WorldWideScience

Sample records for sciences biological sciences

  1. American Institute of Biological Sciences

    Science.gov (United States)

    ... Staff Issues AIBS Position Statements Funding for the Biological Sciences Supporting Scientific Collections Advocating for Research Policy ... Public Policy Leadership Award Graduate students in the biological sciences who have demonstrated initiative and leadership in ...

  2. Online citizen science games: Opportunities for the biological sciences.

    Science.gov (United States)

    Curtis, Vickie

    2014-12-01

    Recent developments in digital technologies and the rise of the Internet have created new opportunities for citizen science. One of these has been the development of online citizen science games where complex research problems have been re-imagined as online multiplayer computer games. Some of the most successful examples of these can be found within the biological sciences, for example, Foldit, Phylo and EteRNA. These games offer scientists the opportunity to crowdsource research problems, and to engage with those outside the research community. Games also enable those without a background in science to make a valid contribution to research, and may also offer opportunities for informal science learning.

  3. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  4. Biomolecular Sciences: uniting Biology and Chemistry

    NARCIS (Netherlands)

    Vrieling, Engel

    2017-01-01

    Biomolecular Sciences: uniting Biology and Chemistry www.rug.nl/research/gbb The scientific discoveries in biomolecular sciences have benefitted enormously from technological innovations. At the Groningen Biomolecular Science and Biotechnology Institute (GBB) we now sequence a genome in days,

  5. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  6. International Journal of Biological and Chemical Sciences ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: Advanced Search. Journal Home > International Journal of Biological and Chemical Sciences: Advanced Search. Log in or Register to get access to full text downloads.

  7. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  8. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    Science.gov (United States)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  9. iBiology: communicating the process of science.

    Science.gov (United States)

    Goodwin, Sarah S

    2014-08-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. © 2014 Goodwin. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. International Journal of Biological and Chemical Sciences: Contact

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: Contact. Journal Home > About the Journal > International Journal of Biological and Chemical Sciences: Contact. Log in or Register to get access to full text downloads.

  11. International Journal of Biological and Chemical Sciences: About ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: About this journal. Journal Home > International Journal of Biological and Chemical Sciences: About this journal. Log in or Register to get access to full text downloads.

  12. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  13. Archives: International Journal of Biological and Chemical Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 61 ... Archives: International Journal of Biological and Chemical Sciences. Journal Home > Archives: International Journal of Biological and Chemical Sciences. Log in or Register to get access to full text downloads.

  14. 77 FR 19740 - Biological Sciences Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-02

    ... NATIONAL SCIENCE FOUNDATION Biological Sciences Advisory Committee; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L., 92- 463, as amended), the National Science Foundation announces the following meeting: Name: Biological Sciences Advisory Committee ( 1110). Date and...

  15. Science Curriculum Components Favored by Taiwanese Biology Teachers

    Science.gov (United States)

    Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li

    2005-09-01

    The new 1-9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1-9 curriculum framework are also proposed.

  16. [Applications of synthetic biology in materials science].

    Science.gov (United States)

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  17. Science Ideals and Science Careers in a University Biology Department

    Science.gov (United States)

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  18. Science Academies' Refresher Course in Developmental Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Science Academies' Refresher Course in Developmental Biology. Information and Announcements Volume 20 Issue 8 August 2015 pp 756-756. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies...

  20. 5. Conference cycle. The radiations and the Biological Sciences

    International Nuclear Information System (INIS)

    Balcazar G, M.; Chavez B, A.

    1991-06-01

    Nuclear technologies and their development have influenced many aspects of modern life. Besides used for electricity production nuclear technologies are applied in many other fields, especially in biological sciences. In genetics and molecular biology they enable research resulting in increased food production and better food preservation. Usage in material sciences lead to new varieties of plastics or improved characteristics. Nuclear applications are used in pe troleum industries and in forecasting geothermic power. Radiobiology and radiotherapy enable diagnosis and therapy of several diseases, e.g. cancer. Nuclear technologies also contribute to preserve the environment. They offer methods to analyse as well as decrease the environmental impacts. The 5. conference cyle entitled 'The Radiations and the Biological Sciences' aims to inform students of biological sciences about new nuclear technologies applied in their field of interest

  1. A Comparative Analysis of South African Life Sciences and Biology Textbooks for Inclusion of the Nature of Science

    Science.gov (United States)

    Ramnarain, Umesh; Padayachee, Keshni

    2015-01-01

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology textbooks that were written…

  2. A comparative analysis of South African Life Sciences and Biology ...

    African Journals Online (AJOL)

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology ...

  3. How do the high school biology textbooks introduce the nature of science?

    Science.gov (United States)

    Lee, Young H.

    2007-05-01

    Although helping students to achieve an adequate understanding of the nature of science has been a consistent goal for science education for over half a century, current research reveals that the majority of students and teachers have naive views of the nature of science (Abd-El-khalick & Akerson, 2004; Bianchini & Colburn, 2000). This problem could be attributed not only to the complex nature of science, but also to the way the nature of science is presented to students during instruction. Thus, research must be conducted to examine how the science is taught, especially in science textbooks, which are a major instructional resource for teaching science. The aim of this study was to conduct a content analysis of the first chapter of four high school biology textbooks, which typically discusses "What is science?" and "What is biology?" This research used a content analysis technique to analyze the four high school biology textbooks, using a conceptual framework that has been used often for science textbook analysis. This conceptual framework consists of four themes of the nature of science: (a) science as a body of knowledge, (b) science as a way of thinking, (c) science as a way of investigating, and (d) the interaction of science, technology, and society. For this study, the four-theme-framework was modified to incorporate descriptors from national-level documents, such as Science for All Americans (AAAS, 1990) Benchmarks for Science Literacy (AAAS, 1993) and the National Science Education Standards (NRC, 1996), as well as science education research reports. A scoring procedure was used that resulted in good to excellent intercoder agreement with Cohen's kappa (k) ranging from .63 to .96. The findings show that the patterns of presentation of the four themes of the nature of science in the four high school biology textbooks are similar across the different locations of data, text, figures, and assessments. On the other hand, the pattern of presentation of the four

  4. International Journal of Biological and Chemical Sciences: Editorial ...

    African Journals Online (AJOL)

    The International Journal of Biological and Chemical Sciences (IJBCS) is a journal ... IJBCS publishes original research papers, critical up-to-date and concise ... Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio ...

  5. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  6. Biological science in conservation

    Science.gov (United States)

    David M. Johns

    2000-01-01

    Large-scale wildlands reserve systems offer one of the best hopes for slowing, if not reversing, the loss of biodiversity and wilderness. Establishing such reserves requires both sound biology and effective advocacy. Attempts by The Wildlands Project and its cooperators to meld science and advocacy in the service of conservation is working, but is not without some...

  7. Profile of science process skills of Preservice Biology Teacher in General Biology Course

    Science.gov (United States)

    Susanti, R.; Anwar, Y.; Ermayanti

    2018-04-01

    This study aims to obtain portrayal images of science process skills among preservice biology teacher. This research took place in Sriwijaya University and involved 41 participants. To collect the data, this study used multiple choice test comprising 40 items to measure the mastery of science process skills. The data were then analyzed in descriptive manner. The results showed that communication aspect outperfomed the other skills with that 81%; while the lowest one was identifying variables and predicting (59%). In addition, basic science process skills was 72%; whereas for integrated skills was a bit lower, 67%. In general, the capability of doing science process skills varies among preservice biology teachers.

  8. Epistemological Predictors of Prospective Biology Teachers' Nature of Science Understandings

    Science.gov (United States)

    Köseoglu, Pinar; Köksal, Mustafa Serdar

    2015-01-01

    The purpose of this study was to investigate epistemological predictors of nature of science understandings of 281 prospective biology teachers surveyed using the Epistemological Beliefs Scale Regarding Science and the Nature of Science Scale. The findings on multiple linear regression showed that understandings about definition of science and…

  9. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  10. Basic mathematics for the biological and social sciences

    CERN Document Server

    Marriott, F H C

    2013-01-01

    Basic Mathematics for the Biological and Social Sciences deals with the applications of basic mathematics in the biological and social sciences. Mathematical concepts that are discussed in this book include graphical methods, differentiation, trigonometrical or circular functions, limits and convergence, integration, vectors, and differential equations. The exponential function and related functions are also considered. This monograph is comprised of 11 chapters and begins with an overview of basic algebra, followed by an introduction to infinitesimal calculus, scalar and vector quantities, co

  11. Making evolutionary biology a basic science for medicine

    Science.gov (United States)

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  12. Analytical Chemistry at the Interface Between Materials Science and Biology

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Janese C. [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  13. Opportunities in Biological Sciences; [VGM Career Horizons Series].

    Science.gov (United States)

    Winter, Charles A.

    This book provides job descriptions and discusses career opportunities in various fields of the biological sciences. These fields include: (1) biotechnology, genetics, biomedical engineering, microbiology, mycology, systematic biology, marine and aquatic biology, botany, plant physiology, plant pathology, ecology, and wildlife biology; (2) the…

  14. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  15. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  16. Network science of biological systems at different scales: A review

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present

  17. Saving our science from ourselves: the plight of biological classification

    Directory of Open Access Journals (Sweden)

    Malte C. Ebach

    2011-06-01

    Full Text Available Saving our science from ourselves: the plight of biological classification. Biological classification ( nomenclature, taxonomy, and systematics is being sold short. The desire for new technologies, faster and cheaper taxonomic descriptions, identifications, and revisions is symptomatic of a lack of appreciation and understanding of classification. The problem of gadget-driven science, a lack of best practice and the inability to accept classification as a descriptive and empirical science are discussed. The worst cases scenario is a future in which classifications are purely artificial and uninformative.

  18. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  19. Test of Science Process Skills of Biology Students towards Developing of Learning Exercises

    Directory of Open Access Journals (Sweden)

    Judith S. Rabacal

    2016-11-01

    Full Text Available This is a descriptive study aimed to determine the academic achievement on science process skills of the BS Biology Students of Northern Negros State College of Science and Technology, Philippines with the end view of developing learning exercises which will enhance their academic achievement on basic and integrated science process skills. The data in this study were obtained using a validated questionnaire. Mean was the statistical tool used to determine the academic achievement on the above mentioned science process skills; t-test for independent means was used to determine significant difference on the academic achievement of science process skills of BS Biology students while Pearson Product Moment of Correlation Coefficient was used to determine the significant relationship between basic and integrated science process skills of the BS Biology students. A 0.05 level of significance was used to determine whether the hypothesis set in the study will be rejected or accepted. Findings revealed that the academic achievement on basic and integrated science process skills of the BS Biology students was average. Findings revealed that there are no significant differences on the academic performance of the BS Biology students when grouped according to year level and gender. Findings also revealed that there is a significant difference on the academic achievement between basic and integrated science process skills of the BS Biology students. Findings revealed that there is a significant relationship between academic achievement on the basic and integrated science process skills of the BS Biology students.

  20. The Impact of Agricultural Science Education on Performance in a Biology Course

    Science.gov (United States)

    Ernest, Byron L.

    The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's constructivist theory and Gardner's multiple intelligences theory provided the framework for the study. The quantitative research question examined the relationship between the completion of Fundamentals of Agriculture Science and Business course and student performance in Biology I. Teacher perceptions and experiences regarding the integration of science and agricultural curriculum and traditional science curriculum were examined qualitatively. A sequential explanatory design was employed using 3 years of data collected from 486 high school students and interviews with 10 teachers. Point-biserial correlation and chi square tests revealed statistically significant relationships between whether or not students completed Fundamentals of Agriculture Science and Business and Biology I course performance, as measured by the end of course assessment and the course grade. In the qualitative sequence, typological and inductive data analyses were applied to the interview data, and themes of student impact and teacher experience emerged. Social change implications may be possible through improved science education for students in this program. Agriculture science courses may be used to facilitate learning of complex science concepts, designing teacher collaboration and professional development for teaching science in a relevant context, and resultant improved student performance in science.

  1. A Thai pre-service teacher's understanding of nature of science in biology teaching

    Science.gov (United States)

    Srisawat, Akkarawat; Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This study was conducted on the effect of understanding and instruction of the nature of science of Ms. Wanida, a pre-service student under science education program in biology, Faculty of Education, Khon Kaen University. Wanida was a teaching practicum student majoring in biology at Khon Kaen University Demonstration School (Modindaeng). She was teaching biology for 38 Grade 10 students. Methodology regarded interpretive paradigm. The study aimed to examine 1) Wanida's understanding of the nature of science, 2) Wanida's instruction of the nature of science, 3 students' understanding of the nature of science from Wanida's instruction, and 4) the effects of Wanida's understanding and instruction of the nature of science on students' understanding of the nature of science from Wanida's instruction. Tools of interpretation included teaching observation, a semi-structured interview, open-ended questionnaire, and an observation record form for the instruction of the nature of science. The data obtained was interpreted, encoded, and classified, using the descriptive statistics. The findings indicated that Wanida held good understanding of the nature of science. She could apply the deficient nature of science approach mostly, followed by the implicit nature of science approach. Unfortunately, she could not show her teaching as explicit nature of science. However, her students' the understanding of the nature of science was good.

  2. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, Fred; Bruggeman, Frank; Jonker, Catholijn; Looren de Jong, Huib; Tamminga, Allard; Treur, Jan; Westerhoff, Hans; Wijngaards, Wouter

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an *empirical* turn in the philosophy of mind. Rather than concentrate on *a priori* discussions of inter-level relations between “completed” sciences, a case is made for the actual study of the way

  3. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, F.; Bruggeman, F.; Jonker, C.M.; Looren de Jong, H.; Tamminga, A.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between 'completed' sciences, a case is made for the actual study of the way

  4. Inter-level relations in computer science, biology and psychology

    NARCIS (Netherlands)

    Boogerd, F.C.; Bruggeman, F.J.; Jonker, C.M.; Looren De Jong, H.; Tamminga, A.M.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between "completed" sciences, a case is made for the actual study of the way

  5. Challenges of medical and biological engineering and science

    Energy Technology Data Exchange (ETDEWEB)

    Magjarevic, R [University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb (Croatia)

    2004-07-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science.

  6. Challenges of medical and biological engineering and science

    International Nuclear Information System (INIS)

    Magjarevic, R.

    2004-01-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science

  7. International Journal of Biological and Chemical Sciences ...

    African Journals Online (AJOL)

    The International Journal of Biological and Chemical Sciences (IJBCS) is a journal ... c) Short Communication (maximum: 10 pages, 20 references). d) Case ... Abstract: All articles should be provided with an abstract not exceeding 200 words.

  8. The Relationship in Biology between the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Kremer, Kerstin; Specht, Christiane; Urhahne, Detlef; Mayer, Jürgen

    2014-01-01

    Informed understandings of nature of science and scientific inquiry are generally accepted goals of biology education. This article points out central features of scientific inquiry with relation to biology and the nature of science in general terms and focuses on the relationship of students' inquiry skills in biology and their beliefs on the…

  9. Reproductive science as an essential component of conservation biology.

    Science.gov (United States)

    Holt, William V; Brown, Janine L; Comizzoli, Pierre

    2014-01-01

    In this chapter we argue that reproductive science in its broadest sense has never been more important in terms of its value to conservation biology, which itself is a synthetic and multidisciplinary topic. Over recent years the place of reproductive science in wildlife conservation has developed massively across a wide and integrated range of cutting edge topics. We now have unprecedented insight into the way that environmental change affects basic reproductive functions such as ovulation, sperm production, pregnancy and embryo development through previously unsuspected influences such as epigenetic modulation of the genome. Environmental change in its broadest sense alters the quality of foodstuffs that all animals need for reproductive success, changes the synchrony between breeding seasons and reproductive events, perturbs gonadal and embryo development through the presence of pollutants in the environment and drives species to adapt their behaviour and phenotype. In this book we explore many aspects of reproductive science and present wide ranging and up to date accounts of the scientific and technological advances that are currently enabling reproductive science to support conservation biology.

  10. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    Science.gov (United States)

    Wefer, Stephen H.; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…

  11. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    Science.gov (United States)

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  12. Butterflies & Wild Bees: Biology Teachers' PCK Development through Citizen Science

    Science.gov (United States)

    Scheuch, Martin; Panhuber, Tanja; Winter, Silvia; Kelemen-Finan, Julia; Bardy-Durchhalter, Manfred; Kapelari, Suzanne

    2018-01-01

    Citizen science is a rapidly growing emerging field in science and it is gaining importance in education. Therefore, this study was conducted to document the pedagogical content knowledge (PCK) of biology teachers who participated in a citizen science project involving observation of wild bees and identification of butterflies. In this paper,…

  13. Biological design in science classrooms

    Science.gov (United States)

    Scott, Eugenie C.; Matzke, Nicholas J.

    2007-01-01

    Although evolutionary biology is replete with explanations for complex biological structures, scientists concerned about evolution education have been forced to confront “intelligent design” (ID), which rejects a natural origin for biological complexity. The content of ID is a subset of the claims made by the older “creation science” movement. Both creationist views contend that highly complex biological adaptations and even organisms categorically cannot result from natural causes but require a supernatural creative agent. Historically, ID arose from efforts to produce a form of creationism that would be less vulnerable to legal challenges and that would not overtly rely upon biblical literalism. Scientists do not use ID to explain nature, but because it has support from outside the scientific community, ID is nonetheless contributing substantially to a long-standing assault on the integrity of science education. PMID:17494747

  14. Biological sciences teaching undergraduates’ environmental knowledge: a critical analysis

    Directory of Open Access Journals (Sweden)

    Silvana do Nascimento Silva

    2013-12-01

    Full Text Available Nowadays, environmental issues have been addressed in a way that goes beyond the natural impacts, embracing socio-economic, political and cultural aspects. This paper makes a description of the types of environmental conceptions, giving special emphasis to the interactions that permeate it, and develops an empirical work by analyzing the conceptions about the environmental knowledge of students majoring in a teacher preparation course on biological sciences of a university in the State of Bahia, Brazil. In a qualitative research, data were collected by application of a questionnaire with open questions with answers in text and drawings. The results revealed a predominance of naturalistic conceptions, while socio-environmental conceptions of systemic or socio-metabolic characteristics were not found. These findings lead to the need for the integration of these critical approaches about the environmental issue in Sciences and Biology teachers’ training, emphasizing the interactions between work, nature and society. Finally, some suggestions also emerge for future research, among which to analyze the biological sciences university teachers’ environmental conceptions and an action-research with these investigated undergraduates concerning environmental critical approaches.

  15. New Biological Sciences, Sociology and Education

    Science.gov (United States)

    Youdell, Deborah

    2016-01-01

    Since the Human Genome Project mapped the gene sequence, new biological sciences have been generating a raft of new knowledges about the mechanisms and functions of the molecular body. One area of work that has particular potential to speak to sociology of education, is the emerging field of epigenetics. Epigenetics moves away from the mapped…

  16. Building confidence: an exploration of nurses undertaking a postgraduate biological science course.

    Science.gov (United States)

    Van Wissen, Kim; McBride-Henry, Karen

    2010-01-01

    This study aimed to explore the impact of studying biological science at a postgraduate level and how this impacted on nursing practice. The term biological sciences in this research encompasses elements of physiology, genetics, biochemistry and pathophysiology. A qualitative research study was designed, that involved the dissemination of a pre- and post-course semi-structured questionnaire for a biological science course, as part of a Master of Nursing programme at a New Zealand University, thus exploring the impact of undertaking a postgraduate biological sciences course. The responses were analysed into themes, based on interpretive concepts. The primary themes revealed improvement in confidence as: confidence in communication, confidence in linking nursing theoretical knowledge to practice and confidence in clinical nursing knowledge. This study highlights the need to privilege clinically-derived nursing knowledge, and that confidence in this nursing knowledge and clinical practice can be instilled through employing the model of theory-guided practice.

  17. Qualities of effective secondary science teachers: Perspectives of university biology students

    Science.gov (United States)

    McCall, Madelon J.

    This research was an attempt to hear the student voice concerning secondary science teacher effectiveness and to share that voice with those who impact the educational process. It was a snapshot of university freshmen biology students' opinions of the qualities of effective secondary science teachers based on their high school science experiences. The purpose of this study was to compile a list of effective secondary science teacher qualities as determined through a purposeful sampling of university second semester biology students and determine the role of the secondary science teacher in promoting interest and achievement in science, as well as the teacher's influence on a students' choice of a science career. The research was a mixed methods design using both quantitative and qualitative data obtained through the use of a 24 question electronic survey. There were 125 participants who provided information concerning their high school science teachers. Respondents provided information concerning the qualities of effective secondary science teachers and influences on the students' present career choice. The quantitative data was used to construct a hierarchy of qualities of effective secondary science teachers, divided into personal, professional, and classroom management qualities. The qualitative data was used to examine individual student responses to questions concerning secondary science teacher effectiveness and student career choice. The results of the research indicated that students highly value teachers who are both passionate about the subject taught and passionate about their students. High school science students prefer teachers who teach science in a way that is both interesting and relevant to the student. It was determined that the greatest influence on a secondary student's career choice came from family members and not from teachers. The secondary teacher's role was to recognize the student's interest in the career and provide encouragement

  18. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    Science.gov (United States)

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  19. USSR report: life sciences. Biomedical and behavioral sciences

    International Nuclear Information System (INIS)

    1982-09-01

    Studies in life sciences, biomedical sciences, and behavioral sciences are reported. The following fields of interest were studied: agricultural biology, biochemistry, biotechnology, environment effects, medical demography, medicine, microbiology, physiology, radiation biology, and human factors engineering. For individual titles, see N82-33989 through N82-33994

  20. Science Identity's Influence on Community College Students' Engagement, Persistence, and Performance in Biology

    Science.gov (United States)

    Riccitelli, Melinda

    In the United States (U.S.), student engagement, persistence, and academic performance levels in college science, technology, engineering, and mathematics (STEM) programs have been unsatisfactory over the last decade. Low student engagement, persistence, and academic performance in STEM disciplines have been identified as major obstacles to U.S. economic goals and U.S. science education objectives. The central and salient science identity a college student claims can influence his engagement, persistence, and academic achievement in college science. While science identity studies have been conducted on four-year college populations there is a gap in the literature concerning community college students' science identity and science performance. The purpose of this quantitative correlational study was to examine the relationship between community college students claimed science identities and engagement, persistence, and academic performance. A census sample of 264 community college students enrolled in biology during the summer of 2015 was used to study this relationship. Science identity and engagement levels were calculated using the Science Identity Centrality Scale and the Biology Motivation Questionnaire II, respectively. Persistence and final grade data were collected from institutional and instructor records. Engagement significantly correlated to, r =.534, p = .01, and varied by science identity, p < .001. Percent final grade also varied by science identity (p < .005), but this relationship was weaker (r = .208, p = .01). Results for science identity and engagement and final grade were consistent with the identity literature. Persistence did not vary by science identity in this student sample (chi2 =2.815, p = .421). This result was inconsistent with the literature on science identity and persistence. Quantitative results from this study present a mixed picture of science identity status at the community college level. It is suggested, based on the findings

  1. Biological Evolution and the History of the Earth Are Foundations of Science

    Science.gov (United States)

    2008-01-01

    AGU affirms the central importance of including scientific theories of Earth history and biological evolution in science education. Within the scientific community, the theory of biological evolution is not controversial, nor have ``alternative explanations'' been found. This is why no competing theories are required by the U.S. National Science Education Standards. Explanations of natural phenomena that appeal to the supernatural or are based on religious doctrine-and therefore cannot be tested through scientific inquiry-are not scientific, and have no place in the science classroom.

  2. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  3. From darwin to the census of marine life: marine biology as big science.

    Science.gov (United States)

    Vermeulen, Niki

    2013-01-01

    With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  4. From darwin to the census of marine life: marine biology as big science.

    Directory of Open Access Journals (Sweden)

    Niki Vermeulen

    Full Text Available With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  5. A Bioethics Course for Biology and Science Education Students.

    Science.gov (United States)

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  6. Thai in-service teacher understanding of nature of science in biology teaching: Case of Mali

    Science.gov (United States)

    Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This paper aimed to investigate the existing ideas of nature of science (NOS) teaching in Thailand biology classroom. The study reported the existing ideas of nature of science (NOS) teaching of one biology teacher Mrs. Mali who had been teaching for 6 years at in a school in Khon Kaen city. Methodology regarded interpretive paradigm. Tools of interpretation included 2 months of classroom observation, interviewing, and questionnaire of NOS. The findings revealed Mali held good understanding of the nature of science in the aspect of the use of evidence, the aspect of knowledge inquiry through different observation and deduction, the aspect of creativity and imagination influencing science knowledge inquiry, and the aspect of changeable scientific knowledge. Her biology teaching indicated that she used both the deficient nature of science approach and the implicit nature of science approach. The implicit nature of science approach was applied mostly in 7 periods and only 2 periods were arranged using the deficient nature of science approach. The paper has implication for professional development and pre-service program on NOS teaching in Thailand.

  7. Senior High School Earth Sciences and Marine Sciences.

    Science.gov (United States)

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  8. Gravitational biology and space life sciences: Current status and ...

    Indian Academy of Sciences (India)

    Gravitational and space biology organizations and journals. American Institute of ... of Scientific Unions (now the International Council for. Science). COSPAR ... Greek Aerospace Medical Association & Space Research. (GASMA). Provides ...

  9. Genomic science provides new insights into the biology of forest trees

    Science.gov (United States)

    Andrew Groover

    2015-01-01

    Forest biology is undergoing a fundamental change fostered by the application of genomic science to longstanding questions surrounding the evolution, adaptive traits, development, and environmental interactions of tree species. Genomic science has made major technical leaps in recent years, most notably with the advent of 'next generation sequencing' but...

  10. [Undergraduate and postgraduate studies in the biological sciences in Chile (1985)].

    Science.gov (United States)

    Niemeyer, H

    1986-01-01

    A study group of scientists was convened by the Sociedad de Biología de Chile (Biological Society of Chile) and the Regional Program for Graduate Training in Biological Sciences, PNUD-Unesco, RLA 78/024, to assess undergraduate and graduate studies in life sciences in Chile. The group presented this report at the 28th Annual Meeting of the Society. Discussion centered on the features that should characterize the studies leading to the academic degrees of Licenciado (Licenciate), Magíster (Master) and Doctor (Ph. D) in Sciences, and also on the qualifications that the universities should satisfy in order to grant them. After analyzing the present situation of undergraduate and graduate studies in Biological Sciences in Chilean universities, the group made the following main suggestions: 1. It is recommended that Chilean universities agree on a 4-year plan for the Licenciado degree, without the requirement of a thesis. The importance of providing the students with good laboratory exercises and field experience and with the opportunity to perform short research projects is stressed. In addition, a sound theoretical training on mathematics, physics and chemistry in the education of a modern Biologist is important. Licenciate studies ought to be the basis for professional careers and the universities should offer to the Licenciados free access to their professional schools. 2. It is considered appropriate for Chile and its universities to develop graduate programs in those disciplines that have reached a level of excellence. To accomplish this aim, adequate finance of the universities is necessary to permit them to provide the essential facilities for doing research, and to create a wide system of fellowships for graduate students. Direct government support for research and graduate student fellowships is requested. 3. Research experience of the kind needed for the preparation of a doctoral thesis is recommended as the academic level appropriate for those engaged in

  11. The Relevance of Biological Sciences in the 21st Century | Onyeka ...

    African Journals Online (AJOL)

    Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives ... Biological Sciences, as the name implies, is a group of sciences, rather than a ... knowledge is better assessed by the various problems of modern civilization ... in the improvement of food supply and elimination of hereditary diseases.

  12. An Unprecedented Revolution in Medicinal Chemistry Driven by the Progress of Biological Science.

    Science.gov (United States)

    Chou, Kuo-Chen

    2017-01-01

    The eternal or ultimate goal of medicinal chemistry is to find most effective ways to treat various diseases and extend human beings' life as long as possible. Human being is a biological entity. To realize such an ultimate goal, the inputs or breakthroughs from the advances in biological science are no doubt most important that may even drive medicinal science into a revolution. In this review article, we are to address this from several different angles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).

  14. An Examination of Science High School Students' Motivation towards Learning Biology and Their Attitude towards Biology Lessons

    Science.gov (United States)

    Kisoglu, Mustafa

    2018-01-01

    The purpose of this study is to examine motivation of science high school students towards learning biology and their attitude towards biology lessons. The sample of the study consists of 564 high school students (308 females, 256 males) studying at two science high schools in Aksaray, Turkey. In the study, the relational scanning method, which is…

  15. Excel 2016 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical biological and life science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in biological and life sciences courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Biological and Life Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand biological and life science problems. Practice problems are provided...

  16. Loosening the shackles of scientific disciplines with network science. Reply to comments on "Network science of biological systems at different scales: A review"

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Rupnik, Marjan Slak; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    We would like to thank all the experts for their insightful and very interesting comments that have been submitted in response to our review "Network science of biological systems at different scales" [1]. We are delighted with the number of comments that have been written, and even more so with the positive opinions that these comments communicate to the wider audience [2-9]. Although methods of network science have long proven their value in relevantly addressing various challenges in the biological sciences, such interdisciplinary research often still struggles for funding and recognition at many academic levels.

  17. Impact of Theoretical Chemistry on Chemical and Biological Sciences

    Indian Academy of Sciences (India)

    IAS Admin

    theory as applied to biological systems. ... methods to follow the course of chemical reactions devised by. K Fukui and R .... optimize the structure of organic molecules using classical-em- pirical potential ..... science or engineering dis- ciplines.

  18. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Directory of Open Access Journals (Sweden)

    Kevin S Bonham

    2017-10-01

    Full Text Available While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  19. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Science.gov (United States)

    Bonham, Kevin S; Stefan, Melanie I

    2017-10-01

    While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  20. Science Seeker: A New Model for Teaching Information Literacy to Entry-Level Biology Undergraduates

    Science.gov (United States)

    Petzold, Jacquelyn; Winterman, Brian; Montooth, Kristi

    2010-01-01

    In order to integrate library instruction seamlessly into an introductory biology course, two librarians collaborated with a biology faculty member to create a three-part series of instruction sessions known as the Science Seeker. The Science Seeker taught students about the structure of scientific information by tracing the path that discoveries…

  1. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  2. Student-generated illustrations and written narratives of biological science concepts: The effect on community college life science students' achievement in and attitudes toward science

    Science.gov (United States)

    Harvey, Robert Christopher

    The purpose of this study was to determine the effects of two conceptually based instructional strategies on science achievement and attitudes of community college biological science students. The sample consisted of 277 students enrolled in General Biology 1, Microbiology, and Human Anatomy and Physiology 1. Control students were comprised of intact classes from the 2005 Spring semester; treatment students from the 2005 Fall semester were randomly assigned to one of two groups within each course: written narrative (WN) and illustration (IL). WN students prepared in-class written narratives related to cell theory and metabolism, which were taught in all three courses. IL students prepared in-class illustrations of the same concepts. Control students received traditional lecture/lab during the entire class period and neither wrote in-class descriptions nor prepared in-class illustrations of the targeted concepts. All groups were equivalent on age, gender, ethnicity, GPA, and number of college credits earned and were blinded to the study. All interventions occurred in class and no group received more attention or time to complete assignments. A multivariate analysis of covariance (MANCOVA) via multiple regression was the primary statistical strategy used to test the study's hypotheses. The model was valid and statistically significant. Independent follow-up univariate analyses relative to each dependent measure found that no research factor had a significant effect on attitude, but that course-teacher, group membership, and student academic characteristics had a significant effect (p < .05) on achievement: (1) Biology students scored significantly lower in achievement than A&P students; (2) Microbiology students scored significantly higher in achievement than Biology students; (3) Written Narrative students scored significantly higher in achievement than Control students; and (4) GPA had a significant effect on achievement. In addition, given p < .08: (1

  3. Controversy in Biology Classrooms—Citizen Science Approaches to Evolution and Applications to Climate Change Discussions

    Directory of Open Access Journals (Sweden)

    Rachel A. Yoho

    2015-11-01

    Full Text Available The biological sciences encompass topics considered controversial by the American public, such as evolution and climate change. We believe that the development of climate change education in the biology classroom is better informed by an understanding of the history of the teaching of evolution. A common goal for science educators should be to engender a greater respect for and appreciation of science among students while teaching specific content knowledge. Citizen science has emerged as a viable yet underdeveloped method for engaging students of all ages in key scientific issues that impact society through authentic data-driven scientific research. Where successful, citizen science may open avenues of communication and engagement with the scientific process that would otherwise be more difficult to achieve. Citizen science projects demonstrate versatility in education and the ability to test hypotheses by collecting large amounts of often publishable data. We find a great possibility for science education research in the incorporation of citizen science projects in curriculum, especially with respect to “hot topics” of socioscientific debate based on our review of the findings of other authors.

  4. Does the nature of science influence college students' learning of biological evolution?

    Science.gov (United States)

    Butler, Wilbert, Jr.

