3289 established a new network of eight Department of Interior Regional Climate Science Centers to provide technical support for resource managers. The Southeast Regional Assessment Project (SERAP) is the first regional assessment to be funded by the USGS National Climate Change and Wildlife Science Center ( The USGS is working closely with the developing Department of Interior Landscape Conservation Cooperatives to ensure that the project will meet the needs of resource managers in the Southeast. In addition, the U.S. Fish and Wildlife Service is providing resources to the SERAP to expand the scope of the project.

  13. Opinions and knowledge about climate change science in high school students. (United States)

    Harker-Schuch, Inez; Bugge-Henriksen, Christian


    This study investigates the influence of knowledge on opinions about climate change in the emerging adults' age group (16-17 years). Furthermore, the effects of a lecture in climate change science on knowledge and opinions were assessed. A survey was conducted in Austria and Denmark on 188 students in national and international schools before and after a lecture in climate change science. The results show that knowledge about climate change science significantly affects opinions about climate change. Students with a higher number of correct answers are more likely to have the opinion that humans are causing climate change and that both individuals and governments are responsible for addressing climate change. The lecture in climate change science significantly improved knowledge development but did not affect opinions. Knowledge was improved by 11 % after the lecture. However, the percentage of correct answers was still below 60 % indicating an urgent need for improving climate change science education.

  14. Energy and climate, strong determinants of the 21. century; Energie et climat, determinants forts du 21. siecle

    Energy Technology Data Exchange (ETDEWEB)

    Dron, D.


    This paper reprints the talk given on April 10, 2003 at the prospective meeting of the French Senate, by D. Dron, the president of the French inter-ministry mission for the greenhouse effect. In her talk, the author recalls the results obtained by the inter-governmental group for climate studies (GIEC) about the historical changes of the CO{sub 2} content of the atmosphere, the expected global warming during the coming century, and the impact on ecosystems, ice sheets, coral reefs, oceans level etc.. Then, she analyzes the evolution of fossil fuel consumptions (demand, industry, accommodations, transports) and stresses on the urgency of stabilizing the emissions of greenhouse gases by the use of more energy-efficient and alternate technologies. (J.S.)

  15. Climate adaptation policy, science and practice - Lessons for communication (United States)

    Wolf, Johanna


    In climate change adaptation research, policy, and practice, institutional culture produces distinct conceptualizations of adaptation, which in turn affect how adaptation work is undertaken. This study examines institutional culture as the four domains of norms, values, knowledge, and beliefs that are held by adaptation scientists, policy- and decision-makers, and practitioners in Western Canada. Based on 31 semi-structured interviews, this article traces the ways in which these four domains interact, intersect, converge, and diverge among scientists, policy- and decision-makers, and practitioners. By exploring the knowledge, backgrounds, goals, approaches, assumptions, and behaviours of people working in adaptation, these interviews map the ways in which institutional culture shapes adaptation work being carried out by local, provincial, and federal governments, nongovernmental organizations, and an international community of scientists (including Canadian scientists). Findings suggest that institutional culture both limits and enables adaptation actions for these actors in important ways, significantly influencing how climate change adaptation is being planned for, and carried out on the ground. As a result, this paper asserts that there is an urgent need to better understand the role that institutional culture plays in order to advance climate change adaptation, both now and in the future. Important lessons for communicating about climate science, climate impacts and adaptation will be presented.

  16. Integrating economic analysis and the science of climate instability

    International Nuclear Information System (INIS)

    Hall, Darwin C.; Behl, Richard J.


    Scientific understanding of climate change and climate instability has undergone a revolution in the past decade with the discovery of numerous past climate transitions so rapid, and so unlike the expectation of smooth climate changes, that they would have previously been unbelievable to the scientific community. Models commonly used by economists to assess the wisdom of adapting to human-induced climate change, rather than averting it, lack the ability to incorporate this new scientific knowledge. Here, we identify and explain the nature of recent scientific advances, and describe the key ways in which failure to reflect new knowledge in economic analysis skews the results of that analysis. This includes the understanding that economic optimization models reliant on convexity are inherently unable to determine an 'optimal' policy solution. It is incumbent on economists to understand and to incorporate the new science in their models, and on climatologists and other scientists to understand the basis of economic models so that they can assist in this essential effort. (author)

  17. GCMs and MDGs: can climate science reduce poverty? (United States)

    Thomson, M. C.; Connor, S. J.


    Sub-Saharan Africa, the birthplace of humankind, is seen by many, both as the least developed region of the world, and the region where the processes of globalization and sustainable development are most difficult to set in motion. Sub-Saharan African countries invariably appear en masse at the bottom of the annual UNDP Human Development Report rankings with development indicators such as life expectancy and basic nutrition levels in decline. The poorer communities are most vulnerable to adverse impacts of climate fluctuations and seen as the least able to cope with current climate variability. Sub-Saharan Africa has a population of approximately 625 million, with more than two thirds of the people dependant on rain-fed agriculture. The vast majority of the population lack access to clean water and sanitation and sub-Saharan Africa currently bears the highest burden of infectious diseases such as HIV-AIDS, TB and Malaria to be found anywhere in the world. With almost half of the region's population living on less than US$1 per day, sub-Saharan Africa accounts for one quarter of the world's poor. The rural poor are often considered to have no voice and therefore form a very weak political constituency. International development targets such as the recently articulated UN Millennium Development Goals are seen as one means of giving voice to this large but disenfranchised population. Improved management of climate sensitive sectors is essential to achieving a number of the MDgs: Poverty-Hunger, Disease, Water and sanitation. Climate information is also essential to measuring that achievement, as climate often acts as a confounder in any analysis of interventions. Here we present work on how climate science, including state of the art - multi-model ensemble seasonal climate forecasting models, are being used in support of achieving the MDGs in Africa.

  18. Improving Climate Science Education by Supporting Faculty: Climate Programs from On the Cutting Edge (United States)

    Wiese, K.; Kirk, K. B.; Manduca, C. A.; Shellito, L. J.; Sztein, E.; Bruckner, M. Z.


    Students arrive in our classrooms with a wide range of viewpoints on climate change. Some carry misconceptions resulting from media portrayal of the subject; others have strong feelings about the policy of climate change that overshadow their understanding of the science; while some already grasp the basics of climate science and are thirsty for a more in-depth treatment. In any of these cases, the topic of climate change is likely to be of high interest to students and will challenge faculty to be well-versed in the science, the policy, and in effective pedagogic strategies. The On the Cutting Edge project continues its emphasis on climate science, climate change and energy resources with ongoing professional development events. An underlying theme of all of these events is to help faculty be more effective teachers by providing up-to-date science, examples of promising pedagogies and a forum to network with others who teach similar subjects. A monthly webinar and book club series about teaching climate and energy was offered throughout the 2010-2011 academic year. These one-hour events allowed faculty a convenient way to learn about science topics such as carbon capture and storage, nuclear energy, thermohaline circulation, alternative energy, or the energy-water nexus. Some of the webinars focused on pedagogic approaches, including teaching with climate models, dealing with misconceptions, or using local energy issues for a semester-long jigsaw project. Webinar participants reported that they could expand their teaching to include these topics, they increased their comfort level in presenting those subjects and answering student questions, and they learned where to turn for additional references. An online workshop, Teaching about Earth's Climate Using Data and Numerical Models, was held in October 2010. Participants learned about different types of models, the strategies for teaching with models and how to use online datasets. The workshop also provided

  19. Combating climate change: How nuclear science and technology are making a difference

    International Nuclear Information System (INIS)

    Amano, Yukiya


    Climate change is the biggest environmental challenge of our time. As governments around the world prepare to negotiate a legally binding, universal agreement on climate at the United Nations Climate Change Conference in Paris at the end of the year, it is important that the contributions that nuclear science and technology can make to combating climate change are recognized. Nuclear science, including nuclear power, can play a significant role in both climate change mitigation and adaptation.

  20. The National Climate Assessment as a Resource for Science Communication (United States)

    Somerville, R. C. J.


    The 2014 Third National Climate Assessment (NCA3) is scientifically authoritative and features major advances, relative to other assessments produced by several organizations. NCA3 is a valuable resource for communicating climate science to a wide variety of audiences. Other assessments were often overly detailed and laden with scientific jargon that made them appear too complex and technical to many in their intended audiences, especially policymakers, the media, and the broad public. Some other assessments emphasized extensive scientific caveats, quantitative uncertainty estimates and broad consensus support. All these attributes, while valuable in research, carry the risk of impeding science communication to non-specialists. Without compromising scientific accuracy and integrity, NCA3 is written in exceptionally clear and vivid English. It includes outstanding graphics and employs powerful techniques aimed at conveying key results unambiguously to a wide range of audiences. I have used NCA3 as a resource in speaking about climate change in three very different settings: classroom teaching for undergraduate university students, presenting in academia to historians and other non-scientists, and briefing corporate executives working on renewable energy. NCA3 proved the value of developing a climate assessment with communication goals and strategies given a high priority throughout the process, not added on as an afterthought. I draw several lessons. First, producing an outstanding scientific assessment is too complex and demanding a task to be carried out by scientists alone. Many types of specialized expertise are also needed. Second, speaking about science to a variety of audiences requires an assortment of communication skills and tools, all tailored to specific groups of listeners. Third, NCA3 is scientifically impeccable and is also an outstanding example of effective communication as well as a valuable resource for communicators.

  1. Climate sciences, observation and modelling: an historical perspective

    International Nuclear Information System (INIS)

    Morel, P.; Le Treut, H.; Charles, L.


    At a time when the public perception of climate change is recovering from the controversies and vocal dissent aired during the recent years, we thought it would be interesting to begin this special issue with an interview of Pierre Morel. As the originator of physical climate studies in France, he established and led (until 1975) the Dynamic Meteorology Laboratory of CNRS, a component of the Pierre-Simon Laplace Institute (IPSL), which has become the focus of climate research in France. However his professional activities were pursued largely in an international context. Alumnus of Ecole Normale Superieure in Paris, physicist, first director of scientific research and advanced technology programs in the French space agency CNES from 1962 to 1964 and then Professor at the University of Paris, he specialized in the field of geophysical fluid dynamics. In 1967, he became a member of the international Joint Organizing Committee for the Global Atmospheric Research Programme (GARP) and eventually vice-chairman of the Committee until 1982. He conceived and promoted a number of satellite projects, in particular the operational ARGOS navigation and data collection System on NOAA polar-orbiting meteorological satellites and the European geostationary meteorological satellite Meteosat. In 1982, he became the first director of the international World Climate Research Programme that followed upon GARP and continued in this function until 1994. He then joined NASA Headquarters in the capacity as Senior Visiting Scientist in the Office of Mission to Planet Earth. This unorthodox professional career gave Pierre Morel an exceptionally broad, possibly unmatched, view of all facets of climate science and global observations. Herve Le Treut, with whom this interview was prepared and conducted, is the current director of IPSL, a member of the French Academy of Sciences, and professor at Ecole Polytechnique and University Pierre and Marie Curie of Paris. We are grateful to both for

  2. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.


    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  3. A decision science approach for integrating social science in climate and energy solutions (United States)

    Wong-Parodi, Gabrielle; Krishnamurti, Tamar; Davis, Alex; Schwartz, Daniel; Fischhoff, Baruch


    The social and behavioural sciences are critical for informing climate- and energy-related policies. We describe a decision science approach to applying those sciences. It has three stages: formal analysis of decisions, characterizing how well-informed actors should view them; descriptive research, examining how people actually behave in such circumstances; and interventions, informed by formal analysis and descriptive research, designed to create attractive options and help decision-makers choose among them. Each stage requires collaboration with technical experts (for example, climate scientists, geologists, power systems engineers and regulatory analysts), as well as continuing engagement with decision-makers. We illustrate the approach with examples from our own research in three domains related to mitigating climate change or adapting to its effects: preparing for sea-level rise, adopting smart grid technologies in homes, and investing in energy efficiency for office buildings. The decision science approach can facilitate creating climate- and energy-related policies that are behaviourally informed, realistic and respectful of the people whom they seek to aid.

  4. Climatic shocks associate with innovation in science and technology. (United States)

    De Dreu, Carsten K W; van Dijk, Mathijs A


    Human history is shaped by landmark discoveries in science and technology. However, across both time and space the rate of innovation is erratic: Periods of relative inertia alternate with bursts of creative science and rapid cascades of technological innovations. While the origins of the rise and fall in rates of discovery and innovation remain poorly understood, they may reflect adaptive responses to exogenously emerging threats and pressures. Here we examined this possibility by fitting annual rates of scientific discovery and technological innovation to climatic variability and its associated economic pressures and resource scarcity. In time-series data from Europe (1500-1900CE), we indeed found that rates of innovation are higher during prolonged periods of cold (versus warm) surface temperature and during the presence (versus absence) of volcanic dust veils. This negative temperature-innovation link was confirmed in annual time-series for France, Germany, and the United Kingdom (1901-1965CE). Combined, across almost 500 years and over 5,000 documented innovations and discoveries, a 0.5°C increase in temperature associates with a sizable 0.30-0.60 standard deviation decrease in innovation. Results were robust to controlling for fluctuations in population size. Furthermore, and consistent with economic theory and micro-level data on group innovation, path analyses revealed that the relation between harsher climatic conditions between 1500-1900CE and more innovation is mediated by climate-induced economic pressures and resource scarcity.

  5. La multiplication végétative du goyavier Psidium guayava L. sous climat soudano sahélien du nord Cameroun


    Hamasselbé, A.


    Vegetative Propagation of Guyava Psidium L. Guavaya under Sudano Sahelian Climate in the North Cameroon. Goyava (Psidium guajava L.) is a fruit tree, which is well suited to the climate of north Cameroon. After three years of mass selection at Kismatari fruit tree research station, release into farmers' fields of the high yielding selected plant material was not possible due to lake of multiplication techniques adapted to the agro-climatic conditions of this fruit tree station. Preliminary re...

  6. Global Climate Change: What Has Science Education Got to Do with It? (United States)

    Sharma, Ajay


    Despite a near universal consensus among scientists regarding the perils of climate change for human civilizations, climate change has not emerged as a key issue among science educators. This position paper advocates for the centrality of climate change in science education. Using Polanyi's critique of market in capitalist societies, it positions…

  7. Teaching Climate Science in Non-traditional Classrooms (United States)

    Strybos, J.


    San Antonio College is the oldest, largest and centrally-located campus of Alamo Colleges, a network of five community colleges based around San Antonio, Texas with a headcount enrollment of approximately 20,000 students. The student population is diverse in ethnicity, age and income; and the Colleges understand that they play a salient role in educating its students on the foreseen impacts of climate change. This presentation will discuss the key investment Alamo Colleges has adopted to incorporate sustainability and climate science into non-traditional classrooms. The established courses that cover climate-related course material have historically had low enrollments. One of the most significant challenges is informing the student population of the value of this class both in their academic career and in their personal lives. By hosting these lessons in hands-on simulations and demonstrations that are accessible and understandable to students of any age, and pursuing any major, we have found an exciting way to teach all students about climate change and identify solutions. San Antonio College (SAC) hosts the Bill R. Sinkin Eco Centro Community Center, completed in early 2014, that serves as an environmental hub for Alamo Colleges' staff and students as well as the San Antonio community. The center actively engages staff and faculty during training days in sustainability by presenting information on Eco Centro, personal sustainability habits, and inviting faculty to bring their classes for a tour and sustainability primer for students. The Centro has hosted professors from diverse disciplines that include Architecture, Psychology, Engineering, Science, English, Fine Arts, and International Studies to bring their classes to center to learn about energy, water conservation, landscaping, and green building. Additionally, Eco Centro encourages and assists students with research projects, including a solar-hydroponic project currently under development with the support

  8. Climate Change Science: The Literacy of Geography Teachers in the Western Cape Province, South Africa (United States)

    Anyanwu, Raymond; Le Grange, Lesley; Beets, Peter


    One of the universal responses to tackling global climate change is teaching climate change concepts at all levels of formal education. This response requires, among other things, teachers who are fully literate about climate change science, so that they can explain the concepts underlying the causes, impacts and solutions of climate change as…

  9. 78 FR 79478 - Advisory Committee on Climate Change and Natural Resource Science (United States)


    ... Change and Natural Resource Science AGENCY: U.S. Geological Survey, Interior. ACTION: Meeting notice... announce that the Advisory Committee on Climate Change and Natural Resource Science will hold a meeting..., National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201 Sunrise Valley Drive...

  10. 77 FR 60717 - Establishment of the Advisory Committee on Climate Change and Natural Resource Science (United States)


    ... engagement of key partners at the regional Climate Science Center level. Advise on the nature and... Change and Natural Resource Science AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of... seeking nominations for the Advisory Committee on Climate Change and Natural Resource Science (Committee...

  11. Climate: science, ideology and politics. An emblematic controversy; Climat: science, ideologie et politique. Une controverse emblematique

    Energy Technology Data Exchange (ETDEWEB)

    Lebeau, A. [Conservatoire National des Arts et Metiers - CNAM, 75 - Paris (France); Societe Meteorologique de France SMF, 75 - Paris (France)


    Climate change is now a familiar subject for most of the individuals living in the industrialized countries, and no doubt a subject of growing interest in the emergent countries such as China. How has this theme lodged itself in public debate? Who are the actors in that debate and how much of a part do they play? Andre Lebeau has examined these questions, attempting to determine how this initially highly scientific subject has, over time, found a foothold in economic, political and media debate. (author)

  12. Understanding and managing trust at the climate science-policy interface (United States)

    Lacey, Justine; Howden, Mark; Cvitanovic, Christopher; Colvin, R. M.


    Climate change effects are accelerating, making the need for appropriate actions informed by sound climate knowledge ever more pressing. A strong climate science-policy relationship facilitates the effective integration of climate knowledge into local, national and global policy processes, increases society's responsiveness to a changing climate, and aligns research activity to policy needs. This complex science-policy relationship requires trust between climate science `producers' and `users', but our understanding of trust at this interface remains largely uncritical. To assist climate scientists and policymakers, this Perspective provides insights into how trust develops and operates at the interface of climate science and policy, and examines the extent to which trust can manage — or even create — risk at this interface.

  13. Climate Change Adaptation Act : report of the Committee on Commerce, Science, and Transportation on S. 2355 (United States)


    The Committee on Commerce, Science, and Transportation, to which was referred the bill (S. 2355) to amend the National Climate Program Act to enhance the ability of the United States to : develop and implement climate change adaptation programs and p...

  14. Opinions and Knowledge About Climate Change Science in High School Students

    DEFF Research Database (Denmark)

    Harker-Schuch, Inez; Henriksen, Christian Bugge


    in national and international schools before and after a lecture in climate change science. The results show that knowledge about climate change science significantly affects opinions about climate change. Students with a higher number of correct answers are more likely to have the opinion that humans......This study investigates the influence of knowledge on opinions about climate change in the emerging adults' age group (16-17 years). Furthermore, the effects of a lecture in climate change science on knowledge and opinions were assessed. A survey was conducted in Austria and Denmark on 188 students...... are causing climate change and that both individuals and governments are responsible for addressing climate change. The lecture in climate change science significantly improved knowledge development but did not affect opinions. Knowledge was improved by 11 % after the lecture. However, the percentage...

  15. Climate Engineering: A Nexus of Ethics, Science and Governance (United States)

    Ackerman, T. P.


    Climate engineering (or geoengineering) has emerged as a possible component of a strategy to mitigate global warming. This emergence has produced a novel intersection of atmospheric science, environmental ethics and global governance. The scientific questions of climate engineering, while difficult to answer in their own right, are compounded by ethical considerations regarding whether these questions should be addressed and governance questions of how research and deployment could be managed. In an effort to address this intersection of ideas and provide our students with a rich interdisciplinary experience, we (T. Ackerman and S. Gardiner, both senior professors at the University of Washington) taught a cross-listed course in the Atmospheric Sciences and Philosophy departments. The course attracted 12 students (mostly graduate students but with two upper level undergraduates), with roughly equal representation from environmental sciences, ethics, and public policy disciplines, as well as two post-docs. Our primary goal for the course was to develop a functioning research community to address the core issues at the intersection of science and ethics. In this presentation, we discuss the course structure, identify strategies that were successful (or less so), and describe outcomes. We consider this course to be primarily pedagogical in nature, but we also recognize that many of the students in the class, perhaps even a majority, are intending to pursue careers outside academia in areas of public policy, environmental consulting, etc., which added an extra dimension to our class. Here, we also discuss the possibility of developing and teaching such courses in an academic environment that is stressed financially and increasingly dependent on metrics related to class size and student credit hours.

  16. Impact of climate change on heavy precipitation events of the Mediterranean basin; Impact du changement climatique sur les evenements de pluie intense du bassin mediterraneen

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, D.; Beaulant, A.L.; Deque, M.; Ducrocq, V.; Joly, A.; Joly, B.; Martin, E.; Nuissier, O.; Quintana Segui, P.; Ribes, A.; Sevault, F.; Somot, S. [Meteo-France et CNRS, Groupe d' Etude de l' Atmosphere Meteorologique (GAME), 31 - Toulouse (France); Boe, J. [California Univ., Dept. of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States)


    A second topic covered by the CYPRIM project aims to characterize the evolution of heavy precipitation events in Mediterranean in the context of climate change. To this end, a continuous climate simulation from 1960 to 2099 has been run using a regional ocean-atmosphere coupled model under IPCC A2 emission scenario. Various techniques of down-scaling, down to the very fine 2 km scale, and methods to highlight synoptic environments favourable to heavy rain, have been used to estimate the impact of climate change on precipitation and hydrology over South-East France, both for the whole autumn season and the heavy rain events. (authors)

  17. Story - Science - Solutions: A new middle school science curriculum that promotes climate-stewardship (United States)

    Cordero, E.; Centeno Delgado, D. C.


    Over the last five years, Green Ninja has been developing educational media to help motivate student interest and engagement around climate science and solutions. The adoption of the Next Generation Science Standards (NGSS) offers a unique opportunity where schools are changing both what they teach in a science class and how they teach. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, Green Ninja developed a technology focused, integrative, and yearlong science curriculum (6th, 7th and 8th grade) focused broadly around solutions to environmental problems. The use of technology supports the development of skills valuable for students, while also offering real-time metrics to help measure both student learning and environmental impact of student actions. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that have created environmental benefits that transcend the traditional classroom. The notion that formal education, if done correctly, can be leveraged as a viable climate mitigation strategy will be discussed.

  18. Science - and Antiscience - in the Climate and Evolution Debates (United States)

    Neff, T.; Ammann, C.; Grinspoon, D.; Tans, P.


    The Enlightenment is more than 300 years old. Those of us lucky enough to live in a developed country find ourselves entirely dependent on an array of technologies empowered by the cumulative advances of science. Yet surveys repeatedly show a large percentage of Americans to be either ignorant of science and the scientific method or outright dubious of them. Gallup polls have consistently found that more than four in 10 respondents believe that God created man in its present form. An October 2009 poll by the Pew Research Center for the People and the Press found that just 36 percent of Americans surveyed believed there was "solid evidence the Earth is warming," down from 47 percent in April 2008. The scientific evidence supporting evolution and anthropogenic climate change is overwhelming. Yet nowhere has the battle of science versus ignorance and skepticism been more pitched than in these realms. What forces drive these antiscientific world views? How can scientists and their allies counter them? What can education and public outreach experts in one of science's most publicly digestible realms - space and astronomy - learn from those who have been in the trenches? How can you help build a more scientifically literate society at a time when elected leaders have needed a rational support base like never before?

  19. Climate state: Science-state struggles and the formation of climate science in the US from the 1930s to 1960s. (United States)

    Baker, Zeke


    This article has two aims: first, to understand the co-production of climate science and the state, and second, to provide a test case for Pierre Bourdieu's field theory. To these ends, the article reconstructs the historical formation of a US climate science field, with an analytic focus on inter-field dynamics and heterogeneous networking practices. Drawing from primary- and secondary-source materials, the historical analysis focuses on relations between scientists and state actors from the 1930s to the 1960s. The account shows how actors with positions linking scientific and bureaucratic fields constructed critical nodes and 'hinges' that co-produced war-making and state expansion on the one hand, and a relatively autonomous climate science field on the other. The analysis explains the emergence of climate science by focusing on the WWII-era transformation of meteorology and oceanography into distinct disciplines, the emergence of 'basic' research as a central principle of post-war government, and the formation of a climate science field by the 1960s centered on computerized modeling and populated by an interdisciplinary scientific elite. The article concludes by indicating how these processes led to the subsequent development of climate change as a science-state conundrum that has reorganized the climate science field in recent decades.

  20. Effective Use of Social Media in Communicating Climate Science (United States)

    Sinclair, P. W.


    The internet and social media have been a critical vector for misinformation on climate change. Scientists have not always been proactive or effective in utilizing the medium to bring attention to the best science, to correct misinformation and overcome urban myths. Similarly, mainstream journalists have been handicapped in dealing with the wide open nature of the medium, and often muted by editorial concerns or budget restrictions. Independent communicators who are highly motivated can make inroads in this area by using the internet's immediacy and connectivity to consistently connect viewers and readers to reliable information. Over the last 4 years, I have developed a series of you tube videos, made deliberately provocative to engage the internet's confrontational culture, but carefully crafted to bring the best science into the freewheeling community. In doing so, I have won the confidence of leading climate scientists, and in some cases assisted them in clarifying their message. This presentation will share simple tips, useful practices, and effective strategies for making complex material more clear and user friendly, and help scientists better convey the stories hidden in their data.

  1. Enabling Efficient Climate Science Workflows in High Performance Computing Environments (United States)

    Krishnan, H.; Byna, S.; Wehner, M. F.; Gu, J.; O'Brien, T. A.; Loring, B.; Stone, D. A.; Collins, W.; Prabhat, M.; Liu, Y.; Johnson, J. N.; Paciorek, C. J.


    A typical climate science workflow often involves a combination of acquisition of data, modeling, simulation, analysis, visualization, publishing, and storage of results. Each of these tasks provide a myriad of challenges when running on a high performance computing environment such as Hopper or Edison at NERSC. Hurdles such as data transfer and management, job scheduling, parallel analysis routines, and publication require a lot of forethought and planning to ensure that proper quality control mechanisms are in place. These steps require effectively utilizing a combination of well tested and newly developed functionality to move data, perform analysis, apply statistical routines, and finally, serve results and tools to the greater scientific community. As part of the CAlibrated and Systematic Characterization, Attribution and Detection of Extremes (CASCADE) project we highlight a stack of tools our team utilizes and has developed to ensure that large scale simulation and analysis work are commonplace and provide operations that assist in everything from generation/procurement of data (HTAR/Globus) to automating publication of results to portals like the Earth Systems Grid Federation (ESGF), all while executing everything in between in a scalable environment in a task parallel way (MPI). We highlight the use and benefit of these tools by showing several climate science analysis use cases they have been applied to.

  2. The Climate Science Special Report: Detection and Attribution (United States)

    Wehner, M. F.


    The Climate Science Special Report reiterates previous findings about the human influence on global mean surface air temperature with the statement "…it is extremely likely that human activities, especially emissions of greenhouse gases, are the dominant cause of the observed warming since the mid 20th century. For the warming over the last century, there is no convincing alternative explanation supported by the extent of the observational evidence." This is a statement made with high confidence and supported by multiple lines of evidence. The report also assesses the latest developments in the field of probabilistic extreme event attribution—the quantification of the influence of anthropogenic climate change on individual extreme weather events—with a focus on those recent events within the United States that have been analyzed. Thirty different events within the US are reported on including heat waves, cold snaps, wet seasons, individual storms and droughts. Most but not all of the individual US events studied revealed an influence from human induced changes to the climate system.

  3. La multiplication végétative du goyavier Psidium guayava L. sous climat soudano sahélien du nord Cameroun

    Directory of Open Access Journals (Sweden)

    Hamasselbé, A.


    Full Text Available Vegetative Propagation of Guyava Psidium L. Guavaya under Sudano Sahelian Climate in the North Cameroon. Goyava (Psidium guajava L. is a fruit tree, which is well suited to the climate of north Cameroon. After three years of mass selection at Kismatari fruit tree research station, release into farmers' fields of the high yielding selected plant material was not possible due to lake of multiplication techniques adapted to the agro-climatic conditions of this fruit tree station. Preliminary results of vegetative propagation trials showed that grafting and aerial layering are not practicable at Kismatari station. Terrestrial layering is the most adapted multiplication technique for a massive production of homogeneous plant material to meet research and farmers' needs.

  4. Increasing the usability of climate science in political decision-making

    Directory of Open Access Journals (Sweden)

    Emily R. Newsom


    Full Text Available Abstract As climate-science graduate students at the University of Washington, we had the opportunity to engage in a political process focused on implementing legislation to reduce greenhouse gas emissions in Washington State. Our insights gained from this rare, first-hand, experience may be particularly relevant to other climate scientists. We argue that inflexible research goals within the United States climate-science community limit the relevance of the knowledge our community creates. The mismatch between climate-science research and the information needs of policy makers, while widely acknowledged in certain domains, has yet to be fully appreciated within many earth science disciplines. Broadening the climate-science training of graduate students to include education on the uses of climate information outside of academic settings would both inform and motivate new research directions, and engender validation of non-traditional research within disciplinary cultures.

  5. Biological and Environmental Research: Climate and Environmental Sciences Division: U.S./European Workshop on Climate Change Challenges and Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mather, James [Pacific Northwest National Laboratory; McCord, Raymond [Oak Ridge National Laboratory; Sisterson, Doug [Argonne National Laboratory; Voyles, Jimmy [Pacific Northwest National Laboratory


    The workshop aimed to identify outstanding climate change science questions and the observational strategies for addressing them. The scientific focus was clouds, aerosols, and precipitation, and the required ground- and aerial-based observations. The workshop findings will be useful input for setting priorities within the Department of Energy (DOE) and the participating European centers. This joint workshop was envisioned as the first step in enhancing the collaboration among these climate research activities needed to better serve the science community.

  6. Assessing Student Knowledge of Chemistry and Climate Science Concepts Associated with Climate Change: Resources to Inform Teaching and Learning (United States)

    Versprille, Ashley; Zabih, Adam; Holme, Thomas A.; McKenzie, Lallie; Mahaffy, Peter; Martin, Brian; Towns, Marcy


    Climate change is one of the most critical problems facing citizens today. Chemistry faculty are presented with the problem of making general chemistry content simultaneously relevant and interesting. Using climate science to teach chemistry allows faculty to help students learn chemistry content in a rich context. Concepts related to…

  7. Successfully Engaging Family and Student Audiences in Climate Science Workshops in an Informal Learning Venue (United States)

    DeFrancis, G.; Haynes, R.; Schroer, K.


    The Montshire Museum of Science, a regional science center serving families, teachers, and students in rural Vermont and New Hampshire, has been actively engaged in in climate literacy initiatives for over 10 years. The Museum's visitor evaluation data shows that before audiences can be engaged in conversations around climate change, they need to be introduced to the underlying earth processes that drive climate, and to the nature of how climate science is done. Through this work, the Museum has developed a suite of climate science programs that can be incorporated in informal science programming at museums, science centers, and libraries, and in the formal K-8 classroom environment. Front-end and formative evaluation data was used in the program design, and summative evaluation showed an increase in concept understanding in the topic presented. Family science and student workshops developed focused on Albedo and the Earth's energy budget, properties and characteristics of sea ice, sediment cores and ice cores to study changes in the climate over time, and the geography of the polar regions. We found that successful climate literacy learning experiences require meaningful hands-on, inquiry-based activities focused on a single earth process, and leads to an increase in science talk and conversation about climate change between the program instructor and audience members as learners begin to understand how these processes interact in the Earth's climate system.

  8. Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning (United States)

    Ozbay, G.; Sriharan, S.; Fan, C.


    As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.

  9. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2016 (United States)

    Weiskopf, Sarah R.; Varela Minder, Elda; Padgett, Holly A.


    Introduction2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.

  10. Le Contrat Administratif Normatif - Source du Droit de la Science et de l’innovation

    Directory of Open Access Journals (Sweden)

    Victor Balmus


    Full Text Available Administrative law contract can serve as a basis both for subsequent completion ofadministrative regulations or individual, and the same type of contracts, becoming one of theconventional universal means of state administration, as well as acts as a means of overridingadministration state. Partnership Agreement between the Government and the Academy of Sciencesof Moldova is a genuine normative law contract and a conventional source of administrative lawsphere of science and innovation that ensure the competence of the Government delegation in theAcademy of Sciences of Moldova's sphere of science and innovation.

  11. Web-based Visual Analytics for Extreme Scale Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Steed, Chad A [ORNL; Evans, Katherine J [ORNL; Harney, John F [ORNL; Jewell, Brian C [ORNL; Shipman, Galen M [ORNL; Smith, Brian E [ORNL; Thornton, Peter E [ORNL; Williams, Dean N. [Lawrence Livermore National Laboratory (LLNL)


    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via new visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.

  12. Etienne Klein Les sciences à la conquête du temps

    CERN Multimedia

    Franco, Fabien


    Etienne Klein grouped some of his works to the subject of time. On the occasion of his participation to thr 16e Sciences Festival in Chamonix, he gives a part of its thoughts about this matter (3 pages)

  13. Une vision du futur 11e édition de la Fête de la Science

    CERN Multimedia

    Marty, Alunia


    The eleventh Festival of Science will include demonstrations, explanations, pictures, and interactive displays on the theme of matter. The festivalwill be organised by the Association Euroscience-Léman, CERN and the University of Geneva (1 page)

  14. Tribal engagement strategy of the South Central Climate Science Center, 2014 (United States)

    Andrews, William J.; Taylor, April; Winton, Kimberly T.


    The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.

  15. In Brief: Science academies' statement on climate change (United States)

    Showstack, Randy


    “It is essential that world leaders agree on emissions reductions needed to combat negative consequences of anthropogenic climate change,” national science academies from 13 countries declared in a joint statement issued on 11 June. The statement, issued by the academies of the G8 countries—including England, France, Russia, and the United States—and five other countries (Brazil, China, India, Mexico, and South Africa), came in advance of a G8 meeting in Italy in July and prior to United Nations Framework Convention on Climate Change (UNFCCC) negotiations in Denmark in December. “The G8+5 should lead the transition to an energy-efficient and low-carbon world economy, and foster innovation and research and development for both mitigation and adaptation technologies,” the statement noted. The academies urged governments to agree at the UNFCCC negotiations to adopt a long-term global goal and short-term emissions reduction targets so that by 2050 global emissions would be reduced by about 50% from 1990 levels.

  16. Anthropogenic Climate Change in Undergraduate Marine and Environmental Science Programs in the United States (United States)

    Vlietstra, Lucy S.; Mrakovcich, Karina L.; Futch, Victoria C.; Stutzman, Brooke S.


    To develop a context for program-level design decisions pertaining to anthropogenic climate change, the authors studied the prevalence of courses focused on human-induced climate change in undergraduate marine science and environmental science degree programs in the United States. Of the 86 institutions and 125 programs the authors examined, 37%…

  17. Using the Socioscientific Context of Climate Change to Teach Chemical Content and the Nature of Science (United States)

    Flener-Lovitt, Charity


    A thematic course called "Climate Change: Chemistry and Controversy" was developed for upper-level non-STEM students. This course used the socioscientific context of climate change to teach chemical principles and the nature of science. Students used principles of agnotology (direct study of misinformation) to debunk climate change…

  18. Turkish Pre-Service Science Teachers' Awareness, Beliefs, Values, and Behaviours Pertinent to Climate Change (United States)

    Higde, Emrah; Oztekin, Ceren; Sahin, Elvan


    This study examined Turkish pre-service science teachers' awareness, uncertainty beliefs, values, and behaviours pertinent to climate change. It aimed to determine significant predictors of climate change-related behaviours and uncertainty beliefs about the reality of climate change. A Turkish-adapted survey was administered to 1277 pre-service…

  19. Experts' workshop on critical issues in the science of global climate change. Proceedings

    International Nuclear Information System (INIS)


    A summary is given of the International Petroleum Industry Environmental Conservation Association's Workshop on 'Critical issues in the science of global climate change' held in 1994. The topics of the panel sessions were (1) modelling global climate change: capabilities and limitations; (2)the physics and chemistry of greenhouse gas concentrations; (3) other factors in predicting climate change; and (4) ecosystem response. (UK)

  20. NASA faked the moon landing--therefore, (climate) science is a hoax: an anatomy of the motivated rejection of science. (United States)

    Lewandowsky, Stephan; Oberauer, Klaus; Gignac, Gilles E


    Although nearly all domain experts agree that carbon dioxide emissions are altering the world's climate, segments of the public remain unconvinced by the scientific evidence. Internet blogs have become a platform for denial of climate change, and bloggers have taken a prominent role in questioning climate science. We report a survey of climate-blog visitors to identify the variables underlying acceptance and rejection of climate science. Our findings parallel those of previous work and show that endorsement of free-market economics predicted rejection of climate science. Endorsement of free markets also predicted the rejection of other established scientific findings, such as the facts that HIV causes AIDS and that smoking causes lung cancer. We additionally show that, above and beyond endorsement of free markets, endorsement of a cluster of conspiracy theories (e.g., that the Federal Bureau of Investigation killed Martin Luther King, Jr.) predicted rejection of climate science as well as other scientific findings. Our results provide empirical support for previous suggestions that conspiratorial thinking contributes to the rejection of science. Acceptance of science, by contrast, was strongly associated with the perception of a consensus among scientists.

  1. Sciences et société sociologie du travail scientifique

    CERN Document Server

    Vinck, Dominique


    Sciences et techniques sont plus que jamais impliquées dans nos grands problèmes de société. Explosion des nanotechnologies, controverse sur les OGM, changement climatique, etc., autant de thématiques dont la compréhension et la maîtrise impliquent aussi de mieux connaître les dynamiques sociales de fabrication de connaissances et des innovations. Le présent ouvrage, refonte complète de la Sociologie des sciences (1995, dans la même collection), relève ce défi. Il présente les différentes formes d'articulation sciences / société (émergence des sciences, dynamique d'innovation, démocratie technique) et les principaux mécanismes sociaux qui font vivre les sciences (institutions, organisations, échanges entre chercheurs, construction des contenus, etc.). Il permet d'appréhender la culture matérielle et cognitive d'un laboratoire comme le fonctionnement des marchés de l'emploi scientifique. Au-delà, en référence aux grands auteurs, courants de pensée et débats, il aide à mieux compre...

  2. Greenhouse effect: science or religion of the 21. century; Effet de serre: science ou religion du 21. siecle

    Energy Technology Data Exchange (ETDEWEB)

    Ploye, F


    This book is a study about the natural phenomenon of the greenhouse effect, about its importance for the development of life on the Earth's surface and about the effect of human activities on its enhancement and on the future climatic changes. In particular, the increase of the greenhouse gases content of the atmosphere due to the combustion of fossil fuels is analyzed and some possible solutions to oppose this evolution are evoked. (J.S.)

  3. Entre servitude et autonomie. Quelle place pour l’écriture dans les sciences du langage ?*

    Directory of Open Access Journals (Sweden)

    Klinkenberg Jean-Marie


    Full Text Available Une controverse, dont les origines remontent à l’Antiquité, secoue régulièrement les sciences du langage, et a marqué certains moments importants de l’histoire de la linguistique française : elle concerne le caractère dérivé ou autonome de l’écriture par rapport à l’expression orale. Dans ce débat interviennent des considérations linguistiques, mais aussi historiques, esthétiques et philosophiques. On examinera ici les thèses des autonomistes (parmi lesquels on distinguera les autonomistes radicaux et les autonomistes relatifs et des glossographistes (également répartis entre radicaux et relatifs pour faire apparaitre les conséquences ultimes, et souvent aporétiques, de leurs positions. Dans un exposé dont la spécificité sera qu’il mobilise autant les acquis de la sémiotique visuelle et de la sémiotique de l’espace que ceux de la linguistique, nous testerons l’intérêt et les limites de ces positions, pour énoncer une série de conditions auxquelles un système sémiotique doit obéir pour pouvoir être appelé écriture, et finalement aboutir à une définition de l’écriture échappant aux critiques.

  4. Development and validation of the ACSI : measuring students' science attitudes, pro-environmental behaviour, climate change attitudes and knowledge

    NARCIS (Netherlands)

    Dijkstra, E. M.; Goedhart, M. J.