    This quasi-experimental, mixed-methods study assessed the influence of the nature of science (NOS) instruction on college students' learning of biological evolution. In this research, conducted in two introductory biology courses, in each course the same instruction was employed, with one important exception: in the experimental section students were involved in an explicit, reflective treatment of the nature of science (Explicit, reflective NOS), in the traditional treatment section, NOS was implicitly addressed (traditional treatment). In both sections, NOS aspects of science addressed included is tentative, empirically based, subjective, inferential, and based on relationship between scientific theories and laws. Students understanding of evolution, acceptance of evolution, and understanding of the nature of science were assessed before, during and after instruction. Data collection entailed qualitative and quantitative methods including Concept Inventory for Natural Selection (CINS), Measure of Acceptance of the Theory of Evolution (MATE) survey, Views of nature of Science (VNOS-B survey), as well as interviews, classroom observations, and journal writing to address understand students' views of science and understanding and acceptance of evolution. The quantitative data were analyzed via inferential statistics and the qualitative data were analyzed using grounded theory. The data analysis allowed for the construction and support for four assertions: Assertion 1: Students engaged in explicit and reflective NOS specific instruction significantly improved their understanding of the nature of science concepts. Alternatively, students engaged in instruction using an implicit approach to the nature of science did not improve their understanding of the nature of science to the same degree. The VNOS-B results indicated that students in the explicit, reflective NOS class showed the better understanding of the NOS after the course than students in the implicit NOS class

  5. [Problems of world outlook and methodology of science integration in biological studies].

    Science.gov (United States)

    Khododova, Iu D

    1981-01-01

    Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.

  6. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  7. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  8. Should We Add History of Science to Provide Nature of Science into Vietnamese Biology Textbook: A Case of Evolution and Genetics Teaching?

    Science.gov (United States)

    Diem, Huynh Thi Thuy; Yuenyong, Chokchai

    2018-01-01

    History of science (HOS) plays a substantial role in the enhancement of rooted understanding in science teaching and learning. HOS of evolution and genetics has not been included in Vietnamese biology textbooks. This study aims to investigate the necessity of introducing evolution and genetics HOS into Vietnamese textbooks. A case study approach…

  9. The impact of an introductory college-level biology class on biology self-efficacy and attitude towards science

    Science.gov (United States)

    Thomas, Megan Elizabeth

    Self-efficacy theory was first introduced in a seminal article by Albert Bandura in 1977 entitled "Self-efficacy: Toward a unifying theory of behavioral change". Since its original introduction, self-efficacy has been a major focus of academic performance, anxiety, career development, and teacher retention research. Self-efficacy can be defined as the belief an individual possesses about their ability to perform a given task. Bandura proposed that self-efficacy should be measured at the highest level of specificity due to the fact that different people are efficacious in different areas. Interested in students' efficacy toward biology, Ebert-May, Baldwin, & Allred (1997) created and validated a survey to measure students' biology self-efficacy. Their survey was modeled after the guidelines for science literacy, and loaded to three sub-factors; methods of biology, generalization to other science courses, and application of the concepts. As self-efficacy theory has been related to effort expenditure and persistence (Bandura, 1977; 1997), one might think it would have some effect on students' attitudes toward the topic at hand. The current research investigated what changes in biology self-efficacy occurred after an introductory biology course with an inquiry based laboratory learning environment. In addition, changes in students' attitudes towards science were explored and how self-efficacy might affect them.

  10. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  11. Sustaining biological welfare for our future through consistent science

    Directory of Open Access Journals (Sweden)

    Shimomura Yoshihiro

    2013-01-01

    Full Text Available Abstract Physiological anthropology presently covers a very broad range of human knowledge and engineering technologies. This study reviews scientific inconsistencies within a variety of areas: sitting posture; negative air ions; oxygen inhalation; alpha brain waves induced by music and ultrasound; 1/f fluctuations; the evaluation of feelings using surface electroencephalography; Kansei; universal design; and anti-stress issues. We found that the inconsistencies within these areas indicate the importance of integrative thinking and the need to maintain the perspective on the biological benefit to humanity. Analytical science divides human physiological functions into discrete details, although individuals comprise a unified collection of whole-body functions. Such disparate considerations contribute to the misunderstanding of physiological functions and the misevaluation of positive and negative values for humankind. Research related to human health will, in future, depend on the concept of maintaining physiological functions based on consistent science and on sustaining human health to maintain biological welfare in future generations.

  12. Analogical reflection as a source for the science of life: Kant and the possibility of the biological sciences.

    Science.gov (United States)

    Nassar, Dalia

    2016-08-01

    In contrast to the previously widespread view that Kant's work was largely in dialogue with the physical sciences, recent scholarship has highlighted Kant's interest in and contributions to the life sciences. Scholars are now investigating the extent to which Kant appealed to and incorporated insights from the life sciences and considering the ways he may have contributed to a new conception of living beings. The scholarship remains, however, divided in its interest: historians of science are concerned with the content of Kant's claims, and the ways in which they may or may not have contributed to the emerging science of life, while historians of philosophy focus on the systematic justifications for Kant's claims, e.g., the methodological and theoretical underpinnings of Kant's statement that living beings are mechanically inexplicable. My aim in this paper is to bring together these two strands of scholarship into dialogue by showing how Kant's methodological concerns (specifically, his notion of reflective judgment) contributed to his conception of living beings and to the ontological concern with life as a distinctive object of study. I argue that although Kant's explicit statement was that biology could not be a science, his implicit and more fundamental claim was that the study of living beings necessitates a distinctive mode of thought, a mode that is essentially analogical. I consider the implications of this view, and argue that it is by developing a new methodology for grasping organized beings that Kant makes his most important contribution to the new science of life. Copyright © 2016. Published by Elsevier Ltd.

  13. The "Next Generation Science Standards" and the Life Sciences

    Science.gov (United States)

    Bybee, Rodger W.

    2013-01-01

    Publication of the "Next Generation Science Standards" will be just short of two decades since publication of the "National Science Education Standards" (NRC 1996). In that time, biology and science education communities have advanced, and the new standards will reflect that progress (NRC 1999, 2007, 2009; Kress and Barrett…

  14. Towards a cyberinfrastructure for the biological sciences: progress, visions and challenges.

    Science.gov (United States)

    Stein, Lincoln D

    2008-09-01

    Biology is an information-driven science. Large-scale data sets from genomics, physiology, population genetics and imaging are driving research at a dizzying rate. Simultaneously, interdisciplinary collaborations among experimental biologists, theorists, statisticians and computer scientists have become the key to making effective use of these data sets. However, too many biologists have trouble accessing and using these electronic data sets and tools effectively. A 'cyberinfrastructure' is a combination of databases, network protocols and computational services that brings people, information and computational tools together to perform science in this information-driven world. This article reviews the components of a biological cyberinfrastructure, discusses current and pending implementations, and notes the many challenges that lie ahead.

  15. Testing a model of science process skills acquisition: An interaction with parents' education, preferred language, gender, science attitude, cognitive development, academic ability, and biology knowledge

    Science.gov (United States)

    Germann, Paul J.

    Path analysis techniques were used to test a hypothesized structural model of direct and indirect causal effects of student variables on science process skills. The model was tested twice using data collected at the beginning and end of the school year from 67 9th- and 10th-grade biology students who lived in a rural Franco-American community in New England. Each student variable was found to have significant effects, accounting for approximately 80% of the variance in science process skills achievement. Academic ability, biology knowledge, and language preference had significant direct effects. There were significant mediated effects by cognitive development, parents' education, and attitude toward science in school. The variables of cognitive development and academic ability had the greatest total effects on science process skills. Implications for practitioners and researchers are discussed.

  16. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  17. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    Science.gov (United States)

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Development of a Biological Science Quantitative Reasoning Exam (BioSQuaRE)

    Science.gov (United States)

    Stanhope, Liz; Ziegler, Laura; Haque, Tabassum; Le, Laura; Vinces, Marcelo; Davis, Gregory K.; Zieffler, Andrew; Brodfuehrer, Peter; Preest, Marion; Belitsky, Jason M.; Umbanhowar, Charles, Jr.; Overvoorde, Paul J.

    2017-01-01

    Multiple reports highlight the increasingly quantitative nature of biological research and the need to innovate means to ensure that students acquire quantitative skills. We present a tool to support such innovation. The Biological Science Quantitative Reasoning Exam (BioSQuaRE) is an assessment instrument designed to measure the quantitative…

  20. The Use of Didactic Resources as a Strategy in Sciences and Biology Teaching

    Directory of Open Access Journals (Sweden)

    Mario Marcos Lopes

    2013-06-01

    Full Text Available The teaching of Science and Biology at school is recent, and has been practiced according to the different educational proposals, that have been developed along the last decades. The LDB (Lei nº 9.394, December, 20, 1996 proposes a pedagogical project that goes beyond the blackboard, chalk and teacher's talk in order to better prepare the students for the challenges of the labor market. Thus, this paper aims at contributing to the discussion on the teaching practice and teaching resources that can help the teaching and learning process, especially in the disciplines of Science and Biology. Based on a qualitative approach, this research aims at contributing to the construction of new knowledge that can be generated from a careful and critical look at the documentary sources. Finally, the great challenge of the educator is to make the teaching of Science and Biology pleasurable and exciting, being able to develop in students the scientific knowledge and the taste for these school subjects.

  1. Gifted and Talented Students' Views about Biology Activities in a Science and Art Center

    Science.gov (United States)

    Özarslan, Murat; Çetin, Gülcan

    2018-01-01

    The aim of the study was to determine gifted and talented students' views about biology activities in a science and art center. The study was conducted with 26 gifted and talented students who studied at a science and art center in southwestern Turkey. Students studied animal and plant genus and species in biology activities. Data were collected…

  2. Sciences & Nature

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... Sciences & Nature, the Scientific Journal edited by the University of ... Subjects covered include agronomy, sciences of the earth, environment, biological, ...

  3. Biological warfare warriors, secrecy and pure science in the Cold War: how to understand dialogue and the classifications of science.

    Science.gov (United States)

    Bud, Robert

    2014-01-01

    This paper uses a case study from the Cold War to reflect on the meaning at the time of the term 'Pure Science'. In 1961, four senior scientists from Britain's biological warfare centre at Porton Down visited Moscow both attending an International Congress and visiting Russian microbiological and biochemical laboratories. The reports of the British scientists in talking about a limited range of topics encountered in the Soviet Union expressed qualities of openness, sociologists of the time associated with pure science. The paper reflects on the discourses of "Pure Science", secrecy and security in the Cold War. Using Bakhtin's approach, I suggest the cordial communication between scientists from opposing sides can be seen in terms of the performance, or speaking, of one language among several at their disposal. Pure science was the language they were allowed to share outside their institutions, and indeed political blocs.

  4. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  5. Reconstruction of biological networks based on life science data integration.

    Science.gov (United States)

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-10-27

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH--an integration toolkit for building life science data warehouses, CardioVINEdb--a information system for biological data in cardiovascular-disease and VANESA--a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  6. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    Science.gov (United States)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  7. Bringing the physical sciences into your cell biology research.

    Science.gov (United States)

    Robinson, Douglas N; Iglesias, Pablo A

    2012-11-01

    Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works together to promote the healthy function of complex living systems. This effort requires an interdisciplinary approach by investigators from both the biological and the physical sciences.

  8. Fort Collins Science Center-Fiscal year 2009 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2010-01-01

    Public land and natural resource managers in the United States are confronted with increasingly complex decisions that have important ramifications for both ecological and human systems. The scientists and technical professionals at the U.S. Geological Survey Fort Collins Science Center?many of whom are at the forefront of their fields?possess a unique blend of ecological, socioeconomic, and technological expertise. Because of this diverse talent, Fort Collins Science Center staff are able to apply a systems approach to investigating complicated ecological problems in a way that helps answer critical management questions. In addition, the Fort Collins Science Center has a long record of working closely with the academic community through cooperative agreements and other collaborations. The Fort Collins Science Center is deeply engaged with other U.S. Geological Survey science centers and partners throughout the Department of the Interior. As a regular practice, we incorporate the expertise of these partners in providing a full complement of ?the right people? to effectively tackle the multifaceted research problems of today's resource-management world. In Fiscal Year 2009, the Fort Collins Science Center's scientific and technical professionals continued research vital to Department of the Interior's science and management needs. Fort Collins Science Center work also supported the science needs of other Federal and State agencies as well as non-government organizations. Specifically, Fort Collins Science Center research and technical assistance focused on client and partner needs and goals in the areas of biological information management and delivery, enterprise information, fisheries and aquatic systems, invasive species, status and trends of biological resources (including human dimensions), terrestrial ecosystems, and wildlife resources. In the process, Fort Collins Science Center science addressed natural-science information needs identified in the U

  9. Russian science readings (chemistry, physics, biology)

    CERN Document Server

    Light, L

    1949-01-01

    Some years' experience in teaching Russian to working scientists who had already acquired the rudiments of the grammar convinced me of the need for a reader of the present type that would smooth the path of those wishing to study Russian scientific literature in the original. Although the subject matter comprises what I have described for convenience as chemistry, physics and biology, it could be read with equal profit by those engaged in any branch of pure or applied science. All the passages are taken from school textbooks, and acknowledgements are due to the authors of the works listed at the foot of the contents page.

  10. 76 FR 72724 - Advisory Committee For Biological Sciences; Notice of Meeting

    Science.gov (United States)

    2011-11-25

    ... Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230. Type of Meeting: Open. Contact Person: Chuck... research that is the basis for the 21st century bio-economy and the undergraduate and graduate biology...

  11. Local Ecological Knowledge and Biological Conservation: Post-normal Science as an Intercultural Field

    Directory of Open Access Journals (Sweden)

    Jorje Ignacio Zalles

    2017-09-01

    Full Text Available From a natural sciences perspective, efforts directed at the conservation of biodiversity are based upon what is known as conservation biology. Given its epistemological assumptions, conservation biology faces obstacles in the incorporation of wisdom originating in local ecological knowledge, that which a local population has gained about the local environment which it is surrounded by and due to its direct contact with this local environment, instead of the result of a product of a positivist scientific inquiry. Post-normal science has emerged in recent decades as an alternative for public management that aims to complement the search for knowledge by means of empirical approaches through the inclusion of understandings based on the everyday experiences and the subjective interpretation of natural phenomena, transcending the compartmentalization associated with scientific traditions born out of modernity. This article discusses the integration of local ecological knowledge and conservation biology from the perspective of post normal science, illustrating different forms of intercultural communication that would make the requisite dialogue of knowledges possible.

  12. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  13. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  14. Scanning probe microscopy in material science and biology

    International Nuclear Information System (INIS)

    Cricenti, A; Colonna, S; Girasole, M; Gori, P; Ronci, F; Longo, G; Dinarelli, S; Luce, M; Rinaldi, M; Ortenzi, M

    2011-01-01

    A review of the activity of scanning probe microscopy at our Institute is presented, going from instrumentation to software development of scanning tunnelling microscopy, atomic force microscopy and scanning near-field optical microscopy (SNOM). Some of the most important experiments in material science and biology performed by our group through the years with these SPM techniques will be presented. Finally, infrared applications by coupling a SNOM with a free electron laser will also be presented.

  15. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    Science.gov (United States)

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  16. Introduction to nonparametric statistics for the biological sciences using R

    CERN Document Server

    MacFarland, Thomas W

    2016-01-01

    This book contains a rich set of tools for nonparametric analyses, and the purpose of this supplemental text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses a...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. IBRAHIM KANI. Articles written in Journal of Chemical Sciences. Volume 128 Issue 4 April 2016 pp 523-536 Regular Articles. Mn(II) complexes with bipyridine, phenanthroline and benzoic acid: Biological and catalase-like activity · Ibrahim Kani Özlem Atlier Kiymet Güven.

  18. Computer Literacy for Life Sciences: Helping the Digital-Era Biology Undergraduates Face Today's Research

    Science.gov (United States)

    Smolinski, Tomasz G.

    2010-01-01

    Computer literacy plays a critical role in today's life sciences research. Without the ability to use computers to efficiently manipulate and analyze large amounts of data resulting from biological experiments and simulations, many of the pressing questions in the life sciences could not be answered. Today's undergraduates, despite the ubiquity of…

  19. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Philippe Bertrand. Articles written in Journal of Chemical Sciences. Volume 121 Issue 4 July 2009 pp 471-479. Biological activities of substituted trichostatic acid derivatives · Cédric Charrier Joëlle Roche Jean-Pierre Gesson Philippe Bertrand · More Details Abstract Fulltext ...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Cédric Charrier. Articles written in Journal of Chemical Sciences. Volume 121 Issue 4 July 2009 pp 471-479. Biological activities of substituted trichostatic acid derivatives · Cédric Charrier Joëlle Roche Jean-Pierre Gesson Philippe Bertrand · More Details Abstract Fulltext ...

  2. Investigation of Pre-Service Science Teachers' Academic Self-Efficacy and Academic Motivation toward Biology

    Science.gov (United States)

    Ates, Hüseyin; Saylan, Asli

    2015-01-01

    The purpose of this research was to examine pre-service science teachers' academic motivation and academic self-efficacy toward biology. The sample consisted of 369 pre-service science teachers who enrolled in the faculty of education of two universities in Turkey. Data were collected through Academic Motivation Scale (AMS) (Glynn & Koballa,…

  3. Biological Sciences for the 21st Century: Meeting the Challenges of Sustainable Development in an Era of Global Change

    Energy Technology Data Exchange (ETDEWEB)

    Joel Cracraft; Richard O' Grady

    2007-05-12

    The symposium was held 10-12 May, 2007 at the Capitol Hilton Hotel in Washington, D. C. The 30 talks explored how some of today's key biological research developments (such as biocomplexity and complex systems analysis, bioinformatics and computational biology, the expansion of molecular and genomics research, and the emergence of other comprehensive or system wide analyses, such as proteomics) contribute to sustainability science. The symposium therefore emphasized the challenges facing agriculture, human health, sustainable energy, and the maintenance of ecosystems and their services, so as to provide a focus and a suite of examples of the enormous potential contributions arising from these new developments in the biological sciences. This symposium was the first to provide a venue for exploring how the ongoing advances in the biological sciences together with new approaches for improving knowledge integration and institutional science capacity address key global challenges to sustainability. The speakers presented new research findings, and identified new approaches and needs in biological research that can be expected to have substantial impacts on sustainability science.

  4. Fort Collins Science Center fiscal year 2010 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2011-01-01

    The scientists and technical professionals at the U.S. Geological Survey (USGS), Fort Collins Science Center (FORT), apply their diverse ecological, socioeconomic, and technological expertise to investigate complicated ecological problems confronting managers of the Nation's biological resources. FORT works closely with U.S. Department of the Interior (DOI) agency scientists, the academic community, other USGS science centers, and many other partners to provide critical information needed to help answer complex natural-resource management questions. In Fiscal Year 2010 (FY10), FORT's scientific and technical professionals conducted ongoing, expanded, and new research vital to the science needs and management goals of DOI, other Federal and State agencies, and nongovernmental organizations in the areas of aquatic systems and fisheries, climate change, data and information integration and management, invasive species, science support, security and technology, status and trends of biological resources (including the socioeconomic aspects), terrestrial and freshwater ecosystems, and wildlife resources, including threatened and endangered species. This report presents selected FORT science accomplishments for FY10 by the specific USGS mission area or science program with which each task is most closely associated, though there is considerable overlap. The report also includes all FORT publications and other products published in FY10, as well as staff accomplishments, appointments, committee assignments, and invited presentations.

  5. Science News of the Year.

    Science.gov (United States)

    Science News, 1983

    1983-01-01

    Highlights important 1983 news stories reported in Science News. Stories are categorized under: anthropology/paleontology; behavior; biology; chemistry; earth sciences; energy; environment; medicine; physics; science and society; space sciences and astronomy; and technology and computers. (JN)

  6. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  7. Science Café Course: An Innovative Means of Improving Communication Skills of Undergraduate Biology Majors

    Directory of Open Access Journals (Sweden)

    Anna Goldina

    2013-12-01

    Full Text Available To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course, called Science Café. In this course undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Cafe course emphasizes development of science communication skills early, at the undergraduate level and empowers students to use their science knowledge in every day interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field.

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Vilas N Mahire. Articles written in Journal of Chemical Sciences. Volume 128 Issue 4 April 2016 pp 671-679 Regular Articles. Silane@TiO2 nanoparticles-driven expeditious synthesis of biologically active benzo[4,5]imidazo[1,2-a]chromeno[4,3-d]pyrimidin-6-one scaffolds: A ...

  9. 5. Conference cycle. The radiations and the Biological Sciences; 5. Ciclo de conferencias. Las radiaciones y las Ciencias Biologicas

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar G, M.; Chavez B, A

    1991-06-15

    Nuclear technologies and their development have influenced many aspects of modern life. Besides used for electricity production nuclear technologies are applied in many other fields, especially in biological sciences. In genetics and molecular biology they enable research resulting in increased food production and better food preservation. Usage in material sciences lead to new varieties of plastics or improved characteristics. Nuclear applications are used in pe troleum industries and in forecasting geothermic power. Radiobiology and radiotherapy enable diagnosis and therapy of several diseases, e.g. cancer. Nuclear technologies also contribute to preserve the environment. They offer methods to analyse as well as decrease the environmental impacts. The 5. conference cyle entitled 'The Radiations and the Biological Sciences' aims to inform students of biological sciences about new nuclear technologies applied in their field of interest.

  10. 5. Conference cycle. The radiations and the Biological Sciences; 5. Ciclo de conferencias. Las radiaciones y las Ciencias Biologicas

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar G, M; Chavez B, A

    1991-06-15

    Nuclear technologies and their development have influenced many aspects of modern life. Besides used for electricity production nuclear technologies are applied in many other fields, especially in biological sciences. In genetics and molecular biology they enable research resulting in increased food production and better food preservation. Usage in material sciences lead to new varieties of plastics or improved characteristics. Nuclear applications are used in pe troleum industries and in forecasting geothermic power. Radiobiology and radiotherapy enable diagnosis and therapy of several diseases, e.g. cancer. Nuclear technologies also contribute to preserve the environment. They offer methods to analyse as well as decrease the environmental impacts. The 5. conference cyle entitled 'The Radiations and the Biological Sciences' aims to inform students of biological sciences about new nuclear technologies applied in their field of interest.

  11. When physics is not "just physics": complexity science invites new measurement frames for exploring the physics of cognitive and biological development.

    Science.gov (United States)

    Kelty-Stephen, Damian; Dixon, James A

    2012-01-01

    The neurobiological sciences have struggled to resolve the physical foundations for biological and cognitive phenomena with a suspicion that biological and cognitive systems, capable of exhibiting and contributing to structure within themselves and through their contexts, are fundamentally distinct or autonomous from purely physical systems. Complexity science offers new physics-based approaches to explaining biological and cognitive phenomena. In response to controversy over whether complexity science might seek to "explain away" biology and cognition as "just physics," we propose that complexity science serves as an application of recent advances in physics to phenomena in biology and cognition without reducing or undermining the integrity of the phenomena to be explained. We highlight that physics is, like the neurobiological sciences, an evolving field and that the threat of reduction is overstated. We propose that distinctions between biological and cognitive systems from physical systems are pretheoretical and thus optional. We review our own work applying insights from post-classical physics regarding turbulence and fractal fluctuations to the problems of developing cognitive structure. Far from hoping to reduce biology and cognition to "nothing but" physics, we present our view that complexity science offers new explanatory frameworks for considering physical foundations of biological and cognitive phenomena.

  12. Ethical and philosophical consideration of the dual-use dilemma in the biological sciences.

    Science.gov (United States)

    Miller, Seumas; Selgelid, Michael J

    2007-12-01

    The dual-use dilemma arises in the context of research in the biological and other sciences as a consequence of the fact that one and the same piece of scientific research sometimes has the potential to be used for bad as well as good purposes. It is an ethical dilemma since it is about promoting good in the context of the potential for also causing harm, e.g., the promotion of health in the context of providing the wherewithal for the killing of innocents. It is an ethical dilemma for the researcher because of the potential actions of others, e.g., malevolent non-researchers who might steal dangerous biological agents, or make use of the original researcher's work. And it is a dilemma for governments concerned with the security of their citizens, as well as their health. In this article we construct a taxonomy of types of "experiments of concern" in the biological sciences, and thereby map the terrain of ethical risk. We then provide a series of analyses of the ethical problems and considerations at issue in the dual-use dilemma, including the impermissibility of certain kinds of research and possible restrictions on dissemination of research results given the risks to health and security. Finally, we explore the main available institutional responses to some of the specific ethical problems posed by the dual-use dilemma in the biological sciences.

  13. The effect of cooperative learning on the attitudes toward science and the achievement of students in a non-science majors' general biology laboratory course at an urban community college

    Science.gov (United States)

    Chung-Schickler, Genevieve C.

    The purpose of this study was to evaluate the effect of cooperative learning strategies on students' attitudes toward science and achievement in BSC 1005L, a non-science majors' general biology laboratory course at an urban community college. Data were gathered on the participants' attitudes toward science and cognitive biology level pre and post treatment in BSC 1005L. Elements of the Learning Together model developed by Johnson and Johnson and the Student Team-Achievement Divisions model created by Slavin were incorporated into the experimental sections of BSC 1005L. Four sections of BSC 1005L participated in this study. Participants were enrolled in the 1998 spring (January) term. Students met weekly in a two hour laboratory session. The treatment was administered to the experimental group over a ten week period. A quasi-experimental pretest-posttest control group design was used. Students in the cooperative learning group (nsb1 = 27) were administered the Test of Science-Related Attitudes (TOSRA) and the cognitive biology test at the same time as the control group (nsb2 = 19) (at the beginning and end of the term). Statistical analyses confirmed that both groups were equivalent regarding ethnicity, gender, college grade point average and number of absences. Independent sample t-tests performed on pretest mean scores indicated no significant differences in the TOSRA scale two or biology knowledge between the cooperative learning group and the control group. The scores of TOSRA scales: one, three, four, five, six, and seven were significantly lower in the cooperative learning group. Independent sample t-tests of the mean score differences did not show any significant differences in posttest attitudes toward science or biology knowledge between the two groups. Paired t-tests did not indicate any significant differences on the TOSRA or biology knowledge within the cooperative learning group. Paired t-tests did show significant differences within the control group

  14. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    Science.gov (United States)

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  15. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  16. A proposal to establish an international network in molecular microbiology and genetic engineering for scientific cooperation and prevention of misuse of biological sciences in the framework of science for peace

    International Nuclear Information System (INIS)

    Becker, Y.

    1998-01-01

    The conference on 'Science and Technology for Construction of Peace' which was organized by the Landau Network Coordination Center and A. Volta Center for Scientific Culture dealt with conversion of military and technological capacities into sustainable civilian application. The ideas regarding the conversion of nuclear warheads into nuclear energy for civilian-use led to the idea that the extension of this trend of thought to molecular biology and genetic engineering, will be a useful contribution to Science for Peace. This idea of developing a Cooperation Network in Molecular Biology and Genetic Engineering that will function parallel to and with the Landau Network Coordination in the 'A. Volta' Center was discussed in the Second International Symposium on Science for Peace, Jerusalem, January 1997. It is the reason for the inclusion of the biological aspects in the deliberations of our Forum. It is hoped that the establishment of an international network in molecular biology and genetic engineering, similar to the Landau Network in physics, will support and achieve the decommissioning of biological weapons. Such a network in microbiology and genetic engineering will contribute to the elimination of biological weapons and to contributions to Science for Peace and to Culture of Peace activities of UNESCO. (author)

  17. Incorporating Earth Science into Other High School Science Classes

    Science.gov (United States)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  18. Science and Biology Assessment in Hong Kong--Progress and Developments

    Science.gov (United States)

    Cheng, May Hung; Cheung, Wing Ming Francis

    2005-01-01

    A paper was published in JBE in 2001 which examined the background of the education reform launched in 2000 in Hong Kong, and reviewed existing practices as well as beliefs in science and biology assessment among secondary teachers in Hong Kong. The direction of the reform was to take the emphasis away from public examinations as the sole…

  19. Self-expression assignment as a teaching approach to enhance the interest of Kuwaiti women in biological sciences.

    Science.gov (United States)

    El-Sabban, Farouk

    2008-06-01

    Stimulating the interest of students in biological sciences necessitates the use of new teaching methods and motivating approaches. The idea of the self-expression assignment (SEA) has evolved from the prevalent environment at the College for Women of Kuwait University (Safat, State of Kuwait), a newly established college where the number of students is low and where students have varied backgrounds and interests and are being instructed biological sciences in English for the first time. This SEA requires each student to choose a topic among a long list of topics and interact with it in any way to produce a finished product without the interference of the course instructor. Students are told that the SEA will be graded based on their commitment, creative thinking, innovation in developing the idea, and finishing up of the chosen assignment. The SEA has been implemented in three introductory courses, namely, Biology, Introduction to Human Nutrition and Food Science, and The Human Body. Many interesting projects resulted from the SEA, and, based on an administered survey, students assessed this assignment very favorably. Students expressed their pleasure of experiencing freedom in choosing their own topics, interacting with such topics, learning more about them, and finishing up their projects. Students appreciated this type of exposure to biological sciences and expressed that such an experience enhanced their interest in such sciences.

  20. Tanzania Journal of Science: Editorial Policies

    African Journals Online (AJOL)

    Tanzania Journal of Science (TJS), is professional, peer reviewed journal, published in ... Optics, Thin films, Zoography, Military sciences, Biological sciences, Biodiversity, ... animal and veterinary sciences, Geology, Agricultural Sciences, Cytology, ... available to the public supports a greater global exchange of knowledge.

  1. Taiwan High School Biology Teachers' Acceptance and Understanding of Evolution and the Nature of Science

    Science.gov (United States)

    Chen, Li-Hua

    2015-01-01

    Evolution is the cornerstone of biological sciences, but anti-evolution teaching has become a global controversy since the introduction of evolutionary ideas into the United States high school science curricula in 1914. It is suggested that teachers' attitude toward and acceptance of the theory of evolution will influence their effect of teaching…

  2. Proceedings of Twentieth Forum for Biological Sciences : The Fifth congress of biotechnology

    International Nuclear Information System (INIS)

    2009-01-01

    This is a book of abstracts of the oral presentations and posters that were presented during Twentieth Forum for Biological Sciences : The fifth congress of biotechnology that was held in Hammamet from 22 to 25 mars 2009

  3. Life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Day, L. (ed.)

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  4. Life sciences

    International Nuclear Information System (INIS)

    Day, L.

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs

  5. Preventing biological weapon development through the governance of life science research.

    Science.gov (United States)

    Epstein, Gerald L

    2012-03-01

    The dual-use dilemma in the life sciences-that illicit applications draw on the same science and technology base as legitimate applications-makes it inherently difficult to control one without inhibiting the other. Since before the September 11 attacks, the science and security communities in the United States have struggled to develop governance processes that can simultaneously minimize the risk of misuse of the life sciences, promote their beneficial applications, and protect the public trust. What has become clear over that time is that while procedural steps can be specified for assessing and managing dual-use risks in the review of research proposals, oversight of ongoing research, and communication of research results, the actions or decisions to be taken at each of these steps to mitigate dual-use risk defy codification. Yet the stakes are too high to do nothing, or to be seen as doing nothing. The U.S. government should therefore adopt an oversight framework largely along the lines recommended by the National Science Advisory Board for Biosecurity almost 5 years ago-one that builds on existing processes, can gain buy-in from the scientific community, and can be implemented at modest cost (both direct and opportunity), while providing assurance that a considered and independent examination of dual-use risks is being applied. Without extraordinary visibility into the actions of those who would misuse biology, it may be impossible to know how well such an oversight system will actually succeed at mitigating misuse. But maintaining the public trust will require a system to be established in which reasonably foreseeable dual-use consequences of life science research are anticipated, evaluated, and addressed.

  6. Making Science Work.

    Science.gov (United States)

    Thomas, Lewis

    1981-01-01

    Presents a viewpoint concerning the impact of recent scientific advances on society. Discusses biological discoveries, space exploration, computer technology, development of new astronomical theories, the behavioral sciences, and basic research. Challenges to keeping science current with technological advancement are also discussed. (DS)

  7. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics.

    Science.gov (United States)

    Wachsmuth, Lucas P; Runyon, Christopher R; Drake, John M; Dolan, Erin L

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students' emotional satisfaction with math. We then compared life science and non-life science majors and found that major had a small to moderate relationship with students' responses. Gender also had a small relationship with students' responses, while students' race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups-students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates' emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors' attitudes toward math. © 2017 L.P. Wachsmuth et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. The Effects of Case-Based Instruction on Undergraduate Biology Students' Understanding of the Nature of Science

    Science.gov (United States)

    Burniston, Amy Lucinda

    Undergraduate science education is currently seeing a dramatic pedagogical push towards teaching the philosophies underpinning science as well as an increase in strategies that employ active learning. Many active learning strategies stem from constructivist ideals and have been shown to affect a student's understanding of how science operates and its impact on society- commonly referred to as the nature of science (NOS). One particular constructivist teaching strategy, case-based instruction (CBI), has been recommended by researchers and science education reformists as an effective instructional strategy for teaching NOS. Furthermore, when coupled with explicit-reflective instruction, CBI has been found to significantly increasing understanding of NOS in elementary and secondary students. However, few studies aimed their research on CBI and NOS towards higher education. Thus, this study uses a quasi-experimental, nonequivalent group design to study the effects of CBI on undergraduate science students understandings of NOS. Undergraduate biology student's understanding of NOS were assessed using the Views of Science Education (VOSE) instrument pre and post CBI intervention in Cellular and Molecular Biology and Human Anatomy and Physiology II. Data analysis indicated statistically significant differences between students NOS scores in experimental versus control sections for both courses, with experimental groups obtaining higher posttest scores. The results of this study indicate that undergraduate male and female students have similarly poor understandings of NOS and the use of historical case based instruction can be used as a means to increase undergraduate understanding of NOS.

  9. Momona Ethiopian Journal of Science: Editorial Policies

    African Journals Online (AJOL)

    Momona Ethiopian Journal of Science (MEJS) is a free access e-journal ... related to Earth Science, Physical Sciences, Chemical Sciences, Biological Sciences and ... materials, information related to conferences and any other relevant topics.

  10. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 2007 Section: Plant Sciences. Grover, Prof. Anil Ph.D. (IARI), FNASc, FNAAS, FNA. Date of birth: 15 August 1958. Specialization: Plant Abiotic Stress Responses, Plant Biotechnology, Molecular Biology and Crop Sciences Address: Professor, Department of Plant Molecular Biology, ...

  11. The Nature of Science and Science Education: A Bibliography

    Science.gov (United States)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  12. Cohort studies in health sciences librarianship.

    Science.gov (United States)

    Eldredge, Jonathan

    2002-10-01

    What are the key characteristics of the cohort study design and its varied applications, and how can this research design be utilized in health sciences librarianship? The health, social, behavioral, biological, library, earth, and management sciences literatures were used as sources. All fields except for health sciences librarianship were scanned topically for either well-known or diverse applications of the cohort design. The health sciences library literature available to the author principally for the years 1990 to 2000, supplemented by papers or posters presented at annual meetings of the Medical Library Association. A narrative review for the health, social, behavioral, biological, earth, and management sciences literatures and a systematic review for health sciences librarianship literature for the years 1990 to 2000, with three exceptions, were conducted. The author conducted principally a manual search of the health sciences librarianship literature for the years 1990 to 2000 as part of this systematic review. The cohort design has been applied to answer a wide array of theoretical or practical research questions in the health, social, behavioral, biological, and management sciences. Health sciences librarianship also offers several major applications of the cohort design. The cohort design has great potential for answering research questions in the field of health sciences librarianship, particularly evidence-based librarianship (EBL), although that potential has not been fully explored.

  13. Multicultural science education in Lesotho high school biology classrooms

    Science.gov (United States)

    Nthathakane, Malefu Christina

    2001-12-01

    This study investigated how Basotho high school biology students responded to a multicultural science education (MCSE) approach. Students' home language---Sesotho---and cultural experiences were integrated into the teaching of a unit on alcohol, tobacco and other drugs (ATOD) abuse. The focus was on students whose cultural background is African and who are English second language users. The study was conducted in three high school biology classrooms in Lesotho where the ATOD unit was taught using MCSE. A fourth biology classroom was observed for comparison purposes. In this classroom the regular biology teacher taught ATOD using typical instructional strategies. The study was framed by the general question: How does a multicultural science education approach affect Basotho high school biology students? More specifically: How does the use of Sesotho (or code-switching between Sesotho and English) and integration of Basotho students' cultural knowledge and experiences with respect to ATOD affect students' learning? In particular how does the approach affect students' participation and academic performance? A qualitative research method was used in this study. Data were drawn from a number of different sources and analyzed inductively. The data sources included field-notes, transcripts of ATOD lessons, research assistant lesson observation notes and interviews, regular biology teachers' interviews and notes from observing a few of their lessons, students' interviews and pre and posttest scripts, and other school documents that recorded students' performance throughout the year. Using the students' home language---Sesotho---was beneficial in that it enabled them to share ideas, communicate better and understand each other, the teacher and the material that was taught. Integrating students' cultural and everyday experiences was beneficial because it enabled students to anchor the new ATOD ideas in what was familiar and helped them find the relevance of the unit by

  14. Seeding science success: Relations of secondary students' science self-concepts and motivation with aspirations and achievement

    Science.gov (United States)

    Chandrasena, Wanasinghe Durayalage

    This research comprises three inter-related synergistic studies. Study 1 aims to develop a psychometrically sound tool to measure secondary students' science self-concepts, motivation, and aspirations in biology, chemistry, earth and environmental methodology to explicate students' and teachers' views, practices, and personal experiences, to identify the barriers to undertaking science for secondary students and to provide rich insights into the relations of secondary students' science self-concepts and motivation with their aspirations and achievement. Study 3 will detect additional issues that may not necessarily be identifiable from the quantitative findings of Study 2. The psychometric properties of the newly developed instrument demonstrated that students' science self-concepts were domain specific, while science motivation and science aspirations were not. Students' self-concepts in general science, chemistry, and physics were stronger for males than females. Students' self-concepts in general science and biology became stronger for students in higher years of secondary schooling. Students' science motivation did not vary across gender and year levels. Though students' science aspirations did not vary across gender, they became stronger with age. In general, students' science self-concepts and science motivation were positively related to science aspirations and science achievement. Specifically, students' year level, biology self-concept, and physics self concept predicted their science and career aspirations. Biology self-concept predicted teacher ratings of students' achievement, and students' general science self-concepts predicted their achievement according to students' ratings. Students' year level and intrinsic motivation in science were predictors of their science aspirations, and intrinsic motivation was a greater significant predictor of students' achievement, according to student ratings. Based upon students' and teachers' perceptions, the

  15. Ife Journal of Science

    African Journals Online (AJOL)

    Ife Journal of Science (IJS) aims to publish articles resulting from original research in the broad areas of chemical, biological, mathematical and physical sciences. ... Review articles on research topics and books are also welcome.

  16. Popper, laws, and the exclusion of biology from genuine science.

    Science.gov (United States)

    Stamos, David N

    2007-01-01

    The primary purpose of this paper is to argue that biologists should stop citing Karl Popper on what a genuinely scientific theory is. Various ways in which biologists cite Popper on this matter are surveyed, including the use of Popper to settle debates on methodology in phylogenetic systematics. It is then argued that the received view on Popper--namely, that a genuinely scientific theory is an empirically falsifiable one--is seriously mistaken, that Popper's real view was that genuinely scientific theories have the form of statements of laws of nature. It is then argued that biology arguably has no genuine laws of its own. In place of Popperian falsifiability, it is suggested that a cluster class epistemic values approach (which subsumes empirical falsifiability) is the best solution to the demarcation problem between genuine science and pseudo- or non-science.

  17. Learning Achievement Packages in Sciences-Biology: Cell Theory, Mitosis, Magnification, Wounds.

    Science.gov (United States)

    Solis, Juan D.

    This publication presents four science curriculum units designed to meet the learning problems of students with special language handicaps. The materials are written in both English and Spanish, and deal with topics in biology suitable for students in grades 7 through 11. All four units were classroom tested during 1970-1972 in the Calexico…

  18. Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context

    Science.gov (United States)

    Crouch, Catherine

    2014-03-01

    Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of

  19. Information Science: Science or Social Science?

    OpenAIRE

    Sreeramana Aithal; Paul P.K.,; Bhuimali A.

    2017-01-01

    Collection, selection, processing, management, and dissemination of information are the main and ultimate role of Information Science and similar studies such as Information Studies, Information Management, Library Science, and Communication Science and so on. However, Information Science deals with some different characteristics than these subjects. Information Science is most interdisciplinary Science combines with so many knowledge clusters and domains. Information Science is a broad disci...

  20. Ghana Science Abstracts

    International Nuclear Information System (INIS)

    Entsua-Mensah, C.

    2004-01-01

    This issue of the Ghana Science Abstracts combines in one publication all the country's bibliographic output in science and technology. The objective is to provide a quick reference source to facilitate the work of information professionals, research scientists, lecturers and policy makers. It is meant to give users an idea of the depth and scope and results of the studies and projects carried out. The scope and coverage comprise research outputs, conference proceedings and periodical articles published in Ghana. It does not capture those that were published outside Ghana. Abstracts reported have been grouped under the following subject areas: Agriculture, Biochemistry, Biodiversity conservation, biological sciences, biotechnology, chemistry, dentistry, engineering, environmental management, forestry, information management, mathematics, medicine, physics, nuclear science, pharmacy, renewable energy and science education

  1. Global Journal of Pure and Applied Sciences

    African Journals Online (AJOL)

    Global Journal of Pure and Applied Sciences is a multi-disciplinary specialist journal ... research in Biological Science, Agricultural Sciences, Chemical Sciences, ... Comparative study of the physicochemical and bacteriological qualities of ...

  2. Forensic Science--A Proposal

    Science.gov (United States)

    Geesaman, Donald P.; Abrahamson, Dean E.

    1973-01-01

    Forensic science is an approach to study desirability of specific technologies in the context of value objectives and biological imperatives of society. Such groups should be formed with people from various physical and social sciences. (PS)

  3. The Use of Ethical Frameworks for Implementing Science as a Human Endeavour in Year 10 Biology

    Science.gov (United States)

    Yap, Siew Fong; Dawson, Vaille

    2014-01-01

    This research focuses on the use of ethical frameworks as a pedagogical model for socio-scientific education in implementing the "Science as a Human Endeavour" (SHE) strand of the Australian Curriculum: Science in a Year 10 biology class in a Christian college in metropolitan Perth, Western Australia. Using a case study approach, a mixed…

  4. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    Science.gov (United States)

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge

  5. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  6. Relevant Features of Science: Values in Conservation Biology

    Science.gov (United States)

    van Dijk, Esther M.

    2013-01-01

    The development of an understanding of the nature of science is generally assumed to be an important aspect of science communication with respect to the enhancement of scientific literacy. At present, a general characterization of the nature of science is still lacking and probably such a characterization will not be achievable. The overall aim of…

  7. Citizen science can improve conservation science, natural resource management, and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abe J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Cook-Patton, Susan; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2017-01-01

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths by which citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that:Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement.Many types of projects can benefit from citizen science, but one must be careful to match the needs for science and public involvement with the right type of citizen science project and the right method of public participation.Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers. When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems.

  8. Biological mechanisms beyond network analysis via mathematical modeling. Comment on "Network science of biological systems at different scales: A review" by Marko Gosak et al.

    Science.gov (United States)

    Pedersen, Morten Gram

    2018-03-01

    Methods from network theory are increasingly used in research spanning from engineering and computer science to psychology and the social sciences. In this issue, Gosak et al. [1] provide a thorough review of network science applications to biological systems ranging from the subcellular world via neuroscience to ecosystems, with special attention to the insulin-secreting beta-cells in pancreatic islets.

  9. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  10. The Human Genome Project: big science transforms biology and medicine

    OpenAIRE

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and a...

  11. Maximising Students' Progress and Engagement in Science through the Use of the Biological Sciences Curriculum Study (BSCS) 5E Instructional Model

    Science.gov (United States)

    Hoskins, Peter

    2013-01-01

    The Biological Sciences Curriculum Studies (BSCS) 5E Instructional Model (often referred to as the 5Es) consists of five phases. Each phase has a specific function and contributes both to teachers' coherent instruction and to students' formulation of a better understanding of scientific knowledge, attitudes and skills. Evidence indicates that the…

  12. Life at the Common Denominator: Mechanistic and Quantitative Biology for the Earth and Space Sciences

    Science.gov (United States)

    Hoehler, Tori M.

    2010-01-01

    The remarkable challenges and possibilities of the coming few decades will compel the biogeochemical and astrobiological sciences to characterize the interactions between biology and its environment in a fundamental, mechanistic, and quantitative fashion. The clear need for integrative and scalable biology-environment models is exemplified in the Earth sciences by the challenge of effectively addressing anthropogenic global change, and in the space sciences by the challenge of mounting a well-constrained yet sufficiently adaptive and inclusive search for life beyond Earth. Our understanding of the life-planet interaction is still, however, largely empirical. A variety of approaches seek to move from empirical to mechanistic descriptions. One approach focuses on the relationship between biology and energy, which is at once universal (all life requires energy), unique (life manages energy flow in a fashion not seen in abiotic systems), and amenable to characterization and quantification in thermodynamic terms. Simultaneously, a focus on energy flow addresses a critical point of interface between life and its geological, chemical, and physical environment. Characterizing and quantifying this relationship for life on Earth will support the development of integrative and predictive models for biology-environment dynamics. Understanding this relationship at its most fundamental level holds potential for developing concepts of habitability and biosignatures that can optimize astrobiological exploration strategies and are extensible to all life.

  13. History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science

    Science.gov (United States)

    Kim, Sun Young; Irving, Karen E.

    2010-01-01

    This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in…

  14. Beyond Evolution: Addressing Broad Interactions Between Science and Religion in Science Teacher Education

    Science.gov (United States)

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-03-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion interactions so that they may better assist pre- and in-service science teachers with addressing topics such as the age and origins of the universe and biological evolution in an appropriate manner. We first introduce some foundational scholarship into the historical interactions between science and religion as well as current efforts to maintain healthy dialogue between perspectives that are frequently characterized as innately in conflict with or mutually exclusive of one another. Given that biological evolution is the dominant science-religion issue of our day, in particular in the USA, we next summarize the origins and strategies of anti-evolution movements via the rise and persistence of Christian Fundamentalism. We then summarize survey and qualitative sociological research indicating disparities between academic scientists and the general public with regard to religious beliefs to help us further understand our students' worldviews and the challenges they often face in campus-to-classroom transitions. We conclude the essay by providing resources and practical suggestions, including legal considerations, to assist science teacher educators with their curriculum and outreach.

  15. Is Reintroduction Biology an Effective Applied Science?

    Science.gov (United States)

    Taylor, Gemma; Canessa, Stefano; Clarke, Rohan H; Ingwersen, Dean; Armstrong, Doug P; Seddon, Philip J; Ewen, John G

    2017-11-01

    Reintroduction biology is a field of scientific research that aims to inform translocations of endangered species. We review two decades of published literature to evaluate whether reintroduction science is evolving in its decision-support role, as called for by advocates of evidence-based conservation. Reintroduction research increasingly addresses a priori hypotheses, but remains largely focused on short-term population establishment. Similarly, studies that directly assist decisions by explicitly comparing alternative management actions remain a minority. A small set of case studies demonstrate full integration of research in the reintroduction decision process. We encourage the use of tools that embed research in decision-making, particularly the explicit consideration of multiple management alternatives because this is the crux of any management decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modelling, abstraction, and computation in systems biology: A view from computer science.

    Science.gov (United States)

    Melham, Tom

    2013-04-01

    Systems biology is centrally engaged with computational modelling across multiple scales and at many levels of abstraction. Formal modelling, precise and formalised abstraction relationships, and computation also lie at the heart of computer science--and over the past decade a growing number of computer scientists have been bringing their discipline's core intellectual and computational tools to bear on biology in fascinating new ways. This paper explores some of the apparent points of contact between the two fields, in the context of a multi-disciplinary discussion on conceptual foundations of systems biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Science packages

    Science.gov (United States)

    1997-01-01

    Primary science teachers in Scotland have a new updating method at their disposal with the launch of a package of CDi (Compact Discs Interactive) materials developed by the BBC and the Scottish Office. These were a response to the claim that many primary teachers felt they had been inadequately trained in science and lacked the confidence to teach it properly. Consequently they felt the need for more in-service training to equip them with the personal understanding required. The pack contains five disks and a printed user's guide divided up as follows: disk 1 Investigations; disk 2 Developing understanding; disks 3,4,5 Primary Science staff development videos. It was produced by the Scottish Interactive Technology Centre (Moray House Institute) and is available from BBC Education at £149.99 including VAT. Free Internet distribution of science education materials has also begun as part of the Global Schoolhouse (GSH) scheme. The US National Science Teachers' Association (NSTA) and Microsoft Corporation are making available field-tested comprehensive curriculum material including 'Micro-units' on more than 80 topics in biology, chemistry, earth and space science and physics. The latter are the work of the Scope, Sequence and Coordination of High School Science project, which can be found at http://www.gsh.org/NSTA_SSandC/. More information on NSTA can be obtained from its Web site at http://www.nsta.org.

  18. Demystifying computer science for molecular ecologists.

    Science.gov (United States)

    Belcaid, Mahdi; Toonen, Robert J

    2015-06-01

    In this age of data-driven science and high-throughput biology, computational thinking is becoming an increasingly important skill for tackling both new and long-standing biological questions. However, despite its obvious importance and conspicuous integration into many areas of biology, computer science is still viewed as an obscure field that has, thus far, permeated into only a few of the biology curricula across the nation. A national survey has shown that lack of computational literacy in environmental sciences is the norm rather than the exception [Valle & Berdanier (2012) Bulletin of the Ecological Society of America, 93, 373-389]. In this article, we seek to introduce a few important concepts in computer science with the aim of providing a context-specific introduction aimed at research biologists. Our goal was to help biologists understand some of the most important mainstream computational concepts to better appreciate bioinformatics methods and trade-offs that are not obvious to the uninitiated. © 2015 John Wiley & Sons Ltd.

  19. Science Curriculum Guide, Level 4.

    Science.gov (United States)

    Newark School District, DE.

    The fourth of four levels in a K-12 science curriculum is outlined. In Level 4 (grades 9-12), science areas include earth science, biology, chemistry, and physics. Six major themes provide the basis for study in all levels (K-12). These are: Change, Continuity, Diversity, Interaction, Limitation, and Organization. In Level 4, all six themes are…

  20. DATABASES DEVELOPED IN INDIA FOR BIOLOGICAL SCIENCES

    Directory of Open Access Journals (Sweden)

    Gitanjali Yadav

    2017-09-01

    databases have also helped in development of novel data mining methods, prediction strategies and data driven application software or web servers. In this article, we give an overview of biological databases developed in India and their impact on data driven research in biology. We also provide some suggestions for planning training programs in biological data science for making transitions to big data revolution in biology by combining advanced techniques like Deep Learning with biological big data.

  1. Conceptions of the Nature of Science Held by Undergraduate Pre-Service Biology Teachers in South-West Nigeria

    Science.gov (United States)

    Adedoyin, A. O.; Bello, G.

    2017-01-01

    This study investigated the conceptions of the nature of science held by pre-service undergraduate biology teachers in South-West, Nigeria. Specifically, the study examined the influence of their gender on their conceptions of the nature of science. The study was a descriptive research of the survey method. The population for the study comprised…

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ZnFe2O4 nanoparticles were prepared by a simple low-temperature ... Department of Biological Sciences, Covenant University, PMB 1023, Ota, Nigeria; Department of Petroleum Engineering, Covenant University, PMB 1023, Ota, Nigeria ...

  3. Influencing attitudes toward science through field experiences in biology

    Science.gov (United States)

    Carpenter, Deborah Mcintyre

    The purpose of this study was to determine how student attitudes toward science are influenced by field experiences in undergraduate biology courses. The study was conducted using two institutions of higher education including a 2-year lower-level and a 2-year upper-level institution. Data were collected through interviews with student participants, focus group discussions, students' journal entries, and field notes recorded by the researcher during the field activities. Photographs and video recordings were also used as documentation sources. Data were collected over a period of 34 weeks. Themes that emerged from the qualitative data included students' beliefs that field experiences (a) positively influence student motivation to learn, (b) increase student ability to learn the concepts being taught, and (c) provide opportunities for building relationships and for personal growth. The findings of the study reinforce the importance of offering field-study programs at the undergraduate level to allow undergraduate students the opportunity to experience science activities in a field setting. The research study was framed by the behavioral and developmental theories of attitude and experience including the Theory of Planned Behavior (Ajzen, 1991) and the Theory of Experiential Learning (Kolb, 1984).

  4. Science for Survival: The Modern Synthesis of Evolution and The Biological Sciences Curriculum Study

    Science.gov (United States)

    Green, Lisa Anne

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called "the modern synthesis of evolution." Building primarily on the work of historians Vassiliki Smocovitis and John L. Rudolph, I used the archival papers and published writings of the four architects of the modern synthesis and the four most influential leaders of the BSCS in regards to evolution to investigate how the modern synthetic theory of evolution shaped the BSCS curriculum. The central question was "Why was evolution so important to the BSCS to make it the central theme of the texts?" Important answers to this question had already been offered in the historiography, but it was still not clear why every citizen in the world needed to understand evolution. I found that the emphasis on natural selection in the modern synthesis shifted the focus away from humans as passive participants to the recognition that humans are active agents in their own cultural and biological evolution. This required re-education of the world citizenry, which was accomplished in part by the BSCS textbooks. I also found that BSCS leaders Grobman, Glass, and Muller had serious concerns regarding the effects of nuclear radiation on the human gene pool, and were actively involved in informing th public. Lastly, I found that concerns of 1950s reform eugenicists were addressed in the BSCS textbooks, without mentioning eugenics by name. I suggest that the leaders of the BSCS, especially Bentley Glass and Hermann J. Muller, thought that students needed to understand genetics and evolution to be able to make some of the tough choices they might be called on to make as the dominant species on earth and the next reproductive generation in the nuclear age. This

  5. Introductory physics in biological context: An approach to improve introductory physics for life science students

    Science.gov (United States)

    Crouch, Catherine H.; Heller, Kenneth

    2014-05-01

    We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.

  6. Mentoring Women in the Biological Sciences: Is Informatics Leading ...

    Indian Academy of Sciences (India)

    Yet mathematics, science, and high technology—the building blocks of informatics—are not typically consid- ... rior scientific skills but also highly ana- lytic modeling and computer science skills? The answer is twofold: ... Training, and Mentoring of Science. Communities.” Pennington, the pri- mary investigator for this project, ...

  7. Impact of Science Tutoring on African Americans' Science Scores on the High School Students' Graduation Examination

    Science.gov (United States)

    Davis, Edward

    This study investigated the relationship between an after-school tutorial program for African American high school students at a Title I school and scores on the science portion of the High School Graduation Examination (HSGE). Passing the examination was required for graduation. The target high school is 99% African American and the passing rate of the target high school was 42%---lower than the state average of 76%. The purpose of the study was to identify (a) the relationship between a science tutorial program and scores on the science portion of the HSGE, (b) the predictors of tutoring need by analyzing the relationship between biology grades and scores on the science portion of the HSGE, and (c) the findings between biology grades and scores on the science portion of the HSGE by analyzing the relationship between tutorial attendance and HSGE scores. The study was based on Piaget's cognitive constructivism, which implied the potential benefits of tutorials on high-stakes testing. This study used a 1-group pretest-posttest, quantitative methodology. Results showed a significant relationship between tutoring and scores on the biology portion of the HSGE. Results found no significant relationship between the tutorial attendance and the scores on the biology portion of the HSGE or between the biology grades and scores on the biology portion of the HSGE before tutoring. It has implications for positive social change by providing educational stakeholders with empirically-based guidance in determining the potential benefit of tutorial intervention strategies on high school graduation examination scores.

  8. Understanding science teaching effectiveness: examining how science-specific and generic instructional practices relate to student achievement in secondary science classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-12-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student achievement can provide teachers with beneficial information about how to best engage their students in meaningful science learning. To address this need, this study examined the instructional practices that 99 secondary biology teachers used in their classrooms and employed regression to determine which instructional practices are predictive of students' science achievement. Results revealed that the secondary science teachers who had well-managed classroom environments and who provided opportunities for their students to engage in student-directed investigation-related experiences were more likely to have increased student outcomes, as determined by teachers' value-added measures. These findings suggest that attending to both generic and subject-specific aspects of science teachers' instructional practice is important for understanding the underlying mechanisms that result in more effective science instruction in secondary classrooms. Implications about the use of these observational measures within teacher evaluation systems are discussed.

  9. Calculus, Biology and Medicine: A Case Study in Quantitative Literacy for Science Students

    Directory of Open Access Journals (Sweden)

    Kim Rheinlander

    2011-01-01

    Full Text Available This paper describes a course designed to enhance the numeracy of biology and pre-medical students. The course introduces students with the background of one semester of calculus to systems of nonlinear ordinary differential equations as they appear in the mathematical biology literature. Evaluation of the course showed increased enjoyment and confidence in doing mathematics, and an increased appreciation of the utility of mathematics to science. Students who complete this course are better able to read the research literature in mathematical biology and carry out research problems of their own.

  10. Combining Art and Science in "Arts and Sciences" Education

    Science.gov (United States)

    Needle, Andrew; Corbo, Christopher; Wong, Denise; Greenfeder, Gary; Raths, Linda; Fulop, Zoltan

    2007-01-01

    Two of this article's authors--an art professor and a biology professor--shared a project for advanced biology, art, nursing, and computer science majors involving scientific research that used digital imaging of the brain of the zebrafish, a newly favored laboratory animal. These contemporary and innovative teaching and learning practices were a…

  11. Australian synchrotron radiation science

    International Nuclear Information System (INIS)

    White, J.W.

    1996-01-01

    Full text: The Australian Synchrotron Radiation Program, ASRP, has been set up as a major national research facility to provide facilities for scientists and technologists in physics, chemistry, biology and materials science who need access to synchrotron radiation. Australia has a strong tradition in crystallography and structure determination covering small molecule crystallography, biological and protein crystallography, diffraction science and materials science and several strong groups are working in x-ray optics, soft x-ray and vacuum ultra-violet physics. A number of groups whose primary interest is in the structure and dynamics of surfaces, catalysts, polymer and surfactant science and colloid science are hoping to use scattering methods and, if experience in Europe, Japan and USA can be taken as a guide, many of these groups will need third generation synchrotron access. To provide for this growing community, the Australian National Beamline at the Photon Factory, Tsukuba, Japan, has been established since 1990 through a generous collaboration with Japanese colleagues, the beamline equipment being largely produced in Australia. This will be supplemented in 1997 with access to the world's most powerful synchrotron x-ray source at the Advanced Photon Source, Argonne National Laboratory, USA. Some recent experiments in surface science using neutrons as well as x-rays from the Australian National Beamline will be used to illustrate one of the challenges that synchrotron x-rays may meet

  12. Afrique Science: Revue Internationale des Sciences et Technologie

    African Journals Online (AJOL)

    Afrique Science publishes experimental, theoretical and applied results in mathematics, physics, chemistry, biology, geology and engineering. It aims to serve all scientists except medicine and pharmacology. Other websites related to this journal: http://www.afriquescience.info/ ...

  13. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    251, Taleghani Street, Tehran 1598618133, Iran; Department of Biology, Varamin Pishva Branch, Azad University, Varamin Pishva 7489-33817, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477892855, Iran; Department of Neurology, Tehran University of Medical Sciences ...

  14. Research Journal of Health Sciences

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... The Research Journal of Health Sciences is dedicated to promoting high quality research work in the field of health and related biological sciences. It aligns ...

  15. Encyclopedia of Complexity and Systems Science

    CERN Document Server

    Meyers, Robert A

    2009-01-01

    Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other n...

  16. Road Safety Education in a Science Course: Evaluation of "Science and the Road."

    Science.gov (United States)

    Gardner, Paul L.

    1989-01-01

    A traffic safety instructional package--"Science and the Road"--was assessed. It was designed by the Road Traffic Authority of Victoria (Australia) for use in tenth-grade science courses. Evaluation findings resulted in revision of the unit and implementation of more inservice courses for teachers lacking relevant biology and physics…

  17. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Systems biology for molecular life sciences and its impact in biomedicine.

    Science.gov (United States)

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  19. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    OpenAIRE

    TOJDE

    2009-01-01

    This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trip...

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... SANKARASUBRAMANIAN1 BYUNGCHEOL LEE2. Center for Electrochemical Science and Engineering, Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago 60616, USA; Quantum Optics Laboratory, Korea Atomic Energy Research Institute, Yuseong-gu 305-353, South Korea ...

  1. Mainstreaming the social sciences in conservation.

    Science.gov (United States)

    Bennett, Nathan J; Roth, Robin; Klain, Sarah C; Chan, Kai M A; Clark, Douglas A; Cullman, Georgina; Epstein, Graham; Nelson, Michael Paul; Stedman, Richard; Teel, Tara L; Thomas, Rebecca E W; Wyborn, Carina; Curran, Deborah; Greenberg, Alison; Sandlos, John; Veríssimo, Diogo

    2017-02-01

    Despite broad recognition of the value of social sciences and increasingly vocal calls for better engagement with the human element of conservation, the conservation social sciences remain misunderstood and underutilized in practice. The conservation social sciences can provide unique and important contributions to society's understanding of the relationships between humans and nature and to improving conservation practice and outcomes. There are 4 barriers-ideological, institutional, knowledge, and capacity-to meaningful integration of the social sciences into conservation. We provide practical guidance on overcoming these barriers to mainstream the social sciences in conservation science, practice, and policy. Broadly, we recommend fostering knowledge on the scope and contributions of the social sciences to conservation, including social scientists from the inception of interdisciplinary research projects, incorporating social science research and insights during all stages of conservation planning and implementation, building social science capacity at all scales in conservation organizations and agencies, and promoting engagement with the social sciences in and through global conservation policy-influencing organizations. Conservation social scientists, too, need to be willing to engage with natural science knowledge and to communicate insights and recommendations clearly. We urge the conservation community to move beyond superficial engagement with the conservation social sciences. A more inclusive and integrative conservation science-one that includes the natural and social sciences-will enable more ecologically effective and socially just conservation. Better collaboration among social scientists, natural scientists, practitioners, and policy makers will facilitate a renewed and more robust conservation. Mainstreaming the conservation social sciences will facilitate the uptake of the full range of insights and contributions from these fields into

  2. 2002 Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  3. The Defense Science Board 2001 Summer Study on Defense Science and Technology

    Science.gov (United States)

    2002-05-01

    HIT” The threat of biological weapons arises in part from a decades-old megatrend in the life sciences. New advances in molecular biology, genetics...99 The Technology Landscape Today.................................... 101 Biological Warfare Defense...planning and programming, today’s environment comprises a broader, more diffuse set of concerns: terrorism, biological warfare, regional tensions

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Hong-Wen Gao1 Fa-Shui Hong2 Qing-Song Ye2. School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, P. R. China; Department of Biological Science, Huaibei Coal Teachers College, Huaibei 235000, P. R. China ...

  5. Preschool children's interests in science

    Science.gov (United States)

    Coulson, R. I.

    1991-12-01

    Studies of children's attitudes towards science indicate that a tendency for girls and boys to have different patterns of interest in science is established by upper primary school level. It is not know when these interest patterns develop. This paper presents the results of part of a project designed to investigate preschool children's interests in science. Individual 4 5 year-old children were asked to say what they would prefer to do from each of a series of paired drawings showing either a science and a non-science activity, or activities from two different areas of science. Girls and boys were very similar in their overall patterns of choice for science and non-science items. Within science, the average number of physical science items chosen by boys was significantly greater than the average number chosen by girls (p=.026). Girls tended to choose more biology items than did boys, but this difference was not quite significant at the .05 level (p=.054). The temporal stability of these choices was explored.

  6. Practicing the triad teaching-research- extension in supervised internship of licentiateship in biological sciences

    Directory of Open Access Journals (Sweden)

    Lilliane Miranda Freitas

    2012-06-01

    Full Text Available In this paper we report an educational experience based on the triad teaching-research-extension occurred in the supervised internship in licentiateship in Biological Sciences. In this experiment, the students made a transposition of the scientific knowledge produced in their course conclusion work to the knowledge of basic education curriculum. We analyze in this article the impressions of undergraduates after completion of pedagogical actions. We discuss, based on the reports, how the knowledge that is constructed and reconstructed in academic research can contribute directly to the improvement of the science education quality through science literacy and also in teacher training of undergraduates, through the reflection on their own practice. Therefore, we consider that, with the practice of the inseparability of teaching-research-extension, there will be more return for academic research and also for the school community, generating significant changes in educational practices in schools

  7. The Science of Sex Differences in Science and Mathematics

    Science.gov (United States)

    Halpern, Diane F.; Benbow, Camilla P.; Geary, David C.; Gur, Ruben C.; Hyde, Janet Shibley; Gernsbacher, Morton Ann

    2014-01-01

    influences; training and experience; and cultural practices. We conclude that early experience, biological factors, educational policy, and cultural context affect the number of women and men who pursue advanced study in science and math and that these effects add and interact in complex ways. There are no single or simple answers to the complex questions about sex differences in science and mathematics. PMID:25530726

  8. Stree Shakti Science Samman Awardees | Women in Science ...

    Indian Academy of Sciences (India)

    Stree Shakti Science Samman Awardees. Following is the list of women awardees: Year: 2012. Dr. Jaya S. Tyagi Specialization: Molecular Biology, Mycobacteriology and Gene Regulation. Year: 2012. Telma B. K.. Specialization: Cytogenetics and Human Genetics. Year: 2010. Prof. Shobhana Narasimhan Specialization: ...

  9. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Period: 2013–2016. Guttal, Dr. Vishwesha Ph.D. (Ohio State). Date of birth: 27 March 1981. Specialization: Theoretical Ecology & Evolution, Ecosystem Dynamics, collective Animal Behaviour Address: Centre for Ecological Sciences TA-10, Biological Sci. Building, Indian Institute of Science, Bengaluru 560 012, Karnataka

  10. Science and Science Fiction

    Science.gov (United States)

    Oravetz, David

    2005-01-01

    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  11. NUCLEONICA: a nuclear science portal

    International Nuclear Information System (INIS)

    Magill, J.; Galy, J.; Dreher, R.; Hamilton, D.; Tufan, M.; Normand, C.; Schwenk-Ferrero, A.; Wiese, H.W.