    This article describes the development and validation of the Attitudes towards Climate Change and Science Instrument. This 63-item questionnaire measures students' pro-environmental behaviour, their climate change knowledge and their attitudes towards school science, societal implications of

  5. Challenges and Opportunities for Integrating Social Science Perspectives into Climate and Global Change Assessments (United States)

    Larson, E. K.; Li, J.; Zycherman, A.


    Integration of social science into climate and global change assessments is fundamental for improving understanding of the drivers, impacts and vulnerability of climate change, and the social, cultural and behavioral challenges related to climate change responses. This requires disciplinary and interdisciplinary knowledge as well as integrational and translational tools for linking this knowledge with the natural and physical sciences. The USGCRP's Social Science Coordinating Committee (SSCC) is tasked with this challenge and is working to integrate relevant social, economic and behavioral knowledge into processes like sustained assessments. This presentation will discuss outcomes from a recent SSCC workshop, "Social Science Perspectives on Climate Change" and their applications to sustained assessments. The workshop brought academic social scientists from four disciplines - anthropology, sociology, geography and archaeology - together with federal scientists and program managers to discuss three major research areas relevant to the USGCRP and climate assessments: (1) innovative tools, methods, and analyses to clarify the interactions of human and natural systems under climate change, (2) understanding of factors contributing to differences in social vulnerability between and within communities under climate change, and (3) social science perspectives on drivers of global climate change. These disciplines, collectively, emphasize the need to consider socio-cultural, political, economic, geographic, and historic factors, and their dynamic interactions, to understand climate change drivers, social vulnerability, and mitigation and adaptation responses. They also highlight the importance of mixed quantitative and qualitative methods to explain impacts, vulnerability, and responses at different time and spatial scales. This presentation will focus on major contributions of the social sciences to climate and global change research. We will discuss future directions for

  6. Du changement conceptuel a la complexification conceptuelle dans l'apprentissage des sciences (United States)

    Belanger, Michel

    Science learning has often been thought as a replacement process; learners' spontaneous ideas must be replaced by scientific ones. Many learning models in science education were formulated in this way (at least implicitly). But theses spontaneous ideas proved to be more resistant than initially thought. Several researchers concluded that students often possess an odd combination of intuitive and scientific ideas. Generally, the phenomenon of "multiple conceptions" refers to students having a repertoire of different conceptions, each associated with a context of relevance. A number of researchers in science education constructed models of this phenomenon, but none included a systematic treatment of what we consider one of its most important aspects: the fact that these multiple conceptions are not isolated within the cognitive structure, but integrated into a whole in many ways. This whole constitute a complex of conceptions, whence our utilisation of the expression "conceptual complexification" to designate this form of learning. Using ideas in the conceptual change literature and in philosophy of science, we propose five kinds of cognitive structures that could play an intermediary role between alternative conceptions, allowing the management of their multiplicity: descriptive, evaluative, explicative, transformative, and decisional. In the empirical section of the research, we explore specifically decisional structures, which are responsible for the selection of one conception of the repertoire. In order to do so, we submitted two series of tasks to eight collegial and undergraduate students in two situations. In the first tasks, subjects are asked to explain three phenomena (one biological and two physical) to fictive audiences of various ages (6 to 15 years old). In the second tasks, students' understanding of the quantum version of the Young's interference experiment is probed in order study their understanding of the demarcation between quantum and classical

  7. Using Virtualization to Integrate Weather, Climate, and Coastal Science Education (United States)

    Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.


    To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a

  8. Climate Science News 2.0 at NSIDC (United States)

    Leitzell, K.; Meier, W.; Serreze, M. C.; Stroeve, J. C.; Scambos, T. A.


    How does a small science and data center step into new media? We do not have a lot of time to blog daily, maintain multiple social media accounts, monitor comments, or to constantly buff our image in the fast-changing world of social media. At the same time, the National Snow and Ice Data Center (NSIDC)'s news announcements and updates on Arctic sea ice reach a huge audience. We have answers to the questions about Arctic climate change that many people are asking, and we want to share that information with people who get their news from non-traditional sources. How can we take advantage of new technologies to help our information reach the largest number of people, without overwhelming our limited resources? So far our approach has been to continue offering innovative, insightful content that in some ways sells itself. We use social media as a tool to share this popular content, emphasizing quality over quantity (We do not tweet every day, but when we do, people listen). We also use social media as a research and "buzz-monitoring" tool to learn more about and to interact with our diverse audience. Even before NSIDC ventured onto Twitter and Facebook, people were using these tools to share our content. Social media allowed us to passively enjoy their benefits, as our regular readers shared updates with their friends and colleagues. The news, analysis, and data we provide were unique, and that made them attractive to a broad readership. By dipping a toe into social media, however, we found that we could start sharing our content with more control, and that a little effort goes a long way in spreading the word. In this presentation/poster we will show how NSIDC is using Twitter, Facebook, and the new Icelights Web site, to communicate with the public about changing sea ice and climate.

  9. A history of the science and politics of climate change: the role of the Intergovernmental Panel on Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Bolin, B. [University of Stockholm, Stockholm (Sweden)


    In response to growing concern about human-induced global climate change, the UN Intergovernmental Panel on Climate Change (IPCC) was formed in 1988. Written by its first Chairman, this book is a unique overview of the history of the IPCC. It describes and evaluates the intricate interplay between key factors in the science and politics of climate change, the strategy that has been followed, and the regretfully slow pace in getting to grips with the uncertainties that have prevented earlier action being taken. The book also highlights the emerging conflict between establishing a sustainable global energy system and preventing a serious change in global climate. Contents are: Part I. The Early History of the Climate Change Issue: 1. Nineteenth century discoveries; 2. The natural carbon cycle and life on earth; 3. Global research initiatives in meteorology and climatology; 4. Early international assessments of climate change; Part II. The Climate Change Issue Becomes One of Global Concern: 5. Setting the stage; 6. The scientific basis for a climate convention; 7. Serving the Intergovernmental Negotiating Committee; 8. The Second IPP Assessment Report; 9. In the aftermath of the IPCC Second Assessment; 10. The Kyoto Protocol is agreed and a third assessment begun; 11. A decade of hesitance and slow progress; Part III. A Turning Point in Addressing Climate Change?: 12. Key scientific finding of prime political relevance; 13. Climate change and the future global energy supply system; Concluding remarks. 9 figs.

  10. Traitements didactiques preventifs d'un type de conceptions erronees en sciences physiques chez des eleves du secondaire (United States)

    Blondin, Andre

    Dans un contexte constructiviste, les connaissances anterieures d'un individu sont essentielles a la construction de nouvelles connaissances. Quelle qu'en soit la source (certaines de ces connaissances ont ete elaborees en classe, d'autres ont ete elaborees par interaction personnelle de l'individu avec son environnement physique et social), ces connaissances, une fois acquises, constituent les matieres premieres de l'elaboration des nouvelles conceptions de cet individu. Generalement, cette influence est consideree comme positive. Cependant, dans un milieu scolaire ou l'apprentissage de certaines conceptions enchassees dans un programme d'etudes et enterinees par l'ensemble d'une communaute est obligatoire, certaines connaissances anterieures peuvent entraver la construction des conceptions exigees par la communaute. La litterature abonde de tels exemples. Cependant, certaines connaissances anterieures, en soi tout a fait conformes a l'Heritage, peuvent aussi, parce qu'utilisees de facon non pertinente, entraver la construction d'une conception exigee par la communaute. Ici, la litterature nous donne peu d'exemples de ce type, mais nous en fournirons quelques-uns dans le cadre theorique, et ce sera un d'entre eux qui servira de base a nos propos. En effet, une grande proportion d'eleves inscrits a un cours de sciences physiques de la quatrieme secondaire, en reponse a un probleme deja solutionne durant l'annee et redonne lors d'un examen sommatif, "Pourquoi la Lune nous montre-t-elle toujours la meme face?", attribue principalement la cause de ce phenomene a la rotation de la Terre sur son axe. En tant que responsable de l'enseignement de ce programme d'etudes, plusieurs questions nous sont venues a l'esprit, entre autres, comment, dans un contexte constructiviste, est-il possible de reduire chez un eleve, l'impact de cette connaissance anterieure dans l'elaboration de la solution et ainsi prevenir la construction d'une conception erronee? Nous avons teste nos

  11. NASA and the National Climate Assessment: Promoting awareness of NASA Earth science (United States)

    Leidner, A. K.


    NASA Earth science observations, models, analyses, and applications made significant contributions to numerous aspects of the Third National Climate Assessment (NCA) report and are contributing to sustained climate assessment activities. The agency's goal in participating in the NCA was to ensure that NASA scientific resources were made available to understand the current state of climate change science and climate change impacts. By working with federal agency partners and stakeholder communities to develop and write the report, the agency was able to raise awareness of NASA climate science with audiences beyond the traditional NASA community. To support assessment activities within the NASA community, the agency sponsored two competitive programs that not only funded research and tools for current and future assessments, but also increased capacity within our community to conduct assessment-relevant science and to participate in writing assessments. Such activities fostered the ability of graduate students, post-docs, and senior researchers to learn about the science needs of climate assessors and end-users, which can guide future research activities. NASA also contributed to developing the Global Change Information System, which deploys information from the NCA to scientists, decision makers, and the public, and thus contributes to climate literacy. Finally, NASA satellite imagery and animations used in the Third NCA helped the pubic and decision makers visualize climate changes and were frequently used in social media to communicate report key findings. These resources are also key for developing educational materials that help teachers and students explore regional climate change impacts and opportunities for responses.

  12. La théorie du chaos vers une nouvelle science

    CERN Document Server

    Gleick, James


    Là où commence le chaos s'arrêtait jusqu'ici la science. Or, dans les années 70, quelques scientifiques français et américains ont commencé à explorer le chaos. A la surprise générale celui-ci s'est révélé gouverné par un ordre dynamique qui a permis d'expliquer bien des phénomènes naturels jusqu'ici totalement incompréhensibles.

  13. Climate Change Education Today in K-12: What's Happening in the Earth and Space Science Classroom? (United States)

    Holzer, M. A.; National Earth Science Teachers Association


    Climate change is a highly interdisciplinary topic, involving not only multiple fields of science, but also social science and the humanities. There are many aspects of climate change science that make it particularly well-suited for exploration in the K-12 setting, including opportunities to explore the unifying processes of science such as complex systems, models, observations, change and evolution. Furthermore, this field of science offers the opportunity to observe the nature of science in action - including how scientists develop and improve their understanding through research and debate. Finally, climate change is inherently highly relevant to students - indeed, students today will need to deal with the consequences of the climate change. The science of climate change is clearly present in current science education standards, both at the National level as well as in the majority of states. Nonetheless, a significant number of teachers across the country report difficulties addressing climate change in the classroom. The National Earth Science Teachers Association has conducted several surveys of Earth and space science educators across the country over the past several years on a number of issues, including their needs and concerns, including their experience of external influences on what they teach. While the number of teachers that report external pressures to not teach climate change science are in the minority (and less than the pressure to not teach evolution and related topics), our results suggest that this pressure against climate change science in the K-12 classroom has grown over the past several years. Some teachers report being threatened by parents, being encouraged by administrators to not teach the subject, and a belief that the "two sides" of climate change should be taught. Survey results indicate that teachers in religious or politically-conservative districts are more likely to report difficulties in teaching about climate change than in

  14. NGSS-Aligned, K-12 Climate Science Curricula, taught with citizen science and teacher-led inquiry methods (United States)

    Zainfeld, S.


    Teacher-led inquiry into student learning is a promising method of formative assessment to gain insight into student achievement. NGSS-aligned K-12 Climate Science curricula taught with citizen science and teacher-led inquiry methods are described, along with results from a scientist-teacher collaboration survey.

  15. CHARMe Commentary metadata for Climate Science: collecting, linking and sharing user feedback on climate datasets (United States)

    Blower, Jon; Lawrence, Bryan; Kershaw, Philip; Nagni, Maurizio


    The research process can be thought of as an iterative activity, initiated based on prior domain knowledge, as well on a number of external inputs, and producing a range of outputs including datasets, studies and peer reviewed publications. These outputs may describe the problem under study, the methodology used, the results obtained, etc. In any new publication, the author may cite or comment other papers or datasets in order to support their research hypothesis. However, as their work progresses, the researcher may draw from many other latent channels of information. These could include for example, a private conversation following a lecture or during a social dinner; an opinion expressed concerning some significant event such as an earthquake or for example a satellite failure. In addition, other sources of information of grey literature are important public such as informal papers such as the arxiv deposit, reports and studies. The climate science community is not an exception to this pattern; the CHARMe project, funded under the European FP7 framework, is developing an online system for collecting and sharing user feedback on climate datasets. This is to help users judge how suitable such climate data are for an intended application. The user feedback could be comments about assessments, citations, or provenance of the dataset, or other information such as descriptions of uncertainty or data quality. We define this as a distinct category of metadata called Commentary or C-metadata. We link C-metadata with target climate datasets using a Linked Data approach via the Open Annotation data model. In the context of Linked Data, C-metadata plays the role of a resource which, depending on its nature, may be accessed as simple text or as more structured content. The project is implementing a range of software tools to create, search or visualize C-metadata including a JavaScript plugin enabling this functionality to be integrated in situ with data provider portals

  16. The National Climate Change and Wildlife Science Center annual report for 2013 (United States)

    Varela-Acevedo, Elda


    In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $93 million (through FY13) in cutting-edge climate change research and, in response to Secretarial Order No. 3289, established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). In 2013:

  17. Paraconsistency, Pluralistic Models and Reasoning in Climate Science

    Directory of Open Access Journals (Sweden)

    Bryson Brown


    Full Text Available Scientific inquiry is typically focused on particular questions about particular objects and properties.  This leads to a multiplicity of models which, even when they draw on a single, consistent body of concepts and principles, often employ different methods and assumptions to model different systems.  Pluralists have remarked on how scientists draw on different assumptions to model different systems, different aspects of systems and systems under different conditions and defended the value of distinct, incompatible models within science at any given time. (Cartwright, 1999; Chang, 2012 Paraconsistentists have proposed logical strategies to avoid trivialization when inconsistencies arise by a variety of means.(Batens, 2001; Brown, 1990; Brown, 2002  Here we examine how chunk and permeate, a simple approach to paraconsistent reasoning which avoids heterodox logic by confining commitments to separate contexts in which reasoning with them is taken to be reliable while allowing ‘permeation’ of some conclusions into other contexts, can help to systematize pluralistic reasoning across the boundaries of plural contexts, using regional climate models as an example.(Benham et al., 2014; Brown & Priest 2004, 2015  The result is a kind of unity for science—but a unity achieved by the constrained exchange of specified information between different contexts, rather than the closure of all commitments under some paraconsistent consequence relation. 

  18. Joint science academies' statement:Global response to climate change

    Institute of Scientific and Technical Information of China (English)


    @@ Climate change is real There will always be uncertainty in understanding a system as complex as the world's climate. However there is now strong evidence that significant global warming is occurring1.

  19. News coverage of climate change in Nature News and ScienceNOW during 2007

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt; Kjærgaard, Rikke Schmidt


    of appreciating climate change, its severe consequences, and its anthropogenic causes. During that year the two journals’ online news services Nature News and ScienceNOW framed climate change to fit particular agendas resulting in markedly different narratives. This article demonstrates that Nature News reported...... more critically on political decisions, scientific results, and social matters of climate change compared to ScienceNOW. Operating under different institutional constraints ScienceNOW generally took a more cautious line. The evidence drawn from both textual and visual analyses shows that news sections...

  20. Taming Typhon: Advancing Climate Literacy by Coordinating Federal Earth System Science Education Investments Through the U.S. Climate Change Science Program (United States)

    Karsten, J. L.; Niepold, F.; Wei, M.; Waple, A. M.


    Thirteen Federal agencies in the United States invest in research, communication, and education activities related to climate and global change. The U.S. Climate Change Science Program (CCSP) works to integrate the research activities of these different agencies, with oversight from the Office of Science and Technology Policy, the Council on Environmental Quality, the National Economic Council and the Office of Management and Budget. The CCSP is the result of a Presidential initative in 2001 to build on the Global Change Research Program, which exists as a result of the Global Change Research Act of 1990. This initiative was to shift the focus of the Program from 'discovery and characterization' to 'differentiation and strategy investigation.' With this shift, CCSP's focus is now on evaluating optimal strategies for addressing climate change risks, improving coordination among the Federal agencies, communicating research results to all stakeholders (including national policy leaders and local resource managers), and improving public debate and decision-making related to global change. Implicit to these activities is the need to educate the general public about the science of climate change and its consequences, as well as coordinate Federal investments related to climate change education. This is no small task, given the variety of missions and approaches of the participating agencies. Recognizing that its Communications Interagency Working Group (CIWG) does not have the expertise or focus to adequately address issues related to science education, the CCSP recently established an ad-hoc Education Interagency Working Group (EIWG), comprising representatives from all 13 agencies, that will work closely with the CIWG to enhance education goals. Its mission is to advance literacy in climate and related sciences and increase informed decision making for the Nation. The EIWG envisions that its primary activities in the near-term will be focused on establishing: (1) a

  1. Conceptualizing In-service Secondary School Science Teachers' Knowledge Base for Promoting Understanding about the Science of Global Climate Change (United States)

    Bhattacharya, Devarati

    Efforts to adapt and mitigate the effects of global climate change (GCC) have been ongoing for the past two decades and have become a major global concern. However, research and practice for promoting climate literacy and understanding about GCC have only recently become a national priority. The National Research Council (NRC), has recently emphasized upon the importance of developing learners' capacity of reasoning, their argumentation skills and understanding of GCC (Framework for K-12 Science Education, National Research Council, 2012). This framework focuses on fostering conceptual clarity about GCC to promote innovation, resilience, and readiness in students as a response towards the threat of a changing environment. Previous research about teacher understanding of GCC describes that in spite of the prevalent frameworks like the AAAS Science Literacy Atlas (AAAS, 2007) and the Essential Principles for Climate Literacy (United States Global Climate Research Program, 2009; Bardsley, 2007), most learners are challenged in understanding the science of GCC (Michail et al., 2007) and misinformed perceptions about basic climate science content and the role of human activities in changing climate remain persistent (Reibich and Gautier, 2006). Our teacher participants had a rather simplistic knowledge structure. While aware of climate change, teacher participants lacked in depth understanding of how change in climate can impact various ecosystems on the Earth. Furthermore, they felt overwhelmed with the extensive amount of information needed to comprehend the complexity in GCC. Hence, extensive efforts not only focused on assessing conceptual understanding of GCC but also for teaching complex science topics like GCC are essential. This dissertation explains concept mapping, and the photo elicitation method for assessing teachers' understanding of GCC and the use of metacognitive scaffolding in instruction of GCC for developing competence of learners in this complex

  2. Tackling Weather and Climate Change Creatively in Science (United States)

    Dale, Murray


    In this article, the author offers some practical support for teaching about weather, climate and climate change. In England, weather and climate are traditionally taught within the geography curriculum, although it is actually a very scientific subject, involving skills such as making careful observations and measurements, interpreting data…

  3. A Big Data Guide to Understanding Climate Change: The Case for Theory-Guided Data Science. (United States)

    Faghmous, James H; Kumar, Vipin


    Global climate change and its impact on human life has become one of our era's greatest challenges. Despite the urgency, data science has had little impact on furthering our understanding of our planet in spite of the abundance of climate data. This is a stark contrast from other fields such as advertising or electronic commerce where big data has been a great success story. This discrepancy stems from the complex nature of climate data as well as the scientific questions climate science brings forth. This article introduces a data science audience to the challenges and opportunities to mine large climate datasets, with an emphasis on the nuanced difference between mining climate data and traditional big data approaches. We focus on data, methods, and application challenges that must be addressed in order for big data to fulfill their promise with regard to climate science applications. More importantly, we highlight research showing that solely relying on traditional big data techniques results in dubious findings, and we instead propose a theory-guided data science paradigm that uses scientific theory to constrain both the big data techniques as well as the results-interpretation process to extract accurate insight from large climate data .

  4. Stakes and modalities of the climatic risk covering; Enjeu et modalites de la couverture du risque climatique

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, D


    Several econometric works show that climatic volatility is at the first rank of the risk factors in several economic sectors like energy, textile, agriculture and food, tourism, leisure, building industries etc. However, climate remains an underestimated economic factor for several reasons: lack of awareness about the comparative stakes of climate risks management and market risks management, difficulties in the measurement of climate risk exposure, weak knowledge of covering techniques for private contract and organized markets, and unsolved question of risk sharing between shareholders and managers. This document analyzes the sensitivity of companies with respect to climate risk and describes the 5 steps of implementation of a climate covering policy: risk exposure measurement, risk bearing or transfer decision, definition of the optimum covering profile, choice of markets and covering instruments, efficiency measurement. A practical example is shown with its related questions. (J.S.)

  5. Development and Validation of the ACSI: Measuring Students' Science Attitudes, Pro-Environmental Behaviour, Climate Change Attitudes and Knowledge (United States)

    Dijkstra, E. M.; Goedhart, M. J.


    This article describes the development and validation of the Attitudes towards Climate Change and Science Instrument. This 63-item questionnaire measures students' pro-environmental behaviour, their climate change knowledge and their attitudes towards school science, societal implications of science, scientists, a career in science and the urgency…

  6. National Climate Change and Wildlife Science Center, Version 2.0 (United States)

    O'Malley, R.; Fort, E.; Hartke-O'Berg, N.; Varela-Acevedo, E.; Padgett, Holly A.


    The mission of the USGS's National Climate Change and Wildlife Science Center (NCCWSC) is to serve the scientific needs of managers of fish, wildlife, habitats, and ecosystems as they plan for a changing climate. DOI Climate Science Centers (CSCs) are management by NCCWSC and include this mission as a core responsibility, in line with the CSC mission to provide scientific support for climate-adaptation across a full range of natural and cultural resources. NCCWSC is a Science Center application designed in Drupal with the OMEGA theme. As a content management system, Drupal allows the science center to keep their website up-to-date with current publications, news, meetings and projects. OMEGA allows the site to be adaptive at different screen sizes and is developed on the 960 grid.

  7. Sustained Assessment Metadata as a Pathway to Trustworthiness of Climate Science Information (United States)

    Champion, S. M.; Kunkel, K.


    The Sustained Assessment process has produced a suite of climate change reports: The Third National Climate Assessment (NCA3), Regional Surface Climate Conditions in CMIP3 and CMIP5 for the United States: Differences, Similarities, and Implications for the U.S. National Climate Assessment, Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, The State Climate Summaries, as well as the anticipated Climate Science Special Report and Fourth National Climate Assessment. Not only are these groundbreaking reports of climate change science, they are also the first suite of climate science reports to provide access to complex metadata directly connected to the report figures and graphics products. While the basic metadata documentation requirement is federally mandated through a series of federal guidelines as a part of the Information Quality Act, Sustained Assessment products are also deemed Highly Influential Scientific Assessments, which further requires demonstration of the transparency and reproducibility of the content. To meet these requirements, the Technical Support Unit (TSU) for the Sustained Assessment embarked on building a system for not only collecting and documenting metadata to the required standards, but one that also provides consumers unprecedented access to the underlying data and methods. As our process and documentation have evolved, the value of both continue to grow in parallel with the consumer expectation of quality, accessible climate science information. This presentation will detail the how the TSU accomplishes the mandated requirements with their metadata collection and documentation process, as well as the technical solution designed to demonstrate compliance while also providing access to the content for the general public. We will also illustrate how our accessibility platforms guide consumers through the Assessment science at a level of transparency that builds trust and confidence in the report

  8. The Regional Integrated Sciences and Assessments (RISA) Program, Climate Services, and Meeting the National Climate Change Adaptation Challenge (United States)

    Overpeck, J. T.; Udall, B.; Miles, E.; Dow, K.; Anderson, C.; Cayan, D.; Dettinger, M.; Hartmann, H.; Jones, J.; Mote, P.; Ray, A.; Shafer, M.; White, D.


    The NOAA-led RISA Program has grown steadily to nine regions and a focus that includes both natural climate variability and human-driven climate change. The RISAs are, at their core, university-based and heavily invested in partnerships, particularly with stakeholders, NOAA, and other federal agencies. RISA research, assessment and partnerships have led to new operational climate services within NOAA and other agencies, and have become important foundations in the development of local, state and regional climate change adaptation initiatives. The RISA experience indicates that a national climate service is needed, and must include: (1) services prioritized based on stakeholder needs; (2) sustained, ongoing regional interactions with users, (3) a commitment to improve climate literacy; (4) support for assessment as an ongoing, iterative process; (5) full recognition that stakeholder decisions are seldom made using climate information alone; (6) strong interagency partnership; (7) national implementation and regional in focus; (8) capability spanning local, state, tribal, regional, national and international space scales, and weeks to millennia time scales; and (9) institutional design and scientific support flexible enough to assure the effort is nimble enough to respond to rapidly-changing stakeholder needs. The RISA experience also highlights the central role that universities must play in national climate change adaptation programs. Universities have a tradition of trusted regional stakeholder partnerships, as well as the interdisciplinary expertise - including social science, ecosystem science, law, and economics - required to meet stakeholder climate-related needs; project workforce can also shift rapidly in universities. Universities have a proven ability to build and sustain interagency partnerships. Universities excel in most forms of education and training. And universities often have proven entrepreneurship, technology transfer and private sector

  9. The PICS Climate Insights 101 Courses: A Visual Approach to Learning About Climate Science, Mitigation and Adaptation (United States)

    Pedersen, T. F.; Zwiers, F. W.; Breen, C.; Murdock, T. Q.


    The Pacific Institute for Climate Solutions (PICS) has now made available online three free, peer-reviewed, unique animated short courses in a series entitled "Climate Insights 101" that respectively address basic climate science, carbon-emissions mitigation approaches and opportunities, and adaptation. The courses are suitable for students of all ages, and use professionally narrated animations designed to hold a viewer's attention. Multiple issues are covered, including complex concerns like the construction of general circulation models, carbon pricing schemes in various countries, and adaptation approaches in the face of extreme weather events. Clips will be shown in the presentation. The first course (Climate Science Basics) has now been seen by over two hundred thousand individuals in over 80 countries, despite being offered in English only. Each course takes about two hours to work through, and in recognizing that that duration might pose an attention barrier to some students, PICS selected a number of short clips from the climate-science course and posted them as independent snippets on YouTube. A companion series of YouTube videos entitled, "Clear The Air", was created to confront the major global-warming denier myths. But a major challenge remains: despite numerous efforts to promote the availability of the free courses and the shorter YouTube pieces, they have yet to become widely known. Strategies to overcome that constraint will be discussed.

  10. Effective and responsible teaching of climate change in Earth Science-related disciplines (United States)

    Robinson, Z. P.; Greenhough, B. J.


    Climate change is a core topic within Earth Science-related courses. This vast topic covers a wide array of different aspects that could be covered, from past climatic change across a vast range of scales to environmental (and social and economic) impacts of future climatic change and strategies for reducing anthropogenic climate change. The Earth Science disciplines play a crucial role in our understanding of past, present and future climate change and the Earth system in addition to understanding leading to development of strategies and technological solutions to achieve sustainability. However, an increased knowledge of the occurrence and causes of past (natural) climate changes can lead to a lessened concern and sense of urgency and responsibility amongst students in relation to anthropogenic causes of climatic change. Two concepts integral to the teaching of climate change are those of scientific uncertainty and complexity, yet an emphasis on these concepts can lead to scepticism about future predictions and a further loss of sense of urgency. The requirement to understand the nature of scientific uncertainty and think and move between different scales in particular relating an increased knowledge of longer timescale climatic change to recent (industrialised) climate change, are clearly areas of troublesome knowledge that affect students' sense of responsibility towards their role in achieving a sustainable society. Study of the attitudes of university students in a UK HE institution on a range of Earth Science-related programmes highlights a range of different attitudes in the student body towards the subject of climate change. Students express varied amounts of ‘climate change saturation' resulting from both media and curriculum coverage, a range of views relating to the significance of humans to the global climate and a range of opinions about the relevance of environmental citizenship to their degree programme. Climate change is therefore a challenging

  11. An Inquiry-Based Science Activity Centred on the Effects of Climate Change on Ocean Ecosystems (United States)

    Boaventura, Diana; Guilherme, Elsa; Faria, Cláudia


    We propose an inquiry-based science activity centred on the effects of climate change on ocean ecosystems. This activity can be used to improve acquisition of knowledge on the effects of climate change and to promote inquiry skills, such as researching, reading and selecting relevant information, identifying a problem, focusing on a research…

  12. U.S. National forests adapt to climate change through science-management partnerships (United States)

    Jeremy S. Littell; David L. Peterson; Constance I. Millar; Kathy A. O' Halloran


    Developing appropriate management options for adapting to climate change is a new challenge for land managers, and integration of climate change concepts into operational management and planning on United States national forests is just starting. We established science-management partnerships on the Olympic National Forest (Washington) and Tahoe National Forest (...

  13. Climate Analytics-As-a-Service (CAaas), Advanced Information Systems, and Services to Accelerate the Climate Sciences. (United States)

    McInerney, M.; Schnase, J. L.; Duffy, D.; Tamkin, G.; Nadeau, D.; Strong, S.; Thompson, J. H.; Sinno, S.; Lazar, D.


    The climate sciences represent a big data domain that is experiencing unprecedented growth. In our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with big data that ultimately product societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by cloud computing. Within this framework, cloud computing plays an important role; however, we see it as only one element in a constellation of capabilities that are essential to delivering climate analytics-as-a-service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the big data challenges in this domain. This poster will highlight specific examples of CAaaS using climate reanalysis data, high-performance cloud computing, map reduce, and the Climate Data Services API.

  14. Informal Education and Climate Change: An Example From The Miami Science Museum (United States)

    Delaughter, J.


    The Miami Science Museum recently took part in the National Conversation on Climate Action, held on October 4, 2007. This nationwide event encouraged members of the general public to explore local climate policy options. It provided an opportunity for citizens to discuss the issues and science of climate change with experts and policy makers, as well as neighbors and friends. During the day, the Miami Science Museum hosted a variety of events with something for everyone. Local school groups played DECIDE games and competed to find the most "treasure" in trash. Members and visitors were encouraged to leave their mark by posting comments and ideas about climate change. A "Gates of Change" exhibit provided dramatic visual indication of the effects of climate change and sea level rise. And a special "Meet the scientists" forum allowed the general public to discuss the facts and fictions of climate change with experts from Miami University's Rosenstiel School of Marine and Atmospheric Science. This activity was part of the Association of Science and Technology Centers' (ASTC) International action on Global Warming (IGLO) program. ASTC is the largest association of public science venues, and has 540 member institutions in 40 countries.

  15. The many facets of climate change - Conference proceedings; Les multiples facettes du changement climatique - Recueil des presentations

    Energy Technology Data Exchange (ETDEWEB)



    This conference day on climate change was organized by the French meteorological society (SMF) at the Ecole Normale Superieure of Paris. This document brings together the available presentations given at the conference. Eight presentations (slides) are compiled in this document and deal with: 1 - Climate change today and tomorrow, the research stakes (Herve Le Treut, IPSL); 2 - Rise of sea levels: estimations and regional variability (Guy Woeppelmann, La Rochelle Univ.); 3 - Polar ice caps and continental cryo-sphere as seen from space (A. Kouraev, F. Remy, E. Berthier, LEGOS); 4 - Impacts of climate change on exploited marine populations: projections and uncertainties (Patrick Lehodey, CLS); 5 - Climate change stakes on agricultural and winery activities in France (Eric Duchene, INRA); 6 - Impacts of climate change on forest trees phenology and their consequences on trees life and survival (Francois Lebourgeois, ENGREF); 7 - Remote-epidemiology: a health-aid in a climate change context (Murielle Lafaye, CNES); 8 - Socio-economic aspects and adaptation: a climate history, for what? (Emmanuel Garnier, Caen Univ.)

  16. Informing climate change adaptation in the Northeast and Midwest United States: The role of Climate Science Centers (United States)

    Bryan, A. M.; Morelli, T. L.


    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information and tools that managers and other parties interested in land, water, wildlife, and cultural resources can use to anticipate, monitor, and adapt to climate change. The NE CSC partners with other federal agencies, universities, and NGOs to facilitate stakeholder interaction and delivery of scientific products. For example, NE CSC researchers have partnered with the National Park Service to help managers at Acadia National Park adapt their infrastructure, operations, and ecosystems to rising seas and more extreme events. In collaboration with the tribal College of Menominee Nation and Michigan State University, the NE CSC is working with indigenous communities in Michigan and Wisconsin to co-develop knowledge of how to preserve their natural and cultural values in the face of climate change. Recently, in its largest collaborative initiative to date, the NE CSC led a cross-institutional effort to produce a comprehensive synthesis of climate change, its impacts on wildlife and their habitats, and available adaptation strategies across the entire Northeast and Midwest region; the resulting document was used by wildlife managers in 22 states to revise their Wildlife Action Plans (WAPs). Additionally, the NE CSC is working with the Wildlife Conservation Society to help inform moose conservation management. Other research efforts include hydrological modeling to inform culvert sizing under greater rainfall intensity, forest and landscape modeling to inform tree planting that mitigates the spread of invasive species, species and habitat modeling to help identify suitable locations for wildlife refugia. In addition, experimental research is being conducted to improve our understanding of how species such as brook trout are responding to climate change. Interacting with stakeholders during all phases of

  17. Facing the climatic threat, the nuclear illusion; Face a la menace climatique, l'illusion du nucleaire

    Energy Technology Data Exchange (ETDEWEB)



    In the framework of the energy problem, the network Action Climate brings many propositions to explain that the nuclear is not a solution to the global warming. A boost to the nuclear will be done to the detriment of cheaper, safer and more adapted policies, as the energy conservation and efficiency, the energy production decentralization and the renewable energies development. The three parts shows how the nuclear cannot answer to the climatic problem, the nuclear refutes the Rio declaration on the environment and the sustainable development, the nuclear is a french specificity which damages the national policy against the climatic change. (A.L.B.)

  18. Connecting stakeholders and climate science: A summary of farmer, rancher, and forester climate data needs and climate change attitudes (United States)

    The mission of the USDA Southwest Regional Climate Hub is to provide farmers, ranchers and forest land owners and managers with information and resources to cope with the impacts of climate change. As such, a clear understanding of landowner needs for weather and climate data and their attitudes abo...

  19. What’s Needed from Climate Modeling to Advance Actionable Science for Water Utilities? (United States)

    Barsugli, J. J.; Anderson, C. J.; Smith, J. B.; Vogel, J. M.


    “…perfect information on climate change is neither available today nor likely to be available in the future, but … over time, as the threats climate change poses to our systems grow more real, predicting those effects with greater certainty is non-discretionary. We’re not yet at a level at which climate change projections can drive climate change adaptation.” (Testimony of WUCA Staff Chair David Behar to the House Committee on Science and Technology, May 5, 2009) To respond to this challenge, the Water Utility Climate Alliance (WUCA) has sponsored a white paper titled “Options for Improving Climate Modeling to Assist Water Utility Planning for Climate Change. ” This report concerns how investments in the science of climate change, and in particular climate modeling and downscaling, can best be directed to help make climate projections more actionable. The meaning of “model improvement” can be very different depending on whether one is talking to a climate model developer or to a water manager trying to incorporate climate projections in to planning. We first surveyed the WUCA members on present and potential uses of climate model projections and on climate inputs to their various system models. Based on those surveys and on subsequent discussions, we identified four dimensions along which improvement in modeling would make the science more “actionable”: improved model agreement on change in key parameters; narrowing the range of model projections; providing projections at spatial and temporal scales that match water utilities system models; providing projections that water utility planning horizons. With these goals in mind we developed four options for improving global-scale climate modeling and three options for improving downscaling that will be discussed. However, there does not seem to be a single investment - the proverbial “magic bullet” -- which will substantially reduce the range of model projections at the scales at which utility

  20. Joint Applications Pilot of the National Climate Predictions and Projections Platform and the North Central Climate Science Center: Delivering climate projections on regional scales to support adaptation planning (United States)

    Ray, A. J.; Ojima, D. S.; Morisette, J. T.


    The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in

  1. Multiple aspects of climate change - Summary of presentations; Les multiples facettes du changement climatique - Resume des presentations

    Energy Technology Data Exchange (ETDEWEB)

    Andre, Jean-Claude; Bauer, Pierre; Le Treut, Herve [Institut Pierre Simon Laplace, 78280 Guyancourt Cedex (France); Woeppelmann, Guy [Universite de la Rochelle, 17000 La Rochelle (France); Kouraev, Alexei; Remy, Frederique; Berthier, Etienne [Legos, 31401 Toulouse cedex 9 (France); Lehodey, Patrick [CLS, 31520 Ramonville St Agne (France); Lebourgeois, Francois [ENGREF, AgroParisTech, 54042 Nancy Cedex (France); Chuine, Isabelle [CEFE, CNRS, Montpellier (France); Vennetier, Michel [CEMAGREF, 13182 Aix en Provence cedex 5 (France); Duchene, Eric [INRA-Universite de Strasbourg, 68021 Colmar Cedex (France); Lafaye, Murielle [CNES, 31401 Toulouse cedex 9 (France)


    The French Meteorological Society (SMF) organized its annual scientific day on March 23, 2011 on the topic of the multiple aspects of climate change. The aim was to take stock of the lessons learnt from the different meteorological markers in several domains (agriculture, forests, ecosystems, rise of sea level, changes in marine biodiversity, health, snow and ice caps..). This paper summarizes the seven presentations given at this meeting: 1 - climate change today and tomorrow (H. Le Treut); 2 - rise of oceans level: estimations and regional variability (G. Woeppelmann); 3 - polar caps and continental cryo-sphere as seen from space (A. Kouraev, F. Remy and E. Berthier); 4 - impact of climate change on exploited marine populations: projections and uncertainties (P. Lehodey); 5 - stakes of climate change on agricultural and winery activities in France (E. Duchene); 6 - impact of climate change on forest trees phenology and consequence on their survival and operation (F. Lebourgeois, I. Chuine and M. Vennetier); 7 - 'tele-epidemiology': a health-aid in a climate change context. (J.S.)

  2. Leveraging federal science data and tools to help communities & business build climate resilience (United States)

    Herring, D.


    Decision-makers in every sector and region of the United States are seeking actionable science-based information to help them understand and manage their climate-related risks. Translating data, tools and information from the domain of climate science to the domains of municipal, social, and economic decision-making raises complex questions—e.g., how to communicate causes and impacts of climate variability and change; how to show projections of plausible future climate scenarios; how to characterize and quantify vulnerabilities, risks, and opportunities facing communities and businesses; and how to make and implement "win-win" adaptation plans. These are the types of challenges being addressed by a public-private partnership of federal agencies, academic institutions, non-governmental organizations, and private businesses that are contributing to the development of the U.S. Climate Resilience Toolkit (, a new website designed to help people build resilience to extreme events caused by both natural climate variability and long-term climate change. The site's Climate Explorer is designed to help people understand potential climate conditions over the course of this century. It offers easy access to downloadable maps, graphs, and data tables of observed and projected temperature, precipitation and other decision-relevant climate variables dating back to 1950 and out to 2100. Of course, climate change is only one of many variables affecting decisions about the future so the Toolkit also ties climate information to a wide range of other relevant tools and information to help users to explore their vulnerabilities and risks. In this session, we will describe recent enhancements to the Toolkit, lessons learned from user engagements, and evidence that our approach of coupling scientific information with actionable decision-making processes is helping Americans build resilience to climate-related impacts.

  3. Exploring Science Teachers' Argumentation and Personal Epistemology About Global Climate Change (United States)

    Liu, Shiyu; Roehrig, Gillian


    This case study investigated the nature of in-service science teachers' argumentation and personal epistemology about global climate change during a 3-year professional development program on climate change education. Qualitative analysis of data from interviews and written assessments revealed that while these teachers grounded their arguments on climate issues in evidence, the evidence was often insufficient to justify their causal claims. Compared with generating arguments for their own views, teachers had more difficulties in constructing evidence-based arguments for alternative perspectives. Moreover, while these teachers shared some similarities in their epistemology about climate science, they varied in their beliefs about specific aspects such as scientists' expertise and the credibility of scientific evidence. Such similarities and distinctions were shown to relate to how teachers used evidence to justify claims in their arguments. The findings also suggested a mismatch between teachers' personal epistemology about science in general and climate science, which was revealed through their argumentation. This work helps to further the ongoing discussions in environmental education about what knowledge and skills teachers need in order to teach climate issues and prepare students for future decision making. It constitutes first steps to facilitate reasoning and argumentation in climate change education and provides important implications for future design of professional development programs.

  4. Bringing Climate Change into the Life Science Classroom: Essentials, Impacts on Life, and Addressing Misconceptions (United States)

    Hawkins, Amy J.; Stark, Louisa A.


    Climate change is at the forefront of our cultural conversation about science, influencing everything from presidential debates to Leonardo DiCaprio's 2016 Oscar acceptance speech. The topic is becoming increasingly socially and scientifically relevant but is no closer to being resolved. Most high school students take a life science course but…

  5. Emotional Climate and High Quality Learning Experiences in Science Teacher Education (United States)

    Bellocchi, Alberto; Ritchie, Stephen M.; Tobin, Kenneth; King, Donna; Sandhu, Maryam; Henderson, Senka


    The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study, we explore the emotional climates (ECs), that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality…

  6. Professional Development in Climate Science Education as a Model for Navigating the Next Generations Science Standards - A High School Science Teacher's Perspective (United States)

    Manning, C.; Buhr, S. M.


    The Next Generation Science Standards attempt to move the American K12 education system into the 21st century by focusing on science and engineering practice, crosscutting concepts, and the core ideas of the different disciplines. Putting these standards into practice will challenge a deeply entrenched system and science educators will need significant financial support from state and local governments, professional development from colleges and universities, and the creation of collegial academic networks that will help solve the many problems that will arise. While all of this sounds overwhelming, there are proven strategies and mechanisms already in place. Educators who tackle challenging topics like global climate change are turning to scientists and other like-minded teachers. Many of these teachers have never taken a class in atmospheric science but are expected to know the basics of climate and understand the emerging science as well. Teachers need scientists to continue to reach out and provide rigorous and in-depth professional development opportunities that enable them to answer difficult student questions and deal with community misconceptions about climate science. Examples of such programs include Earthworks, ICEE (Inspiring Climate Education Excellence) and ESSEA (Earth System Science Education Alliance). Projects like CLEAN (Climate Literacy and Energy Awareness Network) provide excellent resources that teachers can integrate into their lessons. All of these benefit from the umbrella of documents like Climate Literacy: The Essential Principles of Climate Science. Support from the aforementioned networks has encouraged the development of effective approaches for teaching climate science. From the perspective of a Geoscience master teacher and instructional coach, this presentation will demonstrate how scientists, researchers, and science education professionals have created models for professional development that create long-term networks supporting

  7. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments. (United States)

    Jönsson, Anna Maria; Anderbrant, Olle; Holmér, Jennie; Johansson, Jacob; Schurgers, Guy; Svensson, Glenn P; Smith, Henrik G


    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science-stakeholder collaboration, and in a two-way dialog link empirical experience and impact modelling with policy and strategies for sustainable management. In this paper we give a brief overview of different ecosystem modelling methods, discuss how to include ecological and management aspects, and highlight the importance of science-stakeholder communication. By this, we hope to stimulate a discussion among the science-stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models.

  8. Application of remote sensing for analyzing climatic variation in the boreal and subarctic regions of Canada and for validating the Canadian Regional Climate Model; Application de la teledetection a l'analyse de la variabilite climatique des regions boreales et subarctiques du Canada et a la validation du modele regional canadien du climat

    Energy Technology Data Exchange (ETDEWEB)

    Fillol, E.J.


    This study examined climate variations over the past few decades as well as the tools used to model future climate. The study included an interpretation of the National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA-AVHRR) time series data at the continental spatial scale. Data collected over a period of two decades was used to study and monitor Canada's boreal ecosystem activity and to observe recent climatic change. The study involved the use of classical parameters associated with remote sensing in the visible and thermal infrared spectra for vegetation activity and land-surface temperatures. Problems associated with instrumental drift and inter-satellite adjustment were minimized by choosing indicators for the length of the growing season, annual growing degree-days and ecotone displacement. Climate variations over the past twenty years were compared with daily meteorological data of temperature, precipitation and snow cover. Rapid cycle climatic phenomena such as the El Nino and La Nina appear to have influenced the central region of Canada. The North Atlantic Oscillation and Arctic Oscillation also influenced the climate regime of Canada and annual growing degree-days. Indicators for vegetation activity and land-surface temperature suggest that a North-South disparity exists over Canada. A warming trend with an increased growing season was observed for the region north of the 55 parallel, while southern regions appear to be cooling. This study also used remote sensing to validate the Canadian Regional Climate Model (CRCM) through a comparison of ground temperature values modelled by the CRCM with composite satellite temperatures. The results indicate a small under-estimation of the CRCM ground temperature during the summer due to an overestimation of the precipitation rate. It was concluded that climate models such as the CRCM are useful in making reliable predictions of future climate trends.

  9. Useful and Usable Climate Science: Frameworks for Bridging the Social and Physical domains. (United States)

    Buja, L.


    Society is transforming the Earth's system in unprecedented ways, often with significant variations across space and time. In turn, the impacts of climate change on the human system vary dramatically due to differences in cultural, socioeconomic, institutional, and physical processes at the local level. The Climate Science and Applications Program (CSAP) at the National Center for Atmospheric Research in Boulder Colorado addresses societal vulnerability, impacts and adaptation to climate change through the development of frameworks and methods for analyzing current and future vulnerability, and integrated analyses of climate impacts and adaptation at local, regional and global scales. CSAP relies heavily on GIS-based scientific data and knowledge systems to bridge social and physical science approaches in its five focus areas: Governance of inter-linked natural and managed resource systems. The role of urban areas in driving emissions of climate change Weather, climate and global human health, GIS-based science data & knowledge systems. Regional Climate Science and Services for Adaptation Advanced methodologies and frameworks for assessing current and future risks to environmental hazards through the integration of physical and social science models, research results, and remote sensing data are presented in the context of recent national and international projects on climate change and food/water security, urban carbon emissions, metropolitan extreme heat and global health. In addition, innovative CSAP international capacity building programs teaching interdisciplinary approaches for using geospatial technologies to integrate multi-scale spatial information of weather, climate change into important sectors such as disaster reduction, agriculture, tourism and society for decision-making are discussed.

  10. Communicating climate science to a suspicious public: How best to explain what we know? (United States)

    Conway, E. M.; Jackson, R.


    In 2007, the Jet Propulsion Laboratory decided to establish a climate science website aimed at explaining what scientists know about climate science, and what they don't, to the English-speaking public. Because of my prior work in the history of atmospheric and climate sciences, I was asked to help choose the data that would be displayed on the site and to write the basic text. Our site went "live" in 2008, and quickly attracted both widespread media attention and sponsorship from NASA, which funded us to expand it into the NASA Climate Change website, It's now generally the 3rd or 4th ranked climate change website in Google rankings. A perusal of the NASA Climate Change website will reveal that the word "uncertainty" does not appear in its explanatory essays. "Uncertainty," in science, is a calculated quantity. To calculate it, one must know quite a bit about the phenomenon in question. In vernacular use, "uncertainty" means something like "stuff we don't know." These are radically different meanings, and yet scientists and their institutions routinely use both meanings without clarification. Even without the deliberate disinformation campaigns that Oreskes and Conway have documented in Merchants of Doubt, scientists' own misuse of this one word would produce public confusion. We chose to use other words to overcome this one communications problem. But other aspects of the climate communications problem cannot be so easily overcome in a context of Federal agency communications. In this paper, we'll review recent research on ways to improve public understanding of science, and set it against the restrictions that exist on Federal agency communications—avoidance of political statements and interpretation, focusing on fact over storytelling, narrowness of context—to help illuminate the difficulty of improving public understanding of complex, policy-relevant phenomenon like climate change.

  11. Climate Odyssey: Resources for Understanding Coastal Change through Art, Science, and Sail (United States)

    Klos, P. Z.; Holtsnider, L.


    Climate Odyssey ( is a year-long sailing expedition and continuing collaboration aimed at using overlaps in science and visual art to communicate coastal climate change impacts and solutions. We, visual artist Lucy Holtsnider and climate scientist Zion Klos, are using our complimentary skills in art, science and communication to engage audiences both intuitively and cognitively regarding the urgency of climate change through story and visualization. Over the 2015 - 2016 academic year, we embarked on the sailing portion of Climate Odyssey, beginning in Lake Michigan, continuing along the Eastern Seaboard, and concluding in the tropics. Along the way we photographed climate change impacts and adaptation strategies, interviewed stakeholders, scientists, and artists. We are now sharing our photographs and documented encounters through a tangible artist's book, interactive digital map, blog, and series of K16 lesson plans. Each of our images added to the artist's book and digital map are linked to relevant blog entries and other external scientific resources, making the map both a piece of art and an engaging education tool for sharing the science of climate change impacts and solutions. After completing the sailing component of the project, we have now finalized our multi-media resources and are working to share these with the public via libraries, galleries, and K16 classrooms in coastal communities. At AGU, we will share with our peers the completed version of the series of K16 lesson plans that provide educators an easy-to-use way to introduce and utilize the material in the artist's book, digital map, and online blog. Through this, we hope to both discuss climate-focused education and engagement strategies, as well as showcase this example of art-science outreach with the broader science education and communication community that is focused on climate literacy in the U.S. and beyond.

  12. Empowering America's Communities to Prepare for the Effects of Climate Change: Developing Actionable Climate Science Under the President's Climate Action Plan (United States)

    Duffy, P. B.; Colohan, P.; Driggers, R.; Herring, D.; Laurier, F.; Petes, L.; Ruffo, S.; Tilmes, C.; Venkataraman, B.; Weaver, C. P.


    Effective adaptation to impacts of climate change requires best-available information. To be most useful, this information should be easily found, well-documented, and translated into tools that decision-makers use and trust. To meet these needs, the President's Climate Action Plan includes efforts to develop "actionable climate science". The Climate Data Initiative (CDI) leverages the Federal Government's extensive, open data resources to stimulate innovation and private-sector entrepreneurship in support of actions to prepare for climate change. The Initiative forges commitments and partnerships from the private, NGO, academic, and public sectors to create data-driven tools. Open data from Federal agencies to support this innovation is available on, initially focusing on coastal flooding but soon to expand to topics including food, energy, water, energy, transportation, and health. The Climate Resilience Toolkit (CRT) will facilitate access to data-driven resilience tools, services, and best practices, including those accessible through the CDI. The CRT will also include access to training and tutorials, case studies, engagement forums, and other information sources. The Climate Action Plan also calls for a public-private partnership on extreme weather risk, with the goal of generating improved assessments of risk from different types of extreme weather events, using methods and data that are transparent and accessible. Finally, the U.S. Global Change Research Program and associated agencies work to advance the science necessary to inform decisions and sustain assessments. Collectively, these efforts represent increased emphasis across the Federal Government on the importance of information to support climate resilience.

  13. Using Local Climate Science to Educate "Key Influentials" and their Communities in the San Diego Region (United States)

    Boudrias, M. A.; Estrada, M.; Anders, S.; Silva-Send, N. J.; Yin, Z.; Schultz, P.; Young, E.


    The San Diego Regional Climate Education Partnership has formed an innovative and collaborative team whose mission is to implement a research-based climate science education and communications program to increase knowledge about climate science among highly-influential leaders and their communities and foster informed decision making based on climate science and impacts. The team includes climate scientists, behavioral psychologists, formal and informal educators and communication specialists. The Partnership's strategic plan has three major goals: (1) raise public understanding of the causes and consequences of climate change; (2) identify the most effective educational methods to educate non-traditional audiences (Key Influentials) about the causes and consequences of climate change; and (3) develop and implement a replicable model for regional climate change education. To implement this strategic plan, we have anchored our project on three major pillars: (1) Local climate science (causes, impacts and long-term consequences); (2) theoretical, research-based evaluation framework (TIMSI); and (3) Key! Influentials (KI) as primary audience for messages (working w! ith and through them). During CCEP-I, the Partnership formed and convened an advisory board of Key Influentials, completed interviews with a sample of Key Influentials, conducted a public opinion survey, developed a website ( , compiled inventories on literature of climate science education resources and climate change community groups and local activities, hosted stakeholder forums, and completed the first phase of on an experiment to test the effects of different messengers delivering the same local climate change message via video. Results of 38 KI Interviews provided evidence of local climate knowledge, strong concern about climate change, and deeply held values related to climate change education and regional leadership. The most intriguing result was that while 90% of Key

  14. Climate change science education across schools, campuses, and centers: strategies and successes (United States)

    Merrill, J.; Harcourt, P.; Rogers, M.; Buttram, J.; Petrone, C.; Veron, D. E.; Sezen-Barrie, A.; Stylinski, C.; Ozbay, G.


    With established partnerships in higher education, K-12, and informal science education communities across Delaware and Maryland, the NSF-funded MADE CLEAR project (Maryland Delaware Climate Change Education, Assessment, and Research) has instituted a suite of professional development strategies to bring climate change science into science education methods courses, K-12 classrooms, university lecture halls, and public park facilities. MADE CLEAR partners have provided consistent climate literacy topics (mechanisms, human contributions, local and global impacts, mitigation and adaptation) while meeting the unique needs of each professional community. In-person topical lectures, hands-on work with classroom materials, seed funding for development of new education kits, and on-line live and recorded sessions are some of the tools employed by the team to meet those needs and build enduring capacity for climate change science education. The scope of expertise of the MADE CLEAR team, with climate scientists, educators, learning scientists, and managers has provided not only PD tailored for each education audience, but has also created, fostered, and strengthened relationships across those audiences for long-term sustainability of the newly-built capacity. Specific examples include new climate change programs planned for implementation across Delaware State Parks that will be consistent with middle school curriculum; integration of climate change topics into science methods classes for pre-service teachers at four universities; and active K-12 and informal science education teams working to cooperatively develop lessons that apply informal science education techniques and formal education pedagogy. Evaluations by participants highlight the utility of personal connections, access to experts, mentoring and models for developing implementation plans.

  15. Narrative Style Influences Citation Frequency in Climate Change Science.

    Directory of Open Access Journals (Sweden)

    Ann Hillier

    Full Text Available Peer-reviewed publications focusing on climate change are growing exponentially with the consequence that the uptake and influence of individual papers varies greatly. Here, we derive metrics of narrativity from psychology and literary theory, and use these metrics to test the hypothesis that more narrative climate change writing is more likely to be influential, using citation frequency as a proxy for influence. From a sample of 732 scientific abstracts drawn from the climate change literature, we find that articles with more narrative abstracts are cited more often. This effect is closely associated with journal identity: higher-impact journals tend to feature more narrative articles, and these articles tend to be cited more often. These results suggest that writing in a more narrative style increases the uptake and influence of articles in climate literature, and perhaps in scientific literature more broadly.

  16. Narrative Style Influences Citation Frequency in Climate Change Science. (United States)

    Hillier, Ann; Kelly, Ryan P; Klinger, Terrie


    Peer-reviewed publications focusing on climate change are growing exponentially with the consequence that the uptake and influence of individual papers varies greatly. Here, we derive metrics of narrativity from psychology and literary theory, and use these metrics to test the hypothesis that more narrative climate change writing is more likely to be influential, using citation frequency as a proxy for influence. From a sample of 732 scientific abstracts drawn from the climate change literature, we find that articles with more narrative abstracts are cited more often. This effect is closely associated with journal identity: higher-impact journals tend to feature more narrative articles, and these articles tend to be cited more often. These results suggest that writing in a more narrative style increases the uptake and influence of articles in climate literature, and perhaps in scientific literature more broadly.

  17. Conveying the Science of Climate Change: Explaining Natural Variability (United States)

    Chanton, J.


    One of the main problems in climate change education is reconciling the role of humans and natural variability. The climate is always changing, so how can humans have a role in causing change? How do we reconcile and differentiate the anthropogenic effect from natural variability? This talk will offer several approaches that have been successful for the author. First, the context of climate change during the Pleistocene must be addressed. Second, is the role of the industrial revolution in significantly altering Pleistocene cycles, and introduction of the concept of the Anthropocene. Finally the positive feedbacks between climatic nudging due to increased insolation and greenhouse gas forcing can be likened to a rock rolling down a hill, without a leading cause. This approach has proven successful in presentations to undergraduates to state agencies.

  18. Contribution of the working group 2 to the fourth evaluation report of the inter government expert group on the climatic change. Evaluation 2007 of the climatic changes: impacts, adaptation and vulnerability; Contribution du Groupe de travail 2 au quatrieme rapport d'evaluation du Groupe d'expert intergouvernemental sur l'evolution du climat. Bilan 2007 des changements climatiques: impacts, adaptation et vulnerabilite

    Energy Technology Data Exchange (ETDEWEB)



    This document exposes the results of the fourth evaluation report of the working group II of the inter government experts group on the climatic change. This evaluation presents the today scientific understanding of the climatic change impacts on the humans and their adaptation ability and vulnerability. It is based on the GIEC evaluations and new knowledge added since the third evaluation report. (A.L.B.)

  19. Climate Change and Public Health Policy: Translating the Science


    Braks, Marieta; van Ginkel, Rijk; Wint, William; Sedda, Luigi; Sprong, Hein


    Public health authorities are required to prepare for future threats and need predictions of the likely impact of climate change on public health risks. They may get overwhelmed by the volume of heterogeneous information in scientific articles and risk relying purely on the public opinion articles which focus mainly on global warming trends, and leave out many other relevant factors. In the current paper, we discuss various scientific approaches investigating climate change and its possible i...

  20. Big Data Challenges in Climate Science: Improving the Next-Generation Cyberinfrastructure (United States)

    Schnase, John L.; Lee, Tsengdar J.; Mattmann, Chris A.; Lynnes, Christopher S.; Cinquini, Luca; Ramirez, Paul M.; Hart, Andre F.; Williams, Dean N.; Waliser, Duane; Rinsland, Pamela; hide


    The knowledge we gain from research in climate science depends on the generation, dissemination, and analysis of high-quality data. This work comprises technical practice as well as social practice, both of which are distinguished by their massive scale and global reach. As a result, the amount of data involved in climate research is growing at an unprecedented rate. Climate model intercomparison (CMIP) experiments, the integration of observational data and climate reanalysis data with climate model outputs, as seen in the Obs4MIPs, Ana4MIPs, and CREATE-IP activities, and the collaborative work of the Intergovernmental Panel on Climate Change (IPCC) provide examples of the types of activities that increasingly require an improved cyberinfrastructure for dealing with large amounts of critical scientific data. This paper provides an overview of some of climate science's big data problems and the technical solutions being developed to advance data publication, climate analytics as a service, and interoperability within the Earth System Grid Federation (ESGF), the primary cyberinfrastructure currently supporting global climate research activities.

  1. Science, Ethics and the Climate Responsibilities of Industrial Carbon Producers (United States)

    Frumhoff, P. C.


    The question of responsibility for climate change lies at the heart of societal debate over actions to curb greenhouse gas emissions and prepare for now unavoidable climate impacts. The UN Framework Convention on Climate Change established the principle of "common but differentiated responsibilities" among nations, signaling the recognition that industrialized nations who had produced the lion's share of historic emissions bore particular responsibility for avoiding dangerous interference with the climate system. But climate responsibilities can be distributed in other ways as well. This talk focuses on the scientific, historical and ethical basis for considering the climate responsibilities of the major fossil energy companies that have produced and marketed the coal, oil and natural gas whose use largely drives global warming, often while investing in efforts to discredit the scientific evidence and prevent policies that would encourage a transition to low-carbon energy. Earth scientists and scientific societies who rely on financial support from these companies have an opportunity to consider what ethical stance they might take to align their research, scientific understanding and values.

  2. Aridification du climat régional et remontée de la limite inférieure du cèdre de l'Atlas (Cedrus atlantica Manetti aux confins de la plaine de Midelt (Maroc

    Directory of Open Access Journals (Sweden)

    Mustapha Rhanem


    Full Text Available Le cèdre de l'Atlas (Cedrus atlanticaManetti est un phanérophyte présentant certaines exigences saisonnières en humidité, ainsi que durant certaines phases de son développement. Largement répandu à l'état spontané au Maroc, il a une grande valeur écologico-floristique, socio-économique et patrimoniale. Longtemps, cette précieuse essence a très bien été adaptée à son environnement méditerranéo-montagnard et n'a posé aucun problème sur le plan sanitaire. Or, depuis le début des années 1980, le cèdre connaît un dépérissement préoccupant, diffus ou concentré, responsable d'un recul de ses peuplements. Le dépérissement atteint des proportions anormalement élevées dans un certain nombre de massifs forestiers de la région de Midelt, dans les Moyen et Haut-Atlas. Les premiers signes se manifestent par l'atteinte d'arbres isolés ou de bouquets couvrant des superficies variées. Le phénomène peut se généraliser, comme dans la forêt d'Aït-Oufella, en bordure sud du Moyen-Atlas central, près de la plaine aride de Midelt, où la mortalité est très élevée dans certains secteurs. Mais, dans la plupart des cas, il se concentre à la limite inférieure de l'aire de répartition de l'espèce.L'examen des précipitations et des températures mesurées de 1957 à 2005 à la station météorologique de Midelt – représentative de l'ambiance semi-aride qui prévaut à la limite inférieure de l'aire de répartition du cèdre sur le versant moulouyen du Moyen-Atlas – permet de formuler l'hypothèse que les dépérissements sont imputables à un déficit des précipitations combiné à une augmentation des températures, en liaison avec plusieurs épisodes de sécheresse au cours de la période 1982-2005.Au cours de ces années, les conditions climatiques ont eu un impact négatif sur la vitalité du cèdre, ce qui a entraîné la mort de nombreux arbres. L'aridification a eu des effets particulièrement sensibles

  3. Flexible Environments for Grand-Challenge Simulation in Climate Science (United States)

    Pierrehumbert, R.; Tobis, M.; Lin, J.; Dieterich, C.; Caballero, R.


    Current climate models are monolithic codes, generally in Fortran, aimed at high-performance simulation of the modern climate. Though they adequately serve their designated purpose, they present major barriers to application in other problems. Tailoring them to paleoclimate of planetary simulations, for instance, takes months of work. Theoretical studies, where one may want to remove selected processes or break feedback loops, are similarly hindered. Further, current climate models are of little value in education, since the implementation of textbook concepts and equations in the code is obscured by technical detail. The Climate Systems Center at the University of Chicago seeks to overcome these limitations by bringing modern object-oriented design into the business of climate modeling. Our ultimate goal is to produce an end-to-end modeling environment capable of configuring anything from a simple single-column radiative-convective model to a full 3-D coupled climate model using a uniform, flexible interface. Technically, the modeling environment is implemented as a Python-based software component toolkit: key number-crunching procedures are implemented as discrete, compiled-language components 'glued' together and co-ordinated by Python, combining the high performance of compiled languages and the flexibility and extensibility of Python. We are incrementally working towards this final objective following a series of distinct, complementary lines. We will present an overview of these activities, including PyOM, a Python-based finite-difference ocean model allowing run-time selection of different Arakawa grids and physical parameterizations; CliMT, an atmospheric modeling toolkit providing a library of 'legacy' radiative, convective and dynamical modules which can be knitted into dynamical models, and PyCCSM, a version of NCAR's Community Climate System Model in which the coupler and run-control architecture are re-implemented in Python, augmenting its flexibility

  4. France, an international partner in the climate change field; La France, partenaire international dans le domaine du changement climatique

    Energy Technology Data Exchange (ETDEWEB)



    Cooperation for low carbon and energy efficient development is a high priority for France, in line with the United Nations Framework Convention on Climate Change. France contributes to tackling climate change by working with its partners on all continents to implement projects both to mitigate greenhouse gas emissions and to adapt to climate change. Within the framework of the Marrakech Accords, France also encourages the implementation of the Kyoto Protocol Clean Development Mechanism, in particular between French business and non-Annex I countries; this mechanism will facilitate the financing of mitigation projects and contribute to the sustainable development of host countries in the South. At multilateral level, France is a major donor. At a bilateral level, an initial analysis of cooperation projects which are strongly linked to tackling climate change identified public support of 136 millions euros per year, as an average over the past few years. Some project examples, mostly implemented with local/national co-financing are presented. (A.L.B.)

  5. Collaborative Science with Indigenous Knowledge for Climate Solutions: Why, How, and with Whom? (United States)

    Maldonado, J.; Lazrus, H.; Gough, B.


    The inherent complexity of climate change requires diverse perspectives to understand and respond to its impacts. The Rising Voices: Collaborative Science with Indigenous Knowledge for Climate Solutions (Rising Voices) program represents a growing network of engaged Indigenous and non-Indigenous scientists committed to cross-cultural and collaborative research and activities to understand and mitigate the impacts of extreme weather and climate change. Five annual Rising Voices workshops have occurred since 2013, engaging hundreds of participants from across Tribal communities, the United States, and internationally over the years. Housed at the National Center for Atmospheric Research, Rising Voices aims to expand how diversity is understood in atmospheric science, to include intellectual diversity stemming from distinct cultural backgrounds. It envisions collaborative research that brings together Indigenous knowledges and science with Western climate and weather sciences in a respectful and inclusive manner to achieve culturally relevant and scientifically robust climate and weather adaptation solutions. The premise of the program and the research and collaborations it produces is that there is an opportunity cost to not involving diverse knowledge systems and observations from varied cultural backgrounds in addressing climate change. We cannot afford that cost given the challenges ahead. This poster presents some of the protocols, methods, challenges, and outcomes of cross-cultural research between Western and Indigenous scientists and communities from across the United States. It also presents some of the recommendations that have emerged from Rising Voices workshops over the past five years.

  6. Personal, Informal and Relatable: Engaging Wide Audiences in Climate Science with Nasa's Earth Right Now Blog (United States)

    Tenenbaum, L. F.; Shaftel, H.; Jackson, R.


    There is no such thing as a non-scientist, but there are some who have yet to acknowledge their inner science spark. Aiming to ignite and fan the flame of curiosity, promote dialogue and attempt to make climate science personal and relevant to everyday life, NASA's Global Climate Change website and Earth Right Now campaign partnered together this year to launch the Earth Right Now blog It quickly became one of the most popular blogs in all of NASA social media, receiving thousands of likes per week, and frequent comments as well as thoughtful and respectful discussions about climate change. Social media platforms such as blogs have become popular vehicles for engaging large swaths of the public in new exciting ways. NASA's Earth Right Now blog has become a powerful platform for engaging both scientists and the science-curious in constructive, fruitful conversations about the complex topic of climate science. We continue to interact and have ongoing dialogue with our readers by making the scientific content both accessible and engaging for diverse populations.

  7. Using a Family Science Day Event to Engage Youth in Climate Change Issues (United States)

    Brevik, C.; Brevik, E. C.


    Each fall, Dickinson State University organizes four Family Science Day events for elementary-aged children to increase their engagement in the sciences. Offered on Saturday afternoons, each event focuses on a different science-related theme. Families can attend these events free of charge, and the kids participate in a large variety of hands-on activities which center around the event's theme. This year, the November event focused on climate change and the roles soil plays in the climate system. The timing of this topic was carefully chosen. 2015 has been declared the International Year of Soil by the United Nations, and the Soil Science Society of America theme for the month of November was Soils and Climate. This public outreach event was an amazing opportunity to help the youth in our community learn about climate change and soil in a fun, interactive environment. The activities also helped the children learn how science is a process of discovery that allows them to better understand the world they live in. In addition to the hands-on activities, a planetarium show focusing on climate change was also offered during the event. The fully immersive, 360-degree show allowed the kids and their parents to personally observe phenomena that are otherwise difficult to visualize. All of the activities at the Family Science Day event were staffed by university students, and this proved to be a very valuable experience for them as well. Some of the students who helped are majoring in a science field, and for them, the experience taught public communication. They learned to break complicated concepts down into simpler terms that young kids can understand. Education majors who participated practiced communicating science concepts to children, and students in other majors who helped with this event gained experiences that reinforced various concepts they had learned in their general education science courses.

  8. Using "Making Sense of Climate Science Denial" MOOC videos in a college course (United States)

    Schuenemann, K. C.; Cook, J.


    The Massive Open Online Course (MOOC) "Denial101x: Making Sense of Climate Science Denial" teaches students to make sense of the science and respond to climate change denial. The course is made up of a series of short, myth-debunking lecture videos that can be strategically used in college courses. The videos and the visuals within have proven a great resource for an introductory college level climate change course. Methods for using the videos in both online and in-classroom courses will be presented, as well as student reactions and learning from the videos. The videos introduce and explain a climate science topic, then paraphrase a common climate change myth, explain why the myth is wrong by identifying the characteristic of climate denial used, and concludes by reinforcing the correct science. By focusing on common myths, the MOOC has made an archive of videos that can be used by anyone in need of a 5-minute response to debunk a myth. By also highlighting five characteristics of climate denial: fake experts, logical fallacies, impossible expectations, cherry picking, and conspiracy theories (FLICC), the videos also teach the viewer the skills they need to critically examine myths they may encounter in the real world on a variety of topics. The videos also include a series of expert scientist interviews that can be used to drive home points, as well as put some faces to the science. These videos are freely available outside of the MOOC and can be found under the relevant "Most used climate myths" section on the webpage, as well as directly on YouTube. Discover ideas for using videos in future courses, regardless of discipline.

  9. Effects of climate change on US agriculture; Les effets du changement climatique sur l'agriculture americaine

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, L


    The USA are a major producer of food and fiber products in the world. The US agriculture represents more than 25% of the world trades of wheat, corn, soy and cotton. The cultivated surfaces and the pasture lands represent 210 million Ha (17% of the US territory) and 300 million Ha (26% of the US territory), respectively. The agricultural production represents less than 2% of the US GDP, put the agriculture products make about 5% of the US exports. The climate change may have some impacts on the overall agriculture industry, from the plant growth to the conditions of competition on international markets. In 2001, the US global change research program, published an evaluation report about the potential consequences of the climate change on the US agriculture. The conclusions of the panel of experts, based on climate, cultivation and economical models, was that the CO{sub 2} levels and climate changes of the 21. century would have no negative impact on the US agriculture. The average effects, on the contrary, would be rather positive, depending on the type of culture and on the region considered. Today, the experts have entertained lot of doubts about the 2001 forecasts: the fertilizing effect of CO{sub 2} is more and more criticized and an efficient supply of water appears as seriously compromised for many regions. Experts stress also on the lack of consideration for extreme climatic events, and for crop vermin and diseases. This document reanalyzes the conclusions of the 2001 report in the light of the works carried out more recently at the Agriculture Research Service (ARS). The proceedings of expert's interviews are attached in appendixes. (J.S.)

  10. The predictive state: Science, territory and the future of the Indian climate. (United States)

    Mahony, Martin


    Acts of scientific calculation have long been considered central to the formation of the modern nation state, yet the transnational spaces of knowledge generation and political action associated with climate change seem to challenge territorial modes of political order. This article explores the changing geographies of climate prediction through a study of the ways in which climate change is rendered knowable at the national scale in India. The recent controversy surrounding an erroneous prediction of melting Himalayan glaciers by the Intergovernmental Panel on Climate Change provides a window onto the complex and, at times, antagonistic relationship between the Panel and Indian political and scientific communities. The Indian reaction to the error, made public in 2009, drew upon a national history of contestation around climate change science and corresponded with the establishment of a scientific assessment network, the Indian Network for Climate Change Assessment, which has given the state a new platform on which to bring together knowledge about the future climate. I argue that the Indian Network for Climate Change Assessment is indicative of the growing use of regional climate models within longer traditions of national territorial knowledge-making, allowing a rescaling of climate change according to local norms and practices of linking scientific knowledge to political action. I illustrate the complex co-production of the epistemic and the normative in climate politics, but also seek to show how co-productionist understandings of science and politics can function as strategic resources in the ongoing negotiation of social order. In this case, scientific rationalities and modes of environmental governance contribute to the contested epistemic construction of territory and the evolving spatiality of the modern nation state under a changing climate.

  11. Communicating Climate Science to Kids and Adults Through Citizen Science, Hands-On Demonstrations, and a Personal Approach (United States)

    Cherry, L.; Braasch, G.


    There is a demonstrated need to increase the amount of formal and non-formal science education and to raise the level of climate literacy for children and adults. Scientists and technical leaders are more and more being called on to speak in non-academic settings ranging from grade schools to assemblies and seminars for the general public. This abstract describes some effective ways to teach and talk about climate change science in a way that engenders hope and empowerment while explaining scientific facts and research methods to non-scientists. Citizen participation in Science People's interest and learning increases when offered chances to do what scientists do. Relating science to their daily lives and showing the adventure of science can greatly increase communication. Citizen participation in science works because data collection stimulates experiential and cognitive ways of learning. Learn what programs for citizen science are available in your area. For instance, GLOBE and Budburst tie into the research of Smithsonian scientists who determined that the cherry blossoms and 40 other species of plants were blooming earlier due to climate warming. Hands-on Outdoor Activities Information enters the human brain through many different neural pathways and the more avenues that information comes in on, the more likely people are to retain that knowledge for their lifetimes. For instance, kids knowledge of how ice cores tell us about the earth's ancient history will be reinforced through making ice cores in the classroom. Gary Braasch's photographs from the children's book How We Know What We Know About Our Changing Climate: Scientists and Kids Explore Global Warming and from his adult book Earth Under Fire: How Global Warming is Changing the World will illustrate the presentation. . Making the Message Personal to the Audience. Reaching people through things they care about, their family lives, work or school and telling personal stories helps reach people. The videos

  12. Ecosystems and Climate Change. Research Priorities for the U.S. Climate Change Science Program (United States)


    photosynthesis ), evapotranspiration, and energy balance. 12 Climate change recommended research priorities Organic matter inputs to soils and aquatic...may be altered through changes in climate (e.g., coral reefs, seagrass ). Finally, services provided by a number of federally protected areas depend

  13. Emotional climate of a pre-service science teacher education class in Bhutan (United States)

    Rinchen, Sonam; Ritchie, Stephen M.; Bellocchi, Alberto


    This study explored pre-service secondary science teachers' perceptions of classroom emotional climate in the context of the Bhutanese macro-social policy of Gross National Happiness. Drawing upon sociological perspectives of human emotions and using Interaction Ritual Theory this study investigated how pre-service science teachers may be supported in their professional development. It was a multi-method study involving video and audio recordings of teaching episodes supported by interviews and the researcher's diary. Students also registered their perceptions of the emotional climate of their classroom at 3-minute intervals using audience response technology. In this way, emotional events were identified for video analysis. The findings of this study highlighted that the activities pre-service teachers engaged in matter to them. Positive emotional climate was identified in activities involving students' presentations using video clips and models, coteaching, and interactive whole class discussions. Decreases in emotional climate were identified during formal lectures and when unprepared presenters led presentations. Emotions such as frustration and disappointment characterized classes with negative emotional climate. The enabling conditions to sustain a positive emotional climate are identified. Implications for sustaining macro-social policy about Gross National Happiness are considered in light of the climate that develops in science teacher education classes.

  14. Climate Change and Public Health Policy: Translating the Science (United States)

    Braks, Marieta; van Ginkel, Rijk; Wint, William; Sedda, Luigi; Sprong, Hein


    Public health authorities are required to prepare for future threats and need predictions of the likely impact of climate change on public health risks. They may get overwhelmed by the volume of heterogeneous information in scientific articles and risk relying purely on the public opinion articles which focus mainly on global warming trends, and leave out many other relevant factors. In the current paper, we discuss various scientific approaches investigating climate change and its possible impact on public health and discuss their different roles and functions in unraveling the complexity of the subject. It is not our objective to review the available literature or to make predictions for certain diseases or countries, but rather to evaluate the applicability of scientific research articles on climate change to evidence-based public health decisions. In the context of mosquito borne diseases, we identify common pitfalls to watch out for when assessing scientific research on the impact of climate change on human health. We aim to provide guidance through the plethora of scientific papers and views on the impact of climate change on human health to those new to the subject, as well as to remind public health experts of its multifactorial and multidisciplinary character. PMID:24452252

  15. Climate change and public health policy: translating the science. (United States)

    Braks, Marieta; van Ginkel, Rijk; Wint, William; Sedda, Luigi; Sprong, Hein


    Public health authorities are required to prepare for future threats and need predictions of the likely impact of climate change on public health risks. They may get overwhelmed by the volume of heterogeneous information in scientific articles and risk relying purely on the public opinion articles which focus mainly on global warming trends, and leave out many other relevant factors. In the current paper, we discuss various scientific approaches investigating climate change and its possible impact on public health and discuss their different roles and functions in unraveling the complexity of the subject. It is not our objective to review the available literature or to make predictions for certain diseases or countries, but rather to evaluate the applicability of scientific research articles on climate change to evidence-based public health decisions. In the context of mosquito borne diseases, we identify common pitfalls to watch out for when assessing scientific research on the impact of climate change on human health. We aim to provide guidance through the plethora of scientific papers and views on the impact of climate change on human health to those new to the subject, as well as to remind public health experts of its multifactorial and multidisciplinary character.

  16. Climate Change and Public Health Policy: Translating the Science

    Directory of Open Access Journals (Sweden)

    Marieta Braks


    Full Text Available Public health authorities are required to prepare for future threats and need predictions of the likely impact of climate change on public health risks. They may get overwhelmed by the volume of heterogeneous information in scientific articles and risk relying purely on the public opinion articles which focus mainly on global warming trends, and leave out many other relevant factors. In the current paper, we discuss various scientific approaches investigating climate change and its possible impact on public health and discuss their different roles and functions in unraveling the complexity of the subject. It is not our objective to review the available literature or to make predictions for certain diseases or countries, but rather to evaluate the applicability of scientific research articles on climate change to evidence-based public health decisions. In the context of mosquito borne diseases, we identify common pitfalls to watch out for when assessing scientific research on the impact of climate change on human health. We aim to provide guidance through the plethora of scientific papers and views on the impact of climate change on human health to those new to the subject, as well as to remind public health experts of its multifactorial and multidisciplinary character.

  17. Climatic shocks associate with innovation in science and technology

    NARCIS (Netherlands)

    C.K.W. de Dreu (Carsten); Dijk, M.A. (Mathijs) van


    textabstractHuman history is shaped by landmark discoveries in science and technology. However, across both time and space the rate of innovation is erratic: Periods of relative inertia alternate with bursts of creative science and rapid cascades of technological innovations. While the origins of

  18. Local climate activities in co-operation between municipality, civil society and science shop

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    The Science Shop at DTU co-operates with the local municipal administration and the local branch of an environmental NGO about climate change. The co-operation was initiated by a proposal to the Science Shop from the municipal administration. Since the Science Shop requests civil society...... involvement in projects it was proposed to involve the local branch of the environmental NGO. The starting point was topics developed by the administration and the NGO together and announced to students as part of the Science Shop project supply. The focus is climate impact of local activities and strategies...... are initiated and co-ordinated by a group with members from municipal administration, the local NGO and the Science Shop. All projects have involved student projects, but most projects have also contributed to ongoing research activities. The projects up till now have focused on the municipal food supply...

  19. Framing the challenge of climate change in Nature and Science editorials (United States)

    Hulme, Mike; Obermeister, Noam; Randalls, Samuel; Borie, Maud


    Through their editorializing practices, leading international science journals such as Nature and Science interpret the changing roles of science in society and exert considerable influence on scientific priorities and practices. Here we examine nearly 500 editorials published in these two journals between 1966 and 2016 that deal with climate change, thereby constructing a lens through which to view the changing engagement of science and scientists with the issue. A systematic longitudinal frame analysis reveals broad similarities between Nature and Science in the waxing and waning of editorializing attention given to the topic, but, although both journals have diversified how they frame the challenges of climate change, they have done so in different ways. We attribute these differences to three influences: the different political and epistemic cultures into which they publish; their different institutional histories; and their different editors and editorial authorship practices.

  20. Preservice Teachers' Perspectives on 'Appropriate' K-8 Climate Change and Environmental Science Topics (United States)

    Ford, D. J.