    2008-01-01

    NUCLEONICA is a new nuclear science web portal from the European Commission's Joint Research Centre. The portal provides a customizable, integrated environment and collaboration platform for the nuclear sciences using the latest 'Web 2.0' dynamic technology. NUCLEONICA is aimed at professionals, academics and students working with radionuclides in fields as diverse as the life sciences (e.g., biology, medicine, agriculture), the earth sciences (geology, meteorology, environmental science) and the more traditional disciplines such as nuclear power, health physics and radiation protection, nuclear and radio-chemistry, and astrophysics. It is also used as a knowledge management tool to preserve nuclear knowledge built up over many decades by creating modern web-based versions of so-called legacy computer codes. (authors)

  12. Advancing the science of forest hydrology A challenge to agricultural and biological engineers

    Science.gov (United States)

    Devendra Amatya; Wayne Skaggs; Carl Trettin

    2009-01-01

    For more than a century, agricultural and biological engineers have provided major advances in science, engineering, and technology to increase food and fiber production to meet the demands of a rapidly growing global population. The land base for these technological advances has originated largely from forested lands, which have experienced dramatic declines over the...

  13. View of Nature of Science (VNOS Form B: An Instrument for Assessing Preservice Teachers View of Nature of Science at Borneo University Tarakan

    Directory of Open Access Journals (Sweden)

    Listiani Listiani

    2017-03-01

    Full Text Available NOS form B is an instrument that has been developed and revised to assess the view of nature of science of preservice science teachers through nature of science aspects.Indeed, students and teachers have to have the view of nature of science to avoid misconceptions of science concepts. Unfortunately, research on the view of Nature of Science is less conducted in Indonesia. This is a qualitative research that was conducted in Borneo University Tarakan. Respondents are preservice biology teachers in the sixth semester. The first step of this research is translating and adapting the VNOS form B into Bahasa Indonesia to make sure that the instrument is culturally fit to Indonesian and the transadapted instrument then given to the respondents. The result shows that the VNOS form B can be applied to assess the view of nature of science of preservice biology teachers. However, the result also shows that most of preservice biology teachers have few understanding on aspects of nature of scince.

  14. Science Outreach for the Thousands: Coe College's Playground of Science

    Science.gov (United States)

    Watson, D. E.; Franke, M.; Affatigato, M.; Feller, S.

    2011-12-01

    Coe College is a private liberal arts college nestled in the northeast quadrant of Cedar Rapids, IA. Coe takes pride in the outreach it does in the local community. The sciences at Coe find enjoyment in educating the children and families of this community through a diverse set of venues; from performing science demonstrations for children at Cedar Rapids' Fourth of July Freedom Festival to hosting summer forums and talks to invigorate the minds of its more mature audiences. Among these events, the signature event of the year is the Coe Playground of Science. On the last Thursday of October, before Halloween, the science departments at Coe invite nearly two thousand children from pre elementary to high school ages, along with their parents to participate in a night filled with science demos, haunted halls, and trick-or-treating for more than just candy. The demonstrations are performed by professors and students alike from a raft of cooperative departments including physics, chemistry, biology, math, computer science, nursing, ROTC, and psychology. This event greatly strengthens the relationships between institution members and community members. The sciences at Coe understand the importance of imparting the thrill and hunger for exploration and discovery into the future generations. More importantly they recognize that this cannot start and end at the collegiate level, but the American public must be reached at younger ages and continue to be encouraged beyond the college experience. The Playground of Science unites these two groups under the common goal of elevating scientific interest in the American people.

  15. Science Unit Plans. PACE '94.

    Science.gov (United States)

    Schoon, Kenneth J., Ed.; Wiles, Clyde A., Ed.

    This booklet contains mathematics unit plans for Biology, Chemistry, and Physical Science developed by PACE (Promoting Academic Excellence In Mathematics, Science & Technology for Workers of the 21st Century). Each unit plan contains suggested timing, objectives, skills to be acquired, workplace relationships, learning activities with suggested…

  16. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    History · Memorandum of Association · Role of the Academy · Statutes · Council · Raman Chair ... Elected: 2006 Section: Animal Sciences ... Address: Professor, National Centre for Biological Sciences, GKVK Campus, Bengaluru 560 065, Karnataka ... Math Art and Design: MAD about Math, Math Education and Outreach.

  17. Life sciences: Nuclear medicine, radiation biology, medical physics, 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1994-11-01

    The catalogue lists all sales publications of the IAEA dealing with Life Sciences issued during the period 1980-1994. The publications are grouped in the following chapters: Nuclear Medicine (including Radiopharmaceuticals), Radiation Biology and Medical Physics (including Dosimetry)

  18. Theoretical computer science and the natural sciences

    Science.gov (United States)

    Marchal, Bruno

    2005-12-01

    I present some fundamental theorems in computer science and illustrate their relevance in Biology and Physics. I do not assume prerequisites in mathematics or computer science beyond the set N of natural numbers, functions from N to N, the use of some notational conveniences to describe functions, and at some point, a minimal amount of linear algebra and logic. I start with Cantor's transcendental proof by diagonalization of the non enumerability of the collection of functions from natural numbers to the natural numbers. I explain why this proof is not entirely convincing and show how, by restricting the notion of function in terms of discrete well defined processes, we are led to the non algorithmic enumerability of the computable functions, but also-through Church's thesis-to the algorithmic enumerability of partial computable functions. Such a notion of function constitutes, with respect to our purpose, a crucial generalization of that concept. This will make easy to justify deep and astonishing (counter-intuitive) incompleteness results about computers and similar machines. The modified Cantor diagonalization will provide a theory of concrete self-reference and I illustrate it by pointing toward an elementary theory of self-reproduction-in the Amoeba's way-and cellular self-regeneration-in the flatworm Planaria's way. To make it easier, I introduce a very simple and powerful formal system known as the Schoenfinkel-Curry combinators. I will use the combinators to illustrate in a more concrete way the notion introduced above. The combinators, thanks to their low-level fine grained design, will also make it possible to make a rough but hopefully illuminating description of the main lessons gained by the careful observation of nature, and to describe some new relations, which should exist between computer science, the science of life and the science of inert matter, once some philosophical, if not theological, hypotheses are made in the cognitive sciences. In the

  19. Do Gender-Science Stereotypes Predict Science Identification and Science Career Aspirations among Undergraduate Science Majors?

    Science.gov (United States)

    Cundiff, Jessica L.; Vescio, Theresa K.; Loken, Eric; Lo, Lawrence

    2013-01-01

    The present research examined whether gender-science stereotypes were associated with science identification and, in turn, science career aspirations among women and men undergraduate science majors. More than 1,700 students enrolled in introductory science courses completed measures of gender-science stereotypes (implicit associations and…

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Biological studies were preformed in vitro against four bacterial strains which have shown better activities and potential as antibacterial agents. Author Affiliations. Rosenani A Haque1 M A Salam1. The School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. Dates. Manuscript received: 15 ...

  1. The biological sciences in nursing: a developing country perspective.

    Science.gov (United States)

    Kyriacos, Una; Jordan, Sue; van den Heever, Jean

    2005-10-01

    This paper reports a study to inform curriculum development by exploring the contribution of bioscience education programmes to nurses' clinical practice, their understanding of the rationale for practice, and their perceptions of their continuing professional development needs. The future of the health services worldwide depends on nurse education programmes equipping practitioners to deliver safe and effective patient care. In the developed world, the structure and indicative content of nursing curricula have been debated extensively. However, despite the rapid expansion in nursing roles brought about by social change, there is little information on the educational needs of nurses in developing countries. This study was undertaken in government teaching hospitals in Cape Town, South Africa in 2003. A purposive sample of 54 nurses from a range of clinical settings completed questionnaires and described critical incidents where bioscience knowledge had directed practice. Questionnaires were analysed descriptively, in the main. Analysis of critical incident reports was based on Akinsanya's bionursing model. Most nurses felt that their understanding of the biological, but not the physical sciences, was adequate or better: all felt confident with their knowledge of anatomy, compared with 57.4% (31/54) for microbiology. Respondents attributed the successes and failures of their education programmes to their teachers' delivery of content, ability to relate to practice and management of the process of learning. The biological, but not the physical, sciences were universally (96-100%) regarded as relevant to nursing. However, the critical incidents and nurses' own reports indicated a need for further education in pharmacology (40/54, 74.1%) and microbiology (29/54, 53.7%). To meet the needs of nurses in developing countries, and empower them to meet the increasingly complex demands of their expanding roles, nurse educators need to consider increasing the curriculum

  2. Life Sciences Accomplishments 1994

    Science.gov (United States)

    Burnell, Mary Lou (Editor)

    1993-01-01

    The NASA Life and Biomedical Sciences and Applications Division (LBSAD) serves the Nation's life sciences community by managing all aspects of U.S. space-related life sciences research and technology development. The activities of the Division are integral components of the Nation's overall biological sciences and biomedical research efforts. However, NASA's life sciences activities are unique, in that space flight affords the opportunity to study and characterize basic biological mechanisms in ways not possible on Earth. By utilizing access to space as a research tool, NASA advances fundamental knowledge of the way in which weightlessness, radiation, and other aspects of the space-flight environment interact with biological processes. This knowledge is applied to procedures and technologies that enable humans to live and work in and explore space and contributes to the health and well-being of people on Earth. The activities of the Division are guided by the following three goals: Goal 1) Use microgravity and other unique aspects of the space environment to enhance our understanding of fundamental biological processes. Goal 2) Develop the scientific and technological foundations for supporting exploration by enabling productive human presence in space for extended periods. Goal 3) Apply our unique mission personnel, facilities, and technology to improve education, the quality of life on Earth, and U.S. competitiveness. The Division pursues these goals with integrated ground and flight programs involving the participation of NASA field centers, industry, and universities, as well as interactions with other national agencies and NASA's international partners. The published work of Division-sponsored researchers is a record of completed research in pursuit of these goals. During 1993, the LBSAD instituted significant changes in its experiment solicitation and peer review processes. For the first time, a NASA Research Announcement (NRA) was released requesting

  3. Ecosystems science: Genes to landscapes

    Science.gov (United States)

    ,

    2018-05-09

    Bountiful fisheries, healthy and resilient wildlife, flourishing forests and vibrant grasslands are coveted resources that benefit all Americans. U.S. Geological Survey (USGS) science supports the conservation and management of the Nation’s fish and wildlife, and the landscapes they inhabit. Our biological resources—ecosystems and the wild things that live in them—are the foundation of our conservation heritage and an economic asset to current and future generations of Americans.The USGS Ecosystems Mission Area, the biological research arm of the Department of the Interior (DOI), provides science to help America achieve sustainable management and conservation of its biological resources. This work is done within the broader mission of the USGS—to serve the Nation with science that advances understanding of our natural resources, informs land and water stewardship, and helps safeguard communities from natural and environmental hazards. The Ecosystems Mission Area provides research, technical assistance, and education conducted by Cooperative Research Units and Science Centers located in nearly every State.The quality of life and economic strength in America hinges on healthy ecosystems that support living things and natural processes. Ecosystem science better enables society to understand how and why ecosystems change and to guide actions that can prevent damage to, and restore and sustain ecosystems. It is through this knowledge that informed decisions are made about natural resources that can enhance our Nation’s economic and environmental well-being.

  4. The Influence of Disciplines on the Knowledge of Science: A Study of the Nature of Science

    Directory of Open Access Journals (Sweden)

    B. Akarsu

    2010-06-01

    Full Text Available At least four factors affect pupils’ understanding of the nature of science: teachers’ specialization in different science areas (physics, chemistry, and biology, gender issues, teaching experience in elementary school environments, and the perspectives of acquiring necessary knowledge. This study is the introduction part of a research project which will be initiated soon. Four elementary science teachers participated in the study. The results reveal that participants’ views of the aspects of nature of science are not solely diverged, based on their major disciplines, but there exist significant distinctions according to gender differences.

  5. Shanti Swarup Bhatnagar Awardees | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    Shanti Swarup Bhatnagar Awardees. Following is the list of women awardees: Year: 2015. Vidita Ashok Vaidya Specialization: Medical Sciences. Year: 2013. Yamuna Krishnan Specialization: Chemical Sciences. Year: 2010. Shubha Tole Specialization: Biological Sciences. Year: 2010. Sanghamitra Bandyopadhyay

  6. BER Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Alapaty, Kiran; Allen, Ben; Bell, Greg; Benton, David; Brettin, Tom; Canon, Shane; Dart, Eli; Cotter, Steve; Crivelli, Silvia; Carlson, Rich; Dattoria, Vince; Desai, Narayan; Egan, Richard; Tierney, Brian; Goodwin, Ken; Gregurick, Susan; Hicks, Susan; Johnston, Bill; de Jong, Bert; Kleese van Dam, Kerstin; Livny, Miron; Markowitz, Victor; McGraw, Jim; McCord, Raymond; Oehmen, Chris; Regimbal, Kevin; Shipman, Galen; Strand, Gary; Flick, Jeff; Turnbull, Susan; Williams, Dean; Zurawski, Jason

    2010-11-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2010 ESnet and the Office of Biological and Environmental Research, of the DOE Office of Science, organized a workshop to characterize the networking requirements of the science programs funded by BER. The requirements identified at the workshop are summarized and described in more detail in the case studies and the Findings section. A number of common themes emerged from the case studies and workshop discussions. One is that BER science, like many other disciplines, is becoming more and more distributed and collaborative in nature. Another common theme is that data set sizes are exploding. Climate Science in particular is on the verge of needing to manage exabytes of data, and Genomics is on the verge of a huge paradigm shift in the number of sites with sequencers and the amount of sequencer data being generated.

  7. Developing "Green" Business Plans: Using Entrepreneurship to Teach Science to Business Administration Majors and Business to Biology Majors

    Science.gov (United States)

    Letovsky, Robert; Banschbach, Valerie S.

    2011-01-01

    Biology majors team with business administration majors to develop proposals for "green" enterprise for a business plan competition. The course begins with a series of student presentations so that science students learn about the fundamentals of business, and business students learn about environmental biology. Then mixed biology-business student…

  8. History of Science and Science Museums

    Science.gov (United States)

    Faria, Cláudia; Guilherme, Elsa; Gaspar, Raquel; Boaventura, Diana

    2015-10-01

    The activities presented in this paper, which are addressed to elementary school, are focused on the pioneering work of the Portuguese King Carlos I in oceanography and involve the exploration of the exhibits belonging to two different science museums, the Aquarium Vasco da Gama and the Maritime Museum. Students were asked to study fish adaptations to deep sea, through the exploration of a fictional story, based on historical data and based on the work of the King that served as a guiding script for all the subsequent tasks. In both museums, students had access to: historical collections of organisms, oceanographic biological sampling instruments, fish gears and ships. They could also observe the characteristics and adaptations of diverse fish species characteristic of deep sea. The present study aimed to analyse the impact of these activities on students' scientific knowledge, on their understanding of the nature of science and on the development of transversal skills. All students considered the project very popular. The results obtained suggest that the activity promoted not only the understanding of scientific concepts, but also stimulated the development of knowledge about science itself and the construction of scientific knowledge, stressing the relevance of creating activities informed by the history of science. As a final remark we suggest that the partnership between elementary schools and museums should be seen as an educational project, in which the teacher has to assume a key mediating role between the school and the museums.

  9. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    Directory of Open Access Journals (Sweden)

    TOJDE

    2009-04-01

    Full Text Available This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trips, cyberinfrastructure, neurological learning and the neuro-cognitive model. The continued growth in general studies and liberal arts and science programs online has led to a rise in the number of students whose science learning experiences are partially or exclusively online. character and quality of online science instruction.

  10. Science Notes.

    Science.gov (United States)

    Shaw, G. W.; And Others

    1989-01-01

    Provides a reading list for A- and S-level biology. Contains several experiments and demonstrations with topics on: the intestine, bullock corneal cells, valences, the science of tea, automated hydrolysis, electronics characteristics, bromine diffusion, enthalpy of vaporization determination, thermometers, pendulums, hovercraft, Bernoulli fluid…

  11. Materials science

    International Nuclear Information System (INIS)

    2002-01-01

    the document is a collection of papers on different aspects of materials science. It discusses many items such as semiconductors, surface properties and interfaces, construction and civil engineering, metallic materials, polymers and composites, biology and biomaterials, metallurgy etc.. - 1 - Document1 Document1

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Nurullah Ateş2 Fatma Kiliç Dokan1 Ahmet Ülgen1 Şaban Patat1. Department of Chemistry, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey; Northeastern University Center for Renewable Energy Technology, Department of Chemistry and Chemical Biology, 317 Egan Center, 360 Huntington Avenue, Boston, ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 130; Issue 3. Issue front cover ... More Details Abstract Fulltext PDF. Article ID 22. Synthesis and biological evaluation of some bicyclic [2-(2 .... Non-oxidative methane dehydroaromatization reaction over highly active α-MoC1−x ZSM-5 derived from pretreatment.

  14. Education Catching up with Science: Preparing Students for Three-Dimensional Literacy in Cell Biology

    Science.gov (United States)

    Kramer, IJsbrand M.; Dahmani, Hassen-Reda; Delouche, Pamina; Bidabe, Marissa; Schneeberger, Patricia

    2012-01-01

    The large number of experimentally determined molecular structures has led to the development of a new semiotic system in the life sciences, with increasing use of accurate molecular representations. To determine how this change impacts students' learning, we incorporated image tests into our introductory cell biology course. Groups of students…

  15. Development of a Bi-Disciplinary Course in Forensic Science

    Directory of Open Access Journals (Sweden)

    Stacey L. Raimondi

    2013-08-01

    Full Text Available Forensic science programs and courses have traditionally been housed within chemistry departments at the college/university level, largely because the pioneers of the field were chemists who applied technology that was more chemical than biological in nature. However, with the development of such areas of study as DNA analysis, anatomical studies, and forensic entomology, it is becoming more and more important for forensic science students to have a strong biological background as well as a chemical background. Furthermore, while biology students are typically required to have extensive chemistry training as part of their major, the converse is not true for chemistry students. Therefore, it is possible that a student interested in forensic science could complete a major in chemistry and never have taken a biology class, leaving them woefully under-prepared for any type of masters program or career in forensic science immediately following graduation. Indeed, an examination of available positions in forensic science shows a large number of positions for DNA analysts for which the typical chemistry student would not be prepared without extensive biology training (http://www.aafs.org. Furthermore, positions for medical examiners or pathologists require extensive training in biology in addition to the continued medical training and residency programs. Therefore, it seems imperative that introductory forensic science courses adapt to these needs and be taught with a more bi-disciplinary approach in order to educate students on the whole field rather than one aspect. To that end, a new bi-disciplinary Forensic Science course was developed at Elmhurst College. This course was team-taught by a biology and a chemistry professor so that students would obtain a thorough understanding of the field and techniques used by both biologists and chemists. A description of this new version of a forensic science course follows, focusing on the addition of biology

  16. Using Primary Literature to Teach Science Literacy to Introductory Biology Students

    OpenAIRE

    Johanna Krontiris-Litowitz

    2013-01-01

    Undergraduate students struggle to read the scientific literature and educators have suggested that this may reflect deficiencies in their science literacy skills. In this two-year study we develop and test a strategy for using the scientific literature to teach science literacy skills to novice life science majors. The first year of the project served as a preliminary investigation in which we evaluated student science literacy skills, created a set of science literacy learning objectives al...

  17. Neutron scattering science at the Australian Nuclear Science and Technology Organisation (ANSTO)

    International Nuclear Information System (INIS)

    Knott, Robert

    2000-01-01

    Neutron scattering science at ANSTO is integrated into a number of fields in the Australian scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans to replace the present research reactor with a modern multi-purpose research reactor are well advanced. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. A brief overview will be presented of all the instruments presently available at ANSTO with emphasis on the SANS instrument. This will be followed by a description of the replacement research reactor and its instruments. (author)

  18. Neutron scattering science at the Australian Nuclear Science and Technology Organisation (ANSTO)

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Robert [Australian Nuclear Science and Technology Organisation (Australia)

    2000-10-01

    Neutron scattering science at ANSTO is integrated into a number of fields in the Australian scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans to replace the present research reactor with a modern multi-purpose research reactor are well advanced. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. A brief overview will be presented of all the instruments presently available at ANSTO with emphasis on the SANS instrument. This will be followed by a description of the replacement research reactor and its instruments. (author)

  19. Science of science.

    Science.gov (United States)

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Science and data science.

    Science.gov (United States)

    Blei, David M; Smyth, Padhraic

    2017-08-07

    Data science has attracted a lot of attention, promising to turn vast amounts of data into useful predictions and insights. In this article, we ask why scientists should care about data science. To answer, we discuss data science from three perspectives: statistical, computational, and human. Although each of the three is a critical component of data science, we argue that the effective combination of all three components is the essence of what data science is about.

  1. The Acid Test for Biological Science: STAP Cells, Trust, and Replication.

    Science.gov (United States)

    Lancaster, Cheryl

    2016-02-01

    In January 2014, a letter and original research article were published in Nature describing a process whereby somatic mouse cells could be converted into stem cells by subjecting them to stress. These "stimulus-triggered acquisition of pluripotency" (STAP) cells were shown to be capable of contributing to all cell types of a developing embryo, and extra-embryonic tissues. The lead author of the publications, Haruko Obokata, became an overnight celebrity in Japan, where she was dubbed the new face of Japanese science. However, in the weeks that followed publication of the research, issues arose. Other laboratories and researchers (including authors on the original papers) found that they were unable to replicate Obokata et al.'s work. Closer scrutiny of the papers by the scientific community also suggested that there was manipulation of images that had been published, and Obokata was accused of misconduct. Those who should have been supervising her work (also her co-authors on the publications) were also heavily criticised. The STAP cell saga of 2014 is used as an example to highlight the importance of trust and replication in twenty-first century biological science. The role of trust in the scientific community is highlighted, and the effects on interactions between science and the public examined. Similarly, this essay aims to highlight the importance of replication, and how this is understood by researchers, the media, and the public. The expected behaviour of scientists in the twenty-first century is now more closely scrutinised.

  2. NST and NST integration: nuclear science and technique and nano science and technique

    International Nuclear Information System (INIS)

    Zhao Yuliang; Chai Zhifang; Liu Yuanfang

    2008-01-01

    Nuclear science is considered as a big science and also the frontier in the 20 th century, it developed many big scientific facilities and many technique platforms (e.g., nuclear reactor, synchrotron radiation, accelerator, etc.) Nuclear Science and Technology (NST) provide us with many unique tools such as neutron beams, electron beams, gamma rays, alpha rays, beta rays, energetic particles, etc. These are efficient and essential probes for studying many technique and scientific issues in the fields of new materials, biological sciences, environmental sciences, life sciences, medical science, etc. Nano Science and Technology (NST) is a newly emerging multidisciplinary science and the frontier in the 21 st century, it is expected to dominate the technological revolution in diverse aspects of our life. It involves diverse fields such as nanomaterials, nanobiological sciences, environmental nanotechnology, nanomedicine, etc. nanotechnology was once considered as a futuristic science with applications several decades in the future and beyond. But, the rapid development of nanotechnology has broken this prediction. For example, diverse types of manufactured nanomaterials or nanostructures have been currently utilized in industrial products, semiconductors, electronics, stain-resistant clothing, ski wax, catalysts, other commodity products such as food, sunscreens, cosmetics, automobile parts, etc., to improve their performance of previous functions, or completely create novel functions. They will also be increasingly utilized in medicines for purposes of clinic therapy, diagnosis, and drug delivery. In the talk, we will discuss the possibility of NST-NST integration: how to apply the unique probes of advanced radiochemical and nuclear techniques in nanoscience and nanotechnology. (authors)

  3. The Next Generation of Science Standards: Implications for Biology Education

    Science.gov (United States)

    Bybee, Rodger W.

    2012-01-01

    The release of A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (NRC, 2012) provides the basis for the next generation of science standards. This article first describes that foundation for the life sciences; it then presents a draft standard for natural selection and evolution. Finally, there is a…

  4. Science for common entrance physics : answers

    CERN Document Server

    Pickering, W R

    2015-01-01

    This book contains answers to all exercises featured in the accompanying textbook Science for Common Entrance: Physics , which covers every Level 1 and 2 topic in the ISEB 13+ Physics Common Entrance exam syllabus. - Clean, clear layout for easy marking. - Includes examples of high-scoring answers with diagrams and workings. - Suitable for ISEB 13+ Mathematics Common Entrance exams taken from Autumn 2017 onwards. Also available to purchase from the Galore Park website www.galorepark.co.uk :. - Science for Common Entrance: Physics. - Science for Common Entrance: Biology. - Science for Common En

  5. What Is Heat? Inquiry regarding the Science of Heat

    Science.gov (United States)

    Rascoe, Barbara

    2010-01-01

    This lab activity uses inquiry to help students define heat. It is generic in that it can be used to introduce a plethora of science content across middle and high school grade levels and across science disciplines that include biology, Earth and space science, and physical science. Even though heat is a universal science phenomenon that is…

  6. The Math–Biology Values Instrument: Development of a Tool to Measure Life Science Majors’ Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students’ personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-­report instrument grounded in expectancy-value theory, to measure life science students’ interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student’s value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math–biology values and understand how math–biology values are related to students’ achievement and decisions to pursue more advanced quantitative-based courses. PMID:28747355

  7. Primary Science Interview: Science Sparks

    Science.gov (United States)

    Bianchi, Lynne

    2016-01-01

    In this "Primary Science" interview, Lynne Bianchi talks with Emma Vanstone about "Science Sparks," which is a website full of creative, fun, and exciting science activity ideas for children of primary-school age. "Science Sparks" started with the aim of inspiring more parents to do science at home with their…

  8. Redirecting science

    International Nuclear Information System (INIS)

    Aaserud, F.

    1990-01-01

    This book contains the following chapters. Science policy and fund-raising up to 1934; The Copenhagen spirit at work, late 1920's to mid-1930s; The refugee problem, 1933 to 1935; Experimental biology, late 1920s to 1935; and Consolidation of the transition, 1935 to 1940

  9. Caring Science or Science of Caring.

    Science.gov (United States)

    Turkel, Marian C; Watson, Jean; Giovannoni, Joseph

    2018-01-01

    The concepts caring science and science of caring have different meanings; however, they are often used interchangeably. The purpose of this paper is to present an overview of the synthesis of the scholarly literature on the definitions of the science of caring and caring science and to affirm the authors' perspective relating to the language of caring science. Caring science advances the epistemology and ontology of caring. Ideas related to caring science inquiry are presented, and the authors acknowledge the future of caring science as unitary caring science.

  10. The founding of ISOTT: the Shamattawa of engineering science and medical science.

    Science.gov (United States)

    Bruley, Duane F

    2014-01-01

    The founding of ISOTT was based upon the blending of Medical and Engineering sciences. This occurrence is portrayed by the Shamattawa, the joining of the Chippewa and Flambeau rivers. Beginning with Carl Scheele's discovery of oxygen, the medical sciences advanced the knowledge of its importance to physiological phenomena. Meanwhile, engineering science was evolving as a mathematical discipline used to define systems quantitatively from basic principles. In particular, Adolf Fick's employment of a gradient led to the formalization of transport phenomena. These two rivers of knowledge were blended to found ISOTT at Clemson/Charleston, South Carolina, USA, in 1973.The establishment of our society with a mission to support the collaborative work of medical scientists, clinicians and all disciplines of engineering was a supporting step in the evolution of bioengineering. Traditional engineers typically worked in areas not requiring knowledge of biology or the life sciences. By encouraging collaboration between medical science and traditional engineering, our society became one of the forerunners in establishing bioengineering as the fifth traditional discipline of engineering.

  11. Modeling biological problems in computer science: a case study in genome assembly.

    Science.gov (United States)

    Medvedev, Paul

    2018-01-30

    As computer scientists working in bioinformatics/computational biology, we often face the challenge of coming up with an algorithm to answer a biological question. This occurs in many areas, such as variant calling, alignment and assembly. In this tutorial, we use the example of the genome assembly problem to demonstrate how to go from a question in the biological realm to a solution in the computer science realm. We show the modeling process step-by-step, including all the intermediate failed attempts. Please note this is not an introduction to how genome assembly algorithms work and, if treated as such, would be incomplete and unnecessarily long-winded. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Network science

    CERN Document Server

    Barabasi, Albert-Laszlo

    2016-01-01

    Networks are everywhere, from the Internet, to social networks, and the genetic networks that determine our biological existence. Illustrated throughout in full colour, this pioneering textbook, spanning a wide range of topics from physics to computer science, engineering, economics and the social sciences, introduces network science to an interdisciplinary audience. From the origins of the six degrees of separation to explaining why networks are robust to random failures, the author explores how viruses like Ebola and H1N1 spread, and why it is that our friends have more friends than we do. Using numerous real-world examples, this innovatively designed text includes clear delineation between undergraduate and graduate level material. The mathematical formulas and derivations are included within Advanced Topics sections, enabling use at a range of levels. Extensive online resources, including films and software for network analysis, make this a multifaceted companion for anyone with an interest in network sci...

  13. Science and the Nonscience Major: Addressing the Fear Factor in the Chemical Arena Using Forensic Science

    Science.gov (United States)

    Labianca, Dominick A.

    2007-01-01

    This article describes an approach to minimizing the "fear factor" in a chemistry course for the nonscience major, and also addresses relevant applications to other science courses, including biology, geology, and physics. The approach emphasizes forensic science and affords students the opportunity to hone their analytical skills in an…

  14. Giant Ants and Walking Plants: Using Science Fiction to Teach a Writing-Intensive, Lab-Based Biology Class for Nonmajors

    Science.gov (United States)

    Firooznia, Fardad

    2006-01-01

    This writing-intensive, lab-based, nonmajor biology course explores scientific inquiry and biological concepts through specific topics illustrated or inaccurately depicted in works of science fiction. The laboratory emphasizes the scientific method and introduces several techniques used in biological research related to the works we study.…

  15. Influence of subject matter discipline and science content knowledge on National Board Certified science teachers' conceptions, enactment, and goals for inquiry

    Science.gov (United States)

    Breslyn, Wayne Gene

    The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual

  16. Neutron scattering science in Australia

    International Nuclear Information System (INIS)

    Knott, Robert

    1999-01-01

    Neutron scattering science in Australia is making an impact on a number of fields in the scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a wide range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans are in progress to replace the present research reactor with a modern multi-purpose research reactor to offer the most advanced neutron scattering facilities. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. (author)

  17. Neutron scattering science in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Robert [Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia)

    1999-10-01

    Neutron scattering science in Australia is making an impact on a number of fields in the scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a wide range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans are in progress to replace the present research reactor with a modern multi-purpose research reactor to offer the most advanced neutron scattering facilities. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. (author)

  18. Excel 2013 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach biological and life sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand science problems.  Practice problems are provided at the end of each chapter with their solutions in an appendix.  Separately, there is a full Practice Test (with answers in an Appendix) that allows readers to test what they have learned.  Includes 164 illustrations in color Suitable for undergraduates or graduate student Prof. Tom Quirk is currently a Professor of Marketing at The Walker School of Business and Technology at Webster University in St....

  19. Convergence Science in a Nano World

    Science.gov (United States)

    Cady, Nathaniel

    2013-01-01

    Convergence is a new paradigm that brings together critical advances in the life sciences, physical sciences and engineering. Going beyond traditional “interdisciplinary” studies, “convergence” describes the culmination of truly integrated research and development, yielding revolutionary advances in both scientific research and new technologies. At its core, nanotechnology embodies these elements of convergence science by bringing together multiple disciplines with the goal of creating innovative and groundbreaking technologies. In the biological and biomedical sciences, nanotechnology research has resulted in dramatic improvements in sensors, diagnostics, imaging, and even therapeutics. In particular, there is a current push to examine the interface between the biological world and micro/nano-scale systems. For example, my laboratory is developing novel strategies for spatial patterning of biomolecules, electrical and optical biosensing, nanomaterial delivery systems, cellular patterning techniques, and the study of cellular interactions with nano-structured surfaces. In this seminar, I will give examples of how convergent research is being applied to three major areas of biological research &endash; cancer diagnostics, microbiology, and DNA-based biosensing. These topics will be presented as case studies, showing the benefits (and challenges) of multi-disciplinary, convergent research and development.

  20. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 29; Issue 4 ... Plant Biotechnology Research Center, School of Agriculture and Biology, ... D Center, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan University ...

  1. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 32; Issue 2 ... School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan University, ... of China; Plant Biotechnology Research Center, School of Agriculture and Biology, ...

  2. Factor analysis for instruments of science learning motivation and its implementation for the chemistry and biology teacher candidates

    Science.gov (United States)

    Prasetya, A. T.; Ridlo, S.

    2018-03-01

    The purpose of this study is to test the learning motivation of science instruments and compare the learning motivation of science from chemistry and biology teacher candidates. Kuesioner Motivasi Sains (KMS) in Indonesian adoption of the Science Motivation Questionnaire II (SMQ II) consisting of 25 items with a 5-point Likert scale. The number of respondents for the Exploratory Factor Analysis (EFA) test was 312. The Kaiser-Meyer-Olkin (KMO), determinant, Bartlett’s Sphericity, Measures of Sampling Adequacy (MSA) tests against KMS using SPSS 20.0, and Lisrel 8.51 software indicate eligible indications. However testing of Communalities obtained results that there are 4 items not qualified, so the item is discarded. The second test, all parameters of eligibility and has a magnitude of Root Mean Square Error of Approximation (RMSEA), P-Value for the Test of Close Fit (RMSEA <0.05), Goodness of Fit Index (GFI) was good. The new KMS with 21 valid items and composite reliability of 0.9329 can be used to test the level of learning motivation of science which includes Intrinsic Motivation, Sefl-Efficacy, Self-Determination, Grade Motivation and Career Motivation for students who master the Indonesian language. KMS trials of chemistry and biology teacher candidates obtained no significant difference in the learning motivation between the two groups.