    With the release of the Next Generation Science Standards (NRC, 2013), climate change and related environmental sciences will now receive greater emphasis within science curricula at all grade levels. In grades K-8, preparation in foundational content (e.g., weather and climate, natural resources, and human impacts on the environment) and the nature of scientific inquiry will set the groundwork for later learning of climate change in upper middle and high school. These rigorous standards increase pressure on elementary and middle school teachers to possess strong science content knowledge, as well as experience supporting children to develop scientific ideas through the practices of science. It also requires a set of beliefs - about children and the science that is appropriate for them - that is compatible with the goals set out in the standards. Elementary teachers in particular, who often have minimal preparation in the earth sciences (NSF, 2007), and entrenched beliefs about how particular topics ought to be taught (Holt- Reynolds, 1992; Pajares, 1992), including climate change (Bryce & Day, 2013; Lambert & Bleicher, 2013), may face unique challenges in adjusting to the new standards. If teachers hold beliefs about climate change as controversial, for example, they may not consider it an appropriate topic for children, despite its inclusion in the standards. On the other hand, those who see a role for children in efforts to mitigate human impacts on the environment may be more enthusiastic about the new standards. We report on a survey of preservice K-8 teachers' beliefs about the earth and environmental science topics that they consider to be appropriate and inappropriate for children in grades K-3, 4-5, and 6-8. Participants were surveyed on a variety of standards-based topics using terminology that signals publicly and scientifically neutral (e.g. weather, ecosystems) to overtly controversial (evolution, global warming) science. Results from pilot data

  1. A Program to Prepare Graduate Students for Careers in Climate Adaptation Science (United States)

    Huntly, N.; Belmont, P.; Flint, C.; Gordillo, L.; Howe, P. D.; Lutz, J. A.; Null, S. E.; Reed, S.; Rosenberg, D. E.; Wang, S. Y.


    We describe our experiences creating a graduate program that addresses the need for a next generation of scientists who can produce, communicate, and help implement actionable science. The Climate Adaptation Science (CAS) graduate program, funded by the National Science Foundation Research Traineeship (NRT) program, prepares graduate students for careers at the interfaces of science with policy and management in the field of climate adaptation, which is a major 21st-century challenge for science and society. The program is interdisciplinary, with students and faculty from natural, social, and physical sciences, engineering, and mathematics, and is based around interdisciplinary team research in collaboration with partners from outside of academia who have climate adaptation science needs. The program embeds students in a cycle of creating and implementing actionable science through a two-part internship, with partners from government, non-governmental organizations, and industry, that brackets and informs a year of interdisciplinary team research. The program is communication-rich, with events that foster information exchange and understanding across disciplines and workplaces. We describe the CAS program, our experiences in developing it, the research and internship experiences of students in the program, and initial metrics and feedback on the effectiveness of the program.

  2. Discussing Climate Change with the Public: Presenting the Science is Necessary but Insufficient (United States)

    Vincelli, P.; Humble, J.


    Social science literature shows that the topic of climate change is imbued with cultural meaning for most Americans, such that sound scientific information alone is likely to be unpersuasive to people already doubtful about climate change. A current educational program on climate change emphasizes the following: *Less reliance on geophysical data *Positive messages as frequently as possible *Making the subject personal and concrete *Focusing on scientific aspects of climate change while refraining from promotion of particular policy solutions *Seeking ways to speak to core identities of diverse audiences *Assuring that communication efforts on this highly divisive topic are based on sensitivity to, and respect for, the diversity of worldviews present in citizens *To the extent possible, emphasizing optimism as well as our personal and collective capability to solve the problem of climate change. While this may seem self-evident, we also remind ourselves of the importance of avoiding criticism, blame, demonization, or arrogance in building a more inclusive community of public leaders on climate literacy.; Citing the recognition of climate-change science by trusted organizations is probably more convincing than showing reams of geophysical data. In particular, citing the Department of Defense may speak to the values of many who remain skeptical. ; This image is intended to speak to people that deeply value passing on a way of life to their descendants. Although nationalism can be carried to an extreme, this imagery can convey the notion that protecting our world from climate change is actually patriotic, something few Americans may realize.

  3. Science Express: Out-of-Home-Media to Communicate Climate Change (Invited) (United States)

    Lustick, D. S.; Lohmeier, J.; Chen, R.


    Science Express is an initiative to explore, develop, and test various approaches to using Out-of-Home-Media (OHM) to engage adults riding mass transit. To date, three projects represent this work: 1) Carbon Smarts Conference, 2) Cool Science, and 3) While the aim of each project is different, together they serve an immediate need to understand how OHM can be leveraged as an informal science learning medium. Using Climate Change as the content focus, each project is a variation on the theme of understanding mass transit as a form of mobile classroom for riders. The basic idea behind these initiatives is to engage individuals who do not necessarily read the science magazines, listen to science radio shows, or watch science programming on television. Science Express is about bringing the science learning opportunity to the audience during their daily routines. Mass Transit provides an ideal opportunity for engaging the disengaged in science learning since they represent a ';captive' audience while waiting at the bus stop, standing on the platform, riding inside the bus or train. These ';downtimes' present informal science educators with the opportunity to foster some science learning. With the advent of smartphone technology and its explosion in popularity among consumers, OHM is poised to offer riders a new kind of real time learning experience. The Science Express projects aim to understand the strengths and weaknesses of this new model for informal science learning so as to refine and improve its effectiveness at achieving desired goals. While the Science Express model for informal science learning could be used to foster understanding about any relevant scientific content, the research team chose to use Climate Change as the focus. Climate Change seemed like an obvious because of its timeliness, complexity, robust scientific foundation, and presence in popular media. Nearly all our riders have heard of 'Climate Change' or 'Global Warming', but a

  4. Built cultural heritage facing climate change risks; Le patrimoine culturel bati face aux risques du changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Roger-Alexandre [Paris-Est Creteil Univ., 61 Avenue du General de Gaulle, 94010 Creteil (France); Martin, Daniel [Ministere de l' Ecologie, du Developpement durable, des Transports et du Logement, Grande Arche, Tour Pascal A et B, 92055 La Defense Cedex (France)


    The built cultural heritage would face important risks in the frame of climate change. They are well identified by the major international organizations, but only in a qualitative manner, and mainly refer on the action of water or on its absence. The most active research is supported by the European Commission. The results obtained by the European project 'Noah's Ark' are the most important at the day. Dose-Response Functions with predictive climate models are used to produce vulnerability maps at a European scale of which one example is presented. The recommendations of the Council of Europe for policy makers and researchers are developed as a conclusion. Three case studies are synthesized in annex of this article: Venice, London and Paris. (authors)

  5. Climate change, uncertainty, and resilient fisheries: Institutional responses through integrative science

    DEFF Research Database (Denmark)

    Miller, K.; Charles, A.; Barange, M.


    This paper explores the importance of a focus on the fundamental goals of resilience and adaptive capacity in the governance of uncertain fishery systems, particularly in the context of climate change. Climate change interacts strongly with fishery systems, and adds to the inherent uncertainty...... that understanding these aspects of fishery systems and fishery governance is valuable even in the absence of climate-induced processes of change, but that attention to climate change both reinforces the need for, and facilitates the move toward, implementation of integrative science for improved fishery governance....... and processes – to support suitable institutional responses, a broader planning perspective, and development of suitable resilience-building strategies. The paper explores how synergies between institutional change and integrative science can facilitate the development of more effective fisheries policy...

  6. Bad weather for the IPCC: from Nobel price to affairs, rise and fall of climate experts; Sale temps pour le GIEC: Du prix Nobel aux affaires, grandeur et decadence des experts du climat

    Energy Technology Data Exchange (ETDEWEB)

    Dubuis, E.


    The intergovernmental panel on climate change, IPCC, or GIEC in French, has become in 20 years one of the most influent organization in the world. Awarded by the Nobel price of peace in 2007, this expression of the United Nations has succeeded in setting the fight against global warming at the top of the international political agenda, in particular during the 2009 Copenhagen meeting. What are the keys of this success? The IPCC has announced a global warming with disastrous effects, where floods would combine with dryness periods, epidemics and other natural disasters. Such a dark picture cannot leave anyone indifferent and allows the IPCC to encourage the humanity to drastically change its consumption habits and limit its way of life. However, to raise such fears and ask for such sacrifices, an organization like the IPCC must be irreproachable. And here is the problem reported in this book: the IPCC has shown its weaknesses, has made mistakes, has used unappropriated methods and miscasting personnel, has been uncapable to explain the complexness of the climate question and has felt reticent about the recognition of its mistakes. Revealed between fall 2009 and winter 2010, these failures have shaken the credibility of the organization to such a point that the UN requested an expertise to judge its own experts. (J.S.)

  7. Stochastic and Statistical Methods in Climate, Atmosphere, and Ocean Science

    NARCIS (Netherlands)

    D.T. Crommelin (Daan); B. Khouider; B. Engquist


    htmlabstractIntroduction The behavior of the atmosphere, oceans, and climate is intrinsically uncertain. The basic physical principles that govern atmospheric and oceanic flows are well known, for example, the Navier-Stokes equations for fluid flow, thermodynamic properties of moist air, and the

  8. A computational approach to climate science education with CLIMLAB (United States)

    Rose, B. E. J.


    CLIMLAB is a Python-based software toolkit for interactive, process-oriented climate modeling for use in education and research. It is motivated by the need for simpler tools and more reproducible workflows with which to "fill in the gaps" between blackboard-level theory and the results of comprehensive climate models. With CLIMLAB you can interactively mix and match physical model components, or combine simpler process models together into a more comprehensive model. I use CLIMLAB in the classroom to put models in the hands of students (undergraduate and graduate), and emphasize a hierarchical, process-oriented approach to understanding the key emergent properties of the climate system. CLIMLAB is equally a tool for climate research, where the same needs exist for more robust, process-based understanding and reproducible computational results. I will give an overview of CLIMLAB and an update on recent developments, including: a full-featured, well-documented, interactive implementation of a widely-used radiation model (RRTM) packaging with conda-forge for compiler-free (and hassle-free!) installation on Mac, Windows and Linux interfacing with xarray for i/o and graphics with gridded model data a rich and growing collection of examples and self-computing lecture notes in Jupyter notebook format

  9. Five ways to enhance the impact of climate science (United States)

    Rose, David Christian


    Embracing an 'evidence-informed' rather than 'evidence-based' attitude to policy-making should result in more effective action on climate change, recognizing that evidence must be used in such a way as to interact persuasively with other factors.

  10. The adventures of climate science in the sweet land of idle arguments (United States)

    Winsberg, Eric; Goodwin, William Mark


    In a recent series of papers Roman Frigg, Leonard Smith, and several coauthors have developed a general epistemological argument designed to cast doubt on the capacity of a broad range of mathematical models to generate "decision relevant predictions." The presumptive targets of their argument are at least some of the modeling projects undertaken in contemporary climate science. In this paper, we trace and contrast two very different readings of the scope of their argument. We do this by considering the very different implications for climate science that these interpretations would have. Then, we lay out the structure of their argument-an argument by analogy-with an eye to identifying points at which certain epistemically significant distinctions might limit the force of the analogy. Finally, some of these epistemically significant distinctions are introduced and defended as relevant to a great many of the predictive mathematical modeling projects employed in contemporary climate science.

  11. A Case Study of Teaching Social Responsibility to Doctoral Students in the Climate Sciences

    DEFF Research Database (Denmark)

    Børsen, Tom; Antia, Avan N.; Glessmer, Mirjam Sophia


    climate science meets the public sphere (e.g., to identify and balance legitimate perspectives on particular types of geo-engineering), and is an example of how to include social responsibility in doctoral education. The paper describes the workshop from the three different perspectives of the authors......: the course teacher, the head of the graduate school, and a graduate student. The elements that contributed to the success of the workshop, and thus make it an example to follow, are (1) the involvement of participating students, (2) the introduction of external expertise and role models in climate science......, and (3) a workshop design that focused on ethical analyses of examples from the climate sciences....

  12. Promoting Climate Literacy and Conceptual Understanding among In-service Secondary Science Teachers requires an Epistemological Perspective (United States)

    Bhattacharya, D.; Forbes, C.; Roehrig, G.; Chandler, M. A.


    Promoting climate literacy among in-service science teachers necessitates an understanding of fundamental concepts about the Earth's climate System (USGCRP, 2009). Very few teachers report having any formal instruction in climate science (Plutzer et al., 2016), therefore, rather simple conceptions of climate systems and their variability exist, which has implications for students' science learning (Francies et al., 1993; Libarkin, 2005; Rebich, 2005). This study uses the inferences from a NASA Innovations in Climate Education (NICE) teacher professional development program (CYCLES) to establish the necessity for developing an epistemological perspective among teachers. In CYCLES, 19 middle and high school (male=8, female=11) teachers were assessed for their understanding of global climate change (GCC). A qualitative analysis of their concept maps and an alignment of their conceptions with the Essential Principles of Climate Literacy (NOAA, 2009) demonstrated that participants emphasized on EPCL 1, 3, 6, 7 focusing on the Earth system, atmospheric, social and ecological impacts of GCC. However, EPCL 4 (variability in climate) and 5 (data-based observations and modeling) were least represented and emphasized upon. Thus, participants' descriptions about global climatic patterns were often factual rather than incorporating causation (why the temperatures are increasing) and/or correlation (describing what other factors might influence global temperatures). Therefore, engaging with epistemic dimensions of climate science to understand the processes, tools, and norms through which climate scientists study the Earth's climate system (Huxter et al., 2013) is critical for developing an in-depth conceptual understanding of climate. CLiMES (Climate Modeling and Epistemology of Science), a NSF initiative proposes to use EzGCM (EzGlobal Climate Model) to engage students and teachers in designing and running simulations, performing data processing activities, and analyzing

  13. Assessing the Credibility of Climate Science Information: A Roadmap for Educators (United States)

    Mandia, S. A.


    Although there is an overwhelming scientific consensus that humans are driving modern day climate change, a significant portion of Americans are still not convinced. One reason for this gap in understanding results from a large body of misinformation that is easily accessible by students and educators. Here the author presents an effective teaching model to allow students to assess the credibility of organizations and their authors who publish climate science information aimed toward the general public.

  14. Mathematical sciences for climate change resilience (MS4CR ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will support the African Institute for Mathematical Sciences' Next Einstein Initiative (AIMS-NEI) in building a critical ... IDRC invites applications for the IDRC Research Awards 2019 ... ROSSA's latest bulletin puts a focus on women.

  15. Integrating Climate and Ecosystem-Response Sciences in Temperate Western North American Mountains: The CIRMOUNT Initiative (United States)

    Millar, C. I.; Fagre, D. B.


    Mountain regions are uniquely sensitive to changes in climate, vulnerable to climate effects on biotic and physical factors of intense social concern, and serve as critical early-warning systems of climate impacts. Escalating demands on western North American (WNA) mountain ecosystems increasingly stress both natural resources and rural community capacities; changes in mountain systems cascade to issues of national concern. Although WNA has long been a focus for climate- and climate-related environmental research, these efforts remain disciplinary and poorly integrated, hindering interpretation into policy and management. Knowledge is further hampered by lack of standardized climate monitoring stations at high-elevations in WNA. An initiative is emerging as the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT) whose primary goal is to improve knowledge of high-elevation climate systems and to better integrate physical, ecological, and social sciences relevant to climate change, ecosystem response, and natural-resource policy in WNA. CIRMOUNT seeks to focus research on climate variability and ecosystem response (progress in understanding synoptic scale processes) that improves interpretation of linkages between ecosystem functions and human processing (progress in understanding human-environment integration), which in turn would yield applicable information and understanding on key societal issues such as mountains as water towers, biodiversity, carbon forest sinks, and wildland hazards such as fire and forest dieback (progress in understanding ecosystem services and key thresholds). Achieving such integration depends first on implementing a network of high-elevation climate-monitoring stations, and linking these with integrated ecosystem-response studies. Achievements since 2003 include convening the 2004 Mountain Climate Sciences Symposium (1, 2) and several special sessions at technical conferences; initiating a biennial mountain climate

  16. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, Christiane [Univ. of Michigan, Ann Arbor, MI (United States)


    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively with advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project

  17. Collaboration for Actionable Climate Science in Hawaii and the US-Affiliated Pacific Islands (United States)

    Keener, V. W.; Grecni, Z. N.; Helweg, D. A.


    Hawaii and the US-Affiliated Pacific Islands (USAPI) encompass more than 2000 islands spread across millions of square miles of ocean. Islands can be high volcanic or low atolls, and vary widely in terms of geography, climate, ecology, language, culture, economies, government, and vulnerability to climate change impacts. For these reasons, meaningful collaboration across research groups and climate organizations is not only helpful, it is mandatory. No single group can address all the needs of every island, stakeholder, or sector, which has led to close collaboration and leveraging of research in the region to fill different niches. The NOAA-funded Pacific Regional Integrated Sciences & Assessments (RISA) program, DOI Pacific Islands Climate Science Center (PICSC), and the DOI LCC the Pacific Islands Climate Change Cooperative (PICCC) all take a stakeholder oriented approach to climate research, and have successfully collaborated on both specific projects and larger initiatives. Examples of these collaborations include comprising the core team of the Pacific Islands Regional Climate Assessment (PIRCA), the regional arm of the US National Climate Assessment, co-sponsoring a workshop on regional downscaling for scientists and managers, leveraging research projects across multiple sectors on a single island, collaborating on communication products such as handouts and websites to ensure a consistent message, and in the case of the Pacific RISA and the PICSC, jointly funding a PIRCA Sustained Assessment Specialist position. Barriers to collaboration have been around topics such as roles of research versus granting groups, perceived research overlap, and funding uncertainties. However, collaborations have been overwhelming positive in the Pacific Islands region due to communication, recognition of partners' strengths and expertise, and especially because of the "umbrella" organization and purpose provided by the PIRCA structure, which provides a shared platform for all

  18. The Integration of Climate Science and Collaborative Processes in Building Regional Climate Resiliency in Southeast Florida (United States)

    Jurado, J.


    Southeast Florida is widely recognized as one of the most vulnerable regions in the United States to the impacts of climate change, especially sea level rise. Dense urban populations, low land elevations, flat topography, complex shorelines and a porous geology all contribute to the region's challenges. Regional and local governments have been working collaboratively to address shared climate mitigation and adaptation concerns as part of the four-county Southeast Florida Regional Climate Change Compact (Compact). This partnership has emphasized, in part, the use of climate data and the development of advanced technical tools and visualizations to help inform decision-making, improve communications, and guide investments. Prominent work products have included regional vulnerability maps and assessments, a unified sea level rise projection for southeast Florida, the development and application of hydrologic models in scenario planning, interdisciplinary resilient redesign planning workshops, and the development of regional climate indicators. Key to the Compact's efforts has been the engagement and expertise of academic and agency partners, including a formal collaboration between the Florida Climate Institute and the Compact to improve research and project collaborations focused on southeast Florida. This presentation will focus on the collaborative processes and work products that have served to accelerate resiliency planning and investments in southeast Florida, with specific examples of how local governments are using these work products to modernize agency processes, and build support among residents and business leaders.

  19. Reconstruction of the boundary between climate science and politics: the IPCC in the Japanese mass media, 1988-2007. (United States)

    Asayama, Shinichiro; Ishii, Atsushi


    The Intergovernmental Panel on Climate Change (IPCC) plays a significant role in bridging the boundary between climate science and politics. Media coverage is crucial for understanding how climate science is communicated and embedded in society. This study analyzes the discursive construction of the IPCC in three Japanese newspapers from 1988 to 2007 in terms of the science-politics boundary. The results show media discourses engaged in boundary-work which rhetorically separated science and politics, and constructed the iconic image of the IPCC as a pure scientific authority. In the linkages between the global and national arenas of climate change, the media "domesticate" the issue, translating the global nature of climate change into a discourse that suits the national context. We argue that the Japanese media's boundary-work is part of the media domestication that reconstructed the boundary between climate science and politics reflecting the Japanese context.

  20. Teaching Climate Change Science to Undergradutes with Diverse & Digital Pedagogical Techniquees (United States)

    Kauffman, C.; Brey, J. A.; Nugnes, K. A.; Weinbeck, R. S.; Geer, I. W.


    California University of Pennsylvania (CalUPA) is unique relative to other undergraduate geoscience programs in that their climate science offerings are varied and inter-woven into an existing meteorology degree program, which aligns with the guidelines established by the American Meteorological Society (AMS). In addition to the rigorous meteorological requirements, the program strives to increase students' climate literacy. At the introductory course level, students are required to use the educational resources offered by the AMS—specifically their weather and climate studies materials, which have recently transitioned to a digital format. The Earth Sciences Program at CalUPA recently incorporated these new digital resources into a climatology course with novel pedagogical variants. These teaching strategies were well received by students and may benefit other climatology courses at similar institutions. For example, students were tasked with expounding upon textbook content from 'Topic In Depth' segments; they were required to present tangential climate topics in a digital presentation. Moreover, students mined the scientific literature listed at the end of each chapter in the text to identify climate scientists immersed in social media. Students were then required to follow these scientists and engage each other within a social media platform. Finally, as a culminating experience, students were required to create digital portfolios (e.g., infographic) related to climate science and the AMS materials. This presentation will further detail CalUPA's climatological course offerings and detail how the AMS resources were connected to course requirements listed herein.

  1. GLOBE Observer and the Association of Science & Technology Centers: Leveraging Citizen Science and Partnerships for an International Science Experiment to Build Climate Literacy (United States)

    Riebeek Kohl, H.; Chambers, L. H.; Murphy, T.


    For more that 20 years, the Global Learning and Observations to Benefit the Environment (GLOBE) Program has sought to increase environment literacy in students by involving them in the process of data collection and scientific research. In 2016, the program expanded to accept observations from citizen scientists of all ages through a relatively simple app. Called GLOBE Observer, the new program aims to help participants feel connected to a global community focused on advancing the scientific understanding of Earth system science while building climate literacy among participants and increasing valuable environmental data points to expand both student and scientific research. In October 2016, GLOBE Observer partnered with the Association of Science & Technology Centers (ASTC) in an international science experiment in which museums and patrons around the world collected cloud observations through GLOBE Observer to create a global cloud map in support of NASA satellite science. The experiment was an element of the International Science Center and Science Museum Day, an event planned in partnership with UNESCO and ASTC. Museums and science centers provided the climate context for the observations, while GLOBE Observer offered a uniform experience and a digital platform to build a connected global community. This talk will introduce GLOBE Observer and will present the results of the experiment, including evaluation feedback on gains in climate literacy through the event.

  2. 1999 in review: An assessment of new research developments relevant to the science of climate change

    International Nuclear Information System (INIS)



    A synthesis of about 350 key scientific papers and reports dealing with the subject of climate change which appeared in the international peer-reviewed literature in 1999 is provided. The literature synthesized here deals with changes in atmospheric composition, radiative forcing, climate modelling, climate trends, climate impacts and adaptations, and climate change policy initiatives, especially the policy-science debate and mitigative response. With respect to the former, there are a number of scientists who continue to argue that there are significant discrepancies between observed trends in climate and trends projected by climate models, and suggest that there is cause for scepticism about the risk of climate change. They also suggest that mitigative action could be delayed until better technologies are developed. Others claim that the countries that are most vulnerable lack the resources to deal with the impacts of climate change and that the number of environmental refugees will increase six-fold by 2050 (estimated at 25 million in 1998). The references are classified under the broad topics used in the synthesis part of the review, with further subdivisions as appropriate. 348 refs

  3. What is motivating middle-school science teachers to teach climate change? (United States)

    McNeal, Peggy; Petcovic, Heather; Reeves, Patricia


    Adoption of science content standards that include anthropogenic climate change has prompted widespread instruction in climate change for the first time. However, the controversial nature of the topic can be daunting and many teachers share misconceptions that lead to weak treatment of climate change in classrooms. Nevertheless, numerous teachers have embraced the topic and are providing illustrations of deliberate climate change education. In this study we investigated teacher motivation using focus groups with middle school teachers who currently teach climate change. Qualitative analysis of the collective teacher voices yielded underlying motivations. Our findings suggest that these teachers' interest in environmentalism naturally translates to climate change advocacy and motivates teaching the topic. Their knowledge and expertise gives them confidence to teach it. These teachers see themselves as scientists, therefore their views align with the scientific consensus. They practice authentic scientific research with their students, thus confirming valued characteristics of their scientist identity. Finally, our findings suggest that teaching climate change gives these teachers a sense of hope as they impact the future through their students. This study contrasts with skepticism over the state of climate change education and contributes to an understanding of how climate change education is motivated in teachers.

  4. Cognitive and psychological science insights to improve climate change data visualization (United States)

    Harold, Jordan; Lorenzoni, Irene; Shipley, Thomas F.; Coventry, Kenny R.


    Visualization of climate data plays an integral role in the communication of climate change findings to both expert and non-expert audiences. The cognitive and psychological sciences can provide valuable insights into how to improve visualization of climate data based on knowledge of how the human brain processes visual and linguistic information. We review four key research areas to demonstrate their potential to make data more accessible to diverse audiences: directing visual attention, visual complexity, making inferences from visuals, and the mapping between visuals and language. We present evidence-informed guidelines to help climate scientists increase the accessibility of graphics to non-experts, and illustrate how the guidelines can work in practice in the context of Intergovernmental Panel on Climate Change graphics.

  5. Urban adaptation planning: the use and limits of climate science

    Energy Technology Data Exchange (ETDEWEB)

    Dodman, David; Carmin, Joann


    Cities face a mounting challenge from climate change. In developed and developing countries alike, rising temperatures, changing rainfall patterns, higher sea levels, and more frequent and severe extreme events such as droughts and floods threaten to overwhelm urban infrastructure, services and management systems. City officials recognise the need to adapt to climate change, and use scientific evidence to support their plans for doing so. But the precise details of these changes and the local impacts they will have cannot be predicted. Decision makers must learn to draw on scientific data while simultaneously managing the uncertainty inherent in future projections. Across the world, forward-looking city officials are proving themselves to be 'urban adaptation leaders' — mobilising political and public support for and devising flexible approaches to adaptation.

  6. Managing for climate change on federal lands of the western United States: perceived usefulness of climate science, effectiveness of adaptation strategies, and barriers to implementation

    Directory of Open Access Journals (Sweden)

    Kerry B. Kemp


    Full Text Available Recent mandates in the United States require federal agencies to incorporate climate change science into land management planning efforts. These mandates target possible adaptation and mitigation strategies. However, the degree to which climate change is actively being considered in agency planning and management decisions is largely unknown. We explored the usefulness of climate change science for federal resource managers, focusing on the efficacy of potential adaptation strategies and barriers limiting the use of climate change science in adaptation efforts. Our study was conducted in the northern Rocky Mountains region of the western United States, where we interacted with 77 U.S. Forest Service and Bureau of Land Management personnel through surveys, semistructured interviews, and four collaborative workshops at locations across Idaho and Montana. We used a mixed-methods approach to evaluate managers' perceptions about adapting to and mitigating for climate change. Although resource managers incorporate general language about climate change in regional and landscape-level planning documents, they are currently not planning on-the-ground adaptation or mitigation projects. However, managers felt that their organizations were most likely to adapt to climate change through use of existing management strategies that are already widely implemented for other non climate-related management goals. These existing strategies, (e.g., thinning and prescribed burning are perceived as more feasible than new climate-specific methods (e.g., assisted migration because they already have public and agency support, accomplish multiple goals, and require less anticipation of the future timing and probability of climate change impacts. Participants reported that the most common barriers to using climate change information included a lack of management-relevant climate change science, inconsistent agency guidance, and insufficient time and resources to access

  7. Science Support for Climate Change Adaptation in South Florida (United States)

    Early, Laura M.; Harvey, Rebecca G.


    Earth's changing climate is among the foremost conservation challenges of the 21st century, threatening to permanently alter entire ecosystems and contribute to extinctions of species. Lying only a few feet above sea level and already suffering effects of anthropogenic stressors, south Florida's ecosystems are particularly vulnerable to negative impacts of climate change. Recent research accounting for the gravitational effects of melting ice sheets predicts that sea level rise on U.S. coastlines will be much higher than global averages (Gomez et al. 2010), and the Miami-Dade Climate Change Advisory Task Force predicts that local sea level rise will be at least 3 to 5 ft. (0.9 m to 1.5 m) by 2100 (MDCCATF 2008). In a 5 ft. scenario, up to 873 additional square miles of the Everglades would be inundated with saltwater (see maps below). Accelerated sea level rise is likely to be accompanied by increasing temperatures (IPCC 2007a) and more intense tropical storms and hurricanes (Webster et al. 2005). In addition, changes in amount, timing, and distribution of rainfall in south Florida may lead to more severe droughts and floods (SFWMD 2009).

  8. A unified nonlinear stochastic time series analysis for climate science. (United States)

    Moon, Woosok; Wettlaufer, John S


    Earth's orbit and axial tilt imprint a strong seasonal cycle on climatological data. Climate variability is typically viewed in terms of fluctuations in the seasonal cycle induced by higher frequency processes. We can interpret this as a competition between the orbitally enforced monthly stability and the fluctuations/noise induced by weather. Here we introduce a new time-series method that determines these contributions from monthly-averaged data. We find that the spatio-temporal distribution of the monthly stability and the magnitude of the noise reveal key fingerprints of several important climate phenomena, including the evolution of the Arctic sea ice cover, the El Nio Southern Oscillation (ENSO), the Atlantic Nio and the Indian Dipole Mode. In analogy with the classical destabilising influence of the ice-albedo feedback on summertime sea ice, we find that during some time interval of the season a destabilising process operates in all of these climate phenomena. The interaction between the destabilisation and the accumulation of noise, which we term the memory effect, underlies phase locking to the seasonal cycle and the statistical nature of seasonal predictability.

  9. The Iowa K-12 Climate Science Education Initiative: a comprehensive approach to meeting in-service teachers' stated needs for teaching climate literacy with NGSS (United States)

    Stanier, C. O.; Spak, S.; Neal, T. A.; Herder, S.; Malek, A.; Miller, Z.


    The Iowa Board of Education voted unanimously in 2015 to adopt NGSS performance standards. The CGRER - College of Education Iowa K-12 Climate Science Education Initiative was established in 2016 to work directly with Iowa inservice teachers to provide what teachers need most to teach climate literacy and climate science content through investigational learning aligned with NGSS. Here we present teachers' requests for teaching climate with NGSS, and an approach to provide resources for place-based authentic inquiry on climate, developed, tested, and refined in partnership with inservice and preservice teachers. A survey of inservice middle school and high school science teachers was conducted at the 2016 Iowa Council of Teachers of Mathematics/Iowa Academy of Sciences - Iowa Science Teaching Section Fall Conference and online in fall 2016. Participants (n=383) were asked about their prior experience and education, the resources they use and need, their level of comfort in teaching climate science, perceived barriers, and how they address potential controversy. Teachers indicated preference for professional development on climate content and complete curricula packaged with lessons and interactive models aligned to Iowa standards, as well as training on instructional strategies to enhance students' ability to interpret scientific evidence. We identify trends in responses by teaching experience, climate content knowledge and its source, grade level, and urban and rural districts. Less than 20% of respondents reported controversy or negativity in teaching climate to date, and a majority were comfortable teaching climate science and climate change, with equal confidence in teaching climate and other STEM content through investigational activities. We present an approach and materials to meet these stated needs, created and tested in collaboration with Iowa teachers. We combine professional development and modular curricula with bundled standards, concepts, models, data

  10. U.S. Department of the Interior South Central Climate Science Center strategic science plan, 2013--18 (United States)

    Winton, Kim T.; Dalton, Melinda S.; Shipp, Allison A.


    The Department of the Interior (DOI) recognizes and embraces the unprecedented challenges of maintaining our Nation’s rich natural and cultural resources in the 21st century. The magnitude of these challenges demands that the conservation community work together to develop integrated adaptation and mitigation strategies that collectively address the impacts of climate change and other landscape-scale stressors. On September 14, 2009, DOI Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010) entitled, “Addressing the Impacts of Climate Change on America’s Water, Land, and Other Natural and Cultural Resources.” The Order establishes the foundation for two partner-based conservation science entities to address these unprecedented challenges: Climate Science Centers (CSCs and Landscape Conservation Cooperatives (LCCs). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase understanding of climate change and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. Eight CSCs have been established and are managed through the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC); each CSC works in close collaboration with their neighboring CSCs, as well as those across the Nation, to ensure the best and most efficient science is produced. The South Central CSC was established in 2012 through a cooperative agreement with the University of Oklahoma, Texas Tech University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, Oklahoma State University, and NOAA’s Geophysical Fluid Dynamics Lab; hereafter termed the ”Consortium” of the South Central CSC. The Consortium has a broad expertise in the physical, biological, natural, and social sciences to address impacts of climate change on land, water, fish and wildlife, ocean, coastal, and

  11. Implementation of an Online Climate Science Course at San Antonio College (United States)

    Reyes, R.; Strybos, J.


    San Antonio College (SAC) plans to incorporate an online climate science class into the curriculum with a focus on local weather conditions and data. SAC is part of a network of five community colleges based around San Antonio, Texas, has over 20,000 students enrolled, and its student population reflects the diversity in ethnicity, age and gender of the San Antonio community. The college understands the importance of educating San Antonio residents on climate science and its complexities. San Antonio residents are familiar with weather changes and extreme conditions. The region has experienced an extreme drought, including water rationing in the city. Then, this year's El Niño intensified expected annual rainfalls and flash floods. The proposed climate science course will uniquely prepare students to understand weather data and the evidence of climate change impacting San Antonio at a local level. This paper will discuss the importance and challenges of introducing the new climate science course into the curriculum, and the desired class format that will increase the course's success. Two of the most significant challenges are informing students about the value of this class and identifying the best teaching format. Additionally, measuring and monitoring enrollment will be essential to determine the course performance and success. At the same time, Alamo Colleges is modifying the process of teaching online classes and is officially working to establish an online college. Around 23% of students enrolled in SAC offered courses are currently enrolled in online courses only, representing an opportunity to incorporate the climate science class as an online course. Since the proposed course will be using electronic textbooks and online applications to access hyperlocal weather data, the class is uniquely suited for online students.

  12. Climate Science and the Responsibilities of Fossil Fuel Companies for Climate Damages and Adaptation (United States)

    Frumhoff, P. C.; Ekwurzel, B.


    Policymakers in several jurisdictions are now considering whether fossil fuel companies might bear some legal responsibility for climate damages and the costs of adaptation to climate change potentially traceable to the emissions from their marketed products. Here, we explore how scientific research, outreach and direct engagement with industry leaders and shareholders have informed and may continue to inform such developments. We present the results of new climate model research quantifying the contribution of carbon dioxide and methane emissions traced to individual fossil fuel companies to changes in global temperature and sea level; explore the impact of such research and outreach on both legal and broader societal consideration of company responsibility; and discuss the opportunities and challenges for scientists to engage in further work in this area.

  13. How much can disaster and climate science contribute to loss and damage mechanisms in international climate policy? (United States)

    Huggel, Christian; Allen, Simon; Eicken, Hajo; Hansen, Gerrit; Stone, Dáithí


    proposals for mechanisms of financing suggested a role of causation and thus attribution of L&D to (anthropogenic) climate change. Yet, causation mechanisms are particularly delicate in terms of climate justice, development and implications of legal liabilities. Here, we outline potential contributions of science to L&D mechanisms in greater specificity, in particular for (i) threshold based mechanisms, and (ii) causation related mechanisms. We draw on recent concepts of L&D attribution suggesting a more comprehensive attribution framework based on risk concepts. We present a first-order proof-of-concept for the above mechanisms (i) and (ii), using case studies of recent disasters (both related to extreme events and gradual climate change) in the Indian Himalayas, Colombia, Alaska and Australia. We analyze whether science is in a position to substantially contribute to the different L&D policy proposals, including the question whether currently available data and datasets on climate and hazards, exposure and vulnerability are in line with such support, in particular with regards to developing country contexts. We conclude with a perspective on critical research and data needs to further strengthen L&D science and policy.

  14. EPA Science Matters Newsletter: Taking Action on Climate Change (United States)

    The U.S. Global Change Research Program (USGCRP) emphasizes the foundational role of science in understanding global change and its impacts on the environment. The U.S. Environmental Protection Agency is an integral and important part of that effort

  15. Memoirs of law, sciences and technologies - Law and climate thematic issue; Cahiers droit, sciences et technologies - Dossier thematique droit et climat

    Energy Technology Data Exchange (ETDEWEB)

    Torre-Schaub, M. [CNRS, IDHE ENS-Cachan (France); Jouzel, J. [IPSL-LSCE, CEA-CNRS, UVSQ, CE Saclay 91191 Gif-sur-Yvette Cedex (France); Boisson de Chazournes, L. [Faculte de droit, Geneve Univ. (Switzerland); Sadeleer, N. de; Denis, B. [Saint-Louis Univ., Brussels (Belgium); Godard, O. [CNRS-Ecole Polytechnique, Dep. Humanites et Sciences Sociales (France); Le Prestre, P. [Laval univ. (Canada); Maljean-Dubois, S. [CNRS, CERIC, Paul Cezanne Univ., Aix-en-Provence (France); Wemaere, M. [IDDRI, Dep. Climat et Energie (France); Rousseaux, S. [CNRS, Droit et Changement Social, Association Climaterre (France); Louchard, O. [Reseau Action Climat (France)


    This dossier is organized around two essential points: 1 - climate is a scientific question which combines science and governance. In this context, the last IPCC (Intergovernmental Panel on Climate Change) report gives an essential place to uncertainties with claiming that 'it is more probable than improbable that we may be in an irreversible process of global warming'. Therefore, it has become necessary to think about the management of uncertainties using law and to a massive mobilization of the precaution principle. The essential economical aspects to the implementation of a significant abatement of greenhouse gases cannot be passed over in silence as well. Finally, the civil society occupies a more and more important place, not only in international negotiations, but inside the countries as well. 2 - Global warming is thinkable at a World scale only. This implies that some kind of a climate geopolitics is emerging in the World, considering the existence at the same time of different sources and different problems to deal with (technical, economical) depending on the regions of the world. From the strictly legal point of view, the scenarios presented at Bali consider the World by 2012 onward. In this context, the fight against global warming mobilizes several legal instruments, some being new and the others being not. We assist to a real law genesis. The emissions trading markets, for instance, and other financial mechanisms, belong to these new instruments. However, using old legal means to solve new problems is another way to create law. It is also important to stress on the fact that the international law is not the only possible legal mean to square the fight against global warming. The liability right for the violation of a public property, i.e. the atmosphere, remains an instrument combining experience and novelty and has proved itself in several countries. Finally, in France, the 'Grenelle de l'Environnement' policy has led to an

  16. Representing and communicating deep uncertainty in climate-change assessment; Representation et communication de l'incertitude profonde affectant les evaluations du changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Kandlikar, M. [British Columbia Univ., Institute for Asian Research and the Liu Institute for Global Issues, Vancouver, BC (Canada); Risbey, J. [Monash Univ., School of Mathematical Sciences, Vic (Australia); Dessai, S. [East Anglia Univ., School of Environmental Sciences, Norwich (United Kingdom); Tyndall Centre for Climate Change Research (United Kingdom)


    IPCC reports provide a synthesis of the state of the science in order to inform the international policy process. This task is made difficult by the presence of deep uncertainty in the climate problem that results from long time scales and complexity. This paper focuses on how deep uncertainty can be effectively communicated. We argue that existing schemes do an inadequate job of communicating deep uncertainty and propose a simple approach that distinguishes between various levels of subjective understanding in a systematic manner. We illustrate our approach with two examples. (authors)

  17. Climate: science, ideology and politics. An emblematic controversy

    International Nuclear Information System (INIS)

    Lebeau, A.


    Climate change is now a familiar subject for most of the individuals living in the industrialized countries, and no doubt a subject of growing interest in the emergent countries such as China. How has this theme lodged itself in public debate? Who are the actors in that debate and how much of a part do they play? Andre Lebeau has examined these questions, attempting to determine how this initially highly scientific subject has, over time, found a foothold in economic, political and media debate. (author)

  18. Controversy in Biology Classrooms—Citizen Science Approaches to Evolution and Applications to Climate Change Discussions

    Directory of Open Access Journals (Sweden)

    Rachel A. Yoho


    Full Text Available The biological sciences encompass topics considered controversial by the American public, such as evolution and climate change. We believe that the development of climate change education in the biology classroom is better informed by an understanding of the history of the teaching of evolution. A common goal for science educators should be to engender a greater respect for and appreciation of science among students while teaching specific content knowledge. Citizen science has emerged as a viable yet underdeveloped method for engaging students of all ages in key scientific issues that impact society through authentic data-driven scientific research. Where successful, citizen science may open avenues of communication and engagement with the scientific process that would otherwise be more difficult to achieve. Citizen science projects demonstrate versatility in education and the ability to test hypotheses by collecting large amounts of often publishable data. We find a great possibility for science education research in the incorporation of citizen science projects in curriculum, especially with respect to “hot topics” of socioscientific debate based on our review of the findings of other authors.

  19. Les oiseaux chanteurs. Sciences, pratiques sociales et représentations en Europe du Moyen Âge à nos jours

    Directory of Open Access Journals (Sweden)

    Corinne Beck et Martine Clouzot


    Full Text Available « Les oiseaux chanteurs » est un projet pluridisciplinaire, transversal et international, initié et porté par l’UMR 5594 ARTeHIS de l’université de Bourgogne et l’UMR Calhiste de l’université de Valenciennes. Ce projet consiste à élargir une thématique déjà étudiée par les ornithologues, les éthologues, les littéraires et les musicologues, à d’autres disciplines a priori éloignées, dont les problématiques centrales touchent essentiellement aux domaines des sciences du vivant, de l’environneme...

  20. Climate science information needs among natural resource decision-makers in the Northwest US

    Directory of Open Access Journals (Sweden)

    Elizabeth Allen


    Full Text Available Managing water resources, air quality, forests, rangelands and agricultural systems in the context of climate change requires a new level of integrated knowledge. In order to articulate a role for university-based research teams as providers of climate services, this paper analyzes environmental change concerns and expectations about climate models among natural resources decision-makers in the Northwest US. Data were collected during a series of workshops organized by researchers from BioEarth, a regional earth systems modeling initiative. Eighty-three stakeholders from industry, government agencies and non-governmental organizations engaged with a team of academic researchers developing integrated biophysical and economic climate modeling tools. Analysis of transcripts of workshop discussions, surveys, and questionnaires reveals diverse attitudes among stakeholders about: 1 preferred modes of engaging in climate science research, 2 specific concerns and questions about climate change impacts, and 3 the most relevant and usable scope and scale of climate change impacts projections. Diverse concerns and information needs among natural resource decision-makers highlight the need for research teams to define clear and precise goals for stakeholder engagement. Utilizing the skills of research team members who have communication and extension expertise is pivotally important. We suggest impactful opportunities for research teams and natural resource decision-makers to interface and learn from one another. Effective approaches include structuring group discussions to identify gaps in existing climate change impacts information, explicitly considering changing policies, technologies and management practices, and exploring possible unintended consequences of decisions.

  1. Linking Student Achievement and Teacher Science Content Knowledge about Climate Change: Ensuring the Nations 3 Million Teachers Understand the Science through an Electronic Professional Development System (United States)

    Niepold, F.; Byers, A.


    The scientific complexities of global climate change, with wide-ranging economic and social significance, create an intellectual challenge that mandates greater public understanding of climate change research and the concurrent ability to make informed decisions. The critical need for an engaged, science literate public has been repeatedly emphasized by multi-disciplinary entities like the Intergovernmental Panel on Climate Change (IPCC), the National Academies (Rising Above the Gathering Storm report), and the interagency group responsible for the recently updated Climate Literacy: The Essential Principles of Climate Science. There is a clear need for an American public that is climate literate and for K-12 teachers confident in teaching relevant science content. A key goal in the creation of a climate literate society is to enhance teachers’ knowledge of global climate change through a national, scalable, and sustainable professional development system, using compelling climate science data and resources to stimulate inquiry-based student interest in science, technology, engineering, and mathematics (STEM). This session will explore innovative e-learning technologies to address the limitations of one-time, face-to-face workshops, thereby adding significant sustainability and scalability. The resources developed will help teachers sift through the vast volume of global climate change information and provide research-based, high-quality science content and pedagogical information to help teachers effectively teach their students about the complex issues surrounding global climate change. The Learning Center is NSTA's e-professional development portal to help the nations teachers and informal educators learn about the scientific complexities of global climate change through research-based techniques and is proven to significantly improve teacher science content knowledge.

  2. Novel Tools for Climate Change Learning and Responding in Earth Science Education (United States)

    Sparrow, Elena; Brunacini, Jessica; Pfirman, Stephanie


    Several innovative, polar focused activities and tools including a polar hub website ( have been developed for use in formal and informal earth science or STEM education by the Polar Learning and Responding (PoLAR) Climate Change Education Partnership (consisting of climate scientists, experts in the learning sciences and education practitioners). In seeking to inform understanding of and response to climate change, these tools and activities range from increasing awareness to informing decisions about climate change, from being used in classrooms (by undergraduate students as well as by pre-college students or by teachers taking online climate graduate courses) to being used in the public arena (by stakeholders, community members and the general public), and from using low technology (card games such as EcoChains- Arctic Crisis, a food web game or SMARTIC - Strategic Management of Resources in Times of Change, an Arctic marine spatial planning game) to high technology (Greenify Network - a mobile real world action game that fosters sustainability and allows players to meaningfully address climate change in their daily lives, or the Polar Explorer Data Visualization Tablet App that allows individuals to explore data collected by scientists and presented for the everyday user through interactive maps and visualizations, to ask questions and go on an individualized tour of polar regions and their connections to the rest of the world). Games are useful tools in integrative and applied learning, in gaining practical and intellectual skills, and in systems thinking. Also, as part of the PoLAR Partnership, a Signs of the Land Climate Change Camp was collaboratively developed and conducted, that can be used as a model for engaging and representing indigenous communities in the co-production of climate change knowledge, communication tools and solutions building. Future camps are planned with Alaska Native Elders, educators including classroom

  3. Engaging Youth in Climate Change Issues with Family Science Day Activities (United States)

    Brevik, Corinne E.; Brevik, Eric C.; Steffan, Joshua J.


    Dickinson State University organizes four Family Science Day events each fall during the months of September, October, November, and December. Activities are geared toward elementary-aged children to increase student engagement in the sciences. Offered on Saturday afternoons, each event focuses on a different science-related theme. Families can attend these events free of charge, and the kids participate in a large variety of hands-on activities that center around the event's theme. This year, the November event focused on climate change, including an emphasis on the roles soil plays in the climate system. The timing of this topic was carefully chosen. 2015 has been declared the International Year of Soil by the United Nations, and the Soil Science Society of America theme for the month of November was Soils and Climate. This public outreach event was an amazing opportunity to help the youth in our community learn about climate change in a fun, interactive environment. Climate changes in the past, present, and future were emphasized. Activities including the Farming Game, painting with soils, taking Jello "cores", creating a cloud in a jar, and making a glacier in a bag helped children learn how science is a process of discovery that allows them to better understand the world they live in. In addition to the hands-on activities, a planetarium show focused on climate change was also offered during the event, surrounding the kids and their parents in a fully immersive, 360-degree show that allowed them to personally observe phenomena that are otherwise difficult to visualize. All of the activities at the Family Science Day event were staffed by university students, and this proved to be a very valuable experience for them as well. Some of the students who helped are majoring in a science field, and for them, the experience taught public communication. They learned to break complicated concepts down into simpler terms that young kids could understand. Education

  4. The North Cascadia Adaptation Partnership: A Science-Management Collaboration for Responding to Climate Change

    Directory of Open Access Journals (Sweden)

    Crystal L. Raymond


    Full Text Available The U.S. Forest Service (USFS and National Park Service (NPS have highlighted climate change as an agency priority and issued direction to administrative units for responding to climate change. In response, the USFS and NPS initiated the North Cascadia Adaptation Partnership (NCAP in 2010. The goals of the NCAP were to build an inclusive partnership, increase climate change awareness, assess vulnerability, and develop science-based adaptation strategies to reduce these vulnerabilities. The NCAP expanded previous science-management partnerships on federal lands to a larger, more ecologically and geographically complex region and extended the approach to a broader range of stakeholders. The NCAP focused on two national forests and two national parks in the North Cascades Range, Washington (USA, a total land area of 2.4 million ha, making it the largest science-management partnership of its kind. The NCAP assessed climate change vulnerability for four resource sectors (hydrology and access; vegetation and ecological disturbance; wildlife; and fish and developed adaptation options for each sector. The NCAP process has proven to be a successful approach for implementing climate change adaptation across a region and can be emulated by other land management agencies in North America and beyond.

  5. Inspiring Climate Education Excellence(ICEE): Developing Elearning professional development modules - secondary science teachers (United States)

    Kellagher, E.; Buhr, S. M.; Lynds, S. E.; McCaffrey, M. S.; Cires Education Outreach


    Inspiring Climate Education Excellence (ICEE) is a NASA-funded project to develop content knowledge and knowledge of effective teaching strategies in climate education among secondary science teachers. ICEE resources are aligned with the Essential Principles of Climate Science. Building upon a needs assessment and face to face workshop, ICEE resources include iTunesU videos, an ICEE 101 resource site with videos and peer-reviewed learning activities, and a moderated online forum. Self-directed modules and an online course are being developed around concepts and topics in which teachers express the most interest and need for instruction. ICEE resources include attention to effective teaching strategies, such as awareness of student misconceptions, strategies for forestalling controversy and advice from master teachers on implementation and curriculum development. The resources are being developed in partnership with GLOBE, and the National Science Digital Library (NSDL) and are informed by the work of the Climate Literacy and Energy Awareness Network (CLEAN) project. ICEE will help to meet the professional development needs of teachers, including those participating in the GLOBE Student Climate Research Campaign.

  6. Voice Matters: Buffering the Impact of a Negative Climate for Women in Science (United States)

    Settles, Isis H.; Cortina, Lilia M.; Stewart, Abigail J.; Malley, Janet


    The current study examined whether women scientists' perceptions of voice moderate the impact of poor workplace climates on job satisfaction and whether effective leadership and mentoring promote women's voice. Survey data were collected from 135 faculty women in the natural sciences. The results from multiple regression analyses indicated that…

  7. Evaluation of authentic science projects on climate change in secondary schools : a focus on gender differences

    NARCIS (Netherlands)

    Dijkstra, Elma; Goedhart, Martin


    Background and purpose: This study examines secondary-school students' opinions on participating in authentic science projects, which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects

  8. Connecting Psychological Science with Climate Change: A Persuasion and Social Influence Assignment (United States)

    Munro, Geoffrey D.; Behlen, Margaret M.


    Students often have little understanding of the role psychological science plays in informing us about the impact of human behavior when addressing climate change. We designed an assignment for a social psychology course based on Frantz and Mayer's use of the decision tree model of helping behavior to identify the psychological barriers that…

  9. Evaluation of Authentic Science Projects on Climate Change in Secondary Schools: A Focus on Gender Differences (United States)

    Dijkstra, Elma; Goedhart, Martin


    Background and purpose: This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from…

  10. A case study of teaching social responsibility to doctoral students in the climate sciences. (United States)

    Børsen, Tom; Antia, Avan N; Glessmer, Mirjam Sophia


    The need to make young scientists aware of their social responsibilities is widely acknowledged, although the question of how to actually do it has so far gained limited attention. A 2-day workshop entitled "Prepared for social responsibility?" attended by doctoral students from multiple disciplines in climate science, was targeted at the perceived needs of the participants and employed a format that took them through three stages of ethics education: sensitization, information and empowerment. The workshop aimed at preparing doctoral students to manage ethical dilemmas that emerge when climate science meets the public sphere (e.g., to identify and balance legitimate perspectives on particular types of geo-engineering), and is an example of how to include social responsibility in doctoral education. The paper describes the workshop from the three different perspectives of the authors: the course teacher, the head of the graduate school, and a graduate student. The elements that contributed to the success of the workshop, and thus make it an example to follow, are (1) the involvement of participating students, (2) the introduction of external expertise and role models in climate science, and (3) a workshop design that focused on ethical analyses of examples from the climate sciences.

  11. Global Warning: Project-Based Science Inspired by the Intergovernmental Panel on Climate Change (United States)

    Colaianne, Blake


    Misconceptions about climate change are common, which suggests a need to effectively address the subject in the classroom. This article describes a project-based science activity in which students report on the physical basis, adaptations, and mitigation of this global problem, adapting the framework of the United Nations' Intergovernmental Panel…

  12. Combining Geography, Math, and Science to Teach Climate Change and Sea Level Rise (United States)

    Oldakowski, Ray; Johnson, Ashley


    This study examines the effectiveness of integrating geography into existing math and science curriculum to teach climate change and sea level rise. The desired outcome is to improve student performance in all three subjects. A sample of 120 fifth graders from three schools were taught the integrated curriculum over a period of two to three weeks.…

  13. An Investigation of Science Educators' View of Roles and Responsibilities for Climate Change Education (United States)

    McGinnis, J. Randy; McDonald, Chris; Hestness, Emily; Breslyn, Wayne


    This exploratory study investigates what science educators from differing groups (outside of higher education--informal and formal (K-12) and inside of higher education--content and pedagogy experts) believe are the roles and responsibilities (and what actions these might involve) in climate change education for: 1) their group of educators, and…

  14. The climate regime before and after Copenhagen: science, policy, and the two-degrees target

    International Nuclear Information System (INIS)

    Aykut, S.C.; Dahan, A.


    The article discusses the political results of the Copenhagen Conference and evolutions in the international climate arena including geopolitical shifts, new issues on the agenda and a changing cartography of the main actors. As recent attacks on the climate regime concern both its political governance and the peculiar relationship between science and politics that developed through its main institutions (IPCC and the Conference of the Parties), we retrace in a first part the construction of the climate arena and in a second part the framing of the problem between climate science, expertise, and politics. Drawing on this historical sketch, we suggest the years 2000 were characterized by a convergence of top-down approaches in climate expertise and policies, structuring action and discourse around quantified reduction targets, temperature and concentration thresholds, and carbon budgets. The bottom-up character of the voluntary reduction commitments in the Copenhagen Accord is a serious setback to this approach. A central figure in this context is the threshold of 'dangerous warming' of two degrees. The Copenhagen Accord - endorsed in the Cancun compromise - elevates this figure to an official target of the U.N. negotiation process, thereby accentuating the tension between a newly assumed 'Real politic' and an alarming expertise. The article analyzes the construction of the two-degrees target and the role it plays in the climate regime. We conclude by discussing several contributions to the Post-Copenhagen debate. (authors)

  15. How to build confidence in climate science and politics? Return on an international conference

    International Nuclear Information System (INIS)

    Aykut, Stefan C.


    Taking as a starting point the communications at an international conference held in Paris in 2014, the article analyzes the construction of confidence in climate sciences and politics. How, by which methods and procedures, do climate modeling communities establish the validity of their models? What link can be established between the confidence in numerical simulations of global warming and in the capacity of the international system to successfully tackle the climate issue? The article shows that the existence of a close link between these different forms of confidence questions common belief that expertise should be completely separated from the political process. More generally, it examines the necessity of a 'constitution' for the science-policy relationship at the global level at a time where new paradigms for research and for policy converge toward increasing importance of regional and local levels

  16. Strategies of petroleum companies facing climate change issues; Strategies des compagnies petrolieres face a la problematique du changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Gervais, St.


    The oil industry is particularly concerned with the issue of climate change. The implementation of Greenhouse Gases (GHG) reduction policies can be perceived as an additional environmental constraint for the management of the production chain. It is also represents a first step towards a possible decarbonization of the economy. In the long-term, the fight against global warming calls thus into question the activity level of petroleum companies. Confronted with this, still uncertain, new environmental deal, some petroleum multinationals adopt proactive behaviors, e.g. with voluntary commitments to reduce GHG emissions, or with investments in alternative technologies. First of all, we present the potential economic impacts of the Kyoto Protocol on oil industry. Then, we conduct a comparative analysis of the 'Kyoto risk' for the five largest multinationals of this sector according to their activities and their geographical implantations. Then, for the purpose to interpreting proactive strategies of firms such as BP and Shell, we examine various explanations including 'win-win', public image and the response to broad societal needs. This leads us to formalize the proactive behavior as an anticipatory management of carbon contestability, particularly perceptible in financial markets. Lastly, we try to justify economically investments of companies in the field of alternative energy sources and technologies through the lens of real options theory and by a management of the exhaustible fossil resources. (author)

  17. Strategies of petroleum companies facing climate change issues; Strategies des compagnies petrolieres face a la problematique du changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Gervais, St


    The oil industry is particularly concerned with the issue of climate change. The implementation of Greenhouse Gases (GHG) reduction policies can be perceived as an additional environmental constraint for the management of the production chain. It is also represents a first step towards a possible decarbonization of the economy. In the long-term, the fight against global warming calls thus into question the activity level of petroleum companies. Confronted with this, still uncertain, new environmental deal, some petroleum multinationals adopt proactive behaviors, e.g. with voluntary commitments to reduce GHG emissions, or with investments in alternative technologies. First of all, we present the potential economic impacts of the Kyoto Protocol on oil industry. Then, we conduct a comparative analysis of the 'Kyoto risk' for the five largest multinationals of this sector according to their activities and their geographical implantations. Then, for the purpose to interpreting proactive strategies of firms such as BP and Shell, we examine various explanations including 'win-win', public image and the response to broad societal needs. This leads us to formalize the proactive behavior as an anticipatory management of carbon contestability, particularly perceptible in financial markets. Lastly, we try to justify economically investments of companies in the field of alternative energy sources and technologies through the lens of real options theory and by a management of the exhaustible fossil resources. (author)

  18. Communicating Climate Change: The Intersection Between Science and Values (United States)

    Abdalati, W.


    While the vast majority of scientists in climate-related fields take as fact anthropogenic global warming, public opinion is far less certain, as are the publicly stated views of many policy-makers. This disparity is often ascribed, at least in part, to effective campaigns to cast doubt on the evidence, which we as scientists naturally feel an obligation to rectify. While denial campaigns and propaganda do play a role in skewing public opinion away from the strong scientific consensus and often feed pre-defined narratives, the reality is more complicated. This disparity is rooted mainly the differing values, priorities, and perspectives of individuals, organizations, and other entities. As scientists, we sometimes view our role as needing to counter the more extreme claims of those trying to cast doubt on the evidence. This stems in part, from our need as scientists to refute misinformation, from our frustration with the success of some of these campaigns, and from our sense of urgency and concern about our changing environment. But this approach produces very limited results, and sometimes leads to our portrayal as being condescending and self-serving. The conversation is most effectively advanced, when we focus not on the striking down the forces of opposition, but rather framing the conversation in the context of values. Similarly, our success and credibility as scientist communicators depends fundamentally on our recognizing that we will not change the values of our audience. The vast majority of those who are uncertain about climate change and the role of humans are open to accurate and honestly-portrayed information that speaks to what is important to them and fairly takes into consideration the legitimacy of opposing concerns. Doing so strengthens our credibility in their eyes and can constructively engage a large fraction of the general public, policy makers, etc. Such engagement is fundamental to meaningful action, and thus allows us to fulfill our unique

  19. Territories climate plans: territories in action 21 collectivities involved in the climatic change challenge. 1. experiences collection 2007; Plans climat territoriaux: des territoires en action 21 collectivites engagees dans la releve du defi climatique. 1. recueil d'experiences 2007

    Energy Technology Data Exchange (ETDEWEB)



    The climate plan invites the collectivities to implement actions of greenhouse reduction. This collection presents the first collectivities involved in a climate approach: towns, natural parks, syndicates, general and regional council. (A.L.B.)

  20. A Citizen Empowered Online Platform for Communicating Climate Science to the General Public (United States)

    Bourqui, Michel


    This presentation introduces a project, currently in development, of a new online platform for the interaction between climate scientists and citizen. It consists of an open-access, multi-lingual, and peer-reviewed journal publishing climate articles in non-scientific language. It follows three main long-term objectives. The first objective is to establish an ever-growing, multi-lingual library of climate articles providing a knowledge base on climate sciences accessible for free to everyone. The targeted public includes journalists, teachers, students, local actors (e.g. in politics, economy, agriculture), and any other citizen from around the world with an interest in climate sciences. The second goal is to offer a simple and direct channel for scientists wishing to disseminate their research to the general public. A high standard of climate articles is enforced through: a) requiring that the main author is an active climate scientist, and b) an innovative peer-review process involving scientific and non-scientific referees with distinct roles. The third objective is to engage citizen into the climate science. To this aim, the journal proposes three channels. Firstly, citizens are invited to contribute to the dissemination of climate knowledge to the general public by co-authoring, peer-reviewing or translating articles. Secondly, they are offered the capacity to stimulate scientific enquiry by posting invitations for manuscripts to be written on a citizen-inspired topic. Thirdly, a match-up tool is being developed for scientists to gather non-scientists teams for conducting citizen-involving research projects. This platform is scientist-initiated and is meant to be ruled and managed by the participating individuals themselves (scientists and non-scientists) as an international association. It will be financed through country-varying flat memberships. The project is now starting. The basic ideas are drawn; a prototype internet platform has been developed and is

  1. Climate Change Science Teaching through Integration of Technology in Instruction and Research (United States)

    Sriharan, S.; Ozbay, G.; Robinson, L.; Klimkowski, V.


    This presentation demonstrates the importance of collaborations between the institutions with common focus on offering the academic program on climate change science. Virginia State University (VSU) developed and established the course on climate change and adaptation, AGRI 350 for undergraduates, in cooperation with two HBCUs, Delaware State University (DSU) and Morgan State University (MSU). This program was developed to enhance the science curriculum with funding from the USDA NIFA. The hands-on research opportunities for students were supported by the NSF HBCU UP Supplement Grant at VSU. The technical guidance and lesson plans were available through the courtesy of the AMS and faculty/student team training at the NCAR. In the initial stages, the faculty members participated in faculty development workshops hosted by the AMS and NCAR. This contributed to trained faculty members developing the courses on Climate Change at VSU, DSU, and MSU. To create awareness of global climate change and exposure of students to international programs, seven students from VSU, MSU, and DSU participated in the Climate Change course (ENS 320) at the University of Sunshine Coast (USC), Australia. This international experience included faculty members in using SimCLIM for climate change data into decision-making with regard to potential changes to cropping systems and tree growth. The Climate Change program at VSU, DSU, and MSU is emerging into comprehensive academic program which includes use of case studies and exchange of students' reflections with their peers through discussion board and videoconferencing, hands-on research on water quality monitoring and mapping the study sites, and integration of geospatial technologies and i-Tree. In addition, the students' engagement in intensive research was conducted through hands-on experience with Scanning Electron Microscopy in the Marine Science Department, University of Hawaii at Hilo in summer 2015.

  2. Climate science in the tropics: waves, vortices and PDEs (United States)

    Khouider, Boualem; Majda, Andrew J.; Stechmann, Samuel N.


    Clouds in the tropics can organize the circulation on planetary scales and profoundly impact long range seasonal forecasting and climate on the entire globe, yet contemporary operational computer models are often deficient in representing these phenomena. On the other hand, contemporary observations reveal remarkably complex coherent waves and vortices in the tropics interacting across a bewildering range of scales from kilometers to ten thousand kilometers. This paper reviews the interdisciplinary contributions over the last decade through the modus operandi of applied mathematics to these important scientific problems. Novel physical phenomena, new multiscale equations, novel PDEs, and numerical algorithms are presented here with the goal of attracting mathematicians and physicists to this exciting research area.

  3. Climate science in the tropics: waves, vortices and PDEs

    International Nuclear Information System (INIS)

    Khouider, Boualem; Majda, Andrew J; Stechmann, Samuel N


    Clouds in the tropics can organize the circulation on planetary scales and profoundly impact long range seasonal forecasting and climate on the entire globe, yet contemporary operational computer models are often deficient in representing these phenomena. On the other hand, contemporary observations reveal remarkably complex coherent waves and vortices in the tropics interacting across a bewildering range of scales from kilometers to ten thousand kilometers. This paper reviews the interdisciplinary contributions over the last decade through the modus operandi of applied mathematics to these important scientific problems. Novel physical phenomena, new multiscale equations, novel PDEs, and numerical algorithms are presented here with the goal of attracting mathematicians and physicists to this exciting research area. (invited article)

  4. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data (United States)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.


    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  5. Geoengineering Responses to Climate Change Selected Entries from the Encyclopedia of Sustainability Science and Technology

    CERN Document Server

    Vaughan, Naomi


    Failure by the international community to make substantive progress in reducing CO2 emissions, coupled with recent evidence of accelerating climate change, has brought increasing urgency to the search for additional remediation approaches.  This book presents a selection of state-of-the-art geoengineering methods for deliberately reducing the effects of anthropogenic climate change, either by actively removing greenhouse gases from the atmosphere or by decreasing the amount of sunlight absorbed at the Earth’s surface.  These methods contrast with more conventional mitigation approaches which focus on reducing emissions of greenhouse gases, especially carbon dioxide. Geoengineering technologies could become a key tool to be used in conjunction with emissions reduction to limit the magnitude of climate change.  Featuring authoritative, peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, this book presents a wide range of climate change remediation technologies. Examines th...

  6. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2017 (United States)

    Varela Minder, Elda


    IntroductionThe year 2017 was a year of review and renewal for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). The Southeast, Northwest, Alaska, Southwest, and North Central CSCs’ 5-year summary review reports were released in 2017 and contain the findings of the external review teams led by the Cornell University Human Dimensions Research Unit in conjunction with the American Fisheries Society. The reports for the Pacific Islands, South Central, and Northeast CSCs are planned for release in 2018. The reviews provide an opportunity to evaluate aspects of the cooperative agreement, such as the effectiveness of the CSC in meeting project goals and assessment of the level of scientific contribution and achievement. These reviews serve as a way for the CSCs and NCCWSC to look for ways to recognize and enhance our network’s strengths and identify areas for improvement. The reviews were followed by the CSC recompetition, which led to new hosting agreements at the Northwest, Alaska, and Southeast CSCs. Learn more about the excellent science and activities conducted by the network centers in the 2017 annual report.

  7. Climate Change “Hoax”: Comment on “Climate Science in a Postmodern World” (United States)

    Hapke, Bruce


    In his Forum, Kenneth Verosub (Eos, 91(33), 291, doi:10.1029/2010EO330003, 2010) tries to explain the climate denial phenomenon as due to postmodernist misinterpretation of scientific results. Unfortunately, I fear that this is only a minor cause and that the true explanation is much more insidious, with serious ramifications for all scientists, not just climatologists. As documented in several recent publications [e.g., Mayer, 2010], climate scientists are currently bearing the brunt of a deliberate, antiscience, misinformation campaign that is financed by certain fossil fuel companies and propagated by certain conservative radio programs, television organizations, and think tanks. Verosub wonders why no one has offered an explanation for why scientists worldwide are engaged in this supposed hoax. But explanations are frequently offered on conservative talk shows. For example, I found myself listening to The War Room With Quinn and Rose last fall while driving in the Pittsburgh, Pa., area and was appalled by the scenario painted in the show by cohost Jim Quinn. Apparently, all academics are socialists. Further, the Earth is not warming—it has been getting cooler since 1999. Quinn continued with this gem: Climate warming is an international conspiracy, funded by billionaire George Soros, perpetrated by scientists everywhere, and intended to delude governments into spending vast sums of money to counter a non-existent threat until the governments become bankrupt. Then in the ensuing chaos, socialists can take over and form a world socialist government.

  8. Getting Beyond First Base: Science-Society Communication for Climate Adaptation (United States)

    Garfin, G. M.


    At a 2009 international workshop on transboundary climate and water issues, a former World Bank official and current academic mentioned that “crisis, risk and uncertainty” are the three words that motivate decision-makers to act. However, decade-scale climate variability and trend-driven climate changes are phenomena characterized by creeping onset, diffuse and non-synchronous impacts, and complexity. Thus, there is a balancing act to addressing the complexity of uncertainties, while adequately assessing risk, and keeping the potential for crisis in focus without creating a “Chicken Little” situation. This presentation examines translational science approaches to three stages in the continuum from initial communication to societal action: raising awareness, building capacity, and making progress toward action. We examine the roles of scientists, knowledge brokers, decision makers, and the general public in the context of climate services. Although there is no “one size fits all” science communication method, we argue that best practices require that scientists pay particular attention to cultural and political sensitivities associated with decision contexts. We give examples from seasonal forecast communication, drought planning, climate literacy and education needs assessments, and the nexus of climate adaptation planning and uncertainty. In general, we find that constructive approaches make use of alliances with early adopters and opinion leaders, and make strong links between (a) predictions, impacts and solutions and (b) global to regional to local spatial scales. Often building partnerships for moving science information from observations to knowledge to decisions requires discussion support, a concept borrowed from Australian colleagues, which describes a multi-faceted and undervalued aspect of moving forward in adaptation planning: clarifying plausible cascades of interactions leading to potential impacts. Discussion support also fosters

  9. The CLEAN Workshop Series: Promoting Effective Pedagogy for Teaching Undergraduate Climate Science (United States)

    Kirk, K. B.; Bruckner, M. Z.; Manduca, C. A.; Buhr, S. M.


    To prepare students to understand a changing climate, it is imperative that we equip educators with the best possible tools and methods for reaching their audience. As part of the Climate Literacy and Energy Awareness Network (CLEAN) professional development efforts, two workshops for undergraduate faculty were held in 2012. These workshops used a variety of activities to help faculty learn about recent climate research, take part in demonstrations of successful activities for teaching climate topics, and collaborate to create new teaching materials. The workshops also facilitated professional networking among participants. Both workshops were held online, eliminating the need for travel, encouraging participants without travel funds to attend, and allowing international collaborations and presentations. To create an authentic experience, the workshop used several technologies such as the Blackboard Collaborate web conferencing platform, SERC's web-based collaboration tools and online discussion threads, and conference calls. The workshop Communicating Climate Science in the Classroom, held in April 2012, explored practices for communicating climate science and policy in the classroom and provided strategies to improve student understanding of this complex and sensitive topic. Workshop presentations featured public opinion research on Americans' perceptions of climate change, tactics for identifying and resolving student misconceptions, and methods to address various "backfire effects" that can result from attempts to correct misinformation. Demonstrations of teaching approaches included a role-playing simulation of emissions negotiations, Princeton's climate stabilization wedges game, and an activity that allows students to use scientific principles to tackle misinformation. The workshop Teaching Climate Complexity was held in May 2012. Teaching the complexities of climate science requires an understanding of many facets of the Earth system and a robust pedagogic

  10. 9 décembre 2016 - Visite du hall d'assemblage des aimants supraconducteurs du LHC par le Prof. D. Le Bihan, Directeur, NeuroSpin; membre de l’Académie des Sciences, République française avec le Directeur des accélérateurs et de la technologie F. Bordry et le chef de groupe L. Bottura.

    CERN Multimedia

    Bennett, Sophia Elizabeth


    9 décembre 2016 - Visite du hall d'assemblage des aimants supraconducteurs du LHC par le Prof. D. Le Bihan, Directeur, NeuroSpin; membre de l’Académie des Sciences, République française avec le Directeur des accélérateurs et de la technologie F. Bordry et le chef de groupe L. Bottura.

  11. The Climate Science Special Report: Rising Seas and Changing Oceans (United States)

    Kopp, R. E.


    GMSL has risen by about 16-21 cm since 1900. Ocean heat content has increased at all depths since the 1960s, and global mean sea-surface temperature increased 0.7°C/century between 1900 to 2016. Human activity contributed substantially to generating a rate of GMSL rise since 1900 faster than during any preceding century in at least 2800 years. A new set of six sea-level rise scenarios, spanning a range from 30 cm to 250 cm of 21st century GMSL rise, were developed for the CSSR. The lower scenario is based on linearly extrapolating the past two decades' rate of rise. The upper scenario is informed by literature estimates of maximum physically plausible values, observations indicating the onset of marine ice sheet instability in parts of West Antarctica, and modeling of ice-cliff and ice-shelf instability mechanisms. The new scenarios include localized projections along US coastlines. There is significant variability around the US, with rates of rise likely greater than GMSL rise in the US Northeast and the western Gulf of Mexico. Under scenarios involving extreme Antarctic contributions, regional rise would be greater than GMSL rise along almost all US coastlines. Historical sea-level rise has already driven a 5- to 10-fold increase in minor tidal flooding in several US coastal cities since the 1960s. Under the CSSR's Intermediate sea-level rise scenario (1.0 m of GMSL rise in 2100) , a majority of NOAA tide gauge locations will by 2040 experience the historical 5-year coastal flood about 5 times per year. Ocean changes are not limited to rising sea levels. Ocean pH is decreasing at a rate that may be unparalleled in the last 66 million years. Along coastlines, ocean acidification can be enhanced by changes in the upwelling (particularly along the US Pacific Coast); by episodic, climate change-enhanced increases in freshwater input (particularly along the US Atlantic Coast); and by the enhancement of biological respiration by nutrient runoff. Climate models project

  12. Landry Ebang, La logique de l’enquête en science sociale. Sortir d’une méthodologie du mimétisme expérimental


    Ogorzelec-Guinchard, Laetitia


    L’auteur présente cet ouvrage comme un « traité de méthodologie » explicitement adossé à une démarche de philosophie des sciences. Il s’agit pour lui de procéder à un examen de l’intégralité du processus de recherche en sciences sociales. La première partie du livre cherche surtout à nous expliquer à quel point la « méthode expérimentale » propre aux sciences « nomologiques » (c’est-à-dire capables de formuler des lois et d’en tirer toutes les conséquences dans leurs démarches de recherche) b...

  13. Bridging the Gap Between Climate Science and Water-resource Applications (United States)

    Arnold, J. R.; Clark, M. P.; Wood, A.; Gutmann, E. D.; Nijssen, B.; Brekke, L. D.


    Since 2010, the US Army Corps of Engineers (USACE) Climate Preparedness and Resilience Program has supported development of a coordinated system of products and tools to improve use of climate information in water-resource planning and management. The key products include: 1) a new understanding of the limitations of methods used to quantify impacts of climate change on water resources; 2) development and evaluation of national-domain climate downscaling and hydrologic simulation capabilities to provide information from climate model output relevant to the multiple scales of water resources decision-making with a spatially consistent assessment of the impacts of climate change on hydrologic conditions; and 3) development and evaluation of advanced streamflow forecasting methods. This will support USACE Districts and their stakeholders and partners with new data, new and newly evaluated model output, and specific tools in a framework to help with routine applications for managing water resources throughout the U.S., and to enhance considerations of climate preparedness and resilience in that work. This presentation will summarize the collaborative development of some of those products; describe current and planned future USACE capabilities for incorporating advanced climate information at multiple scales of analysis and decision; discuss uses of climate information in water-resources planning and management; and outline key unanswered science questions being addressed to increase utility and use of information in short- and longer-term planning. Specifically, we will describe the current suite and planned trajectory of new products, moving from capability development through to testing in limited pilot domains, on to product applications throughout the U.S., and, ultimately, into actual implementation at the level of USACE Districts to address climate change issues. Two key foci of this talk will be: 1) where climatological and hydrologic science is currently

  14. Les effets du changement climatique dans le bassin du Congo : la ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    22 avr. 2016 ... Dans le bassin du fleuve Congo, plus de 80 % des habitants vivent exclusivement de l'agriculture, de la pêche, de l'élevage et de la cueillette, qui sont des activités largement tributaires du climat.

  15. Science blogging: and the Global Warming debate (United States)

    Schmidt, G. A.


    The media and public policy debate suffer from an extreme form of Attention Deficit Disorder. Compared to the daily news cycle, the progress of scientific debate within the peer-reviewed literature is extremely slow. This puts serious scientists who work in relatively politicised fields (global warming, evolution, stem cell research and the like) at a huge disadvantage when it comes to having their voices heard above the noise. Since Dec 2004, has been operating as a group blog (a web-based journal) run by climate scientists for interested members of the public and the media. The aim has been to provide the context for climate-related news stories that is often missing in the mainstream media and to explain the basics of our field to the often confused, but curious, members of the public. In particular, it has provided rapid reaction to mis-uses and abuses of scientific results by policy advocates across the spectrum. Reactions to the blog have been overwhelmingly (but not uniformly) positive from both professionals in the media, the scientific community and the public. It has been described as the 'go-to site' for climate science in the New York Times, and received a Scientific American Science and Technology Web award in 2005. I will discuss what impacts RealClimate may have had and the pluses and minuses of trying to reach the public through this kind of outlet.

  16. Improving Public Engagement With Climate Change: Five "Best Practice" Insights From Psychological Science. (United States)

    van der Linden, Sander; Maibach, Edward; Leiserowitz, Anthony


    Despite being one of the most important societal challenges of the 21st century, public engagement with climate change currently remains low in the United States. Mounting evidence from across the behavioral sciences has found that most people regard climate change as a nonurgent and psychologically distant risk-spatially, temporally, and socially-which has led to deferred public decision making about mitigation and adaptation responses. In this article, we advance five simple but important "best practice" insights from psychological science that can help governments improve public policymaking about climate change. Particularly, instead of a future, distant, global, nonpersonal, and analytical risk that is often framed as an overt loss for society, we argue that policymakers should (a) emphasize climate change as a present, local, and personal risk; (b) facilitate more affective and experiential engagement; (c) leverage relevant social group norms; (d) frame policy solutions in terms of what can be gained from immediate action; and (e) appeal to intrinsically valued long-term environmental goals and outcomes. With practical examples we illustrate how these key psychological principles can be applied to support societal engagement and climate change policymaking. © The Author(s) 2015.

  17. Climate science and the transfer of knowledge to public and political realms

    Energy Technology Data Exchange (ETDEWEB)

    Bray, D. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik; Storch, H. von


    This paper presents the results of a survey of the perspectives of climate scientists on the topic of global warming. It addresses both internal and external elements of the science. A total of 412 responses from climate scientists in Canada. USA and Germany are analyzed. Differences among those groups with higher levels of involvement with policy makers, with the media, and the less vocal members of the scientific community are the focus of this paper. Statistically significant differences were found among these three groups on a number of pertinent issues. These differences were more often among those areas which were beyond the areas of the scientists` areas of expertise. More precisely differences were found in: The assessment that global warming is a process already underway, the nature of the impacts of climate change, the knowledge transfer process, and the conduct of the climate sciences. These perspectives are of considerable importance for they relate to the transfer of scientific knowledge to the public and political realms. In short, this paper contributes to the discussion of the socio-scientific construction of the climate change issue. (orig.) 11 refs.

  18. Beyond Climate and Weather Science: Expanding the Forecasting Family to Serve Societal Needs (United States)

    Barron, E. J.


    The ability to "anticipate" the future is what makes information from the Earth sciences valuable to society - whether it is the prediction of severe weather or the future availability of water resources in response to climate change. An improved ability to anticipate or forecast has the potential to serve society by simultaneously improving our ability to (1) promote economic vitality, (2) enable environmental stewardship, (3) protect life and property, as well as (4) improve our fundamental knowledge of the earth system. The potential is enormous, yet many appear ready to move quickly toward specific mitigation and adaptation strategies assuming that the science is settled. Five important weakness must be addressed first: (1) the formation of a true "climate services" function and capability, (2) the deliberate investment in expanding the family of forecasting elements to incorporate a broader array of environmental factors and impacts, (3) the investment in the sciences that connect climate to society, (4) a deliberate focus on the problems associated with scale, in particular the difference between the scale of predictive models and the scale associated with societal decisions, and (5) the evolution from climate services and model predictions to the equivalent of "environmental intelligence centers." The objective is to bring the discipline of forecasting to a broader array of environmental challenges. Assessments of the potential impacts of global climate change on societal sectors such as water, human health, and agriculture provide good examples of this challenge. We have the potential to move from a largely reactive mode in addressing adverse health outcomes, for example, to one in which the ties between climate, land cover, infectious disease vectors, and human health are used to forecast and predict adverse human health conditions. The potential exists for a revolution in forecasting, that entrains a much broader set of societal needs and solutions. The

  19. Boundary organizations to boundary chains: Prospects for advancing climate science application

    Directory of Open Access Journals (Sweden)

    Christine J. Kirchhoff


    Full Text Available Adapting to climate change requires the production and use of climate information to inform adaptation decisions. By facilitating sustained interaction between science producers, boundary organizations narrow the gap between science and decision-making and foster the co-production of actionable knowledge. While traditional boundary organization approaches focused on intense one-on-one interactions between producers and users increases usability, this approach requires significant time and resources. Forming “boundary chains”, linking complimentary boundary organizations together, may reduce those costs. In this paper, we use longitudinal observations of a boundary chain, interviews and surveys to explore: (1 how producer-user interactions increase understanding and information usability and (2 if and how efficiencies in climate information production, dissemination and use arise as a result of the boundary chain. We find that forming and sustaining an effective boundary chain requires not only interest, commitment and investment from every link in the chain but also a level of non-overlapping mutual dependency and complementary skill sets. In this case, GLISA’s strength in producing scientific information and their credibility as climate scientists and HRWC’s strengths in facilitation, connection with potential information users, and their recognition and reputation in the watershed add value to the boundary chain enabling the boundary chain to accomplish more with greater efficiency than if each organization in the chain tried to work independently. Finally, data show how the boundary chain increased efficiencies in educating potential users about the strengths and limitations of climate science and improving the production, dissemination, and use of climate information.