  3. A Dual Case Study: Students' Perceptions, Self-Efficacy and Understanding of the Nature of Science in Varied Introductory Biology Laboratories

    Science.gov (United States)

    Quigley, Dena Beth Boans

    Since World War II, science education has been at the forefront of curricular reforms. Although the philosophical approach to science education has changed numerous times, the importance of the laboratory has not waned. A laboratory is meant to allow students to encounter scientific concepts in a very real, hands-on way so that they are able to either recreate experiments that have given rise to scientific theories or to use science to understand a new idea. As the interactive portion of science courses, the laboratory should not only reinforce conceptual ideas, but help students to understand the process of science and interest them in learning more about science. However, most laboratories have fallen into a safe pattern having teachers and students follow a scientific recipe, removing the understanding of and interest in science for many participants. In this study, two non-traditional laboratories are evaluated and compared with a traditional laboratory in an effort to measure student satisfaction, self-efficacy, attitudes towards science, and finally their epistemology of the nature of science (NOS). Students in all populations were administered a survey at the beginning and the end of their spring 2016 laboratory, and the survey was a mixture of qualitative questions and quantitative instruments. Overall, students who participated in one of the non-traditional labs rated their satisfaction higher and used affirming supportive statements. They also had significant increases in self-efficacy from pre to post, while the students in the traditional laboratory had a significant decrease. The students in the traditional laboratory had significant changed in attitudes towards science, as did the students in one of the non-traditional laboratories. All students lacked a firm grasp of the tenets of NOS, although one laboratory that includes explicit discussions of NOS saw improvement in at least on tenet. Data for two non-major biology laboratory populations was

  4. Of responsible research-Exploring the science-society dialogue in undergraduate training within the life sciences.

    Science.gov (United States)

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-02

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in the scientific agenda. Developing abilities in this regard seems particularly relevant to training in the life sciences, as new developments in this area somehow evoke the involvement of all of us citizens, our engagement to debate and take part in processes of change. The present analysis draws from the implementation of a curricular unit focused on science-society dialogue, an optional course included in the Biochemistry Degree study plan offered at the University of Porto. This curricular unit was designed to be mostly an exploratory activity for the students, enabling them to undertake in-depth study in areas/topics of their specific interest. Mapping topics from students' final papers provided a means of analysis and became a useful tool in the exploratory collaborative construction of the course. We discuss both the relevance and the opportunity of thinking and questioning the science-society dialogue. As part of undergraduate training, this pedagogical practice was deemed successful. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):46-52, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  5. What's science? Where's science? Science journalism in German print media.

    Science.gov (United States)

    Summ, Annika; Volpers, Anna-Maria

    2016-10-01

    This article examines the current state of science coverage in German print media. It deals with the following questions: (1) how the main characteristics of science journalism can be described, (2) whether there is a difference between various scientific fields, and (3) how different definitions of science journalism lead to differing findings. Two forms of science coverage were analyzed in a standardized, two-part content analysis of German newspapers (N = 1730 and N = 1640). The results show a significant difference between a narrow and a broad definition of science journalism. In the classic understanding, science journalism is prompted by scientific events and is rather noncritical. Science coverage in a broad sense is defined by a wider range of journalistic styles, driven by non-scientific events, and with a focus on the statements of scientific experts. Furthermore, the study describes the specific role of the humanities and social sciences in German science coverage. © The Author(s) 2015.

  6. Wishful science: the persistence of T. D. Lysenko's agrobiology in the politics of science.

    Science.gov (United States)

    Roll-Hansen, Nils

    2008-01-01

    The suppression of genetics in Soviet Russia was the big scandal of twentieth-century science. It was also a test case for the role of scientists in a liberal democracy. The intellectual's perennial dilemma between scientific truthfulness and political loyalty was sharpened by acute ideological conflicts. The central topic of this essay is how the conflict was played out in Soviet agricultural and biological science in the 1930s and 1940s. The account is focused on the role of the then current Soviet science policy and its basic epistemic principles, the "unity of theory and practice" and the "practice criterion of truth".

  7. Staying in the science stream: patterns of participation in A-level science subjects in the UK.

    OpenAIRE

    Smith, Emma

    2011-01-01

    This paper describes patterns of participation and attainment in A-level physics, chemistry and biology from 1961 to 2009. The A-level has long been seen as an important gateway qualification for higher level study, particularly in the sciences. This long term overview examines how recruitment to these three subjects has changed in the context of numerous policies and initiatives that seek to retain more young people in the sciences. The results show that recruitment to the pure sciences has ...

  8. Bodies of science and law: forensic DNA profiling, biological bodies, and biopower.

    Science.gov (United States)

    Toom, Victor

    2012-01-01

    How is jurisdiction transferred from an individual's biological body to agents of power such as the police, public prosecutors, and the judiciary, and what happens to these biological bodies when transformed from private into public objects? These questions are examined by analysing bodies situated at the intersection of science and law. More specifically, the transformation of ‘private bodies’ into ‘public bodies’ is analysed by going into the details of forensic DNA profiling in the Dutch jurisdiction. It will be argued that various ‘forensic genetic practices’ enact different forensic genetic bodies'. These enacted forensic genetic bodies are connected with various infringements of civil rights, which become articulated in exploring these forensic genetic bodies’‘normative registers’.

  9. An evaluation of community college student perceptions of the science laboratory and attitudes towards science in an introductory biology course

    Science.gov (United States)

    Robinson, Nakia Rae

    The science laboratory is an integral component of science education. However, the academic value of student participation in the laboratory is not clearly understood. One way to discern student perceptions of the science laboratory is by exploring their views of the classroom environment. The classroom environment is one determinant that can directly influence student learning and affective outcomes. Therefore, this study sought to examine community college students' perceptions of the laboratory classroom environment and their attitudes toward science. Quantitative methods using two survey instruments, the Science Laboratory Environment Instrument (SLEI) and the Test of Science Related Attitudes (TORSA) were administered to measure laboratory perceptions and attitudes, respectively. A determination of differences among males and females as well as three academic streams were examined. Findings indicated that overall community college students had positive views of the laboratory environment regardless of gender of academic major. However, the results indicated that the opportunity to pursue open-ended activities in the laboratory was not prevalent. Additionally, females viewed the laboratory material environment more favorably than their male classmates did. Students' attitudes toward science ranged from favorable to undecided and no significant gender differences were present. However, there were significantly statistical differences between the attitudes of nonscience majors compared to both allied health and STEM majors. Nonscience majors had less positive attitudes toward scientific inquiry, adoption of scientific attitudes, and enjoyment of science lessons. Results also indicated that collectively, students' experiences in the laboratory were positive predicators of their attitudes toward science. However, no laboratory environment scale was a significant independent predictor of student attitudes. .A students' academic streams was the only significant

  10. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    My results indicate that levels of inbreeding in parasites are impacted by ... implications (e.g., the spread of recessive drug resistance genes) by directly impacting ... Department of Biological Sciences, Indian Institute of Science Education and ...

  11. Brewing Science

    Science.gov (United States)

    Pelter, Michael

    2006-01-01

    Following the brewing process from grain to glass, this course uses the biological and chemical principles of brewing to teach science to the nonscience major. Discussion of the scientific aspects of malting, mashing, fermentation, and the making of different beer styles is complemented by laboratory exercises that use scientific methods to…

  12. Bayesian solutions for food science problems?

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    2004-01-01

    This paper starts with an overview of some typical food-science problems. In view of the development of safe and healthy food, the use of mathematical models in food science is much needed and the use of statistics is therefore indispensable. Because of the biological variability in the raw

  13. African Journals Online: Biology & Life Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 71 ... African Journal for Physical Activity and Health Sciences ... in the promotion of scientific proceedings and publications in developing countries. ... and proteomics, food and agricultural technologies, and metabolic engineering. ... The African Journal of Chemical Education (AJCE) is a biannual online journal ...

  14. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  15. Computer - based modeling in extract sciences research -III ...

    African Journals Online (AJOL)

    Molecular modeling techniques have been of great applicability in the study of the biological sciences and other exact science fields like agriculture, mathematics, computer science and the like. In this write up, a list of computer programs for predicting, for instance, the structure of proteins has been provided. Discussions on ...

  16. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education Culture and Research (ACECR), 1936773493 Tehran, Iran; Department of Medical Genetics and Molecular Biology, Iran University of Medical Sciences, 1449614535 Tehran, Iran; Faculty of Medical Sciences, ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 8 ... On a model simulating lack of hydraulic connection between a man-made reservoir and the ... Depth of water in the reservoir varies as H'+h cos(ωt). ..... exchanges via riverbank filtration by hydrochemical and biological indicators, Assiut, Egypt.

  18. Offering a Forensic Science Camp to Introduce and Engage High School Students in Interdisciplinary Science Topics

    Science.gov (United States)

    Ahrenkiel, Linda; Worm-Leonhard, Martin

    2014-01-01

    In this article, we present details of a one-week interdisciplinary science camp for high school students in Denmark, "Criminal Camp". We describe the use of forensic science and simulated crimes as a common foundation for teaching the theory and practice of concepts in chemistry, physics, and medicine or biology. The main goal of the…

  19. Preservice Science Teachers' Science Teaching Orientations and Beliefs about Science

    Science.gov (United States)

    Kind, Vanessa

    2016-01-01

    This paper offers clarification of science teacher orientations as a potential component of pedagogical content knowledge. Science teaching orientations and beliefs about science held by 237 preservice science teachers were gathered via content-specific vignettes and questionnaire, respectively, prior to participation in a UK-based teacher…

  20. Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class

    Science.gov (United States)

    Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju

    2013-01-01

    The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…

  1. Formative science and indicial science: epistemological proposal for information science

    Directory of Open Access Journals (Sweden)

    Eliany Alvarenga de Araújo

    2006-07-01

    Full Text Available Epistemological reflections on the Information Science as scientific field that if structure in the context of modern science, in theoretical and methodological terms and technologies of the information in applied terms. Such configuration made possible the sprouting of this science; however we consider that the same one will not guarantee to this science the full development as field of consistent and modern knowledge. Modern Science, while scientific practical vision and meets depleted and the information technologies are only auto-regulated mechanisms that function according to principles of automatisms. To leave of these considerations we propols the concept of Formative Science (Bachelard, 1996 and the Indiciario Paradigm (1991 with epistemological basis for the Information Science. The concept of formative science if a base on the principles of tree states of the scientific spirit and the psychological condition of the scientific progress and the indiciario paradigm it considers the intuição (empirical and rational as methodological base to make it scientific.

  2. Sport science integration: An evolutionary synthesis.

    Science.gov (United States)

    Balagué, N; Torrents, C; Hristovski, R; Kelso, J A S

    2017-02-01

    The aim of the paper is to point out one way of integrating the supposedly incommensurate disciplines investigated in sports science. General, common principles can be found among apparently unrelated disciplines when the focus is put on the dynamics of sports-related phenomena. Dynamical systems approaches that have recently changed research in biological and social sciences among others, offer key concepts to create a common pluricontextual language in sport science. This common language, far from being homogenising, offers key synthesis between diverse fields, respecting and enabling the theoretical and experimental pluralism. It forms a softly integrated sports science characterised by a basic dynamic explanatory backbone as well as context-dependent theoretical flexibility. After defining the dynamic integration in living systems, unable to be captured by structural static approaches, we show the commonalities between the diversity of processes existing on different levels and time scales in biological and social entities. We justify our interpretation by drawing on some recent scientific contributions that use the same general principles and concepts, and diverse methods and techniques of data analysis, to study different types of phenomena in diverse disciplines. We show how the introduction of the dynamic framework in sport science has started to blur the boundaries between physiology, biomechanics, psychology, phenomenology and sociology. The advantages and difficulties of sport science integration and its consequences in research are also discussed.

  3. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  4. The Colorado Learning Attitudes about Science Survey (CLASS) for Use in Biology

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K.; Birol, Gülnur; Smith, Michelle K.

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology. PMID:21885823

  5. The Colorado Learning Attitudes about Science Survey (CLASS) for use in Biology.

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K; Birol, Gülnur; Smith, Michelle K

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology.

  6. USSR Space Life Sciences Digest, issue 13

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)

    1987-01-01

    This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.

  7. The faces of Big Science.

    Science.gov (United States)

    Schatz, Gottfried

    2014-06-01

    Fifty years ago, academic science was a calling with few regulations or financial rewards. Today, it is a huge enterprise confronted by a plethora of bureaucratic and political controls. This change was not triggered by specific events or decisions but reflects the explosive 'knee' in the exponential growth that science has sustained during the past three-and-a-half centuries. Coming to terms with the demands and benefits of 'Big Science' is a major challenge for today's scientific generation. Since its foundation 50 years ago, the European Molecular Biology Organization (EMBO) has been of invaluable help in meeting this challenge.

  8. Everyday science & science every day: Science-related talk & activities across settings

    Science.gov (United States)

    Zimmerman, Heather

    To understand the development of science-related thinking, acting, and learning in middle childhood, I studied youth in schools, homes, and other neighborhood settings over a three-year period. The research goal was to analyze how multiple everyday experiences influence children's participation in science-related practices and their thinking about science and scientists. Ethnographic and interaction analysis methodologies were to study the cognition and social interactions of the children as they participated in activities with peers, family, and teachers (n=128). Interviews and participant self-documentation protocols elucidated the participants' understandings of science. An Everyday Expertise (Bell et al., 2006) theoretical framework was employed to study the development of science understandings on three analytical planes: individual learner, social groups, and societal/community resources. Findings came from a cross-case analysis of urban science learners and from two within-case analyses of girls' science-related practices as they transitioned from elementary to middle school. Results included: (1) children participated actively in science across settings---including in their homes as well as in schools, (2) children's interests in science were not always aligned to the school science content, pedagogy, or school structures for participation, yet children found ways to engage with science despite these differences through crafting multiple pathways into science, (3) urban parents were active supporters of STEM-related learning environments through brokering access to social and material resources, (4) the youth often found science in their daily activities that formal education did not make use of, and (5) children's involvement with science-related practices can be developed into design principles to reach youth in culturally relevant ways.

  9. Nanoplasmonic sensors for biointerfacial science.

    Science.gov (United States)

    Jackman, Joshua A; Rahim Ferhan, Abdul; Cho, Nam-Joon

    2017-06-19

    In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of

  10. The academic qualification of sexual education in biological science at IFRO Campus Colorado Do Oeste/RO

    Directory of Open Access Journals (Sweden)

    Juliana Negrello Rossarolla

    2018-03-01

    Full Text Available This article gives evidence of results in an initial training offered to the students from the seventh semestre in Biological Sciences course at the Federal Institute in Education, Science and Technology of Rondônia - IFRO - CampusColoradodo Oeste. This activity was developed during the IX Environmental Week, an event that took place at Campus in June, 2016. During the activity, the academics in Biological Sciences course carried out mini-courses in which was approached the subject of human sexuality for four classes from the first year students in Agricultural Technical Course integrated to High School. After completing the activities of Sexual Education that dealt with some topics such as: early sexual initiation, STIs (sexually transmitted infections, homophobia, sexual harassment, media exposure, gender difference, contraceptive methods, among others and after all the data were collected. For that, the students answered a questionnaire about the subject on sexuality, the contributions of this practice is in order to discuss situations related to the subject. After the analysis, was checked a great relevance of the theme proposed for the initial qualification of academics in order to them approach the subject in a significant way to teenagers who attend the schools in which these academics will be able to develop their activities. It was checked out that students from the Agricultural Course integrated to High School who was developing the course have a very restricted index of information about the subject that was handled it. This can be a reality that reaches many young people who attend the Basic Education in many Brazilian schools. On the other hand, the information obtained gave the academics and teachers from the Biological Sciences Course moments of reflection about the inclusion of contents that contemplate this subject in the school curriculum of Basic Education and of the higher course that they attend, as well as the need of a

  11. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Fellowship; Associateship. Associate Profile. Period: 2014–2017. Kodandaramaiah, Dr. Ullasa Ph.D. (Stockholm). Date of birth: 1 November 1981. Specialization: Evolutionary Biology, Ecology Address: School of Biology, Indian Inst. of Science Education & Research, CET College Campus, Thiruvananthapuram 695 ...

  12. WikiScience: Wikipedia for science and technology

    OpenAIRE

    Aibar Puentes, Eduard

    2015-01-01

    Peer-reviewed Presentació de la conferència "WikiScience: Wikipedia for science and technology". Presentación de la conferencia "WikiScience: Wikipedia for science and technology". Presentation of the conference "Science Wiki: Wikipedia for science and technology".

  13. New fellows | Announcements | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Aninda J Bhattacharyya, Indian Institute of Science, Bengaluru; Suvendra N Bhattacharyya, CSIR-Indian Institute of Chemical Biology, Kolkata; Mitali Chatterjee, Institute of Postgraduate Medical Education & Research, Kolkata; Prasanta K Das, Indian Association for the Cultivation of Science, Kolkata; Swapan K Datta, ...

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Science Academies' Refresher Course on Paradigms and Applications of Pattern Recognition in Image Processing and Computer Vision · More Details Fulltext PDF. pp 1101-1101 Information and Announcements. Science Academies' Refresher Course on Cell and Molecular Biology Techniques · More Details Fulltext PDF.

  15. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  16. The scientific production in health and biological sciences of the top 20 Brazilian universities

    Directory of Open Access Journals (Sweden)

    R. Zorzetto

    2006-12-01

    Full Text Available Brazilian scientific output exhibited a 4-fold increase in the last two decades because of the stability of the investment in research and development activities and of changes in the policies of the main funding agencies. Most of this production is concentrated in public universities and research institutes located in the richest part of the country. Among all areas of knowledge, the most productive are Health and Biological Sciences. During the 1998-2002 period these areas presented heterogeneous growth ranging from 4.5% (Pharmacology to 191% (Psychiatry, with a median growth rate of 47.2%. In order to identify and rank the 20 most prolific institutions in these areas, searches were made in three databases (DataCAPES, ISI and MEDLINE which permitted the identification of 109,507 original articles produced by the 592 Graduate Programs in Health and Biological Sciences offered by 118 public universities and research institutes. The 20 most productive centers, ranked according to the total number of ISI-indexed articles published during the 1998-2003 period, produced 78.7% of the papers in these areas and are strongly concentrated in the Southern part of the country, mainly in São Paulo State.

  17. Space life sciences strategic plan

    Science.gov (United States)

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  18. Physics of the Life Sciences

    CERN Document Server

    Newman, Jay

    2008-01-01

    Originally developed for the author's course at Union College, this text is designed for life science students who need to understand the connections of fundamental physics to modern biology and medicine. Almost all areas of modern life sciences integrally involve physics in both experimental techniques and in basic understanding of structure and function. Physics of the Life Sciences is not a watered-down, algebra-based engineering physics book with sections on relevant biomedical topics added as an afterthought. This authoritative and engaging text, which is designed to be covered in a two-semester course, was written with a thoroughgoing commitment to the needs and interests of life science students. Although covering most of the standard topics in introductory physics in a more or less traditional sequence, the author gives added weight and space to concepts and applications of greater relevance to the life sciences. Students benefit from occasional sidebars using calculus to derive fundamental relations,...

  19. Achieving open access to conservation science.

    Science.gov (United States)

    Fuller, Richard A; Lee, Jasmine R; Watson, James E M

    2014-12-01

    Conservation science is a crisis discipline in which the results of scientific enquiry must be made available quickly to those implementing management. We assessed the extent to which scientific research published since the year 2000 in 20 conservation science journals is publicly available. Of the 19,207 papers published, 1,667 (8.68%) are freely downloadable from an official repository. Moreover, only 938 papers (4.88%) meet the standard definition of open access in which material can be freely reused providing attribution to the authors is given. This compares poorly with a comparable set of 20 evolutionary biology journals, where 31.93% of papers are freely downloadable and 7.49% are open access. Seventeen of the 20 conservation journals offer an open access option, but fewer than 5% of the papers are available through open access. The cost of accessing the full body of conservation science runs into tens of thousands of dollars per year for institutional subscribers, and many conservation practitioners cannot access pay-per-view science through their workplace. However, important initiatives such as Research4Life are making science available to organizations in developing countries. We urge authors of conservation science to pay for open access on a per-article basis or to choose publication in open access journals, taking care to ensure the license allows reuse for any purpose providing attribution is given. Currently, it would cost $51 million to make all conservation science published since 2000 freely available by paying the open access fees currently levied to authors. Publishers of conservation journals might consider more cost effective models for open access and conservation-oriented organizations running journals could consider a broader range of options for open access to nonmembers such as sponsorship of open access via membership fees. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for

  20. High School Science Teachers' Views on Science Process Skills

    Science.gov (United States)

    Gultepe, Nejla

    2016-01-01

    The current research is a descriptive study in which a survey model was used. The research involved chemistry (n = 26), physics (n = 27), and biology (n = 29) teachers working in Science High Schools and Anatolian High Schools in Turkey. An inventory that consisted of seven questions was designed to ascertain what teachers' think about the…

  1. Where civics meets science: building science for the public good through Civic Science.

    Science.gov (United States)

    Garlick, J A; Levine, P

    2017-09-01

    Public understanding of science and civic engagement on science issues that impact contemporary life matter more today than ever. From the Planned Parenthood controversy, to the Flint water crisis and the fluoridation debate, societal polarization about science issues has reached dramatic levels that present significant obstacles to public discussion and problem solving. This is happening, in part, because systems built to support science do not often reward open-minded thinking, inclusive dialogue, and moral responsibility regarding science issues. As a result, public faith in science continues to erode. This review explores how the field of Civic Science can impact public work on science issues by building new understanding of the practices, influences, and cultures of science. Civic Science is defined as a discipline that considers science practice and knowledge as resources for civic engagement, democratic action, and political change. This review considers how Civic Science informs the roles that key participants-scientists, public citizens and institutions of higher education-play in our national science dialogue. Civic Science aspires to teach civic capacities, to inform the responsibilities of scientists engaged in public science issues and to inspire an open-minded, inclusive dialogue where all voices are heard and shared commitments are acknowledged. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Elected: 2010 Section: Plant Sciences. Khurana, Prof. Paramjit Ph.D. (Delhi), FNASc, FNA, FNAAS, FTWAS. Date of birth: 15 August 1956. Specialization: Plant Biotechnology, Plant Genomics, Plant Developmental Biology Address: Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez ...

  3. NASA/MSFC/NSSTC Science Communication Roundtable

    Science.gov (United States)

    Adams, Mitzi L.; Gallagher, D. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Science stories cover a variety of space-related subjects and are expressed in simple terms everyone can understand. The sites address such questions as: what is space weather, what's in the heart of a hurricane, can humans live on Mars, and what is it like to live aboard the International Space Station? Along with a new look, the new format now offers articles organized by subject matter, such as astronomy, living in space, earth science or biology. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Information will be provided about each member of the Science@NASA web sites.

  4. BioSIGHT: Interactive Visualization Modules for Science Education

    Science.gov (United States)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high- speed network capabilities. The BioSIGHT project at IMSC is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches towards the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross

  5. Portraying Real Science in Science Communication

    Science.gov (United States)

    van Dijk, Esther M.

    2011-01-01

    In both formal and informal settings, not only science but also views on the nature of science are communicated. Although there probably is no singular nature shared by all fields of science, in the field of science education it is commonly assumed that on a certain level of generality there is a consensus on many features of science. In this…

  6. Defining Integrated Science Education and Putting It to Test

    OpenAIRE

    Åström, Maria

    2008-01-01

    The thesis is made up by four studies, on the comprehensive theme of integrated and subject-specific science education in Swedish compulsory school. A literature study on the matter is followed by an expert survey, then a case study and ending with two analyses of students' science results from PISA 2003 and PISA 2006. The first two studies explore similarities and differences between integrated and subject-specific science education, i.e. Science education and science taught as Biology, Chem...

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Integrated Ph. D. Programme in Biological, Chemical and Physical Sciences at Indian Institute of Sciences Introductory Summer School on Astronomy and Astrophysics. Information and Announcements Volume 1 Issue 2 February 1996 pp 121- ...

  8. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  9. Predictors of student success in entry-level science courses

    Science.gov (United States)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses

  10. Secondary science teachers' attitudes toward and beliefs about science reading and science textbooks

    Science.gov (United States)

    Yore, Larry D.

    Science textbooks are dominant influences behind most secondary science instruction but little is known about teachers' approach to science reading. The purpose of this naturalistic study was to develop and validate a Science and Reading Questionnaire to assess secondary science teachers' attitudes toward science reading and their beliefs or informed opinions about science reading. A survey of 428 British Columbia secondary science teachers was conducted and 215 science teachers responded. Results on a 12-item Likert attitude scale indicated that teachers place high value on reading as an important strategy to promote learning in science and that they generally accept responsibility for teaching content reading skills to science students. Results on a 13-item Likert belief scale indicated that science teachers generally reject the text-driven model of reading, but they usually do not have well-formulated alternative models to guide their teaching practices. Teachers have intuitive beliefs about science reading that partially agree with many research findings, but their beliefs are fragmented and particularly sketchy in regard to the cognitive and metacognitive skills required by readers to learn from science texts. The findings for attitude, belief, and total scales were substantiated by further questions in the Science and Reading Questionnaire regarding classroom practice and by individual interviews and classroom observations of a 15-teacher subsample of the questionnaire respondents.

  11. The General Philosophy Behind the New Integrated and Co-ordinated Science Courses in N.S.W. and the Science Foundation for Physics Textbook Series.

    Science.gov (United States)

    Messel, H.; Barker, E. N.

    Described are the science syllabuses and texts for the science courses written to fulfill the aims of the new system of education in the state of New South Wales, Australia. The science course was developed in two stages: (1) A four year integrated science syllabus for grades 7-10, and (2) separate courses in physics, chemistry, and biology with…

  12. The Structure and Infrastructure of Chinese Science and Technology

    Science.gov (United States)

    2006-01-01

    Series C-Life Sciences 38 Theoretical And Applied Genetics 32 Journal Of Forensic Sciences 31 Febs Letters 31 Acta Botanica Sinica 30 Protein...A1-18 – Journals Containing Most Crops Papers JOURNAL #PAPERS Acta Botanica Sinica 233 Chinese Science Bulletin 128 Theoretical And Applied...physiological VEGETABLES; QUALITY; ACTA BOTANICA SINICA BIOLOGICAL & MEDICAL SCIENCES STRESS PHYSIOLOGY 6.3 5 2 19 16 212 To extract v Investiga

  13. Basic Energy Sciences: Summary of Accomplishments

    Science.gov (United States)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  14. Perception of Science Standards' Effectiveness and Their Implementation by Science Teachers

    Science.gov (United States)

    Klieger, Aviva; Yakobovitch, Anat

    2011-06-01

    The introduction of standards into the education system poses numerous challenges and difficulties. As with any change, plans should be made for teachers to understand and implement the standards. This study examined science teachers' perceptions of the effectiveness of the standards for teaching and learning, and the extent and ease/difficulty of implementing science standards in different grades. The research used a mixed methods approach, combining qualitative and quantitative research methods. The research tools were questionnaires that were administered to elementary school science teachers. The majority of the teachers perceived the standards in science as effective for teaching and learning and only a small minority viewed them as restricting their pedagogical autonomy. Differences were found in the extent of implementation of the different standards and between different grades. The teachers perceived a different degree of difficulty in the implementation of the different standards. The standards experienced as easiest to implement were in the field of biology and materials, whereas the standards in earth sciences and the universe and technology were most difficult to implement, and are also those evaluated by the teachers as being implemented to the least extent. Exposure of teachers' perceptions on the effectiveness of standards and the implementation of the standards may aid policymakers in future planning of teachers' professional development for the implementation of standards.

  15. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments.

    Science.gov (United States)

    Drinkwater, Michael J; Matthews, Kelly E; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. © 2017 M. J. Drinkwater et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Fellowship; Associateship. Associate Profile. Period: 2017–2020. Sinha, Dr Devanjan Ph.D. (IISc). Date of birth: 7 October 1984. Specialization: Mitochondria Biology, Drug Resistance, Stress Biology Address: Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, U.P.. Contact:

  17. Epidemiological and radio-biological studies in high background radiation areas of Kerala coast: implications in radiation protection science and human health

    International Nuclear Information System (INIS)

    Das, Birajalaxmi

    2018-01-01

    Till date, Linear No Threshold hypothesis (LNT) is well accepted in radiation protection science in spite of its limitations. However, dose response studies using multiple biological end points from high-background radiation areas have challenged the linearity. Radio-biological and epidemiological studies from high level natural radiation areas of Kerala coast showed non-linearity as well as efficient repair of DNA damage in HLNRA indicating that dose limits for public exposure needs to be revisited which may have implications in radiation protection science, human health and low dose radiation biology. However, further studies using high throughput approach is required to identify chronic radiation signatures in human population exposed to elevated level of natural background radiation

  18. Impact of Cybernetics on Information Science, and Vice Versa.

    Science.gov (United States)

    Heilprin, Laurence B.

    The impact of cybernetics on information science occurs chiefly through the concepts of variety, the law of requisite variety, and theory of transformations. Through these it pervades every aspect of information science. However, other basic sciences such as physics, biology, psychology are in their spheres equally pervasive, and information…

  19. Using the Theme of Mass Extinctions to Teach Science to Non-Science Major College and University Students

    Science.gov (United States)

    Boness, D. A.

    2013-12-01

    The general public is heavily exposed to "news" and commentary---and arts and entertainment---that either inadvertently misrepresents science or even acts to undermine it. Climate change denial and evolution denial is well funded and pervasive. Even university-educated people get little exposure to the aims, methods, debates, and results of scientific inquiry because unless they earn degrees in science they typically only take one or two introductory science courses at the university level. This presentation reports the development of a new, non-science major Seattle University course on mass extinctions throughout earth history. Seattle University is an urban, Jesuit Catholic university. The topic of mass extinctions was chosen for several reasons: (1) To expose the students to a part of current science that has rich historical roots yet by necessity uses methods and reasoning from geology, geophysics, oceanography, physics, chemistry, biology, and astronomy. This multidisciplinary course provides some coverage of sciences that the student would not typically ever see beyond secondary school. (2) To enable the students to learn enough to follow some of the recent and current debates within science (e.g., mass extinctions by asteroid impact versus massive volcanism, ocean anoxia, and ocean acidification), with the students reading some of the actual literature, such as articles in Science, Nature, or Nature Geoscience. (3) To emphasize the importance of "deep time" as evolutionary biological processes interact with massive environmental change over time scales from hundreds of millions of years down to the seconds and hours of an asteroid or comet strike. (4) To show the effects of climate change in the past, present, and future, due to both natural and anthropogenic causes. (5) To help the student critically evaluate the extent to which their future involves a human-caused mass extinction.

  20. Professionality of Junior High School (SMP) Science Teacher in Preparing Instructional Design of Earth and Space Sciences (IPBA)

    Science.gov (United States)

    Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.

    2017-02-01

    The teacher is one important factor in the provision of education in schools. Therefore, improving the quality of education means we need to enhance the quality and the professionalism of teachers. We offer a solution through education and training of junior high school science teachers in developing the instructional design of Earth and Space Sciences (IPBA). IPBA is part of the science subjects which is given to students from elementary school to college. This research is a preliminary study of junior high school science teacher professionalism in creating instructional design IPBA. Mixed method design is used to design the research. Preliminary studies conducted on junior high school science teacher in one MGMPs in South Sumatera, and the respondent are 18 teachers from 13 schools. The educational background of science teachers who teach IPBA not only from physical education but also biology and agriculture. The result of preliminary study showed that the ratio of teachers who teach IPBA are 56% from physic education, 39% from biology, and 5% from agriculture. The subjects of IPBA that considered difficult by teachers are the distribution of sun, moon, and satellite motion; specific processes in lithosphere and atmosphere; and the correlation between lithosphere and atmosphere with the environment. The teachers also face difficulty in preparing media, choosing the right methods in teaching IPBA.

  1. International Conference on Environment Science (ICES 2012)

    CERN Document Server

    Advances in Computational Environment Science

    2012-01-01

    2012 International Conference on Environment Science and 2012 International Conference on Computer Science (ICES 2012/ICCS 2012) will be held in Australia, Melbourne, 15‐16 March, 2012.Volume 1 contains some new results in computational environment science. There are 47 papers were selected as the regular paper in this volume. It contains the latest developments and reflects the experience of many researchers working in different environments (universities, research centers or even industries), publishing new theories and solving new technological problems on computational environment science.   The purpose of volume 1 is interconnection of diverse scientific fields, the cultivation of every possible scientific collaboration, the exchange of views and the promotion of new research targets as well as the further dissemination, the dispersion, the diffusion of the environment science, including but not limited to Ecology, Physics, Chemistry, Biology, Soil Science, Geology, Atmospheric Science and Geography �...