  20. Improving together: collaborative learning in science communication, ClimateSnack case study (United States)

    Heuzé, C.; Reeve, M. A.


    Most scientists today recognize that science communication is an important part of the scientific process, yet science writing and communication are often taught outside the normal academic schedule. If universities offer such courses, they are generally intensive but short-term: the participants rarely complete a science communication course with an immediate and pressing need to apply these skills. So the skills fade, stalling real progress in science communication. Continuity is key to success! Whilst waiting for the academic system to truly integrate science communication, other methods can be tested. ClimateSnack / SciSnack is a new approach that aims to motivate scientists to develop their communication skills. It adopts a collaborative learning framework where scientists voluntarily form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online, where they are further discussed and improved by the global ClimateSnack community. This way, the participants learn and cement basic science communication skills. These skills are transferrable, and can be applied both to scientific articles and broader science media. Some writing groups are highly productive, while others exist no more. The reasons for success are here investigated with respect to issues both internal and external to the different groups, in particular leadership strategies. Possible further development, in particular using the online community, is suggested. ClimateSnack is one solution to fill the critical gap left by a lack of adequate teaching in early-career scientists' curriculum.

  1. Preparing Middle School Teachers to Use Science Models Effectively when Teaching about Weather and Climate Topics (United States)

    Yarker, M. B.; Stanier, C. O.; Forbes, C.; Park, S.


    According to the National Science Education Standards (NSES), teachers are encouraged to use science models in the classroom as a way to aid in the understanding of the nature of the scientific process. This is of particular importance to the atmospheric science community because climate and weather models are very important when it comes to understanding current and future behaviors of our atmosphere. Although familiar with weather forecasts on television and the Internet, most people do not understand the process of using computer models to generate weather and climate forecasts. As a result, the public often misunderstands claims scientists make about their daily weather as well as the state of climate change. Therefore, it makes sense that recent research in science education indicates that scientific models and modeling should be a topic covered in K-12 classrooms as part of a comprehensive science curriculum. The purpose of this research study is to describe how three middle school teachers use science models to teach about topics in climate and weather, as well as the challenges they face incorporating models effectively into the classroom. Participants in this study took part in a week long professional development designed to orient them towards appropriate use of science models for a unit on weather, climate, and energy concepts. The course design was based on empirically tested features of effective professional development for science teachers and was aimed at teaching content to the teachers while simultaneously orienting them towards effective use of science models in the classroom in a way that both aids in learning about the content knowledge as well as how models are used in scientific inquiry. Results indicate that teachers perceive models to be physical representations that can be used as evidence to convince students that the teacher's conception of the concept is correct. Additionally, teachers tended to use them as ways to explain an idea to

  2. PAVICS: A Platform for the Analysis and Visualization of Climate Science (United States)

    Gauvin St-Denis, B.; Landry, T.; Huard, D. B.; Byrns, D.; Chaumont, D.; Foucher, S.


    Climate service providers are boundary organizations working at the interface of climate science research and users of climate information. Users include academics in other disciplines looking for credible, customized future climate scenarios, government planners, resource managers, asset owners, as well as service utilities. These users are looking for relevant information regarding the impacts of climate change as well as informing decisions regarding adaptation options. As climate change concerns become mainstream, the pressure on climate service providers to deliver tailored, high quality information in a timely manner increases rapidly. To meet this growing demand, Ouranos, a climate service center located in Montreal, is collaborating with the Centre de recherche informatique de Montreal (CRIM) to develop a climate data analysis web-based platform interacting with RESTful services covering data access and retrieval, geospatial analysis, bias correction, distributed climate indicator computing and results visualization. The project, financed by CANARIE, relies on the experience of the UV-CDAT and ESGF-CWT teams, as well as on the Birdhouse framework developed by the German Climate Research Center (DKRZ) and French IPSL. Climate data is accessed through OPEnDAP, while computations are carried through WPS. Regions such as watersheds or user-defined polygons, used as spatial selections for computations, are managed by GeoServer, also providing WMS, WFS and WPS capabilities. The services are hosted on independent servers communicating by high throughput network. Deployment, maintenance and collaboration with other development teams are eased by the use of Docker and OpenStack VMs. Web-based tools are developed with modern web frameworks such as React-Redux, OpenLayers 3, Cesium and Plotly. Although the main objective of the project is to build a functioning, usable data analysis pipeline within two years, time is also devoted to explore emerging technologies and

  3. The energy-climate continuum lessons from basic science and history

    CERN Document Server

    Bret, Antoine


    An entertaining, highly informative introduction to the intimate linkage between the energy and climate debates Illustrates the basic science behind energy and climate with back-of-the-envelope calculations, that even non-experts can easily follow without a calculator Thus provides an access to getting an accurate feeling for orders of magnitudes from simple estimations A conversation starter for some of the most debated topics of today Compares the actual situation with historic cases of societies at a turning point and finds warning as well as encouraging examples For everyone, who wan

  4. Science, Practitioners and Faith Communities: using TEK and Faith Knowledge to address climate issues. (United States)

    Peterson, K.


    Worldview, Lifeway and Science - Communities that are tied to the land or water for their livelihood, and for whom subsistence guides their cultural lifeway, have knowledges that inform their interactions with the environment. These frameworks, sometimes called Traditional Ecological Knowledges (TEK), are based on generations of observations made and shared within lived life-environmental systems, and are tied to practitioners' broader worldviews. Subsistence communities, including Native American tribes, are well aware of the crises caused by climate change impacts. These communities are working on ways to integrate knowledge from their ancient ways with current observations and methods from Western science to implement appropriate adaptation and resilience measures. In the delta region of south Louisiana, the communities hold worldviews that blend TEK, climate science and faith-derived concepts. It is not incongruent for the communities to intertwine conversations from complex and diverse sources, including the academy, to inform their adaptation measures and their imagined solutions. Drawing on over twenty years of work with local communities, science organizations and faith institutions of the lower bayou region of Louisiana, the presenter will address the complexity of traditional communities' work with diverse sources of knowledge to guide local decision-making and to assist outside partners to more effectively address challenges associated with climate change.

  5. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. (United States)

    Bonebrake, Timothy C; Brown, Christopher J; Bell, Johann D; Blanchard, Julia L; Chauvenet, Alienor; Champion, Curtis; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Dell, Anthony I; Donelson, Jennifer M; Evengård, Birgitta; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Jarzyna, Marta A; Lee, Emma; Lenoir, Jonathan; Linnetved, Hlif; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; McDonald-Madden, Eve; Mitchell, Nicola; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Possingham, Hugh; Pulsifer, Peter; Reynolds, Mark; Scheffers, Brett R; Sorte, Cascade J B; Strugnell, Jan M; Tuanmu, Mao-Ning; Twiname, Samantha; Vergés, Adriana; Villanueva, Cecilia; Wapstra, Erik; Wernberg, Thomas; Pecl, Gretta T


    Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions. © 2017 Cambridge Philosophical Society.

  6. Impact of climate change on management plans for lakes St. Francois and Aylmer in southern Quebec; Impact des changements climatiques sur les plans de gestion des lacs Saint-Francois et Aylmer au sud du Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, L G; Turcotte, R; Pugin, S; Cyr, J F; Picard, F [Centre d' Expertise Hydrique du Quebec, Quebec, PQ (Canada)


    The Centre d'Expertise Hydrique du Quebec (CEHQ) manages dams used for flood control, water supply, recreational activities and hydroelectricity in the province of Quebec. This paper addressed the issue of global warming and the impact on the hydrological regime within the next decades. The changes in the hydrological regime may pose a risk of losing the equilibrium between various objectives, identifiable through water management plans. The CEHQ conducted a pilot study for the Saint-Francois and Aylmer reservoirs in order to formulate a method for evaluating the adaptability of currently used management plans to climate change. The project was based on potential climate change scenarios as well as on deterministic and distributed hydrological models. Daily time steps were used to evaluate the hydrological impacts of climate change. The newly developed model makes it possible to evaluate and compare the occurrences where stream flows and water levels exceed critical values. The effectiveness of the management plans in both current and climate change scenarios was evaluated. Preliminary results suggest a possible increase in flood risk and fewer low water level occurrences. It was concluded that climate change will influence the trade-off between different management objectives of the reservoirs. Although adaptation measures may be feasible, it was determined that there is no unique solution to all climate change scenarios. 27 refs., 7 tabs., 12 figs.

  7. Life on thin ice: Insights from Uummannaq, Greenland for connecting climate science with Arctic communities (United States)

    Baztan, Juan; Cordier, Mateo; Huctin, Jean-Michel; Zhu, Zhiwei; Vanderlinden, Jean-Paul


    What are the links between mainstream climate science and local community knowledge? This study takes the example of Greenland, considered one of the regions most impacted by climate change, and Inuit people, characterized as being highly adaptive to environmental change, to explore this question. The study is based on 10 years of anthropological participatory research in Uummannaq, Northwest Greenland, along with two fieldwork periods in October 2014 and April 2015, and a quantitative bibliometric analysis of the international literature on sea ice - a central subject of concern identified by Uummannaq community members during the fieldwork periods. Community members' perceptions of currently available scientific climate knowledge were also collected during the fieldwork. This was done to determine if community members consider available scientific knowledge salient and if it covers issues they consider relevant. The bibliometric analysis of the sea ice literature provided additional insight into the degree to which scientific knowledge about climate change provides information relevant for the community. Our results contribute to the ongoing debate on the missing connections between community worldviews, cultural values, livelihood needs, interests and climate science. Our results show that more scientific research efforts should consider local-level needs in order to produce local-scale knowledge that is more salient, credible and legitimate for communities experiencing climate change. In Uummannaq, as in many Inuit communities with similar conditions, more research should be done on sea ice thickness in winter and in areas through which local populations travel. This paper supports the growing evidence that whenever possible, climate change research should focus on environmental features that matter to communities, at temporal and spatial scales relevant to them, in order to foster community adaptations to change. We recommend such research be connected to and

  8. The Machinery Of Climate Anti-Science, Its Efforts Against Education, Top To Bottom (United States)

    Mashey, J. R.


    "There's always one every year" a fine local science teacher said after once again being hassled by a vocal parent for teaching appropriate climate science in school. How does that happen? The machinery of climate anti-science starts from the top with funders working through a maze of money paths, think tanks and front groups, employing spokespeople who can be portrayed as experts. While much of the money flows are still dark, some have been exposed over the last few years, and the effects finally filter down to the state and local levels of education. Among others, the Heartland Institute has a long history of trying to inject anti-science into K-12 and college education, having sent books, DVDs or brochures to teachers or school boards, as well as monthly newsletters to state legislators. Such are aimed at the top of the state or local organizations that affect education. For a vocal subset of the citizenry, a constant flow of misinformation from books, blogs, newsletters and some newspapers and magazines stirs action such as writing letters to editors, complaining to schools, calling on pseudo-experts and demanding equal time for pseudoscience. As the teacher said, it only takes one person to cause trouble at the local level. After a brief review of the overall machinery, this focuses on examples of anti-education tactics seen already, with some brief advice for climate scientists and educators who need to understand the machinery that supports such tactics. Some earlier history is included in, but other attempts have surfaced in last few years, including state-wide efforts to reject Common Core Educational standard to avoid teaching climate science. Fortunately, school boards sometimes respond quite well, including one just recently in Pennsylvania.

  9. In a Time of Change: Integrating the Arts and Humanities with Climate Change Science in Alaska (United States)

    Leigh, M.; Golux, S.; Franzen, K.


    The arts and humanities have a powerful capacity to create lines of communication between the public, policy and scientific spheres. A growing network of visual and performing artists, writers and scientists has been actively working together since 2007 to integrate scientific and artistic perspectives on climate change in interior Alaska. These efforts have involved field workshops and collaborative creative processes culminating in public performances and a visual art exhibit. The most recent multimedia event was entitled In a Time of Change: Envisioning the Future, and challenged artists and scientists to consider future scenarios of climate change. This event included a public performance featuring original theatre, modern dance, Alaska Native Dance, poetry and music that was presented concurrently with an art exhibit featuring original works by 24 Alaskan visual artists. A related effort targeted K12 students, through an early college course entitled Climate Change and Creative Expression, which was offered to high school students at a predominantly Alaska Native charter school and integrated climate change science, creative writing, theatre and dance. Our program at Bonanza Creek Long Term Ecological Research (LTER) site is just one of many successful efforts to integrate arts and humanities with science within and beyond the NSF LTER Program. The efforts of various LTER sites to engage the arts and humanities with science, the public and policymakers have successfully generated excitement, facilitated mutual understanding, and promoted meaningful dialogue on issues facing science and society. The future outlook for integration of arts and humanities with science appears promising, with increasing interest from artists, scientists and scientific funding agencies.

  10. Climate science informs participatory scenario development and applications to decision making in Alaska (United States)

    Welling, L. A.; Winfree, R.; Mow, J.


    Climate change presents unprecedented challenges for managing natural and cultural resources into the future. Impacts are expected to be highly consequential but specific effects are difficult to predict, requiring a flexible process for adaptation planning that is tightly coupled to climate science delivery systems. Scenario planning offers a tool for making science-based decisions under uncertainty. The National Park Service (NPS) is working with the Department of the Interior Climate Science Centers (CSCs), the NOAA Regional Integrated Science and Assessment teams (RISAs), and other academic, government, non-profit, and private partners to develop and apply scenarios to long-range planning and decision frameworks. In April 2012, Alaska became the first region of the NPS to complete climate change scenario planning for every national park, preserve, and monument. These areas, which collectively make up two-thirds of the total area of the NPS, are experiencing visible and measurable effects attributable to climate change. For example, thawing sea ice, glaciers and permafrost have resulted in coastal erosion, loss of irreplaceable cultural sites, slope failures, flooding of visitor access routes, and infrastructure damage. With higher temperatures and changed weather patterns, woody vegetation has expanded into northern tundra, spruce and cedar diebacks have occurred in southern Alaska, and wildland fire severity has increased. Working with partners at the Alaska Climate Science Center and the Scenario Network for Alaska Planning the NPS integrates quantitative, model-driven data with qualitative, participatory techniques to scenario creation. The approach enables managers to access and understand current climate change science in a form that is relevant for their decision making. Collaborative workshops conducted over the past two years grouped parks from Alaska's southwest, northwest, southeast, interior and central areas. The emphasis was to identify and connect

  11. Adaptation of Australia’s Marine Ecosystems to Climate Change: Using Science to Inform Conservation Management

    Directory of Open Access Journals (Sweden)

    Johanna E. Johnson


    Full Text Available The challenges that climate change poses for marine ecosystems are already manifesting in impacts at the species, population, and community levels in Australia, particularly in Tasmania and tropical northern Australia. Many species and habitats are already under threat as a result of human activities, and the additional pressure from climate change significantly increases the challenge for marine conservation and management. Climate change impacts are expected to magnify as sea surface temperatures, ocean chemistry, ocean circulation, sea level, rainfall, and storm patterns continue to change this century. In particular, keystone species that form the foundation of marine habitats, such as coral reefs, kelp beds, and temperate rocky reefs, are projected to pass thresholds with subsequent implications for communities and ecosystems. This review synthesises recent science in this field: the observed impacts and responses of marine ecosystems to climate change, ecological thresholds of change, and strategies for marine conservation to promote adaptation. Increasing observations of climate-related impacts on Australia’s marine ecosystems—both temperate and tropical—are making adaptive management more important than ever before. Our increased understanding of the impacts and responses of marine ecosystems to climate change provides a focus for “no-regrets” adaptations that can be implemented now and refined as knowledge improves.

  12. Climate Change Modeling Methodology Selected Entries from the Encyclopedia of Sustainability Science and Technology

    CERN Document Server


    The Earth's average temperature has risen by 1.4°F over the past century, and computer models project that it will rise much more over the next hundred years, with significant impacts on weather, climate, and human society. Many climate scientists attribute these increases to the buildup of greenhouse gases produced by the burning of fossil fuels and to the anthropogenic production of short-lived climate pollutants. Climate Change Modeling Methodologies: Selected Entries from the Encyclopedia of Sustainability Science and Technology provides readers with an introduction to the tools and analysis techniques used by climate change scientists to interpret the role of these forcing agents on climate.  Readers will also gain a deeper understanding of the strengths and weaknesses of these models and how to test and assess them.  The contributions include a glossary of key terms and a concise definition of the subject for each topic, as well as recommendations for sources of more detailed information. Features au...

  13. Organizational Climate and Work Addiction in Shahid Sadoughi University of Medical Sciences, 2014: a Case Study. (United States)

    Rafiee, Noora; Bahrami, Mohammad Amin; Zare, Vahid; Mohammadi, Mahan


    The occupational nature of employees in headquarters units of the University requires them to deal with support issues. Thus, there is some pressure on these employees to complete their assignments on time so that employees in the line units can accurately and expeditiously perform their duties. As a result, work addiction behaviors are sometimes observed among the headquarters personnel. Considering the importance of work addiction and recognizing the factors that intensify it, this study investigated the relationship between organizational climate and the work addiction of headquarters personnel at the Shahid Sadoughi University of Medical Sciences. This descriptive-analytic study was conducted using stratified random sampling of 151 University employees in 2014. The data collection tool was an organizational climate questionnaire, which was supplemented by the Work Addiction Risk Test (WART). The data were analyzed using the Pearson test, Spearman test, independent t-test, Mann-Whitney test, one-way analysis of variance (ANOVA), and the Kruskal-Wallis test using IBM-SPSS version 20. The findings of this study showed that the organizational climate was at a moderate level, and employees were in the danger level in terms of work addiction. In addition, among the dimensions of organizational climate, the risk dimension had a significant relationship with work addiction (porganizational climate score was low and the work addiction score was at the high-risk level, this issue demands more attention of senior managers and human resource officers of organizations to improve the organizational climate and increase employees' awareness of work addiction.

  14. Talent Management Strategies and Innovation Climate in Isfahan University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Susan Bahrami


    Full Text Available Background: Talent management (TM strategies are one of the most important factors that can change the innovation climate. The main aim of this research was to investigate the influence of TM strategies on innovation climate in Isfahan University of Medical Sciences. Methods: This was a cross-sectional study. The target population included all faculty members. In this research, 242 faculty members were selected through accidental sampling method. Data collection instruments were TM strategies questionnaire based on Collings and Mellahi’s model and innovation climate questionnaire based on Luthans et al. model. The data analysis was done using Pearson correlation, one way ANOVA, t-tests and regression model. Results: According to the results, TM strategies and innovation climates cores were 4.29±1.17 and 4.17±1.17, respectively. The results showed that there was a statistically significant relationship with TM strategies (open communication, employee development, rewards and recognitions, managing performance and open climate/culture and innovation climate. As a result, all research hypotheses were confirmed. Conclusion: TM strategies are a comprehensive, department wide program designated to improve the employees’ satisfaction, strengthen the workplace learning and help the employees better manage the changes and transitions. The study suggested that talent management strategies are a comprehensive, department wide program designated to improve the faculty member’s satisfaction, strengthen workplace learning and help the employees better manage the changes and transitions.

  15. Investigating Climate Science Misconceptions Using a Teacher Professional Development Workshop Registration Survey (United States)

    Lynds, S. E.; Gold, A. U.; McNeal, K.; Libarkin, J. C.; Buhr Sullivan, S. M.; Ledley, T. S.; Haddad, N.; Ellins, K. K.


    The EarthLabs Climate project, an NSF-Discovery Research K12 program, has developed a suite of three online classroom-ready modules: Climate and the Cryosphere; Climate and the Carbon Cycle; and Climate and the Biosphere. The EarthLabs Climate project included week-long professional development workshops during June of 2012 and 2013 in Texas and Mississippi. Evaluation of the 2012 and 2013 workshops included participant self-reported learning levels in many areas of climate science. Teachers' answers indicated they had increased their understanding of the topics addressed in the workshops. However, the project team was interested in refining the evaluation process to determine exactly those areas of climate science in which participants increased content knowledge and ameliorated misconceptions. Therefore, to enhance the investigation into what teachers got out of the workshop, a pre-test/post-test design was implemented for 2013. In particular, the evaluation team was interested in discovering the degree to which participants held misconceptions and whether those beliefs were modified by attendance at the workshops. For the 2013 workshops, a registration survey was implemented that included the Climate Concept Inventory (a climate content knowledge quiz developed by the education research team for the project). The multiple-choice questions are also part of the pre/post student quiz used in classrooms in which the EarthLabs Climate curriculum was implemented. Many of the questions in this instrument assess common misconceptions by using them as distractors in the multiple choice options. The registration survey also asked respondents to indicate their confidence in their answer to each question, because, in addition to knowledge limitations, lack of confidence also can be a barrier to effective teaching. Data from the registration survey informed workshop managers of the topic content knowledge of participants, allowing fine-tuning of the professional development

  16. Climate Science: How Earth System Models are Reshaping the Science Policy Interface. (United States)

    Ruane, Alex


    This talk is oriented at a general audience including the largest French utility company, and will describe the basics of climate change before moving into emissions scenarios and agricultural impacts that we can test with our earth system models and impacts models.

  17. An Innovative Approach to Effective Climate Science Application through Stakeholder Participation in Great Plains Grasslands (United States)

    Athearn, N.; Broska, J.


    For natural resource managers and other Great Plains stakeholders, climate uncertainties further confound decision-making on a highly altered landscape. Partner organizations comprising the Great Plains Landscape Conservation Cooperative (GPLCC) acknowledge climate change as a high-priority threat to grasslands and associated habitats, affecting water availability, species composition, and other factors. Despite its importance, incorporation of climate change impacts into planning is hindered by high uncertainty and lack of translation to a tangible outcome: effects on species and their habitats. In 2014, the GPLCC initiated a Landscape Conservation Design (LCD) process to ultimately improve the size and connectivity of grasslands - informing land managers of the landscape-scale impacts of local decisions about where to restore, enhance, protect, and develop lands. Defining this goal helped stakeholders envision a tangible product. High resolution land cover data recently completed for Texas and Oklahoma represent current grassland locations. By focusing climate change models to project changes in these land cover datasets, resulting land cover projections can be directly incorporated into LCD-based models to focus restoration where future climates will support grasslands. Broad organizational cooperation has been critical for this USGS-led project, which uses downscaled climate data and other support from the South Central Climate Science Center Consortium and builds on existing work including LCD efforts of the Playa Lakes Joint Venture and the Bureau of Land Management's Southern Great Plains Rapid Ecological Assessment. Ongoing stakeholder guidance through an advisory team ensures effective application of a product that will be both relevant to and understood by decision makers, for whom the primary role of research is to reduce uncertainties and clear the path for more efficient decision-making in the face of climatic uncertainty.

  18. Evaluation of authentic science projects on climate change in secondary schools: a focus on gender differences (United States)

    Dijkstra, Elma; Goedhart, Martin


    Background and purpose This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from scientists about the global carbon cycle. This study focuses in particular on differences between male and female students, as female students normally like traditional school science less than male students. Sample and design Data, drawn from 1370 students from 60 secondary schools across Europe, were collected through questionnaires taken at the end of the projects. The evaluated aspects were: organization; enjoyment; difficulty; and impact of the projects. Results The findings suggest that authentic science education is appreciated very much by both male students and even more by female students. The projects had positive impacts on climate change ideas, in particular for female students. Female students felt that they had learned many new things more often than male students. Conclusions Both male and female students have positive opinions about the authentic science projects. The results further point to positive effects of activities in which students have an active role, like hands-on experiments or presentation of results. The findings are placed in the international context of science education and their implications for policy are discussed.

  19. Air, Ocean and Climate Monitoring Enhancing Undergraduate Training in the Physical, Environmental and Computer Sciences (United States)

    Hope, W. W.; Johnson, L. P.; Obl, W.; Stewart, A.; Harris, W. C.; Craig, R. D.


    Faculty in the Department of Physical, Environmental and Computer Sciences strongly believe in the concept that undergraduate research and research-related activities must be integrated into the fabric of our undergraduate Science and Technology curricula. High level skills, such as problem solving, reasoning, collaboration and the ability to engage in research, are learned for advanced study in graduate school or for competing for well paying positions in the scientific community. One goal of our academic programs is to have a pipeline of research activities from high school to four year college, to graduate school, based on the GISS Institute on Climate and Planets model.

  20. A Model for Teaching a Climate Change Elective Science Course at the Community College Level (United States)

    Mandia, S. A.


    The impact of global climate change is far-reaching, both for humanity and for the environment. It is essential that our students be provided a strong scientific background for the role of natural and human caused climate change so that they are better prepared to become involved in the discussion. Here the author reveals a successful model designed for use with a diverse student body at the community college level. Teaching strategies beyond the traditional lecture and exam style include: web-based resources such as static websites along with dynamic blogging tools, post-lecture cooperative learning review sessions, weekly current event research projects, use of rubrics to assist students in their own project evaluation before submission, and a research paper utilizing the Skeptical Science website to examine the validity of the most common climate change myths.

  1. Improving the effectiveness of communication about climate science: Insights from the "Global Warming's Six Americas" audience segmentation research project (United States)

    Maibach, E.; Roser-Renouf, C.


    That the climate science community has not been entirely effective in sharing what it knows about climate change with the broader public - and with policy makers and organizations that should be considering climate change when making decisions - is obvious. Our research shows that a large majority of the American public trusts scientists (76%) and science-based agencies (e.g., 76% trust NOAA) as sources of information about climate change. Yet, despite the widespread agreement in the climate science community that the climate is changing as a result of human activity, only 64% of the public understand that the world's average temperature has been increasing (and only about half of them are sure), less than half (47%) understand that the warming is caused mostly by human activity, and only 39% understand that most scientists think global warming is happening (in fact, only 13% understand that the large majority of climate scientists think global warming is happening). Less obvious is what the climate science community should do to become more effective in sharing what it knows. In this paper, we will use evidence from our "Global Warming's Six Americas" audience segmentation research project to suggest ways that individual climate scientists -- and perhaps more importantly, ways in which climate science agencies and professional societies -- can enhance the effectiveness of their communication efforts. We will conclude by challenging members of the climate science community to identify and convey "simple, clear messages, repeated often, by a variety of trusted sources" - an approach to communication repeatedly shown to be effective by the public health community.

  2. Collaborative Projects Weaving Indigenous and Western Science, Knowledge and Perspectives in Climate Change Education (United States)

    Sparrow, E. B.; Chase, M.; Brunacini, J.; Spellman, K.


    The "Reaching Arctic Communities Facing Climate Change" and "Feedbacks and Impacts of A Warming Arctic: Engaging Learners in STEM Using GLOBE and NASA Assets" projects are examples of Indigenous and western science communities' collaborative efforts in braiding multiple perspectives and methods in climate change education. Lessons being learned and applied in these projects include the need to invite and engage members of the indigenous and scientific communities in the beginning as a project is being proposed or formulated; the need for negotiated space in the project and activities where opportunity to present and access both knowledge systems is equitable, recognizes and validates each knowledge and method, and considers the use of pedagogical practices including pace/rhythm and instructional approach most suitable to the target audience. For example with Indigenous audiences/participants, it is important to follow local Indigenous protocol to start an event and/or use a resource that highlights the current experience or voices of Indigenous people with climate change. For mixed audience groups, it is critical to have personal introductions at the beginning of an event so that each participant is given an opportunity and encouraged to voice their ideas and opinions starting with how they want to introduce themselves and thus begin to establish a welcoming and collegial atmosphere for dialog. It is also important to communicate climate science in humanistic terms, that people and communities are affected not just the environment or economies. These collaborative partnerships produce mutual benefits including increased awareness and understanding of personal connections to climate change impacts; opportunities for cultural enrichment; opportunities for accessing elder knowledge which is highly valued as well as science, education and communication tools that are needed in working together in addressing issues and making communities resilient and adaptive.

  3. World climate research: an (un)comfortable coexistence among science and scientists' opinion

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.


    Full text: Full text: My hypothesis is that the effective global governance so urgently needed in relation to greenhouse climate change is not developing, in part, because climate research scientists are failing to communicate well. This is, I believe, because traditionally science has informed society through a sequence of steps moving from facts, through assessment, projection, risk evaluation to policy for changed governance. Any prioritisation, facilitation, and co-ordination activity (such as the World Climate Research Programme) has to be concerned about the way in which science participates in policy. The range of options encompasses: Hands off: it is the job of policy, not science to make decisions; Recognise risk: provide credible and defensible information to help deal with risk; Inform people: because the ultimate policy-maker is the public. Good global governance of common resource, the climate, uses risk management to avoid free riding. History teaches that international cooperation can be successful, e.g. protection of the ozone layer. Some international collective moves towards global carbon governance are occurring: multilateral frameworks such as the UNFCCC, Kyoto Protocol and its follow-up (endorsed by the G8 in June) and domestic mandatory goals set by the EU, UK, China, California and other US states. It is very clear that the world must move from actuarial style climate risk management strategy (history as a good predictor of future) to a dynamically-based prediction and management regime. The urgency of this includes that while mitigation costs are high, delaying action increases them (e.g. Stern 2006; IPCC 2007); that atmospheric concentration of C02 is 380 ppmv (up from the pre-industrial 270 ppmv); current emissions are already higher than the 1990s IPCC scenarios; positive feedbacks seem to predominate; and finally social and climate systems inertias of decades mean that the world is already committed to unrealised warming. Stronger and

  4. Strategic Plan for the U.S. Climate Change Science Program (United States)


    Program objectives. Source: Chris Sabine , NOAA-PMEL. Chapter 15. International Research and CooperationClimate Change Science Program Strategic Plan...Laboratory Mary C. Erickson National Oceanic and Atmospheric Administration Jaime Esper National Aeronautics and Space Administration 181 Robert Etkins...Sweeney, C., Poison, A., Metzl, N., Tilbrook, B., Bates, N.,Wanninkhof, R., Feely, R.A., Sabine , C., Olafsson, J., and Nojiri,Y., 2002: Global sea-air

  5. Science and rhetoric in a globalizing public sphere: mediating systems of climate change knowledge and action


    Üzelgün, Mehmet Ali


    Mestrado em Psicologia / Classification (PsychINFO): 3000 Social Psychology 3040 Social Perception & Cognition 4070 Environmental questions e attitudes People’s knowledge and beliefs about intangible problems such as climate change rely heavily on mediated discourses of science and policy. This thesis employs a dialogical and rhetorical approach to social representations to examine how two mediating systems -the mainstream press and environmental non-governmental organizatio...

  6. A Scalable and Extensible Earth System Model for Climate Change Science

    Energy Technology Data Exchange (ETDEWEB)

    Gent, Peter; Lamarque, Jean-Francois; Conley, Andrew; Vertenstein, Mariana; Craig, Anthony


    The objective of this award was to build a scalable and extensible Earth System Model that can be used to study climate change science. That objective has been achieved with the public release of the Community Earth System Model, version 1 (CESM1). In particular, the development of the CESM1 atmospheric chemistry component was substantially funded by this award, as was the development of the significantly improved coupler component. The CESM1 allows new climate change science in areas such as future air quality in very large cities, the effects of recovery of the southern hemisphere ozone hole, and effects of runoff from ice melt in the Greenland and Antarctic ice sheets. Results from a whole series of future climate projections using the CESM1 are also freely available via the web from the CMIP5 archive at the Lawrence Livermore National Laboratory. Many research papers using these results have now been published, and will form part of the 5th Assessment Report of the United Nations Intergovernmental Panel on Climate Change, which is to be published late in 2013.

  7. Exposure science in an age of rapidly changing climate: challenges and opportunities (United States)

    LaKind, Judy S; Overpeck, Jonathan; Breysse, Patrick N; Backer, Lorrie; Richardson, Susan D; Sobus, Jon; Sapkota, Amir; Upperman, Crystal R; Jiang, Chengsheng; Beard, C Ben; Brunkard, J M; Bell, Jesse E; Harris, Ryan; Chretien, Jean-Paul; Peltier, Richard E; Chew, Ginger L; Blount, Benjamin C


    Climate change is anticipated to alter the production, use, release, and fate of environmental chemicals, likely leading to increased uncertainty in exposure and human health risk predictions. Exposure science provides a key connection between changes in climate and associated health outcomes. The theme of the 2015 Annual Meeting of the International Society of Exposure Science—Exposures in an Evolving Environment—brought this issue to the fore. By directing attention to questions that may affect society in profound ways, exposure scientists have an opportunity to conduct “consequential science”—doing science that matters, using our tools for the greater good and to answer key policy questions, and identifying causes leading to implementation of solutions. Understanding the implications of changing exposures on public health may be one of the most consequential areas of study in which exposure scientists could currently be engaged. In this paper, we use a series of case studies to identify exposure data gaps and research paths that will enable us to capture the information necessary for understanding climate change-related human exposures and consequent health impacts. We hope that paper will focus attention on under-developed areas of exposure science that will likely have broad implications for public health. PMID:27485992

  8. Learning and Teaching Climate Science: The Perils of Consensus Knowledge Using Agnotology (United States)

    Legates, David R.; Soon, Willie; Briggs, William M.


    Agnotology has been defined in a variety of ways including "the study of ignorance and its cultural production" and "the study of how and why ignorance or misunderstanding exists." More recently, however, it has been posited that agnotology should be used in the teaching of climate change science. But rather than use agnotology to enhance an understanding of the complicated nature of the complex Earth's climate, the particular aim is to dispel alternative viewpoints to the so-called consensus science. One-sided presentations of controversial topics have little place in the classroom as they serve only to stifle debate and do not further knowledge and enhance critical thinking. Students must understand not just what is known and why it is known to be true but also what remains unknown and where the limitations on scientific understanding lie. Fact recitation coupled with demonizing any position or person who disagrees with a singularly-derived conclusion has no place in education. Instead, all sides must be covered in highly debatable and important topics such as climate change, because authoritarian science never will have all the answers to such complex problems.

  9. The Climate Science Special Report: Arctic Changes and their Effect on Alaska and the Rest of the United States (United States)

    Taylor, P. C.


    Rapid and visible climate change is happening across the Arctic, outpacing global change. Annual average near-surface air temperatures across the Arctic are increasing at more than twice the rate of global average surface temperature. In addition to surface temperature, all components of the Arctic climate system are responding in kind, including sea ice, mountain glaciers and the Greenland Ice sheet, snow cover, and permafrost. Many of these changes with a discernable anthropogenic imprint. While Arctic climate change may seem physically remote to those living in other regions of the planet, Arctic climate change can affect the global climate influencing sea level, the carbon cycle, and potentially atmospheric and oceanic circulation patterns. As an Arctic nation, United States' adaptation, mitigation, and policy decisions depend on projections of future Alaskan and Arctic climate. This chapter of the Climate Science Special Report documents significant scientific progress and knowledge about how the Alaskan and Arctic climate has changed and will continue to change.

  10. Meeting the Next Generation Science Standards Through "Rediscovered" Climate Model Experiments (United States)

    Sohl, L. E.; Chandler, M. A.; Zhou, J.


    Since the Educational Global Climate Model (EdGCM) Project made its debut in January 2005, over 150 institutions have employed EdGCM software for a variety of uses ranging from short lab exercises to semester-long and year-long thesis projects. The vast majority of these EdGCM adoptees have been at the undergraduate and graduate levels, with few users at the K-12 level. The K-12 instructors who have worked with EdGCM in professional development settings have commented that, although EdGCM can be used to illustrate a number of the Disciplinary Core Ideas and connects to many of the Common Core State Standards across subjects and grade levels, significant hurdles preclude easy integration of EdGCM into their curricula. Time constraints, a scarcity of curriculum materials, and classroom technology are often mentioned as obstacles in providing experiences to younger grade levels in realistic climate modeling research. Given that the NGSS incorporates student performance expectations relating to Earth System Science, and to climate science and the human dimension in particular, we feel that a streamlined version of EdGCM -- one that eliminates the need to run the climate model on limited computing resources, and provides a more guided climate modeling experience -- would be highly beneficial for the K-12 community. This new tool currently under development, called EzGCM, functions through a browser interface, and presents "rediscovery experiments" that allow students to do their own exploration of model output from published climate experiments, or from sensitivity experiments designed to illustrate how climate models as well as the climate system work. The experiments include background information and sample questions, with more extensive notes for instructors so that the instructors can design their own reflection questions or follow-on activities relating to physical or human impacts, as they choose. An added benefit of the EzGCM tool is that, like EdGCM, it helps

  11. Why 'Science + Solutions' Is An Effective & Essential Climate Communications Strategy (Invited) (United States)

    Haines-Stiles, G.; Alley, R. B.; Akuginow, E.


    Success in the Second World War was enabled in large part through advances in science and technology such as radar and the Manhattan Project, and the subsequent growth of the US economy endowed scientists with unrivaled influence in society and policy-making. But climate science has not been immune to criticism, and attacks on what 97% of expert climate scientists regard as well-established have continued. However, as shown in Leiserowitz et al's series of SIX AMERICAS studies, the vast majority of citizens are neither firmly committed against accepting the reality of human-caused climate change, nor 100% certain of the cause. The question, then, is how to reach 'the movable middle.' Richard Alley's 'Earth: The Operators' Manual'-a 3-part series aired nationally on PBS, and supported by the National Science Foundation-was an attempt to improve the understanding of consensus climate science, and showcase examples of clean energy innovations in the United States and worldwide. A fundamental design principle for the series, derived from close reading of social science studies, was to include solutions along with solid science. In addition, the producers enlisted a diverse cast of on-camera personalities alongside Alley: Texas ranchers, Republican senators and Kansan bankers, CEOs and academics, a Navy rear admiral in dress whites, and 'energy captains' in inner city Baltimore. An NSF-mandated Summative Evaluation documented the success of these approaches, and the first two programs reached some 3.6 million viewers on PBS. However, the rapidly-evolving media landscape has meant that national primetime exposure is only part of how climate information is 'sent' and 'received' today. ETOM structured its Facebook page to embody the same solutions-oriented philosophy, and has secured an 'Engagement Index' higher than Buzzfeed, and more than most other environment- and climate-oriented pages. ETOM programs can be downloaded in HD for watch parties, and many schools

  12. Graduate training in Earth science across borders and disciplines: ArcTrain -"Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic" (United States)

    Stein, Rüdiger; Kucera, Michal; Walter, Maren; de Vernal, Anne


    Due to a complex set of feedback processes collectively known as "polar amplification", the Arctic realm is expected to experience a greater-than-average response to global climate forcing. The cascades of feedback processes that connect the Arctic cryosphere, ocean and atmosphere remain incompletely constrained by observations and theory and are difficult to simulate in climate models. Our capacity to predict the future of the region and assess the impacts of Arctic change processes on global and regional environments hinges on the availability of interdisciplinary experts with strong international experience and understanding of the science/society interface. This is the basis of the International Research Training Group "Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic - ArcTrain", which was initiated in 2013. ArcTrain aims to educate PhD students in an interdisciplinary environment that combines paleoclimatology, physical oceanography, remote sensing and glaciology with comprehensive Earth system modelling, including sea-ice and ice-sheet components. The qualification program for the PhD students includes joint supervision, mandatory research residences at partner institutions, field courses on land and on sea (Floating University), annual meetings and training workshops and a challenging structured training in expert skills and transferrable skills. Its aim is to enhance the career prospects and employability of the graduates in a challenging international job market across academic and applied sectors. ArcTrain is a collaborative project at the University of Bremen and the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven. The German part of the project is designed to continue for nine years and educate three cohorts of twelve PhD students each. The Canadian partners comprise a consortium of eight universities led by the GEOTOP cluster at the Université du Québec à Montréal and including

  13. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers; Bilan 2007 des changements climatiques: l'attenuation des changements climatiques. Contribution du Groupe de travail 3 au quatrieme rapport d'evaluation du Groupe d'Experts Intergouvernemental sur l'Evolution du Climat (GIEC). Resume a l'attention des decideurs

    Energy Technology Data Exchange (ETDEWEB)

    Barker, T.; Bashmakov, I.; Bernstein, L.; Bogner, J.; Bosch, P.; Dave, R.; Davidson, O.; Fisher, B.; Grubb, M.; Gupta, S.; Halsnaes, K.; Heij, B.; Kahn Ribeiro, S.; Kobayashi, S.; Levine, M.; Martino, D.; Masera Cerutti, O.; Metz, B.; Meyer, L.; Nabuurs, G.J.; Najam, A.; Nakicenovic, N.; Holger Rogner, H.; Roy, J.; Sathaye, J.; Schock, R.; Shukla, P.; Sims, R.; Smith, P.; Swart, R.; Tirpak, D.; Urge-Vorsatz, D.; Dadi, Z


    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO{sub 2} Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  14. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers; Bilan 2007 des changements climatiques: l'attenuation des changements climatiques. Contribution du Groupe de travail 3 au quatrieme rapport d'evaluation du Groupe d'Experts Intergouvernemental sur l'Evolution du Climat (GIEC). Resume a l'attention des decideurs

    Energy Technology Data Exchange (ETDEWEB)

    Barker, T; Bashmakov, I; Bernstein, L; Bogner, J; Bosch, P; Dave, R; Davidson, O; Fisher, B; Grubb, M; Gupta, S; Halsnaes, K; Heij, B; Kahn Ribeiro, S; Kobayashi, S; Levine, M; Martino, D; Masera Cerutti, O; Metz, B; Meyer, L; Nabuurs, G J; Najam, A; Nakicenovic, N; Holger Rogner, H; Roy, J; Sathaye, J; Schock, R; Shukla, P; Sims, R; Smith, P; Swart, R; Tirpak, D; Urge-Vorsatz, D; Dadi, Z


    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO{sub 2} Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  15. Teaching to the Next Generation Science Standards with Energy, Climate, and Water Focused Games (United States)

    Mayhew, M. A.; Hall, M.; Civjan, N.


    We produced two fun-to-play card games with the theme, The Nexus of Energy, Water, and Climate, that directly support teaching to the NGSS. In the games, players come to understand how demand for energy, water use, and climate change are tightly intertwined. Analysis by scientists from the national laboratories ensured that the games are reflect current data and research. The games have been tested with high school and informal science educators and their students and have received a formal evaluation. The games website shows how the games align with the NGSS, the Common Core, and the NRC's Strands of Science Learning. It also contains an extensive collection of accessible articles on the nexus to support use of the games in instruction. Thirst for Power is a challenging resource management game. Players, acting as governors of regions, compete to be the first to meet their citizens' energy needs. A governor can choose from a variety of carbon-based or renewable energy sources, but each source uses water and has an environmental—including climate change—impact. Energy needs must be met using only the water resources allocated to the region and without exceeding the environmental impact limit. "ACTION" cards alter game play and increase competition. Challenge and Persuade is a game of scientific argumentation, using evidence on nexus-related fact cards. Players must evaluate information, develop fact-based arguments, and communicate their findings. One card deck contains a set of adjectives, a second a series of fact cards. Players use their fact cards to make the best argument that aligns with an adjective selected by the "Judge". Players take turns being the "Judge," who determines who made the best argument. The games particularly align with NGSS elements: Connections to Engineering, Technology, and Application of Science. Players come to understand the science and engineering behind many energy sources and their impacts

  16. Contextualizing Next Generation Science Standards to Guide Climate Education in the U.S. Affiliated Pacific Islands (USAPI) (United States)

    Sussman, A.; Fletcher, C. H.; Sachs, J. P.


    The USAPI has a population of about 1,800,000 people spread across 4.9 million square miles of the Pacific Ocean. The Pacific Islands are characterized by a multitude of indigenous cultures and languages. Many USAPI students live considerably below the poverty line. The Pacific Island region is projected to experience some of the most profound negative impacts of climate change considerably sooner than other regions. Funded by the National Science Foundation (NSF), the Pacific Islands Climate Education Partnership (PCEP) has developed a detailed strategic plan to collaboratively improve climate knowledge among the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and honor indigenous cultures. Students and citizens within the region will have the knowledge and skills to advance understanding of climate change, and to adapt to its impacts. Core PCEP partners contribute expertise in climate science, the science of learning, the region's education infrastructure, and the region's cultures and indigenous knowledge and practices. PCEP's strategic education plan is guided by a general, multidisciplinary K-14 Climate Education Framework (CEF) that organizes fundamental science concepts and practices within appropriate grade-span progressions. This CEF is based largely upon the National Research Council's "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" and the emerging Next Generation Science Standards. While the CEF is based upon these national Next Generation documents, it is also informed and strongly influenced by the region's geographic, climatic, cultural and socioeconomic contexts, notably indigenous knowledge and practices. Guided by the CEF, the PCEP in its initial development/planning phase has prototyped regional approaches to professional development, contextualizing curricula, and supporting community

  17. Engaging Students in Climate Change Science and Communication through a Multi-disciplinary Study Abroad Program (United States)

    North, L. A.; Polk, J.; Strenecky, B.


    The implications of the climate change phenomenon are far-reaching, and will impact every person on Earth. These problems will be complex, and will require leaders well-versed in interdisciplinary learning and international understanding. To employ a multi-disciplinary approach to studying the impact climate change is having in the world in which we live, a team of 57 Western Kentucky University (WKU) faculty, staff, and students participated in a study abroad program to seven ports in the North Sea and North Atlantic, including three ports in Iceland, onboard the Semester at Sea ship, MV Explorer. This program combined interdisciplinary learning, service learning, and international understanding toward the goal of preparing the leaders of tomorrow with the skills to address climate change challenges. Together, the group learned how climate change affects the world from varied academic perspectives, and how more often than not these perspectives are closely interrelated. Courses taught during the experience related to climate change science and communication, economics, future trends, and K-12 education. Each student also participated in a The $100 Solution™ service-learning course. While in port, each class engaged in a discipline-specific activities related to the climate change topic, while at sea students participated in class lectures, engaged in shipboard lectures by international experts in their respective fields, and participated in conversations with lifelong learners onboard the ship. A culminating point of the study abroad experience was a presentation by the WKU students to over 100 persons from the University of Akureyri in Akureyri, Iceland, representatives of neighboring Icelandic communities, environmental agencies, and tourism bureaus about what they had learned about climate change during their travels. By forging this relationship, students were able to share their knowledge, which in turn gave them a deeper understanding of the issues they

  18. Picture This: The Art of Using Museum and Science Collaborations to Teach about Climate Change (United States)

    Fiondella, F.; Fowler, R.; Davi, N. K.; Gawthrop, E.


    Connecting scientists and their research to photography galleries and museums is an effective way to promote climate literacy among a new, diverse audience. This approach requires creativity and a willingness to reach out to and work with staff unfamiliar with scientific institutions, but can result in broad exposure and understanding of the impacts of climate change. In this presentation we highlight the successful science-art collaboration among the International Center of Photography, Lamont-Doherty Earth Observatory and the International Research Institute for Climate and Society. The collaboration revolved around ICP's 2014-2015 exhibition of renowned photographer Sebastiao Salgado's Genesis, an eight-year worldwide survey of wildlife, landscapes, seascapes and indigenous peoples. Salgado's photographs acted as a springboard for a unique public education program based at ICP and aimed at raising awareness of the urgent issue of climate change. Over the course of six months, Lamont and IRI scientists with expertise in climatology, dendrochronology, seismology and glaciology led gallery tours for the public, making links between their research and the places and people of Salgado's photography. Lamont and IRI staff also gave talks throughout the exhibition period on topics ranging from climate change adaptation to the use of photography to help the public visualize the impacts of Earth's changing climate. The research institutions also took over ICP's Instagram feed for a week, showcasing the climate-related field work of more than a dozen scientists. All three institutions, the participating scientists and program attendees deemed the collaboration a success. We'll explain what made this collaboration successful and provide tips on how scientists and their institutes can form similar collaborations with museums and other arts-based organizations.

  19. Fighting A Strong Headwind: Challenges in Communicating The Science of Climate Change (United States)

    Mann, M. E.


    Communicating science to the public is an intrinsic challenge to begin with. An effective communicator must find ways to translate often technical and complex scientific findings for consumption by an audience unfamiliar with the basic tools and lexicon that scientists themselves take for granted. The challenge is made all the more difficult still when the science has implications for public policy, and the scientists face attack by institutions who judge themselves to be at threat by the implications of scientific findings. Such areas of science include (but certainly are not limited to) evolution, stem cell research, environmental health, and the subject of this talk--climate change. In each of these areas, a highly organized, well funded effort has been mounted to attack the science and the scientists themselves. These attacks are rarely fought in legitimate scientific circles such as the peer-reviewed scientific literature or other scholarly venues, but rather through rhetorically-aimed efforts delivered by media outlets aligned with the views of the attackers, and by politicians and groups closely aligned with special interests. I will discuss various approaches to combating such attacks, drawing upon my own experiences in the public arena with regard to the scientific discourse on climate change.

  20. Facing climate change in forests and fields: U.S. Forest Service taps into science-management partnerships (United States)

    Amy Daniels; Nancy Shaw; Dave Peterson; Keith Nislow; Monica Tomosy; Mary Rowland


    As a growing body of science shows, climate change impacts on wildlife are already profound—from shifting species’ ranges and altering the synchronicity of food sources to changing the availability of water. Such impacts are only expected to increase in the coming decades. As climate change shapes complex, interwoven ecological processes, novel conditions and...

  1. 75 FR 43944 - Defense Science Board; Task Force on Trends and Implications of Climate Change for National and... (United States)


    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board; Task Force on Trends and Implications of Climate Change for National and International Security AGENCY: Department of Defense (DoD... and Implications of Climate Change for National and International Security will meet in closed session...

  2. 75 FR 34438 - Defense Science Board Task Force on Trends and Implications of Climate Change for National and... (United States)


    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board Task Force on Trends and Implications of Climate Change for National and International Security AGENCY: Department of Defense (DoD... and Implications of Climate Change for National and International Security will meet in closed session...

  3. Cool Science: Year 2 of Using Children's Artwork about Climate Change to Engage Riders on Mass Transit (United States)

    Lustick, D. S.; Lohmeier, J.; Chen, R. F.


    A team of educators and scientists from the University of Massachusetts Lowell and the University of Massachusetts Boston will report on the second year of an informal science learning research project using mass transit spaces in Lowell, MA. Cool Science (CS) conducts a statewide art competition for K-12 students in the fall challenging them to express climate science understanding through the visual arts. An inter-disciplinary panel of judges evaluates entries and identifies the top 24 works of art. The best six student works of art are then put on public display throughout the spring on the Lowell Regional Transit Authority (LRTA). Displaying student artwork in Out of Home Multi-Media (OHMM) such as bus placards and posters is intended to engage riders with opportunities to learn informally. CS aims to promote and evaluate learning about climate change science among the general public and k-12 students/teachers. The goals of CS are: 1) Engage teachers, students, and parents in a climate change science communication competition. 2) Display the winning 6 artworks from K-12 students throughout the LRTA. 3) Assess the impact of Cool Science on the teaching and learning of climate science in K-12 formal education. 4) Assess the impact of Cool Science artwork on attitudes, awareness, and understanding of climate change among adult bus riders. A naturalistic inquiry employing a mixed methodology approach best describes our research design. The evaluation focuses on providing feedback regarding the potential learning outcomes for the K-12 students who create the media for the project and the general riding public who engage with the student artwork. To identify possible outcomes, data was collected in the several forms: survey, interviews, and online analytics. We see an urgent need to improve both the public's engagement with climate change science and to the profile of climate change science in formal education settings. The Cool Science (CS) project is an opportunity

  4. Measuring Student Improvement in Lower- and Upper-Level University Climate Science Courses (United States)

    Harris, S. E.; Taylor, S. V.; Schoonmaker, J. E.; Lane, E.; Francois, R. H.; Austin, P.


    What do university students know about climate? What do they learn in a climate course? On the second-to-last day of a course about global climate change, only 48% of our upper-level science students correctly answered a multiple-choice question about the greenhouse effect. The good news: improvement. Only 16% had answered correctly on the first day of class. The bad news: the learning opportunities we've provided appear to have missed more than half the class on a fundamental climate concept. To evaluate the effectiveness of instruction on student learning about climate, we have developed a prototype assessment tool, designed to be deployed as a low-stakes pre-post test. The items included were validated through student interviews to ensure that students interpret the wording and answer choices in the way we intend. This type of validated assessment, administered both at the beginning and end of term, with matched individuals, provides insight regarding the baseline knowledge with which our students enter a course, and the impact of that course on their learning. We administered test items to students in (1) an upper-level climate course for science majors and (2) a lower-level climate course open to all students. Some items were given to both groups, others to only one of the groups. Both courses use evidence-based pedagogy with active student engagement (clickers, small group activities, regular pre-class preparation). Our results with upper-level students show strong gains in student thinking (>70% of students who missed a question on the pre-test answered correctly on the post-test) about stock-and-flow (box model) problems, annual cycles in the Keeling curve, ice-albedo feedbacks, and isotopic fractionation. On different questions, lower-level students showed strong gains regarding albedo and blackbody emission spectra. Both groups show similar baseline knowledge and lower-than-expected gains on greenhouse effect fundamentals, and zero gain regarding the

  5. Memoirs of law, sciences and technologies - Law and climate thematic issue

    International Nuclear Information System (INIS)

    Torre-Schaub, M.; Jouzel, J.; Boisson de Chazournes, L.; Sadeleer, N. de; Denis, B.; Godard, O.; Le Prestre, P.; Maljean-Dubois, S.; Wemaere, M.; Rousseaux, S.; Louchard, O.


    This dossier is organized around two essential points: 1 - climate is a scientific question which combines science and governance. In this context, the last IPCC (Intergovernmental Panel on Climate Change) report gives an essential place to uncertainties with claiming that 'it is more probable than improbable that we may be in an irreversible process of global warming'. Therefore, it has become necessary to think about the management of uncertainties using law and to a massive mobilization of the precaution principle. The essential economical aspects to the implementation of a significant abatement of greenhouse gases cannot be passed over in silence as well. Finally, the civil society occupies a more and more important place, not only in international negotiations, but inside the countries as well. 2 - Global warming is thinkable at a World scale only. This implies that some kind of a climate geopolitics is emerging in the World, considering the existence at the same time of different sources and different problems to deal with (technical, economical) depending on the regions of the world. From the strictly legal point of view, the scenarios presented at Bali consider the World by 2012 onward. In this context, the fight against global warming mobilizes several legal instruments, some being new and the others being not. We assist to a real law genesis. The emissions trading markets, for instance, and other financial mechanisms, belong to these new instruments. However, using old legal means to solve new problems is another way to create law. It is also important to stress on the fact that the international law is not the only possible legal mean to square the fight against global warming. The liability right for the violation of a public property, i.e. the atmosphere, remains an instrument combining experience and novelty and has proved itself in several countries. Finally, in France, the 'Grenelle de l'Environnement' policy has led to an extraordinary process of

  6. Predicting Climate-sensitive Infectious Diseases: Development of a Federal Science Plan and the Path Forward (United States)

    Trtanj, J.; Balbus, J. M.; Brown, C.; Shimamoto, M. M.


    The transmission and spread of infectious diseases, especially vector-borne diseases, water-borne diseases and zoonosis, are influenced by short and long-term climate factors, in conjunction with numerous other drivers. Public health interventions, including vaccination, vector control programs, and outreach campaigns could be made more effective if the geographic range and timing of increased disease risk could be more accurately targeted, and high risk areas and populations identified. While some progress has been made in predictive modeling for transmission of these diseases using climate and weather data as inputs, they often still start after the first case appears, the skill of those models remains limited, and their use by public health officials infrequent. And further, predictions with lead times of weeks, months or seasons are even rarer, yet the value of acting early holds the potential to save more lives, reduce cost and enhance both economic and national security. Information on high-risk populations and areas for infectious diseases is also potentially useful for the federal defense and intelligence communities as well. The US Global Change Research Program, through its Interagency Group on Climate Change and Human Health (CCHHG), has put together a science plan that pulls together federal scientists and programs working on predictive modeling of climate-sensitive diseases, and draws on academic and other partners. Through a series of webinars and an in-person workshop, the CCHHG has convened key federal and academic stakeholders to assess the current state of science and develop an integrated science plan to identify data and observation systems needs as well as a targeted research agenda for enhancing predictive modeling. This presentation will summarize the findings from this effort and engage AGU members on plans and next steps to improve predictive modeling for infectious diseases.

  7. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators (United States)

    Halversen, C.; Weiss, E. L.; Pedemonte, S.


    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere

  8. Public attention to science and political news and support for climate change mitigation (United States)

    Hart, P. Sol; Nisbet, Erik C.; Myers, Teresa A.


    We examine how attention to science and political news may influence public knowledge, perceived harm, and support for climate mitigation policies. Previous research examining these relationships has not fully accounted for how political ideology shapes the mental processes through which the public interprets media discourses about climate change. We incorporate political ideology and the concept of motivated cognition into our analysis to compare and contrast two prominent models of opinion formation, the scientific literacy model, which posits that disseminating scientific information will move public opinion towards the scientific consensus, and the motivated reasoning model, which posits that individuals will interpret information in a biased manner. Our analysis finds support for both models of opinion formation with key differences across ideological groups. Attention to science news was associated with greater perceptions of harm and knowledge for conservatives, but only additional knowledge for liberals. Supporting the literacy model, greater knowledge was associated with more support for climate mitigation for liberals. In contrast, consistent with motivated reasoning, more knowledgeable conservatives were less supportive of mitigation policy. In addition, attention to political news had a negative association with perceived harm for conservatives but not for liberals.

  9. Le vocabulaire de l'hydrologie et des sciences auxiliaires dans le livre VIII du De Architectura de Vitruve


    Callebat, Louis


    The author, in a previous article has analysed the vocabulary of hydrauhcs. This paper is concerned with the study of the hidrologic as well as the auxiliay sciences terms which appear in the eighth book of De architectura of Vitrube. He studies the words used to designate the soil texture, its chemical constituents, and especially these relative to the hidrology, in order to enhance the global idea the ancient world had about natural phenomena.

  10. Interdisciplinary Climate Change Curriculum Materials based on the Next Generation Science Standards and The Earth Charter (United States)

    Barbosa, A.; Robertson, W. H.


    In the 2012, the National Research Council (NRC) of the National Academies' reported that one of the major issues associated with the development of climate change curriculum was the lack of interdisciplinary materials that also promoted a correlation between science standards and content. Therefore, in order to respond to this need, our group has developed an interdisciplinary climate change curriculum that has had as its fundamental basis the alignment with the guidelines presented by the Next Generation Science Standards (NGSS) and the ones presented by the international document entitled The Earth Charter. In this regards, while the alignment with NGSS disciplinary core ideas, cross-concepts and students' expectations intended to fulfill the need for the development of climate change curriculum activities that were directly associated with the appropriate set of NGSS guidelines, the alignment with The Earth Charter document intended to reinforce the need the for the integration of sociological, philosophical and intercultural analysis of the theme 'climate change'. Additionally, our curriculum was also developed as part of a collaborative project between climate scientists and engineers, who are responsible for the development of a Regional Arctic Simulation Model (RASM). Hence, another important curriculum constituent was the feedback, suggestions and reviews provided by these professionals, who have also contributed to these pedagogical materials' scientific accuracy by facilitating the integration of datasets and visualizations developed by RASM. Furthermore, our group has developed a climate change curriculum for two types of audience: high school and early undergraduate students. Each curriculum unit is divided into modules and each module contains a set of lesson plans. The topics selected to compose each unit and module were designated according to the surveys conducted with scientists and engineers involved with the development of the climate change

  11. [The role of science and technology in Canada's implementation strategy for climate change

    International Nuclear Information System (INIS)

    Oulton, D.


    The scientific-technical challenge facing Canada in meeting its Kyoto target was the subject of this discourse. It was suggested that in order to meet the six per cent reduction target we need to introduce new technology into the economy, but just as importantly, we need to change how people use energy and how they use things that emit greenhouse gases. The role that climate change experts can and must play in defining what needs to be done and how to do it, and the crucial contribution that science, analysis and modelling can make to the process, were discussed at length. The question of federal leadership, the role of the Climate Change Secretariat, the role of the Climate Change Action Fund, early action initiatives, the performance of the voluntary action initiative and its future role, federal-provincial cooperation in formulating and implementing climate change policy, and the question of whether or not to impose common greenhouse gas emission targets and timetables on all nations were some of the other major points touched upon. With regard to developing countries, this author put forth the view that developing countries would benefit most from a differentiated system of targets

  12. Mid-term evaluation of the Climate Change Action Fund: Science, Impacts and Adaptation (SIA) block

    International Nuclear Information System (INIS)


    In 1998, the Climate Change Action Fund was established by the Government of Canada. Its budget represented 150 million dollars over a three year period, and was an additional 625 million dollars in the federal budget of February 2000 was allocated for climate change initiatives, of which 150 million dollars were earmarked over a three year period to the Climate Change Action Fund. To provide input for Treasury Board Submissions looking for funding approval in the future, it was necessary to conduct a mid-term evaluation focused on program performance to date. The period covered by the evaluation was September 2000 to the end of January 2001. This report examined the performance of the Science, Impact and Adaptation Block (SIA). Based on a series of interviews with representatives of Block managers, Technical and Executive Policy Committees, successful applicants, unsuccessful applicants and peer reviewers, as well as a review of the documentation maintained by SIA, it addressed the following issues: Block relevance, progress/success to date, and effectiveness in meeting the objectives. It was determined that the objectives displayed relevance to the climate change agenda of the federal government, progress to date was considered satisfactory, and most of the objectives should be met in a timely fashion. A summary of the findings was included in this document along with recommendations pertaining to the findings. 3 tabs., 1 fig

  13. Polar Voices: Relaying the Science and Story of Polar Climate Change through Podcast (United States)

    Moloney, M.; Quinney, A.; Murray, M. S.


    The resurgence of audio programming with the advent of podcasting in the early 2000's spawned a new medium for communicating advances in science, research, and technology. To capitalize on this informal educational outlet, the Arctic Institute of North America (AINA) partnered with the International Arctic Research Center, the University of Alaska Fairbanks, and the UA Museum of the North to develop a podcast series called PoLAR Voices for the Polar Learning and Responding (PoLAR) Climate Change Education Partnership. Now entering its third season of production, PoLAR Voices has facilitated the communication of scientific knowledge regarding the impact of climate change on the Arctic and Antarctic from the perspectives of both scientific researchers and Arctic indigenous peoples. We present a holistic program detailing both data and research related to climate change in addition to personal stories from those people and communities most affected. An evaluation of the program has been conducted by the Goodman Research Group to assess the effectiveness of the program for relaying the whole story of climate change to the public. The results of this assessment will be used to further develop the program to effectively reach larger and more diverse audiences. The series is currently available on and iTunes, and we are exploring opportunities to air the program on radio to reach as many people as possible.

  14. Barriers in local practice-oriented teaching networks to organize climate and science teaching

    DEFF Research Database (Denmark)

    Grunwald, Annette

    The poster takes its point of departure from a need to meet primary and lower secondary pupils interest in climate, science and technology by giving them possibilities to learn “in the real world” in a more problem based way. This possibility is given through out-of-school learning organized in co......-operation between educational actors, here primary/lower secondary schools, Aalborg University, and other actors, here Aalborg municipality and companies. The poster will present the first results of an ongoing developing and research project “Learning in reality: Practice-oriented teaching networks strengthen...... primary and lower secondary school pupils’ interest in climate and science”, funded by the Danish Energy Foundation (August 2014 – December 2016). The aim of the project is e.g. to: - Develop, establish and explore new forms of local cooperation between schools, companies, Aalborg University...

  15. Climate Science for a Sustainable Energy Future Test Bed and Data Infrastructure Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Van Dam, Kerstin Kleese [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shipman, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The collaborative Climate Science for a Sustainable Energy Future (CSSEF) project started in July 2011 with the goal of accelerating the development of climate model components (i.e., atmosphere, ocean and sea ice, and land surface) and enhancing their predictive capabilities while incorporating uncertainty quantification (UQ). This effort required accessing and converting observational data sets into specialized model testing and verification data sets and building a model development test bed, where model components and sub-models can be rapidly evaluated. CSSEF’s prototype test bed demonstrated, how an integrated testbed could eliminate tedious activities associated with model development and evaluation, by providing the capability to constantly compare model output—where scientists store, acquire, reformat, regrid, and analyze data sets one-by-one—to observational measurements in a controlled test bed.

  16. The Pacific Islands Climate Science Center five-year science agenda, 2014-2018 (United States)

    Helweg, David; Nash, Sarah A.B.; Polhemus, Dan A.


    From the heights of Mauna Kea on Hawaiʻi Island to the depths of the Mariana Trench, from densely populated cities to sparse rural indigenous communities and uninhabited sandy atolls, the Pacific region encompasses diverse associations of peoples and places that are directly affected by changes to the atmosphere, ocean, and land. The peoples of the Pacific are among the first to observe and experience the effects of global climatic changes. Because the Pacific region is predominantly composed of vast ocean expanses punctuated only by small, isolated emergent islands and atolls, marine processes are critical factors in the region’s climate systems, and their impacts occur here to a greater degree than in continental regions. Rates of sea-level rise in the region during the modern altimetry period exceed the global rate, with the highest increases occurring in the western North Pacific (Cazenave and Llovel, 2010; Nerem and others, 2010; Timmermann and others, 2010). The ocean has also warmed during this period. Since the 1970s, sea-surface temperature has increased at a rate of 0.13 to 0.41 °F (0.07 to 0.23 °C) per decade, depending on the location (Keener and others, 2012a). Ocean chemistry has changed during this period as well, with surface pH having dropped by 0.1 pH units (Feely and others, 2009; Doney and others, 2012). Over the past century, air temperature has increased throughout the Pacific region. In Hawaiʻi, average temperatures increased by 0.08 °F per decade during the period 1919 to 2006, and in recent years, the rate of increase has been accelerating, particularly at high elevations (Giambelluca and others, 2008). In the western North Pacific, temperatures also increased over the past 60 years (Lander and Guard, 2003; Lander, 2004; Lander and Khosrowpanah, 2004; Kruk and others, 2013), with a concurrent warming trend in the central South Pacific since the 1950s (Australian Bureau of Meteorology and CSIRO, 2011).

  17. Next-Generation Climate Modeling Science Challenges for Simulation, Workflow and Analysis Systems (United States)

    Koch, D. M.; Anantharaj, V. G.; Bader, D. C.; Krishnan, H.; Leung, L. R.; Ringler, T.; Taylor, M.; Wehner, M. F.; Williams, D. N.


    We will present two examples of current and future high-resolution climate-modeling research that are challenging existing simulation run-time I/O, model-data movement, storage and publishing, and analysis. In each case, we will consider lessons learned as current workflow systems are broken by these large-data science challenges, as well as strategies to repair or rebuild the systems. First we consider the science and workflow challenges to be posed by the CMIP6 multi-model HighResMIP, involving around a dozen modeling groups performing quarter-degree simulations, in 3-member ensembles for 100 years, with high-frequency (1-6 hourly) diagnostics, which is expected to generate over 4PB of data. An example of science derived from these experiments will be to study how resolution affects the ability of models to capture extreme-events such as hurricanes or atmospheric rivers. Expected methods to transfer (using parallel Globus) and analyze (using parallel "TECA" software tools) HighResMIP data for such feature-tracking by the DOE CASCADE project will be presented. A second example will be from the Accelerated Climate Modeling for Energy (ACME) project, which is currently addressing challenges involving multiple century-scale coupled high resolution (quarter-degree) climate simulations on DOE Leadership Class computers. ACME is anticipating production of over 5PB of data during the next 2 years of simulations, in order to investigate the drivers of water cycle changes, sea-level-rise, and carbon cycle evolution. The ACME workflow, from simulation to data transfer, storage, analysis and publication will be presented. Current and planned methods to accelerate the workflow, including implementing run-time diagnostics, and implementing server-side analysis to avoid moving large datasets will be presented.

  18. Comparing Impact of Climate Science Data Visualized Graphically and in Artwork (United States)

    Pelto, J. N.; Pelto, M. S.; Zemp, M.


    How significant is the form of scientific data presentation in determining impact on and extent of the audience? This question is investigated by comparing the response to scientific information presented as a traditional data graph versus presented in artwork. Most people will gloss over the graphs in a scientific paper, even though the figures tell an important story. The role as an artist is to engage people emotionally in that story using the uniquely articulate lens of art. The goal of communicating the climate science data in an art format was to reach a broader audience. We compare the social media and media analytics from publication of original glacier data sets in 2015 to that generated by the artwork of the same data also completed in 2015. Glacier annual mass balance, total snow accumulation minus total snow ablation, is recognized as the most sensitive and representative climate parameter observed and reported from glaciers. The World Glacier Monitoring Service (M.Zemp: WGMS) compiles and reports this data. As a key contributor (M. Pelto) to this record and reporter on this record for the annual BAMS State of the Climate (SOTC) report, it became apparent that the data set though a special focus and media highlight of the SOTC report could benefit from a new perspective. J. Pelto completed two pieces of art that feature glacier mass balance as a visually important story of climate change. Decrease in Glacier Mass Balance presents data of average mass balance for a group of North Cascade, WA glaciers 1984-2014. Climate Change Data illustrates global annual glacier mass balance, global sea level rise, and global temperatures. This image conveys how the data sets are linked, and presented together better communicates the fluctuations in Earth's dynamic systems. The numbers on the left y-axis depict quantities of glacial melt and sea level rise, and the suns across the horizon contain global temperature increase values, coinciding with the timeline on the x

  19. Relations between science and politics in the climate regime: In search of a new model of expertise?

    International Nuclear Information System (INIS)

    Dahan, Amy; Guillemot, Helene


    Over the past 25 years, anthropogenic climate change has been addressed as a global environmental problem, which must be resolved by reducing human greenhouse gas emissions through a global agreement negotiated under the auspices of the UN. The role of sciences in the construction of the problem is essential and is aptly summarized by the claim that 'science speaks truth to power', with science and politics assumed to be hermetically separated. Although this 'linear model' is in fact largely inadequate to account for the much more complex links between climate science and politics, notably within the IPCC, it has long been hegemonic, leading to debates focused on science rather than political responses. This dominant approach has been undermined by the failure of international negotiations: it is now clear that scientific consensus does not suffice to produce significant global political decisions. It is now evident that climate change is a geopolitical, economic, and development problem as much as an environmental one. As the Paris CoP approaches, in a phase of political uncertainties and discussions around the need for a change of paradigm in negotiations, our paper examines critically the evolving relationship between science and politics in the climate regime, revisiting the role of science and discussing emerging critiques, proposals, and perspectives on models of expertise

  20. The use of the Climate-science Computational End Station (CCES) development and grand challenge team for the next IPCC assessment: an operational plan

    International Nuclear Information System (INIS)

    Washington, W M; Buja, L; Gent, P; Drake, J; Erickson, D; Anderson, D; Bader, D; Dickinson, R; Ghan, S; Jones, P; Jacob, R


    The grand challenge of climate change science is to predict future climates based on scenarios of anthropogenic emissions and other changes resulting from options in energy and development policies. Addressing this challenge requires a Climate Science Computational End Station consisting of a sustained climate model research, development, and application program combined with world-class DOE leadership computing resources to enable advanced computational simulation of the Earth system. This project provides the primary computer allocations for the DOE SciDAC and Climate Change Prediction Program. It builds on the successful interagency collaboration of the National Science and the U.S. Department of Energy in developing and applying the Community Climate System Model (CCSM) for climate change science. It also includes collaboration with the National Aeronautics and Space Administration in carbon data assimilation and university partners with expertise in high-end computational climate research

  1. New Water Management Institutions in Mexico’s ‘New Culture of Water’: Emerging Opportunities and Challenges for Effective Use of Climate Knowledge and Climate Science (United States)

    Wilder, M.; Varady, R. G.; Pineda Pablos, N.; Browning-Aiken, A.; Diaz Caravantes, R.; Garfin, G.


    Since 1992, Mexico has developed a new set of water management institutions to usher in a ‘new culture of water’ that focuses on decentralized governance and formalized participation of local water users. Reforms to the national water legislation in April 2004 regionalized the governance of water and highlighted the importance of river basin councils as a mechanism for integrated management of major watersheds across Mexico. As a result of the dramatic national water policy reforms, water service delivery in Mexico has been decentralized to the state and municipal level, resulting in a critical new role for municipal governments charged with this important function. A network of river basin councils accompanied and sub-basin councils has been developed to undertake watershed planning. Decentralization and local participation policies embody numerous significant goals and promises, including greater efficiency, more financial accountability, fostering the beginnings of a sense of local stewardship of precious resources, and enhanced environmental sustainability. This paper examines the implications of municipalized water services and emerging river basin councils for utilization of climate knowledge and climate science. We analyze whether these changes open new windows of opportunity for meaningful use of climate science (e.g., forecasts; models). How effectively are municipal water managers and river basin councils utilizing climate knowledge and climate science, and for what purposes? Are there ways to improve the fit between the needs of water managers and river basin councils and the science that is currently available? What is the role of local participation in water policy making in urban settings and river basin councils? The study found overall that the promises and potential for effective utilization of climate science/knowledge to enhance sustainability exists, but is not yet being adequately realized. Binational efforts to develop climate science and

  2. Accroissement de la compétitivité du Kenya dans l'économie du ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    La promulgation par le Kenya du Science, Technology and Innovation Bill, 2012 confirme l'intérêt et la volonté du gouvernement de mettre en oeuvre désormais un programme de développement fondé sur la science. La loi offre aussi au CRDI l'occasion d'appuyer le programme de recherche et de politiques de la nouvelle ...

  3. Reliance, liance et alliance : opérationnalité des concepts dans l'analyse du climat socio-relationnel de groupes restreints d'apprentissage en ligne

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Quintin


    Full Text Available La recherche que nous présentons ici se donne pour but de mesurer le lien entre le "climat socio-relationnel" d'un groupe restreint engagé dans un travail collaboratif en ligne et la qualité des travaux collectifs produits. La démarche méthodologique adoptée, basée sur une analyse des échanges asynchrones entre les membres d'un groupe, nous permet d'aboutir à un modèle opératoire qui fait état des composantes du "climat socio-relationnel" susceptibles d'expliquer les résultats d'apprentissage obtenus. Deux notions – dérivées du concept sociologique de reliance – seront mobilisées : la liance et l'alliance. La première rend compte de la qualité de la relation (la chaleur, l'intimité, les émotions… qui se crée entre les interlocuteurs au cours de leurs échanges asynchrones. La seconde traduit la manière dont les participants confortent leur contrat d'association en vue de la réalisation du travail commun, afin de répondre aux exigences pédagogiques fixées. Les résultats de cette recherche montrent que, dans notre situation d'étude, le modèle de la reliance explique une part substantielle de la qualité moyenne des produits de l'apprentissage collectif et possède une homogénéité interne non négligeable. Ces éléments concourent à étayer l'assise conceptuelle et le caractère opératoire du modèle présenté.The aim of the research we are presenting here is to measure the link between the "socio-relational climate" of a small group in a collaborative work environment and the quality of the collective work they provide. The methodological approach adopted, based on an analysis of the asynchronous exchanges between members of a group, allows us to find a procedure that takes stock of some components of "socio-relational climate" that could account for the results in terms of learning. Two notions – derivatives of the sociological concept "reliance" – will be called upon: "liance" and "alliance". The

  4. Understanding Climate Variability of Urban Ecosystems Through the Lens of Citizen Science (United States)

    Ripplinger, J.; Jenerette, D.; Wang, J.; Chandler, M.; Ge, C.; Koutzoukis, S.


    The Los Angeles megacity is vulnerable to climate warming - a process that locally exacerbates the urban heat island effect as it intensifies with size and density of the built-up area. We know that large-scale drivers play a role, but in order to understand local-scale climate variation, more research is needed on the biophysical and sociocultural processes driving the urban climate system. In this study, we work with citizen scientists to deploy a high-density network of microsensors across a climate gradient to characterize geographic variation in neighborhood meso- and micro-climates. This research asks: How do urbanization, global climate, and vegetation interact across multiple scales to affect local-scale experiences of temperature? Additionally, citizen scientist-led efforts generated research questions focused on examining microclimatic differences among yard groundcover types (rock mulch vs. lawn vs. artificial turf) and also on variation in temperature related to tree cover. Combining sensor measurements with Weather Research and Forecasting (WRF) spatial models and satellite-based temperature, we estimate spatially-explicit maps of land surface temperature and air temperature to illustrate the substantial difference between surface and air urban heat island intensities and the variable degree of coupling between land surface and air temperature in urban areas. Our results show a strong coupling between air temperature variation and landcover for neighborhoods, with significant detectable signatures from tree cover and impervious surface. Temperature covaried most strongly with urbanization intensity at nighttime during peak summer season, when daily mean air temperature ranged from 12.8C to 30.4C across all groundcover types. The combined effects of neighborhood geography and vegetation determine where and how temperature and tree canopy vary within a city. This citizen science-enabled research shows how large-scale climate drivers and urbanization

  5. Online Matchmaking: It's Not Just for Dating Sites Anymore! Connecting the Climate Voices Science Speakers Network to Educators (United States)

    Wegner, Kristin; Herrin, Sara; Schmidt, Cynthia


    Scientists play an integral role in the development of climate literacy skills - for both teachers and students alike. By partnering with local scientists, teachers can gain valuable insights into the science practices highlighted by the Next Generation Science Standards (NGSS), as well as a deeper understanding of cutting-edge scientific discoveries and local impacts of climate change. For students, connecting to local scientists can provide a relevant connection to climate science and STEM skills. Over the past two years, the Climate Voices Science Speakers Network ( has grown to a robust network of nearly 400 climate science speakers across the United States. Formal and informal educators, K-12 students, and community groups connect with our speakers through our interactive map-based website and invite them to meet through face-to-face and virtual presentations, such as webinars and podcasts. But creating a common language between scientists and educators requires coaching on both sides. In this presentation, we will present the "nitty-gritty" of setting up scientist-educator collaborations, as well as the challenges and opportunities that arise from these partnerships. We will share the impact of these collaborations through case studies, including anecdotal feedback and metrics.

  6. Pairing Essential Climate Science with Sustainable Energy Information: the "EARTH-The Operators' Manual" experiment (United States)

    Akuginow, E.; Alley, R. B.; Haines-Stiles, G.


    Social science research on the effective communication of climate science suggests that today's audiences may be effectively engaged by presenting information about Earth's climate in the context of individual and community actions that can be taken to increase energy efficiency and to reduce carbon emissions. "EARTH-The Operators' Manual" (ETOM) is an informal science education and outreach project supported by NSF, comprising three related components: a 3-part broadcast television mini-series; on-site outreach at 5 major science centers and natural history museums strategically located across the USA; and a website with innovative social networking tools. A companion tradebook, written by series presenter and Penn State glaciologist Richard Alley, is to be published by W. W. Norton in spring 2011. Program 1, THE BURNING QUESTION, shows how throughout human history our need for energy has been met by burning wood, whale oil and fossil fuels, but notes that fossil fuels produce carbon dioxide which inevitably change the composition of Earth's atmosphere. The program uses little known stories (such as US Air Force atmospheric research immediately after WW2, looking at the effect of CO2 levels on heat-seeking missiles, and Abraham Lincoln's role in the founding of the National Academy of Sciences and the Academy's role in solving navigation problems during the Civil War) to offer fresh perspectives on essential but sometimes disputed aspects of climate science: that today's levels of CO2 are unprecedented in the last 400,000 and more years; that human burning of fossil fuel is the scientifically-proven source, and that multiple lines of evidence show Earth is warming. Program 2, TEN WAYS TO KEEP TEN BILLION SMILING, offers a list of appealing strategies (such as "Get Rich and Save the World": Texas & wind energy, and "Do More with Less": how glow worms make cool light without waste heat, suggesting a role for organic LEDs) to motivate positive responses to the

  7. Affordances and Challenges of Using Argument as a Connective Discourse for Scientific Practices to Teach Climate Science (United States)

    Sezen-Barrie, A.; Wolfson, J.