  2. Office of Basic Energy Sciences: 1984 summary report

    International Nuclear Information System (INIS)

    1984-11-01

    Subprograms of the OBES discussed in this document include: materials sciences, chemical sciences, nuclear sciences, engineering and geosciences, advanced energy projects, biological energy research, carbon dioxide research, HFBR, HFIR, NSLS, SSRL, IPNS, Combustion Research Facility, high-voltage and atomic resolution electron microscopic facilities, Oak Ridge Electron Linear Accelerator, Dynamitron Accelerator, calutrons, and Transuranium Processing Plant. Nickel aluminide and glassy metals are discussed

  3. A Programme-Wide Training Framework to Facilitate Scientific Communication Skills Development amongst Biological Sciences Masters Students

    Science.gov (United States)

    Divan, Aysha; Mason, Sam

    2016-01-01

    In this article we describe the effectiveness of a programme-wide communication skills training framework incorporated within a one-year biological sciences taught Masters course designed to enhance the competency of students in communicating scientific research principally to a scientific audience. In one class we analysed the numerical marks…

  4. Reducing Unintentional Plagiarism amongst International Students in the Biological Sciences: An Embedded Academic Writing Development Programme

    Science.gov (United States)

    Divan, Aysha; Bowman, Marion; Seabourne, Anna

    2015-01-01

    There is general agreement in the literature that international students are more likely to plagiarise compared to their native speaker peers and, in many instances, plagiarism is unintentional. In this article we describe the effectiveness of an academic writing development programme embedded into a Biological Sciences Taught Masters course…

  5. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Specialization: Condensed Matter Theory, Biological Physics, Statistical Physics ..... Nanomechanics, Thin Films & Self-Organization, Colloid & Interface Science and .... Specialization: Specification & Verification, Real-Time Programs, Logic ...

  6. Molecular science for drug development and biomedicine.

    Science.gov (United States)

    Zhong, Wei-Zhu; Zhou, Shu-Feng

    2014-11-04

    With the avalanche of biological sequences generated in the postgenomic age, molecular science is facing an unprecedented challenge, i.e., how to timely utilize the huge amount of data to benefit human beings. Stimulated by such a challenge, a rapid development has taken place in molecular science, particularly in the areas associated with drug development and biomedicine, both experimental and theoretical. The current thematic issue was launched with the focus on the topic of "Molecular Science for Drug Development and Biomedicine", in hopes to further stimulate more useful techniques and findings from various approaches of molecular science for drug development and biomedicine.[...].

  7. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research

  8. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Science.gov (United States)

    2012-09-11

    ... Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics... the Applied Science Advisory Group. This Subcommittee reports to the Earth Science Subcommittee... following topics: --Applied Sciences Program Update --Earth Science Data Latency Study Preliminary Update...

  9. The wow-effect in science teacher education

    Science.gov (United States)

    Kamstrupp, Anne Katrine

    2016-12-01

    This article explores the wow- effect as a phenomenon in science teacher education. Through ethnographic fieldwork at a teachers' college in Denmark, the author encounters a phenomenon enacted in a particular way of teaching that wows the students. The students are in the process of becoming natural science/technology and biology teachers. This article explores and theorizes the wow-effect by examining tension fields within the phenomenon between boredom and engagement, new and old technologies, and being active and sedentary. By situating this phenomenon in a discussion of theory and practice in teacher education, the author discusses how teaching according to the wow-effect is both engaging for the students as well as problematic in relation to learning certain theoretical aspects of natural science/technology and biology.

  10. The wow-effect in science teacher education

    DEFF Research Database (Denmark)

    Kamstrup, Anne Katrine

    2016-01-01

    This article explores the wow-effect as a phenomenon in science teacher education. Through ethnographic fieldwork at a teachers’ college in Denmark, the author encounters a phenomenon enacted in a particular way of teaching that wows the students. The students are in the process of becoming natural...... in teacher education, the author discusses how teaching according to the wow-effect is both engaging for the students as well as problematic in relation to learning certain theoretical aspects of natural science/technology and biology....... science/technology and biology teachers. This article explores and theorizes the wow-effect by examining tension fields within the phenomenon between boredom and engagement, new and old technologies, and being active and sedentary. By situating this phenomenon in a discussion of theory and practice...

  11. Interfacial and Surface Science | Materials Science | NREL

    Science.gov (United States)

    Science group within the Material Science Center. He oversees research studies of surfaces and interfaces Interfacial and Surface Science Interfacial and Surface Science Image of irregular-outlined, light address a broad range of fundamental and applied issues in surface and interfacial science that are

  12. National Center for Mathematics and Science - links to related sites

    Science.gov (United States)

    Mathematics and Science (NCISLA) HOME | WHAT WE DO | K-12 EDUCATION RESEARCH | PUBLICATIONS | TEACHER Modeling Middle School Mathematics National Association of Biology Teachers National Association for Mathematics National Science Teachers Assocation Show-Me Center Summit on Science TERC - Weaving Gender Equity

  13. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  14. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  15. Science Olympiad students' nature of science understandings

    Science.gov (United States)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  16. Applications of Nuclear Science for Stewardship Science

    International Nuclear Information System (INIS)

    Cizewski, Jolie A

    2013-01-01

    Stewardship science is research important to national security interests that include stockpile stewardship science, homeland security, nuclear forensics, and non-proliferation. To help address challenges in stewardship science and workforce development, the Stewardship Science Academic Alliances (SSAA) was inaugurated ten years ago by the National Nuclear Security Administration of the U. S. Department of Energy. The goal was to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper presents an overview of recent research in low-energy nuclear science supported by the Stewardship Science Academic Alliances and the applications of this research to stewardship science.

  17. In search of the soul in science: medical ethics' appropriation of philosophy of science in the 1970s.

    Science.gov (United States)

    Aronova, Elena

    2009-01-01

    This paper examines the deployment of science studies within the field of medical ethics. For a short time, the discourse of medical ethics became a fertile ground for a dialogue between philosophically minded bioethicists and the philosophers of science who responded to Thomas Kuhn's challenge. In their discussion of the validity of Kuhn's work, these bioethicists suggested a distinct interpretation of Kuhn, emphasizing the elements in his account that had been independently developed by Michael Polanyi, and propelling a view of science that retreated from idealizations of scientific method without sacrificing philosophical realism. Appropriating Polanyi, they extended his account of science to biology and medicine. The contribution of Karl Popper to the debate on the applicability of philosophy of science to the issues of medical ethics provides the opportunity to discuss the ways in which political agendas of different epistemologies of science intertwined with questions of concern to medical ethics.

  18. A Computer-Based Instrument That Identifies Common Science Misconceptions

    Science.gov (United States)

    Larrabee, Timothy G.; Stein, Mary; Barman, Charles

    2006-01-01

    This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…

  19. Control of Chaos: New Perspectives in Experimental and Theoretical Science. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering. Theme Issue. Part 1. Volume 8, Number 8, August 1998

    National Research Council Canada - National Science Library

    Arecchi, F

    1998-01-01

    .... In every field of the applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, zoology, etc.) and engTheenng...

  20. Fascinating! Popular Science Communication and Literary Science Fiction

    DEFF Research Database (Denmark)

    Meyer, Gitte

    2017-01-01

    Some see literary Science Fiction as a possible vehicle for critical discussions about the future development and the ethical implications of science-based technologies. According to that understanding, literary Science Fiction constitutes a variety of science communication. Along related lines, ......, popular science communication with science fiction features might be expected to serve a similar purpose. Only, it is far from obvious that it actually works that way.......Some see literary Science Fiction as a possible vehicle for critical discussions about the future development and the ethical implications of science-based technologies. According to that understanding, literary Science Fiction constitutes a variety of science communication. Along related lines...

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    2016 Nobel Prize in Chemistry: Conferring Molecular Machines as Engines of Creativity ... Science Academies' 92nd Refresher Course in Experimental Physics ... Science Academies' Refresher Course on Advances in Molecular Biology.

  2. Biological and Environmental Research Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Biological and Environmental Research, March 28-31, 2016, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Arkin, Adam [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bader, David C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aluru, Srinivas [Georgia Inst. of Technology, Atlanta, GA (United States); Andersen, Amity [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Aprá, Edoardo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Azad, Ariful [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bates, Susan [National Center for Atmospheric Research, Boulder, CO (United States); Blaby, Ian [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaby-Haas, Crysten [Brookhaven National Lab. (BNL), Upton, NY (United States); Bonneau, Rich [New York Univ. (NYU), NY (United States); Bowen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bradford, Mark A. [Yale Univ., New Haven, CT (United States); Brodie, Eoin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, James (Ben) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bernholdt, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bylaska, Eric [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Calvin, Kate [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cannon, Bill [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, Xingyuan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cheng, Xiaolin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheung, Margaret [Univ. of Houston, Houston, TX (United States); Chowdhary, Kenny [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Compo, Gil [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Crowley, Mike [National Renewable Energy Lab. (NREL), Golden, CO (United States); Debusschere, Bert [Sandia National Lab. (SNL-CA), Livermore, CA (United States); D’Imperio, Nicholas [Brookhaven National Lab. (BNL), Upton, NY (United States); Dror, Ron [Stanford Univ., Stanford, CA (United States); Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Friedberg, Iddo [Iowa State Univ., Ames, IA (United States); Fyke, Jeremy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Zheng [Stony Brook Univ., Stony Brook, NY (United States); Georganas, Evangelos [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Giraldo, Frank [Naval Postgraduate School, Monterey, CA (United States); Gnanakaran, Gnana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Govind, Niri [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Grandy, Stuart [Univ. of New Hampshire, Durham, NH (United States); Gustafson, Bill [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hammond, Glenn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hargrove, William [USDA Forest Service, Washington, D.C. (United States); Heroux, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Forrest [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hofmeyr, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hunke, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jackson, Charles [Univ. of Texas-Austin, Austin, TX (United States); Jacob, Rob [Argonne National Lab. (ANL), Argonne, IL (United States); Jacobson, Dan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobson, Matt [Univ. of California, San Francisco, CA (United States); Jain, Chirag [Georgia Inst. of Technology, Atlanta, GA (United States); Johansen, Hans [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Johnson, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jones, Andy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jones, Phil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kalyanaraman, Ananth [Washington State Univ., Pullman, WA (United States); Kang, Senghwa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); King, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Koanantakool, Penporn [Univ. of California, Berkeley, CA (United States); Kollias, Pavlos [Stony Brook Univ., Stony Brook, NY (United States); Kopera, Michal [Univ. of California, Santa Cruz, CA (United States); Kotamarthi, Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Kowalski, Karol [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Kumar, Jitendra [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kyrpides, Nikos [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xiaolin [Stony Brook Univ., Stony Brook, NY (United States); Lin, Wuyin [Brookhaven National Lab. (BNL), Upton, NY (United States); Link, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Yangang [Brookhaven National Lab. (BNL), Upton, NY (United States); Loew, Leslie [Univ. of Connecticut, Storrs, CT (United States); Luke, Edward [Brookhaven National Lab. (BNL), Upton, NY (United States); Ma, Hsi -Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mahadevan, Radhakrishnan [Univ. of Toronto, Toronto, ON (Canada); Maranas, Costas [Pennsylvania State Univ., University Park, PA (United States); Martin, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States); McCue, Lee Ann [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McInnes, Lois Curfman [Argonne National Lab. (ANL), Argonne, IL (United States); Mills, Richard [Intel Corp., Santa Clara, CA (United States); Molins Rafa, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morozov, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mostafavi, Sara [Center for Molecular Medicine and Therapeutics, Vancouver, BC (Canada); Moulton, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mourao, Zenaida [Univ. of Cambridge (United Kingdom); Najm, Habib [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ng, Bernard [Center for Molecular Medicine and Therapeutics, Vancouver, BC (Canada); Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Norman, Matt [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oh, Sang -Yun [Univ. of California, Santa Barbara, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Chongle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pass, Rebecca [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pau, George S. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Petridis, Loukas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Prakash, Giri [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Price, Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Randall, David [Colorado State Univ., Fort Collins, CO (United States); Renslow, Ryan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riihimaki, Laura [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ringler, Todd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roberts, Andrew [Naval Postgraduate School, Monterey, CA (United States); Rokhsar, Dan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ruebel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Salinger, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scheibe, Tim [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schulz, Roland [Intel, Mountain View, CA (United States); Sivaraman, Chitra [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sreepathi, Sarat [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Talbot, Jenifer [Boston Univ., Boston, MA (United States); Tantillo, D. J. [Univ. of California, Davis, CA (United States); Tartakovsky, Alex [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taylor, Ronald [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Urban, Nathan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valiev, Marat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Wagner, Allon [Univ. of California, Berkeley, CA (United States); Wainwright, Haruko [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wieder, Will [NCAR/Univ. of Colorado, Boulder, CO (United States); Wiley, Steven [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Dean [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Worley, Pat [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xie, Shaocheng [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yelick, Kathy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yoo, Shinjae [Brookhaven National Lab. (BNL), Upton, NY (United States); Yosef, Niri [Univ. of California, Berkeley, CA (United States); Zhang, Minghua [Stony Brook Univ., Stony Brook, NY (United States)

    2016-03-31

    Understanding the fundamentals of genomic systems or the processes governing impactful weather patterns are examples of the types of simulation and modeling performed on the most advanced computing resources in America. High-performance computing and computational science together provide a necessary platform for the mission science conducted by the Biological and Environmental Research (BER) office at the U.S. Department of Energy (DOE). This report reviews BER’s computing needs and their importance for solving some of the toughest problems in BER’s portfolio. BER’s impact on science has been transformative. Mapping the human genome, including the U.S.-supported international Human Genome Project that DOE began in 1987, initiated the era of modern biotechnology and genomics-based systems biology. And since the 1950s, BER has been a core contributor to atmospheric, environmental, and climate science research, beginning with atmospheric circulation studies that were the forerunners of modern Earth system models (ESMs) and by pioneering the implementation of climate codes onto high-performance computers. See http://exascaleage.org/ber/ for more information.

  3. Exploring science through science fiction

    CERN Document Server

    Luokkala, Barry B

    2014-01-01

    How does Einstein’s description of space and time compare with Dr. Who? Can James Bond really escape from an armor-plated railroad car by cutting through the floor with a laser concealed in a wristwatch? What would it take to create a fully-intelligent android, such as Star Trek’s Commander Data? How might we discover intelligent civilizations on other planets in the galaxy? Is human teleportation possible? Will our technological society ever reach the point at which it becomes lawful to discriminate on the basis of genetic information, as in the movie GATTACA? Exploring Science Through Science Fiction addresses these and other interesting questions, using science fiction as a springboard for discussing fundamental science concepts and cutting-edge science research. The book is designed as a primary text for a college-level course which should appeal to students in the fine arts and humanities as well as to science and engineering students. It includes references to original research papers, landmark scie...

  4. APPLICATION OF FORENSIC SCIENCE TECHNIQUES IN CRIME SCENE INVESTIGATION

    OpenAIRE

    Gayathri.S*

    2018-01-01

    Forensic Science means the application of science to those criminal and civil laws that are enforced by the police agencies in a criminal justice system .Forensic Science plays a vital role in the criminal justice system by providing scientifically based information through the analysis of physical evidence. It involves the use of multiple disciplines such as physics, chemistry, biology, computer science and engineering for evidence analysis. In this paper I would like to analysis how...

  5. Science Learning Motivation as Correlate of Students' Academic Performances

    Science.gov (United States)

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P., Jr.; Dupa, Maria Elena D.; Bautista, Romiro G.

    2016-01-01

    This study was designed to analyze the relationship of students' learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of…

  6. Towards Analysis of the Status of Science Technology Engineering ...

    African Journals Online (AJOL)

    This has been the case at both 'O' and 'A' levels. There is also a noticeable decline in enrolment statistics in STEM related subjects as the level of education increases. Within the sciences, at 'O' level, integrated science has high number of entries whilst pure science subjects such as biology, chemistry, physics and ...

  7. A Community College Instructor's Reflective Journey Toward Developing Pedagogical Content Knowledge for Nature of Science in a Non-majors Undergraduate Biology Course

    Science.gov (United States)

    Krajewski, Sarah J.; Schwartz, Renee

    2014-08-01

    Research supports an explicit-reflective approach to teaching about nature of science (NOS), but little is reported on teachers' journeys as they attempt to integrate NOS into everyday lessons. This participatory action research paper reports the challenges and successes encountered by an in-service teacher, Sarah, implementing NOS for the first time throughout four units of a community college biology course (genetics, molecular biology, evolution, and ecology). Through the action research cycles of planning, implementing, and reflecting, Sarah identified areas of challenge and success. This paper reports emergent themes that assisted her in successfully embedding NOS within the science content. Data include weekly lesson plans and pre/post reflective journaling before and after each lesson of this lecture/lab combination class that met twice a week. This course was taught back to back semesters, and this study is based on the results of a year-long process. Developing pedagogical content knowledge (PCK) for NOS involves coming to understand the overlaps and connections between NOS, other science subject matter, pedagogical strategies, and student learning. Sarah found that through action research she was able to grow and assimilate her understanding of NOS within the biology content she was teaching. A shift in orientation toward teaching products of science to teaching science processes was a necessary shift for NOS pedagogical success. This process enabled Sarah's development of PCK for NOS. As a practical example of putting research-based instructional recommendations into practice, this study may be very useful for other teachers who are learning to teach NOS.

  8. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  9. The Double Helix: Why Science Needs Science Fiction.

    Science.gov (United States)

    Andreadis, Athena

    2003-01-01

    Discusses why science needs science fiction, commenting on the author's book about science that draws heavily on the "Star Trek" series. The best science, in spite of popular thinking, comes from leaps of intuition, and science fiction provides a creative spark that encourages participation in science. (SLD)

  10. Life sciences: Lawrence Berkeley Laboratory, 1988

    International Nuclear Information System (INIS)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs

  11. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  12. Evolving political science. Biological adaptation, rational action, and symbolism.

    Science.gov (United States)

    Tingley, Dustin

    2006-01-01

    Political science, as a discipline, has been reluctant to adopt theories and methodologies developed in fields studying human behavior from an evolutionary standpoint. I ask whether evolutionary concepts are reconcilable with standard political-science theories and whether those concepts help solve puzzles to which these theories classically are applied. I find that evolutionary concepts readily and simultaneously accommodate theories of rational choice, symbolism, interpretation, and acculturation. Moreover, phenomena perennially hard to explain in standard political science become clearer when human interactions are understood in light of natural selection and evolutionary psychology. These phenomena include the political and economic effects of emotion, status, personal attractiveness, and variations in information-processing and decision-making under uncertainty; exemplary is the use of "focal points" in multiple-equilibrium games. I conclude with an overview of recent research by, and ongoing debates among, scholars analyzing politics in evolutionarily sophisticated terms.

  13. Book Review: Signs of Science - Linguistics meets Biology

    Directory of Open Access Journals (Sweden)

    Robert Prinz

    2011-06-01

    Full Text Available „Biosemiotics“ is an integrative and interdisciplinary research effort that investigates living systems with concepts borrowed from linguistics and the communication sciences. Life is seen as an entanglement of communicative processes relating entities with each other by defined rules. Those “rules” are the very heart of (biosemiotic analysis. A hallmark of life is the existence of rules that are very different from natural laws. We can find such rules embedded in the genetic code, for example, where a transfer RNA relates a codon in mRNA to an amino acid. Nevertheless, it could have evolved in another way as well as genetic code engineering shows. Apparently arbitrary relationships are inherent to all levels of biological organization: from cells to organisms. Parts are connected in ways that can hardly be inferred from physical (thermodynamic principles and still await reconciliation in a reasonable manner.   Essential Readings in Biosemiotics Anthology and Commentary Series: Biosemiotics, Vol. 3 Favareau, Donald (editor 1st Edition., 2010, 880 p., 219,94 €, Hardcover ISBN: 978-1-4020-9649-5

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Raghavendra Gadagkar1 2. Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India; Evolutionary and Organismal Biology Unit, lawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India ...

  15. Sciences's Super Star

    Science.gov (United States)

    Magie, Craig; Bossert, Patricia; Aramli, Lili; Thomsen, Gerald

    2016-01-01

    Animal biology is fascinating for its incredible diversity in life strategies. These strategies amaze scientists and can also fire the enthusiasm of science students. One group of animals impressive in this way is the phylum "Cnidaria," containing some 10,000 invertebrate species that include jellyfish, corals, sea anemones, hydroids,…

  16. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  17. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    UAS, Bangalore). Date of birth: 19 March 1956. Specialization: Biodiversity, Endophytes, Plant Evolutionary Biology, Conservation Genetics, Bio-prospecting. Address: Professor, Department of Crop Physiology, Univeristy of Agricultural Sciences, ...

  18. Deep Space Gateway Science Opportunities

    Science.gov (United States)

    Quincy, C. D.; Charles, J. B.; Hamill, Doris; Sidney, S. C.

    2018-01-01

    The NASA Life Sciences Research Capabilities Team (LSRCT) has been discussing deep space research needs for the last two years. NASA's programs conducting life sciences studies - the Human Research Program, Space Biology, Astrobiology, and Planetary Protection - see the Deep Space Gateway (DSG) as affording enormous opportunities to investigate biological organisms in a unique environment that cannot be replicated in Earth-based laboratories or on Low Earth Orbit science platforms. These investigations may provide in many cases the definitive answers to risks associated with exploration and living outside Earth's protective magnetic field. Unlike Low Earth Orbit or terrestrial locations, the Gateway location will be subjected to the true deep space spectrum and influence of both galactic cosmic and solar particle radiation and thus presents an opportunity to investigate their long-term exposure effects. The question of how a community of biological organisms change over time within the harsh environment of space flight outside of the magnetic field protection can be investigated. The biological response to the absence of Earth's geomagnetic field can be studied for the first time. Will organisms change in new and unique ways under these new conditions? This may be specifically true on investigations of microbial communities. The Gateway provides a platform for microbiology experiments both inside, to improve understanding of interactions between microbes and human habitats, and outside, to improve understanding of microbe-hardware interactions exposed to the space environment.

  19. Teaching Evolution with the Aid of Science Fiction

    Science.gov (United States)

    Bixler, Andrea

    2007-01-01

    Students obtain much misinformation from TV and movies. Teachers can use the analysis of science fiction to correct misconceptions about biology and spur students' interests in the subject. Suggestions for discussions and assignments based on literary-quality science fiction works are included.

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ; Journals; Resonance – Journal of Science Education; Volume 16; Issue ... International Year of Chemistry - 2011 ... pp 1107-1107 Science Smiles ... Coordination Compounds in Biology - The Chemistry of Vitamin B12 and Model Compounds.

  1. How to Motivate Science Teachers to Use Science Experiments

    Directory of Open Access Journals (Sweden)

    Josef Trna

    2012-10-01

    Full Text Available A science experiment is the core tool in science education. This study describes the science teachers' professional competence to implement science experiments in teaching/learning science. The main objective is the motivation of science teachers to use science experiments. The presented research tries to answer questions aimed at the science teachers' skills to use science experiments in teaching/learning science. The research discovered the following facts: science teachers do not include science experiments in teaching/learning in a suitable way; are not able to choose science experiments corresponding to the teaching phase; prefer teachers' demonstration of science experiments; are not able to improvise with the aids; use only a few experiments. The important research result is that an important motivational tool for science teachers is the creation of simple experiments. Examples of motivational simple experiments used into teachers' training for increasing their own creativity and motivation are presented.

  2. A Cross-Cultural Comparison of Korean and American Science Teachers' Views of Evolution and the Nature of Science

    Science.gov (United States)

    Kim, Sun Young; Nehm, Ross H.

    2011-01-01

    Despite a few international comparisons of the evolutionary beliefs of the general public, comparatively less research has focused on science teachers. Cross-cultural studies offer profitable opportunities for exploring the interactions among knowledge and belief variables in regard to evolution in different socio-cultural contexts. We investigated the evolutionary worldviews of pre-service science teachers from Asia (specifically South Korea), a region often excluded from international comparisons. We compared Korean and American science teachers': (1) understandings of evolution and the nature of science, and (2) acceptance of evolution in order to elucidate how knowledge and belief relationships are manifested in different cultural contexts. We found that Korean science teachers exhibited 'moderate' evolutionary acceptance levels comparable to or lower than American science teacher samples. Gender was significantly related to Korean teachers' evolution content knowledge and acceptance of evolution, with female Christian biology teachers displaying the lowest values on all measures. Korean science teachers' understandings of nature of science were significantly related to their acceptance and understanding of evolution; this relationship appears to transcend cultural boundaries. Our new data on Korean teachers, combined with studies from more than 20 other nations, expose the global nature of science teacher ambivalence or antipathy toward evolutionary knowledge.

  3. Visual Representations on High School Biology, Chemistry, Earth Science, and Physics Assessments

    Science.gov (United States)

    LaDue, Nicole D.; Libarkin, Julie C.; Thomas, Stephen R.

    2015-01-01

    The pervasive use of visual representations in textbooks, curricula, and assessments underscores their importance in K-12 science education. For example, visual representations figure prominently in the recent publication of the Next Generation Science Standards (NGSS Lead States in Next generation science standards: for states, by states.…

  4. Evolutionary biology: a basic science for medicine in the 21st century.

    Science.gov (United States)

    Perlman, Robert L

    2011-01-01

    Evolutionary biology was a poorly developed discipline at the time of the Flexner Report and was not included in Flexner's recommendations for premedical or medical education. Since that time, however, the value of an evolutionary approach to medicine has become increasingly recognized. There are several ways in which an evolutionary perspective can enrich medical education and improve medical practice. Evolutionary considerations rationalize our continued susceptibility or vulnerability to disease; they call attention to the idea that the signs and symptoms of disease may be adaptations that prevent or limit the severity of disease; they help us understand the ways in which our interventions may affect the evolution of microbial pathogens and of cancer cells; and they provide a framework for thinking about population variation and risk factors for disease. Evolutionary biology should become a foundational science for the medical education of the future.

  5. Science learning motivation as correlate of students’ academic performances

    OpenAIRE

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P.; Dupa, Maria Elena D.; Bautista, Romiro Gordo

    2016-01-01

    This study was designed to analyze the relationship of students’ learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of their motivation do not vary across their sex, age, and curriculum year. Moreover, the respondents had good academic performances in science. Aptly, e...

  6. Management of science policy, sociology of science policy and economics of science policy

    CERN Document Server

    Ruivo, Beatriz

    2017-01-01

    'Management of science policy, sociology of science policy and economics of science policy' is a theoretical essay on the scientific foundation of science policy (formulation, implementation, instruments and procedures). It can be also used as a textbook.

  7. Composing Science

    Science.gov (United States)

    Atkins, Leslie

    2015-03-01

    The course Scientific Inquiry at California State University was developed by faculty in biology, physics and English to meet ``writing proficiency'' requirements for non-science majors. Drawing from previous work in composition studies, the position that we take in this course is that we should be engaging students in writing that replicates the work that writing does in science, rather than replicating the particular structural conventions characteristic of scientific writing. That is, scientists use writing to have, remember, share, vet, challenge, and stabilize ideas, and our course requires students use writing to achieve those aims, rather than produce writing that obeys particular conventions of scientific writing. This talk will describe how we have integrated findings from composition studies with a course on scientific inquiry, and provide examples of how scientific communication has resulted from this dialogue. Funding by NSF #1140860.

  8. Is normal science good science?

    Directory of Open Access Journals (Sweden)

    Adrianna Kępińska

    2015-09-01

    Full Text Available “Normal science” is a concept introduced by Thomas Kuhn in The Structure of Scientific Revolutions (1962. In Kuhn’s view, normal science means “puzzle solving”, solving problems within the paradigm—framework most successful in solving current major scientific problems—rather than producing major novelties. This paper examines Kuhnian and Popperian accounts of normal science and their criticisms to assess if normal science is good. The advantage of normal science according to Kuhn was “psychological”: subjective satisfaction from successful “puzzle solving”. Popper argues for an “intellectual” science, one that consistently refutes conjectures (hypotheses and offers new ideas rather than focus on personal advantages. His account is criticized as too impersonal and idealistic. Feyerabend’s perspective seems more balanced; he argues for a community that would introduce new ideas, defend old ones, and enable scientists to develop in line with their subjective preferences. The paper concludes that normal science has no one clear-cut set of criteria encompassing its meaning and enabling clear assessment.

  9. Use of a virtual human performance laboratory to improve integration of mathematics and biology in sports science curricula in Sweden and the United States.

    Science.gov (United States)

    Garza, D; Besier, T; Johnston, T; Rolston, B; Schorsch, A; Matheson, G; Annerstedt, C; Lindh, J; Rydmark, M

    2007-01-01

    New fields such as bioengineering are exploring the role of the physical sciences in traditional biological approaches to problems, with exciting results in device innovation, medicine, and research biology. The integration of mathematics, biomechanics, and material sciences into the undergraduate biology curriculum will better prepare students for these opportunities and enhance cooperation among faculty and students at the university level. We propose the study of sports science as the basis for introduction of this interdisciplinary program. This novel integrated approach will require a virtual human performance laboratory dual-hosted in Sweden and the United States. We have designed a course model that involves cooperative learning between students at Göteborg University and Stanford University, utilizes new technologies, encourages development of original research and will rely on frequent self-assessment and reflective learning. We will compare outcomes between this course and a more traditional didactic format as well as assess the effectiveness of multiple web-hosted virtual environments. We anticipate the grant will result in a network of original faculty and student research in exercise science and pedagogy as well as provide the opportunity for implementation of the model in more advance training levels and K-12 programs.

  10. Dosimetry in life sciences

    International Nuclear Information System (INIS)

    1975-01-01

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  11. Dosimetry in life sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-06-15

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  12. JPRS Report, Science & Technology, USSR: Life Sciences.

    Science.gov (United States)

    1988-02-12

    the [Leu]enkephalin pentapeptide Tyr-Gly-Gly-Phe-Leu (i)and its [D-Ala2]analog Tyr-D-Ala-Gly-Phe-Leu ( la ), which is more resistant to proteinases, by...Biology and Genetics, Ukrainian SSR Academy of Sciences, Kiev] ltl!tra°+V ^° la ^ion ^dies were conducted for mini forms of the M13 bacteri- ophage...of fodder substrates (hay, soya millet,,oats, wheat, barley, bean, etc.) Various degrees of growth were obtained on the various fodder products

  13. Science policy in changing times

    International Nuclear Information System (INIS)

    Greenwood, M.R.C.

    1995-01-01

    Like many scientists who were born right after World War II and who have learned a lot about physics, physical sciences, and biology from some of the incredible discoveries that were made in the defense laboratories, I have always been fascinated with Los Alamos. One of the marvelous opportunities that my job in Washington presented was to get to know a good deal more about the physical science world and the Department of Energy (DOE) laboratories, particularly Los Alamos since the Manhattan Project

  14. Covering Science as a Mass Media Fellow

    Science.gov (United States)

    McMeeking, Gavin R.

    2006-03-01

    I remember my first unpleasant biology lab dissection in high school. I am not sure if the experience was worse for me or for the unfortunate fetal pig we dissected that day. The sights and smells of that fateful morning forever put me on a path toward the physical sciences, and probably have a lot to do with my ending up as a graduate student in atmospheric chemistry instead of at some medical school cutting up dead bodies. So imagine my horror after encountering the leg of a dead horse as I walked into a bioengineering laboratory to report on a story about artificial joint research. Subjecting myself to such biological horrors, though, was part of my duties as an AGU-sponsored American Association for the Advancement of Science Mass Media Fellow. The program places graduate students and recent graduates from scientific fields in major media outlets throughout the country. The aim of the program is to give science-trained individuals a taste of a career in science journalism as well as to help scientists develop better communication skills.

  15. 75 FR 10845 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Science.gov (United States)

    2010-03-09

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science... participants. SUMMARY: The Subcommittee on Forensic Science of the National Science and Technology Council's... . Kenneth E. Melson, Co-Chair, Subcommittee on Forensic Science. [FR Doc. 2010-4899 Filed 3-8-10; 8:45 am...

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Science Academies' Refresher Course on Experimental Biology: Orthodox to Modern. Information and Announcements Volume 21 Issue 9 September 2016 pp 858-858 ...

  17. Science in Science Fiction.

    Science.gov (United States)

    Allday, Jonathan

    2003-01-01

    Offers some suggestions as to how science fiction, especially television science fiction programs such as "Star Trek" and "Star Wars", can be drawn into physics lessons to illuminate some interesting issues. (Author/KHR)

  18. Hollywood Science: Good for Hollywood, Bad for Science?

    Science.gov (United States)

    Perkowitz, Sidney

    2009-03-01

    Like it or not, most science depicted in feature films is in the form of science fiction. This isn't likely to change any time soon, if only because science fiction films are huge moneymakers for Hollywood. But beyond that, these films are a powerful cultural force. They reach millions as they depict scientific ideas from DNA and cloning to space science, whether correctly or incorrectly; reflect contemporary issues of science and society like climate change, nuclear power and biowarfare; inspire young people to become scientists; and provide defining images -- or stereotypes -- of scientists for the majority of people who've never met a real one. Certainly, most scientists feel that screen depictions of science and scientists are badly distorted. Many are, but not always. In this talk, based on my book Hollywood Science [1], I'll show examples of good and bad screen treatments of science, scientists, and their impact on society. I'll also discuss efforts to improve how science is treated in film and ways to use even bad movie science to convey real science. [4pt] [1] Sidney Perkowitz, Hollywood Science: Movies, Science, and the End of the World (Columbia University Press, New York, 2007). ISBN: 978-0231142809

  19. Communicating Science

    Science.gov (United States)

    Russell, Nicholas

    2009-10-01

    Introduction: what this book is about and why you might want to read it; Prologue: three orphans share a common paternity: professional science communication, popular journalism, and literary fiction are not as separate as they seem; Part I. Professional Science Communication: 1. Spreading the word: the endless struggle to publish professional science; 2. Walk like an Egyptian: the alien feeling of professional science writing; 3. The future's bright? Professional science communication in the age of the internet; 4. Counting the horse's teeth: professional standards in science's barter economy; 5. Separating the wheat from the chaff: peer review on trial; Part II. Science for the Public: What Science Do People Need and How Might They Get It?: 6. The Public Understanding of Science (PUS) movement and its problems; 7. Public engagement with science and technology (PEST): fine principle, difficult practice; 8. Citizen scientists? Democratic input into science policy; 9. Teaching and learning science in schools: implications for popular science communication; Part III. Popular Science Communication: The Press and Broadcasting: 10. What every scientist should know about mass media; 11. What every scientist should know about journalists; 12. The influence of new media; 13. How the media represents science; 14. How should science journalists behave?; Part IV. The Origins of Science in Cultural Context: Five Historic Dramas: 15. A terrible storm in Wittenberg: natural knowledge through sorcery and evil; 16. A terrible storm in the Mediterranean: controlling nature with white magic and religion; 17. Thieving magpies: the subtle art of false projecting; 18. Foolish virtuosi: natural philosophy emerges as a distinct discipline but many cannot take it seriously; 19. Is scientific knowledge 'true' or should it just be 'truthfully' deployed?; Part V. Science in Literature: 20. Science and the Gothic: the three big nineteenth-century monster stories; 21. Science fiction: serious

  20. Disentangling Intensity from Breadth of Science Interest: What Predicts Learning Behaviors?

    Science.gov (United States)

    Bathgate, Meghan; Schunn, Christian

    2016-01-01

    Overall interest in science has been argued to drive learner participation and engagement. However, there are other important aspects of interest such as breadth of interest within a science domain (e.g., biology, earth science). We demonstrate that intensity of science interest is separable from topic breadth using surveys from a sample of 600…

  1. Overview of Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Mukaiyama, Takehiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, (1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, (2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and (3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  2. Overview of Neutron Science Project

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko

    1997-01-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, 1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, 2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and 3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  3. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  4. Communicating knowledge in science, science journalism and art

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    Richter. The specialized knowledge about the image is communicated in three very different contexts with three very different outcomes. The paper uses Niklas Luhmann's system theory to describe science, science journalism, and art as autonomous social subsystems of communication. Also, Luhmann's notions...... of irritation and interference are employed to frame an interpretation of the complex relations between communicating knowledge about the image in science, science journalism, and art. Even though the functional differentiation between the communication systems of science, science journalism, and art remains...... that Richter's Erster Blick ends up questioning the epistemological and ontological grounds for communication of knowledge in science and in science journalism....

  5. Epigenetic Determinism in Science and Society.

    Science.gov (United States)

    Waggoner, Miranda R; Uller, Tobias

    2015-04-03

    The epigenetic "revolution" in science cuts across many disciplines, and it is now one of the fastest growing research areas in biology. Increasingly, claims are made that epigenetics research represents a move away from the genetic determinism that has been prominent both in biological research and in understandings of the impact of biology on society. We discuss to what extent an epigenetic framework actually supports these claims. We show that, in contrast to the received view, epigenetics research is often couched in language as deterministic as genetics research in both science and the popular press. We engage the rapidly emerging conversation about the impact of epigenetics on public discourse and scientific practice, and we contend that the notion of epigenetic determinism - or the belief that epigenetic mechanisms determine the expression of human traits and behaviors - matters for understandings of the influence of biology and society on population health.

  6. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  7. The Effect of a Laboratory Approach Based on Predict-Observation-Explain (POE Strategy on the Development of Students’ Science Process Skills and Views about Nature of Science

    Directory of Open Access Journals (Sweden)

    Kadir Bilen

    2012-06-01

    Full Text Available The purpose of this study was to investigate the effects of a laboratory instruction prepared based on “Predict-Observation-Explain” (POE strategy compared to a verification laboratory approach on the development of pre-service science teachers’ science skill processes and their views of nature of sceince in a general biology laboratory course. The participants of this study consisted of 122 pre-service teachers who took the General Biology Laboratory at the department of science education at Pamukkale University during the fall semester of 2007-2008 academic year. Data was collected through Science Process Skills Test (SPST and Nature of Science Questionnaire. Results indicated that there was a statistically significant difference between the verification laboratory approach and the laboratory approach based on the POE strategy on the development of students’ science process skills [F=10.41, p

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Raghavendra Gadagkar1 2. Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India. India and Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.

  9. USSR Space Life Sciences Digest, issue 14

    Science.gov (United States)

    Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph

    1988-01-01

    This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  10. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Elected: 2005 Section: Plant Sciences ... Address: INSA Senior Professor, Division of Plant Biology, Bose Institute, P-1/12, ... Ph.D. (Madras), FNA, FNASc, FTWAS ... Gases for Atmospheric Processes and Environmental & Climatic Changes

  11. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class.

    Science.gov (United States)

    Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. © 2016 J. N. Schinske et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Libros de Ciencias en Espanol (Science Trade Books in Spanish).

    Science.gov (United States)

    Schon, Isabel

    1999-01-01

    Presents a list of recently published science books in Spanish. Each entry in the annotated bibliography contains publication information, suggested grade level(s), and a brief description of the publication. Books are listed under the categories of Biology, Physical Science, General Science, and For the Very Young. Also includes references and…

  13. Dimensions of Communication in Urban Science Education: Interactions and Transactions

    Science.gov (United States)

    Emdin, Christopher

    2011-01-01

    This paper is birthed from my lifelong experiences as student, teacher, administrator, and researcher in urban science classrooms. This includes my years as a minority student in biology, chemistry, and physics classrooms, 10 tears as science teacher and high school science department chair, 5-years conducting research on youth experiences in…

  14. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  15. Life sciences: Lawrence Berkeley Laboratory, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  16. Science or Science Fiction?

    DEFF Research Database (Denmark)

    Lefsrud, Lianne M.; Meyer, Renate

    2012-01-01

    This paper examines the framings and identity work associated with professionals’ discursive construction of climate change science, their legitimation of themselves as experts on ‘the truth’, and their attitudes towards regulatory measures. Drawing from survey responses of 1077 professional......, legitimation strategies, and use of emotionality and metaphor. By linking notions of the science or science fiction of climate change to the assessment of the adequacy of global and local policies and of potential organizational responses, we contribute to the understanding of ‘defensive institutional work...

  17. Computational Materials Science | Materials Science | NREL

    Science.gov (United States)

    Computational Materials Science Computational Materials Science An image of interconnecting, sphere science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS

  18. Research opportunities in photochemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The workshop entitled {open_quotes}Research Opportunities in Photochemical Sciences{close_quotes} was initiated by the U.S. Department of Energy (DOE), Office of Energy Research (ER), Office of Basic Energy Sciences (BES), Division of Chemical Sciences. The National Renewable Energy Laboratory (NREL) in Golden, Colorado was requested by ER to host the workshop. It was held February 5-8, 1996 at the Estes Park Conference Center, Estes Park, CO, and attended by about 115 leading scientists and engineers from the U.S., Japan, and Europe; program managers for the DOE ER and Energy Efficiency and Renewable Energy (EERE) programs also attended. The purpose of the workshop was to bridge the communication gap between the practioneers and supporters of basic research in photochemical science and the practioneers and supporters of applied research and development in technologies related to photochemical science. For the purposes of the workshop the definition of the term {open_quotes}photochemical science{close_quotes} was broadened to include homogeneous photochemistry, heterogeneous photochemistry, photoelectrochemistry, photocatalysis, photobiology (for example, the light-driven processes of biological photosynthesis and proton pumping), artificial photosynthesis, solid state photochemistry, and solar photochemistry. The technologies under development through DOE support that are most closely related to photochemical science, as defined above, are the renewable energy technologies of photovoltaics, biofuels, hydrogen energy, carbon dioxide reduction and utilization, and photocatalysis for environmental cleanup of water and air. Individual papers were processed separately for the United states Department of Energy databases.

  19. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    Science.gov (United States)

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  20. Agricultural science and ethics

    DEFF Research Database (Denmark)

    Gjerris, Mickey; Vaarst, Mette

    2014-01-01

    Humans live in constant interaction with nature. That is part and parcel of being a biological creature on this planet. On one hand, humans exploit the available resources to survive, and at the same time, humans are deeply dependent on the continued capacity of nature to sustain their lives......, about 20 % of the world's coral reefs and 35 % of the mangrove areas were lost (Millennium Ecosystem Assessment 2005). In the following, the development of agricultural science will be sketched out and the role of ethics in agricultural science will be discussed. Then different views of nature that have...... shaped agriculture and the role of science in agriculture will be discussed by analyzing some of the presumptions behind the concept of ecosystem services and the way animals are viewed. Finally, the concepts of animal welfare and sustainability will be explored to show how they make vivid the connection...

  1. The Ascent of Science

    Science.gov (United States)

    Silver, Brian L.

    2000-04-01

    From the revolutionary discoveries of Galileo and Newton to the mind-bending theories of Einstein and Heisenberg, from plate tectonics to particle physics, from the origin of life to universal entropy, and from biology to cosmology, here is a sweeping, readable, and dynamic account of the whole of Western science.In the approachable manner and method of Stephen Jay Gould and Carl Sagan, the late Brian L. Silver translates our most important, and often most obscure, scientific developments into a vernacular that is not only accessible and illuminating but also enjoyable. Silver makes his comprehensive case with much clarity and insight; his book aptly locates science as the apex of human reason, and reason as our best path to the truth. For all readers curious about--or else perhaps intimidated by--what Silver calls "the scientific campaign up to now", The Ascent of Science will be fresh, vivid, and fascinating reading.

  2. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    Science.gov (United States)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  3. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    Science.gov (United States)

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-01-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching…

  4. Cognitive science contributions to decision science.

    Science.gov (United States)

    Busemeyer, Jerome R

    2015-02-01

    This article briefly reviews the history and interplay between decision theory, behavioral decision-making research, and cognitive psychology. The review reveals the increasingly important impact that psychology and cognitive science have on decision science. One of the main contributions of cognitive science to decision science is the development of dynamic models that describe the cognitive processes that underlay the evolution of preferences during deliberation phase of making a decision. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The sciences of science communication.

    Science.gov (United States)

    Fischhoff, Baruch

    2013-08-20

    The May 2012 Sackler Colloquium on "The Science of Science Communication" brought together scientists with research to communicate and scientists whose research could facilitate that communication. The latter include decision scientists who can identify the scientific results that an audience needs to know, from among all of the scientific results that it would be nice to know; behavioral scientists who can design ways to convey those results and then evaluate the success of those attempts; and social scientists who can create the channels needed for trustworthy communications. This overview offers an introduction to these communication sciences and their roles in science-based communication programs.

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 10. Science Academies' Refresher Course on Experimental Approaches to Molecular Microbiology and Cell Biology. Information and Announcements Volume 22 Issue 10 October 2017 pp 971-971 ...

  7. 75 FR 4882 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Science.gov (United States)

    2010-01-29

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: Notice of Panel Session. Public input is requested concerning appropriate Federal Executive Branch responses to the National Academy of Sciences 2009 report...

  8. Constructing a philosophy of science of cognitive science.

    Science.gov (United States)

    Bechtel, William

    2009-07-01

    Philosophy of science is positioned to make distinctive contributions to cognitive science by providing perspective on its conceptual foundations and by advancing normative recommendations. The philosophy of science I embrace is naturalistic in that it is grounded in the study of actual science. Focusing on explanation, I describe the recent development of a mechanistic philosophy of science from which I draw three normative consequences for cognitive science. First, insofar as cognitive mechanisms are information-processing mechanisms, cognitive science needs an account of how the representations invoked in cognitive mechanisms carry information about contents, and I suggest that control theory offers the needed perspective on the relation of representations to contents. Second, I argue that cognitive science requires, but is still in search of, a catalog of cognitive operations that researchers can draw upon in explaining cognitive mechanisms. Last, I provide a new perspective on the relation of cognitive science to brain sciences, one which embraces both reductive research on neural components that figure in cognitive mechanisms and a concern with recomposing higher-level mechanisms from their components and situating them in their environments. Copyright © 2009 Cognitive Science Society, Inc.

  9. 1st Hands-on Science Science Fair

    OpenAIRE

    Costa, Manuel F. M.; Esteves. Z.

    2017-01-01

    In school learning of science through investigative hands-on experiments is in the core of the Hands-on Science Network vision. However informal and non-formal contexts may also provide valuable paths for implementing this strategy aiming a better e!ective science education. In May 2011, a "rst country wide “Hands-on Science’ Science Fair” was organized in Portugal with the participation of 131 students that presented 38 projects in all "elds of Science. In this communication we will pr...

  10. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    Science.gov (United States)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  11. Informal science education at Science City

    Science.gov (United States)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  12. 76 FR 6163 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Science.gov (United States)

    2011-02-03

    ... Branch responses to the AFIS interoperability issues identified in the National Academy of Sciences 2009... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: Notice of meeting. Public input is requested concerning...

  13. Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563

  14. Exposure to science, perspectives on science and religion, and religious commitment in young adulthood.

    Science.gov (United States)

    Uecker, Jeremy E; Longest, Kyle C

    2017-07-01

    Social scientists know very little about the consequences of exposure to scientific knowledge and holding different perspectives on science and religion for individuals' religious lives. Drawing on secularization and post-secular theories, we develop and test several hypotheses about the relationships among exposure to scientific knowledge, perspectives on religion and science, and religious commitment using panel data from the National Study of Youth and Religion. Our findings indicate that religious faith is strongest among young adults who: (1) accommodate scientific knowledge into their religious perspective, or (2) reject scientific knowledge that directly contradicts their religious beliefs about the origins of the world. Young adults are also more likely to have lower religious commitment when they view science and religion as independent institutions, lending support to secularization ideas about how social differentiation secularizes individuals. We further find that mere exposure to scientific knowledge, in terms of majoring in biology or acknowledging conflict between the teachings of religion and science, is usually not sufficient to undermine religious commitment. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. PROGNOSIS OF VISUALIZATION USAGE IN THE SCIENCE EDUCATION PROCESS

    OpenAIRE

    Bilbokaite, Renata

    2016-01-01

    Future education depends on many external exogenous factors - society evolution, technologic progress, teachers’ opinion and their ability to organize the education process. Science education is difficult for many students but the progress of the society definitely correlated with achievements of science. This highlights the importance of teaching biology, chemistry, physics, geography and mathematics at school. Visualization helps students to learn science education but at the moment teacher...

  16. The contributions of biological science to national development ...

    African Journals Online (AJOL)

    ... and prosperity, and on human physical well being in societies around the world. ... Some science questions have immediate goals, clearly directed towards ... such as TV transmission, power distribution, or computer chip manufacture.

  17. The principles, definition and dimensions of the new nutrition science.

    Science.gov (United States)

    Beauman, Christopher; Cannon, Geoffrey; Elmadfa, Ibrahim; Glasauer, Peter; Hoffmann, Ingrid; Keller, Markus; Krawinkel, Michael; Lang, Tim; Leitzmann, Claus; Lötsch, Bernd; Margetts, Barrie M; McMichael, Anthony J; Meyer-Abich, Klaus; Oltersdorf, Ulrich; Pettoello-Mantovani, Massimo; Sabaté, Joan; Shetty, Prakash; Sória, Marco; Spiekermann, Uwe; Tudge, Colin; Vorster, Hester H; Wahlqvist, Mark; Zerilli-Marimò, Mariuccia

    2005-09-01

    To specify the principles, definition and dimensions of the new nutrition science. To identify nutrition, with its application in food and nutrition policy, as a science with great width and breadth of vision and scope, in order that it can fully contribute to the preservation, maintenance, development and sustenance of life on Earth. A brief overview shows that current conventional nutrition is defined as a biological science, although its governing and guiding principles are implicit only, and no generally agreed definition is evident. Following are agreements on the principles, definition and dimensions of the new nutrition science, made by the authors as participants at a workshop on this theme held on 5-8 April 2005 at the Schloss Rauischholzhausen, Justus-Liebig University, Giessen, Germany. Nutrition science as here specified will retain its current 'classical' identity as a biological science, within a broader and integrated conceptual framework, and will also be confirmed as a social and environmental science. As such it will be concerned with personal and population health, and with planetary health--the welfare and future of the whole physical and living world of which humans are a part.

  18. Ultrafast Science Opportunities with Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    DURR, HERMANN; Wang, X.J., ed.

    2016-04-28

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.

  19. The Science of Science Communication and Protecting the Science Communication Environment

    Science.gov (United States)

    Kahan, D.

    2012-12-01

    Promoting public comprehension of science is only one aim of the science of science communication and is likely not the most important one for the well-being of a democratic society. Ordinary citizens form quadrillions of correct beliefs on matters that turn on complicated scientific principles they cannot even identify much less understand. The reason they fail to converge on beliefs consistent with scientific evidence on certain other consequential matters—from climate change to genetically modified foods to compusory adolescent HPV vaccination—is not the failure of scientists or science communicators to speak clearly or the inability of ordinary citizens to understand what they are saying. Rather, the source of such conflict is the proliferation of antagonistic cultural meanings. When they become attached to particular facts that admit of scientific investigation, these meanings are a kind of pollution of the science communication environment that disables the faculties ordinary citizens use to reliably absorb collective knowledge from their everyday interactions. The quality of the science communication environment is thus just as critical for enlightened self-government as the quality of the natural environment is for the physical health and well-being of a society's members. Understanding how this science communication environment works, fashioning procedures to prevent it from becoming contaminated with antagonistic meanings, and formulating effective interventions to detoxify it when protective strategies fail—those are the most critical functions science communication can perform in a democratic society.

  20. Science Smiles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Science Smiles. Articles in Resonance – Journal of Science Education. Volume 1 Issue 4 April 1996 pp 4-4 Science Smiles. Chief Editor's column / Science Smiles · R K Laxman · More Details Fulltext PDF. Volume 1 Issue 5 May 1996 pp 3-3 Science Smiles.

  1. A study of science leadership and science standards in exemplary standards-based science programs

    Science.gov (United States)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary

  2. Fostering Eroticism in Science Education to Promote Erotic Generosities for the Ocean-Other

    Science.gov (United States)

    Luther, Rachel

    2013-01-01

    Despite the increase in marine science curriculum in secondary schools, marine science is not generally required curricula and has been largely deemphasized or ignored in relation to earth science, biology, chemistry, and physics. I call for the integration and implementation of marine science more fully in secondary science education through…

  3. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Entsar Saheb1 2 Wendy Trzyna3 John Bush1. Biology Department, University of Arkansas at Little Rock, 2801 South University Ave., Little Rock, AR 72204-1099, USA; Biology Department, University of Baghdad, Baghdad, Iraq; Department of Biological Sciences, Marshall University, One John Marshall Drive, Huntington, ...

  4. Science for Diplomacy, Diplomacy for Science

    Science.gov (United States)

    Colglazier, E. Wiliam

    2015-04-01

    I was a strong proponent of ``science diplomacy'' when I became Science and Technology Adviser to the Secretary of State in 2011. I thought I knew a lot about the subject after being engaged for four decades on international S&T policy issues and having had distinguished scientists as mentors who spent much of their time using science as a tool for building better relations between countries and working to make the world more peaceful, prosperous, and secure. I learned a lot from my three years inside the State Department, including great appreciation and respect for the real diplomats who work to defuse conflicts and avoid wars. But I also learned a lot about science diplomacy, both using science to advance diplomacy and diplomacy to advance science. My talk will focus on the five big things that I learned, and from that the one thing where I am focusing my energies to try to make a difference now that I am a private citizen again.

  5. Probe into geo-information science and information science in nuclear and geography science in China

    International Nuclear Information System (INIS)

    Tang Bin

    2001-01-01

    In the past ten years a new science-Geo-Information Science, a branch of Geoscience, developed very fast, which has been valued and paid much attention to. Based on information science, the author analyzes the flow of material, energy, people and information and their relations, presents the place of Geo-Information Science in Geo-science and its content from Geo-Informatics, Geo-Information technology and the application of itself. Finally, the author discusses the main content and problem existed in Geo-Information Science involved in Nuclear and Geography Science

  6. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    347 Impact of Theoretical Chemistry on Chemical and. Biological Sciences. Chemistry Nobel Prize – 2013. Saraswathi Vishveshwara. SERIES ARTICLES. 368 Ecology: From Individuals to Collectives. A Physicist's Perspective on Ecology. Vishwesha Guttal. 310. 368 ...

  7. Impacting the Science Community through Teacher Development: Utilizing Virtual Learning.

    Science.gov (United States)

    Boulay, Rachel; van Raalte, Lisa

    2014-01-01

    Commitment to the STEM (science, technology, engineering, math) pipeline is slowly declining despite the need for professionals in the medical field. Addressing this, the John A. Burns School of Medicine developed a summer teacher-training program with a supplemental technology-learning component to improve science teachers' knowledge and skills of Molecular Biology. Subsequently, students' skills, techniques, and application of molecular biology are impacted. Science teachers require training that will prepare them for educating future professionals and foster interest in the medical field. After participation in the program and full access to the virtual material, twelve high school science teachers completed a final written reflective statement to evaluate their experiences. Using thematic analysis, knowledge and classroom application were investigated in this study. Results were two-fold: teachers identified difference areas of gained knowledge from the teacher-training program and teachers' reporting various benefits in relation to curricula development after participating in the program. It is concluded that participation in the program and access to the virtual material will impact the science community by updating teacher knowledge and positively influencing students' experience with science.

  8. Fostering Science Club: Creating a Welcoming Extra-Curricular Science Inquiry Space for ALL Learners that Seeks to Close the Science Experience Gap in a Predominantly Minority Urban Community

    Science.gov (United States)

    Mayfield, K. K.

    2017-12-01

    BackgroundTo minority adolescents in urban centers science inquiry seems like an engagement completed by others with specialized skills (Alkon & Agyeman, 2012). When scientists teach science classes those spaces and pedagogy are underwritten by the science teachers' beliefs about how science happens (Southerland, Gess-Newsome & Johnston, 2002). Further, scientific inquiry is often presented as the realm of upperclass whiteness (Alkon & Agyeman, 2012; Mayfield, 2014). When science educators talk about the achievement gaps between raced and classed learners, accompanying that gap is also a gap in science experience. My high school students in a postindustrial school district: attend a school under state takeover (the lowest 5/5 rating (MA Executive Office of Education, 2017)); have a student body that is 70% Latinx; and 96% of whom receive Free and Reduced Lunch (a Federal marker of a family below the poverty line). Annual Yearly Progress is a goal set by state and federal governments for school populations by race, ability, and language. In 2016, the site has failed to make its goals for special education, black, hispanic, white, and English as a Second Language populations. As a high poverty district there is a paucity of extracurricular science experiences. This lack of science extensions make closing standardized test gaps difficult. Geoscience Skills & FindingsThis after school program does not replicate deficit narratives that keep certain bodies of students away from science inquiry (Mayfield, 2015; Ogbu, 1987). Instead, Science Club uses an array of student-centered science (physics, math, arts, chemistry, biology) projects to help students see themselves as citizen scientists who lead explorations of their world. We meet 1.5 hours a week in a 30 week school year. Science club helps students feel like powerful and capable science inquirers with 80% girls in attendance, and uses science experiments to cultivate essential inquiry skills like: Observation

  9. Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)

    Science.gov (United States)

    Pounds, Andrew

    2001-05-01

    This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.

  10. Maintaining Quality While Expanding Our Reach: Using Online Information Literacy Tutorials in the Sciences and Health Sciences

    OpenAIRE

    Talitha Rosa Matlin; Tricia Lantzy

    2017-01-01

    Abstract Objective – This article aims to assess student achievement of higher-order information literacy learning outcomes from online tutorials as compared to in-person instruction in science and health science courses. Methods – Information literacy instruction via online tutorials or an in-person one-shot session was implemented in multiple sections of a biology (n=100) and a kinesiology course (n=54). After instruction, students in both instructional environments completed an ide...

  11. Molecular Science Computing Facility Scientific Challenges: Linking Across Scales

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Windus, Theresa L.

    2005-07-01

    The purpose of this document is to define the evolving science drivers for performing environmental molecular research at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and to provide guidance associated with the next-generation high-performance computing center that must be developed at EMSL's Molecular Science Computing Facility (MSCF) in order to address this critical research. The MSCF is the pre-eminent computing facility?supported by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research (BER)?tailored to provide the fastest time-to-solution for current computational challenges in chemistry and biology, as well as providing the means for broad research in the molecular and environmental sciences. The MSCF provides integral resources and expertise to emerging EMSL Scientific Grand Challenges and Collaborative Access Teams that are designed to leverage the multiple integrated research capabilities of EMSL, thereby creating a synergy between computation and experiment to address environmental molecular science challenges critical to DOE and the nation.

  12. Archives: Afrique Science: Revue Internationale des Sciences et ...

    African Journals Online (AJOL)

    Items 1 - 31 of 31 ... Archives: Afrique Science: Revue Internationale des Sciences et Technologie. Journal Home > Archives: Afrique Science: Revue Internationale des Sciences et Technologie. Log in or Register to get access to full text downloads.

  13. Direction discovery: A science enrichment program for high school students.

    Science.gov (United States)

    Sikes, Suzanne S; Schwartz-Bloom, Rochelle D

    2009-03-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to conceptualize fundamental precepts in biology, chemistry, and math. Students complete an intensive three-week course in the fundamentals of pharmacology during the summer followed by a mentored research component during the school year. Following a 5E learning paradigm, the summer course captures student interest by introducing controversial topics in pharmacology and provides a framework that guides them to explore topics in greater detail. The 5E learning cycle is recapitulated as students extend their knowledge to design and to test an original research question in pharmacology. LEAP students demonstrated significant gains in biology and chemistry knowledge and interests in pursuing science. Several students earned honors for the presentation of their research in regional and state science fairs. Success of the LEAP model in its initial 2 years argues that coupling college-level coursework of interest to teens with an authentic research experience enhances high school student success in and enthusiasm for science. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  14. Pure Science and Applied Science

    Directory of Open Access Journals (Sweden)

    Robert J. Aumann

    2011-01-01

    Full Text Available (Excerpt The name of my talk is Pure Science and Applied Science, and the idea I would like to sell to you today is that there is no such thing as “pure” or “applied” science. In other words, there is such a thing as science, but there is no difference between pure and applied science. Science is one entity and cannot be separated into different categories. In order to back that up, I would like to tell you a little story. As an undergraduate, I studied mathematics at City College in New York. At that time, what was called Pure Mathematics was in vogue, and the more prominent mathematicians were a little contemptuous of any kind of application. A very famous, prominent mathematician in the first half of the previous century by the name of G. H. Hardy, who was in a branch of mathematics called number theory, said that the only thing he regretted was that he unwittingly did some important work in mathematical genetics that eventually turned out to have some application. … Such was the atmosphere in the late ’40s of the previous century and, being a young man and impressionable, I was swept up in this atmosphere.

  15. ADAPTATION OF THE STUDENTS' MOTIVATION TOWARDS SCIENCE LEARNING QUESTIONNAIRE TO MEASURE GREEK STUDENTS’ MOTIVATION TOWARDS BIOLOGY LEARNING

    OpenAIRE

    Andressa, Helen; Mavrikaki, Evangelia; Dermitzaki, Irini

    2015-01-01

    The purpose of this study was to investigate students’ motivation towards biology learning and to determine the factors that are related to it: students’ gender and their parents’ occupation (relevant with biology or not) were investigated. The sample of the study consisted of 360 Greek high school students of the 10th grade (178 boys and 182 girls). The data were collected through Students’ Motivation Toward Science Learning (SMTSL) questionnaire. It was found that it was a valid and reliabl...

  16. Latinos in science: Identifying factors that influence the low percentage of Latino representation in the sciences

    Science.gov (United States)

    Miranda, Susan Jennifer

    A mixed methods approach was used to identify factors that influence the underrepresentation of Latinos in the domain of science. The researcher investigated the role of family influences, academic preparation, and personal motivations to determine science-related career choices by Latinos. Binary logistic regression analyses were conducted using information from Latinos gathered from the National Education Longitudinal Study of 1988 (NELS: 88) administered by the National Center for Education Statistics. For the present study, data were analyzed using participants' responses as high school seniors, college students, and post-baccalaureates. Students responded to questions on school, work, parental academic influences, personal aspirations, and self-perception. To provide more insight into the experiences of Latinos in science and support the statistical analyses, nine students majoring in science in a private, urban university located in the northeastern part of the country were interviewed. Eleven variables related to parents' academic support and students' perceptions of parental support were taken together as predictors for two separate criteria from the survey. These results identified parents' level of education and the importance of academics to parents in their teen's college choice as significant predictors in determining college major in science. When the criterion was degree in science, the significant predictor was the frequency parents contacted high school as volunteers. Student interviews supported this information, demonstrating the importance of parental support in attaining a degree in science. Academic preparation was also analyzed. Students' reasons for taking science classes in high school was a significant predictor for science major; significant predictors for science degree were the emphasis placed on objectives in math and science classes and number of courses in biology and physics. Student interviews supported this information and

  17. Accommodating life sciences on the Space Station

    Science.gov (United States)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  18. On fundamentals, logic, and the connection between the natural sciences

    International Nuclear Information System (INIS)

    Loewdin, P.O.

    1995-01-01

    The importance of deductive theories in the modern natural sciences built essentially on experiments is briefly discussed. The logical structure of the deductive theories, their axioms, undefined quantities, and realizations is treated in some detail. In all the natural sciences, there is a striving to explain all the various phenomena in nature in terms of a few basic principles, and this open-quotes reductionismclose quotes leads to a certain amount of unification of these sciences. The chain that goes from biology, over molecular biology, biochemistry, chemistry, and physics to the description of nature in terms of the elementary particles obeying the laws of modern quantum chemistry is reviewed. Since all the measurements of microcosmos involve an observer, who according to the Copenhagen school experiences the outside universe as a projection on his or her mind through his or her senses, some theoreticians may be inclined to reduce the natural sciences to the human mind as the fundamental (undefined) quantity. However, since the observer is a biological structure, one is also back where one started, and it is evident that one can start the reduction or unification of the natural sciences in any point on this circle (or spiral). Hence, there are many descriptions of the natural sciences and their connections that are possible-as illustrated at this symposium. 2 refs., 2 figs

  19. Forensic science: the truth is out there

    Science.gov (United States)

    Herold, Lynne D.

    2002-06-01

    Criminalistics, one of the many sub-divisions of forensic science, is an applied science in which items of evidence are analyzed to provide investigative information and scientific evidence to be used in courts of law. Laboratories associated with governmental public agencies are typically involved in criminal cases as opposed to civil cases, and those types of cases that fall within the jurisdiction of the particular agency. Common analytical divisions within criminalistics laboratories include blood alcohol testing, toxicology, narcotics, questioned documents, biology, firearms, latent fingerprints, physical and trace evidence sections. Specialized field investigative services may be provided in the areas of clandestine drug laboratories and major crimes (firearms, biology, trace, arson/explosives). Forensic science best practice requires the use of non-destructive testing whenever reasonably possible. Several technically difficult situations (bodies and evidence encased in cement and metal) are presented as a challenge to audience.

  20. Close connections between open science and open-source software

    Directory of Open Access Journals (Sweden)

    YouHua Chen

    2014-09-01

    Full Text Available Open science is increasingly gaining attention in recent years. In this mini-review, we briefly discuss and summarize the reasons of introducing open science into academic publications for scientists. We argue that open-source software (like R and Python software can be the universal and important platforms for doing open science because of their appealing features: open source, easy-reading document, commonly used in various scientific disciplines like statistics, chemistry and biology. At last, the challenges and future perspectives of performing open science are discussed.

  1. Time for the public to read science and technology

    International Nuclear Information System (INIS)

    1998-06-01

    This book deals with cover of scientific articles of newspaper and magazine, science journals, broadcasting news, scientists working for the public, freelancers, writing good stories, using sources, application of statistics, writing selected articles of science magazine, and science opinion. It adds cover of public health and government ministries, report of behavioral biology, cover of contagious diseases, report of neurology, report of poisons and dangerousness, environmental articles, cover of earth science and physics, articles of astronomy. It also introduces other places such as universities, non profitable institutes, companies and industries.

  2. Interdisciplinary Science in the Classroom

    Science.gov (United States)

    French, L. M.; Lopresti, V. C.; Papali, P.