    An important goal of science education is to support development of citizens to participate in public debate and make informed decisions relevant to their lives and their worlds. The NGSS (Next Generation Science Standards) suggest engaging students in science classrooms in argumentation as a practice to help enhance the quality of evidence based decision making. In this multi-case study, we explored the use of written argumentation in eight secondary school science classrooms during a lesson on the relationship between ocean temperature and its CO2 holding capacity. All teachers of these classrooms were trained during a day long NSF funded Climate Literacy Workshop on the basic concepts of climate science, scientific practices and implementation of an activity called "It's a Gassy World". The data of the current study involved students' written arguments, teachers' written reflections on the implementation of the activity as well as field notes from the Climate Literacy Workshop. A qualitative discourse analysis of the data was used to find common themes around affordances and challenges of argument as a connective discourse for scientific practices to teach climate change. The findings show that participating in written argumentation process encouraged students to discuss their experimental design and use data interpretation for their evidences. However, the results also indicated the following challenges: a) teachers themselves need support in connecting their evidence to their claims, b) arguing a socioscientific issue creates a sensitive environment c) conceptual quality of an argument needs to be strengthen through background in courses other than science, and d) graphing skills (or lack of) can interfere with constructing scientifically accurate claims. This study has implications in effectively teaching climate change through argumentation, and thus creating opportunities for practicing authentic climate science research in K-12 classrooms.

  8. Climate

    International Nuclear Information System (INIS)

    Fellous, J.L.


    This book starts with a series of about 20 preconceived ideas about climate and climatic change and analyses each of them in the light of the present day knowledge. Using this approach, it makes a status of the reality of the climatic change, of its causes and of the measures to be implemented to limit its impacts and reduce its most harmful consequences. (J.S.)

  9. Science-based Forest Management in an Era of Climate Change (United States)

    Swanston, C.; Janowiak, M.; Brandt, L.; Butler, P.; Handler, S.; Shannon, D.


    Recognizing the need to provide climate adaptation information, training, and tools to forest managers, the Forest Service joined with partners in 2009 to launch a comprehensive effort called the Climate Change Response Framework ( The Framework provides a structured approach to help managers integrate climate considerations into forest management plans and then implement adaptation actions on the ground. A planning tool, the Adaptation Workbook, is used in conjunction with vulnerability assessments and a diverse "menu" of adaptation approaches to generate site-specific adaptation actions that meet explicit management objectives. Additionally, a training course, designed around the Adaptation Workbook, leads management organizations through this process of designing on-the-ground adaptation tactics for their management projects. The Framework is now being actively pursued in 20 states in the Northwoods, Central Hardwoods, Central Appalachians, Mid-Atlantic, and New England. The Framework community includes over 100 science and management groups, dozens of whom have worked together to complete six ecoregional vulnerability assessments covering nearly 135 million acres. More than 75 forest and urban forest adaptation strategies and approaches were synthesized from peer-reviewed and gray literature, expert solicitation, and on-the-ground adaptation projects. These are being linked through the Adaptation Workbook process to on-the-ground adaptation tactics being planned and employed in more than 50 adaptation "demonstrations". This presentation will touch on the scientific and professional basis of the vulnerability assessments, and showcase efforts where adaptation actions are currently being implemented in forests.

  10. Climate Literacy: Progress in Climate and Global Change Undergraduate Courses in Meteorology and Earth System Science Programs at Jackson State University (United States)

    Reddy, S. R.; Tuluri, F.; Fadavi, M.


    JSU Meteorology Program will be offering AMS Climate Studies undergraduate course under MET 210: Climatology in spring 2013. AMS Climate Studies is offered as a 3 credit hour laboratory course with 2 lectures and 1 lab sessions per week. Although this course places strong intellectual demands upon each student, the instructors' objective is to help each student to pass the course with an adequate understanding of the fundamentals and advanced and advanced courses. AMS Climate Studies is an introductory college-level course developed by the American Meteorological Society for implementation at undergraduate institutions nationwide. The course places students in a dynamic and highly motivational educational environment where they investigate Earth's climate system using real-world environmental data. The AMS Climate Studies course package consists of a textbook, investigations manual, course website, and course management system-compatible files. Instructors can use these resources in combinations that make for an exciting learning experience for their students. This is a content course in Earth Science. It introduces a new concept that views Earth as a synergistic physical system applied concepts of climatology, for him/her to understand basic atmospheric/climate processes, physical and dynamical climatology, regional climatology, past and future climates and statistical analysis using climate data and to be prepared to profit from studying more of interrelated phenomenon governed by complex processes involving the atmosphere, the hydrosphere, the biosphere, and the solid Earth. The course emphasizes that the events that shape the physical, chemical, and biological processes of the Earth do not occur in isolation. Rather, there is a delicate relationship between the events that occur in the ocean, atmosphere, and the solid Earth. The course provides a multidimensional approach in solving scientific issues related to Earth-related sciences,

  11. Earth's Climate: Informing and Invoking Change Through Three Streams of Art and Science (United States)

    Brey, J. A.; Waller, J. L.; DeMuynck, E.; Weglarz, T. C.


    When art and science exhibitions "Layers: Places in Peril" and `small problems, BIG TROUBLE" premiered, gallery visitors were drawn into the show through a series of features including the size, color and dramatic narrative of the paintings and by their own sentiments for the depicted cities, places and topics of each show. Inside the gallery, people read accompanying essays based on the geoscience, physics, biology and chemistry related to each of the depicted subjects. The result: hearts and minds engaged. Since the art and text dialogues were consciously and carefully crafted to have broad appeal to those without formal backgrounds in art and science, and to people of a range of ages, visitors did not feel they were preached to but rather, that they were a part of a conversation. This approach of producing art and science exhibitions for a wide diversity of gallery visitors and students, reaches a different audience than in discipline-specific classrooms or professional conferences and can inspire people to know and take action on a number of issues, including those related to climate change. As long-time educators of Art and Science, we are fully aware of the importance of those emotional connections in learning and we embraced that approach in our first two shows. Working on a third exhibition, we wish to expand on those deep connections for long-reaching reactions from gallery visitors. Entitled "River Bookends: Headwaters, Delta and the Volume of Stories In Between", our focus is on the multi-disciplinary stories of selected world rivers of the past, present and future. Presented concurrently in a gallery and a planetarium and weaving elements of art, science, music, dance, poetry, technology and interactive opportunities that engage memory and initiate problem solving through the exhibition experience, we stress both the art and science of rivers, their complexity, power and vulnerability to factors including climate change. Through these multisensory

  12. EarthLabs Climate Detectives: Using the Science, Data, and Technology of IODP Expedition 341 to Investigate the Earth's Past Climate (United States)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.


    EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of

  13. New institutional mechanisms to bridge the information gap between climate science and public policy decisions (United States)

    Rogers, W.; Gulledge, J. M.


    Many decision makers lack actionable scientific information needed to prepare for future challenges associated with climate change. Although the scope and quality of available scientific information has increased dramatically in recent years, this information does not always reach - or is not presented in a form that is useful to - decision makers who need it. The producer (i.e. scientists) community tends to be stovepiped, even though consumers (i.e. decision makers) often need interdisciplinary science and analysis. Consumers, who may also be stovepiped in various agencies or subject areas, may lack familiarity with or access to these separate communities, as well as the tools or time to navigate scientific information and disciplines. Closing the communication gap between these communities could be facilitated by institutionalizing processes designed for this purpose. We recommend a variety of mainstreaming policies within the consumer community, as well as mechanisms to generate a strong demand signal that will resonate more strongly with the producer community. We also recommend institutional reforms and methods of incentivizing policy-oriented scientific analysis within the producer community. Our recommendations focus on improving information flow to national security and foreign policy decision makers, but many are relevant to public policy writ large. Recommendations for Producers 1. The scientific community should formally encourage collaborations between natural and social scientists and reward publications in interdisciplinary outlets Incentives could include research funding and honorary awards recognizing service to public policy. 2. Academic merit review should reward research grants and publications targeted at interdisciplinary and/or policy-oriented audiences. Reforms of merit review may require new policies and engaged institutional leadership. Recommendations for Consumers 1. Congress should amend Title VI of the National Defense Education Act

  14. Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change - Abstract for decision-makers

    International Nuclear Information System (INIS)

    Stocker, Thomas F.; Qin, Dahe; Plattner, Gian-Kasper; Tignor, Melinda M.B.; Allen, Simon K.; Boschung, Judith; Nauels, Alexander; Xia, Yu; Bex, Vincent; Midgley, Pauline M.; Alexander, Lisa V.; Allen, Simon K.; Bindoff, Nathaniel L.; Breon, Francois-Marie; Church, John A.; Cubasch, Ulrich; Emori, Seita; Forster, Piers; Friedlingstein, Pierre; Gillett, Nathan; Gregory, Jonathan M.; Hartmann, Dennis L.; Jansen, Eystein; Kirtman, Ben; Knutti, Reto; Kumar Kanikicharla, Krishna; Lemke, Peter; Marotzke, Jochem; Masson-Delmotte, Valerie; Meehl, Gerald A.; Mokhov, Igor I.; Piao, Shilong; Plattner, Gian-Kasper; Dahe, Qin; Ramaswamy, Venkatachalam; Randall, David; Rhein, Monika; Rojas, Maisa; Sabine, Christopher; Shindell, Drew; Stocker, Thomas F.; Talley, Lynne D.; Vaughan, David G.; Xie, Shang-Ping; Allen, Myles R.; Boucher, Olivier; Chambers, Don; Hesselbjerg Christensen, Jens; Ciais, Philippe; Clark, Peter U.; Collins, Matthew; Comiso, Josefino C.; Vasconcellos de Menezes, Viviane; Feely, Richard A.; Fichefet, Thierry; Fiore, Arlene M.; Flato, Gregory; Fuglestvedt, Jan; Hegerl, Gabriele; Hezel, Paul J.; Johnson, Gregory C.; Kaser, Georg; Kattsov, Vladimir; Kennedy, John; Klein Tank, Albert M.G.; Le Quere, Corinne; Myhre, Gunnar; Osborn, Timothy; Payne, Antony J.; Perlwitz, Judith; Power, Scott; Prather, Michael; Rintoul, Stephen R.; Rogelj, Joeri; Rusticucci, Matilde; Schulz, Michael; Sedlacek, Jan; Stott, Peter A.; Sutton, Rowan; Thorne, Peter W.; Wuebbles, Donald


    The Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive assessment of the physical science basis of climate change. It builds upon the Working Group I contribution to the IPCC's Fourth Assessment Report in 2007 and incorporates subsequent new findings from the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, as well as from research published in the extensive scientific and technical literature. The assessment considers new evidence of past, present and projected future climate change based on many independent scientific analyses from observations of the climate system, paleo-climate archives, theoretical studies of climate processes and simulations using climate models. During the process of scoping and approving the outline of its Fifth Assessment Report, the IPCC focussed on those aspects of the current understanding of the science of climate change that were judged to be most relevant to policy-makers. In this report, Working Group I has extended coverage of future climate change compared to earlier reports by assessing near-term projections and predictability as well as long-term projections and irreversibility in two separate chapters. Following the decisions made by the Panel during the scoping and outline approval, a set of new scenarios, the Representative Concentration Pathways, are used across all three Working Groups for projections of climate change over the 21. century. The coverage of regional information in the Working Group I report is expanded by specifically assessing climate phenomena such as monsoon systems and their relevance to future climate change in the regions. The Working Group I Report is an assessment, not a review or a text book of climate science, and is based on the published scientific and technical literature available up to 15 March 2013. Underlying all aspects of the report is a

  15. Unquestioned answers or unanswered questions: beliefs about science guide responses to uncertainty in climate change risk communication. (United States)

    Rabinovich, Anna; Morton, Thomas A


    In two experimental studies we investigated the effect of beliefs about the nature and purpose of science (classical vs. Kuhnian models of science) on responses to uncertainty in scientific messages about climate change risk. The results revealed a significant interaction between both measured (Study 1) and manipulated (Study 2) beliefs about science and the level of communicated uncertainty on willingness to act in line with the message. Specifically, messages that communicated high uncertainty were more persuasive for participants who shared an understanding of science as debate than for those who believed that science is a search for absolute truth. In addition, participants who had a concept of science as debate were more motivated by higher (rather than lower) uncertainty in climate change messages. The results suggest that achieving alignment between the general public's beliefs about science and the style of the scientific messages is crucial for successful risk communication in science. Accordingly, rather than uncertainty always undermining the effectiveness of science communication, uncertainty can enhance message effects when it fits the audience's understanding of what science is. © 2012 Society for Risk Analysis.

  16. Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors (United States)

    Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.


    Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.

  17. Strategies for Effective Implementation of Science Models into 6-9 Grade Classrooms on Climate, Weather, and Energy Topics (United States)

    Yarker, M. B.; Stanier, C. O.; Forbes, C.; Park, S.


    As atmospheric scientists, we depend on Numerical Weather Prediction (NWP) models. We use them to predict weather patterns, to understand external forcing on the atmosphere, and as evidence to make claims about atmospheric phenomenon. Therefore, it is important that we adequately prepare atmospheric science students to use computer models. However, the public should also be aware of what models are in order to understand scientific claims about atmospheric issues, such as climate change. Although familiar with weather forecasts on television and the Internet, the general public does not understand the process of using computer models to generate a weather and climate forecasts. As a result, the public often misunderstands claims scientists make about their daily weather as well as the state of climate change. Since computer models are the best method we have to forecast the future of our climate, scientific models and modeling should be a topic covered in K-12 classrooms as part of a comprehensive science curriculum. According to the National Science Education Standards, teachers are encouraged to science models into the classroom as a way to aid in the understanding of the nature of science. However, there is very little description of what constitutes a science model, so the term is often associated with scale models. Therefore, teachers often use drawings or scale representations of physical entities, such as DNA, the solar system, or bacteria. In other words, models used in classrooms are often used as visual representations, but the purpose of science models is often overlooked. The implementation of a model-based curriculum in the science classroom can be an effective way to prepare students to think critically, problem solve, and make informed decisions as a contributing member of society. However, there are few resources available to help teachers implement science models into the science curriculum effectively. Therefore, this research project looks at

  18. Climate (R)evolution?

    CERN Multimedia


    When it comes down to it, what do we really know about climate change? Where does scientific opinion currently stand? At the 12th Wright Science Colloquium at the University of Geneva from 13 to 17 November, five leading experts in the field will shed light on the issue of climate change, which is currently the subject of extensive debate in the media. The purpose of the Wright Science Colloquia, which are held every two years in Geneva, is to bring the most recent progress in science into the public arena. XII Wright Science Colloquium from 13 to 17 November 2006 Uni Dufour, rue du Général-Dufour 24, Geneva Daily lecture at 6.30 pm, Entrance free. Lectures will be given in English or French, with simultaneous interpretation into the other language. On Wednesday, 15 November from 2pm to 4pm in the Salle Soutter of the TSR building, quai Ernest-Ansermet 20, young people aged between 14 and 20 will have the opportunity to meet the scientists of the Wright Science Colloquia and put any questions they wish...

  19. Impacts of the climatic change on the biodiversity and on the carbon cycle in prairies (IMAGINE); Impacts du changement climatique sur la biodiversite et le cycle du carbone en prairie (IMAGINE)

    Energy Technology Data Exchange (ETDEWEB)

    Soussana, J.F


    The Imagine project uses a combination of experimental and modelling techniques to investigate the impacts of climate change on plant communities comprising herbaceous and woody species. We describe our novel experimental approach and present results from two studies carried out in contrasting climates: a mountain site in the Massif Central and a Mediterranean site at Montpellier. We show that above-ground biomass, community leaf traits and grass species phenology in a mountain grassland community respond to elevated temperature (+3.5 C), summer drought and elevated atmospheric CO{sub 2} treatments. We demonstrate that elevated atmospheric CO{sub 2} can mitigate the negative effects of summer drought on above-ground biomass, and may facilitate woody seedling establishment. After one year of study, changes in species composition are limited but there is a trend towards an increased abundance of dicot species under elevated CO{sub 2}. Work on an artificial plant community at Montpellier shows a negative effect of drought on net photosynthesis, transpiration rates and total respiration measured at the community level. We also find a significant increase in leaf decomposition rates in response to elevated temperature. In contrast, net primary productivity, microbial activity and soil respiration rates show no significant effects of climate treatments. (authors)

  20. Society Influencing Science: The role of the Transdisciplinary Advisory Board (TAB) of the European Joint Programming Initiative on Climate. (United States)

    Noone, K. J.; Manderscheid, P.; Monfray, P.


    It is becoming increasingly apparent that the separation between science and the rest of society is not helping us find solutions to "wicked" problems like climate change or achieving the Sustainable Development Goals. It is clear that a broader approach to research is necessary - one that includes stakeholders in the research process itself. What is unclear is how best to do this. The Transdisciplinary Advisory Board (TAB) of the European Joint Programming Initiative on Climate (JPI Climate) is an example of scientists and stakeholders working together to frame climate research and move the results of scientific research into decision support. JPI Climate is a consortium of 12 European countries (with partners from nine more countries) and is a major funding channel and forum for climate research in Europe. The TAB has an equal number of stakeholders and researchers from 10 different European countries, has an even gender balance, and its members have widely differing backgrounds. The TAB provides input and advice to the governing board of JPI Climate, and influences both the strategic planning for this funding initiative as well as specific calls for proposals issued through the consortium. In addition to its advisory role, the TAB explores the transdisciplinary process itself, expanding the boundaries of how stakeholders and science can interact positively. The TAB is a two-way mechanism through which stakeholders can help improve research and science can help improve society. We will give examples of the spectrum of how the TAB provides mutual influence between stakeholders and science - from helping to draft 10-year research strategies to helping advance the uptake of climate research into the private and policy sectors.

  1. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators (United States)

    Weiss, E.; Skene, J.; Tran, L.


    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It

  2. Climate change in the classroom: Reaching out to middle school students through science and math suitcase lessons (United States)

    Jacobo, A. C.; Collay, R.; Harris, R. N.; de Silva, L.


    We have formed a link between the Increasing Diversity in Earth Sciences (IDES) program with the Science and Math Investigative Learning Experiences (SMILE) program, both at Oregon State University. The IDES mission is to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population and the SMILE mission is to provide science and math enrichment for underrepresented and other educationally underserved students in grades 4-12. Traditionally, underserved schools do not have enough time or resources to spend on science and mathematics. Furthermore, numerous budget cuts in many Oregon school districts have negatively impacted math and science cirriculum. To combat this trend we have designed suitcase lessons in climate change that can be carried to a number of classrooms. These lesson plans are scientifically rich and economically attractive. These lessons are designed to engage students in math and science through climate change presentations, group discussions, and hands-on activities. Over the past year we have familiarized ourselves with the academic ability of sixth and seventh graders through in-class observation in Salem Oregon. One of the suit case lessons we developed focuses on climate change by exploring the plight of polar bears in the face of diminishing sea ice. Our presentation will report the results of this activity.

  3. New Climate Science 2006-2009; Ny klimatvetenskap 2006-2009

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, Markku (Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)); Kaellen, Erland (Stockholms Univ., Dept. of Meteorology, Stockholm (Sweden))


    Published scientific research steadily finds new and sometimes unexpected results and aspects that further enhances and deepens our understanding of the climate system. In this report we attempt to summarize climate science results that have appeared in the literature since the publication of the most recent IPCC report (the IPCC Assessment Report 4, AR4, published in 2007). We focus on results that have modified or shed some new light on the conclusions presented in AR4: Greenhouse gas concentrations in the atmosphere continue to increase. Also the rate of increase has accelerated. The globally average temperature over the last year is about 0.1 degrees C lower than the temperature in previous years. The year 2008 is among the ten warmest years since 1850 and the most recent ten year period is warmer than the previous ten year period. The temperature trend is still rising. Previous analyses of observations of sea-level rise have been re-examined. The results suggest that the rate of increase has been higher during 1993-2003 than 1961-2003. It is possible that the rate of increase has decreased somewhat since 2003. The large Arctic warming trend is likely to be linked to the global warming trend. Now a warming is also found for West Antarctica. That warming is related to the global warming trend. Recent studies of land ice sensitivity to atmospheric warming and land ice melting rates suggest that future sea level rise may be higher than the values reported in AR4. The total sea level rise may be around one meter in the coming one hundred years. These estimates are still very uncertain. A significant change of precipitation has been determined from observations. This change is largely consistent with the expected effects of warming. The dramatic reduction in Arctic sea ice cover during the years 2007 and 2008 could be the first observed threshold effect or 'tipping point' in the climate system. A confirmation of this depends on how persistent the sea ice

  4. Contribution of the working group 2 to the fourth evaluation report of the inter government expert group on the climatic change. Evaluation 2007 of the climatic changes: impacts, adaptation and vulnerability; Contribution du Groupe de travail 2 au quatrieme rapport d'evaluation du Groupe d'expert intergouvernemental sur l'evolution du climat. Bilan 2007 des changements climatiques: impacts, adaptation et vulnerabilite

    Energy Technology Data Exchange (ETDEWEB)



    This document exposes the results of the fourth evaluation report of the working group II of the inter government experts group on the climatic change. This evaluation presents the today scientific understanding of the climatic change impacts on the humans and their adaptation ability and vulnerability. It is based on the GIEC evaluations and new knowledge added since the third evaluation report. (A.L.B.)

  5. NASA's Global Change Master Directory: Discover and Access Earth Science Data Sets, Related Data Services, and Climate Diagnostics (United States)

    Aleman, Alicia; Olsen, Lola; Ritz, Scott; Morahan, Michael; Cepero, Laurel; Stevens, Tyler


    NASA's Global Change Master Directory provides the scientific community with the ability to discover, access, and use Earth science data, data-related services, and climate diagnostics worldwide. The GCMD offers descriptions of Earth science data sets using the Directory Interchange Format (DIF) metadata standard; Earth science related data services are described using the Service Entry Resource Format (SERF); and climate visualizations are described using the Climate Diagnostic (CD) standard. The DIF, SERF and CD standards each capture data attributes used to determine whether a data set, service, or climate visualization is relevant to a user's needs. Metadata fields include: title, summary, science keywords, service keywords, data center, data set citation, personnel, instrument, platform, quality, related URL, temporal and spatial coverage, data resolution and distribution information. In addition, nine valuable sets of controlled vocabularies have been developed to assist users in normalizing the search for data descriptions. An update to the GCMD's search functionality is planned to further capitalize on the controlled vocabularies during database queries. By implementing a dynamic keyword "tree", users will have the ability to search for data sets by combining keywords in new ways. This will allow users to conduct more relevant and efficient database searches to support the free exchange and re-use of Earth science data.

  6. Evaluating the effects of ideology on public understanding of climate change science: how to improve communication across ideological divides? (United States)

    Zia, Asim; Todd, Anne Marie


    While ideology can have a strong effect on citizen understanding of science, it is unclear how ideology interacts with other complicating factors, such as college education, which influence citizens' comprehension of information. We focus on public understanding of climate change science and test the hypotheses: [H1] as citizens' ideology shifts from liberal to conservative, concern for global warming decreases; [H2] citizens with college education and higher general science literacy tend to have higher concern for global warming; and [H3] college education does not increase global warming concern for conservative ideologues. We implemented a survey instrument in California's San Francisco Bay Area, and employed regression models to test the effects of ideology and other socio-demographic variables on citizen concern about global warming, terrorism, the economy, health care and poverty. We are able to confirm H1 and H3, but reject H2. Various strategies are discussed to improve the communication of climate change science across ideological divides.

  7. A Framework for Evaluation of Climate Science Professional Development Projects: A NICE NASA Example (United States)

    Comfort, K.; Bleicher, R. E.


    Purpose of Presentation This research presents the overall logic model for the evaluation plan for a three-year NASA-funded project focused on teacher professional development. This session will highlight how we are using data to continually revise the evaluation plan, and we will also share insights about communication between the external evaluator and the PI. Objectives and Research Questions PEL leverages three NASA NICE projects with a high school district, providing professional development for teachers, learning opportunities for students, parental involvement and interaction with NASA scientists. PEL aims to increase Climate Science literacy in high school students, with a focus on Hispanic students, through scientific argumentation using authentic NASA data. Our research will concentrate on investigating the following questions: 1. What do we know about the alternative conceptions students' hold about climate science and what is challenging for students? 2. Are students developing climate science literacy, especially in the difficult concept areas, after PEL implementation? 3. How effective is PEL in nurturing scientific argumentation skills? 4. How effective are the resources we are providing in PEL? 5. Is there evidence that teachers are establishing stronger leadership capacity in their schools? Theoretical Framework for PEL Evaluation The expectancy-value theory of achievement motivation (E-V-C) (Fan, 2011; Wigfield & Eccles, 1994) provides a theoretical foundation for the research. Expectancy is the degree to which a teacher or student has reason to expect that they will be successful in school. Value indicates whether they think that performance at school will be worthwhile to them. Cost is the perceived sacrifices that must be undertaken, or factors that can inhibit a successful performance at school. For students, data from an embedded E-V-C investigation will help articulate how E-V-C factors relate to student interest in science, continuing to

  8. La grammaticalisation du monde.

    Directory of Open Access Journals (Sweden)

    Etienne Pingaud


    Full Text Available Ouvrage atypique par le fond comme par la forme, Le devoir et la grâce rend compte du minutieux travail d’élaboration théorique auquel s’attelle Cyril Lemieux depuis plusieurs années. Et le résultat final se veut pour le moins ambitieux : l’auteur propose un système total supposé dépasser d’un même élan le relativisme, le mentalisme, l’universalisme ethnocentrique, l’historicisme, le naturalisme et l’herméneutisme, tout en réconciliant les sciences sociales avec le ...

  9. Le sacre du printemps

    Directory of Open Access Journals (Sweden)

    Denise Pumain


    Full Text Available Cybergeo aura six ans en avril : dans la réalité du virtuel, dans l'univers récent et fluctuant de la publication en ligne, cela fait de nous, tout à la fois, des pionniers et des vétérans. De façon plus surprenante, il se trouve que nous sommes aussi uniques : parmi toutes les revues électroniques de sciences sociales, aucune ne combine comme Cybergeo ancienneté, publication exclusivement électronique, liberté d'accès au texte intégral, édition et gestion par des chercheurs, et comité de lec...

  10. The Department of the Interior Southeast Climate Science Center synthesis report 2011–15—Projects, products, and science priorities (United States)

    Varela Minder, Elda; Lascurain, Aranzazu R.; McMahon, Gerard


    IntroductionIn 2009, the U.S. Department of the Interior (DOI) Secretary Ken Salazar established a network of eight regional Climate Science Centers (CSCs) that, along with the Landscape Conservation Cooperatives (LCCs), would help define and implement the Department's climate adaptation response. The Southeast Climate Science Center (SE CSC) was established at North Carolina State University (NCSU) in Raleigh, North Carolina, in 2010, under a 5-year cooperative agreement with the U.S. Geological Survey (USGS), to identify and address the regional challenges presented by climate change and variability in the Southeastern United States. All eight regional CSC hosts, including NCSU, were selected through a competitive process.Since its opening, the focus of the SE CSC has been on working with partners in the identification and development of research-based information that can assist managers, including cultural and natural resource managers, in adapting to global change processes, such as climate and land use change, that operate at local to global scales and affect resources important to the DOI mission. The SE CSC was organized to accomplish three goals:Provide co-produced, researched based, actionable science that supports transparent global change adaptation decisions.Convene conversations among decision makers, scientists, and managers to identify key ecosystem adaptation decisions driven by climate and land use change, the values and objectives that will be used to make decisions, and the research-based information needed to assess adaptation options.Build the capacity of natural resource professionals, university faculty, and students to understand and frame natural resource adaptation decisions and develop and use research-based information to make adaptation decisions.This report provides an overview of the SE CSC and the projects developed by the SE CSC since its inception. An important goal of this report is to provide a framework for understanding the

  11. Science du sol et développement agricole au Rwanda : état de la question (synthèse bibliographique

    Directory of Open Access Journals (Sweden)

    Rushemuka, PN.


    Full Text Available Soil science and agricultural development in Rwanda: state of the art. A review. Poor agricultural productivity remains a crucial problem in Rwanda in spite of numerous technological interventions, including aspects of soil management. The objective of this study was to draw lessons from the past with the view to better orient future interventions in soil fertility management. The literature review and iterative field observations were the sources of information. Findings from this study show that substantial progress has been made in the identification of different soil types and their spatial distribution. Factors related to low level of productivity have been identified and sustainable soil fertility management options have been developed at plot level. However, the widespread adoption of these technologies has been problematic. The main reason is the failure to tailor soil fertility management technologies to specific soil types. The study has demonstrated that the soil map of Rwanda (CPR for Carte Pédologique du Rwanda – 1:50,000 – offers a remarkable potential to constitute a tool to solve this problem. In practice however, the CPR remains underutilized, mainly because of its inaccessibility to its potential users (e.g. policy makers, soil fertility experts, agronomists and extensionists. For its effective use, the following is recommended: Rwandan soil scientists need to increase policy makers' awareness about the usefulness of this soil map; agricultural research needs to adapt from the conventional model to a truly participatory and integrated approach; the CPR legend should be elucidated by providing information on the land units in which soils occur and by bridging Soil Taxonomy with the farmers' soil nomenclature; regional soil reference systems should be established that allow linking soil types with the fertility status of arable land and crop yields. This implies the need for training of Rwandan soil scientists in both Soil

  12. Climate Change and Arctic Issues in the Marine and Environmental Science Curriculum at the U.S. Coast Guard Academy (United States)

    Vlietstra, L.; McConnell, M. C.; Bergondo, D. L.; Mrakovcich, K. L.; Futch, V.; Stutzman, B. S.; Fleischmann, C. M.


    As global climate change becomes more evident, demand will likely increase for experts with a detailed understanding of the scientific basis of climate change, the ocean's role in the earth-atmosphere system, and forecasted impacts, especially in Arctic regions where effects may be most pronounced. As a result, programs in marine and environmental sciences are uniquely poised to prepare graduates for the formidable challenges posed by changing climates. Here we present research evaluating the prevalence and themes of courses focusing on anthropogenic climate change in 125 Marine Science and Environmental Science undergraduate programs at 86 institutions in the United States. These results, in addition to the increasing role of the Coast Guard in the Arctic, led to the development of two new courses in the curriculum. Climate Change Science, a one-credit seminar, includes several student-centered activities supporting key learning objectives. Polar Oceanography, a three-credit course, incorporates a major outreach component to Coast Guard units and members of the scientific community. Given the importance of climate change in Arctic regions in particular, we also propose six essential "Arctic Literacy Principles" around which courses or individual lesson plans may be organized. We show how these principles are incorporated into an additional new three-credit course, Model Arctic Council, which prepares students to participate in a week-long simulation exercise of Arctic Council meetings, held in Fairbanks, Alaska. Students examine the history and mission of the Arctic Council and explore some of the issues on which the council has deliberated. Special attention is paid to priorities of the current U.S. chairmanship of the Arctic Council which include climate change impacts on, and stewardship of, the Arctic Ocean.

  13. Scientists and Science Museums: Forging New Collaborations to Interpret the Environment and Engage Public Audiences in Climate Change (United States)

    Miller, M. K.; Bartels, D.; Schwartzenberg, S.; Andrews, M. S.


    The Exploratorium engages Americans on issues of climate change, and energy use and production in a distinctive way; using a multilayered approach emphasizing all of the Exploratorium's strengths, not simply exhibitions. Specifically, the institution gives people access to the latest science research and researchers, provides the inquiry skills and basic science needed to make sense of this research, studies perception and cognition and how we come to believe what we believe, and sets up social communities and spaces for people to test their ideas and understandings with others. Using exhibits, the web and other media, visualization technology, building architecture, physical spaces, classes and professional education the Exploratorium achieves this multilayered approach. This powerful combination enhances people's own ability to make sound, evidence-based decisions for themselves, their families, and their communities. In 2013, the Exploratorium will move from its current home in the Palace of Fine Arts in San Francisco to a waterfront campus with access to the bay and outdoor platforms for instrumentation and observation. This will allow program and exhibit development in the environmental sciences that focuses on natural phenomena and physical and biological systems. Some current and planned Exploratorium projects with an emphasis on global climate change and potential for further development in the new location: 1. An Observatory building, where visitors can investigate Bay waters and climate. 2. Wired Pier, a suite of environmental sensors that will track local conditions over time and connect to larger observing networks regionally and globally 3. NOAA education and climate science partnership, including a scientist-in-residence program for training front-line staff 4. Global Climate Change Research Explorer website enabling visitors to observe current climate data or analyze evidence. 5. The Ice Stories project which trained polar scientists in media

  14. an online sharing platform with best practices and resources on effective climate change communication, climate change exhibits, and sustainability efforts at aquariums, zoos, and science museums (United States)

    Miller, M. K.; MacKenzie, S.


    Many aquariums, zoos, museums, and other informal science education (ISE) centers across the country want to connect their visitors with the important issue of climate change. Communicating climate change and the science it embodies is no easy task though, and ISE institutions are seeking creative and collaborative ways to best interpret the issue with their audiences. Some of these institutions, particularly aquariums and zoos, have live specimens on exhibit that stand to be severely impacted by climate change. Others see it as an educational and moral imperative to address such an important issue affecting the world today, especially one so close to the core mission of their institution. Regardless, informal science educators have noticed that the public is increasingly coming to them with questions related to climate change, and they want to be able to respond as effectively as they can. The Monterey Bay Aquarium is one partner in a coalition of aquariums, zoos, museums and informal science education institutions that are working together to present climate change to its visitors. These institutions hold enormous public trust as sources of sound scientific information. Whether it is through exhibitions like the Aquarium's Hot Pink Flamingos: Stories of Hope in a Changing Sea, interpretive and communication techniques to navigate challenging climate change discussions, or with sustainability planning and operational greening efforts, there is a concerted movement to improve the capacity of these institutions to respond to the issue. Ultimately, their goal is to inspire visitors in a way that positively impacts the country's discourse surrounding climate change, and helps steer our dialog toward a focus on solutions. In addition to the Hot Pink Flamingos exhibit, the Aquarium is also working with the coalition to build a website,, that can serve as an online platform for sharing the experiences of what different partners have learned at

  15. Humboldtian science, Creole meteorology, and the discovery of human-caused climate change in South America. (United States)

    Cushman, Gregory T


    The belief that human land use is capable of causing large-scale climatic change lies at the root of modern conservation thought and policy. The origins and popularization of this belief were deeply politicized. Alexander von Humboldt's treatment of the Lake Valencia basin in Venezuela and the desert coast of Peru as natural laboratories for observing the interaction between geophysical and cultural forces was central to this discovery, as was Humboldt's belief that European colonialism was especially destructive to the land. Humboldt's overt cultivation of disciples was critical to building the prestige of this discovery and popularizing the Humboldtian scientific program, which depended fundamentally on local observers, but willfully marginalized chorographic knowledge systems. In creating new, global forms of environmental understanding, Humboldtian science also generated new forms of ignorance.

  16. Would science serve decision-making to adapt the impact of climate change? Introduction to Climate Change Adaptation – scientific evidence, assessment framework and decision-making

    Directory of Open Access Journals (Sweden)

    Gin-Rong Liu Peiwen Lu


    Full Text Available We live in challenging times with a heightened sense of uncertainty and unpredictability. Climate change, with its impact on disruptive events as well as gradual trends, has been addressed in scientific studies and become increasingly important in policymaking. This rises up a great need on scientific integration and knowledge transformation. The Taiwan Integrated Research Programme on Climate Change Adaptation Technology (TaiCCAT is formed under this concern. Directing by the Ministry of Science and Technology (MOST, it carries a strong intention to explore and to conduct adequate knowledge of climate change and adaptation strategies for decision-making supports. The TaiCCAT highly recommends the approach of cross-disciplinary collaboration from environmental studies to adaptation governance. The result can therefore be more contributive to reflect the complexity of the changing world.

  17. Conceptualizing the Science-Practice Interface: Lessons from a Collaborative Network on the Front-Line of Climate Change

    Directory of Open Access Journals (Sweden)

    Nathan P. Kettle


    Full Text Available The gap between science and practice is widely recognized as a major concern in the production and application of decision-relevant science. This research analyzed the roles and network connections of scientists, service providers, and decision makers engaged in climate science and adaptation practice in Alaska, where rapid climate change is already apparent. Our findings identify key actors as well as significant differences in the level of bonding ties between network members who perceive similarity in their social identities, bridging ties between network members across different social groups, and control of information across roles—all of which inform recommendations for adaptive capacity and the co-production of usable knowledge. We also find that some individuals engage in multiple roles in the network suggesting that conceptualizing science policy interactions with the traditional categories of science producers and consumers oversimplifies how experts engage with climate science, services, and decision making. Our research reinforces the notion that the development and application of knowledge is a networked phenomenon and highlights the importance of centralized individuals capable of playing multiple roles in their networks for effective translation of knowledge into action.

  18. Impacts of climate change on wind energy resources in France: a regionalization study; Impacts du changement climatique sur le potentiel eolien en France: une etude de regionalisation

    Energy Technology Data Exchange (ETDEWEB)

    Najac, J.


    In this work, we study the impact of climate change on surface winds in France and draw conclusions concerning wind energy resources. Because of their coarse spatial resolution, climate models cannot properly reproduce the spatial variability of surface winds. Thus, 2 down-scaling methods are developed in order to regionalize an ensemble of climate scenarios: a statistical method based on weather typing and a statistic-dynamical method that resorts to high resolution mesoscale modelling. By 2050, significant but relatively small changes are depicted with, in particular, a decrease of the wind speed in the southern and an increase in the northern regions of France. The use of other down-scaling methods enables us to study several uncertainty sources: it appears that most of the uncertainty is due to the climate models. (author)

  19. How to Visualize and Communicate Challenges in Climate and Environmental Sciences? (United States)

    Vicari, R.; Schertzer, D. J. M.; Deutsch, J. C.


    The challenges of climate and environmental sciences need a renewed dialogue with a large spectrum of stakeholders, ranging from the general publics to specialists. This requires a better use of sophisticated visualization techniques to both forward the information and to follow the corresponding flow of information. A particular case of interest is the question of resilience to extreme weather events that also relies on increasing awareness of urban communities. This research looks at the development of exploration techniques of unstructured Big Data. Indeed access to information on environmental and climate sciences has hugely increased in terms of variety and quantity, as a consequence of different factors, among others the development of public relations by research institutes and the pervasive role of digital media (Bucchi 2013; Trench 2008). We are left with unthinkable amounts of information from blogs, social networks postings, public speeches, press releases, articles, etc. It is possible now to explore and visualize patterns followed by digital information with the support of automated analysis tools. On the other hand these techniques can provide important insights on how different techniques of visual communication can impact on urban resilience to extreme weather. The selected case studies correspond to several research projects under the umbrella of the Chair "Hydrology for resilient cities" aimed to develop and test new solutions in urban hydrology that will contribute to the resilience of our cities to extreme weather. These research projects - ranging from regional projects (e.g. RadX@IdF), European projects (e.g. Blue Green Dream and RainGain), to worldwide collaborations (e.g. TOMACS) - include awareness raising and capacity building activities aimed to foster cooperation between scientists, professionals, and beneficiaries. This presentation will explore how visualization techniques can be used in the above mentioned projects in order to support

  20. Ensuring coordination and collaboration across climate science entities: toward effective stakeholder engagement for science-informed decisions (United States)

    As one of the newest federal programs to emerge in response to climate change, the U.S. Department of Agriculture (USDA) Climate Hubs were established to assist farmers, ranchers and forest landowners in their adaptation and mitigation efforts under a changing climate. The Hubs’ mission is to delive...

  1. Co-production and modeling landscape change - successes and challenges in developing useful climate science (United States)

    Timm, K.; Reynolds, J.; Littell, J. S.; Murphy, K.; Euskirchen, E. S.; Breen, A. L.; Gray, S. T.; McGuire, A. D.; Rupp, S. T.


    Responding to the impacts of climate change and generating information that helps inform resource management requires exceptional communication and collaboration among researchers, managers, and other stakeholders. However, there is relatively little guidance on how to practically develop, facilitate, and evaluate this process given the highly specific and localized nature of many co-production efforts in terms of information needs, research questions, partners, and associated institutions. The Integrated Ecosystem Model (IEM) for Alaska and Northwest Canada was developed to understand how climate change influences interactions among disturbance (e.g. wildfire, thermokarst), permafrost, hydrology, and vegetation and identify how these changes affect valuable ecosystem services. The IEM was a unique co-production effort in that it was driven by broad management interests (rather than one research question), and because of the landscape-scale outputs, much broader engagement was warranted. Communication between the research team and the broader community of resource managers was facilitated by the Alaska Landscape Conservation Cooperatives and the Alaska Climate Science Center. Team members' reflections on the project confirm the importance of deliberate approaches to collaboration, where everyone has frequent opportunities to discuss goals, assumptions, and presumed outcomes of the project itself, as well a