    1993-05-01

    The practice of science is by its very nature interdisciplinary. Most school curricula, however, present science as a "layer cake" with one year each of biology, chemistry, earth science, and physics. Students are too often left with a fragmented, disjointed view of the sciences as separate and distinct bodies of information. The continuity of scientific thought and the importance of major ideas such as energy, rates of change, and the nature of matter are not seen. We describe two efforts to integrate the sciences in a middle school curriculum and in an introductory science course for prospective elementary teachers. Introductory physical science for eighth graders at the Park School has three major units: "Observing the Sky", "The Nature of Matter", and "The Nature of Light". The course moves from simple naked-eye observations of the Sun and Moon to an understanding of the apparent motions of the Sun and of the Earth's seasons. In "The Nature of Matter", students construct operational definitions of characteristic properties of matter such as density, boiling point, solubility, and flame color. They design and perform many experiments and conclude by separating a mixture of liquids and solids by techniques such as distillation and fractional crystallization. In studying flame tests, students learn that different materials have different color "signatures" and that the differences can be quantified with a spectroscope. They then observe solar absorption lines with their spectroscopes and discover which elements are present in the Sun. Teachers of young children are potentially some of the most powerful allies in increasing our country's scientific literacy, yet most remain at best uneasy about science. At Wheelock College we are designing a course to be called "Introduction to Natural Science" for elementary education majors. We will address special needs of many in this population, including science anxiety and poor preparation in mathematics. A broad conceptual

  3. Science Process Skills in Science Curricula Applied in Turkey

    Science.gov (United States)

    Yumusak, Güngör Keskinkiliç

    2016-01-01

    One of the most important objectives of the science curricula is to bring in science process skills. The science process skills are skills that lie under scientific thinking and decision-making. Thus it is important for a science curricula to be rationalized in such a way that it brings in science process skills. New science curricula were…

  4. Science for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    The Federal government plays a key role in supporting the country's science infrastructure, a national treasure, and scientific research, an investment in our future. Scientific discoveries transform the way we think about our universe and ourselves, from the vastness of space to molecular-level biology. In innovations such as drugs derived through biotechnology and new communications technologies we see constant evidence of the power of science to improve lives and address national challenges. We had not yet learned to fly at the dawn of the 20th century, and could not have imagined the amazing 20th century inventions that we now take for granted. As we move into the 21st century, we eagerly anticipate new insights, discoveries, and technologies that will inspire and enrich us for many decades to come. This report presents the critical responsibilities of our Federal science enterprise and the actions taken by the Federal research agencies, through the National Science and Technology Council, to align our programs with scientific opportunity and with national needs. The many examples show how our science enterprise has responded to the President's priorities for homeland and national security, economic growth, health research, and the environment. In addition, we show how the science agencies work together to set priorities; coordinate related research programs; leverage investments to promote discovery, translate science into national benefits, and sustain the national research enterprise; and promote excellence in math and science education and work force development.

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 2. Science Academies' Refresher Course on Bioinformatics in Modern Biology. Information and Announcements Volume 19 Issue 2 February 2014 pp 192-192. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Interdisciplinarity and systems science to improve population health: a view from the NIH Office of Behavioral and Social Sciences Research.

    Science.gov (United States)

    Mabry, Patricia L; Olster, Deborah H; Morgan, Glen D; Abrams, David B

    2008-08-01

    Fueled by the rapid pace of discovery, humankind's ability to understand the ultimate causes of preventable common disease burdens and to identify solutions is now reaching a revolutionary tipping point. Achieving optimal health and well-being for all members of society lies as much in the understanding of the factors identified by the behavioral, social, and public health sciences as by the biological ones. Accumulating advances in mathematical modeling, informatics, imaging, sensor technology, and communication tools have stimulated several converging trends in science: an emerging understanding of epigenomic regulation; dramatic successes in achieving population health-behavior changes; and improved scientific rigor in behavioral, social, and economic sciences. Fostering stronger interdisciplinary partnerships to bring together the behavioral-social-ecologic models of multilevel "causes of the causes" and the molecular, cellular, and, ultimately, physiological bases of health and disease will facilitate breakthroughs to improve the public's health. The strategic vision of the Office of Behavioral and Social Sciences Research (OBSSR) at the National Institutes of Health (NIH) is rooted in a collaborative approach to addressing the complex and multidimensional issues that challenge the public's health. This paper describes OBSSR's four key programmatic directions (next-generation basic science, interdisciplinary research, systems science, and a problem-based focus for population impact) to illustrate how interdisciplinary and transdisciplinary perspectives can foster the vertical integration of research among biological, behavioral, social, and population levels of analysis over the lifespan and across generations. Interdisciplinary and multilevel approaches are critical both to the OBSSR's mission of integrating behavioral and social sciences more fully into the NIH scientific enterprise and to the overall NIH mission of utilizing science in the pursuit of

  7. International production on science oriented towards data: analysis of the terms data science and e-science in scopus and the web of science

    OpenAIRE

    Leilah Santiago Bufrem; Fábio Mascarenhas e Silva; Natanael Vitor Sobral; Anna Elizabeth Galvão Coutinho Correia

    2016-01-01

    Introduction: current configuration in the dynamics of production and scientific communication reveals the role of Science Oriented Towards Data, a comprehensive conception represented, mainly, by terms such as "e-Science" and "Data Science". Objective: To present the global scientific production on Science Oriented Towards Data by using the terms "e-Science" and "Data Science" in Scopus and the Web of Science during 2006-2016. Methodology: The study is divided into five phases: a) sear...

  8. Student teachers' views: what is an interesting life sciences curriculum?

    OpenAIRE

    Rian de Villiers

    2011-01-01

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET) phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university...

  9. Momona Ethiopian Journal of Science

    African Journals Online (AJOL)

    The scope of the journal includes various aspects of natural and ... general and geology, chemistry, physics, biology and mathematical sciences in particular. ... and Marital Fertility from Information on CWR (0-9): An Application to India /States / ...

  10. Living in a material world: Development and evaluation of a new materials science course for non-science majors

    Science.gov (United States)

    Brust, Gregory John

    This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science

  11. Physical Sciences 2007 Science & Technology Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A U

    2008-04-07

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  12. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  13. Preparation Model of Student Teacher Candidate in Developing Integrative Science Learning

    Science.gov (United States)

    Wiyanto; Widiyatmoko, Arif

    2016-01-01

    According to 2013 Curriculum in Indonesia, science learning process in Junior High School is integrally held between physics, chemistry, biology, and earth science. To successfully implementing the 2013 Curriculum in school, the education institution which generates science teacher should prepare the student, so that they can develop integrative…

  14. Inquiry-based laboratory investigations and student performance on standardized tests in biological science

    Science.gov (United States)

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  15. International institute for collaborative cell biology and biochemistry--history and memoirs from an international network for biological sciences.

    Science.gov (United States)

    Cameron, L C

    2013-01-01

    I was invited to write this essay on the occasion of my selection as the recipient of the 2012 Bruce Alberts Award for Excellence in Science Education from the American Society for Cell Biology (ASCB). Receiving this award is an enormous honor. When I read the email announcement for the first time, it was more than a surprise to me, it was unbelievable. I joined ASCB in 1996, when I presented a poster and received a travel award. Since then, I have attended almost every ASCB meeting. I will try to use this essay to share with readers one of the best experiences in my life. Because this is an essay, I take the liberty of mixing some of my thoughts with data in a way that it not usual in scientific writing. I hope that this sacrifice of the format will achieve the goal of conveying what I have learned over the past 20 yr, during which time a group of colleagues and friends created a nexus of knowledge and wisdom. We have worked together to build a network capable of sharing and inspiring science all over the world.

  16. International Institute for Collaborative Cell Biology and Biochemistry—History and Memoirs from an International Network for Biological Sciences

    Science.gov (United States)

    Cameron, L. C.

    2013-01-01

    I was invited to write this essay on the occasion of my selection as the recipient of the 2012 Bruce Alberts Award for Excellence in Science Education from the American Society for Cell Biology (ASCB). Receiving this award is an enormous honor. When I read the email announcement for the first time, it was more than a surprise to me, it was unbelievable. I joined ASCB in 1996, when I presented a poster and received a travel award. Since then, I have attended almost every ASCB meeting. I will try to use this essay to share with readers one of the best experiences in my life. Because this is an essay, I take the liberty of mixing some of my thoughts with data in a way that it not usual in scientific writing. I hope that this sacrifice of the format will achieve the goal of conveying what I have learned over the past 20 yr, during which time a group of colleagues and friends created a nexus of knowledge and wisdom. We have worked together to build a network capable of sharing and inspiring science all over the world. PMID:24006381

  17. Biomarkers as Common Data Elements for Symptom and Self-Management Science.

    Science.gov (United States)

    Page, Gayle G; Corwin, Elizabeth J; Dorsey, Susan G; Redeker, Nancy S; McCloskey, Donna Jo; Austin, Joan K; Guthrie, Barbara J; Moore, Shirley M; Barton, Debra; Kim, Miyong T; Docherty, Sharron L; Waldrop-Valverde, Drenna; Bailey, Donald E; Schiffman, Rachel F; Starkweather, Angela; Ward, Teresa M; Bakken, Suzanne; Hickey, Kathleen T; Renn, Cynthia L; Grady, Patricia

    2018-05-01

    Biomarkers as common data elements (CDEs) are important for the characterization of biobehavioral symptoms given that once a biologic moderator or mediator is identified, biologically based strategies can be investigated for treatment efforts. Just as a symptom inventory reflects a symptom experience, a biomarker is an indicator of the symptom, though not the symptom per se. The purposes of this position paper are to (a) identify a "minimum set" of biomarkers for consideration as CDEs in symptom and self-management science, specifically biochemical biomarkers; (b) evaluate the benefits and limitations of such a limited array of biomarkers with implications for symptom science; (c) propose a strategy for the collection of the endorsed minimum set of biologic samples to be employed as CDEs for symptom science; and (d) conceptualize this minimum set of biomarkers consistent with National Institute of Nursing Research (NINR) symptoms of fatigue, depression, cognition, pain, and sleep disturbance. From May 2016 through January 2017, a working group consisting of a subset of the Directors of the NINR Centers of Excellence funded by P20 or P30 mechanisms and NINR staff met bimonthly via telephone to develop this position paper suggesting the addition of biomarkers as CDEs. The full group of Directors reviewed drafts, provided critiques and suggestions, recommended the minimum set of biomarkers, and approved the completed document. Best practices for selecting, identifying, and using biological CDEs as well as challenges to the use of biological CDEs for symptom and self-management science are described. Current platforms for sample outcome sharing are presented. Finally, biological CDEs for symptom and self-management science are proposed along with implications for future research and use of CDEs in these areas. The recommended minimum set of biomarker CDEs include pro- and anti-inflammatory cytokines, a hypothalamic-pituitary-adrenal axis marker, cortisol, the

  18. Gregor Mendel's classic paper and the nature of science in genetics courses.

    Science.gov (United States)

    Westerlund, Julie F; Fairbanks, Daniel J

    2010-12-01

    The discoveries of Gregor Mendel, as described by Mendel in his 1866 paper Versuche uber Pflanzen-Hybriden (Experiments on plant hybrids), can be used in undergraduate genetics and biology courses to engage students about specific nature of science characteristics and their relationship to four of his major contributions to genetics. The use of primary source literature as an instructional tool to enhance genetics students' understanding of the nature of science helps students more clearly understand how scientists work and how the science of genetics has evolved as a discipline. We offer a historical background of how the nature of science developed as a concept and show how Mendel's investigations of heredity can enrich biology and genetics courses by exemplifying the nature of science. © 2010 The Authors.

  19. Data-driven predictions in the science of science.

    Science.gov (United States)

    Clauset, Aaron; Larremore, Daniel B; Sinatra, Roberta

    2017-02-03

    The desire to predict discoveries-to have some idea, in advance, of what will be discovered, by whom, when, and where-pervades nearly all aspects of modern science, from individual scientists to publishers, from funding agencies to hiring committees. In this Essay, we survey the emerging and interdisciplinary field of the "science of science" and what it teaches us about the predictability of scientific discovery. We then discuss future opportunities for improving predictions derived from the science of science and its potential impact, positive and negative, on the scientific community. Copyright © 2017, American Association for the Advancement of Science.

  20. Can citizen science enhance public understanding of science?

    Science.gov (United States)

    Bonney, Rick; Phillips, Tina B; Ballard, Heidi L; Enck, Jody W

    2016-01-01

    Over the past 20 years, thousands of citizen science projects engaging millions of participants in collecting and/or processing data have sprung up around the world. Here we review documented outcomes from four categories of citizen science projects which are defined by the nature of the activities in which their participants engage - Data Collection, Data Processing, Curriculum-based, and Community Science. We find strong evidence that scientific outcomes of citizen science are well documented, particularly for Data Collection and Data Processing projects. We find limited but growing evidence that citizen science projects achieve participant gains in knowledge about science knowledge and process, increase public awareness of the diversity of scientific research, and provide deeper meaning to participants' hobbies. We also find some evidence that citizen science can contribute positively to social well-being by influencing the questions that are being addressed and by giving people a voice in local environmental decision making. While not all citizen science projects are intended to achieve a greater degree of public understanding of science, social change, or improved science -society relationships, those projects that do require effort and resources in four main categories: (1) project design, (2) outcomes measurement, (3) engagement of new audiences, and (4) new directions for research. © The Author(s) 2015.

  1. Indiana secondary students' evolution learning experiences and demarcations of science from non-science

    Science.gov (United States)

    Donnelly, Lisa A.

    2007-12-01

    Previous research has documented students' conceptual difficulties learning evolution and how student learning may be related to students' views of evolution and science. This mixed methods study addressed how 74 high school biology students from six Indiana high schools viewed their evolution learning experiences, the demarcations of science from non-science, and evolution understanding and acceptance. Data collection entailed qualitative and quantitative methods including interviews, classroom observations, surveys, and assessments to address students' views of science and non-science, evolution learning experiences, and understanding and acceptance of evolution. Qualitative coding generated several demarcation and evolution learning experience codes that were subsequently used in quantitative comparisons of evolution understanding and acceptance. The majority of students viewed science as empirical, tentative but ultimately leading to certain truth, compatible with religion, the product of experimental work, and the product of human creativity. None of the students offered the consensus NOS view that scientific theories are substantiated explanations of phenomena while scientific laws state relationships or patterns between phenomena. About half the students indicated that scientific knowledge was subjectively and socio-culturally influenced. The majority of students also indicated that they had positive evolution learning experiences and thought evolution should be taught in secondary school. The quantitative comparisons revealed how students who viewed scientific knowledge as subjectively and socio-culturally influenced had higher understanding than their peers. Furthermore, students who maintained that science and religion were compatible did not differ with respect to understanding but had higher acceptance than their peers who viewed science and religion as conflicting. Furthermore, students who maintained that science must be consistent with their

  2. Islam and Science

    Science.gov (United States)

    Salam, Abdus

    The following sections are included: * The Holy Quran and Science * Modem Science, A Greco- Islamic Legacy * The Decline of Sciences in Islam * The Limitations of Science * Faith and Science * The Present Picture of Sciences in the Islamic Countries * Renaissance of Sciences in Islam * Steps Needed for Building up Sciences in the Islamic Countries * Science Education * Science Foundations in Islam * Technology in Our Countries * Concluding Remarks * REFERENCES

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    ... Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Biodiversity and Biological Degradation of Soil. Upasana Mishra Dolly Wattal Dhar. General Article Volume 9 Issue 1 January 2004 pp 26-33 ... Keywords. Microbial biodiversity; soil science; biogeochemical cycles; sustainable agriculture; ecology ...

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. V R Bhagwat. Articles written in Resonance – Journal of Science Education. Volume 7 Issue 9 September 2002 pp 36-48 General Article. Cryptochromes and Biological Clocks · V R Bhagwat · More Details Fulltext PDF ...

  5. Redesigning a General Education Science Course to Promote Critical Thinking.

    Science.gov (United States)

    Rowe, Matthew P; Gillespie, B Marcus; Harris, Kevin R; Koether, Steven D; Shannon, Li-Jen Y; Rose, Lori A

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. © 2015 M. P. Rowe, B. M. Gillespie, et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Coding the Biodigital Child: The Biopolitics and Pedagogic Strategies of Educational Data Science

    Science.gov (United States)

    Williamson, Ben

    2016-01-01

    Educational data science is an emerging transdisciplinary field formed from an amalgamation of data science and elements of biological, psychological and neuroscientific knowledge about learning, or learning science. This article conceptualises educational data science as a biopolitical strategy focused on the evaluation and management of the…

  7. Health Sciences

    OpenAIRE

    McEntyre, Johanna; Swan, Alma; Meier zu Verl, Christian; Horstmann, Wolfram

    2011-01-01

    This chapter provides an overview of research data management in the health sciences, primarily focused upon the sort of data curated by the European Bioinformatics Institute and similar organisations. In this field, data management is well-advanced, with a sophisticated infrastructure created and maintained by the community for the benefit of all. These advances have been brought about because the field has been data-intense for many years and has been driven by the challenges biology fac...

  8. Biohumanities: rethinking the relationship between biosciences, philosophy and history of science, and society.

    Science.gov (United States)

    Stotz, Karola; Griffiths, Paul E

    2008-03-01

    We argue that philosophical and historical research can constitute a "Biohumanities" that deepens our understanding of biology itself engages in constructive "science criticism," helps formulate new "visions of biology," and facilitates "critical science communication." We illustrate these ideas with two recent "experimental philosophy" studies of the concept of the gene and of the concept of innateness conducted by ourselves and collaborators. We conclude that the complex and often troubled relations between science and society are critical to both parties, and argue that the philosophy and history of science can help to make this relationship work.

  9. Potato agriculture, late blight science, and the molecularization of plant pathology.

    Science.gov (United States)

    Turner, R Steven

    2008-01-01

    By the mid-1980s nucleic-acid based methods were penetrating the farthest reaches of biological science, triggering rivalries among practitioners, altering relationships among subfields, and transforming the research front. This article delivers a "bottom up" analysis of that transformation at work in one important area of biological science, plant pathology, by tracing the "molecularization" of efforts to understand and control one notorious plant disease -- the late blight of potatoes. It mobilizes the research literature of late blight science as a tool through which to trace the changing typography of the research front from 1983 to 2003. During these years molecularization intensified the traditional fragmentation of the late blight research community, even as it dramatically integrated study of the causal organism into broader areas of biology. In these decades the pathogen responsible for late blight, the oomycete "Phytophthora infestans," was discovered to be undergoing massive, frightening, and still largely unexplained genetic diversification -- a circumstance that lends the episode examined here an urgency that reinforces its historiographical significance as a case-study in the molecularization of the biological sciences.

  10. Trends in the Use of Supplementary Materials in Environmental Science Journals

    Science.gov (United States)

    Kenyon, Jeremy; Sprague, Nancy R.

    2014-01-01

    Our research examined the use of supplementary materials in six environmental science disciplines: atmospheric sciences, biology, fisheries, forestry, geology, and plant sciences. Ten key journals were selected from each of these disciplines and the number of supplementary materials, such as data files or videos, in each issue was noted over a…

  11. Proceedings of the 42nd basic science seminar. (The 7th workshop on neutron crystallography in biology)

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1996-02-01

    42nd advanced science seminar (the 7th workshop on neutron crystallography in biology) was held on October, 25-26, 1995 at Tokai. Forty three participants from university, research institute and private company took part in the workshop and there were 17 lectures given. The proceedings collect the figures and tables which the speakers used in their lectures. (author)

  12. Citizen Science: Opportunities for Girls' Development of Science Identity

    Science.gov (United States)

    Brien, Sinead Carroll

    Many students in the United States, particularly girls, have lost interest in science by the time they reach high school and do not pursue higher degrees or careers in science. Several science education researchers have found that the ways in which youth see themselves and position themselves in relation to science can influence whether they pursue science studies and careers. I suggest that participation in a citizen science program, which I define as a program in which girls interact with professional scientists and collect data that contributes to scientific research, could contribute to changing girls' perceptions of science and scientists, and promote their science identity work. I refer to science identity as self-recognition and recognition by others that one thinks scientifically and does scientific work. I examined a case study to document and analyze the relationship between girls' participation in a summer citizen science project and their development of science identity. I observed six girls between the ages of 16 and 18 during the Milkweed and Monarch Project, taking field notes on focal girls' interactions with other youth, adults, and the scientist, conducted highly-structured interviews both pre-and post- girls' program participation, and interviewed the project scientist and educator. I qualitatively analyzed field notes and interview responses for themes in girls' discussion of what it meant to think scientifically, roles they took on, and how they recognized themselves as thinking scientifically. I found that girls who saw themselves as thinking scientifically during the program seemed to demonstrate shifts in their science identity. The aspects of the citizen science program that seemed to most influence shifts in these girls' science identities were 1) the framing of the project work as "real science, 2) that it involved ecological field work, and 3) that it created a culture that valued data and scientific work. However, some of the girls only

  13. Identifying Relevant Anti-Science Perceptions to Improve Science-Based Communication: The Negative Perceptions of Science Scale

    Directory of Open Access Journals (Sweden)

    Melanie Morgan

    2018-04-01

    Full Text Available Science communicators and scholars have struggled to understand what appears to be increasingly frequent endorsement of a wide range of anti-science beliefs and a corresponding reduction of trust in science. A common explanation for this issue is a lack of science literacy/knowledge among the general public (Funk et al. 2015. However, other possible explanations have been advanced, including conflict with alternative belief systems and other contextual factors, and even cultural factors (Gauchat 2008; Kahan 2015 that are not necessarily due to knowledge deficits. One of the challenges is that there are limited tools available to measure a range of possible underlying negative perceptions of science that could provide a more nuanced framework within which to improve communication around important scientific topics. This project describes two studies detailing the development and validation of the Negative Perceptions of Science Scale (NPSS, a multi-dimensional instrument that taps into several distinct sets of negative science perceptions: Science as Corrupt, Science as Complex, Science as Heretical, and Science as Limited. Evidence for the reliability and validity of the NPSS is described. The sub-dimensions of the NPSS are associated with a range of specific anti-science beliefs across a broad set of topic areas above and beyond that explained by demographics (including education, sex, age, and income, political, and religious ideology. Implications for these findings for improving science communication and science-related message tailoring are discussed.

  14. Science learning motivation as correlate of students’ academic performances

    Directory of Open Access Journals (Sweden)

    Nhorvien Jay P. Libao

    2016-09-01

    Full Text Available This study was designed to analyze the relationship  of students’ learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of their motivation do not vary across their sex, age, and curriculum year. Moreover, the respondents had good academic performances in science. Aptly, extrinsic motivation was found to be related with their academic performances among the indicators of motivations in learning science.

  15. Young "Science Ambassadors" Raise the Profile of Science

    Science.gov (United States)

    Ridley, Katie

    2014-01-01

    Katie Ridley, science coordinator at St. Gregory's Catholic Primary School, Liverpool, UK, states that the inspiration for "science ambassadors" came after embarking on the Primary Science Quality Mark programme at their school. Ridley realized that science was just not recognised as such by the children, they talked about scientific…

  16. Space life sciences: Programs and projects

    Science.gov (United States)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  17. Science teacher orientations and PCK across science topics in grade 9 earth science

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-07-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade 9 earth science course. Through interviews and observations of one teacher's classroom across two sequentially taught, this research contests the notion that teachers hold a single way of conceptualising science teaching and learning. In this, we consider if multiple ontologies can provide potential explanatory power for characterising instructional enactments. In earlier work with the teacher in this study, using generic interview prompts and general discussions about science teaching and learning, we accepted the existence of a unitary STO and its promise of consistent reformed instruction in the classroom. However, upon close examination of instruction focused on different science topics, evidence was found to demonstrate the explanatory power of multiple ontologies for shaping characteristically different epistemological constructions across science topics. This research points to the need for care in generalising about teacher practice, as it reveals that a teacher's practice, and orientation, can vary, dependent on the context and science topics taught.

  18. Time on Text and Science Achievement for High School Biology Students

    Science.gov (United States)

    Wyss, Vanessa L.; Dolenc, Nathan; Kong, Xiaoqing; Tai, Robert H.

    2013-01-01

    The conflict between the amount of material to be addressed in high school science classes, the need to prepare students for standardized tests, and the amount of time available forces science educators to make difficult pedagogical decisions on a daily basis. Hands-on and inquiry-based learning offer students more authentic learning experiences…

  19. Life sciences report 1987

    Science.gov (United States)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  20. 76 FR 67748 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2011-11-02

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(a) of the Federal Advisory Committee Act...., Director, Division of Extramural Research and Training, Nat. Inst. of Environmental Health Sciences... Manpower Development in the Environmental Health Sciences; 93.113, Biological Response to Environmental...

  1. Learning Science by Engaging Religion: A Novel Two-Course Approach for Biology Majors

    Science.gov (United States)

    Eisen, Arri; Huang, Junjian

    2014-01-01

    Many issues in science create individual and societal tensions with important implications outside the classroom. We describe one model that directly addresses such tensions by integrating science and religion in two parallel, integrated courses for science majors. Evaluation of the goals of the project--(1) providing students with strategies to…

  2. Review of State-Space Models for Fisheries Science

    DEFF Research Database (Denmark)

    Aeberhard, William H.; Flemming, Joanna Mills; Nielsen, Anders

    2018-01-01

    Fisheries science is concerned with the management and understanding of the raising and harvesting of fish. Fish stocks are assessed using biological and fisheries data with the goal of estimating either their total population or biomass. Stock assessment models also make it possible to predict how...... highlights what should be considered best practices for science-based fisheries management....

  3. Capabilities: Science Pillars

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  4. Faces of Science

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  5. Bradbury Science Museum

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  6. Office of Science

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  7. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1957 Section: Animal Sciences. Venkataraman, Taracad Venkatakrishna Ph.D. (Madras). Date of birth: 1910. Date of death: 30 November 1981. Specialization: Agricultural Entomology and Biological & Integrated Crop Pests Control. YouTube; Twitter; Facebook; Blog ...

  8. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  9. Adapting Practices of Science Journalism to Foster Science Literacy

    Science.gov (United States)

    Polman, Joseph L.; Newman, Alan; Saul, Ellen Wendy; Farrar, Cathy

    2014-01-01

    In this paper, the authors describe how the practices of expert science journalists enable them to act as "competent outsiders" to science. We assert that selected science journalism practices can be used to design reform-based science instruction; these practices not only foster science literacy that is useful in daily life, but also…

  10. Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons

    Science.gov (United States)

    Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert

    2013-06-01

    Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This study examined 81 in-classroom inquiry science lessons for preservice education majors and their cooperating teachers to determine the accuracy of the science content delivered in elementary classrooms. Our results showed that 74 % of experienced teachers and 50 % of student teachers presented science lessons with greater than 90 % accuracy. Eleven of the 81 lessons (9 preservice, 2 cooperating teachers) failed to deliver accurate science content to the class. Science content accuracy was highly correlated with the use of kit-based resources supported with professional development, a preference for teaching science, and grade level. There was no correlation between the accuracy of science content and some common measures of teacher content knowledge (i.e., number of college science courses, science grades, or scores on a general science content test). Our study concluded that when provided with high quality curricular materials and targeted professional development, elementary teachers learn needed science content and present it accurately to their students.

  11. The Postgraduate Study of Macromolecular Sciences at the University of Zagreb (1971-1980)

    OpenAIRE

    Kunst, B.; Dezelic, D.; Veksli, Z.

    2008-01-01

    The postgraduate study of macromolecular sciences (PSMS) was established at the University of Zagreb in 1971 as a university study in the time of expressed interdisciplinary permeation of natural sciences - physics, chemistry and biology, and application of their achievements in technologicaldisciplines. PSMS was established by a group of prominent university professors from the schools of Science, Chemical Technology, Pharmacy and Medicine, as well as from the Institute of Biology. The study...

  12. Annual report of national institute of radiological sciences

    International Nuclear Information System (INIS)

    1993-07-01

    This annual report is a compilation of the research activities and achievement in the National Institute of Radiological Sciences (NIRS) in Japan during the fiscal year 1992 (from April 1992 through March 1993). Construction of the Heavy Ion Medical Accelerator in Chiba (HIMAC) has reached semi-final stage. The research covers a wide range of radiological sciences from molecular biology to environmental studies and medicine including engineering for heavy ion therapy of cancer. Topics consists of physics, chemistry, biomedical science, clinical research, and environmental sciences, covering a total of 84 titles. A list of publications by staff members, activities of research divisions, and organization chart of the NIRS are given in Appendix. (J.P.N.) 78 refs

  13. The borderlands between science and philosophy: an introduction.

    Science.gov (United States)

    Pigliucci, Massimo

    2008-03-01

    Science and philosophy have a very long history, dating back at least to the 16th and 17th centuries, when the first scientist-philosophers, such as Bacon, Galilei, and Newton, were beginning the process of turning natural philosophy into science. Contemporary relationships between the two fields are still to some extent marked by the distrust that maintains the divide between the so-called "two cultures." An increasing number of philosophers, however, are making conceptual contributions to sciences ranging from quantum mechanics to evolutionary biology, and a few scientists are conducting research relevant to classically philosophical fields of inquiry, such as consciousness and moral decision-making. This article will introduce readers to the borderlands between science and philosophy, beginning with a brief description of what philosophy of science is about, and including a discussion of how the two disciplines can fruitfully interact not only at the level of scholarship, but also when it comes to controversies surrounding public understanding of science.

  14. The Effects of Motivation on Student Performance on Science Assessments

    Science.gov (United States)

    Glenn, Tina Heard

    Academic achievement of public school students in the United States has significantly fallen behind other countries. Students' lack of knowledge of, or interest in, basic science and math has led to fewer graduates of science, technology, engineering, and math-related fields (STEM), a factor that may affect their career success and will certainly affect the numbers in the workforce who are prepared for some STEM jobs. Drawing from self-determination theory and achievement theory, the purpose of this correlational study was to determine whether there were significant relationships between high school academic performance in science classes, motivations (self-efficacy, self-regulation, and intrinsic and extrinsic goal orientation), and academic performance in an introductory online college biology class. Data were obtained at 2 points in time from a convenience multiethnic sample of adult male ( n =16) and female (n = 49) community college students in the southeast United States. Correlational analyses indicated no statistically significant relationships for intrinsic or extrinsic goal orientation, self-efficacy, or self-regulation with high school science mean-GPA nor college biology final course grade. However, high school academic performance in science classes significantly predicted college performance in an entry-level online biology class. The implications of positive social change include knowledge useful for educational institutions to explore additional factors that may motivate students to enroll in science courses, potentially leading to an increase in scientific knowledge and STEM careers.

  15. Nuclear applications in life sciences

    International Nuclear Information System (INIS)

    Uenak, P.

    2009-01-01

    Radioactivity has revolutionized life sciences during the last century, and it is still an indispensable tool. Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics, Nutrition and Environmental Problems Relevant Health are significant application fields of Nuclear Sciences. Nuclear medicine today is a well established branch of medicine. Radionuclides and radiopharmaceuticals play a key role both in diagnostic investigations and therapy-Both cyclotron and reactor produced radionuclides find application, the former more in diagnostic studies and the latter in therapy. New therapy applications such as bor neutron therapy are increasing by time together with the technological improvements in imaging systems such as PET and SPECT. Radionuclides and radiopharmaceuticals play important role in both therapy and imaging. However cyclotron produced radionuclides have been using generally in imaging purposes while reactor produced radionuclides have also therapeutic applications. With the advent of emission tomography, new vistas for probing biochemistry in vivo have been opened. The radio chemist faces an ever-increasing challenge of designing new tracers for diagnostic and therapeutic applications. Rapid, efficient and automated methods of radionuclide and precursor production, labeling of biomolecules, and quality control need to be developed. The purpose of this article is a short interface from Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics Applications of Nuclear Sciences.

  16. A Festival of Contemporary Science for Science Teachers

    Science.gov (United States)

    Harrison, Tim; Berry, Bryan; Shallcross, Dudley

    2010-01-01

    In this article, the authors describe the first Festival of Contemporary Science for Science Teachers which was held in January 2010. Focusing on a number of leading-edge science topics, this new festival was organised by Bristol ChemLabS, in collaboration with the Science Learning Centre South West, and involved academics from several departments…

  17. Preservice Science Teachers' Views on Science-Technology-Society

    Science.gov (United States)

    Dikmentepe, Emel; Yakar, Zeha

    2016-01-01

    The aim of this study is to investigate the views of pre-service science teachers on Science-Technology-Society (STS). In the research, a descriptive research method was used and data were collected using the Views on Science-Technology-Society (VOSTS) Questionnaire. In general, the results of this study revealed that pre-service science teachers…

  18. Democratizing data science through data science training.

    Science.gov (United States)

    Van Horn, John Darrell; Fierro, Lily; Kamdar, Jeana; Gordon, Jonathan; Stewart, Crystal; Bhattrai, Avnish; Abe, Sumiko; Lei, Xiaoxiao; O'Driscoll, Caroline; Sinha, Aakanchha; Jain, Priyambada; Burns, Gully; Lerman, Kristina; Ambite, José Luis

    2018-01-01

    The biomedical sciences have experienced an explosion of data which promises to overwhelm many current practitioners. Without easy access to data science training resources, biomedical researchers may find themselves unable to wrangle their own datasets. In 2014, to address the challenges posed such a data onslaught, the National Institutes of Health (NIH) launched the Big Data to Knowledge (BD2K) initiative. To this end, the BD2K Training Coordinating Center (TCC; bigdatau.org) was funded to facilitate both in-person and online learning, and open up the concepts of data science to the widest possible audience. Here, we describe the activities of the BD2K TCC and its focus on the construction of the Educational Resource Discovery Index (ERuDIte), which identifies, collects, describes, and organizes online data science materials from BD2K awardees, open online courses, and videos from scientific lectures and tutorials. ERuDIte now indexes over 9,500 resources. Given the richness of online training materials and the constant evolution of biomedical data science, computational methods applying information retrieval, natural language processing, and machine learning techniques are required - in effect, using data science to inform training in data science. In so doing, the TCC seeks to democratize novel insights and discoveries brought forth via large-scale data science training.

  19. Impact of Informal Science Education on Children's Attitudes About Science

    Science.gov (United States)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  20. 77 FR 26300 - National Institute of Environmental Health Sciences; Notice of Meeting

    Science.gov (United States)

    2012-05-03

    ... Environmental Health Sciences; Notice of Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act... Structural Biology. Place: Nat. Inst. of Environmental Health Sciences, Building 101, Rodbell Auditorium, 111... Environmental Health Sciences, Building 101, Rodbell Auditorium, 111 T. W. Alexander Drive, Research Triangle...